GNU Linux-libre 4.14.265-gnu1
[releases.git] / drivers / nvme / host / rdma.c
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/err.h>
19 #include <linux/string.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/blk-mq-rdma.h>
23 #include <linux/types.h>
24 #include <linux/list.h>
25 #include <linux/mutex.h>
26 #include <linux/scatterlist.h>
27 #include <linux/nvme.h>
28 #include <asm/unaligned.h>
29
30 #include <rdma/ib_verbs.h>
31 #include <rdma/rdma_cm.h>
32 #include <linux/nvme-rdma.h>
33
34 #include "nvme.h"
35 #include "fabrics.h"
36
37
38 #define NVME_RDMA_CONNECT_TIMEOUT_MS    3000            /* 3 second */
39
40 #define NVME_RDMA_MAX_SEGMENTS          256
41
42 #define NVME_RDMA_MAX_INLINE_SEGMENTS   1
43
44 /*
45  * We handle AEN commands ourselves and don't even let the
46  * block layer know about them.
47  */
48 #define NVME_RDMA_NR_AEN_COMMANDS      1
49 #define NVME_RDMA_AQ_BLKMQ_DEPTH       \
50         (NVME_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
51
52 struct nvme_rdma_device {
53         struct ib_device       *dev;
54         struct ib_pd           *pd;
55         struct kref             ref;
56         struct list_head        entry;
57 };
58
59 struct nvme_rdma_qe {
60         struct ib_cqe           cqe;
61         void                    *data;
62         u64                     dma;
63 };
64
65 struct nvme_rdma_queue;
66 struct nvme_rdma_request {
67         struct nvme_request     req;
68         struct ib_mr            *mr;
69         struct nvme_rdma_qe     sqe;
70         union nvme_result       result;
71         __le16                  status;
72         refcount_t              ref;
73         struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
74         u32                     num_sge;
75         int                     nents;
76         bool                    inline_data;
77         struct ib_reg_wr        reg_wr;
78         struct ib_cqe           reg_cqe;
79         struct nvme_rdma_queue  *queue;
80         struct sg_table         sg_table;
81         struct scatterlist      first_sgl[];
82 };
83
84 enum nvme_rdma_queue_flags {
85         NVME_RDMA_Q_LIVE                = 0,
86         NVME_RDMA_Q_DELETING            = 1,
87 };
88
89 struct nvme_rdma_queue {
90         struct nvme_rdma_qe     *rsp_ring;
91         int                     queue_size;
92         size_t                  cmnd_capsule_len;
93         struct nvme_rdma_ctrl   *ctrl;
94         struct nvme_rdma_device *device;
95         struct ib_cq            *ib_cq;
96         struct ib_qp            *qp;
97
98         unsigned long           flags;
99         struct rdma_cm_id       *cm_id;
100         int                     cm_error;
101         struct completion       cm_done;
102 };
103
104 struct nvme_rdma_ctrl {
105         /* read only in the hot path */
106         struct nvme_rdma_queue  *queues;
107
108         /* other member variables */
109         struct blk_mq_tag_set   tag_set;
110         struct work_struct      delete_work;
111         struct work_struct      err_work;
112
113         struct nvme_rdma_qe     async_event_sqe;
114
115         struct delayed_work     reconnect_work;
116
117         struct list_head        list;
118
119         struct blk_mq_tag_set   admin_tag_set;
120         struct nvme_rdma_device *device;
121
122         u32                     max_fr_pages;
123
124         struct sockaddr_storage addr;
125         struct sockaddr_storage src_addr;
126
127         struct nvme_ctrl        ctrl;
128 };
129
130 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
131 {
132         return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
133 }
134
135 static LIST_HEAD(device_list);
136 static DEFINE_MUTEX(device_list_mutex);
137
138 static LIST_HEAD(nvme_rdma_ctrl_list);
139 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
140
141 /*
142  * Disabling this option makes small I/O goes faster, but is fundamentally
143  * unsafe.  With it turned off we will have to register a global rkey that
144  * allows read and write access to all physical memory.
145  */
146 static bool register_always = true;
147 module_param(register_always, bool, 0444);
148 MODULE_PARM_DESC(register_always,
149          "Use memory registration even for contiguous memory regions");
150
151 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
152                 struct rdma_cm_event *event);
153 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154
155 static const struct blk_mq_ops nvme_rdma_mq_ops;
156 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
157
158 /* XXX: really should move to a generic header sooner or later.. */
159 static inline void put_unaligned_le24(u32 val, u8 *p)
160 {
161         *p++ = val;
162         *p++ = val >> 8;
163         *p++ = val >> 16;
164 }
165
166 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
167 {
168         return queue - queue->ctrl->queues;
169 }
170
171 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
172 {
173         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 }
175
176 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177                 size_t capsule_size, enum dma_data_direction dir)
178 {
179         ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
180         kfree(qe->data);
181 }
182
183 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184                 size_t capsule_size, enum dma_data_direction dir)
185 {
186         qe->data = kzalloc(capsule_size, GFP_KERNEL);
187         if (!qe->data)
188                 return -ENOMEM;
189
190         qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
191         if (ib_dma_mapping_error(ibdev, qe->dma)) {
192                 kfree(qe->data);
193                 return -ENOMEM;
194         }
195
196         return 0;
197 }
198
199 static void nvme_rdma_free_ring(struct ib_device *ibdev,
200                 struct nvme_rdma_qe *ring, size_t ib_queue_size,
201                 size_t capsule_size, enum dma_data_direction dir)
202 {
203         int i;
204
205         for (i = 0; i < ib_queue_size; i++)
206                 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
207         kfree(ring);
208 }
209
210 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
211                 size_t ib_queue_size, size_t capsule_size,
212                 enum dma_data_direction dir)
213 {
214         struct nvme_rdma_qe *ring;
215         int i;
216
217         ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
218         if (!ring)
219                 return NULL;
220
221         for (i = 0; i < ib_queue_size; i++) {
222                 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
223                         goto out_free_ring;
224         }
225
226         return ring;
227
228 out_free_ring:
229         nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
230         return NULL;
231 }
232
233 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
234 {
235         pr_debug("QP event %s (%d)\n",
236                  ib_event_msg(event->event), event->event);
237
238 }
239
240 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
241 {
242         wait_for_completion_interruptible_timeout(&queue->cm_done,
243                         msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
244         return queue->cm_error;
245 }
246
247 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
248 {
249         struct nvme_rdma_device *dev = queue->device;
250         struct ib_qp_init_attr init_attr;
251         int ret;
252
253         memset(&init_attr, 0, sizeof(init_attr));
254         init_attr.event_handler = nvme_rdma_qp_event;
255         /* +1 for drain */
256         init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
257         /* +1 for drain */
258         init_attr.cap.max_recv_wr = queue->queue_size + 1;
259         init_attr.cap.max_recv_sge = 1;
260         init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
261         init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
262         init_attr.qp_type = IB_QPT_RC;
263         init_attr.send_cq = queue->ib_cq;
264         init_attr.recv_cq = queue->ib_cq;
265
266         ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
267
268         queue->qp = queue->cm_id->qp;
269         return ret;
270 }
271
272 static int nvme_rdma_reinit_request(void *data, struct request *rq)
273 {
274         struct nvme_rdma_ctrl *ctrl = data;
275         struct nvme_rdma_device *dev = ctrl->device;
276         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
277         int ret = 0;
278
279         ib_dereg_mr(req->mr);
280
281         req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
282                         ctrl->max_fr_pages);
283         if (IS_ERR(req->mr)) {
284                 ret = PTR_ERR(req->mr);
285                 req->mr = NULL;
286                 goto out;
287         }
288
289         req->mr->need_inval = false;
290
291 out:
292         return ret;
293 }
294
295 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
296                 struct request *rq, unsigned int hctx_idx)
297 {
298         struct nvme_rdma_ctrl *ctrl = set->driver_data;
299         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
300         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
301         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
302         struct nvme_rdma_device *dev = queue->device;
303
304         if (req->mr)
305                 ib_dereg_mr(req->mr);
306
307         nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
308                         DMA_TO_DEVICE);
309 }
310
311 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
312                 struct request *rq, unsigned int hctx_idx,
313                 unsigned int numa_node)
314 {
315         struct nvme_rdma_ctrl *ctrl = set->driver_data;
316         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
317         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
318         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
319         struct nvme_rdma_device *dev = queue->device;
320         struct ib_device *ibdev = dev->dev;
321         int ret;
322
323         ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
324                         DMA_TO_DEVICE);
325         if (ret)
326                 return ret;
327
