GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / nvme / host / rdma.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA host code.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26
27 #include "nvme.h"
28 #include "fabrics.h"
29
30
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS    3000            /* 3 second */
32
33 #define NVME_RDMA_MAX_SEGMENTS          256
34
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS   4
36
37 #define NVME_RDMA_DATA_SGL_SIZE \
38         (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39 #define NVME_RDMA_METADATA_SGL_SIZE \
40         (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
41
42 struct nvme_rdma_device {
43         struct ib_device        *dev;
44         struct ib_pd            *pd;
45         struct kref             ref;
46         struct list_head        entry;
47         unsigned int            num_inline_segments;
48 };
49
50 struct nvme_rdma_qe {
51         struct ib_cqe           cqe;
52         void                    *data;
53         u64                     dma;
54 };
55
56 struct nvme_rdma_sgl {
57         int                     nents;
58         struct sg_table         sg_table;
59 };
60
61 struct nvme_rdma_queue;
62 struct nvme_rdma_request {
63         struct nvme_request     req;
64         struct ib_mr            *mr;
65         struct nvme_rdma_qe     sqe;
66         union nvme_result       result;
67         __le16                  status;
68         refcount_t              ref;
69         struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
70         u32                     num_sge;
71         struct ib_reg_wr        reg_wr;
72         struct ib_cqe           reg_cqe;
73         struct nvme_rdma_queue  *queue;
74         struct nvme_rdma_sgl    data_sgl;
75         struct nvme_rdma_sgl    *metadata_sgl;
76         bool                    use_sig_mr;
77 };
78
79 enum nvme_rdma_queue_flags {
80         NVME_RDMA_Q_ALLOCATED           = 0,
81         NVME_RDMA_Q_LIVE                = 1,
82         NVME_RDMA_Q_TR_READY            = 2,
83 };
84
85 struct nvme_rdma_queue {
86         struct nvme_rdma_qe     *rsp_ring;
87         int                     queue_size;
88         size_t                  cmnd_capsule_len;
89         struct nvme_rdma_ctrl   *ctrl;
90         struct nvme_rdma_device *device;
91         struct ib_cq            *ib_cq;
92         struct ib_qp            *qp;
93
94         unsigned long           flags;
95         struct rdma_cm_id       *cm_id;
96         int                     cm_error;
97         struct completion       cm_done;
98         bool                    pi_support;
99         int                     cq_size;
100         struct mutex            queue_lock;
101 };
102
103 struct nvme_rdma_ctrl {
104         /* read only in the hot path */
105         struct nvme_rdma_queue  *queues;
106
107         /* other member variables */
108         struct blk_mq_tag_set   tag_set;
109         struct work_struct      err_work;
110
111         struct nvme_rdma_qe     async_event_sqe;
112
113         struct delayed_work     reconnect_work;
114
115         struct list_head        list;
116
117         struct blk_mq_tag_set   admin_tag_set;
118         struct nvme_rdma_device *device;
119
120         u32                     max_fr_pages;
121
122         struct sockaddr_storage addr;
123         struct sockaddr_storage src_addr;
124
125         struct nvme_ctrl        ctrl;
126         bool                    use_inline_data;
127         u32                     io_queues[HCTX_MAX_TYPES];
128 };
129
130 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
131 {
132         return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
133 }
134
135 static LIST_HEAD(device_list);
136 static DEFINE_MUTEX(device_list_mutex);
137
138 static LIST_HEAD(nvme_rdma_ctrl_list);
139 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
140
141 /*
142  * Disabling this option makes small I/O goes faster, but is fundamentally
143  * unsafe.  With it turned off we will have to register a global rkey that
144  * allows read and write access to all physical memory.
145  */
146 static bool register_always = true;
147 module_param(register_always, bool, 0444);
148 MODULE_PARM_DESC(register_always,
149          "Use memory registration even for contiguous memory regions");
150
151 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
152                 struct rdma_cm_event *event);
153 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154 static void nvme_rdma_complete_rq(struct request *rq);
155
156 static const struct blk_mq_ops nvme_rdma_mq_ops;
157 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
158
159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
160 {
161         return queue - queue->ctrl->queues;
162 }
163
164 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
165 {
166         return nvme_rdma_queue_idx(queue) >
167                 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
168                 queue->ctrl->io_queues[HCTX_TYPE_READ];
169 }
170
171 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
172 {
173         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 }
175
176 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177                 size_t capsule_size, enum dma_data_direction dir)
178 {
179         ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
180         kfree(qe->data);
181 }
182
183 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184                 size_t capsule_size, enum dma_data_direction dir)
185 {
186         qe->data = kzalloc(capsule_size, GFP_KERNEL);
187         if (!qe->data)
188                 return -ENOMEM;
189
190         qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
191         if (ib_dma_mapping_error(ibdev, qe->dma)) {
192                 kfree(qe->data);
193                 qe->data = NULL;
194                 return -ENOMEM;
195         }
196
197         return 0;
198 }
199
200 static void nvme_rdma_free_ring(struct ib_device *ibdev,
201                 struct nvme_rdma_qe *ring, size_t ib_queue_size,
202                 size_t capsule_size, enum dma_data_direction dir)
203 {
204         int i;
205
206         for (i = 0; i < ib_queue_size; i++)
207                 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
208         kfree(ring);
209 }
210
211 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
212                 size_t ib_queue_size, size_t capsule_size,
213                 enum dma_data_direction dir)
214 {
215         struct nvme_rdma_qe *ring;
216         int i;
217
218         ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
219         if (!ring)
220                 return NULL;
221
222         /*
223          * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
224          * lifetime. It's safe, since any chage in the underlying RDMA device
225          * will issue error recovery and queue re-creation.
226          */
227         for (i = 0; i < ib_queue_size; i++) {
228                 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
229                         goto out_free_ring;
230         }
231
232         return ring;
233
234 out_free_ring:
235         nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
236         return NULL;
237 }
238
239 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
240 {
241         pr_debug("QP event %s (%d)\n",
242                  ib_event_msg(event->event), event->event);
243
244 }
245
246 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
247 {
248         int ret;
249
250         ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
251                         msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
252         if (ret < 0)
253                 return ret;
254         if (ret == 0)
255                 return -ETIMEDOUT;
256         WARN_ON_ONCE(queue->cm_error > 0);
257         return queue->cm_error;
258 }
259
260 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
261 {
262         struct nvme_rdma_device *dev = queue->device;
263         struct ib_qp_init_attr init_attr;
264         int ret;
265
266         memset(&init_attr, 0, sizeof(init_attr));
267         init_attr.event_handler = nvme_rdma_qp_event;
268         /* +1 for drain */
269         init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
270         /* +1 for drain */
271         init_attr.cap.max_recv_wr = queue->queue_size + 1;
272         init_attr.cap.max_recv_sge = 1;
273         init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
274         init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
275         init_attr.qp_type = IB_QPT_RC;
276         init_attr.send_cq = queue->ib_cq;
277         init_attr.recv_cq = queue->ib_cq;
278         if (queue->pi_support)
279                 init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
280         init_attr.qp_context = queue;
281
282         ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
283
284         queue->qp = queue->cm_id->qp;
285         return ret;
286 }
287
288 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
289                 struct request *rq, unsigned int hctx_idx)
290 {
291         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
292
293         kfree(req->sqe.data);
294 }
295
296 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
297                 struct request *rq, unsigned int hctx_idx,
298                 unsigned int numa_node)
299 {
300         struct nvme_rdma_ctrl *ctrl = set->driver_data;
301         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
302         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
303         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
304
305         nvme_req(rq)->ctrl = &ctrl->ctrl;
306         req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
307         if (!req->sqe.data)
308                 return -ENOMEM;
309
310         /* metadata nvme_rdma_sgl struct is located after command's data SGL */
311         if (queue->pi_support)
312                 req->metadata_sgl = (void *)nvme_req(rq) +
313                         sizeof(struct nvme_rdma_request) +
314                         NVME_RDMA_DATA_SGL_SIZE;
315
316         req->queue = queue;
317
318         return 0;
319 }
320
321 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
322                 unsigned int hctx_idx)
323 {
324         struct nvme_rdma_ctrl *ctrl = data;
325         struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
326
327         BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
328
329         hctx->driver_data = queue;
330         return 0;
331 }
332
333 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
334                 unsigned int hctx_idx)
335 {
336         struct nvme_rdma_ctrl *ctrl = data;
337         struct nvme_rdma_queue *queue = &ctrl->queues[0];
338
339         BUG_ON(hctx_idx != 0);
340
341         hctx->driver_data = queue;
342         return 0;
343 }
344
345 static void nvme_rdma_free_dev(struct kref *ref)
346 {
347         struct nvme_rdma_device *ndev =
348                 container_of(ref, struct nvme_rdma_device, ref);
349
350         mutex_lock(&device_list_mutex);
351         list_del(&ndev->entry);
352         mutex_unlock(&device_list_mutex);
353
354         ib_dealloc_pd(ndev->pd);
355         kfree(ndev);
356 }
357
358 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
359 {
360         kref_put(&dev->ref, nvme_rdma_free_dev);
361 }
362
363 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
364 {
365         return kref_get_unless_zero(&dev->ref);
366 }
367
368 static struct nvme_rdma_device *
369 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
370 {
371         struct nvme_rdma_device *ndev;
372
373         mutex_lock(&device_list_mutex);
374         list_for_each_entry(ndev, &device_list, entry) {
375                 if (ndev->dev->node_guid == cm_id->device->node_guid &&
376                     nvme_rdma_dev_get(ndev))
377                         goto out_unlock;
378         }
379
380         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
381         if (!ndev)
382                 goto out_err;
383
384         ndev->dev = cm_id->device;
385         kref_init(&ndev->ref);
386
387         ndev->pd = ib_alloc_pd(ndev->dev,
388                 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
389         if (IS_ERR(ndev->pd))
390                 goto out_free_dev;
391
392         if (!(ndev->dev->attrs.device_cap_flags &
393               IB_DEVICE_MEM_MGT_EXTENSIONS)) {
394                 dev_err(&ndev->dev->dev,
395                         "Memory registrations not supported.\n");
396                 goto out_free_pd;
397         }
398
399         ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
400                                         ndev->dev->attrs.max_send_sge - 1);
401         list_add(&ndev->entry, &device_list);
402 out_unlock:
403         mutex_unlock(&device_list_mutex);
404         return ndev;
405
406 out_free_pd:
407         ib_dealloc_pd(ndev->pd);
408 out_free_dev:
409         kfree(ndev);
410 out_err:
411         mutex_unlock(&device_list_mutex);
412         return NULL;
413 }
414
415 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
416 {
417         if (nvme_rdma_poll_queue(queue))
418                 ib_free_cq(queue->ib_cq);
419         else
420                 ib_cq_pool_put(queue->ib_cq, queue->cq_size);
421 }
422
423 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
424 {
425         struct nvme_rdma_device *dev;
426         struct ib_device *ibdev;
427
428         if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
429                 return;
430
431         dev = queue->device;
432         ibdev = dev->dev;
433
434         if (queue->pi_support)
435                 ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
436         ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
437
438         /*
439          * The cm_id object might have been destroyed during RDMA connection
440          * establishment error flow to avoid getting other cma events, thus
441          * the destruction of the QP shouldn't use rdma_cm API.
