GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / nvme / target / fc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/blk-mq.h>
9 #include <linux/parser.h>
10 #include <linux/random.h>
11 #include <uapi/scsi/fc/fc_fs.h>
12 #include <uapi/scsi/fc/fc_els.h>
13
14 #include "nvmet.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "../host/fc.h"
18
19
20 /* *************************** Data Structures/Defines ****************** */
21
22
23 #define NVMET_LS_CTX_COUNT              256
24
25 struct nvmet_fc_tgtport;
26 struct nvmet_fc_tgt_assoc;
27
28 struct nvmet_fc_ls_iod {                /* for an LS RQST RCV */
29         struct nvmefc_ls_rsp            *lsrsp;
30         struct nvmefc_tgt_fcp_req       *fcpreq;        /* only if RS */
31
32         struct list_head                ls_rcv_list; /* tgtport->ls_rcv_list */
33
34         struct nvmet_fc_tgtport         *tgtport;
35         struct nvmet_fc_tgt_assoc       *assoc;
36         void                            *hosthandle;
37
38         union nvmefc_ls_requests        *rqstbuf;
39         union nvmefc_ls_responses       *rspbuf;
40         u16                             rqstdatalen;
41         dma_addr_t                      rspdma;
42
43         struct scatterlist              sg[2];
44
45         struct work_struct              work;
46 } __aligned(sizeof(unsigned long long));
47
48 struct nvmet_fc_ls_req_op {             /* for an LS RQST XMT */
49         struct nvmefc_ls_req            ls_req;
50
51         struct nvmet_fc_tgtport         *tgtport;
52         void                            *hosthandle;
53
54         int                             ls_error;
55         struct list_head                lsreq_list; /* tgtport->ls_req_list */
56         bool                            req_queued;
57 };
58
59
60 /* desired maximum for a single sequence - if sg list allows it */
61 #define NVMET_FC_MAX_SEQ_LENGTH         (256 * 1024)
62
63 enum nvmet_fcp_datadir {
64         NVMET_FCP_NODATA,
65         NVMET_FCP_WRITE,
66         NVMET_FCP_READ,
67         NVMET_FCP_ABORTED,
68 };
69
70 struct nvmet_fc_fcp_iod {
71         struct nvmefc_tgt_fcp_req       *fcpreq;
72
73         struct nvme_fc_cmd_iu           cmdiubuf;
74         struct nvme_fc_ersp_iu          rspiubuf;
75         dma_addr_t                      rspdma;
76         struct scatterlist              *next_sg;
77         struct scatterlist              *data_sg;
78         int                             data_sg_cnt;
79         u32                             offset;
80         enum nvmet_fcp_datadir          io_dir;
81         bool                            active;
82         bool                            abort;
83         bool                            aborted;
84         bool                            writedataactive;
85         spinlock_t                      flock;
86
87         struct nvmet_req                req;
88         struct work_struct              defer_work;
89
90         struct nvmet_fc_tgtport         *tgtport;
91         struct nvmet_fc_tgt_queue       *queue;
92
93         struct list_head                fcp_list;       /* tgtport->fcp_list */
94 };
95
96 struct nvmet_fc_tgtport {
97         struct nvmet_fc_target_port     fc_target_port;
98
99         struct list_head                tgt_list; /* nvmet_fc_target_list */
100         struct device                   *dev;   /* dev for dma mapping */
101         struct nvmet_fc_target_template *ops;
102
103         struct nvmet_fc_ls_iod          *iod;
104         spinlock_t                      lock;
105         struct list_head                ls_rcv_list;
106         struct list_head                ls_req_list;
107         struct list_head                ls_busylist;
108         struct list_head                assoc_list;
109         struct list_head                host_list;
110         struct ida                      assoc_cnt;
111         struct nvmet_fc_port_entry      *pe;
112         struct kref                     ref;
113         u32                             max_sg_cnt;
114 };
115
116 struct nvmet_fc_port_entry {
117         struct nvmet_fc_tgtport         *tgtport;
118         struct nvmet_port               *port;
119         u64                             node_name;
120         u64                             port_name;
121         struct list_head                pe_list;
122 };
123
124 struct nvmet_fc_defer_fcp_req {
125         struct list_head                req_list;
126         struct nvmefc_tgt_fcp_req       *fcp_req;
127 };
128
129 struct nvmet_fc_tgt_queue {
130         bool                            ninetypercent;
131         u16                             qid;
132         u16                             sqsize;
133         u16                             ersp_ratio;
134         __le16                          sqhd;
135         atomic_t                        connected;
136         atomic_t                        sqtail;
137         atomic_t                        zrspcnt;
138         atomic_t                        rsn;
139         spinlock_t                      qlock;
140         struct nvmet_cq                 nvme_cq;
141         struct nvmet_sq                 nvme_sq;
142         struct nvmet_fc_tgt_assoc       *assoc;
143         struct list_head                fod_list;
144         struct list_head                pending_cmd_list;
145         struct list_head                avail_defer_list;
146         struct workqueue_struct         *work_q;
147         struct kref                     ref;
148         struct nvmet_fc_fcp_iod         fod[];          /* array of fcp_iods */
149 } __aligned(sizeof(unsigned long long));
150
151 struct nvmet_fc_hostport {
152         struct nvmet_fc_tgtport         *tgtport;
153         void                            *hosthandle;
154         struct list_head                host_list;
155         struct kref                     ref;
156         u8                              invalid;
157 };
158
159 struct nvmet_fc_tgt_assoc {
160         u64                             association_id;
161         u32                             a_id;
162         atomic_t                        terminating;
163         struct nvmet_fc_tgtport         *tgtport;
164         struct nvmet_fc_hostport        *hostport;
165         struct nvmet_fc_ls_iod          *rcv_disconn;
166         struct list_head                a_list;
167         struct nvmet_fc_tgt_queue       *queues[NVMET_NR_QUEUES + 1];
168         struct kref                     ref;
169         struct work_struct              del_work;
170 };
171
172
173 static inline int
174 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
175 {
176         return (iodptr - iodptr->tgtport->iod);
177 }
178
179 static inline int
180 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
181 {
182         return (fodptr - fodptr->queue->fod);
183 }
184
185
186 /*
187  * Association and Connection IDs:
188  *
189  * Association ID will have random number in upper 6 bytes and zero
190  *   in lower 2 bytes
191  *
192  * Connection IDs will be Association ID with QID or'd in lower 2 bytes
193  *
194  * note: Association ID = Connection ID for queue 0
195  */
196 #define BYTES_FOR_QID                   sizeof(u16)
197 #define BYTES_FOR_QID_SHIFT             (BYTES_FOR_QID * 8)
198 #define NVMET_FC_QUEUEID_MASK           ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
199
200 static inline u64
201 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
202 {
203         return (assoc->association_id | qid);
204 }
205
206 static inline u64
207 nvmet_fc_getassociationid(u64 connectionid)
208 {
209         return connectionid & ~NVMET_FC_QUEUEID_MASK;
210 }
211
212 static inline u16
213 nvmet_fc_getqueueid(u64 connectionid)
214 {
215         return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
216 }
217
218 static inline struct nvmet_fc_tgtport *
219 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
220 {
221         return container_of(targetport, struct nvmet_fc_tgtport,
222                                  fc_target_port);
223 }
224
225 static inline struct nvmet_fc_fcp_iod *
226 nvmet_req_to_fod(struct nvmet_req *nvme_req)
227 {
228         return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
229 }
230
231
232 /* *************************** Globals **************************** */
233
234
235 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
236
237 static LIST_HEAD(nvmet_fc_target_list);
238 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
239 static LIST_HEAD(nvmet_fc_portentry_list);
240
241
242 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
243 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
244 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
245 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
246 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
247 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
248 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
249 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
250 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
251                                         struct nvmet_fc_fcp_iod *fod);
252 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
253 static void nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
254                                 struct nvmet_fc_ls_iod *iod);
255
256
257 /* *********************** FC-NVME DMA Handling **************************** */
258
259 /*
260  * The fcloop device passes in a NULL device pointer. Real LLD's will
261  * pass in a valid device pointer. If NULL is passed to the dma mapping
262  * routines, depending on the platform, it may or may not succeed, and
263  * may crash.
264  *
265  * As such:
266  * Wrapper all the dma routines and check the dev pointer.
267  *
268  * If simple mappings (return just a dma address, we'll noop them,
269  * returning a dma address of 0.
270  *
271  * On more complex mappings (dma_map_sg), a pseudo routine fills
272  * in the scatter list, setting all dma addresses to 0.
273  */
274
275 static inline dma_addr_t
276 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
277                 enum dma_data_direction dir)
278 {
279         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
280 }
281
282 static inline int
283 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
284 {
285         return dev ? dma_mapping_error(dev, dma_addr) : 0;
286 }
287
288 static inline void
289 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
290         enum dma_data_direction dir)
291 {
292         if (dev)
293                 dma_unmap_single(dev, addr, size, dir);
294 }
295
296 static inline void
297 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
298                 enum dma_data_direction dir)
299 {
300         if (dev)
301                 dma_sync_single_for_cpu(dev, addr, size, dir);
302 }
303
304 static inline void
305 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
306                 enum dma_data_direction dir)
307 {
308         if (dev)
309                 dma_sync_single_for_device(dev, addr, size, dir);
310 }
311
312 /* pseudo dma_map_sg call */
313 static int
314 fc_map_sg(struct scatterlist *sg, int nents)
315 {
316         struct scatterlist *s;
317         int i;
318
319         WARN_ON(nents == 0 || sg[0].length == 0);
320
321         for_each_sg(sg, s, nents, i) {
322                 s->dma_address = 0L;
323 #ifdef CONFIG_NEED_SG_DMA_LENGTH
324                 s->dma_length = s->length;
325 #endif
326         }
327         return nents;
328 }
329
330 static inline int
331 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
332                 enum dma_data_direction dir)
333 {
334         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
335 }
336
337 static inline void
338 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
339                 enum dma_data_direction dir)
340 {
341         if (dev)
342                 dma_unmap_sg(dev, sg, nents, dir);
343 }
344
345
346 /* ********************** FC-NVME LS XMT Handling ************************* */
347
348
349 static void
350 __nvmet_fc_finish_ls_req(struct nvmet_fc_ls_req_op *lsop)
351 {
352         struct nvmet_fc_tgtport *tgtport = lsop->tgtport;
353         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
354         unsigned long flags;
355
356         spin_lock_irqsave(&tgtport->lock, flags);
357
358         if (!lsop->req_queued) {
359                 spin_unlock_irqrestore(&tgtport->lock, flags);
360                 return;
361         }
362
363         list_del(&lsop->lsreq_list);
364
365         lsop->req_queued = false;
366
367         spin_unlock_irqrestore(&tgtport->lock, flags);
368
369         fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
370                                   (lsreq->rqstlen + lsreq->rsplen),
371                                   DMA_BIDIRECTIONAL);
372
373         nvmet_fc_tgtport_put(tgtport);
374 }
375
376 static int
377 __nvmet_fc_send_ls_req(struct nvmet_fc_tgtport *tgtport,
378                 struct nvmet_fc_ls_req_op *lsop,
379                 void (*done)(struct nvmefc_ls_req *req, int status))
380 {
381         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
382         unsigned long flags;
383         int ret = 0;
384
385         if (!tgtport->ops->ls_req)
386                 return -EOPNOTSUPP;
387
388         if (!nvmet_fc_tgtport_get(tgtport))
389                 return -ESHUTDOWN;
390
391         lsreq->done = done;
392         lsop->req_queued = false;
393         INIT_LIST_HEAD(&lsop->lsreq_list);
394
395         lsreq->rqstdma = fc_dma_map_single(tgtport->dev, lsreq->rqstaddr,
396                                   lsreq->rqstlen + lsreq->rsplen,
397                                   DMA_BIDIRECTIONAL);
398         if (fc_dma_mapping_error(tgtport->dev, lsreq->rqstdma)) {
399                 ret = -EFAULT;
400                 goto out_puttgtport;
401         }
402         lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
403
404         spin_lock_irqsave(&tgtport->lock, flags);
405
406         list_add_tail(&lsop->lsreq_list, &tgtport->ls_req_list);
407
408         lsop->req_queued = true;
409
410         spin_unlock_irqrestore(&tgtport->lock, flags);
411
412         ret = tgtport->ops->ls_req(&tgtport->fc_target_port, lsop->hosthandle,
413                                    lsreq);
414         if (ret)
415                 goto out_unlink;
416
417         return 0;
418
419 out_unlink:
420         lsop->ls_error = ret;
421         spin_lock_irqsave(&tgtport->lock, flags);
422         lsop->req_queued = false;
423         list_del(&lsop->lsreq_list);
424         spin_unlock_irqrestore(&tgtport->lock, flags);
425         fc_dma_unmap_single(tgtport->dev, lsreq->rqstdma,
426                                   (lsreq->rqstlen + lsreq->rsplen),
427                                   DMA_BIDIRECTIONAL);
428 out_puttgtport:
429         nvmet_fc_tgtport_put(tgtport);
430
431         return ret;
432 }
433
434 static int
435 nvmet_fc_send_ls_req_async(struct nvmet_fc_tgtport *tgtport,
436                 struct nvmet_fc_ls_req_op *lsop,
437                 void (*done)(struct nvmefc_ls_req *req, int status))
438 {
439         /* don't wait for completion */
440
441         return __nvmet_fc_send_ls_req(tgtport, lsop, done);
442 }
443
444 static void
445 nvmet_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
446 {
447         struct nvmet_fc_ls_req_op *lsop =
448                 container_of(lsreq, struct nvmet_fc_ls_req_op, ls_req);
449
450         __nvmet_fc_finish_ls_req(lsop);
451
452         /* fc-nvme target doesn't care about success or failure of cmd */
453
454         kfree(lsop);
455 }
456
457 /*
458  * This routine sends a FC-NVME LS to disconnect (aka terminate)
459  * the FC-NVME Association.  Terminating the association also
460  * terminates the FC-NVME connections (per queue, both admin and io
461  * queues) that are part of the association. E.g. things are torn
462  * down, and the related FC-NVME Association ID and Connection IDs
463  * become invalid.
