GNU Linux-libre 6.8.7-gnu
[releases.git] / drivers / nvme / target / fc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/blk-mq.h>
9 #include <linux/parser.h>
10 #include <linux/random.h>
11 #include <uapi/scsi/fc/fc_fs.h>
12 #include <uapi/scsi/fc/fc_els.h>
13
14 #include "nvmet.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "../host/fc.h"
18
19
20 /* *************************** Data Structures/Defines ****************** */
21
22
23 #define NVMET_LS_CTX_COUNT              256
24
25 struct nvmet_fc_tgtport;
26 struct nvmet_fc_tgt_assoc;
27
28 struct nvmet_fc_ls_iod {                /* for an LS RQST RCV */
29         struct nvmefc_ls_rsp            *lsrsp;
30         struct nvmefc_tgt_fcp_req       *fcpreq;        /* only if RS */
31
32         struct list_head                ls_rcv_list; /* tgtport->ls_rcv_list */
33
34         struct nvmet_fc_tgtport         *tgtport;
35         struct nvmet_fc_tgt_assoc       *assoc;
36         void                            *hosthandle;
37
38         union nvmefc_ls_requests        *rqstbuf;
39         union nvmefc_ls_responses       *rspbuf;
40         u16                             rqstdatalen;
41         dma_addr_t                      rspdma;
42
43         struct scatterlist              sg[2];
44
45         struct work_struct              work;
46 } __aligned(sizeof(unsigned long long));
47
48 struct nvmet_fc_ls_req_op {             /* for an LS RQST XMT */
49         struct nvmefc_ls_req            ls_req;
50
51         struct nvmet_fc_tgtport         *tgtport;
52         void                            *hosthandle;
53
54         int                             ls_error;
55         struct list_head                lsreq_list; /* tgtport->ls_req_list */
56         bool                            req_queued;
57 };
58
59
60 /* desired maximum for a single sequence - if sg list allows it */
61 #define NVMET_FC_MAX_SEQ_LENGTH         (256 * 1024)
62
63 enum nvmet_fcp_datadir {
64         NVMET_FCP_NODATA,
65         NVMET_FCP_WRITE,
66         NVMET_FCP_READ,
67         NVMET_FCP_ABORTED,
68 };
69
70 struct nvmet_fc_fcp_iod {
71         struct nvmefc_tgt_fcp_req       *fcpreq;
72
73         struct nvme_fc_cmd_iu           cmdiubuf;
74         struct nvme_fc_ersp_iu          rspiubuf;
75         dma_addr_t                      rspdma;
76         struct scatterlist              *next_sg;
77         struct scatterlist              *data_sg;
78         int                             data_sg_cnt;
79         u32                             offset;
80         enum nvmet_fcp_datadir          io_dir;
81         bool                            active;
82         bool                            abort;
83         bool                            aborted;
84         bool                            writedataactive;
85         spinlock_t                      flock;
86
87         struct nvmet_req                req;
88         struct work_struct              defer_work;
89
90         struct nvmet_fc_tgtport         *tgtport;
91         struct nvmet_fc_tgt_queue       *queue;
92
93         struct list_head                fcp_list;       /* tgtport->fcp_list */
94 };
95
96 struct nvmet_fc_tgtport {
97         struct nvmet_fc_target_port     fc_target_port;
98
99         struct list_head                tgt_list; /* nvmet_fc_target_list */
100         struct device                   *dev;   /* dev for dma mapping */
101         struct nvmet_fc_target_template *ops;
102
103         struct nvmet_fc_ls_iod          *iod;
104         spinlock_t                      lock;
105         struct list_head                ls_rcv_list;
106         struct list_head                ls_req_list;
107         struct list_head                ls_busylist;
108         struct list_head                assoc_list;
109         struct list_head                host_list;
110         struct ida                      assoc_cnt;
111         struct nvmet_fc_port_entry      *pe;
112         struct kref                     ref;
113         u32                             max_sg_cnt;
114
115         struct work_struct              put_work;
116 };
117
118 struct nvmet_fc_port_entry {
119         struct nvmet_fc_tgtport         *tgtport;
120         struct nvmet_port               *port;
121         u64                             node_name;
122         u64                             port_name;
123         struct list_head                pe_list;
124 };
125
126 struct nvmet_fc_defer_fcp_req {
127         struct list_head                req_list;
128         struct nvmefc_tgt_fcp_req       *fcp_req;
129 };
130
131 struct nvmet_fc_tgt_queue {
132         bool                            ninetypercent;
133         u16                             qid;
134         u16                             sqsize;
135         u16                             ersp_ratio;
136         __le16                          sqhd;
137         atomic_t                        connected;
138         atomic_t                        sqtail;
139         atomic_t                        zrspcnt;
140         atomic_t                        rsn;
141         spinlock_t                      qlock;
142         struct nvmet_cq                 nvme_cq;
143         struct nvmet_sq                 nvme_sq;
144         struct nvmet_fc_tgt_assoc       *assoc;
145         struct list_head                fod_list;
146         struct list_head                pending_cmd_list;
147         struct list_head                avail_defer_list;
148         struct workqueue_struct         *work_q;
149         struct kref                     ref;
150         /* array of fcp_iods */
151         struct nvmet_fc_fcp_iod         fod[] __counted_by(sqsize);
152 } __aligned(sizeof(unsigned long long));
153
154 struct nvmet_fc_hostport {
155         struct nvmet_fc_tgtport         *tgtport;
156         void                            *hosthandle;
157         struct list_head                host_list;
158         struct kref                     ref;
159         u8                              invalid;
160 };
161
162 struct nvmet_fc_tgt_assoc {
163         u64                             association_id;
164         u32                             a_id;
165         atomic_t                        terminating;
166         struct nvmet_fc_tgtport         *tgtport;
167         struct nvmet_fc_hostport        *hostport;
168         struct nvmet_fc_ls_iod          *rcv_disconn;
169         struct list_head                a_list;
170         struct nvmet_fc_tgt_queue       *queues[NVMET_NR_QUEUES + 1];
171         struct kref                     ref;
172         struct work_struct              del_work;
173 };
174
175
176 static inline int
177 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
178 {
179         return (iodptr - iodptr->tgtport->iod);
180 }
181
182 static inline int
183 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
184 {
185         return (fodptr - fodptr->queue->fod);
186 }
187
188
189 /*
190  * Association and Connection IDs:
191  *
192  * Association ID will have random number in upper 6 bytes and zero
193  *   in lower 2 bytes
194  *
195  * Connection IDs will be Association ID with QID or'd in lower 2 bytes
196  *
197  * note: Association ID = Connection ID for queue 0
198  */
199 #define BYTES_FOR_QID                   sizeof(u16)
200 #define BYTES_FOR_QID_SHIFT             (BYTES_FOR_QID * 8)
201 #define NVMET_FC_QUEUEID_MASK           ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
202
203 static inline u64
204 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
205 {
206         return (assoc->association_id | qid);
207 }
208
209 static inline u64
210 nvmet_fc_getassociationid(u64 connectionid)
211 {
212         return connectionid & ~NVMET_FC_QUEUEID_MASK;
213 }
214
215 static inline u16
216 nvmet_fc_getqueueid(u64 connectionid)
217 {
218         return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
219 }
220
221 static inline struct nvmet_fc_tgtport *
222 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
223 {
224         return container_of(targetport, struct nvmet_fc_tgtport,
225                                  fc_target_port);
226 }
227
228 static inline struct nvmet_fc_fcp_iod *
229 nvmet_req_to_fod(struct nvmet_req *nvme_req)
230 {
231         return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
232 }
233
234
235 /* *************************** Globals **************************** */
236
237
238 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
239
240 static LIST_HEAD(nvmet_fc_target_list);
241 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
242 static LIST_HEAD(nvmet_fc_portentry_list);
243
244
245 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
246 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
247 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
248 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
249 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
250 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
251 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
252 static void nvmet_fc_put_tgtport_work(struct work_struct *work)
253 {
254         struct nvmet_fc_tgtport *tgtport =
255                 container_of(work, struct nvmet_fc_tgtport, put_work);
256
257         nvmet_fc_tgtport_put(tgtport);
258 }
259 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
260 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
261                                         struct nvmet_fc_fcp_iod *fod);
262 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
263 static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
264                                 struct nvmet_fc_ls_iod *iod);
265
266
267 /* *********************** FC-NVME DMA Handling **************************** */
268
269 /*
270  * The fcloop device passes in a NULL device pointer. Real LLD's will
271  * pass in a valid device pointer. If NULL is passed to the dma mapping
272  * routines, depending on the platform, it may or may not succeed, and
273  * may crash.
274  *
275  * As such:
276  * Wrapper all the dma routines and check the dev pointer.
277  *
278  * If simple mappings (return just a dma address, we'll noop them,
279  * returning a dma address of 0.
280  *
281  * On more complex mappings (dma_map_sg), a pseudo routine fills
282  * in the scatter list, setting all dma addresses to 0.
283  */
284
285 static inline dma_addr_t
286 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
287                 enum dma_data_direction dir)
288 {
289         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
290 }
291
292 static inline int
293 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
294 {
295         return dev ? dma_mapping_error(dev, dma_addr) : 0;
296 }
297
298 static inline void
299 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
300         enum dma_data_direction dir)
301 {
302         if (dev)
303                 dma_unmap_single(dev, addr, size, dir);
304 }
305
306 static inline void
307 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
308                 enum dma_data_direction dir)
309 {
310         if (dev)
311                 dma_sync_single_for_cpu(dev, addr, size, dir);
312 }
313
314 static inline void
315 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
316                 enum dma_data_direction dir)
317 {
318         if (dev)
319                 dma_sync_single_for_device(dev, addr, size, dir);
320 }
321
322 /* pseudo dma_map_sg call */
323 static int
324 fc_map_sg(struct scatterlist *sg, int nents)
325 {
326         struct scatterlist *s;
327         int i;
328
329         WARN_ON(nents == 0 || sg[0].length == 0);
330
331         for_each_sg(sg, s, nents, i) {
332                 s->dma_address = 0L;
333 #ifdef CONFIG_NEED_SG_DMA_LENGTH
334                 s->dma_length = s->length;
335 #endif
336         }
337         return nents;
338 }
339
340 static inline int
341 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
342                 enum dma_data_direction dir)
343 {
344         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
345 }
346
347 static inline void
348 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
349                 enum dma_data_direction dir)
350 {
351         if (dev)
352                 dma_unmap_sg(dev, sg, nents, dir);
353 }
354
355
356 /* ********************** FC-NVME LS XMT Handling ************************* */
357
358
359 static void
360 __nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op *lsop)
361 {
362         struct nvmet_fc_tgtport *tgtport = lsop->tgtport;
363         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
364         unsigned long flags;
365
366         spin_lock_irqsave(&tgtport->lock, flags);
367
368         if (!lsop->req_queued) {
369                 spin_unlock_irqrestore(&tgtport->lock, flags);
370                 goto out_putwork;
371         }
372
373         list_del(&lsop->lsreq_list);
374
375         lsop->req_queued = false;
376
377         spin_unlock_irqrestore(&tgtport->lock, flags);
378
379         fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
380                                   (lsreq->rqstlen + lsreq->rsplen),
381                                   DMA_BIDIRECTIONAL);
382
383 out_putwork:
384         queue_work(nvmet_wq, &tgtport->put_work);
385 }
386
387 static int
388 __nvmet_fc_send_ls_req(struct nvmet_fc_tgtport *tgtport,
389                 struct nvmet_fc_ls_req_op *lsop,
390                 void (*done)(struct nvmefc_ls_req *req, int status))
391 {
392         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
393         unsigned long flags;
394         int ret = 0;
395
396         if (!tgtport->ops->ls_req)
397                 return -EOPNOTSUPP;
398
399         if (!nvmet_fc_tgtport_get(tgtport))
400                 return -ESHUTDOWN;
401
402         lsreq->done = done;
403         lsop->req_queued = false;
404         INIT_LIST_HEAD(&lsop->lsreq_list);
405
406         lsreq->rqstdma = fc_dma_map_single(tgtport->dev, lsreq->rqstaddr,
407                                   lsreq->rqstlen + lsreq->rsplen,
408                                   DMA_BIDIRECTIONAL);
409         if (fc_dma_mapping_error(tgtport->dev, lsreq->rqstdma)) {
410                 ret = -EFAULT;
411                 goto out_puttgtport;
412         }
413         lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
414
415         spin_lock_irqsave(&tgtport->lock, flags);
416
417         list_add_tail(&lsop->lsreq_list, &tgtport->ls_req_list);
418
419         lsop->req_queued = true;
420
421         spin_unlock_irqrestore(&tgtport->lock, flags);
422
423         ret = tgtport->ops->ls_req(&tgtport->fc_target_port, lsop->hosthandle,
424                                    lsreq);
425         if (ret)
426                 goto out_unlink;
427
428         return 0;
429
430 out_unlink:
431         lsop->ls_error = ret;
432         spin_lock_irqsave(&tgtport->lock, flags);
433         lsop->req_queued = false;
434         list_del(&lsop->lsreq_list);
435         spin_unlock_irqrestore(&tgtport->lock, flags);
436         fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
437                                   (lsreq->rqstlen + lsreq->rsplen),
438                                   DMA_BIDIRECTIONAL);
439 out_puttgtport:
440         nvmet_fc_tgtport_put(tgtport);
441
442         return ret;
443 }
444
445 static int
446 nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport *tgtport,
447                 struct nvmet_fc_ls_req_op *lsop,
448                 void (*done)(struct nvmefc_ls_req *req, int status))
449 {
450         /* don't wait for completion */
451
452         return __nvmet_fc_send_ls_req(tgtport, lsop, done);
453 }
454
455 static void
456 nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
457 {
458         struct nvmet_fc_ls_req_op *lsop =
459                 container_of(lsreq, struct nvmet_fc_ls_req_op, ls_req);
460
461         __nvmet_fc_finish_ls_req(lsop);
462
463         /* fc-nvme target doesn't care about success or failure of cmd */
464
465         kfree(lsop);
466 }
467
468 /*
469  * This routine sends a FC-NVME LS to disconnect (aka terminate)
470  * the FC-NVME Association.  Terminating the association also
471  * terminates the FC-NVME connections (per queue, both admin and io
472  * queues) that are part of the association. E.g. things are torn
473  * down, and the related FC-NVME Association ID and Connection IDs
474  * become invalid.