442          */
443         ib_destroy_qp(queue->qp);
444         nvme_rdma_free_cq(queue);
445
446         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
447                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
448
449         nvme_rdma_dev_put(dev);
450 }
451
452 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
453 {
454         u32 max_page_list_len;
455
456         if (pi_support)
457                 max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
458         else
459                 max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
460
461         return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
462 }
463
464 static int nvme_rdma_create_cq(struct ib_device *ibdev,
465                 struct nvme_rdma_queue *queue)
466 {
467         int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
468         enum ib_poll_context poll_ctx;
469
470         /*
471          * Spread I/O queues completion vectors according their queue index.
472          * Admin queues can always go on completion vector 0.
473          */
474         comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
475
476         /* Polling queues need direct cq polling context */
477         if (nvme_rdma_poll_queue(queue)) {
478                 poll_ctx = IB_POLL_DIRECT;
479                 queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
480                                            comp_vector, poll_ctx);
481         } else {
482                 poll_ctx = IB_POLL_SOFTIRQ;
483                 queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
484                                               comp_vector, poll_ctx);
485         }
486
487         if (IS_ERR(queue->ib_cq)) {
488                 ret = PTR_ERR(queue->ib_cq);
489                 return ret;
490         }
491
492         return 0;
493 }
494
495 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
496 {
497         struct ib_device *ibdev;
498         const int send_wr_factor = 3;                   /* MR, SEND, INV */
499         const int cq_factor = send_wr_factor + 1;       /* + RECV */
500         int ret, pages_per_mr;
501
502         queue->device = nvme_rdma_find_get_device(queue->cm_id);
503         if (!queue->device) {
504                 dev_err(queue->cm_id->device->dev.parent,
505                         "no client data found!\n");
506                 return -ECONNREFUSED;
507         }
508         ibdev = queue->device->dev;
509
510         /* +1 for ib_stop_cq */
511         queue->cq_size = cq_factor * queue->queue_size + 1;
512
513         ret = nvme_rdma_create_cq(ibdev, queue);
514         if (ret)
515                 goto out_put_dev;
516
517         ret = nvme_rdma_create_qp(queue, send_wr_factor);
518         if (ret)
519                 goto out_destroy_ib_cq;
520
521         queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
522                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
523         if (!queue->rsp_ring) {
524                 ret = -ENOMEM;
525                 goto out_destroy_qp;
526         }
527
528         /*
529          * Currently we don't use SG_GAPS MR's so if the first entry is
530          * misaligned we'll end up using two entries for a single data page,
531          * so one additional entry is required.
532          */
533         pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
534         ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
535                               queue->queue_size,
536                               IB_MR_TYPE_MEM_REG,
537                               pages_per_mr, 0);
538         if (ret) {
539                 dev_err(queue->ctrl->ctrl.device,
540                         "failed to initialize MR pool sized %d for QID %d\n",
541                         queue->queue_size, nvme_rdma_queue_idx(queue));
542                 goto out_destroy_ring;
543         }
544
545         if (queue->pi_support) {
546                 ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
547                                       queue->queue_size, IB_MR_TYPE_INTEGRITY,
548                                       pages_per_mr, pages_per_mr);
549                 if (ret) {
550                         dev_err(queue->ctrl->ctrl.device,
551                                 "failed to initialize PI MR pool sized %d for QID %d\n",
552                                 queue->queue_size, nvme_rdma_queue_idx(queue));
553                         goto out_destroy_mr_pool;
554                 }
555         }
556
557         set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
558
559         return 0;
560
561 out_destroy_mr_pool:
562         ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
563 out_destroy_ring:
564         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
565                             sizeof(struct nvme_completion), DMA_FROM_DEVICE);
566 out_destroy_qp:
567         rdma_destroy_qp(queue->cm_id);
568 out_destroy_ib_cq:
569         nvme_rdma_free_cq(queue);
570 out_put_dev:
571         nvme_rdma_dev_put(queue->device);
572         return ret;
573 }
574
575 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
576                 int idx, size_t queue_size)
577 {
578         struct nvme_rdma_queue *queue;
579         struct sockaddr *src_addr = NULL;
580         int ret;
581
582         queue = &ctrl->queues[idx];
583         mutex_init(&queue->queue_lock);
584         queue->ctrl = ctrl;
585         if (idx && ctrl->ctrl.max_integrity_segments)
586                 queue->pi_support = true;
587         else
588                 queue->pi_support = false;
589         init_completion(&queue->cm_done);
590
591         if (idx > 0)
592                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
593         else
594                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
595
596         queue->queue_size = queue_size;
597
598         queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
599                         RDMA_PS_TCP, IB_QPT_RC);
600         if (IS_ERR(queue->cm_id)) {
601                 dev_info(ctrl->ctrl.device,
602                         "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
603                 ret = PTR_ERR(queue->cm_id);
604                 goto out_destroy_mutex;
605         }
606
607         if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
608                 src_addr = (struct sockaddr *)&ctrl->src_addr;
609
610         queue->cm_error = -ETIMEDOUT;
611         ret = rdma_resolve_addr(queue->cm_id, src_addr,
612                         (struct sockaddr *)&ctrl->addr,
613                         NVME_RDMA_CONNECT_TIMEOUT_MS);
614         if (ret) {
615                 dev_info(ctrl->ctrl.device,
616                         "rdma_resolve_addr failed (%d).\n", ret);
617                 goto out_destroy_cm_id;
618         }
619
620         ret = nvme_rdma_wait_for_cm(queue);
621         if (ret) {
622                 dev_info(ctrl->ctrl.device,
623                         "rdma connection establishment failed (%d)\n", ret);
624                 goto out_destroy_cm_id;
625         }
626
627         set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
628
629         return 0;
630
631 out_destroy_cm_id:
632         rdma_destroy_id(queue->cm_id);
633         nvme_rdma_destroy_queue_ib(queue);
634 out_destroy_mutex:
635         mutex_destroy(&queue->queue_lock);
636         return ret;
637 }
638
639 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
640 {
641         rdma_disconnect(queue->cm_id);
642         ib_drain_qp(queue->qp);
643 }
644
645 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
646 {
647         mutex_lock(&queue->queue_lock);
648         if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
649                 __nvme_rdma_stop_queue(queue);
650         mutex_unlock(&queue->queue_lock);
651 }
652
653 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
654 {
655         if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
656                 return;
657
658         rdma_destroy_id(queue->cm_id);
659         nvme_rdma_destroy_queue_ib(queue);
660         mutex_destroy(&queue->queue_lock);
661 }
662
663 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
664 {
665         int i;
666
667         for (i = 1; i < ctrl->ctrl.queue_count; i++)
668                 nvme_rdma_free_queue(&ctrl->queues[i]);
669 }
670
671 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
672 {
673         int i;
674
675         for (i = 1; i < ctrl->ctrl.queue_count; i++)
676                 nvme_rdma_stop_queue(&ctrl->queues[i]);
677 }
678
679 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
680 {
681         struct nvme_rdma_queue *queue = &ctrl->queues[idx];
682         bool poll = nvme_rdma_poll_queue(queue);
683         int ret;
684
685         if (idx)
686                 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
687         else
688                 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
689
690         if (!ret) {
691                 set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
692         } else {
693                 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
694                         __nvme_rdma_stop_queue(queue);
695                 dev_info(ctrl->ctrl.device,
696                         "failed to connect queue: %d ret=%d\n", idx, ret);
697         }
698         return ret;
699 }
700
701 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
702 {
703         int i, ret = 0;
704
705         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
706                 ret = nvme_rdma_start_queue(ctrl, i);
707                 if (ret)
708                         goto out_stop_queues;
709         }
710
711         return 0;
712
713 out_stop_queues:
714         for (i--; i >= 1; i--)
715                 nvme_rdma_stop_queue(&ctrl->queues[i]);
716         return ret;
717 }
718
719 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
720 {
721         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
722         struct ib_device *ibdev = ctrl->device->dev;
723         unsigned int nr_io_queues, nr_default_queues;
724         unsigned int nr_read_queues, nr_poll_queues;
725         int i, ret;
726
727         nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
728                                 min(opts->nr_io_queues, num_online_cpus()));
729         nr_default_queues =  min_t(unsigned int, ibdev->num_comp_vectors,
730                                 min(opts->nr_write_queues, num_online_cpus()));
731         nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
732         nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
733
734         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
735         if (ret)
736                 return ret;
737
738         if (nr_io_queues == 0) {
739                 dev_err(ctrl->ctrl.device,
740                         "unable to set any I/O queues\n");
741                 return -ENOMEM;
742         }
743
744         ctrl->ctrl.queue_count = nr_io_queues + 1;
745         dev_info(ctrl->ctrl.device,
746                 "creating %d I/O queues.\n", nr_io_queues);
747
748         if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
749                 /*
750                  * separate read/write queues
751                  * hand out dedicated default queues only after we have
752                  * sufficient read queues.
