GNU Linux-libre 4.14.332-gnu1
[releases.git] / drivers / nvdimm / pmem.c
1 /*
2  * Persistent Memory Driver
3  *
4  * Copyright (c) 2014-2015, Intel Corporation.
5  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blk-mq.h>
29 #include <linux/pfn_t.h>
30 #include <linux/slab.h>
31 #include <linux/uio.h>
32 #include <linux/dax.h>
33 #include <linux/nd.h>
34 #include "pmem.h"
35 #include "pfn.h"
36 #include "nd.h"
37
38 static struct device *to_dev(struct pmem_device *pmem)
39 {
40         /*
41          * nvdimm bus services need a 'dev' parameter, and we record the device
42          * at init in bb.dev.
43          */
44         return pmem->bb.dev;
45 }
46
47 static struct nd_region *to_region(struct pmem_device *pmem)
48 {
49         return to_nd_region(to_dev(pmem)->parent);
50 }
51
52 static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
53                 phys_addr_t offset, unsigned int len)
54 {
55         struct device *dev = to_dev(pmem);
56         sector_t sector;
57         long cleared;
58         blk_status_t rc = BLK_STS_OK;
59
60         sector = (offset - pmem->data_offset) / 512;
61
62         cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
63         if (cleared < len)
64                 rc = BLK_STS_IOERR;
65         if (cleared > 0 && cleared / 512) {
66                 cleared /= 512;
67                 dev_dbg(dev, "%s: %#llx clear %ld sector%s\n", __func__,
68                                 (unsigned long long) sector, cleared,
69                                 cleared > 1 ? "s" : "");
70                 badblocks_clear(&pmem->bb, sector, cleared);
71                 if (pmem->bb_state)
72                         sysfs_notify_dirent(pmem->bb_state);
73         }
74
75         arch_invalidate_pmem(pmem->virt_addr + offset, len);
76
77         return rc;
78 }
79
80 static void write_pmem(void *pmem_addr, struct page *page,
81                 unsigned int off, unsigned int len)
82 {
83         unsigned int chunk;
84         void *mem;
85
86         while (len) {
87                 mem = kmap_atomic(page);
88                 chunk = min_t(unsigned int, len, PAGE_SIZE);
89                 memcpy_flushcache(pmem_addr, mem + off, chunk);
90                 kunmap_atomic(mem);
91                 len -= chunk;
92                 off = 0;
93                 page++;
94                 pmem_addr += PAGE_SIZE;
95         }
96 }
97
98 static blk_status_t read_pmem(struct page *page, unsigned int off,
99                 void *pmem_addr, unsigned int len)
100 {
101         unsigned int chunk;
102         int rc;
103         void *mem;
104
105         while (len) {
106                 mem = kmap_atomic(page);
107                 chunk = min_t(unsigned int, len, PAGE_SIZE);
108                 rc = memcpy_mcsafe(mem + off, pmem_addr, chunk);
109                 kunmap_atomic(mem);
110                 if (rc)
111                         return BLK_STS_IOERR;
112                 len -= chunk;
113                 off = 0;
114                 page++;
115                 pmem_addr += PAGE_SIZE;
116         }
117         return BLK_STS_OK;
118 }
119
120 static blk_status_t pmem_do_bvec(struct pmem_device *pmem, struct page *page,
121                         unsigned int len, unsigned int off, bool is_write,
122                         sector_t sector)
123 {
124         blk_status_t rc = BLK_STS_OK;
125         bool bad_pmem = false;
126         phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
127         void *pmem_addr = pmem->virt_addr + pmem_off;
128
129         if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
130                 bad_pmem = true;
131
132         if (!is_write) {
133                 if (unlikely(bad_pmem))
134                         rc = BLK_STS_IOERR;
135                 else {
136                         rc = read_pmem(page, off, pmem_addr, len);
137                         flush_dcache_page(page);
138                 }
139         } else {
140                 /*
141                  * Note that we write the data both before and after
142                  * clearing poison.  The write before clear poison
143                  * handles situations where the latest written data is
144                  * preserved and the clear poison operation simply marks
145                  * the address range as valid without changing the data.
146                  * In this case application software can assume that an
147                  * interrupted write will either return the new good
148                  * data or an error.
149                  *
150                  * However, if pmem_clear_poison() leaves the data in an
151                  * indeterminate state we need to perform the write
152                  * after clear poison.