475  *
476  * The behavior of the fc-nvme target is such that it's
477  * understanding of the association and connections will implicitly
478  * be torn down. The action is implicit as it may be due to a loss of
479  * connectivity with the fc-nvme host, so the target may never get a
480  * response even if it tried.  As such, the action of this routine
481  * is to asynchronously send the LS, ignore any results of the LS, and
482  * continue on with terminating the association. If the fc-nvme host
483  * is present and receives the LS, it too can tear down.
484  */
485 static void
486 nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc *assoc)
487 {
488         struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
489         struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
490         struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
491         struct nvmet_fc_ls_req_op *lsop;
492         struct nvmefc_ls_req *lsreq;
493         int ret;
494
495         /*
496          * If ls_req is NULL or no hosthandle, it's an older lldd and no
497          * message is normal. Otherwise, send unless the hostport has
498          * already been invalidated by the lldd.
499          */
500         if (!tgtport->ops->ls_req || assoc->hostport->invalid)
501                 return;
502
503         lsop = kzalloc((sizeof(*lsop) +
504                         sizeof(*discon_rqst) + sizeof(*discon_acc) +
505                         tgtport->ops->lsrqst_priv_sz), GFP_KERNEL);
506         if (!lsop) {
507                 dev_info(tgtport->dev,
508                         "{%d:%d} send Disconnect Association failed: ENOMEM\n",
509                         tgtport->fc_target_port.port_num, assoc->a_id);
510                 return;
511         }
512
513         discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
514         discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
515         lsreq = &lsop->ls_req;
516         if (tgtport->ops->lsrqst_priv_sz)
517                 lsreq->private = (void *)&discon_acc[1];
518         else
519                 lsreq->private = NULL;
520
521         lsop->tgtport = tgtport;
522         lsop->hosthandle = assoc->hostport->hosthandle;
523
524         nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
525                                 assoc->association_id);
526
527         ret = nvmet_fc_send_ls_req_async(tgtport, lsop,
528                                 nvmet_fc_disconnect_assoc_done);
529         if (ret) {
530                 dev_info(tgtport->dev,
531                         "{%d:%d} XMT Disconnect Association failed: %d\n",
532                         tgtport->fc_target_port.port_num, assoc->a_id, ret);
533                 kfree(lsop);
534         }
535 }
536
537
538 /* *********************** FC-NVME Port Management ************************ */
539
540
541 static int
542 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
543 {
544         struct nvmet_fc_ls_iod *iod;
545         int i;
546
547         iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
548                         GFP_KERNEL);
549         if (!iod)
550                 return -ENOMEM;
551
552         tgtport->iod = iod;
553
554         for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
555                 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
556                 iod->tgtport = tgtport;
557                 list_add_tail(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
558
559                 iod->rqstbuf = kzalloc(sizeof(union nvmefc_ls_requests) +
560                                        sizeof(union nvmefc_ls_responses),
561                                        GFP_KERNEL);
562                 if (!iod->rqstbuf)
563                         goto out_fail;
564
565                 iod->rspbuf = (union nvmefc_ls_responses *)&iod->rqstbuf[1];
566
567                 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
568                                                 sizeof(*iod->rspbuf),
569                                                 DMA_TO_DEVICE);
570                 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
571                         goto out_fail;
572         }
573
574         return 0;
575
576 out_fail:
577         kfree(iod->rqstbuf);
578         list_del(&iod->ls_rcv_list);
579         for (iod--, i--; i >= 0; iod--, i--) {
580                 fc_dma_unmap_single(tgtport->dev, iod->rspdma,
581                                 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
582                 kfree(iod->rqstbuf);
583                 list_del(&iod->ls_rcv_list);
584         }
585
586         kfree(iod);
587
588         return -EFAULT;
589 }
590
591 static void
592 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
593 {
594         struct nvmet_fc_ls_iod *iod = tgtport->iod;
595         int i;
596
597         for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
598                 fc_dma_unmap_single(tgtport->dev,
599                                 iod->rspdma, sizeof(*iod->rspbuf),
600                                 DMA_TO_DEVICE);
601                 kfree(iod->rqstbuf);
602                 list_del(&iod->ls_rcv_list);
603         }
604         kfree(tgtport->iod);
605 }
606
607 static struct nvmet_fc_ls_iod *
608 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
609 {
610         struct nvmet_fc_ls_iod *iod;
611         unsigned long flags;
612
613         spin_lock_irqsave(&tgtport->lock, flags);
614         iod = list_first_entry_or_null(&tgtport->ls_rcv_list,
615                                         struct nvmet_fc_ls_iod, ls_rcv_list);
616         if (iod)
617                 list_move_tail(&iod->ls_rcv_list, &tgtport->ls_busylist);
618         spin_unlock_irqrestore(&tgtport->lock, flags);
619         return iod;
620 }
621
622
623 static void
624 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
625                         struct nvmet_fc_ls_iod *iod)
626 {
627         unsigned long flags;
628
629         spin_lock_irqsave(&tgtport->lock, flags);
630         list_move(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
631         spin_unlock_irqrestore(&tgtport->lock, flags);
632 }
633
634 static void
635 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
636                                 struct nvmet_fc_tgt_queue *queue)
637 {
638         struct nvmet_fc_fcp_iod *fod = queue->fod;
639         int i;
640
641         for (i = 0; i < queue->sqsize; fod++, i++) {
642                 INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
643                 fod->tgtport = tgtport;
644                 fod->queue = queue;
645                 fod->active = false;
646                 fod->abort = false;
647                 fod->aborted = false;
648                 fod->fcpreq = NULL;
649                 list_add_tail(&fod->fcp_list, &queue->fod_list);
650                 spin_lock_init(&fod->flock);
651
652                 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
653                                         sizeof(fod->rspiubuf), DMA_TO_DEVICE);
654                 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
655                         list_del(&fod->fcp_list);
656                         for (fod--, i--; i >= 0; fod--, i--) {
657                                 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
658                                                 sizeof(fod->rspiubuf),
659                                                 DMA_TO_DEVICE);
660                                 fod->rspdma = 0L;
661                                 list_del(&fod->fcp_list);
662                         }
663
664                         return;
665                 }
666         }
667 }
668
669 static void
670 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
671                                 struct nvmet_fc_tgt_queue *queue)
672 {
673         struct nvmet_fc_fcp_iod *fod = queue->fod;
674         int i;
675
676         for (i = 0; i < queue->sqsize; fod++, i++) {
677                 if (fod->rspdma)
678                         fc_dma_unmap_single(tgtport->dev, fod->rspdma,
679                                 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
680         }
681 }
682
683 static struct nvmet_fc_fcp_iod *
684 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
685 {
686         struct nvmet_fc_fcp_iod *fod;
687
688         lockdep_assert_held(&queue->qlock);
689
690         fod = list_first_entry_or_null(&queue->fod_list,
691                                         struct nvmet_fc_fcp_iod, fcp_list);
692         if (fod) {
693                 list_del(&fod->fcp_list);
694                 fod->active = true;
695                 /*
696                  * no queue reference is taken, as it was taken by the
697                  * queue lookup just prior to the allocation. The iod
698                  * will "inherit" that reference.
699                  */
700         }
701         return fod;
702 }
703
704
705 static void
706 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
707                        struct nvmet_fc_tgt_queue *queue,
708                        struct nvmefc_tgt_fcp_req *fcpreq)
709 {
710         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
711
712         /*
713          * put all admin cmds on hw queue id 0. All io commands go to
714          * the respective hw queue based on a modulo basis
715          */
716         fcpreq->hwqid = queue->qid ?
717                         ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
718
719         nvmet_fc_handle_fcp_rqst(tgtport, fod);
720 }
721
722 static void
723 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
724 {
725         struct nvmet_fc_fcp_iod *fod =
726                 container_of(work, struct nvmet_fc_fcp_iod, defer_work);
727
728         /* Submit deferred IO for processing */
729         nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
730
731 }
732
733 static void
734 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
735                         struct nvmet_fc_fcp_iod *fod)
736 {
737         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
738         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
739         struct nvmet_fc_defer_fcp_req *deferfcp;
740         unsigned long flags;
741
742         fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
743                                 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
744
745         fcpreq->nvmet_fc_private = NULL;
746
747         fod->active = false;
748         fod->abort = false;
749         fod->aborted = false;
750         fod->writedataactive = false;
751         fod->fcpreq = NULL;
752
753         tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
754
755         /* release the queue lookup reference on the completed IO */
756         nvmet_fc_tgt_q_put(queue);
757
758         spin_lock_irqsave(&queue->qlock, flags);
759         deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
760                                 struct nvmet_fc_defer_fcp_req, req_list);
761         if (!deferfcp) {
762                 list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
763                 spin_unlock_irqrestore(&queue->qlock, flags);
764                 return;
765         }
766
767         /* Re-use the fod for the next pending cmd that was deferred */
768         list_del(&deferfcp->req_list);
769
770         fcpreq = deferfcp->fcp_req;
771
772         /* deferfcp can be reused for another IO at a later date */
773         list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
774
775         spin_unlock_irqrestore(&queue->qlock, flags);
776
777         /* Save NVME CMD IO in fod */
778         memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
779
780         /* Setup new fcpreq to be processed */
781         fcpreq->rspaddr = NULL;
782         fcpreq->rsplen  = 0;
783         fcpreq->nvmet_fc_private = fod;
784         fod->fcpreq = fcpreq;
785         fod->active = true;
786
787         /* inform LLDD IO is now being processed */
788         tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
789
790         /*
791          * Leave the queue lookup get reference taken when
792          * fod was originally allocated.
