GNU Linux-libre 4.9-gnu1
[releases.git] / drivers / nvme / host / rdma.c
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/err.h>
19 #include <linux/string.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/types.h>
23 #include <linux/list.h>
24 #include <linux/mutex.h>
25 #include <linux/scatterlist.h>
26 #include <linux/nvme.h>
27 #include <asm/unaligned.h>
28
29 #include <rdma/ib_verbs.h>
30 #include <rdma/rdma_cm.h>
31 #include <rdma/ib_cm.h>
32 #include <linux/nvme-rdma.h>
33
34 #include "nvme.h"
35 #include "fabrics.h"
36
37
38 #define NVME_RDMA_CONNECT_TIMEOUT_MS    1000            /* 1 second */
39
40 #define NVME_RDMA_MAX_SEGMENT_SIZE      0xffffff        /* 24-bit SGL field */
41
42 #define NVME_RDMA_MAX_SEGMENTS          256
43
44 #define NVME_RDMA_MAX_INLINE_SEGMENTS   1
45
46 /*
47  * We handle AEN commands ourselves and don't even let the
48  * block layer know about them.
49  */
50 #define NVME_RDMA_NR_AEN_COMMANDS      1
51 #define NVME_RDMA_AQ_BLKMQ_DEPTH       \
52         (NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
53
54 struct nvme_rdma_device {
55         struct ib_device       *dev;
56         struct ib_pd           *pd;
57         struct kref             ref;
58         struct list_head        entry;
59 };
60
61 struct nvme_rdma_qe {
62         struct ib_cqe           cqe;
63         void                    *data;
64         u64                     dma;
65 };
66
67 struct nvme_rdma_queue;
68 struct nvme_rdma_request {
69         struct ib_mr            *mr;
70         struct nvme_rdma_qe     sqe;
71         struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
72         u32                     num_sge;
73         int                     nents;
74         bool                    inline_data;
75         struct ib_reg_wr        reg_wr;
76         struct ib_cqe           reg_cqe;
77         struct nvme_rdma_queue  *queue;
78         struct sg_table         sg_table;
79         struct scatterlist      first_sgl[];
80 };
81
82 enum nvme_rdma_queue_flags {
83         NVME_RDMA_Q_CONNECTED = (1 << 0),
84         NVME_RDMA_IB_QUEUE_ALLOCATED = (1 << 1),
85         NVME_RDMA_Q_DELETING = (1 << 2),
86         NVME_RDMA_Q_LIVE = (1 << 3),
87 };
88
89 struct nvme_rdma_queue {
90         struct nvme_rdma_qe     *rsp_ring;
91         u8                      sig_count;
92         int                     queue_size;
93         size_t                  cmnd_capsule_len;
94         struct nvme_rdma_ctrl   *ctrl;
95         struct nvme_rdma_device *device;
96         struct ib_cq            *ib_cq;
97         struct ib_qp            *qp;
98
99         unsigned long           flags;
100         struct rdma_cm_id       *cm_id;
101         int                     cm_error;
102         struct completion       cm_done;
103 };
104
105 struct nvme_rdma_ctrl {
106         /* read and written in the hot path */
107         spinlock_t              lock;
108
109         /* read only in the hot path */
110         struct nvme_rdma_queue  *queues;
111         u32                     queue_count;
112
113         /* other member variables */
114         struct blk_mq_tag_set   tag_set;
115         struct work_struct      delete_work;
116         struct work_struct      reset_work;
117         struct work_struct      err_work;
118
119         struct nvme_rdma_qe     async_event_sqe;
120
121         int                     reconnect_delay;
122         struct delayed_work     reconnect_work;
123
124         struct list_head        list;
125
126         struct blk_mq_tag_set   admin_tag_set;
127         struct nvme_rdma_device *device;
128
129         u64                     cap;
130         u32                     max_fr_pages;
131
132         union {
133                 struct sockaddr addr;
134                 struct sockaddr_in addr_in;
135         };
136
137         struct nvme_ctrl        ctrl;
138 };
139
140 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
141 {
142         return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
143 }
144
145 static LIST_HEAD(device_list);
146 static DEFINE_MUTEX(device_list_mutex);
147
148 static LIST_HEAD(nvme_rdma_ctrl_list);
149 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
150
151 static struct workqueue_struct *nvme_rdma_wq;
152
153 /*
154  * Disabling this option makes small I/O goes faster, but is fundamentally
155  * unsafe.  With it turned off we will have to register a global rkey that
156  * allows read and write access to all physical memory.
157  */
158 static bool register_always = true;
159 module_param(register_always, bool, 0444);
160 MODULE_PARM_DESC(register_always,
161          "Use memory registration even for contiguous memory regions");
162
163 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
164                 struct rdma_cm_event *event);
165 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
166
167 /* XXX: really should move to a generic header sooner or later.. */
168 static inline void put_unaligned_le24(u32 val, u8 *p)
169 {
170         *p++ = val;
171         *p++ = val >> 8;
172         *p++ = val >> 16;
173 }
174
175 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
176 {
177         return queue - queue->ctrl->queues;
178 }
179
180 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
181 {
182         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
183 }
184
185 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
186                 size_t capsule_size, enum dma_data_direction dir)
187 {
188         ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
189         kfree(qe->data);
190 }
191
192 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
193                 size_t capsule_size, enum dma_data_direction dir)
194 {
195         qe->data = kzalloc(capsule_size, GFP_KERNEL);
196         if (!qe->data)
197                 return -ENOMEM;
198
199         qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
200         if (ib_dma_mapping_error(ibdev, qe->dma)) {
201                 kfree(qe->data);
202                 return -ENOMEM;
203         }
204
205         return 0;
206 }
207
208 static void nvme_rdma_free_ring(struct ib_device *ibdev,
209                 struct nvme_rdma_qe *ring, size_t ib_queue_size,
210                 size_t capsule_size, enum dma_data_direction dir)
211 {
212         int i;
213
214         for (i = 0; i < ib_queue_size; i++)
215                 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
216         kfree(ring);
217 }
218
219 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
220                 size_t ib_queue_size, size_t capsule_size,
221                 enum dma_data_direction dir)
222 {
223         struct nvme_rdma_qe *ring;
224         int i;
225
226         ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
227         if (!ring)
228                 return NULL;
229
230         for (i = 0; i < ib_queue_size; i++) {
231                 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
232                         goto out_free_ring;
233         }
234
235         return ring;
236
237 out_free_ring:
238         nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
239         return NULL;
240 }
241
242 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
243 {
244         pr_debug("QP event %d\n", event->event);
245 }
246
247 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
248 {
249         wait_for_completion_interruptible_timeout(&queue->cm_done,
250                         msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
251         return queue->cm_error;
252 }
253
254 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
255 {
256         struct nvme_rdma_device *dev = queue->device;
257         struct ib_qp_init_attr init_attr;
258         int ret;
259
260         memset(&init_attr, 0, sizeof(init_attr));
261         init_attr.event_handler = nvme_rdma_qp_event;
262         /* +1 for drain */
263         init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