328         req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
329                         ctrl->max_fr_pages);
330         if (IS_ERR(req->mr)) {
331                 ret = PTR_ERR(req->mr);
332                 goto out_free_qe;
333         }
334
335         req->queue = queue;
336
337         return 0;
338
339 out_free_qe:
340         nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
341                         DMA_TO_DEVICE);
342         return -ENOMEM;
343 }
344
345 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
346                 unsigned int hctx_idx)
347 {
348         struct nvme_rdma_ctrl *ctrl = data;
349         struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
350
351         BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
352
353         hctx->driver_data = queue;
354         return 0;
355 }
356
357 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
358                 unsigned int hctx_idx)
359 {
360         struct nvme_rdma_ctrl *ctrl = data;
361         struct nvme_rdma_queue *queue = &ctrl->queues[0];
362
363         BUG_ON(hctx_idx != 0);
364
365         hctx->driver_data = queue;
366         return 0;
367 }
368
369 static void nvme_rdma_free_dev(struct kref *ref)
370 {
371         struct nvme_rdma_device *ndev =
372                 container_of(ref, struct nvme_rdma_device, ref);
373
374         mutex_lock(&device_list_mutex);
375         list_del(&ndev->entry);
376         mutex_unlock(&device_list_mutex);
377
378         ib_dealloc_pd(ndev->pd);
379         kfree(ndev);
380 }
381
382 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
383 {
384         kref_put(&dev->ref, nvme_rdma_free_dev);
385 }
386
387 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
388 {
389         return kref_get_unless_zero(&dev->ref);
390 }
391
392 static struct nvme_rdma_device *
393 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
394 {
395         struct nvme_rdma_device *ndev;
396
397         mutex_lock(&device_list_mutex);
398         list_for_each_entry(ndev, &device_list, entry) {
399                 if (ndev->dev->node_guid == cm_id->device->node_guid &&
400                     nvme_rdma_dev_get(ndev))
401                         goto out_unlock;
402         }
403
404         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
405         if (!ndev)
406                 goto out_err;
407
408         ndev->dev = cm_id->device;
409         kref_init(&ndev->ref);
410
411         ndev->pd = ib_alloc_pd(ndev->dev,
412                 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
413         if (IS_ERR(ndev->pd))
414                 goto out_free_dev;
415
416         if (!(ndev->dev->attrs.device_cap_flags &
417               IB_DEVICE_MEM_MGT_EXTENSIONS)) {
418                 dev_err(&ndev->dev->dev,
419                         "Memory registrations not supported.\n");
420                 goto out_free_pd;
421         }
422
423         list_add(&ndev->entry, &device_list);
424 out_unlock:
425         mutex_unlock(&device_list_mutex);
426         return ndev;
427
428 out_free_pd:
429         ib_dealloc_pd(ndev->pd);
430 out_free_dev:
431         kfree(ndev);
432 out_err:
433         mutex_unlock(&device_list_mutex);
434         return NULL;
435 }
436
437 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
438 {
439         struct nvme_rdma_device *dev;
440         struct ib_device *ibdev;
441
442         dev = queue->device;
443         ibdev = dev->dev;
444         rdma_destroy_qp(queue->cm_id);
445         ib_free_cq(queue->ib_cq);
446
447         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
448                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
449
450         nvme_rdma_dev_put(dev);
451 }
452
453 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
454 {
455         struct ib_device *ibdev;
456         const int send_wr_factor = 3;                   /* MR, SEND, INV */
457         const int cq_factor = send_wr_factor + 1;       /* + RECV */
458         int comp_vector, idx = nvme_rdma_queue_idx(queue);
459         int ret;
460
461         queue->device = nvme_rdma_find_get_device(queue->cm_id);
462         if (!queue->device) {
463                 dev_err(queue->cm_id->device->dev.parent,
464                         "no client data found!\n");
465                 return -ECONNREFUSED;
466         }
467         ibdev = queue->device->dev;
468
469         /*
470          * Spread I/O queues completion vectors according their queue index.
471          * Admin queues can always go on completion vector 0.
472          */
473         comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
474
475         /* +1 for ib_stop_cq */
476         queue->ib_cq = ib_alloc_cq(ibdev, queue,
477                                 cq_factor * queue->queue_size + 1,
478                                 comp_vector, IB_POLL_SOFTIRQ);
479         if (IS_ERR(queue->ib_cq)) {
480                 ret = PTR_ERR(queue->ib_cq);
481                 goto out_put_dev;
482         }
483
484         ret = nvme_rdma_create_qp(queue, send_wr_factor);
485         if (ret)
486                 goto out_destroy_ib_cq;
487
488         queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
489                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
490         if (!queue->rsp_ring) {
491                 ret = -ENOMEM;
492                 goto out_destroy_qp;
493         }
494
495         return 0;
496
497 out_destroy_qp:
498         ib_destroy_qp(queue->qp);
499 out_destroy_ib_cq:
500         ib_free_cq(queue->ib_cq);
501 out_put_dev:
502         nvme_rdma_dev_put(queue->device);
503         return ret;
504 }
505
506 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
507                 int idx, size_t queue_size)
508 {
509         struct nvme_rdma_queue *queue;
510         struct sockaddr *src_addr = NULL;
511         int ret;
512
513         queue = &ctrl->queues[idx];
514         queue->ctrl = ctrl;
515         init_completion(&queue->cm_done);
516
517         if (idx > 0)
518                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
519         else
520                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
521
522         queue->queue_size = queue_size;
523
524         queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
525                         RDMA_PS_TCP, IB_QPT_RC);
526         if (IS_ERR(queue->cm_id)) {
527                 dev_info(ctrl->ctrl.device,
528                         "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
529                 return PTR_ERR(queue->cm_id);
530         }
531
532         if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
533                 src_addr = (struct sockaddr *)&ctrl->src_addr;
534
535         queue->cm_error = -ETIMEDOUT;
536         ret = rdma_resolve_addr(queue->cm_id, src_addr,
537                         (struct sockaddr *)&ctrl->addr,
538                         NVME_RDMA_CONNECT_TIMEOUT_MS);
539         if (ret) {
540                 dev_info(ctrl->ctrl.device,
541                         "rdma_resolve_addr failed (%d).\n", ret);
542                 goto out_destroy_cm_id;
543         }
544
545         ret = nvme_rdma_wait_for_cm(queue);
546         if (ret) {
547                 dev_info(ctrl->ctrl.device,
548                         "rdma_resolve_addr wait failed (%d).\n", ret);
549                 goto out_destroy_cm_id;
550         }
551
552         clear_bit(NVME_RDMA_Q_DELETING, &queue->flags);
553
554         return 0;
555
556 out_destroy_cm_id:
557         rdma_destroy_id(queue->cm_id);
558         return ret;
559 }
560
561 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
562 {
563         if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
564                 return;
565
566         rdma_disconnect(queue->cm_id);
567         ib_drain_qp(queue->qp);
568 }
569
570 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
571 {
572         if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags))
573                 return;
574
575         if (nvme_rdma_queue_idx(queue) == 0) {
576                 nvme_rdma_free_qe(queue->device->dev,
577                         &queue->ctrl->async_event_sqe,
578                         sizeof(struct nvme_command), DMA_TO_DEVICE);
579         }
580
581         nvme_rdma_destroy_queue_ib(queue);
582         rdma_destroy_id(queue->cm_id);
583 }
584
585 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
586 {
587         int i;
588
589         for (i = 1; i < ctrl->ctrl.queue_count; i++)
590                 nvme_rdma_free_queue(&ctrl->queues[i]);
591 }
592
593 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
594 {
595         int i;
596
597         for (i = 1; i < ctrl->ctrl.queue_count; i++)
598                 nvme_rdma_stop_queue(&ctrl->queues[i]);
599 }
600
601 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
602 {
603         int ret;
604
605         if (idx)
606                 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
607         else
608                 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
609
610         if (!ret)
611                 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
612         else
613                 dev_info(ctrl->ctrl.device,
614                         "failed to connect queue: %d ret=%d\n", idx, ret);
615         return ret;
616 }
617
618 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
619 {
620         int i, ret = 0;
621
622         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
623                 ret = nvme_rdma_start_queue(ctrl, i);
624                 if (ret)
625                         goto out_stop_queues;
626         }
627
628         return 0;
629
630 out_stop_queues:
631         for (i--; i >= 1; i--)
632                 nvme_rdma_stop_queue(&ctrl->queues[i]);
633         return ret;
634 }
635
636 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
637 {
638         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
639         struct ib_device *ibdev = ctrl->device->dev;
640         unsigned int nr_io_queues;
641         int i, ret;
642
643         nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
644
645         /*
646          * we map queues according to the device irq vectors for
647          * optimal locality so we don't need more queues than
648          * completion vectors.
