GNU Linux-libre 4.9.308-gnu1
[releases.git] / drivers / ntb / ntb_transport.c
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  *   redistributing this file, you may do so under either license.
4  *
5  *   GPL LICENSE SUMMARY
6  *
7  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
8  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
9  *
10  *   This program is free software; you can redistribute it and/or modify
11  *   it under the terms of version 2 of the GNU General Public License as
12  *   published by the Free Software Foundation.
13  *
14  *   BSD LICENSE
15  *
16  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
17  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
18  *
19  *   Redistribution and use in source and binary forms, with or without
20  *   modification, are permitted provided that the following conditions
21  *   are met:
22  *
23  *     * Redistributions of source code must retain the above copyright
24  *       notice, this list of conditions and the following disclaimer.
25  *     * Redistributions in binary form must reproduce the above copy
26  *       notice, this list of conditions and the following disclaimer in
27  *       the documentation and/or other materials provided with the
28  *       distribution.
29  *     * Neither the name of Intel Corporation nor the names of its
30  *       contributors may be used to endorse or promote products derived
31  *       from this software without specific prior written permission.
32  *
33  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44  *
45  * PCIe NTB Transport Linux driver
46  *
47  * Contact Information:
48  * Jon Mason <jon.mason@intel.com>
49  */
50 #include <linux/debugfs.h>
51 #include <linux/delay.h>
52 #include <linux/dmaengine.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/errno.h>
55 #include <linux/export.h>
56 #include <linux/interrupt.h>
57 #include <linux/module.h>
58 #include <linux/pci.h>
59 #include <linux/slab.h>
60 #include <linux/types.h>
61 #include <linux/uaccess.h>
62 #include "linux/ntb.h"
63 #include "linux/ntb_transport.h"
64
65 #define NTB_TRANSPORT_VERSION   4
66 #define NTB_TRANSPORT_VER       "4"
67 #define NTB_TRANSPORT_NAME      "ntb_transport"
68 #define NTB_TRANSPORT_DESC      "Software Queue-Pair Transport over NTB"
69
70 MODULE_DESCRIPTION(NTB_TRANSPORT_DESC);
71 MODULE_VERSION(NTB_TRANSPORT_VER);
72 MODULE_LICENSE("Dual BSD/GPL");
73 MODULE_AUTHOR("Intel Corporation");
74
75 static unsigned long max_mw_size;
76 module_param(max_mw_size, ulong, 0644);
77 MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
78
79 static unsigned int transport_mtu = 0x10000;
80 module_param(transport_mtu, uint, 0644);
81 MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets");
82
83 static unsigned char max_num_clients;
84 module_param(max_num_clients, byte, 0644);
85 MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients");
86
87 static unsigned int copy_bytes = 1024;
88 module_param(copy_bytes, uint, 0644);
89 MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA");
90
91 static bool use_dma;
92 module_param(use_dma, bool, 0644);
93 MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy");
94
95 static struct dentry *nt_debugfs_dir;
96
97 struct ntb_queue_entry {
98         /* ntb_queue list reference */
99         struct list_head entry;
100         /* pointers to data to be transferred */
101         void *cb_data;
102         void *buf;
103         unsigned int len;
104         unsigned int flags;
105         int retries;
106         int errors;
107         unsigned int tx_index;
108         unsigned int rx_index;
109
110         struct ntb_transport_qp *qp;
111         union {
112                 struct ntb_payload_header __iomem *tx_hdr;
113                 struct ntb_payload_header *rx_hdr;
114         };
115 };
116
117 struct ntb_rx_info {
118         unsigned int entry;
119 };
120
121 struct ntb_transport_qp {
122         struct ntb_transport_ctx *transport;
123         struct ntb_dev *ndev;
124         void *cb_data;
125         struct dma_chan *tx_dma_chan;
126         struct dma_chan *rx_dma_chan;
127
128         bool client_ready;
129         bool link_is_up;
130         bool active;
131
132         u8 qp_num;      /* Only 64 QP's are allowed.  0-63 */
133         u64 qp_bit;
134
135         struct ntb_rx_info __iomem *rx_info;
136         struct ntb_rx_info *remote_rx_info;
137
138         void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data,
139                            void *data, int len);
140         struct list_head tx_free_q;
141         spinlock_t ntb_tx_free_q_lock;
142         void __iomem *tx_mw;
143         dma_addr_t tx_mw_phys;
144         unsigned int tx_index;
145         unsigned int tx_max_entry;
146         unsigned int tx_max_frame;
147
148         void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data,
149                            void *data, int len);
150         struct list_head rx_post_q;
151         struct list_head rx_pend_q;
152         struct list_head rx_free_q;
153         /* ntb_rx_q_lock: synchronize access to rx_XXXX_q */
154         spinlock_t ntb_rx_q_lock;
155         void *rx_buff;
156         unsigned int rx_index;
157         unsigned int rx_max_entry;
158         unsigned int rx_max_frame;
159         unsigned int rx_alloc_entry;
160         dma_cookie_t last_cookie;
161         struct tasklet_struct rxc_db_work;
162
163         void (*event_handler)(void *data, int status);
164         struct delayed_work link_work;
165         struct work_struct link_cleanup;
166
167         struct dentry *debugfs_dir;
168         struct dentry *debugfs_stats;
169
170         /* Stats */
171         u64 rx_bytes;
172         u64 rx_pkts;
173         u64 rx_ring_empty;
174         u64 rx_err_no_buf;
175         u64 rx_err_oflow;
176         u64 rx_err_ver;
177         u64 rx_memcpy;
178         u64 rx_async;
179         u64 tx_bytes;
180         u64 tx_pkts;
181         u64 tx_ring_full;
182         u64 tx_err_no_buf;
183         u64 tx_memcpy;
184         u64 tx_async;
185 };
186
187 struct ntb_transport_mw {
188         phys_addr_t phys_addr;
189         resource_size_t phys_size;
190         resource_size_t xlat_align;
191         resource_size_t xlat_align_size;
192         void __iomem *vbase;
193         size_t xlat_size;
194         size_t buff_size;
195         void *virt_addr;
196         dma_addr_t dma_addr;
197 };
198
199 struct ntb_transport_client_dev {
200         struct list_head entry;
201         struct ntb_transport_ctx *nt;
202         struct device dev;
203 };
204
205 struct ntb_transport_ctx {
206         struct list_head entry;
207         struct list_head client_devs;
208
209         struct ntb_dev *ndev;
210
211         struct ntb_transport_mw *mw_vec;
212         struct ntb_transport_qp *qp_vec;
213         unsigned int mw_count;
214         unsigned int qp_count;
215         u64 qp_bitmap;
216         u64 qp_bitmap_free;
217
218         bool link_is_up;
219         struct delayed_work link_work;
220         struct work_struct link_cleanup;
221
222         struct dentry *debugfs_node_dir;
223 };
224
225 enum {
226         DESC_DONE_FLAG = BIT(0),
227         LINK_DOWN_FLAG = BIT(1),
228 };
229
230 struct ntb_payload_header {
231         unsigned int ver;
232         unsigned int len;
233         unsigned int flags;
234 };
235
236 enum {
237         VERSION = 0,
238         QP_LINKS,
239         NUM_QPS,
240         NUM_MWS,
241         MW0_SZ_HIGH,
242         MW0_SZ_LOW,
243         MW1_SZ_HIGH,
244         MW1_SZ_LOW,
245         MAX_SPAD,
246 };
247
248 #define dev_client_dev(__dev) \
249         container_of((__dev), struct ntb_transport_client_dev, dev)
250
251 #define drv_client(__drv) \
252         container_of((__drv), struct ntb_transport_client, driver)
253
254 #define QP_TO_MW(nt, qp)        ((qp) % nt->mw_count)
255 #define NTB_QP_DEF_NUM_ENTRIES  100
256 #define NTB_LINK_DOWN_TIMEOUT   10
257
258 static void ntb_transport_rxc_db(unsigned long data);
259 static const struct ntb_ctx_ops ntb_transport_ops;
260 static struct ntb_client ntb_transport_client;
261 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
262                                struct ntb_queue_entry *entry);
263 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset);
264 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset);
265 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset);
266
267
268 static int ntb_transport_bus_match(struct device *dev,
269                                    struct device_driver *drv)
270 {
271         return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
272 }
273
274 static int ntb_transport_bus_probe(struct device *dev)
275 {
276         const struct ntb_transport_client *client;
277         int rc = -EINVAL;
278
279         get_device(dev);
280
281         client = drv_client(dev->driver);
282         rc = client->probe(dev);
283         if (rc)
284                 put_device(dev);
285
286         return rc;
287 }
288
289 static int ntb_transport_bus_remove(struct device *dev)
290 {
291         const struct ntb_transport_client *client;
292
293         client = drv_client(dev->driver);
294         client->remove(dev);
295
296         put_device(dev);
297
298         return 0;
299 }
300
301 static struct bus_type ntb_transport_bus = {
302         .name = "ntb_transport",
303         .match = ntb_transport_bus_match,
304         .probe = ntb_transport_bus_probe,
305         .remove = ntb_transport_bus_remove,
306 };
307
308 static LIST_HEAD(ntb_transport_list);
309
310 static int ntb_bus_init(struct ntb_transport_ctx *nt)
311 {
312         list_add_tail(&nt->entry, &ntb_transport_list);
313         return 0;
314 }
315
316 static void ntb_bus_remove(struct ntb_transport_ctx *nt)
317 {
318         struct ntb_transport_client_dev *client_dev, *cd;
319
320         list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) {
321                 dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n",
322                         dev_name(&client_dev->dev));
323                 list_del(&client_dev->entry);
324                 device_unregister(&client_dev->dev);
325         }
326
327         list_del(&nt->entry);
328 }
329
330 static void ntb_transport_client_release(struct device *dev)
331 {
332         struct ntb_transport_client_dev *client_dev;
333
334         client_dev = dev_client_dev(dev);
335         kfree(client_dev);
336 }
337
338 /**
339  * ntb_transport_unregister_client_dev - Unregister NTB client device
340  * @device_name: Name of NTB client device
341  *
342  * Unregister an NTB client device with the NTB transport layer
343  */
344 void ntb_transport_unregister_client_dev(char *device_name)
345 {
346         struct ntb_transport_client_dev *client, *cd;
347         struct ntb_transport_ctx *nt;
348
349         list_for_each_entry(nt, &ntb_transport_list, entry)
350                 list_for_each_entry_safe(client, cd, &nt->client_devs, entry)
351                         if (!strncmp(dev_name(&client->dev), device_name,
352                                      strlen(device_name))) {
353                                 list_del(&client->entry);
354                                 device_unregister(&client->dev);
355                         }
356 }
357 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev);
358
359 /**