793          */
794
795         queue_work(queue->work_q, &fod->defer_work);
796 }
797
798 static struct nvmet_fc_tgt_queue *
799 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
800                         u16 qid, u16 sqsize)
801 {
802         struct nvmet_fc_tgt_queue *queue;
803         int ret;
804
805         if (qid > NVMET_NR_QUEUES)
806                 return NULL;
807
808         queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
809         if (!queue)
810                 return NULL;
811
812         queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
813                                 assoc->tgtport->fc_target_port.port_num,
814                                 assoc->a_id, qid);
815         if (!queue->work_q)
816                 goto out_free_queue;
817
818         queue->qid = qid;
819         queue->sqsize = sqsize;
820         queue->assoc = assoc;
821         INIT_LIST_HEAD(&queue->fod_list);
822         INIT_LIST_HEAD(&queue->avail_defer_list);
823         INIT_LIST_HEAD(&queue->pending_cmd_list);
824         atomic_set(&queue->connected, 0);
825         atomic_set(&queue->sqtail, 0);
826         atomic_set(&queue->rsn, 1);
827         atomic_set(&queue->zrspcnt, 0);
828         spin_lock_init(&queue->qlock);
829         kref_init(&queue->ref);
830
831         nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
832
833         ret = nvmet_sq_init(&queue->nvme_sq);
834         if (ret)
835                 goto out_fail_iodlist;
836
837         WARN_ON(assoc->queues[qid]);
838         assoc->queues[qid] = queue;
839
840         return queue;
841
842 out_fail_iodlist:
843         nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
844         destroy_workqueue(queue->work_q);
845 out_free_queue:
846         kfree(queue);
847         return NULL;
848 }
849
850
851 static void
852 nvmet_fc_tgt_queue_free(struct kref *ref)
853 {
854         struct nvmet_fc_tgt_queue *queue =
855                 container_of(ref, struct nvmet_fc_tgt_queue, ref);
856
857         nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
858
859         destroy_workqueue(queue->work_q);
860
861         kfree(queue);
862 }
863
864 static void
865 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
866 {
867         kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
868 }
869
870 static int
871 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
872 {
873         return kref_get_unless_zero(&queue->ref);
874 }
875
876
877 static void
878 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
879 {
880         struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
881         struct nvmet_fc_fcp_iod *fod = queue->fod;
882         struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
883         unsigned long flags;
884         int i;
885         bool disconnect;
886
887         disconnect = atomic_xchg(&queue->connected, 0);
888
889         /* if not connected, nothing to do */
890         if (!disconnect)
891                 return;
892
893         spin_lock_irqsave(&queue->qlock, flags);
894         /* abort outstanding io's */
895         for (i = 0; i < queue->sqsize; fod++, i++) {
896                 if (fod->active) {
897                         spin_lock(&fod->flock);
898                         fod->abort = true;
899                         /*
900                          * only call lldd abort routine if waiting for
901                          * writedata. other outstanding ops should finish
902                          * on their own.
903                          */
904                         if (fod->writedataactive) {
905                                 fod->aborted = true;
906                                 spin_unlock(&fod->flock);
907                                 tgtport->ops->fcp_abort(
908                                         &tgtport->fc_target_port, fod->fcpreq);
909                         } else
910                                 spin_unlock(&fod->flock);
911                 }
912         }
913
914         /* Cleanup defer'ed IOs in queue */
915         list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
916                                 req_list) {
917                 list_del(&deferfcp->req_list);
918                 kfree(deferfcp);
919         }
920
921         for (;;) {
922                 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
923                                 struct nvmet_fc_defer_fcp_req, req_list);
924                 if (!deferfcp)
925                         break;
926
927                 list_del(&deferfcp->req_list);
928                 spin_unlock_irqrestore(&queue->qlock, flags);
929
930                 tgtport->ops->defer_rcv(&tgtport->fc_target_port,
931                                 deferfcp->fcp_req);
932
933                 tgtport->ops->fcp_abort(&tgtport->fc_target_port,
934                                 deferfcp->fcp_req);
935
936                 tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
937                                 deferfcp->fcp_req);
938
939                 /* release the queue lookup reference */
940                 nvmet_fc_tgt_q_put(queue);
941
942                 kfree(deferfcp);
943
944                 spin_lock_irqsave(&queue->qlock, flags);
945         }
946         spin_unlock_irqrestore(&queue->qlock, flags);
947
948         flush_workqueue(queue->work_q);
949
950         nvmet_sq_destroy(&queue->nvme_sq);
951
952         nvmet_fc_tgt_q_put(queue);
953 }
954
955 static struct nvmet_fc_tgt_queue *
956 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
957                                 u64 connection_id)
958 {
959         struct nvmet_fc_tgt_assoc *assoc;
960         struct nvmet_fc_tgt_queue *queue;
961         u64 association_id = nvmet_fc_getassociationid(connection_id);
962         u16 qid = nvmet_fc_getqueueid(connection_id);
963
964         if (qid > NVMET_NR_QUEUES)
965                 return NULL;
966
967         rcu_read_lock();
968         list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
969                 if (association_id == assoc->association_id) {
970                         queue = assoc->queues[qid];
971                         if (queue &&
972                             (!atomic_read(&queue->connected) ||
973                              !nvmet_fc_tgt_q_get(queue)))
974                                 queue = NULL;
975                         rcu_read_unlock();
976                         return queue;
977                 }
978         }
979         rcu_read_unlock();
980         return NULL;
981 }
982
983 static void
984 nvmet_fc_hostport_free(struct kref *ref)
985 {
986         struct nvmet_fc_hostport *hostport =
987                 container_of(ref, struct nvmet_fc_hostport, ref);
988         struct nvmet_fc_tgtport *tgtport = hostport->tgtport;
989         unsigned long flags;
990
991         spin_lock_irqsave(&tgtport->lock, flags);
992         list_del(&hostport->host_list);
993         spin_unlock_irqrestore(&tgtport->lock, flags);
994         if (tgtport->ops->host_release && hostport->invalid)
995                 tgtport->ops->host_release(hostport->hosthandle);
996         kfree(hostport);
997         nvmet_fc_tgtport_put(tgtport);
998 }
999
1000 static void
1001 nvmet_fc_hostport_put(struct nvmet_fc_hostport *hostport)
1002 {
1003         kref_put(&hostport->ref, nvmet_fc_hostport_free);
1004 }
1005
1006 static int
1007 nvmet_fc_hostport_get(struct nvmet_fc_hostport *hostport)
1008 {
1009         return kref_get_unless_zero(&hostport->ref);
1010 }
1011
1012 static void
1013 nvmet_fc_free_hostport(struct nvmet_fc_hostport *hostport)
1014 {
1015         /* if LLDD not implemented, leave as NULL */
1016         if (!hostport || !hostport->hosthandle)
1017                 return;
1018
1019         nvmet_fc_hostport_put(hostport);
1020 }
1021
1022 static struct nvmet_fc_hostport *
1023 nvmet_fc_match_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1024 {
1025         struct nvmet_fc_hostport *host;
1026
1027         lockdep_assert_held(&tgtport->lock);
1028
1029         list_for_each_entry(host, &tgtport->host_list, host_list) {
1030                 if (host->hosthandle == hosthandle && !host->invalid) {
1031                         if (nvmet_fc_hostport_get(host))
1032                                 return host;
1033                 }
1034         }
1035
1036         return NULL;
1037 }
1038
1039 static struct nvmet_fc_hostport *
1040 nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1041 {
1042         struct nvmet_fc_hostport *newhost, *match = NULL;
1043         unsigned long flags;
1044
1045         /* if LLDD not implemented, leave as NULL */
1046         if (!hosthandle)
1047                 return NULL;
1048
1049         /*
1050          * take reference for what will be the newly allocated hostport if
1051          * we end up using a new allocation
1052          */
1053         if (!nvmet_fc_tgtport_get(tgtport))
1054                 return ERR_PTR(-EINVAL);
1055
1056         spin_lock_irqsave(&tgtport->lock, flags);
1057         match = nvmet_fc_match_hostport(tgtport, hosthandle);
1058         spin_unlock_irqrestore(&tgtport->lock, flags);
1059
1060         if (match) {
1061                 /* no new allocation - release reference */
1062                 nvmet_fc_tgtport_put(tgtport);
1063                 return match;
1064         }
1065
1066         newhost = kzalloc(sizeof(*newhost), GFP_KERNEL);
1067         if (!newhost) {
1068                 /* no new allocation - release reference */
1069                 nvmet_fc_tgtport_put(tgtport);
1070                 return ERR_PTR(-ENOMEM);
1071         }
1072
1073         spin_lock_irqsave(&tgtport->lock, flags);
1074         match = nvmet_fc_match_hostport(tgtport, hosthandle);
1075         if (match) {
1076                 /* new allocation not needed */
1077                 kfree(newhost);
1078                 newhost = match;
1079         } else {
1080                 newhost->tgtport = tgtport;
1081                 newhost->hosthandle = hosthandle;
1082                 INIT_LIST_HEAD(&newhost->host_list);
1083                 kref_init(&newhost->ref);
1084
1085                 list_add_tail(&newhost->host_list, &tgtport->host_list);
1086         }
1087         spin_unlock_irqrestore(&tgtport->lock, flags);
1088
1089         return newhost;
1090 }
1091
1092 static void
1093 nvmet_fc_delete_assoc(struct nvmet_fc_tgt_assoc *assoc)
1094 {
1095         nvmet_fc_delete_target_assoc(assoc);
1096         nvmet_fc_tgt_a_put(assoc);
1097 }
1098
1099 static void
1100 nvmet_fc_delete_assoc_work(struct work_struct *work)
1101 {
1102         struct nvmet_fc_tgt_assoc *assoc =
1103                 container_of(work, struct nvmet_fc_tgt_assoc, del_work);
1104         struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1105
1106         nvmet_fc_delete_assoc(assoc);
1107         nvmet_fc_tgtport_put(tgtport);
1108 }
1109
1110 static void
1111 nvmet_fc_schedule_delete_assoc(struct nvmet_fc_tgt_assoc *assoc)
1112 {
1113         nvmet_fc_tgtport_get(assoc->tgtport);
1114         queue_work(nvmet_wq, &assoc->del_work);
1115 }
1116
1117 static bool
1118 nvmet_fc_assoc_exits(struct nvmet_fc_tgtport *tgtport, u64 association_id)
1119 {
1120         struct nvmet_fc_tgt_assoc *a;
1121
1122         list_for_each_entry_rcu(a, &tgtport->assoc_list, a_list) {
1123                 if (association_id == a->association_id)
1124                         return true;
1125         }
1126
1127         return false;
1128 }
1129
1130 static struct nvmet_fc_tgt_assoc *
1131 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1132 {
1133         struct nvmet_fc_tgt_assoc *assoc;
1134         unsigned long flags;
1135         bool done;
1136         u64 ran;
1137         int idx;
1138
1139         if (!tgtport->pe)
1140                 return NULL;
1141
1142         assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
1143         if (!assoc)
1144                 return NULL;
1145
1146         idx = ida_alloc(&tgtport->assoc_cnt, GFP_KERNEL);
1147         if (idx < 0)
1148                 goto out_free_assoc;
1149
1150         assoc->hostport = nvmet_fc_alloc_hostport(tgtport, hosthandle);
1151         if (IS_ERR(assoc->hostport))
1152                 goto out_ida;
1153
1154         assoc->tgtport = tgtport;
1155         assoc->a_id = idx;
1156         INIT_LIST_HEAD(&assoc->a_list);
1157         kref_init(&assoc->ref);
1158         INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc_work);
1159         atomic_set(&assoc->terminating, 0);
1160
1161         done = false;
1162         do {
1163                 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
1164                 ran = ran << BYTES_FOR_QID_SHIFT;
1165
1166                 spin_lock_irqsave(&tgtport->lock, flags);
1167                 rcu_read_lock();
1168                 if (!nvmet_fc_assoc_exits(tgtport, ran)) {
1169                         assoc->association_id = ran;
1170                         list_add_tail_rcu(&assoc->a_list, &tgtport->assoc_list);
1171                         done = true;
1172                 }
1173                 rcu_read_unlock();
1174                 spin_unlock_irqrestore(&tgtport->lock, flags);
1175         } while (!done);
1176
1177         return assoc;
1178
1179 out_ida:
1180         ida_free(&tgtport->assoc_cnt, idx);
1181 out_free_assoc:
1182         kfree(assoc);
1183         return NULL;
1184 }
1185