649          */
650         nr_io_queues = min_t(unsigned int, nr_io_queues,
651                                 ibdev->num_comp_vectors);
652
653         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
654         if (ret)
655                 return ret;
656
657         if (nr_io_queues == 0) {
658                 dev_err(ctrl->ctrl.device,
659                         "unable to set any I/O queues\n");
660                 return -ENOMEM;
661         }
662
663         ctrl->ctrl.queue_count = nr_io_queues + 1;
664         dev_info(ctrl->ctrl.device,
665                 "creating %d I/O queues.\n", nr_io_queues);
666
667         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
668                 ret = nvme_rdma_alloc_queue(ctrl, i,
669                                 ctrl->ctrl.sqsize + 1);
670                 if (ret)
671                         goto out_free_queues;
672         }
673
674         return 0;
675
676 out_free_queues:
677         for (i--; i >= 1; i--)
678                 nvme_rdma_free_queue(&ctrl->queues[i]);
679
680         return ret;
681 }
682
683 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl, bool admin)
684 {
685         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
686         struct blk_mq_tag_set *set = admin ?
687                         &ctrl->admin_tag_set : &ctrl->tag_set;
688
689         blk_mq_free_tag_set(set);
690         nvme_rdma_dev_put(ctrl->device);
691 }
692
693 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
694                 bool admin)
695 {
696         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
697         struct blk_mq_tag_set *set;
698         int ret;
699
700         if (admin) {
701                 set = &ctrl->admin_tag_set;
702                 memset(set, 0, sizeof(*set));
703                 set->ops = &nvme_rdma_admin_mq_ops;
704                 set->queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
705                 set->reserved_tags = 2; /* connect + keep-alive */
706                 set->numa_node = NUMA_NO_NODE;
707                 set->cmd_size = sizeof(struct nvme_rdma_request) +
708                         SG_CHUNK_SIZE * sizeof(struct scatterlist);
709                 set->driver_data = ctrl;
710                 set->nr_hw_queues = 1;
711                 set->timeout = ADMIN_TIMEOUT;
712         } else {
713                 set = &ctrl->tag_set;
714                 memset(set, 0, sizeof(*set));
715                 set->ops = &nvme_rdma_mq_ops;
716                 set->queue_depth = nctrl->opts->queue_size;
717                 set->reserved_tags = 1; /* fabric connect */
718                 set->numa_node = NUMA_NO_NODE;
719                 set->flags = BLK_MQ_F_SHOULD_MERGE;
720                 set->cmd_size = sizeof(struct nvme_rdma_request) +
721                         SG_CHUNK_SIZE * sizeof(struct scatterlist);
722                 set->driver_data = ctrl;
723                 set->nr_hw_queues = nctrl->queue_count - 1;
724                 set->timeout = NVME_IO_TIMEOUT;
725         }
726
727         ret = blk_mq_alloc_tag_set(set);
728         if (ret)
729                 goto out;
730
731         /*
732          * We need a reference on the device as long as the tag_set is alive,
733          * as the MRs in the request structures need a valid ib_device.
734          */
735         ret = nvme_rdma_dev_get(ctrl->device);
736         if (!ret) {
737                 ret = -EINVAL;
738                 goto out_free_tagset;
739         }
740
741         return set;
742
743 out_free_tagset:
744         blk_mq_free_tag_set(set);
745 out:
746         return ERR_PTR(ret);
747 }
748
749 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
750                 bool remove)
751 {
752         nvme_rdma_stop_queue(&ctrl->queues[0]);
753         if (remove) {
754                 blk_cleanup_queue(ctrl->ctrl.admin_q);
755                 nvme_rdma_free_tagset(&ctrl->ctrl, true);
756         }
757         nvme_rdma_free_queue(&ctrl->queues[0]);
758 }
759
760 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
761                 bool new)
762 {
763         int error;
764
765         error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
766         if (error)
767                 return error;
768
769         ctrl->device = ctrl->queues[0].device;
770
771         ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
772                 ctrl->device->dev->attrs.max_fast_reg_page_list_len);
773
774         if (new) {
775                 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
776                 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
777                         error = PTR_ERR(ctrl->ctrl.admin_tagset);
778                         goto out_free_queue;
779                 }
780
781                 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
782                 if (IS_ERR(ctrl->ctrl.admin_q)) {
783                         error = PTR_ERR(ctrl->ctrl.admin_q);
784                         goto out_free_tagset;
785                 }
786         } else {
787                 error = blk_mq_reinit_tagset(&ctrl->admin_tag_set,
788                                              nvme_rdma_reinit_request);
789                 if (error)
790                         goto out_free_queue;
791         }
792
793         error = nvme_rdma_start_queue(ctrl, 0);
794         if (error)
795                 goto out_cleanup_queue;
796
797         error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
798                         &ctrl->ctrl.cap);
799         if (error) {
800                 dev_err(ctrl->ctrl.device,
801                         "prop_get NVME_REG_CAP failed\n");
802                 goto out_stop_queue;
803         }
804
805         ctrl->ctrl.sqsize =
806                 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
807
808         error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
809         if (error)
810                 goto out_stop_queue;
811
812         ctrl->ctrl.max_hw_sectors =
813                 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
814
815         error = nvme_init_identify(&ctrl->ctrl);
816         if (error)
817                 goto out_stop_queue;
818
819         error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
820                         &ctrl->async_event_sqe, sizeof(struct nvme_command),
821                         DMA_TO_DEVICE);
822         if (error)
823                 goto out_stop_queue;
824
825         return 0;
826
827 out_stop_queue:
828         nvme_rdma_stop_queue(&ctrl->queues[0]);
829 out_cleanup_queue:
830         if (new)
831                 blk_cleanup_queue(ctrl->ctrl.admin_q);
832 out_free_tagset:
833         if (new)
834                 nvme_rdma_free_tagset(&ctrl->ctrl, true);
835 out_free_queue:
836         nvme_rdma_free_queue(&ctrl->queues[0]);
837         return error;
838 }
839
840 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
841                 bool remove)
842 {
843         nvme_rdma_stop_io_queues(ctrl);
844         if (remove) {
845                 blk_cleanup_queue(ctrl->ctrl.connect_q);
846                 nvme_rdma_free_tagset(&ctrl->ctrl, false);
847         }
848         nvme_rdma_free_io_queues(ctrl);
849 }
850
851 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
852 {
853         int ret;
854
855         ret = nvme_rdma_alloc_io_queues(ctrl);
856         if (ret)
857                 return ret;
858
859         if (new) {
860                 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
861                 if (IS_ERR(ctrl->ctrl.tagset)) {
862                         ret = PTR_ERR(ctrl->ctrl.tagset);
863                         goto out_free_io_queues;
864                 }
865
866                 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
867                 if (IS_ERR(ctrl->ctrl.connect_q)) {
868                         ret = PTR_ERR(ctrl->ctrl.connect_q);
869                         goto out_free_tag_set;
870                 }
871         } else {
872                 ret = blk_mq_reinit_tagset(&ctrl->tag_set,
873                                            nvme_rdma_reinit_request);
874                 if (ret)
875                         goto out_free_io_queues;
876
877                 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
878                         ctrl->ctrl.queue_count - 1);
879         }
880
881         ret = nvme_rdma_start_io_queues(ctrl);
882         if (ret)
883                 goto out_cleanup_connect_q;
884
885         return 0;
886
887 out_cleanup_connect_q:
888         if (new)
889                 blk_cleanup_queue(ctrl->ctrl.connect_q);
890 out_free_tag_set:
891         if (new)
892                 nvme_rdma_free_tagset(&ctrl->ctrl, false);
893 out_free_io_queues:
894         nvme_rdma_free_io_queues(ctrl);
895         return ret;
896 }
897
898 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
899 {
900         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
901
902         if (list_empty(&ctrl->list))