360  * ntb_transport_register_client_dev - Register NTB client device
361  * @device_name: Name of NTB client device
362  *
363  * Register an NTB client device with the NTB transport layer
364  */
365 int ntb_transport_register_client_dev(char *device_name)
366 {
367         struct ntb_transport_client_dev *client_dev;
368         struct ntb_transport_ctx *nt;
369         int node;
370         int rc, i = 0;
371
372         if (list_empty(&ntb_transport_list))
373                 return -ENODEV;
374
375         list_for_each_entry(nt, &ntb_transport_list, entry) {
376                 struct device *dev;
377
378                 node = dev_to_node(&nt->ndev->dev);
379
380                 client_dev = kzalloc_node(sizeof(*client_dev),
381                                           GFP_KERNEL, node);
382                 if (!client_dev) {
383                         rc = -ENOMEM;
384                         goto err;
385                 }
386
387                 dev = &client_dev->dev;
388
389                 /* setup and register client devices */
390                 dev_set_name(dev, "%s%d", device_name, i);
391                 dev->bus = &ntb_transport_bus;
392                 dev->release = ntb_transport_client_release;
393                 dev->parent = &nt->ndev->dev;
394
395                 rc = device_register(dev);
396                 if (rc) {
397                         kfree(client_dev);
398                         goto err;
399                 }
400
401                 list_add_tail(&client_dev->entry, &nt->client_devs);
402                 i++;
403         }
404
405         return 0;
406
407 err:
408         ntb_transport_unregister_client_dev(device_name);
409
410         return rc;
411 }
412 EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev);
413
414 /**
415  * ntb_transport_register_client - Register NTB client driver
416  * @drv: NTB client driver to be registered
417  *
418  * Register an NTB client driver with the NTB transport layer
419  *
420  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
421  */
422 int ntb_transport_register_client(struct ntb_transport_client *drv)
423 {
424         drv->driver.bus = &ntb_transport_bus;
425
426         if (list_empty(&ntb_transport_list))
427                 return -ENODEV;
428
429         return driver_register(&drv->driver);
430 }
431 EXPORT_SYMBOL_GPL(ntb_transport_register_client);
432
433 /**
434  * ntb_transport_unregister_client - Unregister NTB client driver
435  * @drv: NTB client driver to be unregistered
436  *
437  * Unregister an NTB client driver with the NTB transport layer
438  *
439  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
440  */
441 void ntb_transport_unregister_client(struct ntb_transport_client *drv)
442 {
443         driver_unregister(&drv->driver);
444 }
445 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client);
446
447 static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
448                             loff_t *offp)
449 {
450         struct ntb_transport_qp *qp;
451         char *buf;
452         ssize_t ret, out_offset, out_count;
453
454         qp = filp->private_data;
455
456         if (!qp || !qp->link_is_up)
457                 return 0;
458
459         out_count = 1000;
460
461         buf = kmalloc(out_count, GFP_KERNEL);
462         if (!buf)
463                 return -ENOMEM;
464
465         out_offset = 0;
466         out_offset += snprintf(buf + out_offset, out_count - out_offset,
467                                "\nNTB QP stats:\n\n");
468         out_offset += snprintf(buf + out_offset, out_count - out_offset,
469                                "rx_bytes - \t%llu\n", qp->rx_bytes);
470         out_offset += snprintf(buf + out_offset, out_count - out_offset,
471                                "rx_pkts - \t%llu\n", qp->rx_pkts);
472         out_offset += snprintf(buf + out_offset, out_count - out_offset,
473                                "rx_memcpy - \t%llu\n", qp->rx_memcpy);
474         out_offset += snprintf(buf + out_offset, out_count - out_offset,
475                                "rx_async - \t%llu\n", qp->rx_async);
476         out_offset += snprintf(buf + out_offset, out_count - out_offset,
477                                "rx_ring_empty - %llu\n", qp->rx_ring_empty);
478         out_offset += snprintf(buf + out_offset, out_count - out_offset,
479                                "rx_err_no_buf - %llu\n", qp->rx_err_no_buf);
480         out_offset += snprintf(buf + out_offset, out_count - out_offset,
481                                "rx_err_oflow - \t%llu\n", qp->rx_err_oflow);
482         out_offset += snprintf(buf + out_offset, out_count - out_offset,
483                                "rx_err_ver - \t%llu\n", qp->rx_err_ver);
484         out_offset += snprintf(buf + out_offset, out_count - out_offset,
485                                "rx_buff - \t0x%p\n", qp->rx_buff);
486         out_offset += snprintf(buf + out_offset, out_count - out_offset,
487                                "rx_index - \t%u\n", qp->rx_index);
488         out_offset += snprintf(buf + out_offset, out_count - out_offset,
489                                "rx_max_entry - \t%u\n", qp->rx_max_entry);
490         out_offset += snprintf(buf + out_offset, out_count - out_offset,
491                                "rx_alloc_entry - \t%u\n\n", qp->rx_alloc_entry);
492
493         out_offset += snprintf(buf + out_offset, out_count - out_offset,
494                                "tx_bytes - \t%llu\n", qp->tx_bytes);
495         out_offset += snprintf(buf + out_offset, out_count - out_offset,
496                                "tx_pkts - \t%llu\n", qp->tx_pkts);
497         out_offset += snprintf(buf + out_offset, out_count - out_offset,
498                                "tx_memcpy - \t%llu\n", qp->tx_memcpy);
499         out_offset += snprintf(buf + out_offset, out_count - out_offset,
500                                "tx_async - \t%llu\n", qp->tx_async);
501         out_offset += snprintf(buf + out_offset, out_count - out_offset,
502                                "tx_ring_full - \t%llu\n", qp->tx_ring_full);
503         out_offset += snprintf(buf + out_offset, out_count - out_offset,
504                                "tx_err_no_buf - %llu\n", qp->tx_err_no_buf);
505         out_offset += snprintf(buf + out_offset, out_count - out_offset,
506                                "tx_mw - \t0x%p\n", qp->tx_mw);
507         out_offset += snprintf(buf + out_offset, out_count - out_offset,
508                                "tx_index (H) - \t%u\n", qp->tx_index);
509         out_offset += snprintf(buf + out_offset, out_count - out_offset,
510                                "RRI (T) - \t%u\n",
511                                qp->remote_rx_info->entry);
512         out_offset += snprintf(buf + out_offset, out_count - out_offset,
513                                "tx_max_entry - \t%u\n", qp->tx_max_entry);
514         out_offset += snprintf(buf + out_offset, out_count - out_offset,
515                                "free tx - \t%u\n",
516                                ntb_transport_tx_free_entry(qp));
517
518         out_offset += snprintf(buf + out_offset, out_count - out_offset,
519                                "\n");
520         out_offset += snprintf(buf + out_offset, out_count - out_offset,
521                                "Using TX DMA - \t%s\n",
522                                qp->tx_dma_chan ? "Yes" : "No");
523         out_offset += snprintf(buf + out_offset, out_count - out_offset,
524                                "Using RX DMA - \t%s\n",
525                                qp->rx_dma_chan ? "Yes" : "No");
526         out_offset += snprintf(buf + out_offset, out_count - out_offset,
527                                "QP Link - \t%s\n",
528                                qp->link_is_up ? "Up" : "Down");
529         out_offset += snprintf(buf + out_offset, out_count - out_offset,
530                                "\n");
531
532         if (out_offset > out_count)
533                 out_offset = out_count;
534
535         ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
536         kfree(buf);
537         return ret;
538 }
539
540 static const struct file_operations ntb_qp_debugfs_stats = {
541         .owner = THIS_MODULE,
542         .open = simple_open,
543         .read = debugfs_read,
544 };
545
546 static void ntb_list_add(spinlock_t *lock, struct list_head *entry,
547                          struct list_head *list)
548 {
549         unsigned long flags;
550
551         spin_lock_irqsave(lock, flags);
552         list_add_tail(entry, list);
553         spin_unlock_irqrestore(lock, flags);
554 }
555
556 static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock,
557                                            struct list_head *list)
558 {
559         struct ntb_queue_entry *entry;
560         unsigned long flags;
561
562         spin_lock_irqsave(lock, flags);
563         if (list_empty(list)) {
564                 entry = NULL;
565                 goto out;
566         }
567         entry = list_first_entry(list, struct ntb_queue_entry, entry);
568         list_del(&entry->entry);
569
570 out:
571         spin_unlock_irqrestore(lock, flags);
572
573         return entry;
574 }
575
576 static struct ntb_queue_entry *ntb_list_mv(spinlock_t *lock,
577                                            struct list_head *list,
578                                            struct list_head *to_list)
579 {
580         struct ntb_queue_entry *entry;
581         unsigned long flags;
582
583         spin_lock_irqsave(lock, flags);
584
585         if (list_empty(list)) {
586                 entry = NULL;
587         } else {
588                 entry = list_first_entry(list, struct ntb_queue_entry, entry);
589                 list_move_tail(&entry->entry, to_list);
590         }
591
592         spin_unlock_irqrestore(lock, flags);
593
594         return entry;
595 }
596
597 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt,
598                                      unsigned int qp_num)
599 {
600         struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
601         struct ntb_transport_mw *mw;
602         struct ntb_dev *ndev = nt->ndev;
603         struct ntb_queue_entry *entry;
604         unsigned int rx_size, num_qps_mw;
605         unsigned int mw_num, mw_count, qp_count;
606         unsigned int i;
607         int node;
608
609         mw_count = nt->mw_count;
610         qp_count = nt->qp_count;
611
612         mw_num = QP_TO_MW(nt, qp_num);
613         mw = &nt->mw_vec[mw_num];
614
615         if (!mw->virt_addr)
616                 return -ENOMEM;
617
618         if (mw_num < qp_count % mw_count)
619                 num_qps_mw = qp_count / mw_count + 1;
620         else
621                 num_qps_mw = qp_count / mw_count;
622
623         rx_size = (unsigned int)mw->xlat_size / num_qps_mw;
624         qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count);
625         rx_size -= sizeof(struct ntb_rx_info);
626
627         qp->remote_rx_info = qp->rx_buff + rx_size;
628
629         /* Due to housekeeping, there must be atleast 2 buffs */
630         qp->rx_max_frame = min(transport_mtu, rx_size / 2);
631         qp->rx_max_entry = rx_size / qp->rx_max_frame;
632         qp->rx_index = 0;
633
634         /*
635          * Checking to see if we have more entries than the default.