1186 static void
1187 nvmet_fc_target_assoc_free(struct kref *ref)
1188 {
1189         struct nvmet_fc_tgt_assoc *assoc =
1190                 container_of(ref, struct nvmet_fc_tgt_assoc, ref);
1191         struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1192         struct nvmet_fc_ls_iod  *oldls;
1193         unsigned long flags;
1194         int i;
1195
1196         for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1197                 if (assoc->queues[i])
1198                         nvmet_fc_delete_target_queue(assoc->queues[i]);
1199         }
1200
1201         /* Send Disconnect now that all i/o has completed */
1202         nvmet_fc_xmt_disconnect_assoc(assoc);
1203
1204         nvmet_fc_free_hostport(assoc->hostport);
1205         spin_lock_irqsave(&tgtport->lock, flags);
1206         oldls = assoc->rcv_disconn;
1207         spin_unlock_irqrestore(&tgtport->lock, flags);
1208         /* if pending Rcv Disconnect Association LS, send rsp now */
1209         if (oldls)
1210                 nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1211         ida_free(&tgtport->assoc_cnt, assoc->a_id);
1212         dev_info(tgtport->dev,
1213                 "{%d:%d} Association freed\n",
1214                 tgtport->fc_target_port.port_num, assoc->a_id);
1215         kfree(assoc);
1216 }
1217
1218 static void
1219 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
1220 {
1221         kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
1222 }
1223
1224 static int
1225 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
1226 {
1227         return kref_get_unless_zero(&assoc->ref);
1228 }
1229
1230 static void
1231 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
1232 {
1233         struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1234         unsigned long flags;
1235         int i, terminating;
1236
1237         terminating = atomic_xchg(&assoc->terminating, 1);
1238
1239         /* if already terminating, do nothing */
1240         if (terminating)
1241                 return;
1242
1243         spin_lock_irqsave(&tgtport->lock, flags);
1244         list_del_rcu(&assoc->a_list);
1245         spin_unlock_irqrestore(&tgtport->lock, flags);
1246
1247         synchronize_rcu();
1248
1249         /* ensure all in-flight I/Os have been processed */
1250         for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1251                 if (assoc->queues[i])
1252                         flush_workqueue(assoc->queues[i]->work_q);
1253         }
1254
1255         dev_info(tgtport->dev,
1256                 "{%d:%d} Association deleted\n",
1257                 tgtport->fc_target_port.port_num, assoc->a_id);
1258 }
1259
1260 static struct nvmet_fc_tgt_assoc *
1261 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
1262                                 u64 association_id)
1263 {
1264         struct nvmet_fc_tgt_assoc *assoc;
1265         struct nvmet_fc_tgt_assoc *ret = NULL;
1266
1267         rcu_read_lock();
1268         list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1269                 if (association_id == assoc->association_id) {
1270                         ret = assoc;
1271                         if (!nvmet_fc_tgt_a_get(assoc))
1272                                 ret = NULL;
1273                         break;
1274                 }
1275         }
1276         rcu_read_unlock();
1277
1278         return ret;
1279 }
1280
1281 static void
1282 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
1283                         struct nvmet_fc_port_entry *pe,
1284                         struct nvmet_port *port)
1285 {
1286         lockdep_assert_held(&nvmet_fc_tgtlock);
1287
1288         pe->tgtport = tgtport;
1289         tgtport->pe = pe;
1290
1291         pe->port = port;
1292         port->priv = pe;
1293
1294         pe->node_name = tgtport->fc_target_port.node_name;
1295         pe->port_name = tgtport->fc_target_port.port_name;
1296         INIT_LIST_HEAD(&pe->pe_list);
1297
1298         list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
1299 }
1300
1301 static void
1302 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
1303 {
1304         unsigned long flags;
1305
1306         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1307         if (pe->tgtport)
1308                 pe->tgtport->pe = NULL;
1309         list_del(&pe->pe_list);
1310         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1311 }
1312
1313 /*
1314  * called when a targetport deregisters. Breaks the relationship
1315  * with the nvmet port, but leaves the port_entry in place so that
1316  * re-registration can resume operation.
1317  */
1318 static void
1319 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
1320 {
1321         struct nvmet_fc_port_entry *pe;
1322         unsigned long flags;
1323
1324         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1325         pe = tgtport->pe;
1326         if (pe)
1327                 pe->tgtport = NULL;
1328         tgtport->pe = NULL;
1329         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1330 }
1331
1332 /*
1333  * called when a new targetport is registered. Looks in the
1334  * existing nvmet port_entries to see if the nvmet layer is
1335  * configured for the targetport's wwn's. (the targetport existed,
1336  * nvmet configured, the lldd unregistered the tgtport, and is now
1337  * reregistering the same targetport).  If so, set the nvmet port
1338  * port entry on the targetport.
1339  */
1340 static void
1341 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
1342 {
1343         struct nvmet_fc_port_entry *pe;
1344         unsigned long flags;
1345
1346         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1347         list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
1348                 if (tgtport->fc_target_port.node_name == pe->node_name &&
1349                     tgtport->fc_target_port.port_name == pe->port_name) {
1350                         WARN_ON(pe->tgtport);
1351                         tgtport->pe = pe;
1352                         pe->tgtport = tgtport;
1353                         break;
1354                 }
1355         }
1356         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1357 }
1358
1359 /**
1360  * nvmet_fc_register_targetport - transport entry point called by an
1361  *                              LLDD to register the existence of a local
1362  *                              NVME subystem FC port.
1363  * @pinfo:     pointer to information about the port to be registered
1364  * @template:  LLDD entrypoints and operational parameters for the port
1365  * @dev:       physical hardware device node port corresponds to. Will be
1366  *             used for DMA mappings
1367  * @portptr:   pointer to a local port pointer. Upon success, the routine
1368  *             will allocate a nvme_fc_local_port structure and place its
1369  *             address in the local port pointer. Upon failure, local port
1370  *             pointer will be set to NULL.
1371  *
1372  * Returns:
1373  * a completion status. Must be 0 upon success; a negative errno
1374  * (ex: -ENXIO) upon failure.
1375  */
1376 int
1377 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1378                         struct nvmet_fc_target_template *template,
1379                         struct device *dev,
1380                         struct nvmet_fc_target_port **portptr)
1381 {
1382         struct nvmet_fc_tgtport *newrec;
1383         unsigned long flags;
1384         int ret, idx;
1385
1386         if (!template->xmt_ls_rsp || !template->fcp_op ||
1387             !template->fcp_abort ||
1388             !template->fcp_req_release || !template->targetport_delete ||
1389             !template->max_hw_queues || !template->max_sgl_segments ||
1390             !template->max_dif_sgl_segments || !template->dma_boundary) {
1391                 ret = -EINVAL;
1392                 goto out_regtgt_failed;
1393         }
1394
1395         newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1396                          GFP_KERNEL);
1397         if (!newrec) {
1398                 ret = -ENOMEM;
1399                 goto out_regtgt_failed;
1400         }
1401
1402         idx = ida_alloc(&nvmet_fc_tgtport_cnt, GFP_KERNEL);
1403         if (idx < 0) {
1404                 ret = -ENOSPC;
1405                 goto out_fail_kfree;
1406         }
1407
1408         if (!get_device(dev) && dev) {
1409                 ret = -ENODEV;
1410                 goto out_ida_put;
1411         }
1412
1413         newrec->fc_target_port.node_name = pinfo->node_name;
1414         newrec->fc_target_port.port_name = pinfo->port_name;
1415         if (template->target_priv_sz)
1416                 newrec->fc_target_port.private = &newrec[1];
1417         else
1418                 newrec->fc_target_port.private = NULL;
1419         newrec->fc_target_port.port_id = pinfo->port_id;
1420         newrec->fc_target_port.port_num = idx;
1421         INIT_LIST_HEAD(&newrec->tgt_list);
1422         newrec->dev = dev;
1423         newrec->ops = template;
1424         spin_lock_init(&newrec->lock);
1425         INIT_LIST_HEAD(&newrec->ls_rcv_list);
1426         INIT_LIST_HEAD(&newrec->ls_req_list);
1427         INIT_LIST_HEAD(&newrec->ls_busylist);
1428         INIT_LIST_HEAD(&newrec->assoc_list);
1429         INIT_LIST_HEAD(&newrec->host_list);
1430         kref_init(&newrec->ref);
1431         ida_init(&newrec->assoc_cnt);
1432         newrec->max_sg_cnt = template->max_sgl_segments;
1433         INIT_WORK(&newrec->put_work, nvmet_fc_put_tgtport_work);
1434
1435         ret = nvmet_fc_alloc_ls_iodlist(newrec);
1436         if (ret) {
1437                 ret = -ENOMEM;
1438                 goto out_free_newrec;
1439         }
1440
1441         nvmet_fc_portentry_rebind_tgt(newrec);
1442
1443         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1444         list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1445         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1446
1447         *portptr = &newrec->fc_target_port;
1448         return 0;
1449
1450 out_free_newrec:
1451         put_device(dev);
1452 out_ida_put:
1453         ida_free(&nvmet_fc_tgtport_cnt, idx);
1454 out_fail_kfree:
1455         kfree(newrec);
1456 out_regtgt_failed:
1457         *portptr = NULL;
1458         return ret;
1459 }
1460 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1461
1462
1463 static void
1464 nvmet_fc_free_tgtport(struct kref *ref)
1465 {
1466         struct nvmet_fc_tgtport *tgtport =
1467                 container_of(ref, struct nvmet_fc_tgtport, ref);
1468         struct device *dev = tgtport->dev;
1469         unsigned long flags;
1470
1471         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1472         list_del(&tgtport->tgt_list);
1473         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1474
1475         nvmet_fc_free_ls_iodlist(tgtport);
1476
1477         /* let the LLDD know we've finished tearing it down */
1478         tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1479
1480         ida_free(&nvmet_fc_tgtport_cnt,
1481                         tgtport->fc_target_port.port_num);
1482
1483         ida_destroy(&tgtport->assoc_cnt);
1484
1485         kfree(tgtport);
1486
1487         put_device(dev);
1488 }
1489
1490 static void
1491 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1492 {
1493         kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1494 }
1495
1496 static int
1497 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1498 {
1499         return kref_get_unless_zero(&tgtport->ref);
1500 }
1501
1502 static void
1503 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1504 {
1505         struct nvmet_fc_tgt_assoc *assoc;
1506
1507         rcu_read_lock();
1508         list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1509                 if (!nvmet_fc_tgt_a_get(assoc))
1510                         continue;
1511                 nvmet_fc_schedule_delete_assoc(assoc);
1512                 nvmet_fc_tgt_a_put(assoc);
1513         }
1514         rcu_read_unlock();
1515 }
1516
1517 /**
1518  * nvmet_fc_invalidate_host - transport entry point called by an LLDD
1519  *                       to remove references to a hosthandle for LS's.
1520  *
1521  * The nvmet-fc layer ensures that any references to the hosthandle
1522  * on the targetport are forgotten (set to NULL).  The LLDD will
1523  * typically call this when a login with a remote host port has been
1524  * lost, thus LS's for the remote host port are no longer possible.
1525  *
1526  * If an LS request is outstanding to the targetport/hosthandle (or
1527  * issued concurrently with the call to invalidate the host), the
1528  * LLDD is responsible for terminating/aborting the LS and completing
1529  * the LS request. It is recommended that these terminations/aborts
1530  * occur after calling to invalidate the host handle to avoid additional
1531  * retries by the nvmet-fc transport. The nvmet-fc transport may
1532  * continue to reference host handle while it cleans up outstanding
1533  * NVME associations. The nvmet-fc transport will call the
1534  * ops->host_release() callback to notify the LLDD that all references
1535  * are complete and the related host handle can be recovered.
1536  * Note: if there are no references, the callback may be called before
1537  * the invalidate host call returns.