903                 goto free_ctrl;
904
905         mutex_lock(&nvme_rdma_ctrl_mutex);
906         list_del(&ctrl->list);
907         mutex_unlock(&nvme_rdma_ctrl_mutex);
908
909         kfree(ctrl->queues);
910         nvmf_free_options(nctrl->opts);
911 free_ctrl:
912         kfree(ctrl);
913 }
914
915 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
916 {
917         /* If we are resetting/deleting then do nothing */
918         if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
919                 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
920                         ctrl->ctrl.state == NVME_CTRL_LIVE);
921                 return;
922         }
923
924         if (nvmf_should_reconnect(&ctrl->ctrl)) {
925                 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
926                         ctrl->ctrl.opts->reconnect_delay);
927                 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
928                                 ctrl->ctrl.opts->reconnect_delay * HZ);
929         } else {
930                 dev_info(ctrl->ctrl.device, "Removing controller...\n");
931                 queue_work(nvme_wq, &ctrl->delete_work);
932         }
933 }
934
935 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
936 {
937         struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
938                         struct nvme_rdma_ctrl, reconnect_work);
939         bool changed;
940         int ret;
941
942         ++ctrl->ctrl.nr_reconnects;
943
944         if (ctrl->ctrl.queue_count > 1)
945                 nvme_rdma_destroy_io_queues(ctrl, false);
946
947         nvme_rdma_destroy_admin_queue(ctrl, false);
948         ret = nvme_rdma_configure_admin_queue(ctrl, false);
949         if (ret)
950                 goto requeue;
951
952         if (ctrl->ctrl.queue_count > 1) {
953                 ret = nvme_rdma_configure_io_queues(ctrl, false);
954                 if (ret)
955                         goto requeue;
956         }
957
958         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
959         if (!changed) {
960                 /* state change failure is ok if we're in DELETING state */
961                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
962                 return;
963         }
964
965         ctrl->ctrl.nr_reconnects = 0;
966
967         nvme_start_ctrl(&ctrl->ctrl);
968
969         dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
970
971         return;
972
973 requeue:
974         dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
975                         ctrl->ctrl.nr_reconnects);
976         nvme_rdma_reconnect_or_remove(ctrl);
977 }
978
979 static void nvme_rdma_error_recovery_work(struct work_struct *work)
980 {
981         struct nvme_rdma_ctrl *ctrl = container_of(work,
982                         struct nvme_rdma_ctrl, err_work);
983
984         nvme_stop_keep_alive(&ctrl->ctrl);
985
986         if (ctrl->ctrl.queue_count > 1) {
987                 nvme_stop_queues(&ctrl->ctrl);
988                 nvme_rdma_stop_io_queues(ctrl);
989         }
990         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
991         nvme_rdma_stop_queue(&ctrl->queues[0]);
992
993         /* We must take care of fastfail/requeue all our inflight requests */
994         if (ctrl->ctrl.queue_count > 1)
995                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
996                                         nvme_cancel_request, &ctrl->ctrl);
997         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
998                                 nvme_cancel_request, &ctrl->ctrl);
999
1000         /*
1001          * queues are not a live anymore, so restart the queues to fail fast
1002          * new IO
1003          */
1004         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1005         nvme_start_queues(&ctrl->ctrl);
1006
1007         nvme_rdma_reconnect_or_remove(ctrl);
1008 }
1009
1010 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1011 {
1012         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
1013                 return;
1014
1015         queue_work(nvme_wq, &ctrl->err_work);
1016 }
1017
1018 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1019                 const char *op)
1020 {
1021         struct nvme_rdma_queue *queue = cq->cq_context;
1022         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1023
1024         if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1025                 dev_info(ctrl->ctrl.device,
1026                              "%s for CQE 0x%p failed with status %s (%d)\n",
1027                              op, wc->wr_cqe,
1028                              ib_wc_status_msg(wc->status), wc->status);
1029         nvme_rdma_error_recovery(ctrl);
1030 }
1031
1032 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1033 {
1034         if (unlikely(wc->status != IB_WC_SUCCESS))
1035                 nvme_rdma_wr_error(cq, wc, "MEMREG");
1036 }
1037
1038 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1039 {
1040         if (unlikely(wc->status != IB_WC_SUCCESS))
1041                 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1042 }
1043
1044 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1045                 struct nvme_rdma_request *req)
1046 {
1047         struct ib_send_wr *bad_wr;
1048         struct ib_send_wr wr = {
1049                 .opcode             = IB_WR_LOCAL_INV,
1050                 .next               = NULL,
1051                 .num_sge            = 0,
1052                 .send_flags         = 0,
1053                 .ex.invalidate_rkey = req->mr->rkey,
1054         };
1055
1056         req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1057         wr.wr_cqe = &req->reg_cqe;
1058
1059         return ib_post_send(queue->qp, &wr, &bad_wr);
1060 }
1061
1062 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1063                 struct request *rq)
1064 {
1065         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1066         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1067         struct nvme_rdma_device *dev = queue->device;
1068         struct ib_device *ibdev = dev->dev;
1069         int res;
1070
1071         if (!blk_rq_bytes(rq))
1072                 return;
1073
1074         if (req->mr->need_inval) {
1075                 res = nvme_rdma_inv_rkey(queue, req);
1076                 if (unlikely(res < 0)) {
1077                         dev_err(ctrl->ctrl.device,
1078                                 "Queueing INV WR for rkey %#x failed (%d)\n",
1079                                 req->mr->rkey, res);
1080                         nvme_rdma_error_recovery(queue->ctrl);
1081                 }
1082         }
1083
1084         ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1085                         req->nents, rq_data_dir(rq) ==
1086                                     WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1087
1088         nvme_cleanup_cmd(rq);
1089         sg_free_table_chained(&req->sg_table, true);
1090 }
1091
1092 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1093 {
1094         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1095
1096         sg->addr = 0;
1097         put_unaligned_le24(0, sg->length);
1098         put_unaligned_le32(0, sg->key);
1099         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1100         return 0;
1101 }
1102
1103 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1104                 struct nvme_rdma_request *req, struct nvme_command *c)
1105 {
1106         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1107
1108         req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
1109         req->sge[1].length = sg_dma_len(req->sg_table.sgl);
1110         req->sge[1].lkey = queue->device->pd->local_dma_lkey;
1111
1112         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1113         sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
1114         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1115
1116         req->inline_data = true;
1117         req->num_sge++;
1118         return 0;
1119 }
1120
1121 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1122                 struct nvme_rdma_request *req, struct nvme_command *c)
1123 {
1124         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1125
1126         sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1127         put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1128         put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1129         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1130         return 0;
1131 }
1132
1133 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1134                 struct nvme_rdma_request *req, struct nvme_command *c,
1135                 int count)
1136 {
1137         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1138         int nr;
1139
1140         /*
1141          * Align the MR to a 4K page size to match the ctrl page size and
1142          * the block virtual boundary.