753                  */
754                 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
755                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
756                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
757                         min(nr_default_queues, nr_io_queues);
758                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
759         } else {
760                 /*
761                  * shared read/write queues
762                  * either no write queues were requested, or we don't have
763                  * sufficient queue count to have dedicated default queues.
764                  */
765                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
766                         min(nr_read_queues, nr_io_queues);
767                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
768         }
769
770         if (opts->nr_poll_queues && nr_io_queues) {
771                 /* map dedicated poll queues only if we have queues left */
772                 ctrl->io_queues[HCTX_TYPE_POLL] =
773                         min(nr_poll_queues, nr_io_queues);
774         }
775
776         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
777                 ret = nvme_rdma_alloc_queue(ctrl, i,
778                                 ctrl->ctrl.sqsize + 1);
779                 if (ret)
780                         goto out_free_queues;
781         }
782
783         return 0;
784
785 out_free_queues:
786         for (i--; i >= 1; i--)
787                 nvme_rdma_free_queue(&ctrl->queues[i]);
788
789         return ret;
790 }
791
792 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
793                 bool admin)
794 {
795         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
796         struct blk_mq_tag_set *set;
797         int ret;
798
799         if (admin) {
800                 set = &ctrl->admin_tag_set;
801                 memset(set, 0, sizeof(*set));
802                 set->ops = &nvme_rdma_admin_mq_ops;
803                 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
804                 set->reserved_tags = 2; /* connect + keep-alive */
805                 set->numa_node = nctrl->numa_node;
806                 set->cmd_size = sizeof(struct nvme_rdma_request) +
807                                 NVME_RDMA_DATA_SGL_SIZE;
808                 set->driver_data = ctrl;
809                 set->nr_hw_queues = 1;
810                 set->timeout = ADMIN_TIMEOUT;
811                 set->flags = BLK_MQ_F_NO_SCHED;
812         } else {
813                 set = &ctrl->tag_set;
814                 memset(set, 0, sizeof(*set));
815                 set->ops = &nvme_rdma_mq_ops;
816                 set->queue_depth = nctrl->sqsize + 1;
817                 set->reserved_tags = 1; /* fabric connect */
818                 set->numa_node = nctrl->numa_node;
819                 set->flags = BLK_MQ_F_SHOULD_MERGE;
820                 set->cmd_size = sizeof(struct nvme_rdma_request) +
821                                 NVME_RDMA_DATA_SGL_SIZE;
822                 if (nctrl->max_integrity_segments)
823                         set->cmd_size += sizeof(struct nvme_rdma_sgl) +
824                                          NVME_RDMA_METADATA_SGL_SIZE;
825                 set->driver_data = ctrl;
826                 set->nr_hw_queues = nctrl->queue_count - 1;
827                 set->timeout = NVME_IO_TIMEOUT;
828                 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
829         }
830
831         ret = blk_mq_alloc_tag_set(set);
832         if (ret)
833                 return ERR_PTR(ret);
834
835         return set;
836 }
837
838 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
839                 bool remove)
840 {
841         if (remove) {
842                 blk_cleanup_queue(ctrl->ctrl.admin_q);
843                 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
844                 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
845         }
846         if (ctrl->async_event_sqe.data) {
847                 cancel_work_sync(&ctrl->ctrl.async_event_work);
848                 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
849                                 sizeof(struct nvme_command), DMA_TO_DEVICE);
850                 ctrl->async_event_sqe.data = NULL;
851         }
852         nvme_rdma_free_queue(&ctrl->queues[0]);
853 }
854
855 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
856                 bool new)
857 {
858         bool pi_capable = false;
859         int error;
860
861         error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
862         if (error)
863                 return error;
864
865         ctrl->device = ctrl->queues[0].device;
866         ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
867
868         /* T10-PI support */
869         if (ctrl->device->dev->attrs.device_cap_flags &
870             IB_DEVICE_INTEGRITY_HANDOVER)
871                 pi_capable = true;
872
873         ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
874                                                         pi_capable);
875
876         /*
877          * Bind the async event SQE DMA mapping to the admin queue lifetime.
878          * It's safe, since any chage in the underlying RDMA device will issue
879          * error recovery and queue re-creation.
880          */
881         error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
882                         sizeof(struct nvme_command), DMA_TO_DEVICE);
883         if (error)
884                 goto out_free_queue;
885
886         if (new) {
887                 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
888                 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
889                         error = PTR_ERR(ctrl->ctrl.admin_tagset);
890                         goto out_free_async_qe;
891                 }
892
893                 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
894                 if (IS_ERR(ctrl->ctrl.fabrics_q)) {
895                         error = PTR_ERR(ctrl->ctrl.fabrics_q);
896                         goto out_free_tagset;
897                 }
898
899                 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
900                 if (IS_ERR(ctrl->ctrl.admin_q)) {
901                         error = PTR_ERR(ctrl->ctrl.admin_q);
902                         goto out_cleanup_fabrics_q;
903                 }
904         }
905
906         error = nvme_rdma_start_queue(ctrl, 0);
907         if (error)
908                 goto out_cleanup_queue;
909
910         error = nvme_enable_ctrl(&ctrl->ctrl);
911         if (error)
912                 goto out_stop_queue;
913
914         ctrl->ctrl.max_segments = ctrl->max_fr_pages;
915         ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
916         if (pi_capable)
917                 ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
918         else
919                 ctrl->ctrl.max_integrity_segments = 0;
920
921         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
922
923         error = nvme_init_identify(&ctrl->ctrl);
924         if (error)
925                 goto out_quiesce_queue;
926
927         return 0;
928
929 out_quiesce_queue:
930         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
931         blk_sync_queue(ctrl->ctrl.admin_q);
932 out_stop_queue:
933         nvme_rdma_stop_queue(&ctrl->queues[0]);
934         nvme_cancel_admin_tagset(&ctrl->ctrl);
935 out_cleanup_queue:
936         if (new)
937                 blk_cleanup_queue(ctrl->ctrl.admin_q);
938 out_cleanup_fabrics_q:
939         if (new)
940                 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
941 out_free_tagset:
942         if (new)
943                 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
944 out_free_async_qe:
945         if (ctrl->async_event_sqe.data) {
946                 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
947                         sizeof(struct nvme_command), DMA_TO_DEVICE);
948                 ctrl->async_event_sqe.data = NULL;
949         }
950 out_free_queue:
951         nvme_rdma_free_queue(&ctrl->queues[0]);
952         return error;
953 }
954
955 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
956                 bool remove)
957 {
958         if (remove) {
959                 blk_cleanup_queue(ctrl->ctrl.connect_q);
960                 blk_mq_free_tag_set(ctrl->ctrl.tagset);
961         }
962         nvme_rdma_free_io_queues(ctrl);
963 }
964
965 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
966 {
967         int ret;
968
969         ret = nvme_rdma_alloc_io_queues(ctrl);
970         if (ret)
971                 return ret;
972
973         if (new) {
974                 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
975                 if (IS_ERR(ctrl->ctrl.tagset)) {
976                         ret = PTR_ERR(ctrl->ctrl.tagset);
977                         goto out_free_io_queues;
978                 }
979
980                 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
981                 if (IS_ERR(ctrl->ctrl.connect_q)) {
982                         ret = PTR_ERR(ctrl->ctrl.connect_q);
983                         goto out_free_tag_set;
984                 }
985         }
986
987         ret = nvme_rdma_start_io_queues(ctrl);
988         if (ret)
989                 goto out_cleanup_connect_q;
990
991         if (!new) {
992                 nvme_start_queues(&ctrl->ctrl);
993                 if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
994                         /*
995                          * If we timed out waiting for freeze we are likely to
996                          * be stuck.  Fail the controller initialization just
997                          * to be safe.