153                  */
154                 flush_dcache_page(page);
155                 write_pmem(pmem_addr, page, off, len);
156                 if (unlikely(bad_pmem)) {
157                         rc = pmem_clear_poison(pmem, pmem_off, len);
158                         write_pmem(pmem_addr, page, off, len);
159                 }
160         }
161
162         return rc;
163 }
164
165 /* account for REQ_FLUSH rename, replace with REQ_PREFLUSH after v4.8-rc1 */
166 #ifndef REQ_FLUSH
167 #define REQ_FLUSH REQ_PREFLUSH
168 #endif
169
170 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
171 {
172         blk_status_t rc = 0;
173         bool do_acct;
174         unsigned long start;
175         struct bio_vec bvec;
176         struct bvec_iter iter;
177         struct pmem_device *pmem = q->queuedata;
178         struct nd_region *nd_region = to_region(pmem);
179
180         if (bio->bi_opf & REQ_FLUSH)
181                 nvdimm_flush(nd_region);
182
183         do_acct = nd_iostat_start(bio, &start);
184         bio_for_each_segment(bvec, bio, iter) {
185                 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
186                                 bvec.bv_offset, op_is_write(bio_op(bio)),
187                                 iter.bi_sector);
188                 if (rc) {
189                         bio->bi_status = rc;
190                         break;
191                 }
192         }
193         if (do_acct)
194                 nd_iostat_end(bio, start);
195
196         if (bio->bi_opf & REQ_FUA)
197                 nvdimm_flush(nd_region);
198
199         bio_endio(bio);
200         return BLK_QC_T_NONE;
201 }
202
203 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
204                        struct page *page, bool is_write)
205 {
206         struct pmem_device *pmem = bdev->bd_queue->queuedata;
207         blk_status_t rc;
208
209         rc = pmem_do_bvec(pmem, page, hpage_nr_pages(page) * PAGE_SIZE,
210                           0, is_write, sector);
211
212         /*
213          * The ->rw_page interface is subtle and tricky.  The core
214          * retries on any error, so we can only invoke page_endio() in
215          * the successful completion case.  Otherwise, we'll see crashes
216          * caused by double completion.
217          */
218         if (rc == 0)
219                 page_endio(page, is_write, 0);
220
221         return blk_status_to_errno(rc);
222 }
223
224 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
225 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
226                 long nr_pages, void **kaddr, pfn_t *pfn)
227 {
228         resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
229
230         if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
231                                         PFN_PHYS(nr_pages))))
232                 return -EIO;
233         *kaddr = pmem->virt_addr + offset;
234         *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
235
236         /*
237          * If badblocks are present, limit known good range to the
238          * requested range.
239          */
240         if (unlikely(pmem->bb.count))
241                 return nr_pages;
242         return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
243 }
244
245 static const struct block_device_operations pmem_fops = {
246         .owner =                THIS_MODULE,
247         .rw_page =              pmem_rw_page,
248         .revalidate_disk =      nvdimm_revalidate_disk,
249 };
250
251 static long pmem_dax_direct_access(struct dax_device *dax_dev,
252                 pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
253 {
254         struct pmem_device *pmem = dax_get_private(dax_dev);
255
256         return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
257 }
258
259 /*
260  * Use the 'no check' versions of copy_from_iter_flushcache() and
261  * copy_to_iter_mcsafe() to bypass HARDENED_USERCOPY overhead. Bounds
262  * checking, both file offset and device offset, is handled by
263  * dax_iomap_actor()
264  */
265 static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
266                 void *addr, size_t bytes, struct iov_iter *i)
267 {
268         return _copy_from_iter_flushcache(addr, bytes, i);
269 }
270
271 static const struct dax_operations pmem_dax_ops = {
272         .direct_access = pmem_dax_direct_access,
273         .copy_from_iter = pmem_copy_from_iter,
274 };
275
276 static const struct attribute_group *pmem_attribute_groups[] = {
277         &dax_attribute_group,
278         NULL,
279 };
280
281 static void pmem_release_queue(void *q)
282 {
283         blk_cleanup_queue(q);
284 }
285
286 static void pmem_freeze_queue(void *q)
287 {
288         blk_freeze_queue_start(q);
289 }
290
291 static void pmem_release_disk(void *__pmem)
292 {
293         struct pmem_device *pmem = __pmem;
294
295         kill_dax(pmem->dax_dev);
296         put_dax(pmem->dax_dev);