264         /* +1 for drain */
265         init_attr.cap.max_recv_wr = queue->queue_size + 1;
266         init_attr.cap.max_recv_sge = 1;
267         init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
268         init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
269         init_attr.qp_type = IB_QPT_RC;
270         init_attr.send_cq = queue->ib_cq;
271         init_attr.recv_cq = queue->ib_cq;
272
273         ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
274
275         queue->qp = queue->cm_id->qp;
276         return ret;
277 }
278
279 static int nvme_rdma_reinit_request(void *data, struct request *rq)
280 {
281         struct nvme_rdma_ctrl *ctrl = data;
282         struct nvme_rdma_device *dev = ctrl->device;
283         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
284         int ret = 0;
285
286         if (!req->mr->need_inval)
287                 goto out;
288
289         ib_dereg_mr(req->mr);
290
291         req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
292                         ctrl->max_fr_pages);
293         if (IS_ERR(req->mr)) {
294                 ret = PTR_ERR(req->mr);
295                 req->mr = NULL;
296                 goto out;
297         }
298
299         req->mr->need_inval = false;
300
301 out:
302         return ret;
303 }
304
305 static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl,
306                 struct request *rq, unsigned int queue_idx)
307 {
308         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
309         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
310         struct nvme_rdma_device *dev = queue->device;
311
312         if (req->mr)
313                 ib_dereg_mr(req->mr);
314
315         nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
316                         DMA_TO_DEVICE);
317 }
318
319 static void nvme_rdma_exit_request(void *data, struct request *rq,
320                                 unsigned int hctx_idx, unsigned int rq_idx)
321 {
322         return __nvme_rdma_exit_request(data, rq, hctx_idx + 1);
323 }
324
325 static void nvme_rdma_exit_admin_request(void *data, struct request *rq,
326                                 unsigned int hctx_idx, unsigned int rq_idx)
327 {
328         return __nvme_rdma_exit_request(data, rq, 0);
329 }
330
331 static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl,
332                 struct request *rq, unsigned int queue_idx)
333 {
334         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
335         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
336         struct nvme_rdma_device *dev = queue->device;
337         struct ib_device *ibdev = dev->dev;
338         int ret;
339
340         BUG_ON(queue_idx >= ctrl->queue_count);
341
342         ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
343                         DMA_TO_DEVICE);
344         if (ret)
345                 return ret;
346
347         req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
348                         ctrl->max_fr_pages);
349         if (IS_ERR(req->mr)) {
350                 ret = PTR_ERR(req->mr);
351                 goto out_free_qe;
352         }
353
354         req->queue = queue;
355
356         return 0;
357
358 out_free_qe:
359         nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
360                         DMA_TO_DEVICE);
361         return -ENOMEM;
362 }
363
364 static int nvme_rdma_init_request(void *data, struct request *rq,
365                                 unsigned int hctx_idx, unsigned int rq_idx,
366                                 unsigned int numa_node)
367 {
368         return __nvme_rdma_init_request(data, rq, hctx_idx + 1);
369 }
370
371 static int nvme_rdma_init_admin_request(void *data, struct request *rq,
372                                 unsigned int hctx_idx, unsigned int rq_idx,
373                                 unsigned int numa_node)
374 {
375         return __nvme_rdma_init_request(data, rq, 0);
376 }
377
378 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
379                 unsigned int hctx_idx)
380 {
381         struct nvme_rdma_ctrl *ctrl = data;
382         struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
383
384         BUG_ON(hctx_idx >= ctrl->queue_count);
385
386         hctx->driver_data = queue;
387         return 0;
388 }
389
390 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
391                 unsigned int hctx_idx)
392 {
393         struct nvme_rdma_ctrl *ctrl = data;
394         struct nvme_rdma_queue *queue = &ctrl->queues[0];
395
396         BUG_ON(hctx_idx != 0);
397
398         hctx->driver_data = queue;
399         return 0;
400 }
401
402 static void nvme_rdma_free_dev(struct kref *ref)
403 {
404         struct nvme_rdma_device *ndev =
405                 container_of(ref, struct nvme_rdma_device, ref);
406
407         mutex_lock(&device_list_mutex);
408         list_del(&ndev->entry);
409         mutex_unlock(&device_list_mutex);
410
411         ib_dealloc_pd(ndev->pd);
412         kfree(ndev);
413 }
414
415 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
416 {
417         kref_put(&dev->ref, nvme_rdma_free_dev);
418 }
419
420 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
421 {
422         return kref_get_unless_zero(&dev->ref);
423 }
424
425 static struct nvme_rdma_device *
426 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
427 {
428         struct nvme_rdma_device *ndev;
429
430         mutex_lock(&device_list_mutex);
431         list_for_each_entry(ndev, &device_list, entry) {
432                 if (ndev->dev->node_guid == cm_id->device->node_guid &&
433                     nvme_rdma_dev_get(ndev))
434                         goto out_unlock;
435         }
436
437         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
438         if (!ndev)
439                 goto out_err;
440
441         ndev->dev = cm_id->device;
442         kref_init(&ndev->ref);
443
444         ndev->pd = ib_alloc_pd(ndev->dev,
445                 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
446         if (IS_ERR(ndev->pd))
447                 goto out_free_dev;
448
449         if (!(ndev->dev->attrs.device_cap_flags &
450               IB_DEVICE_MEM_MGT_EXTENSIONS)) {
451                 dev_err(&ndev->dev->dev,
452                         "Memory registrations not supported.\n");
453                 goto out_free_pd;
454         }
455
456         list_add(&ndev->entry, &device_list);
457 out_unlock:
458         mutex_unlock(&device_list_mutex);
459         return ndev;
460
461 out_free_pd:
462         ib_dealloc_pd(ndev->pd);
463 out_free_dev:
464         kfree(ndev);
465 out_err:
466         mutex_unlock(&device_list_mutex);
467         return NULL;
468 }
469
470 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
471 {
472         struct nvme_rdma_device *dev;
473         struct ib_device *ibdev;
474
475         if (!test_and_clear_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags))
476                 return;
477
478         dev = queue->device;
479         ibdev = dev->dev;
480         rdma_destroy_qp(queue->cm_id);
481         ib_free_cq(queue->ib_cq);
482
483         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
484                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
485
486         nvme_rdma_dev_put(dev);
487 }
488
489 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue,
490                 struct nvme_rdma_device *dev)
491 {
492         struct ib_device *ibdev = dev->dev;
493         const int send_wr_factor = 3;                   /* MR, SEND, INV */
494         const int cq_factor = send_wr_factor + 1;       /* + RECV */
495         int comp_vector, idx = nvme_rdma_queue_idx(queue);
496
497         int ret;
498
499         queue->device = dev;
500
501         /*
502          * The admin queue is barely used once the controller is live, so don't
503          * bother to spread it out.