636          * We should add additional entries if that is the case so we
637          * can be in sync with the transport frames.
638          */
639         node = dev_to_node(&ndev->dev);
640         for (i = qp->rx_alloc_entry; i < qp->rx_max_entry; i++) {
641                 entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
642                 if (!entry)
643                         return -ENOMEM;
644
645                 entry->qp = qp;
646                 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
647                              &qp->rx_free_q);
648                 qp->rx_alloc_entry++;
649         }
650
651         qp->remote_rx_info->entry = qp->rx_max_entry - 1;
652
653         /* setup the hdr offsets with 0's */
654         for (i = 0; i < qp->rx_max_entry; i++) {
655                 void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) -
656                                 sizeof(struct ntb_payload_header));
657                 memset(offset, 0, sizeof(struct ntb_payload_header));
658         }
659
660         qp->rx_pkts = 0;
661         qp->tx_pkts = 0;
662         qp->tx_index = 0;
663
664         return 0;
665 }
666
667 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
668 {
669         struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
670         struct pci_dev *pdev = nt->ndev->pdev;
671
672         if (!mw->virt_addr)
673                 return;
674
675         ntb_mw_clear_trans(nt->ndev, num_mw);
676         dma_free_coherent(&pdev->dev, mw->buff_size,
677                           mw->virt_addr, mw->dma_addr);
678         mw->xlat_size = 0;
679         mw->buff_size = 0;
680         mw->virt_addr = NULL;
681 }
682
683 static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
684                       resource_size_t size)
685 {
686         struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
687         struct pci_dev *pdev = nt->ndev->pdev;
688         size_t xlat_size, buff_size;
689         int rc;
690
691         if (!size)
692                 return -EINVAL;
693
694         xlat_size = round_up(size, mw->xlat_align_size);
695         buff_size = round_up(size, mw->xlat_align);
696
697         /* No need to re-setup */
698         if (mw->xlat_size == xlat_size)
699                 return 0;
700
701         if (mw->buff_size)
702                 ntb_free_mw(nt, num_mw);
703
704         /* Alloc memory for receiving data.  Must be aligned */
705         mw->xlat_size = xlat_size;
706         mw->buff_size = buff_size;
707
708         mw->virt_addr = dma_alloc_coherent(&pdev->dev, buff_size,
709                                            &mw->dma_addr, GFP_KERNEL);
710         if (!mw->virt_addr) {
711                 mw->xlat_size = 0;
712                 mw->buff_size = 0;
713                 dev_err(&pdev->dev, "Unable to alloc MW buff of size %zu\n",
714                         buff_size);
715                 return -ENOMEM;
716         }
717
718         /*
719          * we must ensure that the memory address allocated is BAR size
720          * aligned in order for the XLAT register to take the value. This
721          * is a requirement of the hardware. It is recommended to setup CMA
722          * for BAR sizes equal or greater than 4MB.
723          */
724         if (!IS_ALIGNED(mw->dma_addr, mw->xlat_align)) {
725                 dev_err(&pdev->dev, "DMA memory %pad is not aligned\n",
726                         &mw->dma_addr);
727                 ntb_free_mw(nt, num_mw);
728                 return -ENOMEM;
729         }
730
731         /* Notify HW the memory location of the receive buffer */
732         rc = ntb_mw_set_trans(nt->ndev, num_mw, mw->dma_addr, mw->xlat_size);
733         if (rc) {
734                 dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
735                 ntb_free_mw(nt, num_mw);
736                 return -EIO;
737         }
738
739         return 0;
740 }
741
742 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
743 {
744         qp->link_is_up = false;
745         qp->active = false;
746
747         qp->tx_index = 0;
748         qp->rx_index = 0;
749         qp->rx_bytes = 0;
750         qp->rx_pkts = 0;
751         qp->rx_ring_empty = 0;
752         qp->rx_err_no_buf = 0;
753         qp->rx_err_oflow = 0;
754         qp->rx_err_ver = 0;
755         qp->rx_memcpy = 0;
756         qp->rx_async = 0;
757         qp->tx_bytes = 0;
758         qp->tx_pkts = 0;
759         qp->tx_ring_full = 0;
760         qp->tx_err_no_buf = 0;
761         qp->tx_memcpy = 0;
762         qp->tx_async = 0;
763 }
764
765 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
766 {
767         struct ntb_transport_ctx *nt = qp->transport;
768         struct pci_dev *pdev = nt->ndev->pdev;
769
770         dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num);
771
772         cancel_delayed_work_sync(&qp->link_work);
773         ntb_qp_link_down_reset(qp);
774
775         if (qp->event_handler)
776                 qp->event_handler(qp->cb_data, qp->link_is_up);
777 }
778
779 static void ntb_qp_link_cleanup_work(struct work_struct *work)
780 {
781         struct ntb_transport_qp *qp = container_of(work,
782                                                    struct ntb_transport_qp,
783                                                    link_cleanup);
784         struct ntb_transport_ctx *nt = qp->transport;
785
786         ntb_qp_link_cleanup(qp);
787
788         if (nt->link_is_up)
789                 schedule_delayed_work(&qp->link_work,
790                                       msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
791 }
792
793 static void ntb_qp_link_down(struct ntb_transport_qp *qp)
794 {
795         schedule_work(&qp->link_cleanup);
796 }
797
798 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt)
799 {
800         struct ntb_transport_qp *qp;
801         u64 qp_bitmap_alloc;
802         int i;
803
804         qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
805
806         /* Pass along the info to any clients */
807         for (i = 0; i < nt->qp_count; i++)
808                 if (qp_bitmap_alloc & BIT_ULL(i)) {
809                         qp = &nt->qp_vec[i];
810                         ntb_qp_link_cleanup(qp);
811                         cancel_work_sync(&qp->link_cleanup);
812                         cancel_delayed_work_sync(&qp->link_work);
813                 }
814
815         if (!nt->link_is_up)
816                 cancel_delayed_work_sync(&nt->link_work);
817
818         /* The scratchpad registers keep the values if the remote side
819          * goes down, blast them now to give them a sane value the next
820          * time they are accessed
821          */
822         for (i = 0; i < MAX_SPAD; i++)
823                 ntb_spad_write(nt->ndev, i, 0);
824 }
825
826 static void ntb_transport_link_cleanup_work(struct work_struct *work)
827 {
828         struct ntb_transport_ctx *nt =
829                 container_of(work, struct ntb_transport_ctx, link_cleanup);
830
831         ntb_transport_link_cleanup(nt);
832 }
833
834 static void ntb_transport_event_callback(void *data)
835 {
836         struct ntb_transport_ctx *nt = data;
837
838         if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1)
839                 schedule_delayed_work(&nt->link_work, 0);
840         else
841                 schedule_work(&nt->link_cleanup);
842 }
843
844 static void ntb_transport_link_work(struct work_struct *work)
845 {
846         struct ntb_transport_ctx *nt =
847                 container_of(work, struct ntb_transport_ctx, link_work.work);
848         struct ntb_dev *ndev = nt->ndev;
849         struct pci_dev *pdev = ndev->pdev;
850         resource_size_t size;
851         u32 val;
852         int rc = 0, i, spad;
853
854         /* send the local info, in the opposite order of the way we read it */
855         for (i = 0; i < nt->mw_count; i++) {
856                 size = nt->mw_vec[i].phys_size;
857
858                 if (max_mw_size && size > max_mw_size)
859                         size = max_mw_size;
860
861                 spad = MW0_SZ_HIGH + (i * 2);
862                 ntb_peer_spad_write(ndev, spad, upper_32_bits(size));
863
864                 spad = MW0_SZ_LOW + (i * 2);
865                 ntb_peer_spad_write(ndev, spad, lower_32_bits(size));
866         }
867
868         ntb_peer_spad_write(ndev, NUM_MWS, nt->mw_count);
869
870         ntb_peer_spad_write(ndev, NUM_QPS, nt->qp_count);
871
872         ntb_peer_spad_write(ndev, VERSION, NTB_TRANSPORT_VERSION);
873
874         /* Query the remote side for its info */
875         val = ntb_spad_read(ndev, VERSION);
876         dev_dbg(&pdev->dev, "Remote version = %d\n", val);
877         if (val != NTB_TRANSPORT_VERSION)
878                 goto out;
879
880         val = ntb_spad_read(ndev, NUM_QPS);
881         dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val);
882         if (val != nt->qp_count)
883                 goto out;
884
885         val = ntb_spad_read(ndev, NUM_MWS);
886         dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val);
887         if (val != nt->mw_count)
888                 goto out;
889
890         for (i = 0; i < nt->mw_count; i++) {
891                 u64 val64;
892
893                 val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2));
894                 val64 = (u64)val << 32;
895
896                 val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2));
897                 val64 |= val;
898
899                 dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64);
900
901                 rc = ntb_set_mw(nt, i, val64);
902                 if (rc)
903                         goto out1;
904         }
905
906         nt->link_is_up = true;
907
908         for (i = 0; i < nt->qp_count; i++) {
