GNU Linux-libre 4.14.303-gnu1
[releases.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/dmi.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/mutex.h>
27 #include <linux/once.h>
28 #include <linux/pci.h>
29 #include <linux/poison.h>
30 #include <linux/t10-pi.h>
31 #include <linux/timer.h>
32 #include <linux/types.h>
33 #include <linux/io-64-nonatomic-lo-hi.h>
34 #include <asm/unaligned.h>
35 #include <linux/sed-opal.h>
36
37 #include "nvme.h"
38
39 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
40 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
41
42 /*
43  * We handle AEN commands ourselves and don't even let the
44  * block layer know about them.
45  */
46 #define NVME_AQ_BLKMQ_DEPTH     (NVME_AQ_DEPTH - NVME_NR_AERS)
47
48 static int use_threaded_interrupts;
49 module_param(use_threaded_interrupts, int, 0);
50
51 static bool use_cmb_sqes = true;
52 module_param(use_cmb_sqes, bool, 0644);
53 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54
55 static unsigned int max_host_mem_size_mb = 128;
56 module_param(max_host_mem_size_mb, uint, 0444);
57 MODULE_PARM_DESC(max_host_mem_size_mb,
58         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59
60 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
61 static const struct kernel_param_ops io_queue_depth_ops = {
62         .set = io_queue_depth_set,
63         .get = param_get_int,
64 };
65
66 static int io_queue_depth = 1024;
67 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
68 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
69
70 struct nvme_dev;
71 struct nvme_queue;
72
73 static void nvme_process_cq(struct nvme_queue *nvmeq);
74 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
75
76 /*
77  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
78  */
79 struct nvme_dev {
80         struct nvme_queue *queues;
81         struct blk_mq_tag_set tagset;
82         struct blk_mq_tag_set admin_tagset;
83         u32 __iomem *dbs;
84         struct device *dev;
85         struct dma_pool *prp_page_pool;
86         struct dma_pool *prp_small_pool;
87         unsigned online_queues;
88         unsigned max_qid;
89         int q_depth;
90         u32 db_stride;
91         void __iomem *bar;
92         unsigned long bar_mapped_size;
93         struct work_struct remove_work;
94         struct mutex shutdown_lock;
95         bool subsystem;
96         void __iomem *cmb;
97         pci_bus_addr_t cmb_bus_addr;
98         u64 cmb_size;
99         u32 cmbsz;
100         u32 cmbloc;
101         struct nvme_ctrl ctrl;
102         struct completion ioq_wait;
103
104         /* shadow doorbell buffer support: */
105         u32 *dbbuf_dbs;
106         dma_addr_t dbbuf_dbs_dma_addr;
107         u32 *dbbuf_eis;
108         dma_addr_t dbbuf_eis_dma_addr;
109
110         /* host memory buffer support: */
111         u64 host_mem_size;
112         u32 nr_host_mem_descs;
113         dma_addr_t host_mem_descs_dma;
114         struct nvme_host_mem_buf_desc *host_mem_descs;
115         void **host_mem_desc_bufs;
116 };
117
118 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
119 {
120         int n = 0, ret;
121
122         ret = kstrtoint(val, 10, &n);
123         if (ret != 0 || n < 2)
124                 return -EINVAL;
125
126         return param_set_int(val, kp);
127 }
128
129 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
130 {
131         return qid * 2 * stride;
132 }
133
134 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
135 {
136         return (qid * 2 + 1) * stride;
137 }
138
139 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
140 {
141         return container_of(ctrl, struct nvme_dev, ctrl);
142 }
143
144 /*
145  * An NVM Express queue.  Each device has at least two (one for admin
146  * commands and one for I/O commands).
147  */
148 struct nvme_queue {
149         struct device *q_dmadev;
150         struct nvme_dev *dev;
151         spinlock_t q_lock;
152         struct nvme_command *sq_cmds;
153         struct nvme_command __iomem *sq_cmds_io;
154         volatile struct nvme_completion *cqes;
155         struct blk_mq_tags **tags;
156         dma_addr_t sq_dma_addr;
157         dma_addr_t cq_dma_addr;
158         u32 __iomem *q_db;
159         u16 q_depth;
160         s16 cq_vector;
161         u16 sq_tail;
162         u16 cq_head;
163         u16 qid;
164         u8 cq_phase;
165         u8 cqe_seen;
166         u32 *dbbuf_sq_db;
167         u32 *dbbuf_cq_db;
168         u32 *dbbuf_sq_ei;
169         u32 *dbbuf_cq_ei;
170 };
171
172 /*
173  * The nvme_iod describes the data in an I/O, including the list of PRP
174  * entries.  You can't see it in this data structure because C doesn't let
175  * me express that.  Use nvme_init_iod to ensure there's enough space
176  * allocated to store the PRP list.
177  */
178 struct nvme_iod {
179         struct nvme_request req;
180         struct nvme_queue *nvmeq;
181         int aborted;
182         int npages;             /* In the PRP list. 0 means small pool in use */
183         int nents;              /* Used in scatterlist */
184         int length;             /* Of data, in bytes */
185         dma_addr_t first_dma;
186         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
187         struct scatterlist *sg;
188         struct scatterlist inline_sg[0];
189 };
190
191 /*
192  * Check we didin't inadvertently grow the command struct
193  */
194 static inline void _nvme_check_size(void)
195 {
196         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
197         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
198         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
199         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
200         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
201         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
202         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
203         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
204         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
205         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
206         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
207         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
208         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
209 }
210
211 static inline unsigned int nvme_dbbuf_size(u32 stride)
212 {
213         return ((num_possible_cpus() + 1) * 8 * stride);
214 }
215
216 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
217 {
218         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
219
220         if (dev->dbbuf_dbs)
221                 return 0;
222
223         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
224                                             &dev->dbbuf_dbs_dma_addr,
225                                             GFP_KERNEL);
226         if (!dev->dbbuf_dbs)
227                 return -ENOMEM;
228         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
229                                             &dev->dbbuf_eis_dma_addr,
230                                             GFP_KERNEL);
231         if (!dev->dbbuf_eis) {
232                 dma_free_coherent(dev->dev, mem_size,
233                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
234                 dev->dbbuf_dbs = NULL;
235                 return -ENOMEM;
236         }
237
238         return 0;
239 }
240
241 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
242 {
243         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
244
245         if (dev->dbbuf_dbs) {
246                 dma_free_coherent(dev->dev, mem_size,
247                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
248                 dev->dbbuf_dbs = NULL;
249         }
250         if (dev->dbbuf_eis) {
251                 dma_free_coherent(dev->dev, mem_size,
252                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
253                 dev->dbbuf_eis = NULL;
254         }
255 }
256
257 static void nvme_dbbuf_init(struct nvme_dev *dev,
258                             struct nvme_queue *nvmeq, int qid)
259 {
260         if (!dev->dbbuf_dbs || !qid)
261                 return;
262
263         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
264         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
265         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
266         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
267 }
268
269 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
270 {
271         if (!nvmeq->qid)
272                 return;
273
274         nvmeq->dbbuf_sq_db = NULL;
275         nvmeq->dbbuf_cq_db = NULL;
276         nvmeq->dbbuf_sq_ei = NULL;
277         nvmeq->dbbuf_cq_ei = NULL;
278 }
279
280 static void nvme_dbbuf_set(struct nvme_dev *dev)
281 {
282         struct nvme_command c;
283         unsigned int i;
284
285         if (!dev->dbbuf_dbs)
286                 return;
287
288         memset(&c, 0, sizeof(c));
289         c.dbbuf.opcode = nvme_admin_dbbuf;
290         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
291         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
292
293         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
294                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
295                 /* Free memory and continue on */
296                 nvme_dbbuf_dma_free(dev);
297
298                 for (i = 1; i <= dev->online_queues; i++)
299                         nvme_dbbuf_free(&dev->queues[i]);
300         }
301 }
302
303 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
304 {
305         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
306 }
307
308 /* Update dbbuf and return true if an MMIO is required */
309 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
310                                               volatile u32 *dbbuf_ei)
311 {
312         if (dbbuf_db) {
313                 u16 old_value;
314
315                 /*
316                  * Ensure that the queue is written before updating
317                  * the doorbell in memory
318                  */
319                 wmb();
320
321                 old_value = *dbbuf_db;
322                 *dbbuf_db = value;
323
324                 /*
325                  * Ensure that the doorbell is updated before reading the event
326                  * index from memory.  The controller needs to provide similar
327                  * ordering to ensure the envent index is updated before reading
328                  * the doorbell.
329                  */
330                 mb();
331
332                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
333                         return false;
334         }
335
336         return true;
337 }
338
339 /*
340  * Max size of iod being embedded in the request payload
341  */
342 #define NVME_INT_PAGES          2
343 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
344
345 /*
346  * Will slightly overestimate the number of pages needed.  This is OK
347  * as it only leads to a small amount of wasted memory for the lifetime of
348  * the I/O.