464  *
465  * The behavior of the fc-nvme target is such that it's
466  * understanding of the association and connections will implicitly
467  * be torn down. The action is implicit as it may be due to a loss of
468  * connectivity with the fc-nvme host, so the target may never get a
469  * response even if it tried.  As such, the action of this routine
470  * is to asynchronously send the LS, ignore any results of the LS, and
471  * continue on with terminating the association. If the fc-nvme host
472  * is present and receives the LS, it too can tear down.
473  */
474 static void
475 nvmet_fc_xmt_disconnect_assoc(struct nvmet_fc_tgt_assoc *assoc)
476 {
477         struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
478         struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
479         struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
480         struct nvmet_fc_ls_req_op *lsop;
481         struct nvmefc_ls_req *lsreq;
482         int ret;
483
484         /*
485          * If ls_req is NULL or no hosthandle, it's an older lldd and no
486          * message is normal. Otherwise, send unless the hostport has
487          * already been invalidated by the lldd.
488          */
489         if (!tgtport->ops->ls_req || !assoc->hostport ||
490             assoc->hostport->invalid)
491                 return;
492
493         lsop = kzalloc((sizeof(*lsop) +
494                         sizeof(*discon_rqst) + sizeof(*discon_acc) +
495                         tgtport->ops->lsrqst_priv_sz), GFP_KERNEL);
496         if (!lsop) {
497                 dev_info(tgtport->dev,
498                         "{%d:%d} send Disconnect Association failed: ENOMEM\n",
499                         tgtport->fc_target_port.port_num, assoc->a_id);
500                 return;
501         }
502
503         discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
504         discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
505         lsreq = &lsop->ls_req;
506         if (tgtport->ops->lsrqst_priv_sz)
507                 lsreq->private = (void *)&discon_acc[1];
508         else
509                 lsreq->private = NULL;
510
511         lsop->tgtport = tgtport;
512         lsop->hosthandle = assoc->hostport->hosthandle;
513
514         nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
515                                 assoc->association_id);
516
517         ret = nvmet_fc_send_ls_req_async(tgtport, lsop,
518                                 nvmet_fc_disconnect_assoc_done);
519         if (ret) {
520                 dev_info(tgtport->dev,
521                         "{%d:%d} XMT Disconnect Association failed: %d\n",
522                         tgtport->fc_target_port.port_num, assoc->a_id, ret);
523                 kfree(lsop);
524         }
525 }
526
527
528 /* *********************** FC-NVME Port Management ************************ */
529
530
531 static int
532 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
533 {
534         struct nvmet_fc_ls_iod *iod;
535         int i;
536
537         iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
538                         GFP_KERNEL);
539         if (!iod)
540                 return -ENOMEM;
541
542         tgtport->iod = iod;
543
544         for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
545                 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
546                 iod->tgtport = tgtport;
547                 list_add_tail(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
548
549                 iod->rqstbuf = kzalloc(sizeof(union nvmefc_ls_requests) +
550                                        sizeof(union nvmefc_ls_responses),
551                                        GFP_KERNEL);
552                 if (!iod->rqstbuf)
553                         goto out_fail;
554
555                 iod->rspbuf = (union nvmefc_ls_responses *)&iod->rqstbuf[1];
556
557                 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
558                                                 sizeof(*iod->rspbuf),
559                                                 DMA_TO_DEVICE);
560                 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
561                         goto out_fail;
562         }
563
564         return 0;
565
566 out_fail:
567         kfree(iod->rqstbuf);
568         list_del(&iod->ls_rcv_list);
569         for (iod--, i--; i >= 0; iod--, i--) {
570                 fc_dma_unmap_single(tgtport->dev, iod->rspdma,
571                                 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
572                 kfree(iod->rqstbuf);
573                 list_del(&iod->ls_rcv_list);
574         }
575
576         kfree(iod);
577
578         return -EFAULT;
579 }
580
581 static void
582 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
583 {
584         struct nvmet_fc_ls_iod *iod = tgtport->iod;
585         int i;
586
587         for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
588                 fc_dma_unmap_single(tgtport->dev,
589                                 iod->rspdma, sizeof(*iod->rspbuf),
590                                 DMA_TO_DEVICE);
591                 kfree(iod->rqstbuf);
592                 list_del(&iod->ls_rcv_list);
593         }
594         kfree(tgtport->iod);
595 }
596
597 static struct nvmet_fc_ls_iod *
598 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
599 {
600         struct nvmet_fc_ls_iod *iod;
601         unsigned long flags;
602
603         spin_lock_irqsave(&tgtport->lock, flags);
604         iod = list_first_entry_or_null(&tgtport->ls_rcv_list,
605                                         struct nvmet_fc_ls_iod, ls_rcv_list);
606         if (iod)
607                 list_move_tail(&iod->ls_rcv_list, &tgtport->ls_busylist);
608         spin_unlock_irqrestore(&tgtport->lock, flags);
609         return iod;
610 }
611
612
613 static void
614 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
615                         struct nvmet_fc_ls_iod *iod)
616 {
617         unsigned long flags;
618
619         spin_lock_irqsave(&tgtport->lock, flags);
620         list_move(&iod->ls_rcv_list, &tgtport->ls_rcv_list);
621         spin_unlock_irqrestore(&tgtport->lock, flags);
622 }
623
624 static void
625 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
626                                 struct nvmet_fc_tgt_queue *queue)
627 {
628         struct nvmet_fc_fcp_iod *fod = queue->fod;
629         int i;
630
631         for (i = 0; i < queue->sqsize; fod++, i++) {
632                 INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
633                 fod->tgtport = tgtport;
634                 fod->queue = queue;
635                 fod->active = false;
636                 fod->abort = false;
637                 fod->aborted = false;
638                 fod->fcpreq = NULL;
639                 list_add_tail(&fod->fcp_list, &queue->fod_list);
640                 spin_lock_init(&fod->flock);
641
642                 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
643                                         sizeof(fod->rspiubuf), DMA_TO_DEVICE);
644                 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
645                         list_del(&fod->fcp_list);
646                         for (fod--, i--; i >= 0; fod--, i--) {
647                                 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
648                                                 sizeof(fod->rspiubuf),
649                                                 DMA_TO_DEVICE);
650                                 fod->rspdma = 0L;
651                                 list_del(&fod->fcp_list);
652                         }
653
654                         return;
655                 }
656         }
657 }
658
659 static void
660 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
661                                 struct nvmet_fc_tgt_queue *queue)
662 {
663         struct nvmet_fc_fcp_iod *fod = queue->fod;
664         int i;
665
666         for (i = 0; i < queue->sqsize; fod++, i++) {
667                 if (fod->rspdma)
668                         fc_dma_unmap_single(tgtport->dev, fod->rspdma,
669                                 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
670         }
671 }
672
673 static struct nvmet_fc_fcp_iod *
674 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
675 {
676         struct nvmet_fc_fcp_iod *fod;
677
678         lockdep_assert_held(&queue->qlock);
679
680         fod = list_first_entry_or_null(&queue->fod_list,
681                                         struct nvmet_fc_fcp_iod, fcp_list);
682         if (fod) {
683                 list_del(&fod->fcp_list);
684                 fod->active = true;
685                 /*
686                  * no queue reference is taken, as it was taken by the
687                  * queue lookup just prior to the allocation. The iod
688                  * will "inherit" that reference.
689                  */
690         }
691         return fod;
692 }
693
694
695 static void
696 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
697                        struct nvmet_fc_tgt_queue *queue,
698                        struct nvmefc_tgt_fcp_req *fcpreq)
699 {
700         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
701
702         /*
703          * put all admin cmds on hw queue id 0. All io commands go to
704          * the respective hw queue based on a modulo basis
705          */
706         fcpreq->hwqid = queue->qid ?
707                         ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
708
709         nvmet_fc_handle_fcp_rqst(tgtport, fod);
710 }
711
712 static void
713 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
714 {
715         struct nvmet_fc_fcp_iod *fod =
716                 container_of(work, struct nvmet_fc_fcp_iod, defer_work);
717
718         /* Submit deferred IO for processing */
719         nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
720
721 }
722
723 static void
724 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
725                         struct nvmet_fc_fcp_iod *fod)
726 {
727         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
728         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
729         struct nvmet_fc_defer_fcp_req *deferfcp;
730         unsigned long flags;
731
732         fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
733                                 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
734
735         fcpreq->nvmet_fc_private = NULL;
736
737         fod->active = false;
738         fod->abort = false;
739         fod->aborted = false;
740         fod->writedataactive = false;
741         fod->fcpreq = NULL;
742
743         tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
744
745         /* release the queue lookup reference on the completed IO */
746         nvmet_fc_tgt_q_put(queue);
747
748         spin_lock_irqsave(&queue->qlock, flags);
749         deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
750                                 struct nvmet_fc_defer_fcp_req, req_list);
751         if (!deferfcp) {
752                 list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
753                 spin_unlock_irqrestore(&queue->qlock, flags);
754                 return;
755         }
756
757         /* Re-use the fod for the next pending cmd that was deferred */
758         list_del(&deferfcp->req_list);
759
760         fcpreq = deferfcp->fcp_req;
761
762         /* deferfcp can be reused for another IO at a later date */
763         list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
764
765         spin_unlock_irqrestore(&queue->qlock, flags);
766
767         /* Save NVME CMD IO in fod */
768         memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
769
770         /* Setup new fcpreq to be processed */
771         fcpreq->rspaddr = NULL;
772         fcpreq->rsplen  = 0;
773         fcpreq->nvmet_fc_private = fod;
774         fod->fcpreq = fcpreq;
775         fod->active = true;
776
777         /* inform LLDD IO is now being processed */
778         tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
779
780         /*
781          * Leave the queue lookup get reference taken when
782          * fod was originally allocated.