909                 struct ntb_transport_qp *qp = &nt->qp_vec[i];
910
911                 ntb_transport_setup_qp_mw(nt, i);
912
913                 if (qp->client_ready)
914                         schedule_delayed_work(&qp->link_work, 0);
915         }
916
917         return;
918
919 out1:
920         for (i = 0; i < nt->mw_count; i++)
921                 ntb_free_mw(nt, i);
922
923         /* if there's an actual failure, we should just bail */
924         if (rc < 0)
925                 return;
926
927 out:
928         if (ntb_link_is_up(ndev, NULL, NULL) == 1)
929                 schedule_delayed_work(&nt->link_work,
930                                       msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
931 }
932
933 static void ntb_qp_link_work(struct work_struct *work)
934 {
935         struct ntb_transport_qp *qp = container_of(work,
936                                                    struct ntb_transport_qp,
937                                                    link_work.work);
938         struct pci_dev *pdev = qp->ndev->pdev;
939         struct ntb_transport_ctx *nt = qp->transport;
940         int val;
941
942         WARN_ON(!nt->link_is_up);
943
944         val = ntb_spad_read(nt->ndev, QP_LINKS);
945
946         ntb_peer_spad_write(nt->ndev, QP_LINKS, val | BIT(qp->qp_num));
947
948         /* query remote spad for qp ready bits */
949         ntb_peer_spad_read(nt->ndev, QP_LINKS);
950         dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
951
952         /* See if the remote side is up */
953         if (val & BIT(qp->qp_num)) {
954                 dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num);
955                 qp->link_is_up = true;
956                 qp->active = true;
957
958                 if (qp->event_handler)
959                         qp->event_handler(qp->cb_data, qp->link_is_up);
960
961                 if (qp->active)
962                         tasklet_schedule(&qp->rxc_db_work);
963         } else if (nt->link_is_up)
964                 schedule_delayed_work(&qp->link_work,
965                                       msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
966 }
967
968 static int ntb_transport_init_queue(struct ntb_transport_ctx *nt,
969                                     unsigned int qp_num)
970 {
971         struct ntb_transport_qp *qp;
972         phys_addr_t mw_base;
973         resource_size_t mw_size;
974         unsigned int num_qps_mw, tx_size;
975         unsigned int mw_num, mw_count, qp_count;
976         u64 qp_offset;
977
978         mw_count = nt->mw_count;
979         qp_count = nt->qp_count;
980
981         mw_num = QP_TO_MW(nt, qp_num);
982
983         qp = &nt->qp_vec[qp_num];
984         qp->qp_num = qp_num;
985         qp->transport = nt;
986         qp->ndev = nt->ndev;
987         qp->client_ready = false;
988         qp->event_handler = NULL;
989         ntb_qp_link_down_reset(qp);
990
991         if (mw_num < qp_count % mw_count)
992                 num_qps_mw = qp_count / mw_count + 1;
993         else
994                 num_qps_mw = qp_count / mw_count;
995
996         mw_base = nt->mw_vec[mw_num].phys_addr;
997         mw_size = nt->mw_vec[mw_num].phys_size;
998
999         if (max_mw_size && mw_size > max_mw_size)
1000                 mw_size = max_mw_size;
1001
1002         tx_size = (unsigned int)mw_size / num_qps_mw;
1003         qp_offset = tx_size * (qp_num / mw_count);
1004
1005         qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset;
1006         if (!qp->tx_mw)
1007                 return -EINVAL;
1008
1009         qp->tx_mw_phys = mw_base + qp_offset;
1010         if (!qp->tx_mw_phys)
1011                 return -EINVAL;
1012
1013         tx_size -= sizeof(struct ntb_rx_info);
1014         qp->rx_info = qp->tx_mw + tx_size;
1015
1016         /* Due to housekeeping, there must be atleast 2 buffs */
1017         qp->tx_max_frame = min(transport_mtu, tx_size / 2);
1018         qp->tx_max_entry = tx_size / qp->tx_max_frame;
1019
1020         if (nt->debugfs_node_dir) {
1021                 char debugfs_name[4];
1022
1023                 snprintf(debugfs_name, 4, "qp%d", qp_num);
1024                 qp->debugfs_dir = debugfs_create_dir(debugfs_name,
1025                                                      nt->debugfs_node_dir);
1026
1027                 qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR,
1028                                                         qp->debugfs_dir, qp,
1029                                                         &ntb_qp_debugfs_stats);
1030         } else {
1031                 qp->debugfs_dir = NULL;
1032                 qp->debugfs_stats = NULL;
1033         }
1034
1035         INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work);
1036         INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work);
1037
1038         spin_lock_init(&qp->ntb_rx_q_lock);
1039         spin_lock_init(&qp->ntb_tx_free_q_lock);
1040
1041         INIT_LIST_HEAD(&qp->rx_post_q);
1042         INIT_LIST_HEAD(&qp->rx_pend_q);
1043         INIT_LIST_HEAD(&qp->rx_free_q);
1044         INIT_LIST_HEAD(&qp->tx_free_q);
1045
1046         tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db,
1047                      (unsigned long)qp);
1048
1049         return 0;
1050 }
1051
1052 static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
1053 {
1054         struct ntb_transport_ctx *nt;
1055         struct ntb_transport_mw *mw;
1056         unsigned int mw_count, qp_count;
1057         u64 qp_bitmap;
1058         int node;
1059         int rc, i;
1060
1061         mw_count = ntb_mw_count(ndev);
1062         if (ntb_spad_count(ndev) < (NUM_MWS + 1 + mw_count * 2)) {
1063                 dev_err(&ndev->dev, "Not enough scratch pad registers for %s",
1064                         NTB_TRANSPORT_NAME);
1065                 return -EIO;
1066         }
1067
1068         if (ntb_db_is_unsafe(ndev))
1069                 dev_dbg(&ndev->dev,
1070                         "doorbell is unsafe, proceed anyway...\n");
1071         if (ntb_spad_is_unsafe(ndev))
1072                 dev_dbg(&ndev->dev,
1073                         "scratchpad is unsafe, proceed anyway...\n");
1074
1075         node = dev_to_node(&ndev->dev);
1076
1077         nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node);
1078         if (!nt)
1079                 return -ENOMEM;
1080
1081         nt->ndev = ndev;
1082
1083         nt->mw_count = mw_count;
1084
1085         nt->mw_vec = kzalloc_node(mw_count * sizeof(*nt->mw_vec),
1086                                   GFP_KERNEL, node);
1087         if (!nt->mw_vec) {
1088                 rc = -ENOMEM;
1089                 goto err;
1090         }
1091
1092         for (i = 0; i < mw_count; i++) {
1093                 mw = &nt->mw_vec[i];
1094
1095                 rc = ntb_mw_get_range(ndev, i, &mw->phys_addr, &mw->phys_size,
1096                                       &mw->xlat_align, &mw->xlat_align_size);
1097                 if (rc)
1098                         goto err1;
1099
1100                 mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
1101                 if (!mw->vbase) {
1102                         rc = -ENOMEM;
1103                         goto err1;
1104                 }
1105
1106                 mw->buff_size = 0;
1107                 mw->xlat_size = 0;
1108                 mw->virt_addr = NULL;
1109                 mw->dma_addr = 0;
1110         }
1111
1112         qp_bitmap = ntb_db_valid_mask(ndev);
1113
1114         qp_count = ilog2(qp_bitmap);
1115         if (max_num_clients && max_num_clients < qp_count)
1116                 qp_count = max_num_clients;
1117         else if (nt->mw_count < qp_count)
1118                 qp_count = nt->mw_count;
1119
1120         qp_bitmap &= BIT_ULL(qp_count) - 1;
1121
1122         nt->qp_count = qp_count;
1123         nt->qp_bitmap = qp_bitmap;
1124         nt->qp_bitmap_free = qp_bitmap;
1125
1126         nt->qp_vec = kzalloc_node(qp_count * sizeof(*nt->qp_vec),
1127                                   GFP_KERNEL, node);
1128         if (!nt->qp_vec) {
1129                 rc = -ENOMEM;
1130                 goto err1;
1131         }
1132
1133         if (nt_debugfs_dir) {
1134                 nt->debugfs_node_dir =
1135                         debugfs_create_dir(pci_name(ndev->pdev),
1136                                            nt_debugfs_dir);
1137         }
1138
1139         for (i = 0; i < qp_count; i++) {
1140                 rc = ntb_transport_init_queue(nt, i);
1141                 if (rc)
1142                         goto err2;
1143         }
1144
1145         INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work);
1146         INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work);
1147
1148         rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops);
1149         if (rc)
1150                 goto err2;
1151
1152         INIT_LIST_HEAD(&nt->client_devs);
1153         rc = ntb_bus_init(nt);
1154         if (rc)
1155                 goto err3;
1156
1157         nt->link_is_up = false;
1158         ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1159         ntb_link_event(ndev);
1160
1161         return 0;
1162
1163 err3:
1164         ntb_clear_ctx(ndev);
1165 err2:
1166         kfree(nt->qp_vec);
1167 err1:
1168         while (i--) {
1169                 mw = &nt->mw_vec[i];
1170                 iounmap(mw->vbase);
1171         }
1172         kfree(nt->mw_vec);
1173 err:
1174         kfree(nt);
1175         return rc;
1176 }
1177
1178 static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev)
1179 {
1180         struct ntb_transport_ctx *nt = ndev->ctx;
1181         struct ntb_transport_qp *qp;
1182         u64 qp_bitmap_alloc;
1183         int i;