349  */
350 static int nvme_npages(unsigned size, struct nvme_dev *dev)
351 {
352         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
353                                       dev->ctrl.page_size);
354         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
355 }
356
357 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
358                 unsigned int size, unsigned int nseg)
359 {
360         return sizeof(__le64 *) * nvme_npages(size, dev) +
361                         sizeof(struct scatterlist) * nseg;
362 }
363
364 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
365 {
366         return sizeof(struct nvme_iod) +
367                 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
368 }
369
370 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
371                                 unsigned int hctx_idx)
372 {
373         struct nvme_dev *dev = data;
374         struct nvme_queue *nvmeq = &dev->queues[0];
375
376         WARN_ON(hctx_idx != 0);
377         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
378         WARN_ON(nvmeq->tags);
379
380         hctx->driver_data = nvmeq;
381         nvmeq->tags = &dev->admin_tagset.tags[0];
382         return 0;
383 }
384
385 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
386 {
387         struct nvme_queue *nvmeq = hctx->driver_data;
388
389         nvmeq->tags = NULL;
390 }
391
392 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
393                           unsigned int hctx_idx)
394 {
395         struct nvme_dev *dev = data;
396         struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
397
398         if (!nvmeq->tags)
399                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
400
401         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
402         hctx->driver_data = nvmeq;
403         return 0;
404 }
405
406 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
407                 unsigned int hctx_idx, unsigned int numa_node)
408 {
409         struct nvme_dev *dev = set->driver_data;
410         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
411         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
412         struct nvme_queue *nvmeq = &dev->queues[queue_idx];
413
414         BUG_ON(!nvmeq);
415         iod->nvmeq = nvmeq;
416         return 0;
417 }
418
419 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
420 {
421         struct nvme_dev *dev = set->driver_data;
422
423         return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
424 }
425
426 /**
427  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
428  * @nvmeq: The queue to use
429  * @cmd: The command to send
430  *
431  * Safe to use from interrupt context
432  */
433 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
434                                                 struct nvme_command *cmd)
435 {
436         u16 tail = nvmeq->sq_tail;
437
438         if (nvmeq->sq_cmds_io)
439                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
440         else
441                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
442
443         if (++tail == nvmeq->q_depth)
444                 tail = 0;
445         if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
446                                               nvmeq->dbbuf_sq_ei))
447                 writel(tail, nvmeq->q_db);
448         nvmeq->sq_tail = tail;
449 }
450
451 static __le64 **iod_list(struct request *req)
452 {
453         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
454         return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
455 }
456
457 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
458 {
459         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
460         int nseg = blk_rq_nr_phys_segments(rq);
461         unsigned int size = blk_rq_payload_bytes(rq);
462
463         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
464                 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
465                 if (!iod->sg)
466                         return BLK_STS_RESOURCE;
467         } else {
468                 iod->sg = iod->inline_sg;
469         }
470
471         iod->aborted = 0;
472         iod->npages = -1;
473         iod->nents = 0;
474         iod->length = size;
475
476         return BLK_STS_OK;
477 }
478
479 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
480 {
481         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
482         const int last_prp = dev->ctrl.page_size / 8 - 1;
483         int i;
484         __le64 **list = iod_list(req);
485         dma_addr_t prp_dma = iod->first_dma;
486
487         if (iod->npages == 0)
488                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
489         for (i = 0; i < iod->npages; i++) {
490                 __le64 *prp_list = list[i];
491                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
492                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
493                 prp_dma = next_prp_dma;
494         }
495
496         if (iod->sg != iod->inline_sg)
497                 kfree(iod->sg);
498 }
499
500 #ifdef CONFIG_BLK_DEV_INTEGRITY
501 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
502 {
503         if (be32_to_cpu(pi->ref_tag) == v)
504                 pi->ref_tag = cpu_to_be32(p);
505 }
506
507 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
508 {
509         if (be32_to_cpu(pi->ref_tag) == p)
510                 pi->ref_tag = cpu_to_be32(v);
511 }
512
513 /**
514  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
515  *
516  * The virtual start sector is the one that was originally submitted by the
517  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
518  * start sector may be different. Remap protection information to match the
519  * physical LBA on writes, and back to the original seed on reads.
520  *
521  * Type 0 and 3 do not have a ref tag, so no remapping required.
522  */
523 static void nvme_dif_remap(struct request *req,
524                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
525 {
526         struct nvme_ns *ns = req->rq_disk->private_data;
527         struct bio_integrity_payload *bip;
528         struct t10_pi_tuple *pi;
529         void *p, *pmap;
530         u32 i, nlb, ts, phys, virt;
531
532         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
533                 return;
534
535         bip = bio_integrity(req->bio);
536         if (!bip)
537                 return;
538
539         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
540
541         p = pmap;
542         virt = bip_get_seed(bip);
543         phys = nvme_block_nr(ns, blk_rq_pos(req));
544         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
545         ts = ns->disk->queue->integrity.tuple_size;
546
547         for (i = 0; i < nlb; i++, virt++, phys++) {
548                 pi = (struct t10_pi_tuple *)p;
549                 dif_swap(phys, virt, pi);
550                 p += ts;
551         }
552         kunmap_atomic(pmap);
553 }
554 #else /* CONFIG_BLK_DEV_INTEGRITY */
555 static void nvme_dif_remap(struct request *req,
556                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
557 {
558 }
559 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
560 {
561 }
562 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
563 {
564 }
565 #endif
566
567 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
568 {
569         int i;
570         struct scatterlist *sg;
571
572         for_each_sg(sgl, sg, nents, i) {
573                 dma_addr_t phys = sg_phys(sg);
574                 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
575                         "dma_address:%pad dma_length:%d\n",
576                         i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
577                         sg_dma_len(sg));
578         }
579 }
580
581 static blk_status_t nvme_setup_prps(struct nvme_dev *dev, struct request *req)
582 {
583         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
584         struct dma_pool *pool;
585         int length = blk_rq_payload_bytes(req);
586         struct scatterlist *sg = iod->sg;
587         int dma_len = sg_dma_len(sg);
588         u64 dma_addr = sg_dma_address(sg);
589         u32 page_size = dev->ctrl.page_size;
590         int offset = dma_addr & (page_size - 1);
591         __le64 *prp_list;
592         __le64 **list = iod_list(req);
593         dma_addr_t prp_dma;
594         int nprps, i;
595
596         length -= (page_size - offset);
597         if (length <= 0) {
598                 iod->first_dma = 0;
599                 return BLK_STS_OK;
600         }
601
602         dma_len -= (page_size - offset);
603         if (dma_len) {
604                 dma_addr += (page_size - offset);
605         } else {
606                 sg = sg_next(sg);
607                 dma_addr = sg_dma_address(sg);
608                 dma_len = sg_dma_len(sg);
609         }
610
611         if (length <= page_size) {
612                 iod->first_dma = dma_addr;
613                 return BLK_STS_OK;
614         }
615
616         nprps = DIV_ROUND_UP(length, page_size);
617         if (nprps <= (256 / 8)) {
618                 pool = dev->prp_small_pool;
619                 iod->npages = 0;
620         } else {
621                 pool = dev->prp_page_pool;
622                 iod->npages = 1;
623         }
624
625         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
626         if (!prp_list) {
627                 iod->first_dma = dma_addr;
628                 iod->npages = -1;
629                 return BLK_STS_RESOURCE;
630         }
631         list[0] = prp_list;
632         iod->first_dma = prp_dma;
633         i = 0;
634         for (;;) {
635                 if (i == page_size >> 3) {
636                         __le64 *old_prp_list = prp_list;
637                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
638                         if (!prp_list)
639                                 return BLK_STS_RESOURCE;
640                         list[iod->npages++] = prp_list;
641                         prp_list[0] = old_prp_list[i - 1];
642                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
643                         i = 1;
644                 }
645                 prp_list[i++] = cpu_to_le64(dma_addr);
646                 dma_len -= page_size;
647                 dma_addr += page_size;
648                 length -= page_size;
649                 if (length <= 0)
650                         break;
651                 if (dma_len > 0)
652                         continue;
653                 if (unlikely(dma_len < 0))
654                         goto bad_sgl;
655                 sg = sg_next(sg);
656                 dma_addr = sg_dma_address(sg);
657                 dma_len = sg_dma_len(sg);
658         }
659
660         return BLK_STS_OK;
661
662  bad_sgl:
663         WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
664                         "Invalid SGL for payload:%d nents:%d\n",
665                         blk_rq_payload_bytes(req), iod->nents);
666         return BLK_STS_IOERR;
667 }
668
669 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
670                 struct nvme_command *cmnd)
671 {
672         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
673         struct request_queue *q = req->q;
674         enum dma_data_direction dma_dir = rq_data_dir(req) ?
675                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
676         blk_status_t ret = BLK_STS_IOERR;
677
678         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
679         iod->nents = blk_rq_map_sg(q, req, iod->sg);
680         if (!iod->nents)
681                 goto out;
682
683         ret = BLK_STS_RESOURCE;
684         if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
685                                 DMA_ATTR_NO_WARN))
686                 goto out;
687
688         ret = nvme_setup_prps(dev, req);
689         if (ret != BLK_STS_OK)
690                 goto out_unmap;
691
692         ret = BLK_STS_IOERR;
693         if (blk_integrity_rq(req)) {
694                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
695                         goto out_unmap;
696
697                 sg_init_table(&iod->meta_sg, 1);
698                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
699                         goto out_unmap;
700
701                 if (req_op(req) == REQ_OP_WRITE)
702                         nvme_dif_remap(req, nvme_dif_prep);
703
704                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
705                         goto out_unmap;
706         }
707
708         cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
709         cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
710         if (blk_integrity_rq(req))
711                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
712         return BLK_STS_OK;
713
714 out_unmap:
715         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
716 out:
717         return ret;
718 }
719
720 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
721 {
722         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
723         enum dma_data_direction dma_dir = rq_data_dir(req) ?