783          */
784
785         queue_work(queue->work_q, &fod->defer_work);
786 }
787
788 static struct nvmet_fc_tgt_queue *
789 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
790                         u16 qid, u16 sqsize)
791 {
792         struct nvmet_fc_tgt_queue *queue;
793         unsigned long flags;
794         int ret;
795
796         if (qid > NVMET_NR_QUEUES)
797                 return NULL;
798
799         queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
800         if (!queue)
801                 return NULL;
802
803         if (!nvmet_fc_tgt_a_get(assoc))
804                 goto out_free_queue;
805
806         queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
807                                 assoc->tgtport->fc_target_port.port_num,
808                                 assoc->a_id, qid);
809         if (!queue->work_q)
810                 goto out_a_put;
811
812         queue->qid = qid;
813         queue->sqsize = sqsize;
814         queue->assoc = assoc;
815         INIT_LIST_HEAD(&queue->fod_list);
816         INIT_LIST_HEAD(&queue->avail_defer_list);
817         INIT_LIST_HEAD(&queue->pending_cmd_list);
818         atomic_set(&queue->connected, 0);
819         atomic_set(&queue->sqtail, 0);
820         atomic_set(&queue->rsn, 1);
821         atomic_set(&queue->zrspcnt, 0);
822         spin_lock_init(&queue->qlock);
823         kref_init(&queue->ref);
824
825         nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
826
827         ret = nvmet_sq_init(&queue->nvme_sq);
828         if (ret)
829                 goto out_fail_iodlist;
830
831         WARN_ON(assoc->queues[qid]);
832         spin_lock_irqsave(&assoc->tgtport->lock, flags);
833         assoc->queues[qid] = queue;
834         spin_unlock_irqrestore(&assoc->tgtport->lock, flags);
835
836         return queue;
837
838 out_fail_iodlist:
839         nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
840         destroy_workqueue(queue->work_q);
841 out_a_put:
842         nvmet_fc_tgt_a_put(assoc);
843 out_free_queue:
844         kfree(queue);
845         return NULL;
846 }
847
848
849 static void
850 nvmet_fc_tgt_queue_free(struct kref *ref)
851 {
852         struct nvmet_fc_tgt_queue *queue =
853                 container_of(ref, struct nvmet_fc_tgt_queue, ref);
854         unsigned long flags;
855
856         spin_lock_irqsave(&queue->assoc->tgtport->lock, flags);
857         queue->assoc->queues[queue->qid] = NULL;
858         spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags);
859
860         nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
861
862         nvmet_fc_tgt_a_put(queue->assoc);
863
864         destroy_workqueue(queue->work_q);
865
866         kfree(queue);
867 }
868
869 static void
870 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
871 {
872         kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
873 }
874
875 static int
876 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
877 {
878         return kref_get_unless_zero(&queue->ref);
879 }
880
881
882 static void
883 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
884 {
885         struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
886         struct nvmet_fc_fcp_iod *fod = queue->fod;
887         struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
888         unsigned long flags;
889         int i;
890         bool disconnect;
891
892         disconnect = atomic_xchg(&queue->connected, 0);
893
894         /* if not connected, nothing to do */
895         if (!disconnect)
896                 return;
897
898         spin_lock_irqsave(&queue->qlock, flags);
899         /* abort outstanding io's */
900         for (i = 0; i < queue->sqsize; fod++, i++) {
901                 if (fod->active) {
902                         spin_lock(&fod->flock);
903                         fod->abort = true;
904                         /*
905                          * only call lldd abort routine if waiting for
906                          * writedata. other outstanding ops should finish
907                          * on their own.
908                          */
909                         if (fod->writedataactive) {
910                                 fod->aborted = true;
911                                 spin_unlock(&fod->flock);
912                                 tgtport->ops->fcp_abort(
913                                         &tgtport->fc_target_port, fod->fcpreq);
914                         } else
915                                 spin_unlock(&fod->flock);
916                 }
917         }
918
919         /* Cleanup defer'ed IOs in queue */
920         list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
921                                 req_list) {
922                 list_del(&deferfcp->req_list);
923                 kfree(deferfcp);
924         }
925
926         for (;;) {
927                 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
928                                 struct nvmet_fc_defer_fcp_req, req_list);
929                 if (!deferfcp)
930                         break;
931
932                 list_del(&deferfcp->req_list);
933                 spin_unlock_irqrestore(&queue->qlock, flags);
934
935                 tgtport->ops->defer_rcv(&tgtport->fc_target_port,
936                                 deferfcp->fcp_req);
937
938                 tgtport->ops->fcp_abort(&tgtport->fc_target_port,
939                                 deferfcp->fcp_req);
940
941                 tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
942                                 deferfcp->fcp_req);
943
944                 /* release the queue lookup reference */
945                 nvmet_fc_tgt_q_put(queue);
946
947                 kfree(deferfcp);
948
949                 spin_lock_irqsave(&queue->qlock, flags);
950         }
951         spin_unlock_irqrestore(&queue->qlock, flags);
952
953         flush_workqueue(queue->work_q);
954
955         nvmet_sq_destroy(&queue->nvme_sq);
956
957         nvmet_fc_tgt_q_put(queue);
958 }
959
960 static struct nvmet_fc_tgt_queue *
961 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
962                                 u64 connection_id)
963 {
964         struct nvmet_fc_tgt_assoc *assoc;
965         struct nvmet_fc_tgt_queue *queue;
966         u64 association_id = nvmet_fc_getassociationid(connection_id);
967         u16 qid = nvmet_fc_getqueueid(connection_id);
968         unsigned long flags;
969
970         if (qid > NVMET_NR_QUEUES)
971                 return NULL;
972
973         spin_lock_irqsave(&tgtport->lock, flags);
974         list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
975                 if (association_id == assoc->association_id) {
976                         queue = assoc->queues[qid];
977                         if (queue &&
978                             (!atomic_read(&queue->connected) ||
979                              !nvmet_fc_tgt_q_get(queue)))
980                                 queue = NULL;
981                         spin_unlock_irqrestore(&tgtport->lock, flags);
982                         return queue;
983                 }
984         }
985         spin_unlock_irqrestore(&tgtport->lock, flags);
986         return NULL;
987 }
988
989 static void
990 nvmet_fc_hostport_free(struct kref *ref)
991 {
992         struct nvmet_fc_hostport *hostport =
993                 container_of(ref, struct nvmet_fc_hostport, ref);
994         struct nvmet_fc_tgtport *tgtport = hostport->tgtport;
995         unsigned long flags;
996
997         spin_lock_irqsave(&tgtport->lock, flags);
998         list_del(&hostport->host_list);
999         spin_unlock_irqrestore(&tgtport->lock, flags);
1000         if (tgtport->ops->host_release && hostport->invalid)
1001                 tgtport->ops->host_release(hostport->hosthandle);
1002         kfree(hostport);
1003         nvmet_fc_tgtport_put(tgtport);
1004 }
1005
1006 static void
1007 nvmet_fc_hostport_put(struct nvmet_fc_hostport *hostport)
1008 {
1009         kref_put(&hostport->ref, nvmet_fc_hostport_free);
1010 }
1011
1012 static int
1013 nvmet_fc_hostport_get(struct nvmet_fc_hostport *hostport)
1014 {
1015         return kref_get_unless_zero(&hostport->ref);
1016 }
1017
1018 static void
1019 nvmet_fc_free_hostport(struct nvmet_fc_hostport *hostport)
1020 {
1021         /* if LLDD not implemented, leave as NULL */
1022         if (!hostport || !hostport->hosthandle)
1023                 return;
1024
1025         nvmet_fc_hostport_put(hostport);
1026 }
1027
1028 static struct nvmet_fc_hostport *
1029 nvmet_fc_alloc_hostport(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1030 {
1031         struct nvmet_fc_hostport *newhost, *host, *match = NULL;
1032         unsigned long flags;
1033
1034         /* if LLDD not implemented, leave as NULL */
1035         if (!hosthandle)
1036                 return NULL;
1037
1038         /* take reference for what will be the newly allocated hostport */
1039         if (!nvmet_fc_tgtport_get(tgtport))
1040                 return ERR_PTR(-EINVAL);
1041
1042         newhost = kzalloc(sizeof(*newhost), GFP_KERNEL);
1043         if (!newhost) {
1044                 spin_lock_irqsave(&tgtport->lock, flags);
1045                 list_for_each_entry(host, &tgtport->host_list, host_list) {
1046                         if (host->hosthandle == hosthandle && !host->invalid) {
1047                                 if (nvmet_fc_hostport_get(host)) {
1048                                         match = host;
1049                                         break;
1050                                 }
1051                         }
1052                 }
1053                 spin_unlock_irqrestore(&tgtport->lock, flags);
1054                 /* no allocation - release reference */
1055                 nvmet_fc_tgtport_put(tgtport);
1056                 return (match) ? match : ERR_PTR(-ENOMEM);
1057         }
1058
1059         newhost->tgtport = tgtport;
1060         newhost->hosthandle = hosthandle;
1061         INIT_LIST_HEAD(&newhost->host_list);
1062         kref_init(&newhost->ref);
1063
1064         spin_lock_irqsave(&tgtport->lock, flags);
1065         list_for_each_entry(host, &tgtport->host_list, host_list) {
1066                 if (host->hosthandle == hosthandle && !host->invalid) {
1067                         if (nvmet_fc_hostport_get(host)) {
1068                                 match = host;
1069                                 break;
1070                         }
1071                 }
1072         }
1073         if (match) {
1074                 kfree(newhost);
1075                 newhost = NULL;
1076                 /* releasing allocation - release reference */
1077                 nvmet_fc_tgtport_put(tgtport);
1078         } else
1079                 list_add_tail(&newhost->host_list, &tgtport->host_list);
1080         spin_unlock_irqrestore(&tgtport->lock, flags);
1081
1082         return (match) ? match : newhost;
1083 }
1084
1085 static void
1086 nvmet_fc_delete_assoc(struct work_struct *work)
1087 {
1088         struct nvmet_fc_tgt_assoc *assoc =
1089                 container_of(work, struct nvmet_fc_tgt_assoc, del_work);
1090
1091         nvmet_fc_delete_target_assoc(assoc);
1092         nvmet_fc_tgt_a_put(assoc);
1093 }
1094
1095 static struct nvmet_fc_tgt_assoc *
1096 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport, void *hosthandle)
1097 {
1098         struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
1099         unsigned long flags;
1100         u64 ran;
1101         int idx;
1102         bool needrandom = true;
1103
1104         assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
1105         if (!assoc)
1106                 return NULL;
1107
1108         idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL);
1109         if (idx < 0)
1110                 goto out_free_assoc;
1111
1112         if (!nvmet_fc_tgtport_get(tgtport))
1113                 goto out_ida;
1114
1115         assoc->hostport = nvmet_fc_alloc_hostport(tgtport, hosthandle);
1116         if (IS_ERR(assoc->hostport))
1117                 goto out_put;
1118
1119         assoc->tgtport = tgtport;
1120         assoc->a_id = idx;
1121         INIT_LIST_HEAD(&assoc->a_list);
1122         kref_init(&assoc->ref);
1123         INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc);
1124         atomic_set(&assoc->terminating, 0);
1125
1126         while (needrandom) {
1127                 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
1128                 ran = ran << BYTES_FOR_QID_SHIFT;
1129
1130                 spin_lock_irqsave(&tgtport->lock, flags);
1131                 needrandom = false;
1132                 list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list) {
1133                         if (ran == tmpassoc->association_id) {
1134                                 needrandom = true;
1135                                 break;
1136                         }
1137                 }
1138                 if (!needrandom) {
1139                         assoc->association_id = ran;
1140                         list_add_tail(&assoc->a_list, &tgtport->assoc_list);
1141                 }
1142                 spin_unlock_irqrestore(&tgtport->lock, flags);
1143         }
1144
1145         return assoc;
1146
1147 out_put:
1148         nvmet_fc_tgtport_put(tgtport);
1149 out_ida:
1150         ida_simple_remove(&tgtport->assoc_cnt, idx);
1151 out_free_assoc:
1152         kfree(assoc);
1153         return NULL;
1154 }
1155
1156 static void
1157 nvmet_fc_target_assoc_free(struct kref *ref)
1158 {
1159         struct nvmet_fc_tgt_assoc *assoc =