1184
1185         ntb_transport_link_cleanup(nt);
1186         cancel_work_sync(&nt->link_cleanup);
1187         cancel_delayed_work_sync(&nt->link_work);
1188
1189         qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1190
1191         /* verify that all the qp's are freed */
1192         for (i = 0; i < nt->qp_count; i++) {
1193                 qp = &nt->qp_vec[i];
1194                 if (qp_bitmap_alloc & BIT_ULL(i))
1195                         ntb_transport_free_queue(qp);
1196                 debugfs_remove_recursive(qp->debugfs_dir);
1197         }
1198
1199         ntb_link_disable(ndev);
1200         ntb_clear_ctx(ndev);
1201
1202         ntb_bus_remove(nt);
1203
1204         for (i = nt->mw_count; i--; ) {
1205                 ntb_free_mw(nt, i);
1206                 iounmap(nt->mw_vec[i].vbase);
1207         }
1208
1209         kfree(nt->qp_vec);
1210         kfree(nt->mw_vec);
1211         kfree(nt);
1212 }
1213
1214 static void ntb_complete_rxc(struct ntb_transport_qp *qp)
1215 {
1216         struct ntb_queue_entry *entry;
1217         void *cb_data;
1218         unsigned int len;
1219         unsigned long irqflags;
1220
1221         spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1222
1223         while (!list_empty(&qp->rx_post_q)) {
1224                 entry = list_first_entry(&qp->rx_post_q,
1225                                          struct ntb_queue_entry, entry);
1226                 if (!(entry->flags & DESC_DONE_FLAG))
1227                         break;
1228
1229                 entry->rx_hdr->flags = 0;
1230                 iowrite32(entry->rx_index, &qp->rx_info->entry);
1231
1232                 cb_data = entry->cb_data;
1233                 len = entry->len;
1234
1235                 list_move_tail(&entry->entry, &qp->rx_free_q);
1236
1237                 spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1238
1239                 if (qp->rx_handler && qp->client_ready)
1240                         qp->rx_handler(qp, qp->cb_data, cb_data, len);
1241
1242                 spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1243         }
1244
1245         spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1246 }
1247
1248 static void ntb_rx_copy_callback(void *data,
1249                                  const struct dmaengine_result *res)
1250 {
1251         struct ntb_queue_entry *entry = data;
1252
1253         /* we need to check DMA results if we are using DMA */
1254         if (res) {
1255                 enum dmaengine_tx_result dma_err = res->result;
1256
1257                 switch (dma_err) {
1258                 case DMA_TRANS_READ_FAILED:
1259                 case DMA_TRANS_WRITE_FAILED:
1260                         entry->errors++;
1261                 case DMA_TRANS_ABORTED:
1262                 {
1263                         struct ntb_transport_qp *qp = entry->qp;
1264                         void *offset = qp->rx_buff + qp->rx_max_frame *
1265                                         qp->rx_index;
1266
1267                         ntb_memcpy_rx(entry, offset);
1268                         qp->rx_memcpy++;
1269                         return;
1270                 }
1271
1272                 case DMA_TRANS_NOERROR:
1273                 default:
1274                         break;
1275                 }
1276         }
1277
1278         entry->flags |= DESC_DONE_FLAG;
1279
1280         ntb_complete_rxc(entry->qp);
1281 }
1282
1283 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset)
1284 {
1285         void *buf = entry->buf;
1286         size_t len = entry->len;
1287
1288         memcpy(buf, offset, len);
1289
1290         /* Ensure that the data is fully copied out before clearing the flag */
1291         wmb();
1292
1293         ntb_rx_copy_callback(entry, NULL);
1294 }
1295
1296 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset)
1297 {
1298         struct dma_async_tx_descriptor *txd;
1299         struct ntb_transport_qp *qp = entry->qp;
1300         struct dma_chan *chan = qp->rx_dma_chan;
1301         struct dma_device *device;
1302         size_t pay_off, buff_off, len;
1303         struct dmaengine_unmap_data *unmap;
1304         dma_cookie_t cookie;
1305         void *buf = entry->buf;
1306
1307         len = entry->len;
1308         device = chan->device;
1309         pay_off = (size_t)offset & ~PAGE_MASK;
1310         buff_off = (size_t)buf & ~PAGE_MASK;
1311
1312         if (!is_dma_copy_aligned(device, pay_off, buff_off, len))
1313                 goto err;
1314
1315         unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT);
1316         if (!unmap)
1317                 goto err;
1318
1319         unmap->len = len;
1320         unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset),
1321                                       pay_off, len, DMA_TO_DEVICE);
1322         if (dma_mapping_error(device->dev, unmap->addr[0]))
1323                 goto err_get_unmap;
1324
1325         unmap->to_cnt = 1;
1326
1327         unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf),
1328                                       buff_off, len, DMA_FROM_DEVICE);
1329         if (dma_mapping_error(device->dev, unmap->addr[1]))
1330                 goto err_get_unmap;
1331
1332         unmap->from_cnt = 1;
1333
1334         txd = device->device_prep_dma_memcpy(chan, unmap->addr[1],
1335                                              unmap->addr[0], len,
1336                                              DMA_PREP_INTERRUPT);
1337         if (!txd)
1338                 goto err_get_unmap;
1339
1340         txd->callback_result = ntb_rx_copy_callback;
1341         txd->callback_param = entry;
1342         dma_set_unmap(txd, unmap);
1343
1344         cookie = dmaengine_submit(txd);
1345         if (dma_submit_error(cookie))
1346                 goto err_set_unmap;
1347
1348         dmaengine_unmap_put(unmap);
1349
1350         qp->last_cookie = cookie;
1351
1352         qp->rx_async++;
1353
1354         return 0;
1355
1356 err_set_unmap:
1357         dmaengine_unmap_put(unmap);
1358 err_get_unmap:
1359         dmaengine_unmap_put(unmap);
1360 err:
1361         return -ENXIO;
1362 }
1363
1364 static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset)
1365 {
1366         struct ntb_transport_qp *qp = entry->qp;
1367         struct dma_chan *chan = qp->rx_dma_chan;
1368         int res;
1369
1370         if (!chan)
1371                 goto err;
1372
1373         if (entry->len < copy_bytes)
1374                 goto err;
1375
1376         res = ntb_async_rx_submit(entry, offset);
1377         if (res < 0)
1378                 goto err;
1379
1380         if (!entry->retries)
1381                 qp->rx_async++;
1382
1383         return;
1384
1385 err:
1386         ntb_memcpy_rx(entry, offset);
1387         qp->rx_memcpy++;
1388 }
1389
1390 static int ntb_process_rxc(struct ntb_transport_qp *qp)
1391 {
1392         struct ntb_payload_header *hdr;
1393         struct ntb_queue_entry *entry;
1394         void *offset;
1395
1396         offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index;
1397         hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header);
1398
1399         dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n",
1400                 qp->qp_num, hdr->ver, hdr->len, hdr->flags);
1401
1402         if (!(hdr->flags & DESC_DONE_FLAG)) {
1403                 dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n");
1404                 qp->rx_ring_empty++;
1405                 return -EAGAIN;
1406         }
1407
1408         if (hdr->flags & LINK_DOWN_FLAG) {
1409                 dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n");
1410                 ntb_qp_link_down(qp);
1411                 hdr->flags = 0;
1412                 return -EAGAIN;
1413         }
1414
1415         if (hdr->ver != (u32)qp->rx_pkts) {
1416                 dev_dbg(&qp->ndev->pdev->dev,
1417                         "version mismatch, expected %llu - got %u\n",
1418                         qp->rx_pkts, hdr->ver);
1419                 qp->rx_err_ver++;
1420                 return -EIO;
1421         }
1422
1423         entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q);
1424         if (!entry) {
1425                 dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n");
1426                 qp->rx_err_no_buf++;
1427                 return -EAGAIN;
1428         }
1429
1430         entry->rx_hdr = hdr;
1431         entry->rx_index = qp->rx_index;
1432
1433         if (hdr->len > entry->len) {
1434                 dev_dbg(&qp->ndev->pdev->dev,
1435                         "receive buffer overflow! Wanted %d got %d\n",
1436                         hdr->len, entry->len);
1437                 qp->rx_err_oflow++;
1438
1439                 entry->len = -EIO;
1440                 entry->flags |= DESC_DONE_FLAG;
1441
1442                 ntb_complete_rxc(qp);
1443         } else {
1444                 dev_dbg(&qp->ndev->pdev->dev,
1445                         "RX OK index %u ver %u size %d into buf size %d\n",
1446                         qp->rx_index, hdr->ver, hdr->len, entry->len);
1447
1448                 qp->rx_bytes += hdr->len;
1449                 qp->rx_pkts++;
1450
1451                 entry->len = hdr->len;
1452
1453                 ntb_async_rx(entry, offset);
1454         }
1455
1456         qp->rx_index++;
1457         qp->rx_index %= qp->rx_max_entry;
1458
1459         return 0;
1460 }
1461
1462 static void ntb_transport_rxc_db(unsigned long data)
1463 {
1464         struct ntb_transport_qp *qp = (void *)data;
1465         int rc, i;
1466
1467         dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n",
1468                 __func__, qp->qp_num);
1469
1470         /* Limit the number of packets processed in a single interrupt to