504          */
505         if (idx == 0)
506                 comp_vector = 0;
507         else
508                 comp_vector = idx % ibdev->num_comp_vectors;
509
510
511         /* +1 for ib_stop_cq */
512         queue->ib_cq = ib_alloc_cq(dev->dev, queue,
513                                 cq_factor * queue->queue_size + 1, comp_vector,
514                                 IB_POLL_SOFTIRQ);
515         if (IS_ERR(queue->ib_cq)) {
516                 ret = PTR_ERR(queue->ib_cq);
517                 goto out;
518         }
519
520         ret = nvme_rdma_create_qp(queue, send_wr_factor);
521         if (ret)
522                 goto out_destroy_ib_cq;
523
524         queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
525                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
526         if (!queue->rsp_ring) {
527                 ret = -ENOMEM;
528                 goto out_destroy_qp;
529         }
530         set_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags);
531
532         return 0;
533
534 out_destroy_qp:
535         ib_destroy_qp(queue->qp);
536 out_destroy_ib_cq:
537         ib_free_cq(queue->ib_cq);
538 out:
539         return ret;
540 }
541
542 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
543                 int idx, size_t queue_size)
544 {
545         struct nvme_rdma_queue *queue;
546         int ret;
547
548         queue = &ctrl->queues[idx];
549         queue->ctrl = ctrl;
550         init_completion(&queue->cm_done);
551
552         if (idx > 0)
553                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
554         else
555                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
556
557         queue->queue_size = queue_size;
558
559         queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
560                         RDMA_PS_TCP, IB_QPT_RC);
561         if (IS_ERR(queue->cm_id)) {
562                 dev_info(ctrl->ctrl.device,
563                         "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
564                 return PTR_ERR(queue->cm_id);
565         }
566
567         queue->cm_error = -ETIMEDOUT;
568         ret = rdma_resolve_addr(queue->cm_id, NULL, &ctrl->addr,
569                         NVME_RDMA_CONNECT_TIMEOUT_MS);
570         if (ret) {
571                 dev_info(ctrl->ctrl.device,
572                         "rdma_resolve_addr failed (%d).\n", ret);
573                 goto out_destroy_cm_id;
574         }
575
576         ret = nvme_rdma_wait_for_cm(queue);
577         if (ret) {
578                 dev_info(ctrl->ctrl.device,
579                         "rdma_resolve_addr wait failed (%d).\n", ret);
580                 goto out_destroy_cm_id;
581         }
582
583         clear_bit(NVME_RDMA_Q_DELETING, &queue->flags);
584         set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags);
585
586         return 0;
587
588 out_destroy_cm_id:
589         nvme_rdma_destroy_queue_ib(queue);
590         rdma_destroy_id(queue->cm_id);
591         return ret;
592 }
593
594 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
595 {
596         rdma_disconnect(queue->cm_id);
597         ib_drain_qp(queue->qp);
598 }
599
600 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
601 {
602         nvme_rdma_destroy_queue_ib(queue);
603         rdma_destroy_id(queue->cm_id);
604 }
605
606 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue)
607 {
608         if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags))
609                 return;
610         nvme_rdma_stop_queue(queue);
611         nvme_rdma_free_queue(queue);
612 }
613
614 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
615 {
616         int i;
617
618         for (i = 1; i < ctrl->queue_count; i++)
619                 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
620 }
621
622 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
623 {
624         int i, ret = 0;
625
626         for (i = 1; i < ctrl->queue_count; i++) {
627                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
628                 if (ret) {
629                         dev_info(ctrl->ctrl.device,
630                                 "failed to connect i/o queue: %d\n", ret);
631                         goto out_free_queues;
632                 }
633                 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
634         }
635
636         return 0;
637
638 out_free_queues:
639         nvme_rdma_free_io_queues(ctrl);
640         return ret;
641 }
642
643 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
644 {
645         int i, ret;
646
647         for (i = 1; i < ctrl->queue_count; i++) {
648                 ret = nvme_rdma_init_queue(ctrl, i,
649                                            ctrl->ctrl.opts->queue_size);
650                 if (ret) {
651                         dev_info(ctrl->ctrl.device,
652                                 "failed to initialize i/o queue: %d\n", ret);
653                         goto out_free_queues;
654                 }
655         }
656
657         return 0;
658
659 out_free_queues:
660         for (i--; i >= 1; i--)
661                 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
662
663         return ret;
664 }
665
666 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
667 {
668         nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
669                         sizeof(struct nvme_command), DMA_TO_DEVICE);
670         nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
671         blk_cleanup_queue(ctrl->ctrl.admin_q);
672         blk_mq_free_tag_set(&ctrl->admin_tag_set);
673         nvme_rdma_dev_put(ctrl->device);
674 }
675
676 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
677 {
678         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
679
680         if (list_empty(&ctrl->list))
681                 goto free_ctrl;
682
683         mutex_lock(&nvme_rdma_ctrl_mutex);
684         list_del(&ctrl->list);
685         mutex_unlock(&nvme_rdma_ctrl_mutex);
686
687         kfree(ctrl->queues);
688         nvmf_free_options(nctrl->opts);
689 free_ctrl:
690         kfree(ctrl);
691 }
692
693 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
694 {
695         struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
696                         struct nvme_rdma_ctrl, reconnect_work);
697         bool changed;
698         int ret;
699
700         if (ctrl->queue_count > 1) {
701                 nvme_rdma_free_io_queues(ctrl);
702
703                 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
704                 if (ret)
705                         goto requeue;
706         }
707
708         nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
709
710         ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set);
711         if (ret)
712                 goto requeue;
713
714         ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
715         if (ret)
716                 goto requeue;
717
718         blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
719
720         ret = nvmf_connect_admin_queue(&ctrl->ctrl);
721         if (ret)
722                 goto stop_admin_q;
723
724         set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);
725
726         ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
727         if (ret)
728                 goto stop_admin_q;
729
730         nvme_start_keep_alive(&ctrl->ctrl);
731
732         if (ctrl->queue_count > 1) {
733                 ret = nvme_rdma_init_io_queues(ctrl);
734                 if (ret)
735                         goto stop_admin_q;
736
737                 ret = nvme_rdma_connect_io_queues(ctrl);
738                 if (ret)
739                         goto stop_admin_q;
740         }
741
742         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
743         WARN_ON_ONCE(!changed);
744
745         if (ctrl->queue_count > 1) {
746                 nvme_start_queues(&ctrl->ctrl);
747                 nvme_queue_scan(&ctrl->ctrl);
748                 nvme_queue_async_events(&ctrl->ctrl);
749         }
750
751         dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
752
753         return;
754
755 stop_admin_q:
756         blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
757 requeue:
758         /* Make sure we are not resetting/deleting */
759         if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) {
760                 dev_info(ctrl->ctrl.device,
761                         "Failed reconnect attempt, requeueing...\n");
762                 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
763                                         ctrl->reconnect_delay * HZ);
764         }
765 }
766
767 static void nvme_rdma_error_recovery_work(struct work_struct *work)
768 {
769         struct nvme_rdma_ctrl *ctrl = container_of(work,
770                         struct nvme_rdma_ctrl, err_work);
771         int i;
772
773         nvme_stop_keep_alive(&ctrl->ctrl);
774
775         for (i = 0; i < ctrl->queue_count; i++) {
776                 clear_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[i].flags);
777                 clear_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
778         }
779
780         if (ctrl->queue_count > 1)
781                 nvme_stop_queues(&ctrl->ctrl);
782         blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
783
784         /* We must take care of fastfail/requeue all our inflight requests */
785         if (ctrl->queue_count > 1)
786                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
787                                         nvme_cancel_request, &ctrl->ctrl);
788         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
789                                 nvme_cancel_request, &ctrl->ctrl);
790
791         dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n",
792                 ctrl->reconnect_delay);
793