1160                 container_of(ref, struct nvmet_fc_tgt_assoc, ref);
1161         struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1162         struct nvmet_fc_ls_iod  *oldls;
1163         unsigned long flags;
1164
1165         /* Send Disconnect now that all i/o has completed */
1166         nvmet_fc_xmt_disconnect_assoc(assoc);
1167
1168         nvmet_fc_free_hostport(assoc->hostport);
1169         spin_lock_irqsave(&tgtport->lock, flags);
1170         list_del(&assoc->a_list);
1171         oldls = assoc->rcv_disconn;
1172         spin_unlock_irqrestore(&tgtport->lock, flags);
1173         /* if pending Rcv Disconnect Association LS, send rsp now */
1174         if (oldls)
1175                 nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1176         ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id);
1177         dev_info(tgtport->dev,
1178                 "{%d:%d} Association freed\n",
1179                 tgtport->fc_target_port.port_num, assoc->a_id);
1180         kfree(assoc);
1181         nvmet_fc_tgtport_put(tgtport);
1182 }
1183
1184 static void
1185 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
1186 {
1187         kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
1188 }
1189
1190 static int
1191 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
1192 {
1193         return kref_get_unless_zero(&assoc->ref);
1194 }
1195
1196 static void
1197 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
1198 {
1199         struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
1200         struct nvmet_fc_tgt_queue *queue;
1201         unsigned long flags;
1202         int i, terminating;
1203
1204         terminating = atomic_xchg(&assoc->terminating, 1);
1205
1206         /* if already terminating, do nothing */
1207         if (terminating)
1208                 return;
1209
1210         spin_lock_irqsave(&tgtport->lock, flags);
1211         for (i = NVMET_NR_QUEUES; i >= 0; i--) {
1212                 queue = assoc->queues[i];
1213                 if (queue) {
1214                         if (!nvmet_fc_tgt_q_get(queue))
1215                                 continue;
1216                         spin_unlock_irqrestore(&tgtport->lock, flags);
1217                         nvmet_fc_delete_target_queue(queue);
1218                         nvmet_fc_tgt_q_put(queue);
1219                         spin_lock_irqsave(&tgtport->lock, flags);
1220                 }
1221         }
1222         spin_unlock_irqrestore(&tgtport->lock, flags);
1223
1224         dev_info(tgtport->dev,
1225                 "{%d:%d} Association deleted\n",
1226                 tgtport->fc_target_port.port_num, assoc->a_id);
1227
1228         nvmet_fc_tgt_a_put(assoc);
1229 }
1230
1231 static struct nvmet_fc_tgt_assoc *
1232 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
1233                                 u64 association_id)
1234 {
1235         struct nvmet_fc_tgt_assoc *assoc;
1236         struct nvmet_fc_tgt_assoc *ret = NULL;
1237         unsigned long flags;
1238
1239         spin_lock_irqsave(&tgtport->lock, flags);
1240         list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
1241                 if (association_id == assoc->association_id) {
1242                         ret = assoc;
1243                         if (!nvmet_fc_tgt_a_get(assoc))
1244                                 ret = NULL;
1245                         break;
1246                 }
1247         }
1248         spin_unlock_irqrestore(&tgtport->lock, flags);
1249
1250         return ret;
1251 }
1252
1253 static void
1254 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
1255                         struct nvmet_fc_port_entry *pe,
1256                         struct nvmet_port *port)
1257 {
1258         lockdep_assert_held(&nvmet_fc_tgtlock);
1259
1260         pe->tgtport = tgtport;
1261         tgtport->pe = pe;
1262
1263         pe->port = port;
1264         port->priv = pe;
1265
1266         pe->node_name = tgtport->fc_target_port.node_name;
1267         pe->port_name = tgtport->fc_target_port.port_name;
1268         INIT_LIST_HEAD(&pe->pe_list);
1269
1270         list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
1271 }
1272
1273 static void
1274 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
1275 {
1276         unsigned long flags;
1277
1278         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1279         if (pe->tgtport)
1280                 pe->tgtport->pe = NULL;
1281         list_del(&pe->pe_list);
1282         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1283 }
1284
1285 /*
1286  * called when a targetport deregisters. Breaks the relationship
1287  * with the nvmet port, but leaves the port_entry in place so that
1288  * re-registration can resume operation.
1289  */
1290 static void
1291 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
1292 {
1293         struct nvmet_fc_port_entry *pe;
1294         unsigned long flags;
1295
1296         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1297         pe = tgtport->pe;
1298         if (pe)
1299                 pe->tgtport = NULL;
1300         tgtport->pe = NULL;
1301         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1302 }
1303
1304 /*
1305  * called when a new targetport is registered. Looks in the
1306  * existing nvmet port_entries to see if the nvmet layer is
1307  * configured for the targetport's wwn's. (the targetport existed,
1308  * nvmet configured, the lldd unregistered the tgtport, and is now
1309  * reregistering the same targetport).  If so, set the nvmet port
1310  * port entry on the targetport.
1311  */
1312 static void
1313 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
1314 {
1315         struct nvmet_fc_port_entry *pe;
1316         unsigned long flags;
1317
1318         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1319         list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
1320                 if (tgtport->fc_target_port.node_name == pe->node_name &&
1321                     tgtport->fc_target_port.port_name == pe->port_name) {
1322                         WARN_ON(pe->tgtport);
1323                         tgtport->pe = pe;
1324                         pe->tgtport = tgtport;
1325                         break;
1326                 }
1327         }
1328         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1329 }
1330
1331 /**
1332  * nvme_fc_register_targetport - transport entry point called by an
1333  *                              LLDD to register the existence of a local
1334  *                              NVME subystem FC port.
1335  * @pinfo:     pointer to information about the port to be registered
1336  * @template:  LLDD entrypoints and operational parameters for the port
1337  * @dev:       physical hardware device node port corresponds to. Will be
1338  *             used for DMA mappings
1339  * @portptr:   pointer to a local port pointer. Upon success, the routine
1340  *             will allocate a nvme_fc_local_port structure and place its
1341  *             address in the local port pointer. Upon failure, local port
1342  *             pointer will be set to NULL.
1343  *
1344  * Returns:
1345  * a completion status. Must be 0 upon success; a negative errno
1346  * (ex: -ENXIO) upon failure.
1347  */
1348 int
1349 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1350                         struct nvmet_fc_target_template *template,
1351                         struct device *dev,
1352                         struct nvmet_fc_target_port **portptr)
1353 {
1354         struct nvmet_fc_tgtport *newrec;
1355         unsigned long flags;
1356         int ret, idx;
1357
1358         if (!template->xmt_ls_rsp || !template->fcp_op ||
1359             !template->fcp_abort ||
1360             !template->fcp_req_release || !template->targetport_delete ||
1361             !template->max_hw_queues || !template->max_sgl_segments ||
1362             !template->max_dif_sgl_segments || !template->dma_boundary) {
1363                 ret = -EINVAL;
1364                 goto out_regtgt_failed;
1365         }
1366
1367         newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1368                          GFP_KERNEL);
1369         if (!newrec) {
1370                 ret = -ENOMEM;
1371                 goto out_regtgt_failed;
1372         }
1373
1374         idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL);
1375         if (idx < 0) {
1376                 ret = -ENOSPC;
1377                 goto out_fail_kfree;
1378         }
1379
1380         if (!get_device(dev) && dev) {
1381                 ret = -ENODEV;
1382                 goto out_ida_put;
1383         }
1384
1385         newrec->fc_target_port.node_name = pinfo->node_name;
1386         newrec->fc_target_port.port_name = pinfo->port_name;
1387         if (template->target_priv_sz)
1388                 newrec->fc_target_port.private = &newrec[1];
1389         else
1390                 newrec->fc_target_port.private = NULL;
1391         newrec->fc_target_port.port_id = pinfo->port_id;
1392         newrec->fc_target_port.port_num = idx;
1393         INIT_LIST_HEAD(&newrec->tgt_list);
1394         newrec->dev = dev;
1395         newrec->ops = template;
1396         spin_lock_init(&newrec->lock);
1397         INIT_LIST_HEAD(&newrec->ls_rcv_list);
1398         INIT_LIST_HEAD(&newrec->ls_req_list);
1399         INIT_LIST_HEAD(&newrec->ls_busylist);
1400         INIT_LIST_HEAD(&newrec->assoc_list);
1401         INIT_LIST_HEAD(&newrec->host_list);
1402         kref_init(&newrec->ref);
1403         ida_init(&newrec->assoc_cnt);
1404         newrec->max_sg_cnt = template->max_sgl_segments;
1405
1406         ret = nvmet_fc_alloc_ls_iodlist(newrec);
1407         if (ret) {
1408                 ret = -ENOMEM;
1409                 goto out_free_newrec;
1410         }
1411
1412         nvmet_fc_portentry_rebind_tgt(newrec);
1413
1414         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1415         list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1416         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1417
1418         *portptr = &newrec->fc_target_port;
1419         return 0;
1420
1421 out_free_newrec:
1422         put_device(dev);
1423 out_ida_put:
1424         ida_simple_remove(&nvmet_fc_tgtport_cnt, idx);
1425 out_fail_kfree:
1426         kfree(newrec);
1427 out_regtgt_failed:
1428         *portptr = NULL;
1429         return ret;
1430 }
1431 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1432
1433
1434 static void
1435 nvmet_fc_free_tgtport(struct kref *ref)
1436 {
1437         struct nvmet_fc_tgtport *tgtport =
1438                 container_of(ref, struct nvmet_fc_tgtport, ref);
1439         struct device *dev = tgtport->dev;
1440         unsigned long flags;
1441
1442         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1443         list_del(&tgtport->tgt_list);
1444         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1445
1446         nvmet_fc_free_ls_iodlist(tgtport);
1447
1448         /* let the LLDD know we've finished tearing it down */
1449         tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1450
1451         ida_simple_remove(&nvmet_fc_tgtport_cnt,
1452                         tgtport->fc_target_port.port_num);
1453
1454         ida_destroy(&tgtport->assoc_cnt);
1455
1456         kfree(tgtport);
1457
1458         put_device(dev);
1459 }
1460
1461 static void
1462 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1463 {
1464         kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1465 }
1466
1467 static int
1468 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1469 {
1470         return kref_get_unless_zero(&tgtport->ref);
1471 }
1472
1473 static void
1474 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1475 {
1476         struct nvmet_fc_tgt_assoc *assoc, *next;
1477         unsigned long flags;
1478
1479         spin_lock_irqsave(&tgtport->lock, flags);
1480         list_for_each_entry_safe(assoc, next,
1481                                 &tgtport->assoc_list, a_list) {
1482                 if (!nvmet_fc_tgt_a_get(assoc))
1483                         continue;
1484                 if (!schedule_work(&assoc->del_work))
1485                         /* already deleting - release local reference */
1486                         nvmet_fc_tgt_a_put(assoc);
1487         }
1488         spin_unlock_irqrestore(&tgtport->lock, flags);
1489 }
1490
1491 /**
1492  * nvmet_fc_invalidate_host - transport entry point called by an LLDD
1493  *                       to remove references to a hosthandle for LS's.
1494  *
1495  * The nvmet-fc layer ensures that any references to the hosthandle
1496  * on the targetport are forgotten (set to NULL).  The LLDD will
1497  * typically call this when a login with a remote host port has been
1498  * lost, thus LS's for the remote host port are no longer possible.
1499  *
1500  * If an LS request is outstanding to the targetport/hosthandle (or
1501  * issued concurrently with the call to invalidate the host), the
1502  * LLDD is responsible for terminating/aborting the LS and completing
1503  * the LS request. It is recommended that these terminations/aborts
1504  * occur after calling to invalidate the host handle to avoid additional
1505  * retries by the nvmet-fc transport. The nvmet-fc transport may
1506  * continue to reference host handle while it cleans up outstanding
1507  * NVME associations. The nvmet-fc transport will call the
1508  * ops->host_release() callback to notify the LLDD that all references
1509  * are complete and the related host handle can be recovered.