1471          * provide fairness to others
1472          */
1473         for (i = 0; i < qp->rx_max_entry; i++) {
1474                 rc = ntb_process_rxc(qp);
1475                 if (rc)
1476                         break;
1477         }
1478
1479         if (i && qp->rx_dma_chan)
1480                 dma_async_issue_pending(qp->rx_dma_chan);
1481
1482         if (i == qp->rx_max_entry) {
1483                 /* there is more work to do */
1484                 if (qp->active)
1485                         tasklet_schedule(&qp->rxc_db_work);
1486         } else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) {
1487                 /* the doorbell bit is set: clear it */
1488                 ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num));
1489                 /* ntb_db_read ensures ntb_db_clear write is committed */
1490                 ntb_db_read(qp->ndev);
1491
1492                 /* an interrupt may have arrived between finishing
1493                  * ntb_process_rxc and clearing the doorbell bit:
1494                  * there might be some more work to do.
1495                  */
1496                 if (qp->active)
1497                         tasklet_schedule(&qp->rxc_db_work);
1498         }
1499 }
1500
1501 static void ntb_tx_copy_callback(void *data,
1502                                  const struct dmaengine_result *res)
1503 {
1504         struct ntb_queue_entry *entry = data;
1505         struct ntb_transport_qp *qp = entry->qp;
1506         struct ntb_payload_header __iomem *hdr = entry->tx_hdr;
1507
1508         /* we need to check DMA results if we are using DMA */
1509         if (res) {
1510                 enum dmaengine_tx_result dma_err = res->result;
1511
1512                 switch (dma_err) {
1513                 case DMA_TRANS_READ_FAILED:
1514                 case DMA_TRANS_WRITE_FAILED:
1515                         entry->errors++;
1516                 case DMA_TRANS_ABORTED:
1517                 {
1518                         void __iomem *offset =
1519                                 qp->tx_mw + qp->tx_max_frame *
1520                                 entry->tx_index;
1521
1522                         /* resubmit via CPU */
1523                         ntb_memcpy_tx(entry, offset);
1524                         qp->tx_memcpy++;
1525                         return;
1526                 }
1527
1528                 case DMA_TRANS_NOERROR:
1529                 default:
1530                         break;
1531                 }
1532         }
1533
1534         iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags);
1535
1536         ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num));
1537
1538         /* The entry length can only be zero if the packet is intended to be a
1539          * "link down" or similar.  Since no payload is being sent in these
1540          * cases, there is nothing to add to the completion queue.
1541          */
1542         if (entry->len > 0) {
1543                 qp->tx_bytes += entry->len;
1544
1545                 if (qp->tx_handler)
1546                         qp->tx_handler(qp, qp->cb_data, entry->cb_data,
1547                                        entry->len);
1548         }
1549
1550         ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q);
1551 }
1552
1553 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset)
1554 {
1555 #ifdef ARCH_HAS_NOCACHE_UACCESS
1556         /*
1557          * Using non-temporal mov to improve performance on non-cached
1558          * writes, even though we aren't actually copying from user space.
1559          */
1560         __copy_from_user_inatomic_nocache(offset, entry->buf, entry->len);
1561 #else
1562         memcpy_toio(offset, entry->buf, entry->len);
1563 #endif
1564
1565         /* Ensure that the data is fully copied out before setting the flags */
1566         wmb();
1567
1568         ntb_tx_copy_callback(entry, NULL);
1569 }
1570
1571 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
1572                                struct ntb_queue_entry *entry)
1573 {
1574         struct dma_async_tx_descriptor *txd;
1575         struct dma_chan *chan = qp->tx_dma_chan;
1576         struct dma_device *device;
1577         size_t len = entry->len;
1578         void *buf = entry->buf;
1579         size_t dest_off, buff_off;
1580         struct dmaengine_unmap_data *unmap;
1581         dma_addr_t dest;
1582         dma_cookie_t cookie;
1583
1584         device = chan->device;
1585         dest = qp->tx_mw_phys + qp->tx_max_frame * entry->tx_index;
1586         buff_off = (size_t)buf & ~PAGE_MASK;
1587         dest_off = (size_t)dest & ~PAGE_MASK;
1588
1589         if (!is_dma_copy_aligned(device, buff_off, dest_off, len))
1590                 goto err;
1591
1592         unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
1593         if (!unmap)
1594                 goto err;
1595
1596         unmap->len = len;
1597         unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf),
1598                                       buff_off, len, DMA_TO_DEVICE);
1599         if (dma_mapping_error(device->dev, unmap->addr[0]))
1600                 goto err_get_unmap;
1601
1602         unmap->to_cnt = 1;
1603
1604         txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len,
1605                                              DMA_PREP_INTERRUPT);
1606         if (!txd)
1607                 goto err_get_unmap;
1608
1609         txd->callback_result = ntb_tx_copy_callback;
1610         txd->callback_param = entry;
1611         dma_set_unmap(txd, unmap);
1612
1613         cookie = dmaengine_submit(txd);
1614         if (dma_submit_error(cookie))
1615                 goto err_set_unmap;
1616
1617         dmaengine_unmap_put(unmap);
1618
1619         dma_async_issue_pending(chan);
1620
1621         return 0;
1622 err_set_unmap:
1623         dmaengine_unmap_put(unmap);
1624 err_get_unmap:
1625         dmaengine_unmap_put(unmap);
1626 err:
1627         return -ENXIO;
1628 }
1629
1630 static void ntb_async_tx(struct ntb_transport_qp *qp,
1631                          struct ntb_queue_entry *entry)
1632 {
1633         struct ntb_payload_header __iomem *hdr;
1634         struct dma_chan *chan = qp->tx_dma_chan;
1635         void __iomem *offset;
1636         int res;
1637
1638         entry->tx_index = qp->tx_index;
1639         offset = qp->tx_mw + qp->tx_max_frame * entry->tx_index;
1640         hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
1641         entry->tx_hdr = hdr;
1642
1643         iowrite32(entry->len, &hdr->len);
1644         iowrite32((u32)qp->tx_pkts, &hdr->ver);
1645
1646         if (!chan)
1647                 goto err;
1648
1649         if (entry->len < copy_bytes)
1650                 goto err;
1651
1652         res = ntb_async_tx_submit(qp, entry);
1653         if (res < 0)
1654                 goto err;
1655
1656         if (!entry->retries)
1657                 qp->tx_async++;
1658
1659         return;
1660
1661 err:
1662         ntb_memcpy_tx(entry, offset);
1663         qp->tx_memcpy++;
1664 }
1665
1666 static int ntb_process_tx(struct ntb_transport_qp *qp,
1667                           struct ntb_queue_entry *entry)
1668 {
1669         if (qp->tx_index == qp->remote_rx_info->entry) {
1670                 qp->tx_ring_full++;
1671                 return -EAGAIN;
1672         }
1673
1674         if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
1675                 if (qp->tx_handler)
1676                         qp->tx_handler(qp, qp->cb_data, NULL, -EIO);
1677
1678                 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1679                              &qp->tx_free_q);
1680                 return 0;
1681         }
1682
1683         ntb_async_tx(qp, entry);
1684
1685         qp->tx_index++;
1686         qp->tx_index %= qp->tx_max_entry;
1687
1688         qp->tx_pkts++;
1689
1690         return 0;
1691 }
1692
1693 static void ntb_send_link_down(struct ntb_transport_qp *qp)
1694 {
1695         struct pci_dev *pdev = qp->ndev->pdev;
1696         struct ntb_queue_entry *entry;
1697         int i, rc;
1698
1699         if (!qp->link_is_up)
1700                 return;
1701
1702         dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num);
1703
1704         for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) {
1705                 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1706                 if (entry)
1707                         break;
1708                 msleep(100);
1709         }
1710
1711         if (!entry)
1712                 return;
1713
1714         entry->cb_data = NULL;
1715         entry->buf = NULL;
1716         entry->len = 0;
1717         entry->flags = LINK_DOWN_FLAG;
1718
1719         rc = ntb_process_tx(qp, entry);
1720         if (rc)
1721                 dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n",
1722                         qp->qp_num);
1723
1724         ntb_qp_link_down_reset(qp);
1725 }
1726
1727 static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node)
1728 {
1729         return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
1730 }
1731
1732 /**
1733  * ntb_transport_create_queue - Create a new NTB transport layer queue
1734  * @rx_handler: receive callback function
1735  * @tx_handler: transmit callback function
1736  * @event_handler: event callback function
1737  *
1738  * Create a new NTB transport layer queue and provide the queue with a callback
1739  * routine for both transmit and receive.  The receive callback routine will be
1740  * used to pass up data when the transport has received it on the queue.   The
1741  * transmit callback routine will be called when the transport has completed the
1742  * transmission of the data on the queue and the data is ready to be freed.