724                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
725
726         if (iod->nents) {
727                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
728                 if (blk_integrity_rq(req)) {
729                         if (req_op(req) == REQ_OP_READ)
730                                 nvme_dif_remap(req, nvme_dif_complete);
731                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
732                 }
733         }
734
735         nvme_cleanup_cmd(req);
736         nvme_free_iod(dev, req);
737 }
738
739 /*
740  * NOTE: ns is NULL when called on the admin queue.
741  */
742 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
743                          const struct blk_mq_queue_data *bd)
744 {
745         struct nvme_ns *ns = hctx->queue->queuedata;
746         struct nvme_queue *nvmeq = hctx->driver_data;
747         struct nvme_dev *dev = nvmeq->dev;
748         struct request *req = bd->rq;
749         struct nvme_command cmnd;
750         blk_status_t ret;
751
752         ret = nvme_setup_cmd(ns, req, &cmnd);
753         if (ret)
754                 return ret;
755
756         ret = nvme_init_iod(req, dev);
757         if (ret)
758                 goto out_free_cmd;
759
760         if (blk_rq_nr_phys_segments(req)) {
761                 ret = nvme_map_data(dev, req, &cmnd);
762                 if (ret)
763                         goto out_cleanup_iod;
764         }
765
766         blk_mq_start_request(req);
767
768         spin_lock_irq(&nvmeq->q_lock);
769         if (unlikely(nvmeq->cq_vector < 0)) {
770                 ret = BLK_STS_IOERR;
771                 spin_unlock_irq(&nvmeq->q_lock);
772                 goto out_cleanup_iod;
773         }
774         __nvme_submit_cmd(nvmeq, &cmnd);
775         nvme_process_cq(nvmeq);
776         spin_unlock_irq(&nvmeq->q_lock);
777         return BLK_STS_OK;
778 out_cleanup_iod:
779         nvme_free_iod(dev, req);
780 out_free_cmd:
781         nvme_cleanup_cmd(req);
782         return ret;
783 }
784
785 static void nvme_pci_complete_rq(struct request *req)
786 {
787         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
788
789         nvme_unmap_data(iod->nvmeq->dev, req);
790         nvme_complete_rq(req);
791 }
792
793 /* We read the CQE phase first to check if the rest of the entry is valid */
794 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
795                 u16 phase)
796 {
797         return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
798 }
799
800 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
801 {
802         u16 head = nvmeq->cq_head;
803
804         if (likely(nvmeq->cq_vector >= 0)) {
805                 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
806                                                       nvmeq->dbbuf_cq_ei))
807                         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
808         }
809 }
810
811 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
812                 struct nvme_completion *cqe)
813 {
814         struct request *req;
815
816         if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
817                 dev_warn(nvmeq->dev->ctrl.device,
818                         "invalid id %d completed on queue %d\n",
819                         cqe->command_id, le16_to_cpu(cqe->sq_id));
820                 return;
821         }
822
823         /*
824          * AEN requests are special as they don't time out and can
825          * survive any kind of queue freeze and often don't respond to
826          * aborts.  We don't even bother to allocate a struct request
827          * for them but rather special case them here.
828          */
829         if (unlikely(nvmeq->qid == 0 &&
830                         cqe->command_id >= NVME_AQ_BLKMQ_DEPTH)) {
831                 nvme_complete_async_event(&nvmeq->dev->ctrl,
832                                 cqe->status, &cqe->result);
833                 return;
834         }
835
836         nvmeq->cqe_seen = 1;
837         req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
838         nvme_end_request(req, cqe->status, cqe->result);
839 }
840
841 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
842                 struct nvme_completion *cqe)
843 {
844         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
845                 *cqe = nvmeq->cqes[nvmeq->cq_head];
846
847                 if (++nvmeq->cq_head == nvmeq->q_depth) {
848                         nvmeq->cq_head = 0;
849                         nvmeq->cq_phase = !nvmeq->cq_phase;
850                 }
851                 return true;
852         }
853         return false;
854 }
855
856 static void nvme_process_cq(struct nvme_queue *nvmeq)
857 {
858         struct nvme_completion cqe;
859         int consumed = 0;
860
861         while (nvme_read_cqe(nvmeq, &cqe)) {
862                 nvme_handle_cqe(nvmeq, &cqe);
863                 consumed++;
864         }
865
866         if (consumed)
867                 nvme_ring_cq_doorbell(nvmeq);
868 }
869
870 static irqreturn_t nvme_irq(int irq, void *data)
871 {
872         irqreturn_t result;
873         struct nvme_queue *nvmeq = data;
874         spin_lock(&nvmeq->q_lock);
875         nvme_process_cq(nvmeq);
876         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
877         nvmeq->cqe_seen = 0;
878         spin_unlock(&nvmeq->q_lock);
879         return result;
880 }
881
882 static irqreturn_t nvme_irq_check(int irq, void *data)
883 {
884         struct nvme_queue *nvmeq = data;
885         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
886                 return IRQ_WAKE_THREAD;
887         return IRQ_NONE;
888 }
889
890 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
891 {
892         struct nvme_completion cqe;
893         int found = 0, consumed = 0;
894
895         if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
896                 return 0;
897
898         spin_lock_irq(&nvmeq->q_lock);
899         while (nvme_read_cqe(nvmeq, &cqe)) {
900                 nvme_handle_cqe(nvmeq, &cqe);
901                 consumed++;
902
903                 if (tag == cqe.command_id) {
904                         found = 1;
905                         break;
906                 }
907        }
908
909         if (consumed)
910                 nvme_ring_cq_doorbell(nvmeq);
911         spin_unlock_irq(&nvmeq->q_lock);
912
913         return found;
914 }
915
916 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
917 {
918         struct nvme_queue *nvmeq = hctx->driver_data;
919
920         return __nvme_poll(nvmeq, tag);
921 }
922
923 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
924 {
925         struct nvme_dev *dev = to_nvme_dev(ctrl);
926         struct nvme_queue *nvmeq = &dev->queues[0];
927         struct nvme_command c;
928
929         memset(&c, 0, sizeof(c));
930         c.common.opcode = nvme_admin_async_event;
931         c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
932
933         spin_lock_irq(&nvmeq->q_lock);
934         __nvme_submit_cmd(nvmeq, &c);
935         spin_unlock_irq(&nvmeq->q_lock);
936 }
937
938 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
939 {
940         struct nvme_command c;
941
942         memset(&c, 0, sizeof(c));
943         c.delete_queue.opcode = opcode;
944         c.delete_queue.qid = cpu_to_le16(id);
945
946         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
947 }
948
949 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
950                                                 struct nvme_queue *nvmeq)
951 {
952         struct nvme_command c;
953         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
954
955         /*
956          * Note: we (ab)use the fact the the prp fields survive if no data
957          * is attached to the request.
958          */
959         memset(&c, 0, sizeof(c));
960         c.create_cq.opcode = nvme_admin_create_cq;
961         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
962         c.create_cq.cqid = cpu_to_le16(qid);
963         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
964         c.create_cq.cq_flags = cpu_to_le16(flags);
965         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
966
967         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
968 }
969
970 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
971                                                 struct nvme_queue *nvmeq)
972 {
973         struct nvme_ctrl *ctrl = &dev->ctrl;
974         struct nvme_command c;
975         int flags = NVME_QUEUE_PHYS_CONTIG;
976
977         /*
978          * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
979          * set. Since URGENT priority is zeroes, it makes all queues
980          * URGENT.
981          */
982         if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
983                 flags |= NVME_SQ_PRIO_MEDIUM;
984
985         /*
986          * Note: we (ab)use the fact the the prp fields survive if no data
987          * is attached to the request.
988          */
989         memset(&c, 0, sizeof(c));
990         c.create_sq.opcode = nvme_admin_create_sq;
991         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
992         c.create_sq.sqid = cpu_to_le16(qid);
993         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
994         c.create_sq.sq_flags = cpu_to_le16(flags);
995         c.create_sq.cqid = cpu_to_le16(qid);
996
997         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
998 }
999
1000 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1001 {
1002         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1003 }
1004
1005 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1006 {
1007         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1008 }
1009
1010 static void abort_endio(struct request *req, blk_status_t error)
1011 {
1012         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1013         struct nvme_queue *nvmeq = iod->nvmeq;
1014
1015         dev_warn(nvmeq->dev->ctrl.device,
1016                  "Abort status: 0x%x", nvme_req(req)->status);
1017         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1018         blk_mq_free_request(req);
1019 }
1020
1021 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1022 {
1023
1024         /* If true, indicates loss of adapter communication, possibly by a
1025          * NVMe Subsystem reset.
1026          */
1027         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1028
1029         /* If there is a reset ongoing, we shouldn't reset again. */
1030         if (dev->ctrl.state == NVME_CTRL_RESETTING)
1031                 return false;
1032
1033         /* We shouldn't reset unless the controller is on fatal error state
1034          * _or_ if we lost the communication with it.