1510  * Note: if there are no references, the callback may be called before
1511  * the invalidate host call returns.
1512  *
1513  * @target_port: pointer to the (registered) target port that a prior
1514  *              LS was received on and which supplied the transport the
1515  *              hosthandle.
1516  * @hosthandle: the handle (pointer) that represents the host port
1517  *              that no longer has connectivity and that LS's should
1518  *              no longer be directed to.
1519  */
1520 void
1521 nvmet_fc_invalidate_host(struct nvmet_fc_target_port *target_port,
1522                         void *hosthandle)
1523 {
1524         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1525         struct nvmet_fc_tgt_assoc *assoc, *next;
1526         unsigned long flags;
1527         bool noassoc = true;
1528
1529         spin_lock_irqsave(&tgtport->lock, flags);
1530         list_for_each_entry_safe(assoc, next,
1531                                 &tgtport->assoc_list, a_list) {
1532                 if (!assoc->hostport ||
1533                     assoc->hostport->hosthandle != hosthandle)
1534                         continue;
1535                 if (!nvmet_fc_tgt_a_get(assoc))
1536                         continue;
1537                 assoc->hostport->invalid = 1;
1538                 noassoc = false;
1539                 if (!schedule_work(&assoc->del_work))
1540                         /* already deleting - release local reference */
1541                         nvmet_fc_tgt_a_put(assoc);
1542         }
1543         spin_unlock_irqrestore(&tgtport->lock, flags);
1544
1545         /* if there's nothing to wait for - call the callback */
1546         if (noassoc && tgtport->ops->host_release)
1547                 tgtport->ops->host_release(hosthandle);
1548 }
1549 EXPORT_SYMBOL_GPL(nvmet_fc_invalidate_host);
1550
1551 /*
1552  * nvmet layer has called to terminate an association
1553  */
1554 static void
1555 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1556 {
1557         struct nvmet_fc_tgtport *tgtport, *next;
1558         struct nvmet_fc_tgt_assoc *assoc;
1559         struct nvmet_fc_tgt_queue *queue;
1560         unsigned long flags;
1561         bool found_ctrl = false;
1562
1563         /* this is a bit ugly, but don't want to make locks layered */
1564         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1565         list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1566                         tgt_list) {
1567                 if (!nvmet_fc_tgtport_get(tgtport))
1568                         continue;
1569                 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1570
1571                 spin_lock_irqsave(&tgtport->lock, flags);
1572                 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
1573                         queue = assoc->queues[0];
1574                         if (queue && queue->nvme_sq.ctrl == ctrl) {
1575                                 if (nvmet_fc_tgt_a_get(assoc))
1576                                         found_ctrl = true;
1577                                 break;
1578                         }
1579                 }
1580                 spin_unlock_irqrestore(&tgtport->lock, flags);
1581
1582                 nvmet_fc_tgtport_put(tgtport);
1583
1584                 if (found_ctrl) {
1585                         if (!schedule_work(&assoc->del_work))
1586                                 /* already deleting - release local reference */
1587                                 nvmet_fc_tgt_a_put(assoc);
1588                         return;
1589                 }
1590
1591                 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1592         }
1593         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1594 }
1595
1596 /**
1597  * nvme_fc_unregister_targetport - transport entry point called by an
1598  *                              LLDD to deregister/remove a previously
1599  *                              registered a local NVME subsystem FC port.
1600  * @target_port: pointer to the (registered) target port that is to be
1601  *               deregistered.
1602  *
1603  * Returns:
1604  * a completion status. Must be 0 upon success; a negative errno
1605  * (ex: -ENXIO) upon failure.
1606  */
1607 int
1608 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1609 {
1610         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1611
1612         nvmet_fc_portentry_unbind_tgt(tgtport);
1613
1614         /* terminate any outstanding associations */
1615         __nvmet_fc_free_assocs(tgtport);
1616
1617         /*
1618          * should terminate LS's as well. However, LS's will be generated
1619          * at the tail end of association termination, so they likely don't
1620          * exist yet. And even if they did, it's worthwhile to just let
1621          * them finish and targetport ref counting will clean things up.
1622          */
1623
1624         nvmet_fc_tgtport_put(tgtport);
1625
1626         return 0;
1627 }
1628 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1629
1630
1631 /* ********************** FC-NVME LS RCV Handling ************************* */
1632
1633
1634 static void
1635 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1636                         struct nvmet_fc_ls_iod *iod)
1637 {
1638         struct fcnvme_ls_cr_assoc_rqst *rqst = &iod->rqstbuf->rq_cr_assoc;
1639         struct fcnvme_ls_cr_assoc_acc *acc = &iod->rspbuf->rsp_cr_assoc;
1640         struct nvmet_fc_tgt_queue *queue;
1641         int ret = 0;
1642
1643         memset(acc, 0, sizeof(*acc));
1644
1645         /*
1646          * FC-NVME spec changes. There are initiators sending different
1647          * lengths as padding sizes for Create Association Cmd descriptor
1648          * was incorrect.
1649          * Accept anything of "minimum" length. Assume format per 1.15
1650          * spec (with HOSTID reduced to 16 bytes), ignore how long the
1651          * trailing pad length is.
1652          */
1653         if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1654                 ret = VERR_CR_ASSOC_LEN;
1655         else if (be32_to_cpu(rqst->desc_list_len) <
1656                         FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1657                 ret = VERR_CR_ASSOC_RQST_LEN;
1658         else if (rqst->assoc_cmd.desc_tag !=
1659                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1660                 ret = VERR_CR_ASSOC_CMD;
1661         else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1662                         FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1663                 ret = VERR_CR_ASSOC_CMD_LEN;
1664         else if (!rqst->assoc_cmd.ersp_ratio ||
1665                  (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1666                                 be16_to_cpu(rqst->assoc_cmd.sqsize)))
1667                 ret = VERR_ERSP_RATIO;
1668
1669         else {
1670                 /* new association w/ admin queue */
1671                 iod->assoc = nvmet_fc_alloc_target_assoc(
1672                                                 tgtport, iod->hosthandle);
1673                 if (!iod->assoc)
1674                         ret = VERR_ASSOC_ALLOC_FAIL;
1675                 else {
1676                         queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1677                                         be16_to_cpu(rqst->assoc_cmd.sqsize));
1678                         if (!queue)
1679                                 ret = VERR_QUEUE_ALLOC_FAIL;
1680                 }
1681         }
1682
1683         if (ret) {
1684                 dev_err(tgtport->dev,
1685                         "Create Association LS failed: %s\n",
1686                         validation_errors[ret]);
1687                 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1688                                 sizeof(*acc), rqst->w0.ls_cmd,
1689                                 FCNVME_RJT_RC_LOGIC,
1690                                 FCNVME_RJT_EXP_NONE, 0);
1691                 return;
1692         }
1693
1694         queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1695         atomic_set(&queue->connected, 1);
1696         queue->sqhd = 0;        /* best place to init value */
1697
1698         dev_info(tgtport->dev,
1699                 "{%d:%d} Association created\n",
1700                 tgtport->fc_target_port.port_num, iod->assoc->a_id);
1701
1702         /* format a response */
1703
1704         iod->lsrsp->rsplen = sizeof(*acc);
1705
1706         nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1707                         fcnvme_lsdesc_len(
1708                                 sizeof(struct fcnvme_ls_cr_assoc_acc)),
1709                         FCNVME_LS_CREATE_ASSOCIATION);
1710         acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1711         acc->associd.desc_len =
1712                         fcnvme_lsdesc_len(
1713                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1714         acc->associd.association_id =
1715                         cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1716         acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1717         acc->connectid.desc_len =
1718                         fcnvme_lsdesc_len(
1719                                 sizeof(struct fcnvme_lsdesc_conn_id));
1720         acc->connectid.connection_id = acc->associd.association_id;
1721 }
1722
1723 static void
1724 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1725                         struct nvmet_fc_ls_iod *iod)
1726 {
1727         struct fcnvme_ls_cr_conn_rqst *rqst = &iod->rqstbuf->rq_cr_conn;
1728         struct fcnvme_ls_cr_conn_acc *acc = &iod->rspbuf->rsp_cr_conn;
1729         struct nvmet_fc_tgt_queue *queue;
1730         int ret = 0;
1731
1732         memset(acc, 0, sizeof(*acc));
1733
1734         if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1735                 ret = VERR_CR_CONN_LEN;
1736         else if (rqst->desc_list_len !=
1737                         fcnvme_lsdesc_len(
1738                                 sizeof(struct fcnvme_ls_cr_conn_rqst)))
1739                 ret = VERR_CR_CONN_RQST_LEN;
1740         else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1741                 ret = VERR_ASSOC_ID;
1742         else if (rqst->associd.desc_len !=
1743                         fcnvme_lsdesc_len(
1744                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
1745                 ret = VERR_ASSOC_ID_LEN;
1746         else if (rqst->connect_cmd.desc_tag !=
1747                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1748                 ret = VERR_CR_CONN_CMD;
1749         else if (rqst->connect_cmd.desc_len !=
1750                         fcnvme_lsdesc_len(
1751                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1752                 ret = VERR_CR_CONN_CMD_LEN;
1753         else if (!rqst->connect_cmd.ersp_ratio ||
1754                  (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1755                                 be16_to_cpu(rqst->connect_cmd.sqsize)))
1756                 ret = VERR_ERSP_RATIO;
1757
1758         else {
1759                 /* new io queue */
1760                 iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1761                                 be64_to_cpu(rqst->associd.association_id));
1762                 if (!iod->assoc)
1763                         ret = VERR_NO_ASSOC;
1764                 else {
1765                         queue = nvmet_fc_alloc_target_queue(iod->assoc,
1766                                         be16_to_cpu(rqst->connect_cmd.qid),
1767                                         be16_to_cpu(rqst->connect_cmd.sqsize));
1768                         if (!queue)
1769                                 ret = VERR_QUEUE_ALLOC_FAIL;
1770
1771                         /* release get taken in nvmet_fc_find_target_assoc */
1772                         nvmet_fc_tgt_a_put(iod->assoc);
1773                 }
1774         }
1775
1776         if (ret) {
1777                 dev_err(tgtport->dev,
1778                         "Create Connection LS failed: %s\n",
1779                         validation_errors[ret]);
1780                 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1781                                 sizeof(*acc), rqst->w0.ls_cmd,
1782                                 (ret == VERR_NO_ASSOC) ?
1783                                         FCNVME_RJT_RC_INV_ASSOC :
1784                                         FCNVME_RJT_RC_LOGIC,
1785                                 FCNVME_RJT_EXP_NONE, 0);
1786                 return;
1787         }
1788
1789         queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1790         atomic_set(&queue->connected, 1);
1791         queue->sqhd = 0;        /* best place to init value */
1792
1793         /* format a response */
1794
1795         iod->lsrsp->rsplen = sizeof(*acc);
1796
1797         nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1798                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1799                         FCNVME_LS_CREATE_CONNECTION);
1800         acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1801         acc->connectid.desc_len =
1802                         fcnvme_lsdesc_len(
1803                                 sizeof(struct fcnvme_lsdesc_conn_id));
1804         acc->connectid.connection_id =
1805                         cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1806                                 be16_to_cpu(rqst->connect_cmd.qid)));
1807 }
1808
1809 /*
1810  * Returns true if the LS response is to be transmit
1811  * Returns false if the LS response is to be delayed
1812  */
1813 static int
1814 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1815                         struct nvmet_fc_ls_iod *iod)
1816 {
1817         struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1818                                                 &iod->rqstbuf->rq_dis_assoc;
1819         struct fcnvme_ls_disconnect_assoc_acc *acc =
1820                                                 &iod->rspbuf->rsp_dis_assoc;
1821         struct nvmet_fc_tgt_assoc *assoc = NULL;
1822         struct nvmet_fc_ls_iod *oldls = NULL;
1823         unsigned long flags;
1824         int ret = 0;
1825
1826         memset(acc, 0, sizeof(*acc));
1827
1828         ret = nvmefc_vldt_lsreq_discon_assoc(iod->rqstdatalen, rqst);
1829         if (!ret) {
1830                 /* match an active association - takes an assoc ref if !NULL */
1831                 assoc = nvmet_fc_find_target_assoc(tgtport,
1832                                 be64_to_cpu(rqst->associd.association_id));
1833                 iod->assoc = assoc;
1834                 if (!assoc)
1835                         ret = VERR_NO_ASSOC;
1836         }
1837
1838         if (ret || !assoc) {
1839                 dev_err(tgtport->dev,
1840                         "Disconnect LS failed: %s\n",
1841                         validation_errors[ret]);
1842                 iod->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1843                                 sizeof(*acc), rqst->w0.ls_cmd,
1844                                 (ret == VERR_NO_ASSOC) ?