1143          */
1144         nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1145         if (unlikely(nr < count)) {
1146                 if (nr < 0)
1147                         return nr;
1148                 return -EINVAL;
1149         }
1150
1151         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1152
1153         req->reg_cqe.done = nvme_rdma_memreg_done;
1154         memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1155         req->reg_wr.wr.opcode = IB_WR_REG_MR;
1156         req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1157         req->reg_wr.wr.num_sge = 0;
1158         req->reg_wr.mr = req->mr;
1159         req->reg_wr.key = req->mr->rkey;
1160         req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1161                              IB_ACCESS_REMOTE_READ |
1162                              IB_ACCESS_REMOTE_WRITE;
1163
1164         req->mr->need_inval = true;
1165
1166         sg->addr = cpu_to_le64(req->mr->iova);
1167         put_unaligned_le24(req->mr->length, sg->length);
1168         put_unaligned_le32(req->mr->rkey, sg->key);
1169         sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1170                         NVME_SGL_FMT_INVALIDATE;
1171
1172         return 0;
1173 }
1174
1175 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1176                 struct request *rq, struct nvme_command *c)
1177 {
1178         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1179         struct nvme_rdma_device *dev = queue->device;
1180         struct ib_device *ibdev = dev->dev;
1181         int count, ret;
1182
1183         req->num_sge = 1;
1184         req->inline_data = false;
1185         req->mr->need_inval = false;
1186         refcount_set(&req->ref, 2); /* send and recv completions */
1187
1188         c->common.flags |= NVME_CMD_SGL_METABUF;
1189
1190         if (!blk_rq_bytes(rq))
1191                 return nvme_rdma_set_sg_null(c);
1192
1193         req->sg_table.sgl = req->first_sgl;
1194         ret = sg_alloc_table_chained(&req->sg_table,
1195                         blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1196         if (ret)
1197                 return -ENOMEM;
1198
1199         req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1200
1201         count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1202                     rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1203         if (unlikely(count <= 0)) {
1204                 sg_free_table_chained(&req->sg_table, true);
1205                 return -EIO;
1206         }
1207
1208         if (count == 1) {
1209                 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1210                     blk_rq_payload_bytes(rq) <=
1211                                 nvme_rdma_inline_data_size(queue))
1212                         return nvme_rdma_map_sg_inline(queue, req, c);
1213
1214                 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
1215                         return nvme_rdma_map_sg_single(queue, req, c);
1216         }
1217
1218         return nvme_rdma_map_sg_fr(queue, req, c, count);
1219 }
1220
1221 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1222 {
1223         struct nvme_rdma_qe *qe =
1224                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1225         struct nvme_rdma_request *req =
1226                 container_of(qe, struct nvme_rdma_request, sqe);
1227         struct request *rq = blk_mq_rq_from_pdu(req);
1228
1229         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1230                 nvme_rdma_wr_error(cq, wc, "SEND");
1231                 return;
1232         }
1233
1234         if (refcount_dec_and_test(&req->ref))
1235                 nvme_end_request(rq, req->status, req->result);
1236 }
1237
1238 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1239                 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1240                 struct ib_send_wr *first)
1241 {
1242         struct ib_send_wr wr, *bad_wr;
1243         int ret;
1244
1245         sge->addr   = qe->dma;
1246         sge->length = sizeof(struct nvme_command),
1247         sge->lkey   = queue->device->pd->local_dma_lkey;
1248
1249         wr.next       = NULL;
1250         wr.wr_cqe     = &qe->cqe;
1251         wr.sg_list    = sge;
1252         wr.num_sge    = num_sge;
1253         wr.opcode     = IB_WR_SEND;
1254         wr.send_flags = IB_SEND_SIGNALED;
1255
1256         if (first)
1257                 first->next = &wr;
1258         else
1259                 first = &wr;
1260
1261         ret = ib_post_send(queue->qp, first, &bad_wr);
1262         if (unlikely(ret)) {
1263                 dev_err(queue->ctrl->ctrl.device,
1264                              "%s failed with error code %d\n", __func__, ret);
1265         }
1266         return ret;
1267 }
1268
1269 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1270                 struct nvme_rdma_qe *qe)
1271 {
1272         struct ib_recv_wr wr, *bad_wr;
1273         struct ib_sge list;
1274         int ret;
1275
1276         list.addr   = qe->dma;
1277         list.length = sizeof(struct nvme_completion);
1278         list.lkey   = queue->device->pd->local_dma_lkey;
1279
1280         qe->cqe.done = nvme_rdma_recv_done;
1281
1282         wr.next     = NULL;
1283         wr.wr_cqe   = &qe->cqe;
1284         wr.sg_list  = &list;
1285         wr.num_sge  = 1;
1286
1287         ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1288         if (unlikely(ret)) {
1289                 dev_err(queue->ctrl->ctrl.device,
1290                         "%s failed with error code %d\n", __func__, ret);
1291         }
1292         return ret;
1293 }
1294
1295 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1296 {
1297         u32 queue_idx = nvme_rdma_queue_idx(queue);
1298
1299         if (queue_idx == 0)
1300                 return queue->ctrl->admin_tag_set.tags[queue_idx];
1301         return queue->ctrl->tag_set.tags[queue_idx - 1];
1302 }
1303
1304 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1305 {
1306         if (unlikely(wc->status != IB_WC_SUCCESS))
1307                 nvme_rdma_wr_error(cq, wc, "ASYNC");
1308 }
1309
1310 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1311 {
1312         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1313         struct nvme_rdma_queue *queue = &ctrl->queues[0];
1314         struct ib_device *dev = queue->device->dev;
1315         struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1316         struct nvme_command *cmd = sqe->data;
1317         struct ib_sge sge;
1318         int ret;
1319
1320         if (WARN_ON_ONCE(aer_idx != 0))
1321                 return;
1322
1323         ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1324
1325         memset(cmd, 0, sizeof(*cmd));
1326         cmd->common.opcode = nvme_admin_async_event;
1327         cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1328         cmd->common.flags |= NVME_CMD_SGL_METABUF;
1329         nvme_rdma_set_sg_null(cmd);
1330
1331         sqe->cqe.done = nvme_rdma_async_done;
1332
1333         ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1334                         DMA_TO_DEVICE);
1335
1336         ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1337         WARN_ON_ONCE(ret);
1338 }
1339
1340 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1341                 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1342 {
1343         struct request *rq;
1344         struct nvme_rdma_request *req;
1345         int ret = 0;
1346
1347         rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1348         if (!rq) {
1349                 dev_err(queue->ctrl->ctrl.device,
1350                         "tag 0x%x on QP %#x not found\n",
1351                         cqe->command_id, queue->qp->qp_num);
1352                 nvme_rdma_error_recovery(queue->ctrl);
1353                 return ret;
1354         }
1355         req = blk_mq_rq_to_pdu(rq);
1356
1357         req->status = cqe->status;
1358         req->result = cqe->result;
1359
1360         if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1361             wc->ex.invalidate_rkey == req->mr->rkey)
1362                 req->mr->need_inval = false;
1363
1364         if (refcount_dec_and_test(&req->ref)) {
1365                 if (rq->tag == tag)
1366                         ret = 1;
1367                 nvme_end_request(rq, req->status, req->result);
1368         }
1369
1370         return ret;
1371 }
1372
1373 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1374 {
1375         struct nvme_rdma_qe *qe =
1376                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1377         struct nvme_rdma_queue *queue = cq->cq_context;
1378         struct ib_device *ibdev = queue->device->dev;
1379         struct nvme_completion *cqe = qe->data;
1380         const size_t len = sizeof(struct nvme_completion);
1381         int ret = 0;
1382
1383         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1384                 nvme_rdma_wr_error(cq, wc, "RECV");
1385                 return 0;
1386         }
1387
1388         ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1389         /*
1390          * AEN requests are special as they don't time out and can
1391          * survive any kind of queue freeze and often don't respond to
1392          * aborts.  We don't even bother to allocate a struct request
1393          * for them but rather special case them here.