1743  *
1744  * RETURNS: pointer to newly created ntb_queue, NULL on error.
1745  */
1746 struct ntb_transport_qp *
1747 ntb_transport_create_queue(void *data, struct device *client_dev,
1748                            const struct ntb_queue_handlers *handlers)
1749 {
1750         struct ntb_dev *ndev;
1751         struct pci_dev *pdev;
1752         struct ntb_transport_ctx *nt;
1753         struct ntb_queue_entry *entry;
1754         struct ntb_transport_qp *qp;
1755         u64 qp_bit;
1756         unsigned int free_queue;
1757         dma_cap_mask_t dma_mask;
1758         int node;
1759         int i;
1760
1761         ndev = dev_ntb(client_dev->parent);
1762         pdev = ndev->pdev;
1763         nt = ndev->ctx;
1764
1765         node = dev_to_node(&ndev->dev);
1766
1767         free_queue = ffs(nt->qp_bitmap_free);
1768         if (!free_queue)
1769                 goto err;
1770
1771         /* decrement free_queue to make it zero based */
1772         free_queue--;
1773
1774         qp = &nt->qp_vec[free_queue];
1775         qp_bit = BIT_ULL(qp->qp_num);
1776
1777         nt->qp_bitmap_free &= ~qp_bit;
1778
1779         qp->cb_data = data;
1780         qp->rx_handler = handlers->rx_handler;
1781         qp->tx_handler = handlers->tx_handler;
1782         qp->event_handler = handlers->event_handler;
1783
1784         dma_cap_zero(dma_mask);
1785         dma_cap_set(DMA_MEMCPY, dma_mask);
1786
1787         if (use_dma) {
1788                 qp->tx_dma_chan =
1789                         dma_request_channel(dma_mask, ntb_dma_filter_fn,
1790                                             (void *)(unsigned long)node);
1791                 if (!qp->tx_dma_chan)
1792                         dev_info(&pdev->dev, "Unable to allocate TX DMA channel\n");
1793
1794                 qp->rx_dma_chan =
1795                         dma_request_channel(dma_mask, ntb_dma_filter_fn,
1796                                             (void *)(unsigned long)node);
1797                 if (!qp->rx_dma_chan)
1798                         dev_info(&pdev->dev, "Unable to allocate RX DMA channel\n");
1799         } else {
1800                 qp->tx_dma_chan = NULL;
1801                 qp->rx_dma_chan = NULL;
1802         }
1803
1804         dev_dbg(&pdev->dev, "Using %s memcpy for TX\n",
1805                 qp->tx_dma_chan ? "DMA" : "CPU");
1806
1807         dev_dbg(&pdev->dev, "Using %s memcpy for RX\n",
1808                 qp->rx_dma_chan ? "DMA" : "CPU");
1809
1810         for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
1811                 entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1812                 if (!entry)
1813                         goto err1;
1814
1815                 entry->qp = qp;
1816                 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
1817                              &qp->rx_free_q);
1818         }
1819         qp->rx_alloc_entry = NTB_QP_DEF_NUM_ENTRIES;
1820
1821         for (i = 0; i < qp->tx_max_entry; i++) {
1822                 entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1823                 if (!entry)
1824                         goto err2;
1825
1826                 entry->qp = qp;
1827                 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1828                              &qp->tx_free_q);
1829         }
1830
1831         ntb_db_clear(qp->ndev, qp_bit);
1832         ntb_db_clear_mask(qp->ndev, qp_bit);
1833
1834         dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num);
1835
1836         return qp;
1837
1838 err2:
1839         while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1840                 kfree(entry);
1841 err1:
1842         qp->rx_alloc_entry = 0;
1843         while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1844                 kfree(entry);
1845         if (qp->tx_dma_chan)
1846                 dma_release_channel(qp->tx_dma_chan);
1847         if (qp->rx_dma_chan)
1848                 dma_release_channel(qp->rx_dma_chan);
1849         nt->qp_bitmap_free |= qp_bit;
1850 err:
1851         return NULL;
1852 }
1853 EXPORT_SYMBOL_GPL(ntb_transport_create_queue);
1854
1855 /**
1856  * ntb_transport_free_queue - Frees NTB transport queue
1857  * @qp: NTB queue to be freed
1858  *
1859  * Frees NTB transport queue
1860  */
1861 void ntb_transport_free_queue(struct ntb_transport_qp *qp)
1862 {
1863         struct pci_dev *pdev;
1864         struct ntb_queue_entry *entry;
1865         u64 qp_bit;
1866
1867         if (!qp)
1868                 return;
1869
1870         pdev = qp->ndev->pdev;
1871
1872         qp->active = false;
1873
1874         if (qp->tx_dma_chan) {
1875                 struct dma_chan *chan = qp->tx_dma_chan;
1876                 /* Putting the dma_chan to NULL will force any new traffic to be
1877                  * processed by the CPU instead of the DAM engine
1878                  */
1879                 qp->tx_dma_chan = NULL;
1880
1881                 /* Try to be nice and wait for any queued DMA engine
1882                  * transactions to process before smashing it with a rock
1883                  */
1884                 dma_sync_wait(chan, qp->last_cookie);
1885                 dmaengine_terminate_all(chan);
1886                 dma_release_channel(chan);
1887         }
1888
1889         if (qp->rx_dma_chan) {
1890                 struct dma_chan *chan = qp->rx_dma_chan;
1891                 /* Putting the dma_chan to NULL will force any new traffic to be
1892                  * processed by the CPU instead of the DAM engine
1893                  */
1894                 qp->rx_dma_chan = NULL;
1895
1896                 /* Try to be nice and wait for any queued DMA engine
1897                  * transactions to process before smashing it with a rock
1898                  */
1899                 dma_sync_wait(chan, qp->last_cookie);
1900                 dmaengine_terminate_all(chan);
1901                 dma_release_channel(chan);
1902         }
1903
1904         qp_bit = BIT_ULL(qp->qp_num);
1905
1906         ntb_db_set_mask(qp->ndev, qp_bit);
1907         tasklet_kill(&qp->rxc_db_work);
1908
1909         cancel_delayed_work_sync(&qp->link_work);
1910
1911         qp->cb_data = NULL;
1912         qp->rx_handler = NULL;
1913         qp->tx_handler = NULL;
1914         qp->event_handler = NULL;
1915
1916         while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1917                 kfree(entry);
1918
1919         while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) {
1920                 dev_warn(&pdev->dev, "Freeing item from non-empty rx_pend_q\n");
1921                 kfree(entry);
1922         }
1923
1924         while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) {
1925                 dev_warn(&pdev->dev, "Freeing item from non-empty rx_post_q\n");
1926                 kfree(entry);
1927         }
1928
1929         while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1930                 kfree(entry);
1931
1932         qp->transport->qp_bitmap_free |= qp_bit;
1933
1934         dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num);
1935 }
1936 EXPORT_SYMBOL_GPL(ntb_transport_free_queue);
1937
1938 /**
1939  * ntb_transport_rx_remove - Dequeues enqueued rx packet
1940  * @qp: NTB queue to be freed
1941  * @len: pointer to variable to write enqueued buffers length
1942  *
1943  * Dequeues unused buffers from receive queue.  Should only be used during
1944  * shutdown of qp.