998                          */
999                         ret = -ENODEV;
1000                         goto out_wait_freeze_timed_out;
1001                 }
1002                 blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
1003                         ctrl->ctrl.queue_count - 1);
1004                 nvme_unfreeze(&ctrl->ctrl);
1005         }
1006
1007         return 0;
1008
1009 out_wait_freeze_timed_out:
1010         nvme_stop_queues(&ctrl->ctrl);
1011         nvme_sync_io_queues(&ctrl->ctrl);
1012         nvme_rdma_stop_io_queues(ctrl);
1013 out_cleanup_connect_q:
1014         nvme_cancel_tagset(&ctrl->ctrl);
1015         if (new)
1016                 blk_cleanup_queue(ctrl->ctrl.connect_q);
1017 out_free_tag_set:
1018         if (new)
1019                 blk_mq_free_tag_set(ctrl->ctrl.tagset);
1020 out_free_io_queues:
1021         nvme_rdma_free_io_queues(ctrl);
1022         return ret;
1023 }
1024
1025 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
1026                 bool remove)
1027 {
1028         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1029         blk_sync_queue(ctrl->ctrl.admin_q);
1030         nvme_rdma_stop_queue(&ctrl->queues[0]);
1031         if (ctrl->ctrl.admin_tagset) {
1032                 blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
1033                         nvme_cancel_request, &ctrl->ctrl);
1034                 blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset);
1035         }
1036         if (remove)
1037                 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1038         nvme_rdma_destroy_admin_queue(ctrl, remove);
1039 }
1040
1041 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
1042                 bool remove)
1043 {
1044         if (ctrl->ctrl.queue_count > 1) {
1045                 nvme_start_freeze(&ctrl->ctrl);
1046                 nvme_stop_queues(&ctrl->ctrl);
1047                 nvme_sync_io_queues(&ctrl->ctrl);
1048                 nvme_rdma_stop_io_queues(ctrl);
1049                 if (ctrl->ctrl.tagset) {
1050                         blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
1051                                 nvme_cancel_request, &ctrl->ctrl);
1052                         blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset);
1053                 }
1054                 if (remove)
1055                         nvme_start_queues(&ctrl->ctrl);
1056                 nvme_rdma_destroy_io_queues(ctrl, remove);
1057         }
1058 }
1059
1060 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
1061 {
1062         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1063
1064         cancel_work_sync(&ctrl->err_work);
1065         cancel_delayed_work_sync(&ctrl->reconnect_work);
1066 }
1067
1068 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
1069 {
1070         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1071
1072         if (list_empty(&ctrl->list))
1073                 goto free_ctrl;
1074
1075         mutex_lock(&nvme_rdma_ctrl_mutex);
1076         list_del(&ctrl->list);
1077         mutex_unlock(&nvme_rdma_ctrl_mutex);
1078
1079         nvmf_free_options(nctrl->opts);
1080 free_ctrl:
1081         kfree(ctrl->queues);
1082         kfree(ctrl);
1083 }
1084
1085 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
1086 {
1087         /* If we are resetting/deleting then do nothing */
1088         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
1089                 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
1090                         ctrl->ctrl.state == NVME_CTRL_LIVE);
1091                 return;
1092         }
1093
1094         if (nvmf_should_reconnect(&ctrl->ctrl)) {
1095                 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
1096                         ctrl->ctrl.opts->reconnect_delay);
1097                 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
1098                                 ctrl->ctrl.opts->reconnect_delay * HZ);
1099         } else {
1100                 nvme_delete_ctrl(&ctrl->ctrl);
1101         }
1102 }
1103
1104 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1105 {
1106         int ret = -EINVAL;
1107         bool changed;
1108
1109         ret = nvme_rdma_configure_admin_queue(ctrl, new);
1110         if (ret)
1111                 return ret;
1112
1113         if (ctrl->ctrl.icdoff) {
1114                 ret = -EOPNOTSUPP;
1115                 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1116                 goto destroy_admin;
1117         }
1118
1119         if (!(ctrl->ctrl.sgls & (1 << 2))) {
1120                 ret = -EOPNOTSUPP;
1121                 dev_err(ctrl->ctrl.device,
1122                         "Mandatory keyed sgls are not supported!\n");
1123                 goto destroy_admin;
1124         }
1125
1126         if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1127                 dev_warn(ctrl->ctrl.device,
1128                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
1129                         ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1130         }
1131
1132         if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1133                 dev_warn(ctrl->ctrl.device,
1134                         "sqsize %u > ctrl maxcmd %u, clamping down\n",
1135                         ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1136                 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1137         }
1138
1139         if (ctrl->ctrl.sgls & (1 << 20))
1140                 ctrl->use_inline_data = true;
1141
1142         if (ctrl->ctrl.queue_count > 1) {
1143                 ret = nvme_rdma_configure_io_queues(ctrl, new);
1144                 if (ret)
1145                         goto destroy_admin;
1146         }
1147
1148         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1149         if (!changed) {
1150                 /*
1151                  * state change failure is ok if we started ctrl delete,
1152                  * unless we're during creation of a new controller to
1153                  * avoid races with teardown flow.
1154                  */
1155                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1156                              ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1157                 WARN_ON_ONCE(new);
1158                 ret = -EINVAL;
1159                 goto destroy_io;
1160         }
1161
1162         nvme_start_ctrl(&ctrl->ctrl);
1163         return 0;
1164
1165 destroy_io:
1166         if (ctrl->ctrl.queue_count > 1) {
1167                 nvme_stop_queues(&ctrl->ctrl);
1168                 nvme_sync_io_queues(&ctrl->ctrl);
1169                 nvme_rdma_stop_io_queues(ctrl);
1170                 nvme_cancel_tagset(&ctrl->ctrl);
1171                 nvme_rdma_destroy_io_queues(ctrl, new);
1172         }
1173 destroy_admin:
1174         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1175         blk_sync_queue(ctrl->ctrl.admin_q);
1176         nvme_rdma_stop_queue(&ctrl->queues[0]);
1177         nvme_cancel_admin_tagset(&ctrl->ctrl);
1178         nvme_rdma_destroy_admin_queue(ctrl, new);
1179         return ret;
1180 }
1181
1182 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1183 {
1184         struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1185                         struct nvme_rdma_ctrl, reconnect_work);
1186
1187         ++ctrl->ctrl.nr_reconnects;
1188
1189         if (nvme_rdma_setup_ctrl(ctrl, false))
1190                 goto requeue;
1191
1192         dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1193                         ctrl->ctrl.nr_reconnects);
1194
1195         ctrl->ctrl.nr_reconnects = 0;
1196
1197         return;
1198
1199 requeue:
1200         dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1201                         ctrl->ctrl.nr_reconnects);
1202         nvme_rdma_reconnect_or_remove(ctrl);
1203 }
1204
1205 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1206 {
1207         struct nvme_rdma_ctrl *ctrl = container_of(work,
1208                         struct nvme_rdma_ctrl, err_work);
1209
1210         nvme_stop_keep_alive(&ctrl->ctrl);
1211         flush_work(&ctrl->ctrl.async_event_work);
1212         nvme_rdma_teardown_io_queues(ctrl, false);
1213         nvme_start_queues(&ctrl->ctrl);
1214         nvme_rdma_teardown_admin_queue(ctrl, false);
1215         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1216
1217         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1218                 /* state change failure is ok if we started ctrl delete */
1219                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1220                              ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1221                 return;
1222         }
1223
1224         nvme_rdma_reconnect_or_remove(ctrl);
1225 }
1226
1227 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1228 {
1229         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1230                 return;
1231
1232         dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1233         queue_work(nvme_reset_wq, &ctrl->err_work);
1234 }
1235
1236 static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1237 {
1238         struct request *rq = blk_mq_rq_from_pdu(req);
1239
1240         if (!refcount_dec_and_test(&req->ref))
1241                 return;
1242         if (!nvme_try_complete_req(rq, req->status, req->result))
1243                 nvme_rdma_complete_rq(rq);
1244 }
1245
1246 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1247                 const char *op)
1248 {
1249         struct nvme_rdma_queue *queue = wc->qp->qp_context;
1250         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1251
1252         if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1253                 dev_info(ctrl->ctrl.device,
1254                              "%s for CQE 0x%p failed with status %s (%d)\n",
1255                              op, wc->wr_cqe,
1256                              ib_wc_status_msg(wc->status), wc->status);
1257         nvme_rdma_error_recovery(ctrl);
1258 }
1259
1260 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1261 {
1262         if (unlikely(wc->status != IB_WC_SUCCESS))
1263                 nvme_rdma_wr_error(cq, wc, "MEMREG");
1264 }
1265
1266 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1267 {
1268         struct nvme_rdma_request *req =
1269                 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1270
1271         if (unlikely(wc->status != IB_WC_SUCCESS))
1272                 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1273         else
1274                 nvme_rdma_end_request(req);
1275 }
1276
1277 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1278                 struct nvme_rdma_request *req)
1279 {
1280         struct ib_send_wr wr = {
1281                 .opcode             = IB_WR_LOCAL_INV,
1282                 .next               = NULL,
1283                 .num_sge            = 0,
1284                 .send_flags         = IB_SEND_SIGNALED,
1285                 .ex.invalidate_rkey = req->mr->rkey,
1286         };
1287
1288         req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1289         wr.wr_cqe = &req->reg_cqe;
1290
1291         return ib_post_send(queue->qp, &wr, NULL);
1292 }
1293
1294 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1295                 struct request *rq)
1296 {
1297         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1298         struct nvme_rdma_device *dev = queue->device;
1299         struct ib_device *ibdev = dev->dev;
1300         struct list_head *pool = &queue->qp->rdma_mrs;
1301
1302         if (!blk_rq_nr_phys_segments(rq))
1303                 return;
1304
1305         if (blk_integrity_rq(rq)) {
1306                 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1307                                 req->metadata_sgl->nents, rq_dma_dir(rq));
1308                 sg_free_table_chained(&req->metadata_sgl->sg_table,
1309                                       NVME_INLINE_METADATA_SG_CNT);
1310         }
1311
1312         if (req->use_sig_mr)
1313                 pool = &queue->qp->sig_mrs;
1314
1315         if (req->mr) {
1316                 ib_mr_pool_put(queue->qp, pool, req->mr);
1317                 req->mr = NULL;
1318         }
1319
1320         ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1321                         rq_dma_dir(rq));
1322         sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1323 }
1324
1325 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1326 {
1327         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1328
1329         sg->addr = 0;
1330         put_unaligned_le24(0, sg->length);
1331         put_unaligned_le32(0, sg->key);
1332         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1333         return 0;
1334 }
1335
1336 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1337                 struct nvme_rdma_request *req, struct nvme_command *c,
1338                 int count)
1339 {
1340         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1341         struct ib_sge *sge = &req->sge[1];
1342         struct scatterlist *sgl;
1343         u32 len = 0;
1344         int i;
1345
1346         for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
1347                 sge->addr = sg_dma_address(sgl);
1348                 sge->length = sg_dma_len(sgl);
1349                 sge->lkey = queue->device->pd->local_dma_lkey;
1350                 len += sge->length;
1351                 sge++;
1352         }
1353
1354         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1355         sg->length = cpu_to_le32(len);
1356         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1357
1358         req->num_sge += count;
1359         return 0;
1360 }
1361
1362 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1363                 struct nvme_rdma_request *req, struct nvme_command *c)
1364 {
1365         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1366
1367         sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1368         put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1369         put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1370         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1371         return 0;
1372 }
1373
1374 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1375                 struct nvme_rdma_request *req, struct nvme_command *c,
1376                 int count)
1377 {
1378         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1379         int nr;
1380
1381         req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1382         if (WARN_ON_ONCE(!req->mr))
1383                 return -EAGAIN;
1384
1385         /*
1386          * Align the MR to a 4K page size to match the ctrl page size and
1387          * the block virtual boundary.