1394          */
1395         if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1396                         cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1397                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1398                                 &cqe->result);
1399         else
1400                 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1401         ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1402
1403         nvme_rdma_post_recv(queue, qe);
1404         return ret;
1405 }
1406
1407 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1408 {
1409         __nvme_rdma_recv_done(cq, wc, -1);
1410 }
1411
1412 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1413 {
1414         int ret, i;
1415
1416         for (i = 0; i < queue->queue_size; i++) {
1417                 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1418                 if (ret)
1419                         goto out_destroy_queue_ib;
1420         }
1421
1422         return 0;
1423
1424 out_destroy_queue_ib:
1425         nvme_rdma_destroy_queue_ib(queue);
1426         return ret;
1427 }
1428
1429 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1430                 struct rdma_cm_event *ev)
1431 {
1432         struct rdma_cm_id *cm_id = queue->cm_id;
1433         int status = ev->status;
1434         const char *rej_msg;
1435         const struct nvme_rdma_cm_rej *rej_data;
1436         u8 rej_data_len;
1437
1438         rej_msg = rdma_reject_msg(cm_id, status);
1439         rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1440
1441         if (rej_data && rej_data_len >= sizeof(u16)) {
1442                 u16 sts = le16_to_cpu(rej_data->sts);
1443
1444                 dev_err(queue->ctrl->ctrl.device,
1445                       "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1446                       status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1447         } else {
1448                 dev_err(queue->ctrl->ctrl.device,
1449                         "Connect rejected: status %d (%s).\n", status, rej_msg);
1450         }
1451
1452         return -ECONNRESET;
1453 }
1454
1455 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1456 {
1457         int ret;
1458
1459         ret = nvme_rdma_create_queue_ib(queue);
1460         if (ret)
1461                 return ret;
1462
1463         ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1464         if (ret) {
1465                 dev_err(queue->ctrl->ctrl.device,
1466                         "rdma_resolve_route failed (%d).\n",
1467                         queue->cm_error);
1468                 goto out_destroy_queue;
1469         }
1470
1471         return 0;
1472
1473 out_destroy_queue:
1474         nvme_rdma_destroy_queue_ib(queue);
1475         return ret;
1476 }
1477
1478 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1479 {
1480         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1481         struct rdma_conn_param param = { };
1482         struct nvme_rdma_cm_req priv = { };
1483         int ret;
1484
1485         param.qp_num = queue->qp->qp_num;
1486         param.flow_control = 1;
1487
1488         param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1489         /* maximum retry count */
1490         param.retry_count = 7;
1491         param.rnr_retry_count = 7;
1492         param.private_data = &priv;
1493         param.private_data_len = sizeof(priv);
1494
1495         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1496         priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1497         /*
1498          * set the admin queue depth to the minimum size
1499          * specified by the Fabrics standard.
1500          */
1501         if (priv.qid == 0) {
1502                 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1503                 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1504         } else {
1505                 /*
1506                  * current interpretation of the fabrics spec
1507                  * is at minimum you make hrqsize sqsize+1, or a
1508                  * 1's based representation of sqsize.
1509                  */
1510                 priv.hrqsize = cpu_to_le16(queue->queue_size);
1511                 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1512         }
1513
1514         ret = rdma_connect(queue->cm_id, &param);
1515         if (ret) {
1516                 dev_err(ctrl->ctrl.device,
1517                         "rdma_connect failed (%d).\n", ret);
1518                 goto out_destroy_queue_ib;
1519         }
1520
1521         return 0;
1522
1523 out_destroy_queue_ib:
1524         nvme_rdma_destroy_queue_ib(queue);
1525         return ret;
1526 }
1527
1528 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1529                 struct rdma_cm_event *ev)
1530 {
1531         struct nvme_rdma_queue *queue = cm_id->context;
1532         int cm_error = 0;
1533
1534         dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1535                 rdma_event_msg(ev->event), ev->event,
1536                 ev->status, cm_id);
1537
1538         switch (ev->event) {
1539         case RDMA_CM_EVENT_ADDR_RESOLVED:
1540                 cm_error = nvme_rdma_addr_resolved(queue);
1541                 break;
1542         case RDMA_CM_EVENT_ROUTE_RESOLVED:
1543                 cm_error = nvme_rdma_route_resolved(queue);
1544                 break;
1545         case RDMA_CM_EVENT_ESTABLISHED:
1546                 queue->cm_error = nvme_rdma_conn_established(queue);
1547                 /* complete cm_done regardless of success/failure */
1548                 complete(&queue->cm_done);
1549                 return 0;
1550         case RDMA_CM_EVENT_REJECTED:
1551                 cm_error = nvme_rdma_conn_rejected(queue, ev);
1552                 break;
1553         case RDMA_CM_EVENT_ROUTE_ERROR:
1554         case RDMA_CM_EVENT_CONNECT_ERROR:
1555         case RDMA_CM_EVENT_UNREACHABLE:
1556                 nvme_rdma_destroy_queue_ib(queue);
1557         case RDMA_CM_EVENT_ADDR_ERROR:
1558                 dev_dbg(queue->ctrl->ctrl.device,
1559                         "CM error event %d\n", ev->event);
1560                 cm_error = -ECONNRESET;
1561                 break;
1562         case RDMA_CM_EVENT_DISCONNECTED:
1563         case RDMA_CM_EVENT_ADDR_CHANGE:
1564         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1565                 dev_dbg(queue->ctrl->ctrl.device,
1566                         "disconnect received - connection closed\n");
1567                 nvme_rdma_error_recovery(queue->ctrl);
1568                 break;
1569         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1570                 /* device removal is handled via the ib_client API */
1571                 break;
1572         default:
1573                 dev_err(queue->ctrl->ctrl.device,
1574                         "Unexpected RDMA CM event (%d)\n", ev->event);
1575                 nvme_rdma_error_recovery(queue->ctrl);
1576                 break;
1577         }
1578
1579         if (cm_error) {
1580                 queue->cm_error = cm_error;
1581                 complete(&queue->cm_done);
1582         }
1583
1584         return 0;
1585 }
1586
1587 static enum blk_eh_timer_return
1588 nvme_rdma_timeout(struct request *rq, bool reserved)
1589 {
1590         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1591
1592         /* queue error recovery */
1593         nvme_rdma_error_recovery(req->queue->ctrl);
1594
1595         /* fail with DNR on cmd timeout */
1596         nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1597
1598         return BLK_EH_HANDLED;
1599 }
1600
1601 /*
1602  * We cannot accept any other command until the Connect command has completed.