1035          */
1036         if (!(csts & NVME_CSTS_CFS) && !nssro)
1037                 return false;
1038
1039         return true;
1040 }
1041
1042 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1043 {
1044         /* Read a config register to help see what died. */
1045         u16 pci_status;
1046         int result;
1047
1048         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1049                                       &pci_status);
1050         if (result == PCIBIOS_SUCCESSFUL)
1051                 dev_warn(dev->ctrl.device,
1052                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1053                          csts, pci_status);
1054         else
1055                 dev_warn(dev->ctrl.device,
1056                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1057                          csts, result);
1058 }
1059
1060 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1061 {
1062         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1063         struct nvme_queue *nvmeq = iod->nvmeq;
1064         struct nvme_dev *dev = nvmeq->dev;
1065         struct request *abort_req;
1066         struct nvme_command cmd;
1067         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1068
1069         /* If PCI error recovery process is happening, we cannot reset or
1070          * the recovery mechanism will surely fail.
1071          */
1072         mb();
1073         if (pci_channel_offline(to_pci_dev(dev->dev)))
1074                 return BLK_EH_RESET_TIMER;
1075
1076         /*
1077          * Reset immediately if the controller is failed
1078          */
1079         if (nvme_should_reset(dev, csts)) {
1080                 nvme_warn_reset(dev, csts);
1081                 nvme_dev_disable(dev, false);
1082                 nvme_reset_ctrl(&dev->ctrl);
1083                 return BLK_EH_HANDLED;
1084         }
1085
1086         /*
1087          * Did we miss an interrupt?
1088          */
1089         if (__nvme_poll(nvmeq, req->tag)) {
1090                 dev_warn(dev->ctrl.device,
1091                          "I/O %d QID %d timeout, completion polled\n",
1092                          req->tag, nvmeq->qid);
1093                 return BLK_EH_HANDLED;
1094         }
1095
1096         /*
1097          * Shutdown immediately if controller times out while starting. The
1098          * reset work will see the pci device disabled when it gets the forced
1099          * cancellation error. All outstanding requests are completed on
1100          * shutdown, so we return BLK_EH_HANDLED.
1101          */
1102         if (dev->ctrl.state == NVME_CTRL_RESETTING) {
1103                 dev_warn(dev->ctrl.device,
1104                          "I/O %d QID %d timeout, disable controller\n",
1105                          req->tag, nvmeq->qid);
1106                 nvme_dev_disable(dev, false);
1107                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1108                 return BLK_EH_HANDLED;
1109         }
1110
1111         /*
1112          * Shutdown the controller immediately and schedule a reset if the
1113          * command was already aborted once before and still hasn't been
1114          * returned to the driver, or if this is the admin queue.
1115          */
1116         if (!nvmeq->qid || iod->aborted) {
1117                 dev_warn(dev->ctrl.device,
1118                          "I/O %d QID %d timeout, reset controller\n",
1119                          req->tag, nvmeq->qid);
1120                 nvme_dev_disable(dev, false);
1121                 nvme_reset_ctrl(&dev->ctrl);
1122
1123                 /*
1124                  * Mark the request as handled, since the inline shutdown
1125                  * forces all outstanding requests to complete.
1126                  */
1127                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1128                 return BLK_EH_HANDLED;
1129         }
1130
1131         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1132                 atomic_inc(&dev->ctrl.abort_limit);
1133                 return BLK_EH_RESET_TIMER;
1134         }
1135         iod->aborted = 1;
1136
1137         memset(&cmd, 0, sizeof(cmd));
1138         cmd.abort.opcode = nvme_admin_abort_cmd;
1139         cmd.abort.cid = req->tag;
1140         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1141
1142         dev_warn(nvmeq->dev->ctrl.device,
1143                 "I/O %d QID %d timeout, aborting\n",
1144                  req->tag, nvmeq->qid);
1145
1146         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1147                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1148         if (IS_ERR(abort_req)) {
1149                 atomic_inc(&dev->ctrl.abort_limit);
1150                 return BLK_EH_RESET_TIMER;
1151         }
1152
1153         abort_req->timeout = ADMIN_TIMEOUT;
1154         abort_req->end_io_data = NULL;
1155         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1156
1157         /*
1158          * The aborted req will be completed on receiving the abort req.
1159          * We enable the timer again. If hit twice, it'll cause a device reset,
1160          * as the device then is in a faulty state.
1161          */
1162         return BLK_EH_RESET_TIMER;
1163 }
1164
1165 static void nvme_free_queue(struct nvme_queue *nvmeq)
1166 {
1167         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1168                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1169         if (nvmeq->sq_cmds)
1170                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1171                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1172 }
1173
1174 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1175 {
1176         int i;
1177
1178         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1179                 dev->ctrl.queue_count--;
1180                 nvme_free_queue(&dev->queues[i]);
1181         }
1182 }
1183
1184 /**
1185  * nvme_suspend_queue - put queue into suspended state
1186  * @nvmeq - queue to suspend
1187  */
1188 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1189 {
1190         int vector;
1191
1192         spin_lock_irq(&nvmeq->q_lock);
1193         if (nvmeq->cq_vector == -1) {
1194                 spin_unlock_irq(&nvmeq->q_lock);
1195                 return 1;
1196         }
1197         vector = nvmeq->cq_vector;
1198         nvmeq->dev->online_queues--;
1199         nvmeq->cq_vector = -1;
1200         spin_unlock_irq(&nvmeq->q_lock);
1201
1202         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1203                 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1204
1205         pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1206
1207         return 0;
1208 }
1209
1210 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1211 {
1212         struct nvme_queue *nvmeq = &dev->queues[0];
1213
1214         if (nvme_suspend_queue(nvmeq))
1215                 return;
1216
1217         if (shutdown)
1218                 nvme_shutdown_ctrl(&dev->ctrl);
1219         else
1220                 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1221
1222         spin_lock_irq(&nvmeq->q_lock);
1223         nvme_process_cq(nvmeq);
1224         spin_unlock_irq(&nvmeq->q_lock);
1225 }
1226
1227 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1228                                 int entry_size)
1229 {
1230         int q_depth = dev->q_depth;
1231         unsigned q_size_aligned = roundup(q_depth * entry_size,
1232                                           dev->ctrl.page_size);
1233
1234         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1235                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1236                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1237                 q_depth = div_u64(mem_per_q, entry_size);
1238
1239                 /*
1240                  * Ensure the reduced q_depth is above some threshold where it
1241                  * would be better to map queues in system memory with the
1242                  * original depth
1243                  */
1244                 if (q_depth < 64)
1245                         return -ENOMEM;
1246         }
1247
1248         return q_depth;
1249 }
1250
1251 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1252                                 int qid, int depth)
1253 {
1254
1255         /* CMB SQEs will be mapped before creation */
1256         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz))
1257                 return 0;
1258
1259         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1260                                             &nvmeq->sq_dma_addr, GFP_KERNEL);
1261         if (!nvmeq->sq_cmds)
1262                 return -ENOMEM;
1263
1264         return 0;
1265 }
1266
1267 static int nvme_alloc_queue(struct nvme_dev *dev, int qid,
1268                 int depth, int node)
1269 {
1270         struct nvme_queue *nvmeq = &dev->queues[qid];
1271
1272         if (dev->ctrl.queue_count > qid)
1273                 return 0;
1274
1275         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1276                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1277         if (!nvmeq->cqes)
1278                 goto free_nvmeq;
1279
1280         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1281                 goto free_cqdma;
1282
1283         nvmeq->q_dmadev = dev->dev;
1284         nvmeq->dev = dev;
1285         spin_lock_init(&nvmeq->q_lock);
1286         nvmeq->cq_head = 0;
1287         nvmeq->cq_phase = 1;
1288         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1289         nvmeq->q_depth = depth;
1290         nvmeq->qid = qid;
1291         nvmeq->cq_vector = -1;
1292         dev->ctrl.queue_count++;
1293
1294         return 0;
1295
1296  free_cqdma:
1297         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1298                                                         nvmeq->cq_dma_addr);
1299  free_nvmeq:
1300         return -ENOMEM;
1301 }
1302
1303 static int queue_request_irq(struct nvme_queue *nvmeq)
1304 {
1305         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1306         int nr = nvmeq->dev->ctrl.instance;
1307
1308         if (use_threaded_interrupts) {
1309                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1310                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1311         } else {
1312                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1313                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1314         }
1315 }
1316
1317 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1318 {
1319         struct nvme_dev *dev = nvmeq->dev;
1320
1321         spin_lock_irq(&nvmeq->q_lock);
1322         nvmeq->sq_tail = 0;
1323         nvmeq->cq_head = 0;
1324         nvmeq->cq_phase = 1;
1325         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1326         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1327         nvme_dbbuf_init(dev, nvmeq, qid);
1328         dev->online_queues++;
1329         spin_unlock_irq(&nvmeq->q_lock);
1330 }
1331
1332 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1333 {
1334         struct nvme_dev *dev = nvmeq->dev;
1335         int result;
1336
1337         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1338                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(nvmeq->q_depth),
1339                                                       dev->ctrl.page_size);
1340                 nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
1341                 nvmeq->sq_cmds_io = dev->cmb + offset;
1342         }
1343
1344         nvmeq->cq_vector = qid - 1;
1345         result = adapter_alloc_cq(dev, qid, nvmeq);
1346         if (result < 0)
1347                 goto release_vector;
1348
1349         result = adapter_alloc_sq(dev, qid, nvmeq);
1350         if (result < 0)
1351                 goto release_cq;
1352
1353         nvme_init_queue(nvmeq, qid);
1354         result = queue_request_irq(nvmeq);
1355         if (result < 0)
1356                 goto release_sq;
1357
1358         return result;
1359
1360  release_sq:
1361         dev->online_queues--;
1362         adapter_delete_sq(dev, qid);
1363  release_cq:
1364         adapter_delete_cq(dev, qid);
1365  release_vector:
1366         nvmeq->cq_vector = -1;
1367         return result;
1368 }
1369
1370 static const struct blk_mq_ops nvme_mq_admin_ops = {
1371         .queue_rq       = nvme_queue_rq,
1372         .complete       = nvme_pci_complete_rq,
1373         .init_hctx      = nvme_admin_init_hctx,
1374         .exit_hctx      = nvme_admin_exit_hctx,
1375         .init_request   = nvme_init_request,
1376         .timeout        = nvme_timeout,
1377 };
1378
1379 static const struct blk_mq_ops nvme_mq_ops = {
1380         .queue_rq       = nvme_queue_rq,
1381         .complete       = nvme_pci_complete_rq,
1382         .init_hctx      = nvme_init_hctx,
1383         .init_request   = nvme_init_request,
1384         .map_queues     = nvme_pci_map_queues,
1385         .timeout        = nvme_timeout,
1386         .poll           = nvme_poll,
1387 };
1388
1389 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1390 {
1391         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1392                 /*
1393                  * If the controller was reset during removal, it's possible
1394                  * user requests may be waiting on a stopped queue. Start the
1395                  * queue to flush these to completion.