1388          */
1389         nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1390                           SZ_4K);
1391         if (unlikely(nr < count)) {
1392                 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1393                 req->mr = NULL;
1394                 if (nr < 0)
1395                         return nr;
1396                 return -EINVAL;
1397         }
1398
1399         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1400
1401         req->reg_cqe.done = nvme_rdma_memreg_done;
1402         memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1403         req->reg_wr.wr.opcode = IB_WR_REG_MR;
1404         req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1405         req->reg_wr.wr.num_sge = 0;
1406         req->reg_wr.mr = req->mr;
1407         req->reg_wr.key = req->mr->rkey;
1408         req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1409                              IB_ACCESS_REMOTE_READ |
1410                              IB_ACCESS_REMOTE_WRITE;
1411
1412         sg->addr = cpu_to_le64(req->mr->iova);
1413         put_unaligned_le24(req->mr->length, sg->length);
1414         put_unaligned_le32(req->mr->rkey, sg->key);
1415         sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1416                         NVME_SGL_FMT_INVALIDATE;
1417
1418         return 0;
1419 }
1420
1421 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1422                 struct nvme_command *cmd, struct ib_sig_domain *domain,
1423                 u16 control, u8 pi_type)
1424 {
1425         domain->sig_type = IB_SIG_TYPE_T10_DIF;
1426         domain->sig.dif.bg_type = IB_T10DIF_CRC;
1427         domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1428         domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1429         if (control & NVME_RW_PRINFO_PRCHK_REF)
1430                 domain->sig.dif.ref_remap = true;
1431
1432         domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1433         domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1434         domain->sig.dif.app_escape = true;
1435         if (pi_type == NVME_NS_DPS_PI_TYPE3)
1436                 domain->sig.dif.ref_escape = true;
1437 }
1438
1439 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1440                 struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1441                 u8 pi_type)
1442 {
1443         u16 control = le16_to_cpu(cmd->rw.control);
1444
1445         memset(sig_attrs, 0, sizeof(*sig_attrs));
1446         if (control & NVME_RW_PRINFO_PRACT) {
1447                 /* for WRITE_INSERT/READ_STRIP no memory domain */
1448                 sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1449                 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1450                                          pi_type);
1451                 /* Clear the PRACT bit since HCA will generate/verify the PI */
1452                 control &= ~NVME_RW_PRINFO_PRACT;
1453                 cmd->rw.control = cpu_to_le16(control);
1454         } else {
1455                 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1456                 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1457                                          pi_type);
1458                 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1459                                          pi_type);
1460         }
1461 }
1462
1463 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1464 {
1465         *mask = 0;
1466         if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1467                 *mask |= IB_SIG_CHECK_REFTAG;
1468         if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1469                 *mask |= IB_SIG_CHECK_GUARD;
1470 }
1471
1472 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1473 {
1474         if (unlikely(wc->status != IB_WC_SUCCESS))
1475                 nvme_rdma_wr_error(cq, wc, "SIG");
1476 }
1477
1478 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1479                 struct nvme_rdma_request *req, struct nvme_command *c,
1480                 int count, int pi_count)
1481 {
1482         struct nvme_rdma_sgl *sgl = &req->data_sgl;
1483         struct ib_reg_wr *wr = &req->reg_wr;
1484         struct request *rq = blk_mq_rq_from_pdu(req);
1485         struct nvme_ns *ns = rq->q->queuedata;
1486         struct bio *bio = rq->bio;
1487         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1488         int nr;
1489
1490         req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1491         if (WARN_ON_ONCE(!req->mr))
1492                 return -EAGAIN;
1493
1494         nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1495                              req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1496                              SZ_4K);
1497         if (unlikely(nr))
1498                 goto mr_put;
1499
1500         nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_disk), c,
1501                                 req->mr->sig_attrs, ns->pi_type);
1502         nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1503
1504         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1505
1506         req->reg_cqe.done = nvme_rdma_sig_done;
1507         memset(wr, 0, sizeof(*wr));
1508         wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1509         wr->wr.wr_cqe = &req->reg_cqe;
1510         wr->wr.num_sge = 0;
1511         wr->wr.send_flags = 0;
1512         wr->mr = req->mr;
1513         wr->key = req->mr->rkey;
1514         wr->access = IB_ACCESS_LOCAL_WRITE |
1515                      IB_ACCESS_REMOTE_READ |
1516                      IB_ACCESS_REMOTE_WRITE;
1517
1518         sg->addr = cpu_to_le64(req->mr->iova);
1519         put_unaligned_le24(req->mr->length, sg->length);
1520         put_unaligned_le32(req->mr->rkey, sg->key);
1521         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1522
1523         return 0;
1524
1525 mr_put:
1526         ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1527         req->mr = NULL;
1528         if (nr < 0)
1529                 return nr;
1530         return -EINVAL;
1531 }
1532
1533 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1534                 struct request *rq, struct nvme_command *c)
1535 {
1536         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1537         struct nvme_rdma_device *dev = queue->device;
1538         struct ib_device *ibdev = dev->dev;
1539         int pi_count = 0;
1540         int count, ret;
1541
1542         req->num_sge = 1;
1543         refcount_set(&req->ref, 2); /* send and recv completions */
1544
1545         c->common.flags |= NVME_CMD_SGL_METABUF;
1546
1547         if (!blk_rq_nr_phys_segments(rq))
1548                 return nvme_rdma_set_sg_null(c);
1549
1550         req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1551         ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1552                         blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1553                         NVME_INLINE_SG_CNT);
1554         if (ret)
1555                 return -ENOMEM;
1556
1557         req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1558                                             req->data_sgl.sg_table.sgl);
1559
1560         count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1561                               req->data_sgl.nents, rq_dma_dir(rq));
1562         if (unlikely(count <= 0)) {
1563                 ret = -EIO;
1564                 goto out_free_table;
1565         }
1566
1567         if (blk_integrity_rq(rq)) {
1568                 req->metadata_sgl->sg_table.sgl =
1569                         (struct scatterlist *)(req->metadata_sgl + 1);
1570                 ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1571                                 blk_rq_count_integrity_sg(rq->q, rq->bio),
1572                                 req->metadata_sgl->sg_table.sgl,
1573                                 NVME_INLINE_METADATA_SG_CNT);
1574                 if (unlikely(ret)) {
1575                         ret = -ENOMEM;
1576                         goto out_unmap_sg;
1577                 }
1578
1579                 req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1580                                 rq->bio, req->metadata_sgl->sg_table.sgl);
1581                 pi_count = ib_dma_map_sg(ibdev,
1582                                          req->metadata_sgl->sg_table.sgl,
1583                                          req->metadata_sgl->nents,
1584                                          rq_dma_dir(rq));
1585                 if (unlikely(pi_count <= 0)) {
1586                         ret = -EIO;
1587                         goto out_free_pi_table;
1588                 }
1589         }
1590
1591         if (req->use_sig_mr) {
1592                 ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1593                 goto out;
1594         }
1595
1596         if (count <= dev->num_inline_segments) {
1597                 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1598                     queue->ctrl->use_inline_data &&
1599                     blk_rq_payload_bytes(rq) <=
1600                                 nvme_rdma_inline_data_size(queue)) {
1601                         ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1602                         goto out;
1603                 }
1604
1605                 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1606                         ret = nvme_rdma_map_sg_single(queue, req, c);
1607                         goto out;
1608                 }
1609         }
1610
1611         ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1612 out:
1613         if (unlikely(ret))
1614                 goto out_unmap_pi_sg;
1615
1616         return 0;
1617
1618 out_unmap_pi_sg:
1619         if (blk_integrity_rq(rq))
1620                 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1621                                 req->metadata_sgl->nents, rq_dma_dir(rq));
1622 out_free_pi_table:
1623         if (blk_integrity_rq(rq))
1624                 sg_free_table_chained(&req->metadata_sgl->sg_table,
1625                                       NVME_INLINE_METADATA_SG_CNT);
1626 out_unmap_sg:
1627         ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1628                         rq_dma_dir(rq));
1629 out_free_table:
1630         sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1631         return ret;
1632 }
1633
1634 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1635 {
1636         struct nvme_rdma_qe *qe =
1637                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1638         struct nvme_rdma_request *req =
1639                 container_of(qe, struct nvme_rdma_request, sqe);
1640