794         queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
795                                 ctrl->reconnect_delay * HZ);
796 }
797
798 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
799 {
800         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
801                 return;
802
803         queue_work(nvme_rdma_wq, &ctrl->err_work);
804 }
805
806 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
807                 const char *op)
808 {
809         struct nvme_rdma_queue *queue = cq->cq_context;
810         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
811
812         if (ctrl->ctrl.state == NVME_CTRL_LIVE)
813                 dev_info(ctrl->ctrl.device,
814                              "%s for CQE 0x%p failed with status %s (%d)\n",
815                              op, wc->wr_cqe,
816                              ib_wc_status_msg(wc->status), wc->status);
817         nvme_rdma_error_recovery(ctrl);
818 }
819
820 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
821 {
822         if (unlikely(wc->status != IB_WC_SUCCESS))
823                 nvme_rdma_wr_error(cq, wc, "MEMREG");
824 }
825
826 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
827 {
828         if (unlikely(wc->status != IB_WC_SUCCESS))
829                 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
830 }
831
832 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
833                 struct nvme_rdma_request *req)
834 {
835         struct ib_send_wr *bad_wr;
836         struct ib_send_wr wr = {
837                 .opcode             = IB_WR_LOCAL_INV,
838                 .next               = NULL,
839                 .num_sge            = 0,
840                 .send_flags         = 0,
841                 .ex.invalidate_rkey = req->mr->rkey,
842         };
843
844         req->reg_cqe.done = nvme_rdma_inv_rkey_done;
845         wr.wr_cqe = &req->reg_cqe;
846
847         return ib_post_send(queue->qp, &wr, &bad_wr);
848 }
849
850 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
851                 struct request *rq)
852 {
853         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
854         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
855         struct nvme_rdma_device *dev = queue->device;
856         struct ib_device *ibdev = dev->dev;
857         int res;
858
859         if (!blk_rq_bytes(rq))
860                 return;
861
862         if (req->mr->need_inval) {
863                 res = nvme_rdma_inv_rkey(queue, req);
864                 if (res < 0) {
865                         dev_err(ctrl->ctrl.device,
866                                 "Queueing INV WR for rkey %#x failed (%d)\n",
867                                 req->mr->rkey, res);
868                         nvme_rdma_error_recovery(queue->ctrl);
869                 }
870         }
871
872         ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
873                         req->nents, rq_data_dir(rq) ==
874                                     WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
875
876         nvme_cleanup_cmd(rq);
877         sg_free_table_chained(&req->sg_table, true);
878 }
879
880 static int nvme_rdma_set_sg_null(struct nvme_command *c)
881 {
882         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
883
884         sg->addr = 0;
885         put_unaligned_le24(0, sg->length);
886         put_unaligned_le32(0, sg->key);
887         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
888         return 0;
889 }
890
891 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
892                 struct nvme_rdma_request *req, struct nvme_command *c)
893 {
894         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
895
896         req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
897         req->sge[1].length = sg_dma_len(req->sg_table.sgl);
898         req->sge[1].lkey = queue->device->pd->local_dma_lkey;
899
900         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
901         sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
902         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
903
904         req->inline_data = true;
905         req->num_sge++;
906         return 0;
907 }
908
909 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
910                 struct nvme_rdma_request *req, struct nvme_command *c)
911 {
912         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
913
914         sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
915         put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
916         put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
917         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
918         return 0;
919 }
920
921 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
922                 struct nvme_rdma_request *req, struct nvme_command *c,
923                 int count)
924 {
925         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
926         int nr;
927
928         nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
929         if (nr < count) {
930                 if (nr < 0)
931                         return nr;
932                 return -EINVAL;
933         }
934
935         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
936
937         req->reg_cqe.done = nvme_rdma_memreg_done;
938         memset(&req->reg_wr, 0, sizeof(req->reg_wr));
939         req->reg_wr.wr.opcode = IB_WR_REG_MR;
940         req->reg_wr.wr.wr_cqe = &req->reg_cqe;
941         req->reg_wr.wr.num_sge = 0;
942         req->reg_wr.mr = req->mr;
943         req->reg_wr.key = req->mr->rkey;
944         req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
945                              IB_ACCESS_REMOTE_READ |
946                              IB_ACCESS_REMOTE_WRITE;
947
948         req->mr->need_inval = true;
949
950         sg->addr = cpu_to_le64(req->mr->iova);
951         put_unaligned_le24(req->mr->length, sg->length);
952         put_unaligned_le32(req->mr->rkey, sg->key);
953         sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
954                         NVME_SGL_FMT_INVALIDATE;
955
956         return 0;
957 }
958
959 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
960                 struct request *rq, unsigned int map_len,
961                 struct nvme_command *c)
962 {
963         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
964         struct nvme_rdma_device *dev = queue->device;
965         struct ib_device *ibdev = dev->dev;
966         int nents, count;
967         int ret;
968
969         req->num_sge = 1;
970         req->inline_data = false;
971         req->mr->need_inval = false;
972
973         c->common.flags |= NVME_CMD_SGL_METABUF;
974
975         if (!blk_rq_bytes(rq))
976                 return nvme_rdma_set_sg_null(c);
977
978         req->sg_table.sgl = req->first_sgl;
979         ret = sg_alloc_table_chained(&req->sg_table, rq->nr_phys_segments,
980                                 req->sg_table.sgl);
981         if (ret)
982                 return -ENOMEM;
983
984         nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
985         BUG_ON(nents > rq->nr_phys_segments);
986         req->nents = nents;
987
988         count = ib_dma_map_sg(ibdev, req->sg_table.sgl, nents,
989                     rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
990         if (unlikely(count <= 0)) {
991                 sg_free_table_chained(&req->sg_table, true);
992                 return -EIO;
993         }
994
995         if (count == 1) {
996                 if (rq_data_dir(rq) == WRITE &&
997                     map_len <= nvme_rdma_inline_data_size(queue) &&
998                     nvme_rdma_queue_idx(queue))
999                         return nvme_rdma_map_sg_inline(queue, req, c);
1000
1001                 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
1002                         return nvme_rdma_map_sg_single(queue, req, c);
1003         }
1004
1005         return nvme_rdma_map_sg_fr(queue, req, c, count);
1006 }
1007
1008 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1009 {
1010         if (unlikely(wc->status != IB_WC_SUCCESS))
1011                 nvme_rdma_wr_error(cq, wc, "SEND");
1012 }
1013
1014 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1015                 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1016                 struct ib_send_wr *first, bool flush)
1017 {
1018         struct ib_send_wr wr, *bad_wr;
1019         int ret;
1020
1021         sge->addr   = qe->dma;
1022         sge->length = sizeof(struct nvme_command),
1023         sge->lkey   = queue->device->pd->local_dma_lkey;
1024
1025         qe->cqe.done = nvme_rdma_send_done;
1026
1027         wr.next       = NULL;
1028         wr.wr_cqe     = &qe->cqe;
1029         wr.sg_list    = sge;
1030         wr.num_sge    = num_sge;
1031         wr.opcode     = IB_WR_SEND;
1032         wr.send_flags = 0;
1033
1034         /*
1035          * Unsignalled send completions are another giant desaster in the
1036          * IB Verbs spec:  If we don't regularly post signalled sends
1037          * the send queue will fill up and only a QP reset will rescue us.
1038          * Would have been way to obvious to handle this in hardware or
1039          * at least the RDMA stack..
1040          *
1041          * This messy and racy code sniplet is copy and pasted from the iSER
1042          * initiator, and the magic '32' comes from there as well.
1043          *
1044          * Always signal the flushes. The magic request used for the flush
1045          * sequencer is not allocated in our driver's tagset and it's
1046          * triggered to be freed by blk_cleanup_queue(). So we need to
1047          * always mark it as signaled to ensure that the "wr_cqe", which is
1048          * embeded in request's payload, is not freed when __ib_process_cq()
1049          * calls wr_cqe->done().