1538  *
1539  * @target_port: pointer to the (registered) target port that a prior
1540  *              LS was received on and which supplied the transport the
1541  *              hosthandle.
1542  * @hosthandle: the handle (pointer) that represents the host port
1543  *              that no longer has connectivity and that LS's should
1544  *              no longer be directed to.
1545  */
1546 void
1547 nvmet_fc_invalidate_host(struct nvmet_fc_target_port *target_port,
1548                         void *hosthandle)
1549 {
1550         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1551         struct nvmet_fc_tgt_assoc *assoc, *next;
1552         unsigned long flags;
1553         bool noassoc = true;
1554
1555         spin_lock_irqsave(&tgtport->lock, flags);
1556         list_for_each_entry_safe(assoc, next,
1557                                 &tgtport->assoc_list, a_list) {
1558                 if (assoc->hostport->hosthandle != hosthandle)
1559                         continue;
1560                 if (!nvmet_fc_tgt_a_get(assoc))
1561                         continue;
1562                 assoc->hostport->invalid = 1;
1563                 noassoc = false;
1564                 nvmet_fc_schedule_delete_assoc(assoc);
1565                 nvmet_fc_tgt_a_put(assoc);
1566         }
1567         spin_unlock_irqrestore(&tgtport->lock, flags);
1568
1569         /* if there's nothing to wait for - call the callback */
1570         if (noassoc && tgtport->ops->host_release)
1571                 tgtport->ops->host_release(hosthandle);
1572 }
1573 EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host);
1574
1575 /*
1576  * nvmet layer has called to terminate an association
1577  */
1578 static void
1579 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1580 {
1581         struct nvmet_fc_tgtport *tgtport, *next;
1582         struct nvmet_fc_tgt_assoc *assoc;
1583         struct nvmet_fc_tgt_queue *queue;
1584         unsigned long flags;
1585         bool found_ctrl = false;
1586
1587         /* this is a bit ugly, but don't want to make locks layered */
1588         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1589         list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1590                         tgt_list) {
1591                 if (!nvmet_fc_tgtport_get(tgtport))
1592                         continue;
1593                 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1594
1595                 rcu_read_lock();
1596                 list_for_each_entry_rcu(assoc, &tgtport->assoc_list, a_list) {
1597                         queue = assoc->queues[0];
1598                         if (queue && queue->nvme_sq.ctrl == ctrl) {
1599                                 if (nvmet_fc_tgt_a_get(assoc))
1600                                         found_ctrl = true;
1601                                 break;
1602                         }
1603                 }
1604                 rcu_read_unlock();
1605
1606                 nvmet_fc_tgtport_put(tgtport);
1607
1608                 if (found_ctrl) {
1609                         nvmet_fc_schedule_delete_assoc(assoc);
1610                         nvmet_fc_tgt_a_put(assoc);
1611                         return;
1612                 }
1613
1614                 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1615         }
1616         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1617 }
1618
1619 /**
1620  * nvmet_fc_unregister_targetport - transport entry point called by an
1621  *                              LLDD to deregister/remove a previously
1622  *                              registered a local NVME subsystem FC port.
1623  * @target_port: pointer to the (registered) target port that is to be
1624  *               deregistered.
1625  *
1626  * Returns:
1627  * a completion status. Must be 0 upon success; a negative errno
1628  * (ex: -ENXIO) upon failure.
1629  */
1630 int
1631 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1632 {
1633         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1634
1635         nvmet_fc_portentry_unbind_tgt(tgtport);
1636
1637         /* terminate any outstanding associations */
1638         __nvmet_fc_free_assocs(tgtport);
1639
1640         flush_workqueue(nvmet_wq);
1641
1642         /*
1643          * should terminate LS's as well. However, LS's will be generated
1644          * at the tail end of association termination, so they likely don't
1645          * exist yet. And even if they did, it's worthwhile to just let
1646          * them finish and targetport ref counting will clean things up.
1647          */
1648
1649         nvmet_fc_tgtport_put(tgtport);
1650
1651         return 0;
1652 }
1653 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1654
1655
1656 /* ********************** FC-NVME LS RCV Handling ************************* */
1657
1658
1659 static void
1660 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1661                         struct nvmet_fc_ls_iod *iod)
1662 {
1663         struct fcnvme_ls_cr_assoc_rqst *rqst = &iod->rqstbuf->rq_cr_assoc;
1664         struct fcnvme_ls_cr_assoc_acc *acc = &iod->rspbuf->rsp_cr_assoc;
1665         struct nvmet_fc_tgt_queue *queue;
1666         int ret = 0;
1667
1668         memset(acc, 0, sizeof(*acc));
1669
1670         /*
1671          * FC-NVME spec changes. There are initiators sending different
1672          * lengths as padding sizes for Create Association Cmd descriptor
1673          * was incorrect.
1674          * Accept anything of "minimum" length. Assume format per 1.15
1675          * spec (with HOSTID reduced to 16 bytes), ignore how long the
1676          * trailing pad length is.
1677          */
1678         if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1679                 ret = VERR_CR_ASSOC_LEN;
1680         else if (be32_to_cpu(rqst->desc_list_len) <
1681                         FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1682                 ret = VERR_CR_ASSOC_RQST_LEN;
1683         else if (rqst->assoc_cmd.desc_tag !=
1684                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1685                 ret = VERR_CR_ASSOC_CMD;
1686         else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1687                         FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1688                 ret = VERR_CR_ASSOC_CMD_LEN;
1689         else if (!rqst->assoc_cmd.ersp_ratio ||
1690                  (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1691                                 be16_to_cpu(rqst->assoc_cmd.sqsize)))
1692                 ret = VERR_ERSP_RATIO;
1693
1694         else {
1695                 /* new association w/ admin queue */
1696                 iod->assoc = nvmet_fc_alloc_target_assoc(
1697                                                 tgtport, iod->hosthandle);
1698                 if (!iod->assoc)
1699                         ret = VERR_ASSOC_ALLOC_FAIL;
1700                 else {
1701                         queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1702                                         be16_to_cpu(rqst->assoc_cmd.sqsize));
1703                         if (!queue) {
1704                                 ret = VERR_QUEUE_ALLOC_FAIL;
1705                                 nvmet_fc_tgt_a_put(iod->assoc);
1706                         }
1707                 }
1708         }
1709
1710         if (ret) {
1711                 dev_err(tgtport->dev,
1712                         "Create Association LS failed: %s\n",
1713                         validation_errors[ret]);
1714                 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1715                                 sizeof(*acc), rqst->w0.ls_cmd,
1716                                 FCNVME_RJT_RC_LOGIC,
1717                                 FCNVME_RJT_EXP_NONE, 0);
1718                 return;
1719         }
1720
1721         queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1722         atomic_set(&queue->connected, 1);
1723         queue->sqhd = 0;        /* best place to init value */
1724
1725         dev_info(tgtport->dev,
1726                 "{%d:%d} Association created\n",
1727                 tgtport->fc_target_port.port_num, iod->assoc->a_id);
1728
1729         /* format a response */
1730
1731         iod->lsrsp->rsplen = sizeof(*acc);
1732
1733         nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1734                         fcnvme_lsdesc_len(
1735                                 sizeof(struct fcnvme_ls_cr_assoc_acc)),
1736                         FCNVME_LS_CREATE_ASSOCIATION);
1737         acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1738         acc->associd.desc_len =
1739                         fcnvme_lsdesc_len(
1740                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1741         acc->associd.association_id =
1742                         cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1743         acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1744         acc->connectid.desc_len =
1745                         fcnvme_lsdesc_len(
1746                                 sizeof(struct fcnvme_lsdesc_conn_id));
1747         acc->connectid.connection_id = acc->associd.association_id;
1748 }
1749
1750 static void
1751 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1752                         struct nvmet_fc_ls_iod *iod)
1753 {
1754         struct fcnvme_ls_cr_conn_rqst *rqst = &iod->rqstbuf->rq_cr_conn;
1755         struct fcnvme_ls_cr_conn_acc *acc = &iod->rspbuf->rsp_cr_conn;
1756         struct nvmet_fc_tgt_queue *queue;
1757         int ret = 0;
1758
1759         memset(acc, 0, sizeof(*acc));
1760
1761         if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1762                 ret = VERR_CR_CONN_LEN;
1763         else if (rqst->desc_list_len !=
1764                         fcnvme_lsdesc_len(
1765                                 sizeof(struct fcnvme_ls_cr_conn_rqst)))
1766                 ret = VERR_CR_CONN_RQST_LEN;
1767         else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1768                 ret = VERR_ASSOC_ID;
1769         else if (rqst->associd.desc_len !=
1770                         fcnvme_lsdesc_len(
1771                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
1772                 ret = VERR_ASSOC_ID_LEN;
1773         else if (rqst->connect_cmd.desc_tag !=
1774                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1775                 ret = VERR_CR_CONN_CMD;
1776         else if (rqst->connect_cmd.desc_len !=
1777                         fcnvme_lsdesc_len(
1778                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1779                 ret = VERR_CR_CONN_CMD_LEN;
1780         else if (!rqst->connect_cmd.ersp_ratio ||
1781                  (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1782                                 be16_to_cpu(rqst->connect_cmd.sqsize)))
1783                 ret = VERR_ERSP_RATIO;
1784
1785         else {
1786                 /* new io queue */
1787                 iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1788                                 be64_to_cpu(rqst->associd.association_id));
1789                 if (!iod->assoc)
1790                         ret = VERR_NO_ASSOC;
1791                 else {
1792                         queue = nvmet_fc_alloc_target_queue(iod->assoc,
1793                                         be16_to_cpu(rqst->connect_cmd.qid),
1794                                         be16_to_cpu(rqst->connect_cmd.sqsize));
1795                         if (!queue)
1796                                 ret = VERR_QUEUE_ALLOC_FAIL;
1797
1798                         /* release get taken in nvmet_fc_find_target_assoc */
1799                         nvmet_fc_tgt_a_put(iod->assoc);
1800                 }
1801         }
1802
1803         if (ret) {
1804                 dev_err(tgtport->dev,
1805                         "Create Connection LS failed: %s\n",
1806                         validation_errors[ret]);
1807                 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1808                                 sizeof(*acc), rqst->w0.ls_cmd,
1809                                 (ret == VERR_NO_ASSOC) ?
1810                                         FCNVME_RJT_RC_INV_ASSOC :
1811                                         FCNVME_RJT_RC_LOGIC,
1812                                 FCNVME_RJT_EXP_NONE, 0);
1813                 return;
1814         }
1815
1816         queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1817         atomic_set(&queue->connected, 1);
1818         queue->sqhd = 0;        /* best place to init value */
1819
1820         /* format a response */
1821
1822         iod->lsrsp->rsplen = sizeof(*acc);
1823
1824         nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1825                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1826                         FCNVME_LS_CREATE_CONNECTION);
1827         acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1828         acc->connectid.desc_len =
1829                         fcnvme_lsdesc_len(
1830                                 sizeof(struct fcnvme_lsdesc_conn_id));
1831         acc->connectid.connection_id =
1832                         cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1833                                 be16_to_cpu(rqst->connect_cmd.qid)));
1834 }
1835
1836 /*
1837  * Returns true if the LS response is to be transmit
1838  * Returns false if the LS response is to be delayed
1839  */
1840 static int
1841 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1842                         struct nvmet_fc_ls_iod *iod)
1843 {
1844         struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1845                                                 &iod->rqstbuf->rq_dis_assoc;
1846         struct fcnvme_ls_disconnect_assoc_acc *acc =
1847                                                 &iod->rspbuf->rsp_dis_assoc;
1848         struct nvmet_fc_tgt_assoc *assoc = NULL;
1849         struct nvmet_fc_ls_iod *oldls = NULL;
1850         unsigned long flags;
1851         int ret = 0;
1852
1853         memset(acc, 0, sizeof(*acc));
1854
1855         ret = nvmefc_vldt_lsreq_discon_assoc(iod->rqstdatalen, rqst);
1856         if (!ret) {
1857                 /* match an active association - takes an assoc ref if !NULL */
1858                 assoc = nvmet_fc_find_target_assoc(tgtport,
1859                                 be64_to_cpu(rqst->associd.association_id));
1860                 iod->assoc = assoc;
1861                 if (!assoc)
1862                         ret = VERR_NO_ASSOC;
1863         }
1864
1865         if (ret || !assoc) {
1866                 dev_err(tgtport->dev,
1867                         "Disconnect LS failed: %s\n",
1868                         validation_errors[ret]);
1869                 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1870                                 sizeof(*acc), rqst->w0.ls_cmd,
1871                                 (ret == VERR_NO_ASSOC) ?