1641         if (unlikely(wc->status != IB_WC_SUCCESS))
1642                 nvme_rdma_wr_error(cq, wc, "SEND");
1643         else
1644                 nvme_rdma_end_request(req);
1645 }
1646
1647 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1648                 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1649                 struct ib_send_wr *first)
1650 {
1651         struct ib_send_wr wr;
1652         int ret;
1653
1654         sge->addr   = qe->dma;
1655         sge->length = sizeof(struct nvme_command);
1656         sge->lkey   = queue->device->pd->local_dma_lkey;
1657
1658         wr.next       = NULL;
1659         wr.wr_cqe     = &qe->cqe;
1660         wr.sg_list    = sge;
1661         wr.num_sge    = num_sge;
1662         wr.opcode     = IB_WR_SEND;
1663         wr.send_flags = IB_SEND_SIGNALED;
1664
1665         if (first)
1666                 first->next = &wr;
1667         else
1668                 first = &wr;
1669
1670         ret = ib_post_send(queue->qp, first, NULL);
1671         if (unlikely(ret)) {
1672                 dev_err(queue->ctrl->ctrl.device,
1673                              "%s failed with error code %d\n", __func__, ret);
1674         }
1675         return ret;
1676 }
1677
1678 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1679                 struct nvme_rdma_qe *qe)
1680 {
1681         struct ib_recv_wr wr;
1682         struct ib_sge list;
1683         int ret;
1684
1685         list.addr   = qe->dma;
1686         list.length = sizeof(struct nvme_completion);
1687         list.lkey   = queue->device->pd->local_dma_lkey;
1688
1689         qe->cqe.done = nvme_rdma_recv_done;
1690
1691         wr.next     = NULL;
1692         wr.wr_cqe   = &qe->cqe;
1693         wr.sg_list  = &list;
1694         wr.num_sge  = 1;
1695
1696         ret = ib_post_recv(queue->qp, &wr, NULL);
1697         if (unlikely(ret)) {
1698                 dev_err(queue->ctrl->ctrl.device,
1699                         "%s failed with error code %d\n", __func__, ret);
1700         }
1701         return ret;
1702 }
1703
1704 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1705 {
1706         u32 queue_idx = nvme_rdma_queue_idx(queue);
1707
1708         if (queue_idx == 0)
1709                 return queue->ctrl->admin_tag_set.tags[queue_idx];
1710         return queue->ctrl->tag_set.tags[queue_idx - 1];
1711 }
1712
1713 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1714 {
1715         if (unlikely(wc->status != IB_WC_SUCCESS))
1716                 nvme_rdma_wr_error(cq, wc, "ASYNC");
1717 }
1718
1719 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1720 {
1721         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1722         struct nvme_rdma_queue *queue = &ctrl->queues[0];
1723         struct ib_device *dev = queue->device->dev;
1724         struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1725         struct nvme_command *cmd = sqe->data;
1726         struct ib_sge sge;
1727         int ret;
1728
1729         ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1730
1731         memset(cmd, 0, sizeof(*cmd));
1732         cmd->common.opcode = nvme_admin_async_event;
1733         cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1734         cmd->common.flags |= NVME_CMD_SGL_METABUF;
1735         nvme_rdma_set_sg_null(cmd);
1736
1737         sqe->cqe.done = nvme_rdma_async_done;
1738
1739         ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1740                         DMA_TO_DEVICE);
1741
1742         ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1743         WARN_ON_ONCE(ret);
1744 }
1745
1746 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1747                 struct nvme_completion *cqe, struct ib_wc *wc)
1748 {
1749         struct request *rq;
1750         struct nvme_rdma_request *req;
1751
1752         rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id);
1753         if (!rq) {
1754                 dev_err(queue->ctrl->ctrl.device,
1755                         "got bad command_id %#x on QP %#x\n",
1756                         cqe->command_id, queue->qp->qp_num);
1757                 nvme_rdma_error_recovery(queue->ctrl);
1758                 return;
1759         }
1760         req = blk_mq_rq_to_pdu(rq);
1761
1762         req->status = cqe->status;
1763         req->result = cqe->result;
1764
1765         if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1766                 if (unlikely(!req->mr ||
1767                              wc->ex.invalidate_rkey != req->mr->rkey)) {
1768                         dev_err(queue->ctrl->ctrl.device,
1769                                 "Bogus remote invalidation for rkey %#x\n",
1770                                 req->mr ? req->mr->rkey : 0);
1771                         nvme_rdma_error_recovery(queue->ctrl);
1772                 }
1773         } else if (req->mr) {
1774                 int ret;
1775
1776                 ret = nvme_rdma_inv_rkey(queue, req);
1777                 if (unlikely(ret < 0)) {
1778                         dev_err(queue->ctrl->ctrl.device,
1779                                 "Queueing INV WR for rkey %#x failed (%d)\n",
1780                                 req->mr->rkey, ret);
1781                         nvme_rdma_error_recovery(queue->ctrl);
1782                 }
1783                 /* the local invalidation completion will end the request */
1784                 return;
1785         }
1786
1787         nvme_rdma_end_request(req);
1788 }
1789
1790 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1791 {
1792         struct nvme_rdma_qe *qe =
1793                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1794         struct nvme_rdma_queue *queue = wc->qp->qp_context;
1795         struct ib_device *ibdev = queue->device->dev;
1796         struct nvme_completion *cqe = qe->data;
1797         const size_t len = sizeof(struct nvme_completion);
1798
1799         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1800                 nvme_rdma_wr_error(cq, wc, "RECV");
1801                 return;
1802         }
1803
1804         /* sanity checking for received data length */
1805         if (unlikely(wc->byte_len < len)) {
1806                 dev_err(queue->ctrl->ctrl.device,
1807                         "Unexpected nvme completion length(%d)\n", wc->byte_len);
1808                 nvme_rdma_error_recovery(queue->ctrl);
1809                 return;
1810         }
1811
1812         ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1813         /*
1814          * AEN requests are special as they don't time out and can
1815          * survive any kind of queue freeze and often don't respond to
1816          * aborts.  We don't even bother to allocate a struct request
1817          * for them but rather special case them here.
1818          */
1819         if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1820                                      cqe->command_id)))
1821                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1822                                 &cqe->result);
1823         else
1824                 nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1825         ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1826
1827         nvme_rdma_post_recv(queue, qe);
1828 }
1829
1830 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1831 {
1832         int ret, i;
1833
1834         for (i = 0; i < queue->queue_size; i++) {
1835                 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1836                 if (ret)
1837                         return ret;
1838         }
1839
1840         return 0;
1841 }
1842
1843 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1844                 struct rdma_cm_event *ev)
1845 {
1846         struct rdma_cm_id *cm_id = queue->cm_id;
1847         int status = ev->status;
1848         const char *rej_msg;
1849         const struct nvme_rdma_cm_rej *rej_data;
1850         u8 rej_data_len;
1851
1852         rej_msg = rdma_reject_msg(cm_id, status);
1853         rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1854
1855         if (rej_data && rej_data_len >= sizeof(u16)) {
1856                 u16 sts = le16_to_cpu(rej_data->sts);
1857
1858                 dev_err(queue->ctrl->ctrl.device,
1859                       "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1860                       status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1861         } else {
1862                 dev_err(queue->ctrl->ctrl.device,
1863                         "Connect rejected: status %d (%s).\n", status, rej_msg);
1864         }
1865
1866         return -ECONNRESET;
1867 }
1868
1869 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1870 {
1871         struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1872         int ret;
1873
1874         ret = nvme_rdma_create_queue_ib(queue);
1875         if (ret)
1876                 return ret;
1877
1878         if (ctrl->opts->tos >= 0)
1879                 rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1880         ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1881         if (ret) {
1882                 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1883                         queue->cm_error);
1884                 goto out_destroy_queue;
1885         }
1886
1887         return 0;
1888
1889 out_destroy_queue:
1890         nvme_rdma_destroy_queue_ib(queue);
1891         return ret;
1892 }
1893
1894 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1895 {
1896         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1897         struct rdma_conn_param param = { };
1898         struct nvme_rdma_cm_req priv = { };
1899         int ret;
1900
1901         param.qp_num = queue->qp->qp_num;
1902         param.flow_control = 1;
1903
1904         param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1905         /* maximum retry count */
1906         param.retry_count = 7;
1907         param.rnr_retry_count = 7;
1908         param.private_data = &priv;
1909         param.private_data_len = sizeof(priv);
1910
1911         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1912         priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1913         /*
1914          * set the admin queue depth to the minimum size
1915          * specified by the Fabrics standard.
1916          */
1917         if (priv.qid == 0) {
1918                 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1919                 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1920         } else {
1921                 /*
1922                  * current interpretation of the fabrics spec
1923                  * is at minimum you make hrqsize sqsize+1, or a
1924                  * 1's based representation of sqsize.