1050          */
1051         if ((++queue->sig_count % 32) == 0 || flush)
1052                 wr.send_flags |= IB_SEND_SIGNALED;
1053
1054         if (first)
1055                 first->next = &wr;
1056         else
1057                 first = &wr;
1058
1059         ret = ib_post_send(queue->qp, first, &bad_wr);
1060         if (ret) {
1061                 dev_err(queue->ctrl->ctrl.device,
1062                              "%s failed with error code %d\n", __func__, ret);
1063         }
1064         return ret;
1065 }
1066
1067 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1068                 struct nvme_rdma_qe *qe)
1069 {
1070         struct ib_recv_wr wr, *bad_wr;
1071         struct ib_sge list;
1072         int ret;
1073
1074         list.addr   = qe->dma;
1075         list.length = sizeof(struct nvme_completion);
1076         list.lkey   = queue->device->pd->local_dma_lkey;
1077
1078         qe->cqe.done = nvme_rdma_recv_done;
1079
1080         wr.next     = NULL;
1081         wr.wr_cqe   = &qe->cqe;
1082         wr.sg_list  = &list;
1083         wr.num_sge  = 1;
1084
1085         ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1086         if (ret) {
1087                 dev_err(queue->ctrl->ctrl.device,
1088                         "%s failed with error code %d\n", __func__, ret);
1089         }
1090         return ret;
1091 }
1092
1093 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1094 {
1095         u32 queue_idx = nvme_rdma_queue_idx(queue);
1096
1097         if (queue_idx == 0)
1098                 return queue->ctrl->admin_tag_set.tags[queue_idx];
1099         return queue->ctrl->tag_set.tags[queue_idx - 1];
1100 }
1101
1102 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1103 {
1104         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1105         struct nvme_rdma_queue *queue = &ctrl->queues[0];
1106         struct ib_device *dev = queue->device->dev;
1107         struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1108         struct nvme_command *cmd = sqe->data;
1109         struct ib_sge sge;
1110         int ret;
1111
1112         if (WARN_ON_ONCE(aer_idx != 0))
1113                 return;
1114
1115         ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1116
1117         memset(cmd, 0, sizeof(*cmd));
1118         cmd->common.opcode = nvme_admin_async_event;
1119         cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1120         cmd->common.flags |= NVME_CMD_SGL_METABUF;
1121         nvme_rdma_set_sg_null(cmd);
1122
1123         ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1124                         DMA_TO_DEVICE);
1125
1126         ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
1127         WARN_ON_ONCE(ret);
1128 }
1129
1130 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1131                 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1132 {
1133         u16 status = le16_to_cpu(cqe->status);
1134         struct request *rq;
1135         struct nvme_rdma_request *req;
1136         int ret = 0;
1137
1138         status >>= 1;
1139
1140         rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1141         if (!rq) {
1142                 dev_err(queue->ctrl->ctrl.device,
1143                         "tag 0x%x on QP %#x not found\n",
1144                         cqe->command_id, queue->qp->qp_num);
1145                 nvme_rdma_error_recovery(queue->ctrl);
1146                 return ret;
1147         }
1148         req = blk_mq_rq_to_pdu(rq);
1149
1150         if (rq->cmd_type == REQ_TYPE_DRV_PRIV && rq->special)
1151                 memcpy(rq->special, cqe, sizeof(*cqe));
1152
1153         if (rq->tag == tag)
1154                 ret = 1;
1155
1156         if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1157             wc->ex.invalidate_rkey == req->mr->rkey)
1158                 req->mr->need_inval = false;
1159
1160         blk_mq_complete_request(rq, status);
1161
1162         return ret;
1163 }
1164
1165 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1166 {
1167         struct nvme_rdma_qe *qe =
1168                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1169         struct nvme_rdma_queue *queue = cq->cq_context;
1170         struct ib_device *ibdev = queue->device->dev;
1171         struct nvme_completion *cqe = qe->data;
1172         const size_t len = sizeof(struct nvme_completion);
1173         int ret = 0;
1174
1175         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1176                 nvme_rdma_wr_error(cq, wc, "RECV");
1177                 return 0;
1178         }
1179
1180         ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1181         /*
1182          * AEN requests are special as they don't time out and can
1183          * survive any kind of queue freeze and often don't respond to
1184          * aborts.  We don't even bother to allocate a struct request
1185          * for them but rather special case them here.
1186          */
1187         if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1188                         cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1189                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe);
1190         else
1191                 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1192         ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1193
1194         nvme_rdma_post_recv(queue, qe);
1195         return ret;
1196 }
1197
1198 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1199 {
1200         __nvme_rdma_recv_done(cq, wc, -1);
1201 }
1202
1203 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1204 {
1205         int ret, i;
1206
1207         for (i = 0; i < queue->queue_size; i++) {
1208                 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1209                 if (ret)
1210                         goto out_destroy_queue_ib;
1211         }
1212
1213         return 0;
1214
1215 out_destroy_queue_ib:
1216         nvme_rdma_destroy_queue_ib(queue);
1217         return ret;
1218 }
1219
1220 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1221                 struct rdma_cm_event *ev)
1222 {
1223         if (ev->param.conn.private_data_len) {
1224                 struct nvme_rdma_cm_rej *rej =
1225                         (struct nvme_rdma_cm_rej *)ev->param.conn.private_data;
1226
1227                 dev_err(queue->ctrl->ctrl.device,
1228                         "Connect rejected, status %d.", le16_to_cpu(rej->sts));
1229                 /* XXX: Think of something clever to do here... */
1230         } else {
1231                 dev_err(queue->ctrl->ctrl.device,
1232                         "Connect rejected, no private data.\n");
1233         }
1234
1235         return -ECONNRESET;
1236 }
1237
1238 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1239 {
1240         struct nvme_rdma_device *dev;
1241         int ret;
1242
1243         dev = nvme_rdma_find_get_device(queue->cm_id);
1244         if (!dev) {
1245                 dev_err(queue->cm_id->device->dma_device,
1246                         "no client data found!\n");
1247                 return -ECONNREFUSED;
1248         }
1249
1250         ret = nvme_rdma_create_queue_ib(queue, dev);
1251         if (ret) {
1252                 nvme_rdma_dev_put(dev);
1253                 goto out;
1254         }
1255
1256         ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1257         if (ret) {
1258                 dev_err(queue->ctrl->ctrl.device,
1259                         "rdma_resolve_route failed (%d).\n",
1260                         queue->cm_error);
1261                 goto out_destroy_queue;
1262         }
1263
1264         return 0;
1265
1266 out_destroy_queue:
1267         nvme_rdma_destroy_queue_ib(queue);
1268 out:
1269         return ret;
1270 }
1271
1272 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1273 {
1274         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1275         struct rdma_conn_param param = { };
1276         struct nvme_rdma_cm_req priv = { };
1277         int ret;
1278
1279         param.qp_num = queue->qp->qp_num;
1280         param.flow_control = 1;
1281
1282         param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1283         /* maximum retry count */
1284         param.retry_count = 7;
1285         param.rnr_retry_count = 7;
1286         param.private_data = &priv;
1287         param.private_data_len = sizeof(priv);
1288
1289         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1290         priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1291         /*
1292          * set the admin queue depth to the minimum size
1293          * specified by the Fabrics standard.
1294          */
1295         if (priv.qid == 0) {
1296                 priv.hrqsize = cpu_to_le16(NVMF_AQ_DEPTH);
1297                 priv.hsqsize = cpu_to_le16(NVMF_AQ_DEPTH - 1);
1298         } else {
1299                 /*
1300                  * current interpretation of the fabrics spec
1301                  * is at minimum you make hrqsize sqsize+1, or a
1302                  * 1's based representation of sqsize.
1303                  */
1304                 priv.hrqsize = cpu_to_le16(queue->queue_size);
1305                 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1306         }
1307
1308         ret = rdma_connect(queue->cm_id, &param);
1309         if (ret) {
1310                 dev_err(ctrl->ctrl.device,
1311                         "rdma_connect failed (%d).\n", ret);
1312                 goto out_destroy_queue_ib;
1313         }
1314
1315         return 0;
1316
1317 out_destroy_queue_ib:
1318         nvme_rdma_destroy_queue_ib(queue);
1319         return ret;
1320 }
1321
1322 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1323                 struct rdma_cm_event *ev)
1324 {
1325         struct nvme_rdma_queue *queue = cm_id->context;
1326         int cm_error = 0;
1327
1328         dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1329                 rdma_event_msg(ev->event), ev->event,
1330                 ev->status, cm_id);
1331
1332         switch (ev->event) {
1333         case RDMA_CM_EVENT_ADDR_RESOLVED:
1334                 cm_error = nvme_rdma_addr_resolved(queue);
1335                 break;
1336         case RDMA_CM_EVENT_ROUTE_RESOLVED:
1337                 cm_error = nvme_rdma_route_resolved(queue);
1338                 break;
1339         case RDMA_CM_EVENT_ESTABLISHED:
1340                 queue->cm_error = nvme_rdma_conn_established(queue);
1341                 /* complete cm_done regardless of success/failure */
1342                 complete(&queue->cm_done);
1343                 return 0;
1344         case RDMA_CM_EVENT_REJECTED:
1345                 cm_error = nvme_rdma_conn_rejected(queue, ev);
1346                 break;
1347         case RDMA_CM_EVENT_ADDR_ERROR:
1348         case RDMA_CM_EVENT_ROUTE_ERROR:
1349         case RDMA_CM_EVENT_CONNECT_ERROR:
1350         case RDMA_CM_EVENT_UNREACHABLE:
1351                 dev_dbg(queue->ctrl->ctrl.device,
1352                         "CM error event %d\n", ev->event);
1353                 cm_error = -ECONNRESET;
1354                 break;
1355         case RDMA_CM_EVENT_DISCONNECTED:
1356         case RDMA_CM_EVENT_ADDR_CHANGE:
1357         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1358                 dev_dbg(queue->ctrl->ctrl.device,
1359                         "disconnect received - connection closed\n");
1360                 nvme_rdma_error_recovery(queue->ctrl);
1361                 break;
1362         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1363                 /* device removal is handled via the ib_client API */
1364                 break;
1365         default:
1366                 dev_err(queue->ctrl->ctrl.device,
1367                         "Unexpected RDMA CM event (%d)\n", ev->event);
1368                 nvme_rdma_error_recovery(queue->ctrl);
1369                 break;
1370         }
1371
1372         if (cm_error) {
1373                 queue->cm_error = cm_error;
1374                 complete(&queue->cm_done);
1375         }
1376
1377         return 0;
1378 }
1379
1380 static enum blk_eh_timer_return
1381 nvme_rdma_timeout(struct request *rq, bool reserved)
1382 {
1383         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1384
1385         /* queue error recovery */
1386         nvme_rdma_error_recovery(req->queue->ctrl);
1387
1388         /* fail with DNR on cmd timeout */
1389         rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1390
1391         return BLK_EH_HANDLED;
1392 }
1393
1394 /*
1395  * We cannot accept any other command until the Connect command has completed.