1396                  */
1397                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1398                 blk_cleanup_queue(dev->ctrl.admin_q);
1399                 blk_mq_free_tag_set(&dev->admin_tagset);
1400         }
1401 }
1402
1403 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1404 {
1405         if (!dev->ctrl.admin_q) {
1406                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1407                 dev->admin_tagset.nr_hw_queues = 1;
1408
1409                 /*
1410                  * Subtract one to leave an empty queue entry for 'Full Queue'
1411                  * condition. See NVM-Express 1.2 specification, section 4.1.2.
1412                  */
1413                 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1414                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1415                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1416                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1417                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1418                 dev->admin_tagset.driver_data = dev;
1419
1420                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1421                         return -ENOMEM;
1422                 dev->ctrl.admin_tagset = &dev->admin_tagset;
1423
1424                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1425                 if (IS_ERR(dev->ctrl.admin_q)) {
1426                         blk_mq_free_tag_set(&dev->admin_tagset);
1427                         dev->ctrl.admin_q = NULL;
1428                         return -ENOMEM;
1429                 }
1430                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1431                         nvme_dev_remove_admin(dev);
1432                         dev->ctrl.admin_q = NULL;
1433                         return -ENODEV;
1434                 }
1435         } else
1436                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1437
1438         return 0;
1439 }
1440
1441 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1442 {
1443         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1444 }
1445
1446 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1447 {
1448         struct pci_dev *pdev = to_pci_dev(dev->dev);
1449
1450         if (size <= dev->bar_mapped_size)
1451                 return 0;
1452         if (size > pci_resource_len(pdev, 0))
1453                 return -ENOMEM;
1454         if (dev->bar)
1455                 iounmap(dev->bar);
1456         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1457         if (!dev->bar) {
1458                 dev->bar_mapped_size = 0;
1459                 return -ENOMEM;
1460         }
1461         dev->bar_mapped_size = size;
1462         dev->dbs = dev->bar + NVME_REG_DBS;
1463
1464         return 0;
1465 }
1466
1467 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1468 {
1469         int result;
1470         u32 aqa;
1471         struct nvme_queue *nvmeq;
1472
1473         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1474         if (result < 0)
1475                 return result;
1476
1477         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1478                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1479
1480         if (dev->subsystem &&
1481             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1482                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1483
1484         result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1485         if (result < 0)
1486                 return result;
1487
1488         result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1489                         dev_to_node(dev->dev));
1490         if (result)
1491                 return result;
1492
1493         nvmeq = &dev->queues[0];
1494         aqa = nvmeq->q_depth - 1;
1495         aqa |= aqa << 16;
1496
1497         writel(aqa, dev->bar + NVME_REG_AQA);
1498         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1499         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1500
1501         result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1502         if (result)
1503                 return result;
1504
1505         nvmeq->cq_vector = 0;
1506         nvme_init_queue(nvmeq, 0);
1507         result = queue_request_irq(nvmeq);
1508         if (result) {
1509                 nvmeq->cq_vector = -1;
1510                 return result;
1511         }
1512
1513         return result;
1514 }
1515
1516 static int nvme_create_io_queues(struct nvme_dev *dev)
1517 {
1518         unsigned i, max;
1519         int ret = 0;
1520
1521         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1522                 /* vector == qid - 1, match nvme_create_queue */
1523                 if (nvme_alloc_queue(dev, i, dev->q_depth,
1524                      pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1525                         ret = -ENOMEM;
1526                         break;
1527                 }
1528         }
1529
1530         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1531         for (i = dev->online_queues; i <= max; i++) {
1532                 ret = nvme_create_queue(&dev->queues[i], i);
1533                 if (ret)
1534                         break;
1535         }
1536
1537         /*
1538          * Ignore failing Create SQ/CQ commands, we can continue with less
1539          * than the desired aount of queues, and even a controller without
1540          * I/O queues an still be used to issue admin commands.  This might
1541          * be useful to upgrade a buggy firmware for example.
1542          */
1543         return ret >= 0 ? 0 : ret;
1544 }
1545
1546 static ssize_t nvme_cmb_show(struct device *dev,
1547                              struct device_attribute *attr,
1548                              char *buf)
1549 {
1550         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1551
1552         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1553                        ndev->cmbloc, ndev->cmbsz);
1554 }
1555 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1556
1557 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1558 {
1559         u64 szu, size, offset;
1560         resource_size_t bar_size;
1561         struct pci_dev *pdev = to_pci_dev(dev->dev);
1562         void __iomem *cmb;
1563         int bar;
1564
1565         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1566         if (!(NVME_CMB_SZ(dev->cmbsz)))
1567                 return NULL;
1568         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1569
1570         if (!use_cmb_sqes)
1571                 return NULL;
1572
1573         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1574         size = szu * NVME_CMB_SZ(dev->cmbsz);
1575         offset = szu * NVME_CMB_OFST(dev->cmbloc);
1576         bar = NVME_CMB_BIR(dev->cmbloc);
1577         bar_size = pci_resource_len(pdev, bar);
1578
1579         if (offset > bar_size)
1580                 return NULL;
1581
1582         /*
1583          * Controllers may support a CMB size larger than their BAR,
1584          * for example, due to being behind a bridge. Reduce the CMB to
1585          * the reported size of the BAR
1586          */
1587         if (size > bar_size - offset)
1588                 size = bar_size - offset;
1589
1590         cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
1591         if (!cmb)
1592                 return NULL;
1593
1594         dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
1595         dev->cmb_size = size;
1596         return cmb;
1597 }
1598
1599 static inline void nvme_release_cmb(struct nvme_dev *dev)
1600 {
1601         if (dev->cmb) {
1602                 iounmap(dev->cmb);
1603                 dev->cmb = NULL;
1604                 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1605                                              &dev_attr_cmb.attr, NULL);
1606                 dev->cmbsz = 0;
1607         }
1608 }
1609
1610 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1611 {
1612         u64 dma_addr = dev->host_mem_descs_dma;
1613         struct nvme_command c;
1614         int ret;
1615
1616         memset(&c, 0, sizeof(c));
1617         c.features.opcode       = nvme_admin_set_features;
1618         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1619         c.features.dword11      = cpu_to_le32(bits);
1620         c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1621                                               ilog2(dev->ctrl.page_size));
1622         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1623         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1624         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1625
1626         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1627         if (ret) {
1628                 dev_warn(dev->ctrl.device,
1629                          "failed to set host mem (err %d, flags %#x).\n",
1630                          ret, bits);
1631         }
1632         return ret;
1633 }
1634
1635 static void nvme_free_host_mem(struct nvme_dev *dev)
1636 {
1637         int i;
1638
1639         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1640                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1641                 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1642
1643                 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1644                                le64_to_cpu(desc->addr),
1645                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1646         }
1647
1648         kfree(dev->host_mem_desc_bufs);
1649         dev->host_mem_desc_bufs = NULL;
1650         dma_free_coherent(dev->dev,
1651                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1652                         dev->host_mem_descs, dev->host_mem_descs_dma);
1653         dev->host_mem_descs = NULL;
1654         dev->nr_host_mem_descs = 0;
1655 }
1656
1657 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1658                 u32 chunk_size)
1659 {
1660         struct nvme_host_mem_buf_desc *descs;
1661         u32 max_entries, len;
1662         dma_addr_t descs_dma;
1663         int i = 0;
1664         void **bufs;
1665         u64 size = 0, tmp;
1666
1667         tmp = (preferred + chunk_size - 1);
1668         do_div(tmp, chunk_size);
1669         max_entries = tmp;
1670
1671         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1672                 max_entries = dev->ctrl.hmmaxd;
1673
1674         descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1675                         &descs_dma, GFP_KERNEL);
1676         if (!descs)
1677                 goto out;
1678
1679         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1680         if (!bufs)
1681                 goto out_free_descs;
1682
1683         for (size = 0; size < preferred && i < max_entries; size += len) {
1684                 dma_addr_t dma_addr;
1685
1686                 len = min_t(u64, chunk_size, preferred - size);
1687                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1688                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1689                 if (!bufs[i])
1690                         break;
1691
1692                 descs[i].addr = cpu_to_le64(dma_addr);
1693                 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1694                 i++;
1695         }
1696
1697         if (!size)
1698                 goto out_free_bufs;
1699
1700         dev->nr_host_mem_descs = i;
1701         dev->host_mem_size = size;
1702         dev->host_mem_descs = descs;
1703         dev->host_mem_descs_dma = descs_dma;
1704         dev->host_mem_desc_bufs = bufs;
1705         return 0;
1706
1707 out_free_bufs:
1708         while (--i >= 0) {
1709                 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1710
1711                 dma_free_attrs(dev->dev, size, bufs[i],
1712                                le64_to_cpu(descs[i].addr),
1713                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1714         }
1715
1716         kfree(bufs);
1717 out_free_descs:
1718         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1719                         descs_dma);
1720 out:
1721         dev->host_mem_descs = NULL;
1722         return -ENOMEM;
1723 }
1724
1725 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1726 {
1727         u32 chunk_size;
1728
1729         /* start big and work our way down */
1730         for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1731              chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1732              chunk_size /= 2) {
1733                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1734                         if (!min || dev->host_mem_size >= min)
1735                                 return 0;
1736                         nvme_free_host_mem(dev);
1737                 }
1738         }
1739
1740         return -ENOMEM;
1741 }
1742
1743 static int nvme_setup_host_mem(struct nvme_dev *dev)
1744 {
1745         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1746         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1747         u64 min = (u64)dev->ctrl.hmmin * 4096;
1748         u32 enable_bits = NVME_HOST_MEM_ENABLE;
1749         int ret = 0;
1750
1751         preferred = min(preferred, max);
1752         if (min > max) {
1753                 dev_warn(dev->ctrl.device,
1754                         "min host memory (%lld MiB) above limit (%d MiB).\n",
1755                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
1756                 nvme_free_host_mem(dev);
1757                 return 0;
1758         }
1759
1760         /*
1761          * If we already have a buffer allocated check if we can reuse it.