1603  */
1604 static inline blk_status_t
1605 nvme_rdma_is_ready(struct nvme_rdma_queue *queue, struct request *rq)
1606 {
1607         if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags)))
1608                 return nvmf_check_init_req(&queue->ctrl->ctrl, rq);
1609         return BLK_STS_OK;
1610 }
1611
1612 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1613                 const struct blk_mq_queue_data *bd)
1614 {
1615         struct nvme_ns *ns = hctx->queue->queuedata;
1616         struct nvme_rdma_queue *queue = hctx->driver_data;
1617         struct request *rq = bd->rq;
1618         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1619         struct nvme_rdma_qe *sqe = &req->sqe;
1620         struct nvme_command *c = sqe->data;
1621         struct ib_device *dev;
1622         blk_status_t ret;
1623         int err;
1624
1625         WARN_ON_ONCE(rq->tag < 0);
1626
1627         ret = nvme_rdma_is_ready(queue, rq);
1628         if (unlikely(ret))
1629                 return ret;
1630
1631         dev = queue->device->dev;
1632         ib_dma_sync_single_for_cpu(dev, sqe->dma,
1633                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1634
1635         ret = nvme_setup_cmd(ns, rq, c);
1636         if (ret)
1637                 return ret;
1638
1639         blk_mq_start_request(rq);
1640
1641         err = nvme_rdma_map_data(queue, rq, c);
1642         if (unlikely(err < 0)) {
1643                 dev_err(queue->ctrl->ctrl.device,
1644                              "Failed to map data (%d)\n", err);
1645                 nvme_cleanup_cmd(rq);
1646                 goto err;
1647         }
1648
1649         sqe->cqe.done = nvme_rdma_send_done;
1650
1651         ib_dma_sync_single_for_device(dev, sqe->dma,
1652                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1653
1654         err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1655                         req->mr->need_inval ? &req->reg_wr.wr : NULL);
1656         if (unlikely(err)) {
1657                 nvme_rdma_unmap_data(queue, rq);
1658                 goto err;
1659         }
1660
1661         return BLK_STS_OK;
1662 err:
1663         if (err == -ENOMEM || err == -EAGAIN)
1664                 return BLK_STS_RESOURCE;
1665         return BLK_STS_IOERR;
1666 }
1667
1668 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1669 {
1670         struct nvme_rdma_queue *queue = hctx->driver_data;
1671         struct ib_cq *cq = queue->ib_cq;
1672         struct ib_wc wc;
1673         int found = 0;
1674
1675         while (ib_poll_cq(cq, 1, &wc) > 0) {
1676                 struct ib_cqe *cqe = wc.wr_cqe;
1677
1678                 if (cqe) {
1679                         if (cqe->done == nvme_rdma_recv_done)
1680                                 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1681                         else
1682                                 cqe->done(cq, &wc);
1683                 }
1684         }
1685
1686         return found;
1687 }
1688
1689 static void nvme_rdma_complete_rq(struct request *rq)
1690 {
1691         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1692
1693         nvme_rdma_unmap_data(req->queue, rq);
1694         nvme_complete_rq(rq);
1695 }
1696
1697 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1698 {
1699         struct nvme_rdma_ctrl *ctrl = set->driver_data;
1700
1701         return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
1702 }
1703
1704 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1705         .queue_rq       = nvme_rdma_queue_rq,
1706         .complete       = nvme_rdma_complete_rq,
1707         .init_request   = nvme_rdma_init_request,
1708         .exit_request   = nvme_rdma_exit_request,
1709         .init_hctx      = nvme_rdma_init_hctx,
1710         .poll           = nvme_rdma_poll,
1711         .timeout        = nvme_rdma_timeout,
1712         .map_queues     = nvme_rdma_map_queues,
1713 };
1714
1715 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1716         .queue_rq       = nvme_rdma_queue_rq,
1717         .complete       = nvme_rdma_complete_rq,
1718         .init_request   = nvme_rdma_init_request,
1719         .exit_request   = nvme_rdma_exit_request,
1720         .init_hctx      = nvme_rdma_init_admin_hctx,
1721         .timeout        = nvme_rdma_timeout,
1722 };
1723
1724 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1725 {
1726         cancel_work_sync(&ctrl->err_work);
1727         cancel_delayed_work_sync(&ctrl->reconnect_work);
1728
1729         if (ctrl->ctrl.queue_count > 1) {
1730                 nvme_stop_queues(&ctrl->ctrl);
1731                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
1732                                         nvme_cancel_request, &ctrl->ctrl);
1733                 if (shutdown)
1734                         nvme_start_queues(&ctrl->ctrl);
1735                 nvme_rdma_destroy_io_queues(ctrl, shutdown);
1736         }
1737
1738         if (shutdown)
1739                 nvme_shutdown_ctrl(&ctrl->ctrl);
1740         else
1741                 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1742
1743         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1744         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1745                                 nvme_cancel_request, &ctrl->ctrl);
1746         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1747         nvme_rdma_destroy_admin_queue(ctrl, shutdown);
1748 }
1749
1750 static void nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl)
1751 {
1752         nvme_remove_namespaces(&ctrl->ctrl);
1753         nvme_rdma_shutdown_ctrl(ctrl, true);
1754         nvme_uninit_ctrl(&ctrl->ctrl);
1755         nvme_put_ctrl(&ctrl->ctrl);
1756 }
1757
1758 static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1759 {
1760         struct nvme_rdma_ctrl *ctrl = container_of(work,
1761                                 struct nvme_rdma_ctrl, delete_work);
1762
1763         nvme_stop_ctrl(&ctrl->ctrl);
1764         nvme_rdma_remove_ctrl(ctrl);
1765 }
1766
1767 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1768 {
1769         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1770                 return -EBUSY;
1771
1772         if (!queue_work(nvme_wq, &ctrl->delete_work))
1773                 return -EBUSY;
1774
1775         return 0;
1776 }
1777
1778 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1779 {
1780         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1781         int ret = 0;
1782
1783         /*
1784          * Keep a reference until all work is flushed since
1785          * __nvme_rdma_del_ctrl can free the ctrl mem
1786          */
1787         if (!kref_get_unless_zero(&ctrl->ctrl.kref))
1788                 return -EBUSY;
1789         ret = __nvme_rdma_del_ctrl(ctrl);
1790         if (!ret)
1791                 flush_work(&ctrl->delete_work);
1792         nvme_put_ctrl(&ctrl->ctrl);
1793         return ret;
1794 }
1795
1796 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1797 {
1798         struct nvme_rdma_ctrl *ctrl =
1799                 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1800         int ret;
1801         bool changed;
1802
1803         nvme_stop_ctrl(&ctrl->ctrl);
1804         nvme_rdma_shutdown_ctrl(ctrl, false);
1805
1806         ret = nvme_rdma_configure_admin_queue(ctrl, false);
1807         if (ret)
1808                 goto out_fail;
1809
1810         if (ctrl->ctrl.queue_count > 1) {
1811                 ret = nvme_rdma_configure_io_queues(ctrl, false);
1812                 if (ret)
1813                         goto out_fail;
1814         }
1815
1816         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1817         WARN_ON_ONCE(!changed);
1818
1819         nvme_start_ctrl(&ctrl->ctrl);
1820
1821         return;