1396  */
1397 static inline bool nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue,
1398                 struct request *rq)
1399 {
1400         if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) {
1401                 struct nvme_command *cmd = (struct nvme_command *)rq->cmd;
1402
1403                 if (rq->cmd_type != REQ_TYPE_DRV_PRIV ||
1404                     cmd->common.opcode != nvme_fabrics_command ||
1405                     cmd->fabrics.fctype != nvme_fabrics_type_connect)
1406                         return false;
1407         }
1408
1409         return true;
1410 }
1411
1412 static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1413                 const struct blk_mq_queue_data *bd)
1414 {
1415         struct nvme_ns *ns = hctx->queue->queuedata;
1416         struct nvme_rdma_queue *queue = hctx->driver_data;
1417         struct request *rq = bd->rq;
1418         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1419         struct nvme_rdma_qe *sqe = &req->sqe;
1420         struct nvme_command *c = sqe->data;
1421         bool flush = false;
1422         struct ib_device *dev;
1423         unsigned int map_len;
1424         int ret;
1425
1426         WARN_ON_ONCE(rq->tag < 0);
1427
1428         if (!nvme_rdma_queue_is_ready(queue, rq))
1429                 return BLK_MQ_RQ_QUEUE_BUSY;
1430
1431         dev = queue->device->dev;
1432         ib_dma_sync_single_for_cpu(dev, sqe->dma,
1433                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1434
1435         ret = nvme_setup_cmd(ns, rq, c);
1436         if (ret)
1437                 return ret;
1438
1439         c->common.command_id = rq->tag;
1440         blk_mq_start_request(rq);
1441
1442         map_len = nvme_map_len(rq);
1443         ret = nvme_rdma_map_data(queue, rq, map_len, c);
1444         if (ret < 0) {
1445                 dev_err(queue->ctrl->ctrl.device,
1446                              "Failed to map data (%d)\n", ret);
1447                 nvme_cleanup_cmd(rq);
1448                 goto err;
1449         }
1450
1451         ib_dma_sync_single_for_device(dev, sqe->dma,
1452                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1453
1454         if (rq->cmd_type == REQ_TYPE_FS && req_op(rq) == REQ_OP_FLUSH)
1455                 flush = true;
1456         ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1457                         req->mr->need_inval ? &req->reg_wr.wr : NULL, flush);
1458         if (ret) {
1459                 nvme_rdma_unmap_data(queue, rq);
1460                 goto err;
1461         }
1462
1463         return BLK_MQ_RQ_QUEUE_OK;
1464 err:
1465         return (ret == -ENOMEM || ret == -EAGAIN) ?
1466                 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1467 }
1468
1469 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1470 {
1471         struct nvme_rdma_queue *queue = hctx->driver_data;
1472         struct ib_cq *cq = queue->ib_cq;
1473         struct ib_wc wc;
1474         int found = 0;
1475
1476         ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1477         while (ib_poll_cq(cq, 1, &wc) > 0) {
1478                 struct ib_cqe *cqe = wc.wr_cqe;
1479
1480                 if (cqe) {
1481                         if (cqe->done == nvme_rdma_recv_done)
1482                                 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1483                         else
1484                                 cqe->done(cq, &wc);
1485                 }
1486         }
1487
1488         return found;
1489 }
1490
1491 static void nvme_rdma_complete_rq(struct request *rq)
1492 {
1493         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1494         struct nvme_rdma_queue *queue = req->queue;
1495         int error = 0;
1496
1497         nvme_rdma_unmap_data(queue, rq);
1498
1499         if (unlikely(rq->errors)) {
1500                 if (nvme_req_needs_retry(rq, rq->errors)) {
1501                         nvme_requeue_req(rq);
1502                         return;
1503                 }
1504
1505                 if (rq->cmd_type == REQ_TYPE_DRV_PRIV)
1506                         error = rq->errors;
1507                 else
1508                         error = nvme_error_status(rq->errors);
1509         }
1510
1511         blk_mq_end_request(rq, error);
1512 }
1513
1514 static struct blk_mq_ops nvme_rdma_mq_ops = {
1515         .queue_rq       = nvme_rdma_queue_rq,
1516         .complete       = nvme_rdma_complete_rq,
1517         .init_request   = nvme_rdma_init_request,
1518         .exit_request   = nvme_rdma_exit_request,
1519         .reinit_request = nvme_rdma_reinit_request,
1520         .init_hctx      = nvme_rdma_init_hctx,
1521         .poll           = nvme_rdma_poll,
1522         .timeout        = nvme_rdma_timeout,
1523 };
1524
1525 static struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1526         .queue_rq       = nvme_rdma_queue_rq,
1527         .complete       = nvme_rdma_complete_rq,
1528         .init_request   = nvme_rdma_init_admin_request,
1529         .exit_request   = nvme_rdma_exit_admin_request,
1530         .reinit_request = nvme_rdma_reinit_request,
1531         .init_hctx      = nvme_rdma_init_admin_hctx,
1532         .timeout        = nvme_rdma_timeout,
1533 };
1534
1535 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl)
1536 {
1537         int error;
1538
1539         error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
1540         if (error)
1541                 return error;
1542
1543         ctrl->device = ctrl->queues[0].device;
1544
1545         /*
1546          * We need a reference on the device as long as the tag_set is alive,
1547          * as the MRs in the request structures need a valid ib_device.