297         del_gendisk(pmem->disk);
298         put_disk(pmem->disk);
299 }
300
301 static int pmem_attach_disk(struct device *dev,
302                 struct nd_namespace_common *ndns)
303 {
304         struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
305         struct nd_region *nd_region = to_nd_region(dev->parent);
306         struct vmem_altmap __altmap, *altmap = NULL;
307         int nid = dev_to_node(dev), fua, wbc;
308         struct resource *res = &nsio->res;
309         struct nd_pfn *nd_pfn = NULL;
310         struct dax_device *dax_dev;
311         struct nd_pfn_sb *pfn_sb;
312         struct pmem_device *pmem;
313         struct resource pfn_res;
314         struct request_queue *q;
315         struct device *gendev;
316         struct gendisk *disk;
317         void *addr;
318
319         /* while nsio_rw_bytes is active, parse a pfn info block if present */
320         if (is_nd_pfn(dev)) {
321                 nd_pfn = to_nd_pfn(dev);
322                 altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap);
323                 if (IS_ERR(altmap))
324                         return PTR_ERR(altmap);
325         }
326
327         /* we're attaching a block device, disable raw namespace access */
328         devm_nsio_disable(dev, nsio);
329
330         pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
331         if (!pmem)
332                 return -ENOMEM;
333
334         dev_set_drvdata(dev, pmem);
335         pmem->phys_addr = res->start;
336         pmem->size = resource_size(res);
337         fua = nvdimm_has_flush(nd_region);
338         if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
339                 dev_warn(dev, "unable to guarantee persistence of writes\n");
340                 fua = 0;
341         }
342         wbc = nvdimm_has_cache(nd_region);
343
344         if (!devm_request_mem_region(dev, res->start, resource_size(res),
345                                 dev_name(&ndns->dev))) {
346                 dev_warn(dev, "could not reserve region %pR\n", res);
347                 return -EBUSY;
348         }
349
350         q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
351         if (!q)
352                 return -ENOMEM;
353
354         if (devm_add_action_or_reset(dev, pmem_release_queue, q))
355                 return -ENOMEM;
356
357         pmem->pfn_flags = PFN_DEV;
358         if (is_nd_pfn(dev)) {
359                 addr = devm_memremap_pages(dev, &pfn_res, &q->q_usage_counter,
360                                 altmap);
361                 pfn_sb = nd_pfn->pfn_sb;
362                 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
363                 pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res);
364                 pmem->pfn_flags |= PFN_MAP;
365                 res = &pfn_res; /* for badblocks populate */
366                 res->start += pmem->data_offset;
367         } else if (pmem_should_map_pages(dev)) {
368                 addr = devm_memremap_pages(dev, &nsio->res,
369                                 &q->q_usage_counter, NULL);
370                 pmem->pfn_flags |= PFN_MAP;
371         } else
372                 addr = devm_memremap(dev, pmem->phys_addr,
373                                 pmem->size, ARCH_MEMREMAP_PMEM);
374
375         /*
376          * At release time the queue must be frozen before
377          * devm_memremap_pages is unwound
378          */
379         if (devm_add_action_or_reset(dev, pmem_freeze_queue, q))
380                 return -ENOMEM;
381
382         if (IS_ERR(addr))
383                 return PTR_ERR(addr);
384         pmem->virt_addr = addr;
385
386         blk_queue_write_cache(q, wbc, fua);
387         blk_queue_make_request(q, pmem_make_request);
388         blk_queue_physical_block_size(q, PAGE_SIZE);
389         blk_queue_logical_block_size(q, pmem_sector_size(ndns));
390         blk_queue_max_hw_sectors(q, UINT_MAX);
391         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
392         queue_flag_set_unlocked(QUEUE_FLAG_DAX, q);
393         q->queuedata = pmem;
394
395         disk = alloc_disk_node(0, nid);
396         if (!disk)
397                 return -ENOMEM;
398         pmem->disk = disk;
399
400         disk->fops              = &pmem_fops;
401         disk->queue             = q;
402         disk->flags             = GENHD_FL_EXT_DEVT;
403         nvdimm_namespace_disk_name(ndns, disk->disk_name);
404         set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
405                         / 512);
406         if (devm_init_badblocks(dev, &pmem->bb))
407                 return -ENOMEM;
408         nvdimm_badblocks_populate(nd_region, &pmem->bb, res);
409         disk->bb = &pmem->bb;
410
411         dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops);
412         if (!dax_dev) {
413                 put_disk(disk);
414                 return -ENOMEM;
415         }
416         dax_write_cache(dax_dev, wbc);