1822
1823 out_fail:
1824         dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1825         nvme_rdma_remove_ctrl(ctrl);
1826 }
1827
1828 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1829         .name                   = "rdma",
1830         .module                 = THIS_MODULE,
1831         .flags                  = NVME_F_FABRICS,
1832         .reg_read32             = nvmf_reg_read32,
1833         .reg_read64             = nvmf_reg_read64,
1834         .reg_write32            = nvmf_reg_write32,
1835         .free_ctrl              = nvme_rdma_free_ctrl,
1836         .submit_async_event     = nvme_rdma_submit_async_event,
1837         .delete_ctrl            = nvme_rdma_del_ctrl,
1838         .get_address            = nvmf_get_address,
1839 };
1840
1841 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1842                 struct nvmf_ctrl_options *opts)
1843 {
1844         struct nvme_rdma_ctrl *ctrl;
1845         int ret;
1846         bool changed;
1847         char *port;
1848
1849         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1850         if (!ctrl)
1851                 return ERR_PTR(-ENOMEM);
1852         ctrl->ctrl.opts = opts;
1853         INIT_LIST_HEAD(&ctrl->list);
1854
1855         if (opts->mask & NVMF_OPT_TRSVCID)
1856                 port = opts->trsvcid;
1857         else
1858                 port = __stringify(NVME_RDMA_IP_PORT);
1859
1860         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1861                         opts->traddr, port, &ctrl->addr);
1862         if (ret) {
1863                 pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1864                 goto out_free_ctrl;
1865         }
1866
1867         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1868                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1869                         opts->host_traddr, NULL, &ctrl->src_addr);
1870                 if (ret) {
1871                         pr_err("malformed src address passed: %s\n",
1872                                opts->host_traddr);
1873                         goto out_free_ctrl;
1874                 }
1875         }
1876
1877         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1878                                 0 /* no quirks, we're perfect! */);
1879         if (ret)
1880                 goto out_free_ctrl;
1881
1882         INIT_DELAYED_WORK(&ctrl->reconnect_work,
1883                         nvme_rdma_reconnect_ctrl_work);
1884         INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1885         INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1886         INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1887
1888         ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1889         ctrl->ctrl.sqsize = opts->queue_size - 1;
1890         ctrl->ctrl.kato = opts->kato;
1891
1892         ret = -ENOMEM;
1893         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1894                                 GFP_KERNEL);
1895         if (!ctrl->queues)
1896                 goto out_uninit_ctrl;
1897
1898         ret = nvme_rdma_configure_admin_queue(ctrl, true);
1899         if (ret)
1900                 goto out_kfree_queues;
1901
1902         /* sanity check icdoff */
1903         if (ctrl->ctrl.icdoff) {
1904                 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1905                 ret = -EINVAL;
1906                 goto out_remove_admin_queue;
1907         }
1908
1909         /* sanity check keyed sgls */
1910         if (!(ctrl->ctrl.sgls & (1 << 20))) {
1911                 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1912                 ret = -EINVAL;
1913                 goto out_remove_admin_queue;
1914         }
1915
1916         if (opts->queue_size > ctrl->ctrl.maxcmd) {
1917                 /* warn if maxcmd is lower than queue_size */
1918                 dev_warn(ctrl->ctrl.device,
1919                         "queue_size %zu > ctrl maxcmd %u, clamping down\n",
1920                         opts->queue_size, ctrl->ctrl.maxcmd);
1921                 opts->queue_size = ctrl->ctrl.maxcmd;
1922         }
1923
1924         if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
1925                 /* warn if sqsize is lower than queue_size */
1926                 dev_warn(ctrl->ctrl.device,
1927                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
1928                         opts->queue_size, ctrl->ctrl.sqsize + 1);
1929                 opts->queue_size = ctrl->ctrl.sqsize + 1;
1930         }
1931
1932         if (opts->nr_io_queues) {
1933                 ret = nvme_rdma_configure_io_queues(ctrl, true);
1934                 if (ret)
1935                         goto out_remove_admin_queue;
1936         }
1937
1938         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1939         WARN_ON_ONCE(!changed);
1940
1941         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1942                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1943
1944         kref_get(&ctrl->ctrl.kref);
1945
1946         mutex_lock(&nvme_rdma_ctrl_mutex);
1947         list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1948         mutex_unlock(&nvme_rdma_ctrl_mutex);
1949
1950         nvme_start_ctrl(&ctrl->ctrl);
1951
1952         return &ctrl->ctrl;
1953
1954 out_remove_admin_queue:
1955         nvme_rdma_destroy_admin_queue(ctrl, true);
1956 out_kfree_queues:
1957         kfree(ctrl->queues);
1958 out_uninit_ctrl:
1959         nvme_uninit_ctrl(&ctrl->ctrl);
1960         nvme_put_ctrl(&ctrl->ctrl);
1961         if (ret > 0)
1962                 ret = -EIO;
1963         return ERR_PTR(ret);
1964 out_free_ctrl:
1965         kfree(ctrl);
1966         return ERR_PTR(ret);
1967 }
1968
1969 static struct nvmf_transport_ops nvme_rdma_transport = {
1970         .name           = "rdma",
1971         .required_opts  = NVMF_OPT_TRADDR,
1972         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
1973                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
1974         .create_ctrl    = nvme_rdma_create_ctrl,
1975 };
1976
1977 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1978 {
1979         struct nvme_rdma_ctrl *ctrl;
1980
1981         /* Delete all controllers using this device */
1982         mutex_lock(&nvme_rdma_ctrl_mutex);
1983         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1984                 if (ctrl->device->dev != ib_device)
1985                         continue;
1986                 dev_info(ctrl->ctrl.device,
1987                         "Removing ctrl: NQN \"%s\", addr %pISp\n",
1988                         ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1989                 __nvme_rdma_del_ctrl(ctrl);
1990         }
1991         mutex_unlock(&nvme_rdma_ctrl_mutex);
1992
1993         flush_workqueue(nvme_wq);
1994 }
1995
1996 static struct ib_client nvme_rdma_ib_client = {
1997         .name   = "nvme_rdma",
1998         .remove = nvme_rdma_remove_one
1999 };
2000
2001 static int __init nvme_rdma_init_module(void)
2002 {
2003         int ret;
2004
2005         ret = ib_register_client(&nvme_rdma_ib_client);
2006         if (ret)
2007                 return ret;
2008
2009         ret = nvmf_register_transport(&nvme_rdma_transport);
2010         if (ret)
2011                 goto err_unreg_client;
2012
2013         return 0;
2014
2015 err_unreg_client:
2016         ib_unregister_client(&nvme_rdma_ib_client);
2017         return ret;
2018 }
2019
2020 static void __exit nvme_rdma_cleanup_module(void)
2021 {
2022         nvmf_unregister_transport(&nvme_rdma_transport);
2023         ib_unregister_client(&nvme_rdma_ib_client);
2024 }
2025
2026 module_init(nvme_rdma_init_module);
2027 module_exit(nvme_rdma_cleanup_module);
2028
2029 MODULE_LICENSE("GPL v2");