1872                                         FCNVME_RJT_RC_INV_ASSOC :
1873                                         FCNVME_RJT_RC_LOGIC,
1874                                 FCNVME_RJT_EXP_NONE, 0);
1875                 return true;
1876         }
1877
1878         /* format a response */
1879
1880         iod->lsrsp->rsplen = sizeof(*acc);
1881
1882         nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1883                         fcnvme_lsdesc_len(
1884                                 sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1885                         FCNVME_LS_DISCONNECT_ASSOC);
1886
1887         /*
1888          * The rules for LS response says the response cannot
1889          * go back until ABTS's have been sent for all outstanding
1890          * I/O and a Disconnect Association LS has been sent.
1891          * So... save off the Disconnect LS to send the response
1892          * later. If there was a prior LS already saved, replace
1893          * it with the newer one and send a can't perform reject
1894          * on the older one.
1895          */
1896         spin_lock_irqsave(&tgtport->lock, flags);
1897         oldls = assoc->rcv_disconn;
1898         assoc->rcv_disconn = iod;
1899         spin_unlock_irqrestore(&tgtport->lock, flags);
1900
1901         if (oldls) {
1902                 dev_info(tgtport->dev,
1903                         "{%d:%d} Multiple Disconnect Association LS's "
1904                         "received\n",
1905                         tgtport->fc_target_port.port_num, assoc->a_id);
1906                 /* overwrite good response with bogus failure */
1907                 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1908                                                 sizeof(*iod->rspbuf),
1909                                                 /* ok to use rqst, LS is same */
1910                                                 rqst->w0.ls_cmd,
1911                                                 FCNVME_RJT_RC_UNAB,
1912                                                 FCNVME_RJT_EXP_NONE, 0);
1913                 nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1914         }
1915
1916         nvmet_fc_schedule_delete_assoc(assoc);
1917         nvmet_fc_tgt_a_put(assoc);
1918
1919         return false;
1920 }
1921
1922
1923 /* *********************** NVME Ctrl Routines **************************** */
1924
1925
1926 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1927
1928 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1929
1930 static void
1931 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1932 {
1933         struct nvmet_fc_ls_iod *iod = lsrsp->nvme_fc_private;
1934         struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1935
1936         fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1937                                 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1938         nvmet_fc_free_ls_iod(tgtport, iod);
1939         nvmet_fc_tgtport_put(tgtport);
1940 }
1941
1942 static void
1943 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1944                                 struct nvmet_fc_ls_iod *iod)
1945 {
1946         int ret;
1947
1948         fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1949                                   sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1950
1951         ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsrsp);
1952         if (ret)
1953                 nvmet_fc_xmt_ls_rsp_done(iod->lsrsp);
1954 }
1955
1956 /*
1957  * Actual processing routine for received FC-NVME LS Requests from the LLD
1958  */
1959 static void
1960 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1961                         struct nvmet_fc_ls_iod *iod)
1962 {
1963         struct fcnvme_ls_rqst_w0 *w0 = &iod->rqstbuf->rq_cr_assoc.w0;
1964         bool sendrsp = true;
1965
1966         iod->lsrsp->nvme_fc_private = iod;
1967         iod->lsrsp->rspbuf = iod->rspbuf;
1968         iod->lsrsp->rspdma = iod->rspdma;
1969         iod->lsrsp->done = nvmet_fc_xmt_ls_rsp_done;
1970         /* Be preventative. handlers will later set to valid length */
1971         iod->lsrsp->rsplen = 0;
1972
1973         iod->assoc = NULL;
1974
1975         /*
1976          * handlers:
1977          *   parse request input, execute the request, and format the
1978          *   LS response
1979          */
1980         switch (w0->ls_cmd) {
1981         case FCNVME_LS_CREATE_ASSOCIATION:
1982                 /* Creates Association and initial Admin Queue/Connection */
1983                 nvmet_fc_ls_create_association(tgtport, iod);
1984                 break;
1985         case FCNVME_LS_CREATE_CONNECTION:
1986                 /* Creates an IO Queue/Connection */
1987                 nvmet_fc_ls_create_connection(tgtport, iod);
1988                 break;
1989         case FCNVME_LS_DISCONNECT_ASSOC:
1990                 /* Terminate a Queue/Connection or the Association */
1991                 sendrsp = nvmet_fc_ls_disconnect(tgtport, iod);
1992                 break;
1993         default:
1994                 iod->lsrsp->rsplen = nvme_fc_format_rjt(iod->rspbuf,
1995                                 sizeof(*iod->rspbuf), w0->ls_cmd,
1996                                 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1997         }
1998
1999         if (sendrsp)
2000                 nvmet_fc_xmt_ls_rsp(tgtport, iod);
2001 }
2002
2003 /*
2004  * Actual processing routine for received FC-NVME LS Requests from the LLD
2005  */
2006 static void
2007 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
2008 {
2009         struct nvmet_fc_ls_iod *iod =
2010                 container_of(work, struct nvmet_fc_ls_iod, work);
2011         struct nvmet_fc_tgtport *tgtport = iod->tgtport;
2012
2013         nvmet_fc_handle_ls_rqst(tgtport, iod);
2014 }
2015
2016
2017 /**
2018  * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
2019  *                       upon the reception of a NVME LS request.
2020  *
2021  * The nvmet-fc layer will copy payload to an internal structure for
2022  * processing.  As such, upon completion of the routine, the LLDD may
2023  * immediately free/reuse the LS request buffer passed in the call.
2024  *
2025  * If this routine returns error, the LLDD should abort the exchange.
2026  *
2027  * @target_port: pointer to the (registered) target port the LS was
2028  *              received on.
2029  * @hosthandle: pointer to the host specific data, gets stored in iod.
2030  * @lsrsp:      pointer to a lsrsp structure to be used to reference
2031  *              the exchange corresponding to the LS.
2032  * @lsreqbuf:   pointer to the buffer containing the LS Request
2033  * @lsreqbuf_len: length, in bytes, of the received LS request
2034  */
2035 int
2036 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
2037                         void *hosthandle,
2038                         struct nvmefc_ls_rsp *lsrsp,
2039                         void *lsreqbuf, u32 lsreqbuf_len)
2040 {
2041         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2042         struct nvmet_fc_ls_iod *iod;
2043         struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
2044
2045         if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
2046                 dev_info(tgtport->dev,
2047                         "RCV %s LS failed: payload too large (%d)\n",
2048                         (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2049                                 nvmefc_ls_names[w0->ls_cmd] : "",
2050                         lsreqbuf_len);
2051                 return -E2BIG;
2052         }
2053
2054         if (!nvmet_fc_tgtport_get(tgtport)) {
2055                 dev_info(tgtport->dev,
2056                         "RCV %s LS failed: target deleting\n",
2057                         (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2058                                 nvmefc_ls_names[w0->ls_cmd] : "");
2059                 return -ESHUTDOWN;
2060         }
2061
2062         iod = nvmet_fc_alloc_ls_iod(tgtport);
2063         if (!iod) {
2064                 dev_info(tgtport->dev,
2065                         "RCV %s LS failed: context allocation failed\n",
2066                         (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2067                                 nvmefc_ls_names[w0->ls_cmd] : "");
2068                 nvmet_fc_tgtport_put(tgtport);
2069                 return -ENOENT;
2070         }
2071
2072         iod->lsrsp = lsrsp;
2073         iod->fcpreq = NULL;
2074         memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
2075         iod->rqstdatalen = lsreqbuf_len;
2076         iod->hosthandle = hosthandle;
2077
2078         queue_work(nvmet_wq, &iod->work);
2079
2080         return 0;
2081 }
2082 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
2083
2084
2085 /*
2086  * **********************
2087  * Start of FCP handling
2088  * **********************
2089  */
2090
2091 static int
2092 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2093 {
2094         struct scatterlist *sg;
2095         unsigned int nent;
2096
2097         sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
2098         if (!sg)
2099                 goto out;
2100
2101         fod->data_sg = sg;
2102         fod->data_sg_cnt = nent;
2103         fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
2104                                 ((fod->io_dir == NVMET_FCP_WRITE) ?
2105                                         DMA_FROM_DEVICE : DMA_TO_DEVICE));
2106                                 /* note: write from initiator perspective */
2107         fod->next_sg = fod->data_sg;
2108
2109         return 0;
2110
2111 out:
2112         return NVME_SC_INTERNAL;
2113 }
2114
2115 static void
2116 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2117 {
2118         if (!fod->data_sg || !fod->data_sg_cnt)
2119                 return;
2120
2121         fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
2122                                 ((fod->io_dir == NVMET_FCP_WRITE) ?
2123                                         DMA_FROM_DEVICE : DMA_TO_DEVICE));
2124         sgl_free(fod->data_sg);
2125         fod->data_sg = NULL;
2126         fod->data_sg_cnt = 0;
2127 }
2128
2129
2130 static bool
2131 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
2132 {
2133         u32 sqtail, used;
2134
2135         /* egad, this is ugly. And sqtail is just a best guess */
2136         sqtail = atomic_read(&q->sqtail) % q->sqsize;
2137
2138         used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
2139         return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
2140 }
2141
2142 /*
2143  * Prep RSP payload.
2144  * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
2145  */
2146 static void
2147 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2148                                 struct nvmet_fc_fcp_iod *fod)
2149 {
2150         struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
2151         struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2152         struct nvme_completion *cqe = &ersp->cqe;
2153         u32 *cqewd = (u32 *)cqe;
2154         bool send_ersp = false;
2155         u32 rsn, rspcnt, xfr_length;
2156
2157         if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
2158                 xfr_length = fod->req.transfer_len;
2159         else
2160                 xfr_length = fod->offset;
2161
2162         /*
2163          * check to see if we can send a 0's rsp.
2164          *   Note: to send a 0's response, the NVME-FC host transport will
2165          *   recreate the CQE. The host transport knows: sq id, SQHD (last
2166          *   seen in an ersp), and command_id. Thus it will create a
2167          *   zero-filled CQE with those known fields filled in. Transport
2168          *   must send an ersp for any condition where the cqe won't match
2169          *   this.
2170          *
2171          * Here are the FC-NVME mandated cases where we must send an ersp:
2172          *  every N responses, where N=ersp_ratio
2173          *  force fabric commands to send ersp's (not in FC-NVME but good
2174          *    practice)
2175          *  normal cmds: any time status is non-zero, or status is zero
2176          *     but words 0 or 1 are non-zero.
2177          *  the SQ is 90% or more full
2178          *  the cmd is a fused command
2179          *  transferred data length not equal to cmd iu length
2180          */
2181         rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
2182         if (!(rspcnt % fod->queue->ersp_ratio) ||
2183             nvme_is_fabrics((struct nvme_command *) sqe) ||
2184             xfr_length != fod->req.transfer_len ||
2185             (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
2186             (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
2187             queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
2188                 send_ersp = true;
2189
2190         /* re-set the fields */
2191         fod->fcpreq->rspaddr = ersp;
2192         fod->fcpreq->rspdma = fod->rspdma;
2193
2194         if (!send_ersp) {
2195                 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
2196                 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
2197         } else {
2198                 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
2199                 rsn = atomic_inc_return(&fod->queue->rsn);
2200                 ersp->rsn = cpu_to_be32(rsn);
2201                 ersp->xfrd_len = cpu_to_be32(xfr_length);
2202                 fod->fcpreq->rsplen = sizeof(*ersp);
2203         }
2204
2205         fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
2206                                   sizeof(fod->rspiubuf), DMA_TO_DEVICE);
2207 }
2208
2209 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
2210
2211 static void
2212 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
2213                                 struct nvmet_fc_fcp_iod *fod)
2214 {
2215         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2216
2217         /* data no longer needed */
2218         nvmet_fc_free_tgt_pgs(fod);
2219
2220         /*
2221          * if an ABTS was received or we issued the fcp_abort early
2222          * don't call abort routine again.