1762          */
1763         if (dev->host_mem_descs) {
1764                 if (dev->host_mem_size >= min)
1765                         enable_bits |= NVME_HOST_MEM_RETURN;
1766                 else
1767                         nvme_free_host_mem(dev);
1768         }
1769
1770         if (!dev->host_mem_descs) {
1771                 if (nvme_alloc_host_mem(dev, min, preferred)) {
1772                         dev_warn(dev->ctrl.device,
1773                                 "failed to allocate host memory buffer.\n");
1774                         return 0; /* controller must work without HMB */
1775                 }
1776
1777                 dev_info(dev->ctrl.device,
1778                         "allocated %lld MiB host memory buffer.\n",
1779                         dev->host_mem_size >> ilog2(SZ_1M));
1780         }
1781
1782         ret = nvme_set_host_mem(dev, enable_bits);
1783         if (ret)
1784                 nvme_free_host_mem(dev);
1785         return ret;
1786 }
1787
1788 static int nvme_setup_io_queues(struct nvme_dev *dev)
1789 {
1790         struct nvme_queue *adminq = &dev->queues[0];
1791         struct pci_dev *pdev = to_pci_dev(dev->dev);
1792         int result, nr_io_queues;
1793         unsigned long size;
1794
1795         nr_io_queues = num_possible_cpus();
1796         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1797         if (result < 0)
1798                 return result;
1799
1800         if (nr_io_queues == 0)
1801                 return 0;
1802
1803         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1804                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1805                                 sizeof(struct nvme_command));
1806                 if (result > 0)
1807                         dev->q_depth = result;
1808                 else
1809                         nvme_release_cmb(dev);
1810         }
1811
1812         do {
1813                 size = db_bar_size(dev, nr_io_queues);
1814                 result = nvme_remap_bar(dev, size);
1815                 if (!result)
1816                         break;
1817                 if (!--nr_io_queues)
1818                         return -ENOMEM;
1819         } while (1);
1820         adminq->q_db = dev->dbs;
1821
1822         /* Deregister the admin queue's interrupt */
1823         pci_free_irq(pdev, 0, adminq);
1824
1825         /*
1826          * If we enable msix early due to not intx, disable it again before
1827          * setting up the full range we need.
1828          */
1829         pci_free_irq_vectors(pdev);
1830         nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1831                         PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1832         if (nr_io_queues <= 0)
1833                 return -EIO;
1834         dev->max_qid = nr_io_queues;
1835
1836         /*
1837          * Should investigate if there's a performance win from allocating
1838          * more queues than interrupt vectors; it might allow the submission
1839          * path to scale better, even if the receive path is limited by the
1840          * number of interrupts.
1841          */
1842
1843         result = queue_request_irq(adminq);
1844         if (result) {
1845                 adminq->cq_vector = -1;
1846                 return result;
1847         }
1848         return nvme_create_io_queues(dev);
1849 }
1850
1851 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1852 {
1853         struct nvme_queue *nvmeq = req->end_io_data;
1854
1855         blk_mq_free_request(req);
1856         complete(&nvmeq->dev->ioq_wait);
1857 }
1858
1859 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1860 {
1861         struct nvme_queue *nvmeq = req->end_io_data;
1862
1863         if (!error) {
1864                 unsigned long flags;
1865
1866                 /*
1867                  * We might be called with the AQ q_lock held
1868                  * and the I/O queue q_lock should always
1869                  * nest inside the AQ one.
1870                  */
1871                 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1872                                         SINGLE_DEPTH_NESTING);
1873                 nvme_process_cq(nvmeq);
1874                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1875         }
1876
1877         nvme_del_queue_end(req, error);
1878 }
1879
1880 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1881 {
1882         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1883         struct request *req;
1884         struct nvme_command cmd;
1885
1886         memset(&cmd, 0, sizeof(cmd));
1887         cmd.delete_queue.opcode = opcode;
1888         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1889
1890         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1891         if (IS_ERR(req))
1892                 return PTR_ERR(req);
1893
1894         req->timeout = ADMIN_TIMEOUT;
1895         req->end_io_data = nvmeq;
1896
1897         blk_execute_rq_nowait(q, NULL, req, false,
1898                         opcode == nvme_admin_delete_cq ?
1899                                 nvme_del_cq_end : nvme_del_queue_end);
1900         return 0;
1901 }
1902
1903 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1904 {
1905         int pass;
1906         unsigned long timeout;
1907         u8 opcode = nvme_admin_delete_sq;
1908
1909         for (pass = 0; pass < 2; pass++) {
1910                 int sent = 0, i = queues;
1911
1912                 reinit_completion(&dev->ioq_wait);
1913  retry:
1914                 timeout = ADMIN_TIMEOUT;
1915                 for (; i > 0; i--, sent++)
1916                         if (nvme_delete_queue(&dev->queues[i], opcode))
1917                                 break;
1918
1919                 while (sent--) {
1920                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1921                         if (timeout == 0)
1922                                 return;
1923                         if (i)
1924                                 goto retry;
1925                 }
1926                 opcode = nvme_admin_delete_cq;
1927         }
1928 }
1929
1930 /*
1931  * Return: error value if an error occurred setting up the queues or calling
1932  * Identify Device.  0 if these succeeded, even if adding some of the
1933  * namespaces failed.  At the moment, these failures are silent.  TBD which
1934  * failures should be reported.
1935  */
1936 static int nvme_dev_add(struct nvme_dev *dev)
1937 {
1938         if (!dev->ctrl.tagset) {
1939                 dev->tagset.ops = &nvme_mq_ops;
1940                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1941                 dev->tagset.timeout = NVME_IO_TIMEOUT;
1942                 dev->tagset.numa_node = dev_to_node(dev->dev);
1943                 dev->tagset.queue_depth =
1944                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1945                 dev->tagset.cmd_size = nvme_cmd_size(dev);
1946                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1947                 dev->tagset.driver_data = dev;
1948
1949                 if (blk_mq_alloc_tag_set(&dev->tagset))
1950                         return 0;
1951                 dev->ctrl.tagset = &dev->tagset;
1952
1953                 nvme_dbbuf_set(dev);
1954         } else {
1955                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1956
1957                 /* Free previously allocated queues that are no longer usable */
1958                 nvme_free_queues(dev, dev->online_queues);
1959         }
1960
1961         return 0;
1962 }
1963
1964 static int nvme_pci_enable(struct nvme_dev *dev)
1965 {
1966         int result = -ENOMEM;
1967         struct pci_dev *pdev = to_pci_dev(dev->dev);
1968
1969         if (pci_enable_device_mem(pdev))
1970                 return result;
1971
1972         pci_set_master(pdev);
1973
1974         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1975             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1976                 goto disable;
1977
1978         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1979                 result = -ENODEV;
1980                 goto disable;
1981         }
1982
1983         /*
1984          * Some devices and/or platforms don't advertise or work with INTx
1985          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1986          * adjust this later.
1987          */
1988         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1989         if (result < 0)
1990                 return result;
1991
1992         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1993
1994         dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
1995                                 io_queue_depth);
1996         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
1997         dev->dbs = dev->bar + 4096;
1998
1999         /*
2000          * Temporary fix for the Apple controller found in the MacBook8,1 and
2001          * some MacBook7,1 to avoid controller resets and data loss.
2002          */
2003         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2004                 dev->q_depth = 2;
2005                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2006                         "set queue depth=%u to work around controller resets\n",
2007                         dev->q_depth);
2008         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2009                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2010                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2011                 dev->q_depth = 64;
2012                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2013                         "set queue depth=%u\n", dev->q_depth);
2014         }
2015
2016         /*
2017          * CMBs can currently only exist on >=1.2 PCIe devices. We only
2018          * populate sysfs if a CMB is implemented. Since nvme_dev_attrs_group
2019          * has no name we can pass NULL as final argument to
2020          * sysfs_add_file_to_group.