1925                  */
1926                 priv.hrqsize = cpu_to_le16(queue->queue_size);
1927                 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1928         }
1929
1930         ret = rdma_connect_locked(queue->cm_id, &param);
1931         if (ret) {
1932                 dev_err(ctrl->ctrl.device,
1933                         "rdma_connect_locked failed (%d).\n", ret);
1934                 return ret;
1935         }
1936
1937         return 0;
1938 }
1939
1940 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1941                 struct rdma_cm_event *ev)
1942 {
1943         struct nvme_rdma_queue *queue = cm_id->context;
1944         int cm_error = 0;
1945
1946         dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1947                 rdma_event_msg(ev->event), ev->event,
1948                 ev->status, cm_id);
1949
1950         switch (ev->event) {
1951         case RDMA_CM_EVENT_ADDR_RESOLVED:
1952                 cm_error = nvme_rdma_addr_resolved(queue);
1953                 break;
1954         case RDMA_CM_EVENT_ROUTE_RESOLVED:
1955                 cm_error = nvme_rdma_route_resolved(queue);
1956                 break;
1957         case RDMA_CM_EVENT_ESTABLISHED:
1958                 queue->cm_error = nvme_rdma_conn_established(queue);
1959                 /* complete cm_done regardless of success/failure */
1960                 complete(&queue->cm_done);
1961                 return 0;
1962         case RDMA_CM_EVENT_REJECTED:
1963                 cm_error = nvme_rdma_conn_rejected(queue, ev);
1964                 break;
1965         case RDMA_CM_EVENT_ROUTE_ERROR:
1966         case RDMA_CM_EVENT_CONNECT_ERROR:
1967         case RDMA_CM_EVENT_UNREACHABLE:
1968         case RDMA_CM_EVENT_ADDR_ERROR:
1969                 dev_dbg(queue->ctrl->ctrl.device,
1970                         "CM error event %d\n", ev->event);
1971                 cm_error = -ECONNRESET;
1972                 break;
1973         case RDMA_CM_EVENT_DISCONNECTED:
1974         case RDMA_CM_EVENT_ADDR_CHANGE:
1975         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1976                 dev_dbg(queue->ctrl->ctrl.device,
1977                         "disconnect received - connection closed\n");
1978                 nvme_rdma_error_recovery(queue->ctrl);
1979                 break;
1980         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1981                 /* device removal is handled via the ib_client API */
1982                 break;
1983         default:
1984                 dev_err(queue->ctrl->ctrl.device,
1985                         "Unexpected RDMA CM event (%d)\n", ev->event);
1986                 nvme_rdma_error_recovery(queue->ctrl);
1987                 break;
1988         }
1989
1990         if (cm_error) {
1991                 queue->cm_error = cm_error;
1992                 complete(&queue->cm_done);
1993         }
1994
1995         return 0;
1996 }
1997
1998 static void nvme_rdma_complete_timed_out(struct request *rq)
1999 {
2000         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2001         struct nvme_rdma_queue *queue = req->queue;
2002
2003         nvme_rdma_stop_queue(queue);
2004         if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2005                 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2006                 blk_mq_complete_request(rq);
2007         }
2008 }
2009
2010 static enum blk_eh_timer_return
2011 nvme_rdma_timeout(struct request *rq, bool reserved)
2012 {
2013         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2014         struct nvme_rdma_queue *queue = req->queue;
2015         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
2016
2017         dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
2018                  rq->tag, nvme_rdma_queue_idx(queue));
2019
2020         if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
2021                 /*
2022                  * If we are resetting, connecting or deleting we should
2023                  * complete immediately because we may block controller
2024                  * teardown or setup sequence
2025                  * - ctrl disable/shutdown fabrics requests
2026                  * - connect requests
2027                  * - initialization admin requests
2028                  * - I/O requests that entered after unquiescing and
2029                  *   the controller stopped responding
2030                  *
2031                  * All other requests should be cancelled by the error
2032                  * recovery work, so it's fine that we fail it here.
2033                  */
2034                 nvme_rdma_complete_timed_out(rq);
2035                 return BLK_EH_DONE;
2036         }
2037
2038         /*
2039          * LIVE state should trigger the normal error recovery which will
2040          * handle completing this request.
2041          */
2042         nvme_rdma_error_recovery(ctrl);
2043         return BLK_EH_RESET_TIMER;
2044 }
2045
2046 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
2047                 const struct blk_mq_queue_data *bd)
2048 {
2049         struct nvme_ns *ns = hctx->queue->queuedata;
2050         struct nvme_rdma_queue *queue = hctx->driver_data;
2051         struct request *rq = bd->rq;
2052         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2053         struct nvme_rdma_qe *sqe = &req->sqe;
2054         struct nvme_command *c = sqe->data;
2055         struct ib_device *dev;
2056         bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
2057         blk_status_t ret;
2058         int err;
2059
2060         WARN_ON_ONCE(rq->tag < 0);
2061
2062         if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2063                 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2064
2065         dev = queue->device->dev;
2066
2067         req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
2068                                          sizeof(struct nvme_command),
2069                                          DMA_TO_DEVICE);
2070         err = ib_dma_mapping_error(dev, req->sqe.dma);
2071         if (unlikely(err))
2072                 return BLK_STS_RESOURCE;
2073
2074         ib_dma_sync_single_for_cpu(dev, sqe->dma,
2075                         sizeof(struct nvme_command), DMA_TO_DEVICE);
2076
2077         ret = nvme_setup_cmd(ns, rq, c);
2078         if (ret)
2079                 goto unmap_qe;
2080
2081         blk_mq_start_request(rq);
2082
2083         if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2084             queue->pi_support &&
2085             (c->common.opcode == nvme_cmd_write ||
2086              c->common.opcode == nvme_cmd_read) &&
2087             nvme_ns_has_pi(ns))
2088                 req->use_sig_mr = true;
2089         else
2090                 req->use_sig_mr = false;
2091
2092         err = nvme_rdma_map_data(queue, rq, c);
2093         if (unlikely(err < 0)) {
2094                 dev_err(queue->ctrl->ctrl.device,
2095                              "Failed to map data (%d)\n", err);
2096                 goto err;
2097         }
2098
2099         sqe->cqe.done = nvme_rdma_send_done;
2100
2101         ib_dma_sync_single_for_device(dev, sqe->dma,
2102                         sizeof(struct nvme_command), DMA_TO_DEVICE);
2103
2104         err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2105                         req->mr ? &req->reg_wr.wr : NULL);
2106         if (unlikely(err))
2107                 goto err_unmap;
2108
2109         return BLK_STS_OK;
2110
2111 err_unmap:
2112         nvme_rdma_unmap_data(queue, rq);
2113 err:
2114         if (err == -ENOMEM || err == -EAGAIN)
2115                 ret = BLK_STS_RESOURCE;
2116         else
2117                 ret = BLK_STS_IOERR;
2118         nvme_cleanup_cmd(rq);
2119 unmap_qe:
2120         ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2121                             DMA_TO_DEVICE);
2122         return ret;
2123 }
2124
2125 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
2126 {
2127         struct nvme_rdma_queue *queue = hctx->driver_data;
2128
2129         return ib_process_cq_direct(queue->ib_cq, -1);
2130 }
2131
2132 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2133 {
2134         struct request *rq = blk_mq_rq_from_pdu(req);
2135         struct ib_mr_status mr_status;
2136         int ret;
2137
2138         ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2139         if (ret) {
2140                 pr_err("ib_check_mr_status failed, ret %d\n", ret);
2141                 nvme_req(rq)->status = NVME_SC_INVALID_PI;
2142                 return;
2143         }
2144
2145         if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2146                 switch (mr_status.sig_err.err_type) {
2147                 case IB_SIG_BAD_GUARD:
2148                         nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2149                         break;
2150                 case IB_SIG_BAD_REFTAG:
2151                         nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2152                         break;
2153                 case IB_SIG_BAD_APPTAG:
2154                         nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2155                         break;
2156                 }
2157                 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2158                        mr_status.sig_err.err_type, mr_status.sig_err.expected,
2159                        mr_status.sig_err.actual);
2160         }
2161 }
2162
2163 static void nvme_rdma_complete_rq(struct request *rq)
2164 {
2165         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2166         struct nvme_rdma_queue *queue = req->queue;
2167         struct ib_device *ibdev = queue->device->dev;
2168
2169         if (req->use_sig_mr)
2170                 nvme_rdma_check_pi_status(req);
2171
2172         nvme_rdma_unmap_data(queue, rq);
2173         ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2174                             DMA_TO_DEVICE);
2175         nvme_complete_rq(rq);
2176 }
2177
2178 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2179 {
2180         struct nvme_rdma_ctrl *ctrl = set->driver_data;
2181         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2182
2183         if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2184                 /* separate read/write queues */
2185                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2186                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2187                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2188                 set->map[HCTX_TYPE_READ].nr_queues =
2189                         ctrl->io_queues[HCTX_TYPE_READ];
2190                 set->map[HCTX_TYPE_READ].queue_offset =
2191                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2192         } else {
2193                 /* shared read/write queues */
2194                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2195                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2196                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2197                 set->map[HCTX_TYPE_READ].nr_queues =
2198                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2199                 set->map[HCTX_TYPE_READ].queue_offset = 0;
2200         }
2201         blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
2202                         ctrl->device->dev, 0);