1945  *
1946  * RETURNS: NULL error value on error, or void* for success.
1947  */
1948 void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len)
1949 {
1950         struct ntb_queue_entry *entry;
1951         void *buf;
1952
1953         if (!qp || qp->client_ready)
1954                 return NULL;
1955
1956         entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q);
1957         if (!entry)
1958                 return NULL;
1959
1960         buf = entry->cb_data;
1961         *len = entry->len;
1962
1963         ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_free_q);
1964
1965         return buf;
1966 }
1967 EXPORT_SYMBOL_GPL(ntb_transport_rx_remove);
1968
1969 /**
1970  * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry
1971  * @qp: NTB transport layer queue the entry is to be enqueued on
1972  * @cb: per buffer pointer for callback function to use
1973  * @data: pointer to data buffer that incoming packets will be copied into
1974  * @len: length of the data buffer
1975  *
1976  * Enqueue a new receive buffer onto the transport queue into which a NTB
1977  * payload can be received into.
1978  *
1979  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1980  */
1981 int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
1982                              unsigned int len)
1983 {
1984         struct ntb_queue_entry *entry;
1985
1986         if (!qp)
1987                 return -EINVAL;
1988
1989         entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q);
1990         if (!entry)
1991                 return -ENOMEM;
1992
1993         entry->cb_data = cb;
1994         entry->buf = data;
1995         entry->len = len;
1996         entry->flags = 0;
1997         entry->retries = 0;
1998         entry->errors = 0;
1999         entry->rx_index = 0;
2000
2001         ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_pend_q);
2002
2003         if (qp->active)
2004                 tasklet_schedule(&qp->rxc_db_work);
2005
2006         return 0;
2007 }
2008 EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue);
2009
2010 /**
2011  * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry
2012  * @qp: NTB transport layer queue the entry is to be enqueued on
2013  * @cb: per buffer pointer for callback function to use
2014  * @data: pointer to data buffer that will be sent
2015  * @len: length of the data buffer
2016  *
2017  * Enqueue a new transmit buffer onto the transport queue from which a NTB
2018  * payload will be transmitted.  This assumes that a lock is being held to
2019  * serialize access to the qp.
2020  *
2021  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2022  */
2023 int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2024                              unsigned int len)
2025 {
2026         struct ntb_queue_entry *entry;
2027         int rc;
2028
2029         if (!qp || !qp->link_is_up || !len)
2030                 return -EINVAL;
2031
2032         entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
2033         if (!entry) {
2034                 qp->tx_err_no_buf++;
2035                 return -EBUSY;
2036         }
2037
2038         entry->cb_data = cb;
2039         entry->buf = data;
2040         entry->len = len;
2041         entry->flags = 0;
2042         entry->errors = 0;
2043         entry->retries = 0;
2044         entry->tx_index = 0;
2045
2046         rc = ntb_process_tx(qp, entry);
2047         if (rc)
2048                 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2049                              &qp->tx_free_q);
2050
2051         return rc;
2052 }
2053 EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue);
2054
2055 /**
2056  * ntb_transport_link_up - Notify NTB transport of client readiness to use queue
2057  * @qp: NTB transport layer queue to be enabled
2058  *
2059  * Notify NTB transport layer of client readiness to use queue
2060  */
2061 void ntb_transport_link_up(struct ntb_transport_qp *qp)
2062 {
2063         if (!qp)
2064                 return;
2065
2066         qp->client_ready = true;
2067
2068         if (qp->transport->link_is_up)
2069                 schedule_delayed_work(&qp->link_work, 0);
2070 }
2071 EXPORT_SYMBOL_GPL(ntb_transport_link_up);
2072
2073 /**
2074  * ntb_transport_link_down - Notify NTB transport to no longer enqueue data
2075  * @qp: NTB transport layer queue to be disabled
2076  *
2077  * Notify NTB transport layer of client's desire to no longer receive data on
2078  * transport queue specified.  It is the client's responsibility to ensure all
2079  * entries on queue are purged or otherwise handled appropriately.
2080  */
2081 void ntb_transport_link_down(struct ntb_transport_qp *qp)
2082 {
2083         int val;
2084
2085         if (!qp)
2086                 return;
2087
2088         qp->client_ready = false;
2089
2090         val = ntb_spad_read(qp->ndev, QP_LINKS);
2091
2092         ntb_peer_spad_write(qp->ndev, QP_LINKS,
2093                             val & ~BIT(qp->qp_num));
2094
2095         if (qp->link_is_up)
2096                 ntb_send_link_down(qp);
2097         else
2098                 cancel_delayed_work_sync(&qp->link_work);
2099 }
2100 EXPORT_SYMBOL_GPL(ntb_transport_link_down);
2101
2102 /**
2103  * ntb_transport_link_query - Query transport link state
2104  * @qp: NTB transport layer queue to be queried
2105  *
2106  * Query connectivity to the remote system of the NTB transport queue
2107  *
2108  * RETURNS: true for link up or false for link down
2109  */
2110 bool ntb_transport_link_query(struct ntb_transport_qp *qp)
2111 {
2112         if (!qp)
2113                 return false;
2114
2115         return qp->link_is_up;
2116 }
2117 EXPORT_SYMBOL_GPL(ntb_transport_link_query);
2118
2119 /**
2120  * ntb_transport_qp_num - Query the qp number
2121  * @qp: NTB transport layer queue to be queried
2122  *
2123  * Query qp number of the NTB transport queue
2124  *
2125  * RETURNS: a zero based number specifying the qp number
2126  */
2127 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp)
2128 {
2129         if (!qp)
2130                 return 0;
2131
2132         return qp->qp_num;
2133 }
2134 EXPORT_SYMBOL_GPL(ntb_transport_qp_num);
2135
2136 /**
2137  * ntb_transport_max_size - Query the max payload size of a qp
2138  * @qp: NTB transport layer queue to be queried
2139  *
2140  * Query the maximum payload size permissible on the given qp
2141  *
2142  * RETURNS: the max payload size of a qp
2143  */
2144 unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp)
2145 {
2146         unsigned int max_size;
2147         unsigned int copy_align;
2148         struct dma_chan *rx_chan, *tx_chan;
2149
2150         if (!qp)
2151                 return 0;
2152
2153         rx_chan = qp->rx_dma_chan;
2154         tx_chan = qp->tx_dma_chan;
2155
2156         copy_align = max(rx_chan ? rx_chan->device->copy_align : 0,
2157                          tx_chan ? tx_chan->device->copy_align : 0);
2158
2159         /* If DMA engine usage is possible, try to find the max size for that */
2160         max_size = qp->tx_max_frame - sizeof(struct ntb_payload_header);
2161         max_size = round_down(max_size, 1 << copy_align);
2162
2163         return max_size;
2164 }
2165 EXPORT_SYMBOL_GPL(ntb_transport_max_size);
2166
2167 unsigned int ntb_transport_tx_free_entry(struct ntb_transport_qp *qp)
2168 {
2169         unsigned int head = qp->tx_index;
2170         unsigned int tail = qp->remote_rx_info->entry;
2171
2172         return tail > head ? tail - head : qp->tx_max_entry + tail - head;
2173 }
2174 EXPORT_SYMBOL_GPL(ntb_transport_tx_free_entry);
2175
2176 static void ntb_transport_doorbell_callback(void *data, int vector)
2177 {
2178         struct ntb_transport_ctx *nt = data;
2179         struct ntb_transport_qp *qp;
2180         u64 db_bits;
2181         unsigned int qp_num;
2182
2183         db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free &
2184                    ntb_db_vector_mask(nt->ndev, vector));
2185
2186         while (db_bits) {
2187                 qp_num = __ffs(db_bits);
2188                 qp = &nt->qp_vec[qp_num];
2189
2190                 if (qp->active)
2191                         tasklet_schedule(&qp->rxc_db_work);
2192
2193                 db_bits &= ~BIT_ULL(qp_num);
2194         }
2195 }
2196
2197 static const struct ntb_ctx_ops ntb_transport_ops = {
2198         .link_event = ntb_transport_event_callback,
2199         .db_event = ntb_transport_doorbell_callback,
2200 };
2201
2202 static struct ntb_client ntb_transport_client = {
2203         .ops = {
2204                 .probe = ntb_transport_probe,
2205                 .remove = ntb_transport_free,
2206         },
2207 };
2208
2209 static int __init ntb_transport_init(void)
2210 {
2211         int rc;
2212
2213         pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER);
2214
2215         if (debugfs_initialized())
2216                 nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
2217
2218         rc = bus_register(&ntb_transport_bus);
2219         if (rc)
2220                 goto err_bus;
2221
2222         rc = ntb_register_client(&ntb_transport_client);
2223         if (rc)
2224                 goto err_client;
2225
2226         return 0;
2227
2228 err_client:
2229         bus_unregister(&ntb_transport_bus);
2230 err_bus:
2231         debugfs_remove_recursive(nt_debugfs_dir);
2232         return rc;
2233 }
2234 module_init(ntb_transport_init);
2235
2236 static void __exit ntb_transport_exit(void)
2237 {
2238         ntb_unregister_client(&ntb_transport_client);
2239         bus_unregister(&ntb_transport_bus);
2240         debugfs_remove_recursive(nt_debugfs_dir);
2241 }
2242 module_exit(ntb_transport_exit);