1845                                         FCNVME_RJT_RC_INV_ASSOC :
1846                                         FCNVME_RJT_RC_LOGIC,
1847                                 FCNVME_RJT_EXP_NONE, 0);
1848                 return true;
1849         }
1850
1851         /* format a response */
1852
1853         iod->lsrsp->rsplen = sizeof(*acc);
1854
1855         nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1856                         fcnvme_lsdesc_len(
1857                                 sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1858                         FCNVME_LS_DISCONNECT_ASSOC);
1859
1860         /* release get taken in nvmet_fc_find_target_assoc */
1861         nvmet_fc_tgt_a_put(assoc);
1862
1863         /*
1864          * The rules for LS response says the response cannot
1865          * go back until ABTS's have been sent for all outstanding
1866          * I/O and a Disconnect Association LS has been sent.
1867          * So... save off the Disconnect LS to send the response
1868          * later. If there was a prior LS already saved, replace
1869          * it with the newer one and send a can't perform reject
1870          * on the older one.
1871          */
1872         spin_lock_irqsave(&tgtport->lock, flags);
1873         oldls = assoc->rcv_disconn;
1874         assoc->rcv_disconn = iod;
1875         spin_unlock_irqrestore(&tgtport->lock, flags);
1876
1877         nvmet_fc_delete_target_assoc(assoc);
1878
1879         if (oldls) {
1880                 dev_info(tgtport->dev,
1881                         "{%d:%d} Multiple Disconnect Association LS's "
1882                         "received\n",
1883                         tgtport->fc_target_port.port_num, assoc->a_id);
1884                 /* overwrite good response with bogus failure */
1885                 oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1886                                                 sizeof(*iod->rspbuf),
1887                                                 /* ok to use rqst, LS is same */
1888                                                 rqst->w0.ls_cmd,
1889                                                 FCNVME_RJT_RC_UNAB,
1890                                                 FCNVME_RJT_EXP_NONE, 0);
1891                 nvmet_fc_xmt_ls_rsp(tgtport, oldls);
1892         }
1893
1894         return false;
1895 }
1896
1897
1898 /* *********************** NVME Ctrl Routines **************************** */
1899
1900
1901 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1902
1903 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1904
1905 static void
1906 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1907 {
1908         struct nvmet_fc_ls_iod *iod = lsrsp->nvme_fc_private;
1909         struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1910
1911         fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1912                                 sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1913         nvmet_fc_free_ls_iod(tgtport, iod);
1914         nvmet_fc_tgtport_put(tgtport);
1915 }
1916
1917 static void
1918 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1919                                 struct nvmet_fc_ls_iod *iod)
1920 {
1921         int ret;
1922
1923         fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1924                                   sizeof(*iod->rspbuf), DMA_TO_DEVICE);
1925
1926         ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsrsp);
1927         if (ret)
1928                 nvmet_fc_xmt_ls_rsp_done(iod->lsrsp);
1929 }
1930
1931 /*
1932  * Actual processing routine for received FC-NVME LS Requests from the LLD
1933  */
1934 static void
1935 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1936                         struct nvmet_fc_ls_iod *iod)
1937 {
1938         struct fcnvme_ls_rqst_w0 *w0 = &iod->rqstbuf->rq_cr_assoc.w0;
1939         bool sendrsp = true;
1940
1941         iod->lsrsp->nvme_fc_private = iod;
1942         iod->lsrsp->rspbuf = iod->rspbuf;
1943         iod->lsrsp->rspdma = iod->rspdma;
1944         iod->lsrsp->done = nvmet_fc_xmt_ls_rsp_done;
1945         /* Be preventative. handlers will later set to valid length */
1946         iod->lsrsp->rsplen = 0;
1947
1948         iod->assoc = NULL;
1949
1950         /*
1951          * handlers:
1952          *   parse request input, execute the request, and format the
1953          *   LS response
1954          */
1955         switch (w0->ls_cmd) {
1956         case FCNVME_LS_CREATE_ASSOCIATION:
1957                 /* Creates Association and initial Admin Queue/Connection */
1958                 nvmet_fc_ls_create_association(tgtport, iod);
1959                 break;
1960         case FCNVME_LS_CREATE_CONNECTION:
1961                 /* Creates an IO Queue/Connection */
1962                 nvmet_fc_ls_create_connection(tgtport, iod);
1963                 break;
1964         case FCNVME_LS_DISCONNECT_ASSOC:
1965                 /* Terminate a Queue/Connection or the Association */
1966                 sendrsp = nvmet_fc_ls_disconnect(tgtport, iod);
1967                 break;
1968         default:
1969                 iod->lsrsp->rsplen = nvme_fc_format_rjt(iod->rspbuf,
1970                                 sizeof(*iod->rspbuf), w0->ls_cmd,
1971                                 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1972         }
1973
1974         if (sendrsp)
1975                 nvmet_fc_xmt_ls_rsp(tgtport, iod);
1976 }
1977
1978 /*
1979  * Actual processing routine for received FC-NVME LS Requests from the LLD
1980  */
1981 static void
1982 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1983 {
1984         struct nvmet_fc_ls_iod *iod =
1985                 container_of(work, struct nvmet_fc_ls_iod, work);
1986         struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1987
1988         nvmet_fc_handle_ls_rqst(tgtport, iod);
1989 }
1990
1991
1992 /**
1993  * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
1994  *                       upon the reception of a NVME LS request.
1995  *
1996  * The nvmet-fc layer will copy payload to an internal structure for
1997  * processing.  As such, upon completion of the routine, the LLDD may
1998  * immediately free/reuse the LS request buffer passed in the call.
1999  *
2000  * If this routine returns error, the LLDD should abort the exchange.
2001  *
2002  * @target_port: pointer to the (registered) target port the LS was
2003  *              received on.
2004  * @lsrsp:      pointer to a lsrsp structure to be used to reference
2005  *              the exchange corresponding to the LS.
2006  * @lsreqbuf:   pointer to the buffer containing the LS Request
2007  * @lsreqbuf_len: length, in bytes, of the received LS request
2008  */
2009 int
2010 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
2011                         void *hosthandle,
2012                         struct nvmefc_ls_rsp *lsrsp,
2013                         void *lsreqbuf, u32 lsreqbuf_len)
2014 {
2015         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2016         struct nvmet_fc_ls_iod *iod;
2017         struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
2018
2019         if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
2020                 dev_info(tgtport->dev,
2021                         "RCV %s LS failed: payload too large (%d)\n",
2022                         (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2023                                 nvmefc_ls_names[w0->ls_cmd] : "",
2024                         lsreqbuf_len);
2025                 return -E2BIG;
2026         }
2027
2028         if (!nvmet_fc_tgtport_get(tgtport)) {
2029                 dev_info(tgtport->dev,
2030                         "RCV %s LS failed: target deleting\n",
2031                         (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2032                                 nvmefc_ls_names[w0->ls_cmd] : "");
2033                 return -ESHUTDOWN;
2034         }
2035
2036         iod = nvmet_fc_alloc_ls_iod(tgtport);
2037         if (!iod) {
2038                 dev_info(tgtport->dev,
2039                         "RCV %s LS failed: context allocation failed\n",
2040                         (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
2041                                 nvmefc_ls_names[w0->ls_cmd] : "");
2042                 nvmet_fc_tgtport_put(tgtport);
2043                 return -ENOENT;
2044         }
2045
2046         iod->lsrsp = lsrsp;
2047         iod->fcpreq = NULL;
2048         memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
2049         iod->rqstdatalen = lsreqbuf_len;
2050         iod->hosthandle = hosthandle;
2051
2052         schedule_work(&iod->work);
2053
2054         return 0;
2055 }
2056 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
2057
2058
2059 /*
2060  * **********************
2061  * Start of FCP handling
2062  * **********************
2063  */
2064
2065 static int
2066 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2067 {
2068         struct scatterlist *sg;
2069         unsigned int nent;
2070
2071         sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
2072         if (!sg)
2073                 goto out;
2074
2075         fod->data_sg = sg;
2076         fod->data_sg_cnt = nent;
2077         fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
2078                                 ((fod->io_dir == NVMET_FCP_WRITE) ?
2079                                         DMA_FROM_DEVICE : DMA_TO_DEVICE));
2080                                 /* note: write from initiator perspective */
2081         fod->next_sg = fod->data_sg;
2082
2083         return 0;
2084
2085 out:
2086         return NVME_SC_INTERNAL;
2087 }
2088
2089 static void
2090 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
2091 {
2092         if (!fod->data_sg || !fod->data_sg_cnt)
2093                 return;
2094
2095         fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
2096                                 ((fod->io_dir == NVMET_FCP_WRITE) ?
2097                                         DMA_FROM_DEVICE : DMA_TO_DEVICE));
2098         sgl_free(fod->data_sg);
2099         fod->data_sg = NULL;
2100         fod->data_sg_cnt = 0;
2101 }
2102
2103
2104 static bool
2105 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
2106 {
2107         u32 sqtail, used;
2108
2109         /* egad, this is ugly. And sqtail is just a best guess */
2110         sqtail = atomic_read(&q->sqtail) % q->sqsize;
2111
2112         used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
2113         return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
2114 }
2115
2116 /*
2117  * Prep RSP payload.
2118  * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
2119  */
2120 static void
2121 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2122                                 struct nvmet_fc_fcp_iod *fod)
2123 {
2124         struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
2125         struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2126         struct nvme_completion *cqe = &ersp->cqe;
2127         u32 *cqewd = (u32 *)cqe;
2128         bool send_ersp = false;
2129         u32 rsn, rspcnt, xfr_length;
2130
2131         if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
2132                 xfr_length = fod->req.transfer_len;
2133         else
2134                 xfr_length = fod->offset;
2135
2136         /*
2137          * check to see if we can send a 0's rsp.
2138          *   Note: to send a 0's response, the NVME-FC host transport will
2139          *   recreate the CQE. The host transport knows: sq id, SQHD (last
2140          *   seen in an ersp), and command_id. Thus it will create a
2141          *   zero-filled CQE with those known fields filled in. Transport
2142          *   must send an ersp for any condition where the cqe won't match
2143          *   this.
2144          *
2145          * Here are the FC-NVME mandated cases where we must send an ersp:
2146          *  every N responses, where N=ersp_ratio
2147          *  force fabric commands to send ersp's (not in FC-NVME but good
2148          *    practice)
2149          *  normal cmds: any time status is non-zero, or status is zero
2150          *     but words 0 or 1 are non-zero.
2151          *  the SQ is 90% or more full
2152          *  the cmd is a fused command
2153          *  transferred data length not equal to cmd iu length
2154          */
2155         rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
2156         if (!(rspcnt % fod->queue->ersp_ratio) ||
2157             nvme_is_fabrics((struct nvme_command *) sqe) ||
2158             xfr_length != fod->req.transfer_len ||
2159             (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
2160             (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
2161             queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
2162                 send_ersp = true;
2163
2164         /* re-set the fields */
2165         fod->fcpreq->rspaddr = ersp;
2166         fod->fcpreq->rspdma = fod->rspdma;
2167
2168         if (!send_ersp) {
2169                 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
2170                 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
2171         } else {
2172                 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
2173                 rsn = atomic_inc_return(&fod->queue->rsn);
2174                 ersp->rsn = cpu_to_be32(rsn);
2175                 ersp->xfrd_len = cpu_to_be32(xfr_length);
2176                 fod->fcpreq->rsplen = sizeof(*ersp);
2177         }
2178
2179         fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
2180                                   sizeof(fod->rspiubuf), DMA_TO_DEVICE);
2181 }
2182
2183 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
2184
2185 static void
2186 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
2187                                 struct nvmet_fc_fcp_iod *fod)
2188 {
2189         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2190
2191         /* data no longer needed */
2192         nvmet_fc_free_tgt_pgs(fod);
2193
2194         /*
2195          * if an ABTS was received or we issued the fcp_abort early
2196          * don't call abort routine again.