2223          */
2224         /* no need to take lock - lock was taken earlier to get here */
2225         if (!fod->aborted)
2226                 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
2227
2228         nvmet_fc_free_fcp_iod(fod->queue, fod);
2229 }
2230
2231 static void
2232 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2233                                 struct nvmet_fc_fcp_iod *fod)
2234 {
2235         int ret;
2236
2237         fod->fcpreq->op = NVMET_FCOP_RSP;
2238         fod->fcpreq->timeout = 0;
2239
2240         nvmet_fc_prep_fcp_rsp(tgtport, fod);
2241
2242         ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2243         if (ret)
2244                 nvmet_fc_abort_op(tgtport, fod);
2245 }
2246
2247 static void
2248 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
2249                                 struct nvmet_fc_fcp_iod *fod, u8 op)
2250 {
2251         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2252         struct scatterlist *sg = fod->next_sg;
2253         unsigned long flags;
2254         u32 remaininglen = fod->req.transfer_len - fod->offset;
2255         u32 tlen = 0;
2256         int ret;
2257
2258         fcpreq->op = op;
2259         fcpreq->offset = fod->offset;
2260         fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
2261
2262         /*
2263          * for next sequence:
2264          *  break at a sg element boundary
2265          *  attempt to keep sequence length capped at
2266          *    NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
2267          *    be longer if a single sg element is larger
2268          *    than that amount. This is done to avoid creating
2269          *    a new sg list to use for the tgtport api.
2270          */
2271         fcpreq->sg = sg;
2272         fcpreq->sg_cnt = 0;
2273         while (tlen < remaininglen &&
2274                fcpreq->sg_cnt < tgtport->max_sg_cnt &&
2275                tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
2276                 fcpreq->sg_cnt++;
2277                 tlen += sg_dma_len(sg);
2278                 sg = sg_next(sg);
2279         }
2280         if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
2281                 fcpreq->sg_cnt++;
2282                 tlen += min_t(u32, sg_dma_len(sg), remaininglen);
2283                 sg = sg_next(sg);
2284         }
2285         if (tlen < remaininglen)
2286                 fod->next_sg = sg;
2287         else
2288                 fod->next_sg = NULL;
2289
2290         fcpreq->transfer_length = tlen;
2291         fcpreq->transferred_length = 0;
2292         fcpreq->fcp_error = 0;
2293         fcpreq->rsplen = 0;
2294
2295         /*
2296          * If the last READDATA request: check if LLDD supports
2297          * combined xfr with response.
2298          */
2299         if ((op == NVMET_FCOP_READDATA) &&
2300             ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
2301             (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
2302                 fcpreq->op = NVMET_FCOP_READDATA_RSP;
2303                 nvmet_fc_prep_fcp_rsp(tgtport, fod);
2304         }
2305
2306         ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2307         if (ret) {
2308                 /*
2309                  * should be ok to set w/o lock as its in the thread of
2310                  * execution (not an async timer routine) and doesn't
2311                  * contend with any clearing action
2312                  */
2313                 fod->abort = true;
2314
2315                 if (op == NVMET_FCOP_WRITEDATA) {
2316                         spin_lock_irqsave(&fod->flock, flags);
2317                         fod->writedataactive = false;
2318                         spin_unlock_irqrestore(&fod->flock, flags);
2319                         nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2320                 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
2321                         fcpreq->fcp_error = ret;
2322                         fcpreq->transferred_length = 0;
2323                         nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
2324                 }
2325         }
2326 }
2327
2328 static inline bool
2329 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
2330 {
2331         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2332         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2333
2334         /* if in the middle of an io and we need to tear down */
2335         if (abort) {
2336                 if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
2337                         nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2338                         return true;
2339                 }
2340
2341                 nvmet_fc_abort_op(tgtport, fod);
2342                 return true;
2343         }
2344
2345         return false;
2346 }
2347
2348 /*
2349  * actual done handler for FCP operations when completed by the lldd
2350  */
2351 static void
2352 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
2353 {
2354         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2355         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2356         unsigned long flags;
2357         bool abort;
2358
2359         spin_lock_irqsave(&fod->flock, flags);
2360         abort = fod->abort;
2361         fod->writedataactive = false;
2362         spin_unlock_irqrestore(&fod->flock, flags);
2363
2364         switch (fcpreq->op) {
2365
2366         case NVMET_FCOP_WRITEDATA:
2367                 if (__nvmet_fc_fod_op_abort(fod, abort))
2368                         return;
2369                 if (fcpreq->fcp_error ||
2370                     fcpreq->transferred_length != fcpreq->transfer_length) {
2371                         spin_lock_irqsave(&fod->flock, flags);
2372                         fod->abort = true;
2373                         spin_unlock_irqrestore(&fod->flock, flags);
2374
2375                         nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2376                         return;
2377                 }
2378
2379                 fod->offset += fcpreq->transferred_length;
2380                 if (fod->offset != fod->req.transfer_len) {
2381                         spin_lock_irqsave(&fod->flock, flags);
2382                         fod->writedataactive = true;
2383                         spin_unlock_irqrestore(&fod->flock, flags);
2384
2385                         /* transfer the next chunk */
2386                         nvmet_fc_transfer_fcp_data(tgtport, fod,
2387                                                 NVMET_FCOP_WRITEDATA);
2388                         return;
2389                 }
2390
2391                 /* data transfer complete, resume with nvmet layer */
2392                 fod->req.execute(&fod->req);
2393                 break;
2394
2395         case NVMET_FCOP_READDATA:
2396         case NVMET_FCOP_READDATA_RSP:
2397                 if (__nvmet_fc_fod_op_abort(fod, abort))
2398                         return;
2399                 if (fcpreq->fcp_error ||
2400                     fcpreq->transferred_length != fcpreq->transfer_length) {
2401                         nvmet_fc_abort_op(tgtport, fod);
2402                         return;
2403                 }
2404
2405                 /* success */
2406
2407                 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2408                         /* data no longer needed */
2409                         nvmet_fc_free_tgt_pgs(fod);
2410                         nvmet_fc_free_fcp_iod(fod->queue, fod);
2411                         return;
2412                 }
2413
2414                 fod->offset += fcpreq->transferred_length;
2415                 if (fod->offset != fod->req.transfer_len) {
2416                         /* transfer the next chunk */
2417                         nvmet_fc_transfer_fcp_data(tgtport, fod,
2418                                                 NVMET_FCOP_READDATA);
2419                         return;
2420                 }
2421
2422                 /* data transfer complete, send response */
2423
2424                 /* data no longer needed */
2425                 nvmet_fc_free_tgt_pgs(fod);
2426
2427                 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2428
2429                 break;
2430
2431         case NVMET_FCOP_RSP:
2432                 if (__nvmet_fc_fod_op_abort(fod, abort))
2433                         return;
2434                 nvmet_fc_free_fcp_iod(fod->queue, fod);
2435                 break;
2436
2437         default:
2438                 break;
2439         }
2440 }
2441
2442 static void
2443 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2444 {
2445         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2446
2447         nvmet_fc_fod_op_done(fod);
2448 }
2449
2450 /*
2451  * actual completion handler after execution by the nvmet layer
2452  */
2453 static void
2454 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2455                         struct nvmet_fc_fcp_iod *fod, int status)
2456 {
2457         struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2458         struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2459         unsigned long flags;
2460         bool abort;
2461
2462         spin_lock_irqsave(&fod->flock, flags);
2463         abort = fod->abort;
2464         spin_unlock_irqrestore(&fod->flock, flags);
2465
2466         /* if we have a CQE, snoop the last sq_head value */
2467         if (!status)
2468                 fod->queue->sqhd = cqe->sq_head;
2469
2470         if (abort) {
2471                 nvmet_fc_abort_op(tgtport, fod);
2472                 return;
2473         }
2474
2475         /* if an error handling the cmd post initial parsing */
2476         if (status) {
2477                 /* fudge up a failed CQE status for our transport error */
2478                 memset(cqe, 0, sizeof(*cqe));
2479                 cqe->sq_head = fod->queue->sqhd;        /* echo last cqe sqhd */
2480                 cqe->sq_id = cpu_to_le16(fod->queue->qid);
2481                 cqe->command_id = sqe->command_id;
2482                 cqe->status = cpu_to_le16(status);
2483         } else {
2484
2485                 /*
2486                  * try to push the data even if the SQE status is non-zero.
2487                  * There may be a status where data still was intended to
2488                  * be moved
2489                  */
2490                 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2491                         /* push the data over before sending rsp */
2492                         nvmet_fc_transfer_fcp_data(tgtport, fod,
2493                                                 NVMET_FCOP_READDATA);
2494                         return;
2495                 }
2496
2497                 /* writes & no data - fall thru */
2498         }
2499
2500         /* data no longer needed */
2501         nvmet_fc_free_tgt_pgs(fod);
2502
2503         nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2504 }
2505
2506
2507 static void
2508 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2509 {
2510         struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2511         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2512
2513         __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2514 }
2515
2516
2517 /*
2518  * Actual processing routine for received FC-NVME I/O Requests from the LLD
2519  */
2520 static void
2521 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2522                         struct nvmet_fc_fcp_iod *fod)
2523 {
2524         struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2525         u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2526         int ret;
2527
2528         /*
2529          * Fused commands are currently not supported in the linux
2530          * implementation.
2531          *
2532          * As such, the implementation of the FC transport does not
2533          * look at the fused commands and order delivery to the upper
2534          * layer until we have both based on csn.
2535          */
2536
2537         fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2538
2539         if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2540                 fod->io_dir = NVMET_FCP_WRITE;
2541                 if (!nvme_is_write(&cmdiu->sqe))
2542                         goto transport_error;
2543         } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2544                 fod->io_dir = NVMET_FCP_READ;
2545                 if (nvme_is_write(&cmdiu->sqe))
2546                         goto transport_error;
2547         } else {
2548                 fod->io_dir = NVMET_FCP_NODATA;
2549                 if (xfrlen)
2550                         goto transport_error;
2551         }
2552
2553         fod->req.cmd = &fod->cmdiubuf.sqe;
2554         fod->req.cqe = &fod->rspiubuf.cqe;
2555         if (!tgtport->pe)
2556                 goto transport_error;
2557         fod->req.port = tgtport->pe->port;
2558
2559         /* clear any response payload */
2560         memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2561
2562         fod->data_sg = NULL;
2563         fod->data_sg_cnt = 0;
2564
2565         ret = nvmet_req_init(&fod->req,
2566                                 &fod->queue->nvme_cq,
2567                                 &fod->queue->nvme_sq,
2568                                 &nvmet_fc_tgt_fcp_ops);
2569         if (!ret) {
2570                 /* bad SQE content or invalid ctrl state */
2571                 /* nvmet layer has already called op done to send rsp. */
2572                 return;
2573         }
2574
2575         fod->req.transfer_len = xfrlen;
2576
2577         /* keep a running counter of tail position */
2578         atomic_inc(&fod->queue->sqtail);
2579
2580         if (fod->req.transfer_len) {
2581                 ret = nvmet_fc_alloc_tgt_pgs(fod);
2582                 if (ret) {
2583                         nvmet_req_complete(&fod->req, ret);
2584                         return;
2585                 }
2586         }
2587         fod->req.sg = fod->data_sg;
2588         fod->req.sg_cnt = fod->data_sg_cnt;
2589         fod->offset = 0;
2590
2591         if (fod->io_dir == NVMET_FCP_WRITE) {
2592                 /* pull the data over before invoking nvmet layer */
2593                 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2594                 return;
2595         }
2596
2597         /*
2598          * Reads or no data:
2599          *
2600          * can invoke the nvmet_layer now. If read data, cmd completion will
2601          * push the data
2602          */
2603         fod->req.execute(&fod->req);
2604         return;
2605
2606 transport_error:
2607         nvmet_fc_abort_op(tgtport, fod);
2608 }
2609
2610 /**
2611  * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2612  *                       upon the reception of a NVME FCP CMD IU.