2021          */
2022
2023         if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
2024                 dev->cmb = nvme_map_cmb(dev);
2025                 if (dev->cmb) {
2026                         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
2027                                                     &dev_attr_cmb.attr, NULL))
2028                                 dev_warn(dev->ctrl.device,
2029                                          "failed to add sysfs attribute for CMB\n");
2030                 }
2031         }
2032
2033         pci_enable_pcie_error_reporting(pdev);
2034         pci_save_state(pdev);
2035         return 0;
2036
2037  disable:
2038         pci_disable_device(pdev);
2039         return result;
2040 }
2041
2042 static void nvme_dev_unmap(struct nvme_dev *dev)
2043 {
2044         if (dev->bar)
2045                 iounmap(dev->bar);
2046         pci_release_mem_regions(to_pci_dev(dev->dev));
2047 }
2048
2049 static void nvme_pci_disable(struct nvme_dev *dev)
2050 {
2051         struct pci_dev *pdev = to_pci_dev(dev->dev);
2052
2053         nvme_release_cmb(dev);
2054         pci_free_irq_vectors(pdev);
2055
2056         if (pci_is_enabled(pdev)) {
2057                 pci_disable_pcie_error_reporting(pdev);
2058                 pci_disable_device(pdev);
2059         }
2060 }
2061
2062 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2063 {
2064         int i, queues;
2065         bool dead = true;
2066         struct pci_dev *pdev = to_pci_dev(dev->dev);
2067
2068         mutex_lock(&dev->shutdown_lock);
2069         if (pci_is_enabled(pdev)) {
2070                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2071
2072                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2073                     dev->ctrl.state == NVME_CTRL_RESETTING)
2074                         nvme_start_freeze(&dev->ctrl);
2075                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2076                         pdev->error_state  != pci_channel_io_normal);
2077         }
2078
2079         /*
2080          * Give the controller a chance to complete all entered requests if
2081          * doing a safe shutdown.
2082          */
2083         if (!dead) {
2084                 if (shutdown)
2085                         nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2086
2087                 /*
2088                  * If the controller is still alive tell it to stop using the
2089                  * host memory buffer.  In theory the shutdown / reset should
2090                  * make sure that it doesn't access the host memoery anymore,
2091                  * but I'd rather be safe than sorry..
2092                  */
2093                 if (dev->host_mem_descs)
2094                         nvme_set_host_mem(dev, 0);
2095
2096         }
2097         nvme_stop_queues(&dev->ctrl);
2098
2099         queues = dev->online_queues - 1;
2100         for (i = dev->ctrl.queue_count - 1; i > 0; i--)
2101                 nvme_suspend_queue(&dev->queues[i]);
2102
2103         if (dead) {
2104                 /* A device might become IO incapable very soon during
2105                  * probe, before the admin queue is configured. Thus,
2106                  * queue_count can be 0 here.
2107                  */
2108                 if (dev->ctrl.queue_count)
2109                         nvme_suspend_queue(&dev->queues[0]);
2110         } else {
2111                 nvme_disable_io_queues(dev, queues);
2112                 nvme_disable_admin_queue(dev, shutdown);
2113         }
2114         nvme_pci_disable(dev);
2115
2116         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2117         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2118
2119         /*
2120          * The driver will not be starting up queues again if shutting down so
2121          * must flush all entered requests to their failed completion to avoid
2122          * deadlocking blk-mq hot-cpu notifier.
2123          */
2124         if (shutdown) {
2125                 nvme_start_queues(&dev->ctrl);
2126                 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2127                         blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2128         }
2129         mutex_unlock(&dev->shutdown_lock);
2130 }
2131
2132 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2133 {
2134         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2135                                                 PAGE_SIZE, PAGE_SIZE, 0);
2136         if (!dev->prp_page_pool)
2137                 return -ENOMEM;
2138
2139         /* Optimisation for I/Os between 4k and 128k */
2140         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2141                                                 256, 256, 0);
2142         if (!dev->prp_small_pool) {
2143                 dma_pool_destroy(dev->prp_page_pool);
2144                 return -ENOMEM;
2145         }
2146         return 0;
2147 }
2148
2149 static void nvme_release_prp_pools(struct nvme_dev *dev)
2150 {
2151         dma_pool_destroy(dev->prp_page_pool);
2152         dma_pool_destroy(dev->prp_small_pool);
2153 }
2154
2155 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2156 {
2157         struct nvme_dev *dev = to_nvme_dev(ctrl);
2158
2159         nvme_dbbuf_dma_free(dev);
2160         put_device(dev->dev);
2161         if (dev->tagset.tags)
2162                 blk_mq_free_tag_set(&dev->tagset);
2163         if (dev->ctrl.admin_q)
2164                 blk_put_queue(dev->ctrl.admin_q);
2165         kfree(dev->queues);
2166         free_opal_dev(dev->ctrl.opal_dev);
2167         kfree(dev);
2168 }
2169
2170 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2171 {
2172         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2173
2174         kref_get(&dev->ctrl.kref);
2175         nvme_dev_disable(dev, false);
2176         if (!schedule_work(&dev->remove_work))
2177                 nvme_put_ctrl(&dev->ctrl);
2178 }
2179
2180 static void nvme_reset_work(struct work_struct *work)
2181 {
2182         struct nvme_dev *dev =
2183                 container_of(work, struct nvme_dev, ctrl.reset_work);
2184         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2185         int result = -ENODEV;
2186
2187         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2188                 goto out;
2189
2190         /*
2191          * If we're called to reset a live controller first shut it down before
2192          * moving on.
2193          */
2194         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2195                 nvme_dev_disable(dev, false);
2196
2197         result = nvme_pci_enable(dev);
2198         if (result)
2199                 goto out;
2200
2201         result = nvme_pci_configure_admin_queue(dev);
2202         if (result)
2203                 goto out;
2204
2205         result = nvme_alloc_admin_tags(dev);
2206         if (result)
2207                 goto out;
2208
2209         result = nvme_init_identify(&dev->ctrl);
2210         if (result)
2211                 goto out;
2212
2213         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2214                 if (!dev->ctrl.opal_dev)
2215                         dev->ctrl.opal_dev =
2216                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2217                 else if (was_suspend)
2218                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2219         } else {
2220                 free_opal_dev(dev->ctrl.opal_dev);
2221                 dev->ctrl.opal_dev = NULL;
2222         }
2223
2224         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2225                 result = nvme_dbbuf_dma_alloc(dev);
2226                 if (result)
2227                         dev_warn(dev->dev,
2228                                  "unable to allocate dma for dbbuf\n");
2229         }
2230
2231         if (dev->ctrl.hmpre) {
2232                 result = nvme_setup_host_mem(dev);
2233                 if (result < 0)
2234                         goto out;
2235         }
2236
2237         result = nvme_setup_io_queues(dev);
2238         if (result)
2239                 goto out;
2240
2241         /*
2242          * Keep the controller around but remove all namespaces if we don't have
2243          * any working I/O queue.
2244          */
2245         if (dev->online_queues < 2) {
2246                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2247                 nvme_kill_queues(&dev->ctrl);
2248                 nvme_remove_namespaces(&dev->ctrl);
2249         } else {
2250                 nvme_start_queues(&dev->ctrl);
2251                 nvme_wait_freeze(&dev->ctrl);
2252                 nvme_dev_add(dev);
2253                 nvme_unfreeze(&dev->ctrl);
2254         }
2255
2256         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2257                 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
2258                 goto out;
2259         }
2260
2261         nvme_start_ctrl(&dev->ctrl);
2262         return;
2263
2264  out:
2265         nvme_remove_dead_ctrl(dev, result);
2266 }
2267
2268 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2269 {
2270         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2271         struct pci_dev *pdev = to_pci_dev(dev->dev);
2272
2273         nvme_kill_queues(&dev->ctrl);
2274         if (pci_get_drvdata(pdev))
2275                 device_release_driver(&pdev->dev);
2276         nvme_put_ctrl(&dev->ctrl);
2277 }
2278
2279 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2280 {
2281         *val = readl(to_nvme_dev(ctrl)->bar + off);
2282         return 0;
2283 }
2284
2285 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2286 {
2287         writel(val, to_nvme_dev(ctrl)->bar + off);
2288         return 0;
2289 }
2290
2291 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2292 {
2293         *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2294         return 0;
2295 }
2296
2297 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2298         .name                   = "pcie",
2299         .module                 = THIS_MODULE,
2300         .flags                  = NVME_F_METADATA_SUPPORTED,
2301         .reg_read32             = nvme_pci_reg_read32,
2302         .reg_write32            = nvme_pci_reg_write32,
2303         .reg_read64             = nvme_pci_reg_read64,
2304         .free_ctrl              = nvme_pci_free_ctrl,
2305         .submit_async_event     = nvme_pci_submit_async_event,
2306 };
2307
2308 static int nvme_dev_map(struct nvme_dev *dev)
2309 {
2310         struct pci_dev *pdev = to_pci_dev(dev->dev);
2311
2312         if (pci_request_mem_regions(pdev, "nvme"))
2313                 return -ENODEV;
2314
2315         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2316                 goto release;
2317
2318         return 0;
2319   release:
2320         pci_release_mem_regions(pdev);
2321         return -ENODEV;
2322 }
2323
2324 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2325 {
2326         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2327                 /*
2328                  * Several Samsung devices seem to drop off the PCIe bus
2329                  * randomly when APST is on and uses the deepest sleep state.