2197          */
2198         /* no need to take lock - lock was taken earlier to get here */
2199         if (!fod->aborted)
2200                 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
2201
2202         nvmet_fc_free_fcp_iod(fod->queue, fod);
2203 }
2204
2205 static void
2206 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
2207                                 struct nvmet_fc_fcp_iod *fod)
2208 {
2209         int ret;
2210
2211         fod->fcpreq->op = NVMET_FCOP_RSP;
2212         fod->fcpreq->timeout = 0;
2213
2214         nvmet_fc_prep_fcp_rsp(tgtport, fod);
2215
2216         ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2217         if (ret)
2218                 nvmet_fc_abort_op(tgtport, fod);
2219 }
2220
2221 static void
2222 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
2223                                 struct nvmet_fc_fcp_iod *fod, u8 op)
2224 {
2225         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2226         struct scatterlist *sg = fod->next_sg;
2227         unsigned long flags;
2228         u32 remaininglen = fod->req.transfer_len - fod->offset;
2229         u32 tlen = 0;
2230         int ret;
2231
2232         fcpreq->op = op;
2233         fcpreq->offset = fod->offset;
2234         fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
2235
2236         /*
2237          * for next sequence:
2238          *  break at a sg element boundary
2239          *  attempt to keep sequence length capped at
2240          *    NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
2241          *    be longer if a single sg element is larger
2242          *    than that amount. This is done to avoid creating
2243          *    a new sg list to use for the tgtport api.
2244          */
2245         fcpreq->sg = sg;
2246         fcpreq->sg_cnt = 0;
2247         while (tlen < remaininglen &&
2248                fcpreq->sg_cnt < tgtport->max_sg_cnt &&
2249                tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
2250                 fcpreq->sg_cnt++;
2251                 tlen += sg_dma_len(sg);
2252                 sg = sg_next(sg);
2253         }
2254         if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
2255                 fcpreq->sg_cnt++;
2256                 tlen += min_t(u32, sg_dma_len(sg), remaininglen);
2257                 sg = sg_next(sg);
2258         }
2259         if (tlen < remaininglen)
2260                 fod->next_sg = sg;
2261         else
2262                 fod->next_sg = NULL;
2263
2264         fcpreq->transfer_length = tlen;
2265         fcpreq->transferred_length = 0;
2266         fcpreq->fcp_error = 0;
2267         fcpreq->rsplen = 0;
2268
2269         /*
2270          * If the last READDATA request: check if LLDD supports
2271          * combined xfr with response.
2272          */
2273         if ((op == NVMET_FCOP_READDATA) &&
2274             ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
2275             (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
2276                 fcpreq->op = NVMET_FCOP_READDATA_RSP;
2277                 nvmet_fc_prep_fcp_rsp(tgtport, fod);
2278         }
2279
2280         ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
2281         if (ret) {
2282                 /*
2283                  * should be ok to set w/o lock as its in the thread of
2284                  * execution (not an async timer routine) and doesn't
2285                  * contend with any clearing action
2286                  */
2287                 fod->abort = true;
2288
2289                 if (op == NVMET_FCOP_WRITEDATA) {
2290                         spin_lock_irqsave(&fod->flock, flags);
2291                         fod->writedataactive = false;
2292                         spin_unlock_irqrestore(&fod->flock, flags);
2293                         nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2294                 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
2295                         fcpreq->fcp_error = ret;
2296                         fcpreq->transferred_length = 0;
2297                         nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
2298                 }
2299         }
2300 }
2301
2302 static inline bool
2303 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
2304 {
2305         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2306         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2307
2308         /* if in the middle of an io and we need to tear down */
2309         if (abort) {
2310                 if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
2311                         nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2312                         return true;
2313                 }
2314
2315                 nvmet_fc_abort_op(tgtport, fod);
2316                 return true;
2317         }
2318
2319         return false;
2320 }
2321
2322 /*
2323  * actual done handler for FCP operations when completed by the lldd
2324  */
2325 static void
2326 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
2327 {
2328         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
2329         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2330         unsigned long flags;
2331         bool abort;
2332
2333         spin_lock_irqsave(&fod->flock, flags);
2334         abort = fod->abort;
2335         fod->writedataactive = false;
2336         spin_unlock_irqrestore(&fod->flock, flags);
2337
2338         switch (fcpreq->op) {
2339
2340         case NVMET_FCOP_WRITEDATA:
2341                 if (__nvmet_fc_fod_op_abort(fod, abort))
2342                         return;
2343                 if (fcpreq->fcp_error ||
2344                     fcpreq->transferred_length != fcpreq->transfer_length) {
2345                         spin_lock_irqsave(&fod->flock, flags);
2346                         fod->abort = true;
2347                         spin_unlock_irqrestore(&fod->flock, flags);
2348
2349                         nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2350                         return;
2351                 }
2352
2353                 fod->offset += fcpreq->transferred_length;
2354                 if (fod->offset != fod->req.transfer_len) {
2355                         spin_lock_irqsave(&fod->flock, flags);
2356                         fod->writedataactive = true;
2357                         spin_unlock_irqrestore(&fod->flock, flags);
2358
2359                         /* transfer the next chunk */
2360                         nvmet_fc_transfer_fcp_data(tgtport, fod,
2361                                                 NVMET_FCOP_WRITEDATA);
2362                         return;
2363                 }
2364
2365                 /* data transfer complete, resume with nvmet layer */
2366                 fod->req.execute(&fod->req);
2367                 break;
2368
2369         case NVMET_FCOP_READDATA:
2370         case NVMET_FCOP_READDATA_RSP:
2371                 if (__nvmet_fc_fod_op_abort(fod, abort))
2372                         return;
2373                 if (fcpreq->fcp_error ||
2374                     fcpreq->transferred_length != fcpreq->transfer_length) {
2375                         nvmet_fc_abort_op(tgtport, fod);
2376                         return;
2377                 }
2378
2379                 /* success */
2380
2381                 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2382                         /* data no longer needed */
2383                         nvmet_fc_free_tgt_pgs(fod);
2384                         nvmet_fc_free_fcp_iod(fod->queue, fod);
2385                         return;
2386                 }
2387
2388                 fod->offset += fcpreq->transferred_length;
2389                 if (fod->offset != fod->req.transfer_len) {
2390                         /* transfer the next chunk */
2391                         nvmet_fc_transfer_fcp_data(tgtport, fod,
2392                                                 NVMET_FCOP_READDATA);
2393                         return;
2394                 }
2395
2396                 /* data transfer complete, send response */
2397
2398                 /* data no longer needed */
2399                 nvmet_fc_free_tgt_pgs(fod);
2400
2401                 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2402
2403                 break;
2404
2405         case NVMET_FCOP_RSP:
2406                 if (__nvmet_fc_fod_op_abort(fod, abort))
2407                         return;
2408                 nvmet_fc_free_fcp_iod(fod->queue, fod);
2409                 break;
2410
2411         default:
2412                 break;
2413         }
2414 }
2415
2416 static void
2417 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2418 {
2419         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2420
2421         nvmet_fc_fod_op_done(fod);
2422 }
2423
2424 /*
2425  * actual completion handler after execution by the nvmet layer
2426  */
2427 static void
2428 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2429                         struct nvmet_fc_fcp_iod *fod, int status)
2430 {
2431         struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2432         struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2433         unsigned long flags;
2434         bool abort;
2435
2436         spin_lock_irqsave(&fod->flock, flags);
2437         abort = fod->abort;
2438         spin_unlock_irqrestore(&fod->flock, flags);
2439
2440         /* if we have a CQE, snoop the last sq_head value */
2441         if (!status)
2442                 fod->queue->sqhd = cqe->sq_head;
2443
2444         if (abort) {
2445                 nvmet_fc_abort_op(tgtport, fod);
2446                 return;
2447         }
2448
2449         /* if an error handling the cmd post initial parsing */
2450         if (status) {
2451                 /* fudge up a failed CQE status for our transport error */
2452                 memset(cqe, 0, sizeof(*cqe));
2453                 cqe->sq_head = fod->queue->sqhd;        /* echo last cqe sqhd */
2454                 cqe->sq_id = cpu_to_le16(fod->queue->qid);
2455                 cqe->command_id = sqe->command_id;
2456                 cqe->status = cpu_to_le16(status);
2457         } else {
2458
2459                 /*
2460                  * try to push the data even if the SQE status is non-zero.
2461                  * There may be a status where data still was intended to
2462                  * be moved
2463                  */
2464                 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2465                         /* push the data over before sending rsp */
2466                         nvmet_fc_transfer_fcp_data(tgtport, fod,
2467                                                 NVMET_FCOP_READDATA);
2468                         return;
2469                 }
2470
2471                 /* writes & no data - fall thru */
2472         }
2473
2474         /* data no longer needed */
2475         nvmet_fc_free_tgt_pgs(fod);
2476
2477         nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2478 }
2479
2480
2481 static void
2482 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2483 {
2484         struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2485         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2486
2487         __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2488 }
2489
2490
2491 /*
2492  * Actual processing routine for received FC-NVME I/O Requests from the LLD
2493  */
2494 static void
2495 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2496                         struct nvmet_fc_fcp_iod *fod)
2497 {
2498         struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2499         u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2500         int ret;
2501
2502         /*
2503          * Fused commands are currently not supported in the linux
2504          * implementation.
2505          *
2506          * As such, the implementation of the FC transport does not
2507          * look at the fused commands and order delivery to the upper
2508          * layer until we have both based on csn.
2509          */
2510
2511         fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2512
2513         if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2514                 fod->io_dir = NVMET_FCP_WRITE;
2515                 if (!nvme_is_write(&cmdiu->sqe))
2516                         goto transport_error;
2517         } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2518                 fod->io_dir = NVMET_FCP_READ;
2519                 if (nvme_is_write(&cmdiu->sqe))
2520                         goto transport_error;
2521         } else {
2522                 fod->io_dir = NVMET_FCP_NODATA;
2523                 if (xfrlen)
2524                         goto transport_error;
2525         }
2526
2527         fod->req.cmd = &fod->cmdiubuf.sqe;
2528         fod->req.cqe = &fod->rspiubuf.cqe;
2529         if (tgtport->pe)
2530                 fod->req.port = tgtport->pe->port;
2531
2532         /* clear any response payload */
2533         memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2534
2535         fod->data_sg = NULL;
2536         fod->data_sg_cnt = 0;
2537
2538         ret = nvmet_req_init(&fod->req,
2539                                 &fod->queue->nvme_cq,
2540                                 &fod->queue->nvme_sq,
2541                                 &nvmet_fc_tgt_fcp_ops);
2542         if (!ret) {
2543                 /* bad SQE content or invalid ctrl state */
2544                 /* nvmet layer has already called op done to send rsp. */
2545                 return;
2546         }
2547
2548         fod->req.transfer_len = xfrlen;
2549
2550         /* keep a running counter of tail position */
2551         atomic_inc(&fod->queue->sqtail);
2552
2553         if (fod->req.transfer_len) {
2554                 ret = nvmet_fc_alloc_tgt_pgs(fod);
2555                 if (ret) {
2556                         nvmet_req_complete(&fod->req, ret);
2557                         return;
2558                 }
2559         }
2560         fod->req.sg = fod->data_sg;
2561         fod->req.sg_cnt = fod->data_sg_cnt;
2562         fod->offset = 0;
2563
2564         if (fod->io_dir == NVMET_FCP_WRITE) {
2565                 /* pull the data over before invoking nvmet layer */
2566                 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2567                 return;
2568         }
2569
2570         /*
2571          * Reads or no data:
2572          *
2573          * can invoke the nvmet_layer now. If read data, cmd completion will
2574          * push the data
2575          */
2576         fod->req.execute(&fod->req);
2577         return;
2578
2579 transport_error:
2580         nvmet_fc_abort_op(tgtport, fod);
2581 }
2582
2583 /**
2584  * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2585  *                       upon the reception of a NVME FCP CMD IU.