2203         blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
2204                         ctrl->device->dev, 0);
2205
2206         if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2207                 /* map dedicated poll queues only if we have queues left */
2208                 set->map[HCTX_TYPE_POLL].nr_queues =
2209                                 ctrl->io_queues[HCTX_TYPE_POLL];
2210                 set->map[HCTX_TYPE_POLL].queue_offset =
2211                         ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2212                         ctrl->io_queues[HCTX_TYPE_READ];
2213                 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2214         }
2215
2216         dev_info(ctrl->ctrl.device,
2217                 "mapped %d/%d/%d default/read/poll queues.\n",
2218                 ctrl->io_queues[HCTX_TYPE_DEFAULT],
2219                 ctrl->io_queues[HCTX_TYPE_READ],
2220                 ctrl->io_queues[HCTX_TYPE_POLL]);
2221
2222         return 0;
2223 }
2224
2225 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2226         .queue_rq       = nvme_rdma_queue_rq,
2227         .complete       = nvme_rdma_complete_rq,
2228         .init_request   = nvme_rdma_init_request,
2229         .exit_request   = nvme_rdma_exit_request,
2230         .init_hctx      = nvme_rdma_init_hctx,
2231         .timeout        = nvme_rdma_timeout,
2232         .map_queues     = nvme_rdma_map_queues,
2233         .poll           = nvme_rdma_poll,
2234 };
2235
2236 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2237         .queue_rq       = nvme_rdma_queue_rq,
2238         .complete       = nvme_rdma_complete_rq,
2239         .init_request   = nvme_rdma_init_request,
2240         .exit_request   = nvme_rdma_exit_request,
2241         .init_hctx      = nvme_rdma_init_admin_hctx,
2242         .timeout        = nvme_rdma_timeout,
2243 };
2244
2245 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2246 {
2247         nvme_rdma_teardown_io_queues(ctrl, shutdown);
2248         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2249         if (shutdown)
2250                 nvme_shutdown_ctrl(&ctrl->ctrl);
2251         else
2252                 nvme_disable_ctrl(&ctrl->ctrl);
2253         nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2254 }
2255
2256 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2257 {
2258         nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2259 }
2260
2261 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2262 {
2263         struct nvme_rdma_ctrl *ctrl =
2264                 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2265
2266         nvme_stop_ctrl(&ctrl->ctrl);
2267         nvme_rdma_shutdown_ctrl(ctrl, false);
2268
2269         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2270                 /* state change failure should never happen */
2271                 WARN_ON_ONCE(1);
2272                 return;
2273         }
2274
2275         if (nvme_rdma_setup_ctrl(ctrl, false))
2276                 goto out_fail;
2277
2278         return;
2279
2280 out_fail:
2281         ++ctrl->ctrl.nr_reconnects;
2282         nvme_rdma_reconnect_or_remove(ctrl);
2283 }
2284
2285 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2286         .name                   = "rdma",
2287         .module                 = THIS_MODULE,
2288         .flags                  = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2289         .reg_read32             = nvmf_reg_read32,
2290         .reg_read64             = nvmf_reg_read64,
2291         .reg_write32            = nvmf_reg_write32,
2292         .free_ctrl              = nvme_rdma_free_ctrl,
2293         .submit_async_event     = nvme_rdma_submit_async_event,
2294         .delete_ctrl            = nvme_rdma_delete_ctrl,
2295         .get_address            = nvmf_get_address,
2296         .stop_ctrl              = nvme_rdma_stop_ctrl,
2297 };
2298
2299 /*
2300  * Fails a connection request if it matches an existing controller
2301  * (association) with the same tuple:
2302  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2303  *
2304  * if local address is not specified in the request, it will match an
2305  * existing controller with all the other parameters the same and no
2306  * local port address specified as well.
2307  *
2308  * The ports don't need to be compared as they are intrinsically
2309  * already matched by the port pointers supplied.
2310  */
2311 static bool
2312 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2313 {
2314         struct nvme_rdma_ctrl *ctrl;
2315         bool found = false;
2316
2317         mutex_lock(&nvme_rdma_ctrl_mutex);
2318         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2319                 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2320                 if (found)
2321                         break;
2322         }
2323         mutex_unlock(&nvme_rdma_ctrl_mutex);
2324
2325         return found;
2326 }
2327
2328 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2329                 struct nvmf_ctrl_options *opts)
2330 {
2331         struct nvme_rdma_ctrl *ctrl;
2332         int ret;
2333         bool changed;
2334
2335         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2336         if (!ctrl)
2337                 return ERR_PTR(-ENOMEM);
2338         ctrl->ctrl.opts = opts;
2339         INIT_LIST_HEAD(&ctrl->list);
2340
2341         if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2342                 opts->trsvcid =
2343                         kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2344                 if (!opts->trsvcid) {
2345                         ret = -ENOMEM;
2346                         goto out_free_ctrl;
2347                 }
2348                 opts->mask |= NVMF_OPT_TRSVCID;
2349         }
2350
2351         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2352                         opts->traddr, opts->trsvcid, &ctrl->addr);
2353         if (ret) {
2354                 pr_err("malformed address passed: %s:%s\n",
2355                         opts->traddr, opts->trsvcid);
2356                 goto out_free_ctrl;
2357         }
2358
2359         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2360                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2361                         opts->host_traddr, NULL, &ctrl->src_addr);
2362                 if (ret) {
2363                         pr_err("malformed src address passed: %s\n",
2364                                opts->host_traddr);
2365                         goto out_free_ctrl;
2366                 }
2367         }
2368
2369         if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2370                 ret = -EALREADY;
2371                 goto out_free_ctrl;
2372         }
2373
2374         INIT_DELAYED_WORK(&ctrl->reconnect_work,
2375                         nvme_rdma_reconnect_ctrl_work);
2376         INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2377         INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2378
2379         ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2380                                 opts->nr_poll_queues + 1;
2381         ctrl->ctrl.sqsize = opts->queue_size - 1;
2382         ctrl->ctrl.kato = opts->kato;
2383
2384         ret = -ENOMEM;
2385         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2386                                 GFP_KERNEL);
2387         if (!ctrl->queues)
2388                 goto out_free_ctrl;
2389
2390         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2391                                 0 /* no quirks, we're perfect! */);
2392         if (ret)
2393                 goto out_kfree_queues;
2394
2395         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2396         WARN_ON_ONCE(!changed);
2397
2398         ret = nvme_rdma_setup_ctrl(ctrl, true);
2399         if (ret)
2400                 goto out_uninit_ctrl;
2401
2402         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2403                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2404
2405         mutex_lock(&nvme_rdma_ctrl_mutex);
2406         list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2407         mutex_unlock(&nvme_rdma_ctrl_mutex);
2408
2409         return &ctrl->ctrl;
2410
2411 out_uninit_ctrl:
2412         nvme_uninit_ctrl(&ctrl->ctrl);
2413         nvme_put_ctrl(&ctrl->ctrl);
2414         if (ret > 0)
2415                 ret = -EIO;
2416         return ERR_PTR(ret);
2417 out_kfree_queues:
2418         kfree(ctrl->queues);
2419 out_free_ctrl:
2420         kfree(ctrl);
2421         return ERR_PTR(ret);
2422 }
2423
2424 static struct nvmf_transport_ops nvme_rdma_transport = {
2425         .name           = "rdma",
2426         .module         = THIS_MODULE,
2427         .required_opts  = NVMF_OPT_TRADDR,
2428         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2429                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2430                           NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2431                           NVMF_OPT_TOS,
2432         .create_ctrl    = nvme_rdma_create_ctrl,
2433 };
2434
2435 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2436 {
2437         struct nvme_rdma_ctrl *ctrl;
2438         struct nvme_rdma_device *ndev;
2439         bool found = false;
2440
2441         mutex_lock(&device_list_mutex);
2442         list_for_each_entry(ndev, &device_list, entry) {
2443                 if (ndev->dev == ib_device) {
2444                         found = true;
2445                         break;
2446                 }
2447         }
2448         mutex_unlock(&device_list_mutex);
2449
2450         if (!found)
2451                 return;
2452
2453         /* Delete all controllers using this device */
2454         mutex_lock(&nvme_rdma_ctrl_mutex);
2455         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2456                 if (ctrl->device->dev != ib_device)
2457                         continue;
2458                 nvme_delete_ctrl(&ctrl->ctrl);
2459         }
2460         mutex_unlock(&nvme_rdma_ctrl_mutex);
2461
2462         flush_workqueue(nvme_delete_wq);
2463 }
2464
2465 static struct ib_client nvme_rdma_ib_client = {
2466         .name   = "nvme_rdma",
2467         .remove = nvme_rdma_remove_one
2468 };
2469
2470 static int __init nvme_rdma_init_module(void)
2471 {
2472         int ret;
2473
2474         ret = ib_register_client(&nvme_rdma_ib_client);
2475         if (ret)
2476                 return ret;
2477
2478         ret = nvmf_register_transport(&nvme_rdma_transport);
2479         if (ret)
2480                 goto err_unreg_client;
2481
2482         return 0;
2483
2484 err_unreg_client:
2485         ib_unregister_client(&nvme_rdma_ib_client);
2486         return ret;
2487 }
2488
2489 static void __exit nvme_rdma_cleanup_module(void)
2490 {
2491         struct nvme_rdma_ctrl *ctrl;
2492
2493         nvmf_unregister_transport(&nvme_rdma_transport);
2494         ib_unregister_client(&nvme_rdma_ib_client);
2495
2496         mutex_lock(&nvme_rdma_ctrl_mutex);
2497         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2498                 nvme_delete_ctrl(&ctrl->ctrl);
2499         mutex_unlock(&nvme_rdma_ctrl_mutex);
2500         flush_workqueue(nvme_delete_wq);
2501 }
2502
2503 module_init(nvme_rdma_init_module);
2504 module_exit(nvme_rdma_cleanup_module);
2505
2506 MODULE_LICENSE("GPL v2");