2613  *
2614  * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2615  * layer for processing.
2616  *
2617  * The nvmet_fc layer allocates a local job structure (struct
2618  * nvmet_fc_fcp_iod) from the queue for the io and copies the
2619  * CMD IU buffer to the job structure. As such, on a successful
2620  * completion (returns 0), the LLDD may immediately free/reuse
2621  * the CMD IU buffer passed in the call.
2622  *
2623  * However, in some circumstances, due to the packetized nature of FC
2624  * and the api of the FC LLDD which may issue a hw command to send the
2625  * response, but the LLDD may not get the hw completion for that command
2626  * and upcall the nvmet_fc layer before a new command may be
2627  * asynchronously received - its possible for a command to be received
2628  * before the LLDD and nvmet_fc have recycled the job structure. It gives
2629  * the appearance of more commands received than fits in the sq.
2630  * To alleviate this scenario, a temporary queue is maintained in the
2631  * transport for pending LLDD requests waiting for a queue job structure.
2632  * In these "overrun" cases, a temporary queue element is allocated
2633  * the LLDD request and CMD iu buffer information remembered, and the
2634  * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2635  * structure is freed, it is immediately reallocated for anything on the
2636  * pending request list. The LLDDs defer_rcv() callback is called,
2637  * informing the LLDD that it may reuse the CMD IU buffer, and the io
2638  * is then started normally with the transport.
2639  *
2640  * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2641  * the completion as successful but must not reuse the CMD IU buffer
2642  * until the LLDD's defer_rcv() callback has been called for the
2643  * corresponding struct nvmefc_tgt_fcp_req pointer.
2644  *
2645  * If there is any other condition in which an error occurs, the
2646  * transport will return a non-zero status indicating the error.
2647  * In all cases other than -EOVERFLOW, the transport has not accepted the
2648  * request and the LLDD should abort the exchange.
2649  *
2650  * @target_port: pointer to the (registered) target port the FCP CMD IU
2651  *              was received on.
2652  * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2653  *              the exchange corresponding to the FCP Exchange.
2654  * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2655  * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2656  */
2657 int
2658 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2659                         struct nvmefc_tgt_fcp_req *fcpreq,
2660                         void *cmdiubuf, u32 cmdiubuf_len)
2661 {
2662         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2663         struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2664         struct nvmet_fc_tgt_queue *queue;
2665         struct nvmet_fc_fcp_iod *fod;
2666         struct nvmet_fc_defer_fcp_req *deferfcp;
2667         unsigned long flags;
2668
2669         /* validate iu, so the connection id can be used to find the queue */
2670         if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2671                         (cmdiu->format_id != NVME_CMD_FORMAT_ID) ||
2672                         (cmdiu->fc_id != NVME_CMD_FC_ID) ||
2673                         (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2674                 return -EIO;
2675
2676         queue = nvmet_fc_find_target_queue(tgtport,
2677                                 be64_to_cpu(cmdiu->connection_id));
2678         if (!queue)
2679                 return -ENOTCONN;
2680
2681         /*
2682          * note: reference taken by find_target_queue
2683          * After successful fod allocation, the fod will inherit the
2684          * ownership of that reference and will remove the reference
2685          * when the fod is freed.
2686          */
2687
2688         spin_lock_irqsave(&queue->qlock, flags);
2689
2690         fod = nvmet_fc_alloc_fcp_iod(queue);
2691         if (fod) {
2692                 spin_unlock_irqrestore(&queue->qlock, flags);
2693
2694                 fcpreq->nvmet_fc_private = fod;
2695                 fod->fcpreq = fcpreq;
2696
2697                 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2698
2699                 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2700
2701                 return 0;
2702         }
2703
2704         if (!tgtport->ops->defer_rcv) {
2705                 spin_unlock_irqrestore(&queue->qlock, flags);
2706                 /* release the queue lookup reference */
2707                 nvmet_fc_tgt_q_put(queue);
2708                 return -ENOENT;
2709         }
2710
2711         deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2712                         struct nvmet_fc_defer_fcp_req, req_list);
2713         if (deferfcp) {
2714                 /* Just re-use one that was previously allocated */
2715                 list_del(&deferfcp->req_list);
2716         } else {
2717                 spin_unlock_irqrestore(&queue->qlock, flags);
2718
2719                 /* Now we need to dynamically allocate one */
2720                 deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2721                 if (!deferfcp) {
2722                         /* release the queue lookup reference */
2723                         nvmet_fc_tgt_q_put(queue);
2724                         return -ENOMEM;
2725                 }
2726                 spin_lock_irqsave(&queue->qlock, flags);
2727         }
2728
2729         /* For now, use rspaddr / rsplen to save payload information */
2730         fcpreq->rspaddr = cmdiubuf;
2731         fcpreq->rsplen  = cmdiubuf_len;
2732         deferfcp->fcp_req = fcpreq;
2733
2734         /* defer processing till a fod becomes available */
2735         list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2736
2737         /* NOTE: the queue lookup reference is still valid */
2738
2739         spin_unlock_irqrestore(&queue->qlock, flags);
2740
2741         return -EOVERFLOW;
2742 }
2743 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2744
2745 /**
2746  * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2747  *                       upon the reception of an ABTS for a FCP command
2748  *
2749  * Notify the transport that an ABTS has been received for a FCP command
2750  * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2751  * LLDD believes the command is still being worked on
2752  * (template_ops->fcp_req_release() has not been called).
2753  *
2754  * The transport will wait for any outstanding work (an op to the LLDD,
2755  * which the lldd should complete with error due to the ABTS; or the
2756  * completion from the nvmet layer of the nvme command), then will
2757  * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2758  * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2759  * to the ABTS either after return from this function (assuming any
2760  * outstanding op work has been terminated) or upon the callback being
2761  * called.
2762  *
2763  * @target_port: pointer to the (registered) target port the FCP CMD IU
2764  *              was received on.
2765  * @fcpreq:     pointer to the fcpreq request structure that corresponds
2766  *              to the exchange that received the ABTS.
2767  */
2768 void
2769 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2770                         struct nvmefc_tgt_fcp_req *fcpreq)
2771 {
2772         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2773         struct nvmet_fc_tgt_queue *queue;
2774         unsigned long flags;
2775
2776         if (!fod || fod->fcpreq != fcpreq)
2777                 /* job appears to have already completed, ignore abort */
2778                 return;
2779
2780         queue = fod->queue;
2781
2782         spin_lock_irqsave(&queue->qlock, flags);
2783         if (fod->active) {
2784                 /*
2785                  * mark as abort. The abort handler, invoked upon completion
2786                  * of any work, will detect the aborted status and do the
2787                  * callback.
2788                  */
2789                 spin_lock(&fod->flock);
2790                 fod->abort = true;
2791                 fod->aborted = true;
2792                 spin_unlock(&fod->flock);
2793         }
2794         spin_unlock_irqrestore(&queue->qlock, flags);
2795 }
2796 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2797
2798
2799 struct nvmet_fc_traddr {
2800         u64     nn;
2801         u64     pn;
2802 };
2803
2804 static int
2805 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2806 {
2807         u64 token64;
2808
2809         if (match_u64(sstr, &token64))
2810                 return -EINVAL;
2811         *val = token64;
2812
2813         return 0;
2814 }
2815
2816 /*
2817  * This routine validates and extracts the WWN's from the TRADDR string.
2818  * As kernel parsers need the 0x to determine number base, universally
2819  * build string to parse with 0x prefix before parsing name strings.
2820  */
2821 static int
2822 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2823 {
2824         char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2825         substring_t wwn = { name, &name[sizeof(name)-1] };
2826         int nnoffset, pnoffset;
2827
2828         /* validate if string is one of the 2 allowed formats */
2829         if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2830                         !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2831                         !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2832                                 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2833                 nnoffset = NVME_FC_TRADDR_OXNNLEN;
2834                 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2835                                                 NVME_FC_TRADDR_OXNNLEN;
2836         } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2837                         !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2838                         !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2839                                 "pn-", NVME_FC_TRADDR_NNLEN))) {
2840                 nnoffset = NVME_FC_TRADDR_NNLEN;
2841                 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2842         } else
2843                 goto out_einval;
2844
2845         name[0] = '0';
2846         name[1] = 'x';
2847         name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2848
2849         memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2850         if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2851                 goto out_einval;
2852
2853         memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2854         if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2855                 goto out_einval;
2856
2857         return 0;
2858
2859 out_einval:
2860         pr_warn("%s: bad traddr string\n", __func__);
2861         return -EINVAL;
2862 }
2863
2864 static int
2865 nvmet_fc_add_port(struct nvmet_port *port)
2866 {
2867         struct nvmet_fc_tgtport *tgtport;
2868         struct nvmet_fc_port_entry *pe;
2869         struct nvmet_fc_traddr traddr = { 0L, 0L };
2870         unsigned long flags;
2871         int ret;
2872
2873         /* validate the address info */
2874         if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2875             (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2876                 return -EINVAL;
2877
2878         /* map the traddr address info to a target port */
2879
2880         ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2881                         sizeof(port->disc_addr.traddr));
2882         if (ret)
2883                 return ret;
2884
2885         pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2886         if (!pe)
2887                 return -ENOMEM;
2888
2889         ret = -ENXIO;
2890         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2891         list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2892                 if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2893                     (tgtport->fc_target_port.port_name == traddr.pn)) {
2894                         /* a FC port can only be 1 nvmet port id */
2895                         if (!tgtport->pe) {
2896                                 nvmet_fc_portentry_bind(tgtport, pe, port);
2897                                 ret = 0;
2898                         } else
2899                                 ret = -EALREADY;
2900                         break;
2901                 }
2902         }
2903         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2904
2905         if (ret)
2906                 kfree(pe);
2907
2908         return ret;
2909 }
2910
2911 static void
2912 nvmet_fc_remove_port(struct nvmet_port *port)
2913 {
2914         struct nvmet_fc_port_entry *pe = port->priv;
2915
2916         nvmet_fc_portentry_unbind(pe);
2917
2918         /* terminate any outstanding associations */
2919         __nvmet_fc_free_assocs(pe->tgtport);
2920
2921         kfree(pe);
2922 }
2923
2924 static void
2925 nvmet_fc_discovery_chg(struct nvmet_port *port)
2926 {
2927         struct nvmet_fc_port_entry *pe = port->priv;
2928         struct nvmet_fc_tgtport *tgtport = pe->tgtport;
2929
2930         if (tgtport && tgtport->ops->discovery_event)
2931                 tgtport->ops->discovery_event(&tgtport->fc_target_port);
2932 }
2933
2934 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2935         .owner                  = THIS_MODULE,
2936         .type                   = NVMF_TRTYPE_FC,
2937         .msdbd                  = 1,
2938         .add_port               = nvmet_fc_add_port,
2939         .remove_port            = nvmet_fc_remove_port,
2940         .queue_response         = nvmet_fc_fcp_nvme_cmd_done,
2941         .delete_ctrl            = nvmet_fc_delete_ctrl,
2942         .discovery_chg          = nvmet_fc_discovery_chg,
2943 };
2944
2945 static int __init nvmet_fc_init_module(void)
2946 {
2947         return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2948 }
2949
2950 static void __exit nvmet_fc_exit_module(void)
2951 {
2952         /* ensure any shutdown operation, e.g. delete ctrls have finished */
2953         flush_workqueue(nvmet_wq);
2954
2955         /* sanity check - all lports should be removed */
2956         if (!list_empty(&nvmet_fc_target_list))
2957                 pr_warn("%s: targetport list not empty\n", __func__);
2958
2959         nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2960
2961         ida_destroy(&nvmet_fc_tgtport_cnt);
2962 }
2963
2964 module_init(nvmet_fc_init_module);
2965 module_exit(nvmet_fc_exit_module);
2966
2967 MODULE_DESCRIPTION("NVMe target FC transport driver");
2968 MODULE_LICENSE("GPL v2");