417         pmem->dax_dev = dax_dev;
418
419         gendev = disk_to_dev(disk);
420         gendev->groups = pmem_attribute_groups;
421
422         device_add_disk(dev, disk);
423         if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
424                 return -ENOMEM;
425
426         revalidate_disk(disk);
427
428         pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
429                                           "badblocks");
430         if (!pmem->bb_state)
431                 dev_warn(dev, "'badblocks' notification disabled\n");
432
433         return 0;
434 }
435
436 static int nd_pmem_probe(struct device *dev)
437 {
438         struct nd_namespace_common *ndns;
439
440         ndns = nvdimm_namespace_common_probe(dev);
441         if (IS_ERR(ndns))
442                 return PTR_ERR(ndns);
443
444         if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
445                 return -ENXIO;
446
447         if (is_nd_btt(dev))
448                 return nvdimm_namespace_attach_btt(ndns);
449
450         if (is_nd_pfn(dev))
451                 return pmem_attach_disk(dev, ndns);
452
453         /* if we find a valid info-block we'll come back as that personality */
454         if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
455                         || nd_dax_probe(dev, ndns) == 0)
456                 return -ENXIO;
457
458         /* ...otherwise we're just a raw pmem device */
459         return pmem_attach_disk(dev, ndns);
460 }
461
462 static int nd_pmem_remove(struct device *dev)
463 {
464         struct pmem_device *pmem = dev_get_drvdata(dev);
465
466         if (is_nd_btt(dev))
467                 nvdimm_namespace_detach_btt(to_nd_btt(dev));
468         else {
469                 /*
470                  * Note, this assumes device_lock() context to not race
471                  * nd_pmem_notify()
472                  */
473                 sysfs_put(pmem->bb_state);
474                 pmem->bb_state = NULL;
475         }
476         nvdimm_flush(to_nd_region(dev->parent));
477
478         return 0;
479 }
480
481 static void nd_pmem_shutdown(struct device *dev)
482 {
483         nvdimm_flush(to_nd_region(dev->parent));
484 }
485
486 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
487 {
488         struct nd_region *nd_region;
489         resource_size_t offset = 0, end_trunc = 0;
490         struct nd_namespace_common *ndns;
491         struct nd_namespace_io *nsio;
492         struct resource res;
493         struct badblocks *bb;
494         struct kernfs_node *bb_state;
495
496         if (event != NVDIMM_REVALIDATE_POISON)
497                 return;
498
499         if (is_nd_btt(dev)) {
500                 struct nd_btt *nd_btt = to_nd_btt(dev);
501
502                 ndns = nd_btt->ndns;
503                 nd_region = to_nd_region(ndns->dev.parent);
504                 nsio = to_nd_namespace_io(&ndns->dev);
505                 bb = &nsio->bb;
506                 bb_state = NULL;
507         } else {
508                 struct pmem_device *pmem = dev_get_drvdata(dev);
509
510                 nd_region = to_region(pmem);
511                 bb = &pmem->bb;
512                 bb_state = pmem->bb_state;
513
514                 if (is_nd_pfn(dev)) {
515                         struct nd_pfn *nd_pfn = to_nd_pfn(dev);
516                         struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
517
518                         ndns = nd_pfn->ndns;
519                         offset = pmem->data_offset +
520                                         __le32_to_cpu(pfn_sb->start_pad);
521                         end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
522                 } else {
523                         ndns = to_ndns(dev);
524                 }
525
526                 nsio = to_nd_namespace_io(&ndns->dev);
527         }
528
529         res.start = nsio->res.start + offset;
530         res.end = nsio->res.end - end_trunc;
531         nvdimm_badblocks_populate(nd_region, bb, &res);
532         if (bb_state)
533                 sysfs_notify_dirent(bb_state);
534 }
535
536 MODULE_ALIAS("pmem");
537 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
538 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
539 static struct nd_device_driver nd_pmem_driver = {
540         .probe = nd_pmem_probe,
541         .remove = nd_pmem_remove,
542         .notify = nd_pmem_notify,
543         .shutdown = nd_pmem_shutdown,
544         .drv = {
545                 .name = "nd_pmem",
546         },
547         .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
548 };
549
550 static int __init pmem_init(void)
551 {
552         return nd_driver_register(&nd_pmem_driver);
553 }
554 module_init(pmem_init);
555
556 static void pmem_exit(void)
557 {
558         driver_unregister(&nd_pmem_driver.drv);
559 }
560 module_exit(pmem_exit);
561
562 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
563 MODULE_LICENSE("GPL v2");