1548          */
1549         error = -EINVAL;
1550         if (!nvme_rdma_dev_get(ctrl->device))
1551                 goto out_free_queue;
1552
1553         ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
1554                 ctrl->device->dev->attrs.max_fast_reg_page_list_len);
1555
1556         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
1557         ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops;
1558         ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
1559         ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
1560         ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
1561         ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1562                 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1563         ctrl->admin_tag_set.driver_data = ctrl;
1564         ctrl->admin_tag_set.nr_hw_queues = 1;
1565         ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
1566
1567         error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
1568         if (error)
1569                 goto out_put_dev;
1570
1571         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
1572         if (IS_ERR(ctrl->ctrl.admin_q)) {
1573                 error = PTR_ERR(ctrl->ctrl.admin_q);
1574                 goto out_free_tagset;
1575         }
1576
1577         error = nvmf_connect_admin_queue(&ctrl->ctrl);
1578         if (error)
1579                 goto out_cleanup_queue;
1580
1581         set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);
1582
1583         error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
1584         if (error) {
1585                 dev_err(ctrl->ctrl.device,
1586                         "prop_get NVME_REG_CAP failed\n");
1587                 goto out_cleanup_queue;
1588         }
1589
1590         ctrl->ctrl.sqsize =
1591                 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
1592
1593         error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
1594         if (error)
1595                 goto out_cleanup_queue;
1596
1597         ctrl->ctrl.max_hw_sectors =
1598                 (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);
1599
1600         error = nvme_init_identify(&ctrl->ctrl);
1601         if (error)
1602                 goto out_cleanup_queue;
1603
1604         error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
1605                         &ctrl->async_event_sqe, sizeof(struct nvme_command),
1606                         DMA_TO_DEVICE);
1607         if (error)
1608                 goto out_cleanup_queue;
1609
1610         nvme_start_keep_alive(&ctrl->ctrl);
1611
1612         return 0;
1613
1614 out_cleanup_queue:
1615         blk_cleanup_queue(ctrl->ctrl.admin_q);
1616 out_free_tagset:
1617         /* disconnect and drain the queue before freeing the tagset */
1618         nvme_rdma_stop_queue(&ctrl->queues[0]);
1619         blk_mq_free_tag_set(&ctrl->admin_tag_set);
1620 out_put_dev:
1621         nvme_rdma_dev_put(ctrl->device);
1622 out_free_queue:
1623         nvme_rdma_free_queue(&ctrl->queues[0]);
1624         return error;
1625 }
1626
1627 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl)
1628 {
1629         nvme_stop_keep_alive(&ctrl->ctrl);
1630         cancel_work_sync(&ctrl->err_work);
1631         cancel_delayed_work_sync(&ctrl->reconnect_work);
1632
1633         if (ctrl->queue_count > 1) {
1634                 nvme_stop_queues(&ctrl->ctrl);
1635                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
1636                                         nvme_cancel_request, &ctrl->ctrl);
1637                 nvme_rdma_free_io_queues(ctrl);
1638         }
1639
1640         if (test_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[0].flags))
1641                 nvme_shutdown_ctrl(&ctrl->ctrl);
1642
1643         blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
1644         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1645                                 nvme_cancel_request, &ctrl->ctrl);
1646         nvme_rdma_destroy_admin_queue(ctrl);
1647 }
1648
1649 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1650 {
1651         nvme_uninit_ctrl(&ctrl->ctrl);
1652         if (shutdown)
1653                 nvme_rdma_shutdown_ctrl(ctrl);
1654
1655         if (ctrl->ctrl.tagset) {
1656                 blk_cleanup_queue(ctrl->ctrl.connect_q);
1657                 blk_mq_free_tag_set(&ctrl->tag_set);
1658                 nvme_rdma_dev_put(ctrl->device);
1659         }
1660
1661         nvme_put_ctrl(&ctrl->ctrl);
1662 }
1663
1664 static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1665 {
1666         struct nvme_rdma_ctrl *ctrl = container_of(work,
1667                                 struct nvme_rdma_ctrl, delete_work);
1668
1669         __nvme_rdma_remove_ctrl(ctrl, true);
1670 }
1671
1672 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1673 {
1674         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1675                 return -EBUSY;
1676
1677         if (!queue_work(nvme_rdma_wq, &ctrl->delete_work))
1678                 return -EBUSY;
1679
1680         return 0;
1681 }
1682
1683 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1684 {
1685         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1686         int ret = 0;
1687
1688         /*
1689          * Keep a reference until all work is flushed since
1690          * __nvme_rdma_del_ctrl can free the ctrl mem
1691          */
1692         if (!kref_get_unless_zero(&ctrl->ctrl.kref))
1693                 return -EBUSY;
1694         ret = __nvme_rdma_del_ctrl(ctrl);
1695         if (!ret)
1696                 flush_work(&ctrl->delete_work);
1697         nvme_put_ctrl(&ctrl->ctrl);
1698         return ret;
1699 }
1700
1701 static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
1702 {
1703         struct nvme_rdma_ctrl *ctrl = container_of(work,
1704                                 struct nvme_rdma_ctrl, delete_work);
1705
1706         __nvme_rdma_remove_ctrl(ctrl, false);
1707 }
1708
1709 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1710 {
1711         struct nvme_rdma_ctrl *ctrl = container_of(work,
1712                                         struct nvme_rdma_ctrl, reset_work);
1713         int ret;
1714         bool changed;
1715
1716         nvme_rdma_shutdown_ctrl(ctrl);
1717
1718         ret = nvme_rdma_configure_admin_queue(ctrl);
1719         if (ret) {
1720                 /* ctrl is already shutdown, just remove the ctrl */
1721                 INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
1722                 goto del_dead_ctrl;
1723         }
1724
1725         if (ctrl->queue_count > 1) {
1726                 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
1727                 if (ret)
1728                         goto del_dead_ctrl;
1729
1730                 ret = nvme_rdma_init_io_queues(ctrl);
1731                 if (ret)
1732                         goto del_dead_ctrl;
1733
1734                 ret = nvme_rdma_connect_io_queues(ctrl);
1735                 if (ret)
1736                         goto del_dead_ctrl;
1737         }
1738
1739         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1740         WARN_ON_ONCE(!changed);
1741
1742         if (ctrl->queue_count > 1) {
1743                 nvme_start_queues(&ctrl->ctrl);
1744                 nvme_queue_scan(&ctrl->ctrl);
1745                 nvme_queue_async_events(&ctrl->ctrl);
1746         }
1747
1748         return;
1749
1750 del_dead_ctrl:
1751         /* Deleting this dead controller... */
1752         dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1753         WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work));
1754 }
1755
1756 static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl)
1757 {
1758         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1759
1760         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1761                 return -EBUSY;
1762
1763         if (!queue_work(nvme_rdma_wq, &ctrl->reset_work))
1764                 return -EBUSY;
1765
1766         flush_work(&ctrl->reset_work);
1767
1768         return 0;
1769 }
1770
1771 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1772         .name                   = "rdma",
1773         .module                 = THIS_MODULE,
1774         .is_fabrics             = true,
1775         .reg_read32             = nvmf_reg_read32,
1776         .reg_read64             = nvmf_reg_read64,
1777         .reg_write32            = nvmf_reg_write32,
1778         .reset_ctrl             = nvme_rdma_reset_ctrl,
1779         .free_ctrl              = nvme_rdma_free_ctrl,
1780         .submit_async_event     = nvme_rdma_submit_async_event,
1781         .delete_ctrl            = nvme_rdma_del_ctrl,
1782         .get_subsysnqn          = nvmf_get_subsysnqn,
1783         .get_address            = nvmf_get_address,
1784 };
1785
1786 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl)
1787 {
1788         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
1789         int ret;
1790
1791         ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
1792         if (ret)
1793                 return ret;
1794
1795         ctrl->queue_count = opts->nr_io_queues + 1;
1796         if (ctrl->queue_count < 2)
1797                 return 0;
1798
1799         dev_info(ctrl->ctrl.device,
1800                 "creating %d I/O queues.\n", opts->nr_io_queues);
1801
1802         ret = nvme_rdma_init_io_queues(ctrl);
1803         if (ret)
1804                 return ret;
1805
1806         /*
1807          * We need a reference on the device as long as the tag_set is alive,
1808          * as the MRs in the request structures need a valid ib_device.