2330                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2331                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2332                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2333                  * laptops.
2334                  */
2335                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2336                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2337                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2338                         return NVME_QUIRK_NO_DEEPEST_PS;
2339         } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2340                 /*
2341                  * Samsung SSD 960 EVO drops off the PCIe bus after system
2342                  * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2343                  * within few minutes after bootup on a Coffee Lake board -
2344                  * ASUS PRIME Z370-A
2345                  */
2346                 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2347                     (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2348                      dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2349                         return NVME_QUIRK_NO_APST;
2350         }
2351
2352         return 0;
2353 }
2354
2355 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2356 {
2357         int node, result = -ENOMEM;
2358         struct nvme_dev *dev;
2359         unsigned long quirks = id->driver_data;
2360
2361         node = dev_to_node(&pdev->dev);
2362         if (node == NUMA_NO_NODE)
2363                 set_dev_node(&pdev->dev, first_memory_node);
2364
2365         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2366         if (!dev)
2367                 return -ENOMEM;
2368
2369         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(struct nvme_queue),
2370                                                         GFP_KERNEL, node);
2371         if (!dev->queues)
2372                 goto free;
2373
2374         dev->dev = get_device(&pdev->dev);
2375         pci_set_drvdata(pdev, dev);
2376
2377         result = nvme_dev_map(dev);
2378         if (result)
2379                 goto put_pci;
2380
2381         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2382         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2383         mutex_init(&dev->shutdown_lock);
2384         init_completion(&dev->ioq_wait);
2385
2386         result = nvme_setup_prp_pools(dev);
2387         if (result)
2388                 goto unmap;
2389
2390         quirks |= check_vendor_combination_bug(pdev);
2391
2392         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2393                         quirks);
2394         if (result)
2395                 goto release_pools;
2396
2397         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING);
2398         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2399
2400         queue_work(nvme_wq, &dev->ctrl.reset_work);
2401         return 0;
2402
2403  release_pools:
2404         nvme_release_prp_pools(dev);
2405  unmap:
2406         nvme_dev_unmap(dev);
2407  put_pci:
2408         put_device(dev->dev);
2409  free:
2410         kfree(dev->queues);
2411         kfree(dev);
2412         return result;
2413 }
2414
2415 static void nvme_reset_prepare(struct pci_dev *pdev)
2416 {
2417         struct nvme_dev *dev = pci_get_drvdata(pdev);
2418         nvme_dev_disable(dev, false);
2419 }
2420
2421 static void nvme_reset_done(struct pci_dev *pdev)
2422 {
2423         struct nvme_dev *dev = pci_get_drvdata(pdev);
2424         nvme_reset_ctrl(&dev->ctrl);
2425 }
2426
2427 static void nvme_shutdown(struct pci_dev *pdev)
2428 {
2429         struct nvme_dev *dev = pci_get_drvdata(pdev);
2430         nvme_dev_disable(dev, true);
2431 }
2432
2433 /*
2434  * The driver's remove may be called on a device in a partially initialized
2435  * state. This function must not have any dependencies on the device state in
2436  * order to proceed.
2437  */
2438 static void nvme_remove(struct pci_dev *pdev)
2439 {
2440         struct nvme_dev *dev = pci_get_drvdata(pdev);
2441
2442         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2443
2444         cancel_work_sync(&dev->ctrl.reset_work);
2445         pci_set_drvdata(pdev, NULL);
2446
2447         if (!pci_device_is_present(pdev)) {
2448                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2449                 nvme_dev_disable(dev, false);
2450         }
2451
2452         flush_work(&dev->ctrl.reset_work);
2453         nvme_stop_ctrl(&dev->ctrl);
2454         nvme_remove_namespaces(&dev->ctrl);
2455         nvme_dev_disable(dev, true);
2456         nvme_free_host_mem(dev);
2457         nvme_dev_remove_admin(dev);
2458         nvme_free_queues(dev, 0);
2459         nvme_uninit_ctrl(&dev->ctrl);
2460         nvme_release_prp_pools(dev);
2461         nvme_dev_unmap(dev);
2462         nvme_put_ctrl(&dev->ctrl);
2463 }
2464
2465 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2466 {
2467         int ret = 0;
2468
2469         if (numvfs == 0) {
2470                 if (pci_vfs_assigned(pdev)) {
2471                         dev_warn(&pdev->dev,
2472                                 "Cannot disable SR-IOV VFs while assigned\n");
2473                         return -EPERM;
2474                 }
2475                 pci_disable_sriov(pdev);
2476                 return 0;
2477         }
2478
2479         ret = pci_enable_sriov(pdev, numvfs);
2480         return ret ? ret : numvfs;
2481 }
2482
2483 #ifdef CONFIG_PM_SLEEP
2484 static int nvme_suspend(struct device *dev)
2485 {
2486         struct pci_dev *pdev = to_pci_dev(dev);
2487         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2488
2489         nvme_dev_disable(ndev, true);
2490         return 0;
2491 }
2492
2493 static int nvme_resume(struct device *dev)
2494 {
2495         struct pci_dev *pdev = to_pci_dev(dev);
2496         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2497
2498         nvme_reset_ctrl(&ndev->ctrl);
2499         return 0;
2500 }
2501 #endif
2502
2503 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2504
2505 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2506                                                 pci_channel_state_t state)
2507 {
2508         struct nvme_dev *dev = pci_get_drvdata(pdev);
2509
2510         /*
2511          * A frozen channel requires a reset. When detected, this method will
2512          * shutdown the controller to quiesce. The controller will be restarted
2513          * after the slot reset through driver's slot_reset callback.
2514          */
2515         switch (state) {
2516         case pci_channel_io_normal:
2517                 return PCI_ERS_RESULT_CAN_RECOVER;
2518         case pci_channel_io_frozen:
2519                 dev_warn(dev->ctrl.device,
2520                         "frozen state error detected, reset controller\n");
2521                 nvme_dev_disable(dev, false);
2522                 return PCI_ERS_RESULT_NEED_RESET;
2523         case pci_channel_io_perm_failure:
2524                 dev_warn(dev->ctrl.device,
2525                         "failure state error detected, request disconnect\n");
2526                 return PCI_ERS_RESULT_DISCONNECT;
2527         }
2528         return PCI_ERS_RESULT_NEED_RESET;
2529 }
2530
2531 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2532 {
2533         struct nvme_dev *dev = pci_get_drvdata(pdev);
2534
2535         dev_info(dev->ctrl.device, "restart after slot reset\n");
2536         pci_restore_state(pdev);
2537         nvme_reset_ctrl(&dev->ctrl);
2538         return PCI_ERS_RESULT_RECOVERED;
2539 }
2540
2541 static void nvme_error_resume(struct pci_dev *pdev)
2542 {
2543         struct nvme_dev *dev = pci_get_drvdata(pdev);
2544
2545         flush_work(&dev->ctrl.reset_work);
2546         pci_cleanup_aer_uncorrect_error_status(pdev);
2547 }
2548
2549 static const struct pci_error_handlers nvme_err_handler = {
2550         .error_detected = nvme_error_detected,
2551         .slot_reset     = nvme_slot_reset,
2552         .resume         = nvme_error_resume,
2553         .reset_prepare  = nvme_reset_prepare,
2554         .reset_done     = nvme_reset_done,
2555 };
2556
2557 static const struct pci_device_id nvme_id_table[] = {
2558         { PCI_VDEVICE(INTEL, 0x0953),
2559                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2560                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2561         { PCI_VDEVICE(INTEL, 0x0a53),
2562                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2563                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2564         { PCI_VDEVICE(INTEL, 0x0a54),
2565                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2566                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2567         { PCI_VDEVICE(INTEL, 0x0a55),
2568                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2569                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2570         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
2571                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2572                                 NVME_QUIRK_MEDIUM_PRIO_SQ },
2573         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2574                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2575         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2576                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2577         { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
2578                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2579         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2580                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2581         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2582                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2583         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2584                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2585         { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
2586                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2587         { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
2588                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2589         { PCI_DEVICE(0x1d1d, 0x2601),   /* CNEX Granby */
2590                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2591         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2592         { PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
2593                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
2594         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2595         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2596         { 0, }
2597 };
2598 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2599
2600 static struct pci_driver nvme_driver = {
2601         .name           = "nvme",
2602         .id_table       = nvme_id_table,
2603         .probe          = nvme_probe,
2604         .remove         = nvme_remove,
2605         .shutdown       = nvme_shutdown,
2606         .driver         = {
2607                 .pm     = &nvme_dev_pm_ops,
2608         },
2609         .sriov_configure = nvme_pci_sriov_configure,
2610         .err_handler    = &nvme_err_handler,
2611 };
2612
2613 static int __init nvme_init(void)
2614 {
2615         return pci_register_driver(&nvme_driver);
2616 }
2617
2618 static void __exit nvme_exit(void)
2619 {
2620         pci_unregister_driver(&nvme_driver);
2621         _nvme_check_size();
2622 }
2623
2624 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2625 MODULE_LICENSE("GPL");
2626 MODULE_VERSION("1.0");
2627 module_init(nvme_init);
2628 module_exit(nvme_exit);