2586  *
2587  * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2588  * layer for processing.
2589  *
2590  * The nvmet_fc layer allocates a local job structure (struct
2591  * nvmet_fc_fcp_iod) from the queue for the io and copies the
2592  * CMD IU buffer to the job structure. As such, on a successful
2593  * completion (returns 0), the LLDD may immediately free/reuse
2594  * the CMD IU buffer passed in the call.
2595  *
2596  * However, in some circumstances, due to the packetized nature of FC
2597  * and the api of the FC LLDD which may issue a hw command to send the
2598  * response, but the LLDD may not get the hw completion for that command
2599  * and upcall the nvmet_fc layer before a new command may be
2600  * asynchronously received - its possible for a command to be received
2601  * before the LLDD and nvmet_fc have recycled the job structure. It gives
2602  * the appearance of more commands received than fits in the sq.
2603  * To alleviate this scenario, a temporary queue is maintained in the
2604  * transport for pending LLDD requests waiting for a queue job structure.
2605  * In these "overrun" cases, a temporary queue element is allocated
2606  * the LLDD request and CMD iu buffer information remembered, and the
2607  * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2608  * structure is freed, it is immediately reallocated for anything on the
2609  * pending request list. The LLDDs defer_rcv() callback is called,
2610  * informing the LLDD that it may reuse the CMD IU buffer, and the io
2611  * is then started normally with the transport.
2612  *
2613  * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2614  * the completion as successful but must not reuse the CMD IU buffer
2615  * until the LLDD's defer_rcv() callback has been called for the
2616  * corresponding struct nvmefc_tgt_fcp_req pointer.
2617  *
2618  * If there is any other condition in which an error occurs, the
2619  * transport will return a non-zero status indicating the error.
2620  * In all cases other than -EOVERFLOW, the transport has not accepted the
2621  * request and the LLDD should abort the exchange.
2622  *
2623  * @target_port: pointer to the (registered) target port the FCP CMD IU
2624  *              was received on.
2625  * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2626  *              the exchange corresponding to the FCP Exchange.
2627  * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2628  * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2629  */
2630 int
2631 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2632                         struct nvmefc_tgt_fcp_req *fcpreq,
2633                         void *cmdiubuf, u32 cmdiubuf_len)
2634 {
2635         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2636         struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2637         struct nvmet_fc_tgt_queue *queue;
2638         struct nvmet_fc_fcp_iod *fod;
2639         struct nvmet_fc_defer_fcp_req *deferfcp;
2640         unsigned long flags;
2641
2642         /* validate iu, so the connection id can be used to find the queue */
2643         if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2644                         (cmdiu->format_id != NVME_CMD_FORMAT_ID) ||
2645                         (cmdiu->fc_id != NVME_CMD_FC_ID) ||
2646                         (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2647                 return -EIO;
2648
2649         queue = nvmet_fc_find_target_queue(tgtport,
2650                                 be64_to_cpu(cmdiu->connection_id));
2651         if (!queue)
2652                 return -ENOTCONN;
2653
2654         /*
2655          * note: reference taken by find_target_queue
2656          * After successful fod allocation, the fod will inherit the
2657          * ownership of that reference and will remove the reference
2658          * when the fod is freed.
2659          */
2660
2661         spin_lock_irqsave(&queue->qlock, flags);
2662
2663         fod = nvmet_fc_alloc_fcp_iod(queue);
2664         if (fod) {
2665                 spin_unlock_irqrestore(&queue->qlock, flags);
2666
2667                 fcpreq->nvmet_fc_private = fod;
2668                 fod->fcpreq = fcpreq;
2669
2670                 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2671
2672                 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2673
2674                 return 0;
2675         }
2676
2677         if (!tgtport->ops->defer_rcv) {
2678                 spin_unlock_irqrestore(&queue->qlock, flags);
2679                 /* release the queue lookup reference */
2680                 nvmet_fc_tgt_q_put(queue);
2681                 return -ENOENT;
2682         }
2683
2684         deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2685                         struct nvmet_fc_defer_fcp_req, req_list);
2686         if (deferfcp) {
2687                 /* Just re-use one that was previously allocated */
2688                 list_del(&deferfcp->req_list);
2689         } else {
2690                 spin_unlock_irqrestore(&queue->qlock, flags);
2691
2692                 /* Now we need to dynamically allocate one */
2693                 deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2694                 if (!deferfcp) {
2695                         /* release the queue lookup reference */
2696                         nvmet_fc_tgt_q_put(queue);
2697                         return -ENOMEM;
2698                 }
2699                 spin_lock_irqsave(&queue->qlock, flags);
2700         }
2701
2702         /* For now, use rspaddr / rsplen to save payload information */
2703         fcpreq->rspaddr = cmdiubuf;
2704         fcpreq->rsplen  = cmdiubuf_len;
2705         deferfcp->fcp_req = fcpreq;
2706
2707         /* defer processing till a fod becomes available */
2708         list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2709
2710         /* NOTE: the queue lookup reference is still valid */
2711
2712         spin_unlock_irqrestore(&queue->qlock, flags);
2713
2714         return -EOVERFLOW;
2715 }
2716 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2717
2718 /**
2719  * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2720  *                       upon the reception of an ABTS for a FCP command
2721  *
2722  * Notify the transport that an ABTS has been received for a FCP command
2723  * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2724  * LLDD believes the command is still being worked on
2725  * (template_ops->fcp_req_release() has not been called).
2726  *
2727  * The transport will wait for any outstanding work (an op to the LLDD,
2728  * which the lldd should complete with error due to the ABTS; or the
2729  * completion from the nvmet layer of the nvme command), then will
2730  * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2731  * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2732  * to the ABTS either after return from this function (assuming any
2733  * outstanding op work has been terminated) or upon the callback being
2734  * called.
2735  *
2736  * @target_port: pointer to the (registered) target port the FCP CMD IU
2737  *              was received on.
2738  * @fcpreq:     pointer to the fcpreq request structure that corresponds
2739  *              to the exchange that received the ABTS.
2740  */
2741 void
2742 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2743                         struct nvmefc_tgt_fcp_req *fcpreq)
2744 {
2745         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2746         struct nvmet_fc_tgt_queue *queue;
2747         unsigned long flags;
2748
2749         if (!fod || fod->fcpreq != fcpreq)
2750                 /* job appears to have already completed, ignore abort */
2751                 return;
2752
2753         queue = fod->queue;
2754
2755         spin_lock_irqsave(&queue->qlock, flags);
2756         if (fod->active) {
2757                 /*
2758                  * mark as abort. The abort handler, invoked upon completion
2759                  * of any work, will detect the aborted status and do the
2760                  * callback.
2761                  */
2762                 spin_lock(&fod->flock);
2763                 fod->abort = true;
2764                 fod->aborted = true;
2765                 spin_unlock(&fod->flock);
2766         }
2767         spin_unlock_irqrestore(&queue->qlock, flags);
2768 }
2769 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2770
2771
2772 struct nvmet_fc_traddr {
2773         u64     nn;
2774         u64     pn;
2775 };
2776
2777 static int
2778 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2779 {
2780         u64 token64;
2781
2782         if (match_u64(sstr, &token64))
2783                 return -EINVAL;
2784         *val = token64;
2785
2786         return 0;
2787 }
2788
2789 /*
2790  * This routine validates and extracts the WWN's from the TRADDR string.
2791  * As kernel parsers need the 0x to determine number base, universally
2792  * build string to parse with 0x prefix before parsing name strings.
2793  */
2794 static int
2795 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2796 {
2797         char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2798         substring_t wwn = { name, &name[sizeof(name)-1] };
2799         int nnoffset, pnoffset;
2800
2801         /* validate if string is one of the 2 allowed formats */
2802         if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2803                         !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2804                         !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2805                                 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2806                 nnoffset = NVME_FC_TRADDR_OXNNLEN;
2807                 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2808                                                 NVME_FC_TRADDR_OXNNLEN;
2809         } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2810                         !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2811                         !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2812                                 "pn-", NVME_FC_TRADDR_NNLEN))) {
2813                 nnoffset = NVME_FC_TRADDR_NNLEN;
2814                 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2815         } else
2816                 goto out_einval;
2817
2818         name[0] = '0';
2819         name[1] = 'x';
2820         name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2821
2822         memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2823         if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2824                 goto out_einval;
2825
2826         memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2827         if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2828                 goto out_einval;
2829
2830         return 0;
2831
2832 out_einval:
2833         pr_warn("%s: bad traddr string\n", __func__);
2834         return -EINVAL;
2835 }
2836
2837 static int
2838 nvmet_fc_add_port(struct nvmet_port *port)
2839 {
2840         struct nvmet_fc_tgtport *tgtport;
2841         struct nvmet_fc_port_entry *pe;
2842         struct nvmet_fc_traddr traddr = { 0L, 0L };
2843         unsigned long flags;
2844         int ret;
2845
2846         /* validate the address info */
2847         if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2848             (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2849                 return -EINVAL;
2850
2851         /* map the traddr address info to a target port */
2852
2853         ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2854                         sizeof(port->disc_addr.traddr));
2855         if (ret)
2856                 return ret;
2857
2858         pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2859         if (!pe)
2860                 return -ENOMEM;
2861
2862         ret = -ENXIO;
2863         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2864         list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2865                 if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2866                     (tgtport->fc_target_port.port_name == traddr.pn)) {
2867                         /* a FC port can only be 1 nvmet port id */
2868                         if (!tgtport->pe) {
2869                                 nvmet_fc_portentry_bind(tgtport, pe, port);
2870                                 ret = 0;
2871                         } else
2872                                 ret = -EALREADY;
2873                         break;
2874                 }
2875         }
2876         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2877
2878         if (ret)
2879                 kfree(pe);
2880
2881         return ret;
2882 }
2883
2884 static void
2885 nvmet_fc_remove_port(struct nvmet_port *port)
2886 {
2887         struct nvmet_fc_port_entry *pe = port->priv;
2888
2889         nvmet_fc_portentry_unbind(pe);
2890
2891         kfree(pe);
2892 }
2893
2894 static void
2895 nvmet_fc_discovery_chg(struct nvmet_port *port)
2896 {
2897         struct nvmet_fc_port_entry *pe = port->priv;
2898         struct nvmet_fc_tgtport *tgtport = pe->tgtport;
2899
2900         if (tgtport && tgtport->ops->discovery_event)
2901                 tgtport->ops->discovery_event(&tgtport->fc_target_port);
2902 }
2903
2904 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2905         .owner                  = THIS_MODULE,
2906         .type                   = NVMF_TRTYPE_FC,
2907         .msdbd                  = 1,
2908         .add_port               = nvmet_fc_add_port,
2909         .remove_port            = nvmet_fc_remove_port,
2910         .queue_response         = nvmet_fc_fcp_nvme_cmd_done,
2911         .delete_ctrl            = nvmet_fc_delete_ctrl,
2912         .discovery_chg          = nvmet_fc_discovery_chg,
2913 };
2914
2915 static int __init nvmet_fc_init_module(void)
2916 {
2917         return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2918 }
2919
2920 static void __exit nvmet_fc_exit_module(void)
2921 {
2922         /* sanity check - all lports should be removed */
2923         if (!list_empty(&nvmet_fc_target_list))
2924                 pr_warn("%s: targetport list not empty\n", __func__);
2925
2926         nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2927
2928         ida_destroy(&nvmet_fc_tgtport_cnt);
2929 }
2930
2931 module_init(nvmet_fc_init_module);
2932 module_exit(nvmet_fc_exit_module);
2933
2934 MODULE_LICENSE("GPL v2");