1809          */
1810         ret = -EINVAL;
1811         if (!nvme_rdma_dev_get(ctrl->device))
1812                 goto out_free_io_queues;
1813
1814         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
1815         ctrl->tag_set.ops = &nvme_rdma_mq_ops;
1816         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
1817         ctrl->tag_set.reserved_tags = 1; /* fabric connect */
1818         ctrl->tag_set.numa_node = NUMA_NO_NODE;
1819         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1820         ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1821                 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1822         ctrl->tag_set.driver_data = ctrl;
1823         ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
1824         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
1825
1826         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
1827         if (ret)
1828                 goto out_put_dev;
1829         ctrl->ctrl.tagset = &ctrl->tag_set;
1830
1831         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
1832         if (IS_ERR(ctrl->ctrl.connect_q)) {
1833                 ret = PTR_ERR(ctrl->ctrl.connect_q);
1834                 goto out_free_tag_set;
1835         }
1836
1837         ret = nvme_rdma_connect_io_queues(ctrl);
1838         if (ret)
1839                 goto out_cleanup_connect_q;
1840
1841         return 0;
1842
1843 out_cleanup_connect_q:
1844         blk_cleanup_queue(ctrl->ctrl.connect_q);
1845 out_free_tag_set:
1846         blk_mq_free_tag_set(&ctrl->tag_set);
1847 out_put_dev:
1848         nvme_rdma_dev_put(ctrl->device);
1849 out_free_io_queues:
1850         nvme_rdma_free_io_queues(ctrl);
1851         return ret;
1852 }
1853
1854 static int nvme_rdma_parse_ipaddr(struct sockaddr_in *in_addr, char *p)
1855 {
1856         u8 *addr = (u8 *)&in_addr->sin_addr.s_addr;
1857         size_t buflen = strlen(p);
1858
1859         /* XXX: handle IPv6 addresses */
1860
1861         if (buflen > INET_ADDRSTRLEN)
1862                 return -EINVAL;
1863         if (in4_pton(p, buflen, addr, '\0', NULL) == 0)
1864                 return -EINVAL;
1865         in_addr->sin_family = AF_INET;
1866         return 0;
1867 }
1868
1869 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1870                 struct nvmf_ctrl_options *opts)
1871 {
1872         struct nvme_rdma_ctrl *ctrl;
1873         int ret;
1874         bool changed;
1875
1876         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1877         if (!ctrl)
1878                 return ERR_PTR(-ENOMEM);
1879         ctrl->ctrl.opts = opts;
1880         INIT_LIST_HEAD(&ctrl->list);
1881
1882         ret = nvme_rdma_parse_ipaddr(&ctrl->addr_in, opts->traddr);
1883         if (ret) {
1884                 pr_err("malformed IP address passed: %s\n", opts->traddr);
1885                 goto out_free_ctrl;
1886         }
1887
1888         if (opts->mask & NVMF_OPT_TRSVCID) {
1889                 u16 port;
1890
1891                 ret = kstrtou16(opts->trsvcid, 0, &port);
1892                 if (ret)
1893                         goto out_free_ctrl;
1894
1895                 ctrl->addr_in.sin_port = cpu_to_be16(port);
1896         } else {
1897                 ctrl->addr_in.sin_port = cpu_to_be16(NVME_RDMA_IP_PORT);
1898         }
1899
1900         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1901                                 0 /* no quirks, we're perfect! */);
1902         if (ret)
1903                 goto out_free_ctrl;
1904
1905         ctrl->reconnect_delay = opts->reconnect_delay;
1906         INIT_DELAYED_WORK(&ctrl->reconnect_work,
1907                         nvme_rdma_reconnect_ctrl_work);
1908         INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1909         INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1910         INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work);
1911         spin_lock_init(&ctrl->lock);
1912
1913         ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1914         ctrl->ctrl.sqsize = opts->queue_size - 1;
1915         ctrl->ctrl.kato = opts->kato;
1916
1917         ret = -ENOMEM;
1918         ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues),
1919                                 GFP_KERNEL);
1920         if (!ctrl->queues)
1921                 goto out_uninit_ctrl;
1922
1923         ret = nvme_rdma_configure_admin_queue(ctrl);
1924         if (ret)
1925                 goto out_kfree_queues;
1926
1927         /* sanity check icdoff */
1928         if (ctrl->ctrl.icdoff) {
1929                 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1930                 goto out_remove_admin_queue;
1931         }
1932
1933         /* sanity check keyed sgls */
1934         if (!(ctrl->ctrl.sgls & (1 << 20))) {
1935                 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1936                 goto out_remove_admin_queue;
1937         }
1938
1939         if (opts->queue_size > ctrl->ctrl.maxcmd) {
1940                 /* warn if maxcmd is lower than queue_size */
1941                 dev_warn(ctrl->ctrl.device,
1942                         "queue_size %zu > ctrl maxcmd %u, clamping down\n",
1943                         opts->queue_size, ctrl->ctrl.maxcmd);
1944                 opts->queue_size = ctrl->ctrl.maxcmd;
1945         }
1946
1947         if (opts->nr_io_queues) {
1948                 ret = nvme_rdma_create_io_queues(ctrl);
1949                 if (ret)
1950                         goto out_remove_admin_queue;
1951         }
1952
1953         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1954         WARN_ON_ONCE(!changed);
1955
1956         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
1957                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1958
1959         kref_get(&ctrl->ctrl.kref);
1960
1961         mutex_lock(&nvme_rdma_ctrl_mutex);
1962         list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1963         mutex_unlock(&nvme_rdma_ctrl_mutex);
1964
1965         if (opts->nr_io_queues) {
1966                 nvme_queue_scan(&ctrl->ctrl);
1967                 nvme_queue_async_events(&ctrl->ctrl);
1968         }
1969
1970         return &ctrl->ctrl;
1971
1972 out_remove_admin_queue:
1973         nvme_stop_keep_alive(&ctrl->ctrl);
1974         nvme_rdma_destroy_admin_queue(ctrl);
1975 out_kfree_queues:
1976         kfree(ctrl->queues);
1977 out_uninit_ctrl:
1978         nvme_uninit_ctrl(&ctrl->ctrl);
1979         nvme_put_ctrl(&ctrl->ctrl);
1980         if (ret > 0)
1981                 ret = -EIO;
1982         return ERR_PTR(ret);
1983 out_free_ctrl:
1984         kfree(ctrl);
1985         return ERR_PTR(ret);
1986 }
1987
1988 static struct nvmf_transport_ops nvme_rdma_transport = {
1989         .name           = "rdma",
1990         .required_opts  = NVMF_OPT_TRADDR,
1991         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY,
1992         .create_ctrl    = nvme_rdma_create_ctrl,
1993 };
1994
1995 static void nvme_rdma_add_one(struct ib_device *ib_device)
1996 {
1997 }
1998
1999 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2000 {
2001         struct nvme_rdma_ctrl *ctrl;
2002
2003         /* Delete all controllers using this device */
2004         mutex_lock(&nvme_rdma_ctrl_mutex);
2005         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2006                 if (ctrl->device->dev != ib_device)
2007                         continue;
2008                 dev_info(ctrl->ctrl.device,
2009                         "Removing ctrl: NQN \"%s\", addr %pISp\n",
2010                         ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2011                 __nvme_rdma_del_ctrl(ctrl);
2012         }
2013         mutex_unlock(&nvme_rdma_ctrl_mutex);
2014
2015         flush_workqueue(nvme_rdma_wq);
2016 }
2017
2018 static struct ib_client nvme_rdma_ib_client = {
2019         .name   = "nvme_rdma",
2020         .add = nvme_rdma_add_one,
2021         .remove = nvme_rdma_remove_one
2022 };
2023
2024 static int __init nvme_rdma_init_module(void)
2025 {
2026         int ret;
2027
2028         nvme_rdma_wq = create_workqueue("nvme_rdma_wq");
2029         if (!nvme_rdma_wq)
2030                 return -ENOMEM;
2031
2032         ret = ib_register_client(&nvme_rdma_ib_client);
2033         if (ret) {
2034                 destroy_workqueue(nvme_rdma_wq);
2035                 return ret;
2036         }
2037
2038         nvmf_register_transport(&nvme_rdma_transport);
2039         return 0;
2040 }
2041
2042 static void __exit nvme_rdma_cleanup_module(void)
2043 {
2044         nvmf_unregister_transport(&nvme_rdma_transport);
2045         ib_unregister_client(&nvme_rdma_ib_client);
2046         destroy_workqueue(nvme_rdma_wq);
2047 }
2048
2049 module_init(nvme_rdma_init_module);
2050 module_exit(nvme_rdma_cleanup_module);
2051
2052 MODULE_LICENSE("GPL v2");