GNU Linux-libre 4.14.257-gnu1
[releases.git] / drivers / ntb / ntb_transport.c
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  *   redistributing this file, you may do so under either license.
4  *
5  *   GPL LICENSE SUMMARY
6  *
7  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
8  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
9  *
10  *   This program is free software; you can redistribute it and/or modify
11  *   it under the terms of version 2 of the GNU General Public License as
12  *   published by the Free Software Foundation.
13  *
14  *   BSD LICENSE
15  *
16  *   Copyright(c) 2012 Intel Corporation. All rights reserved.
17  *   Copyright (C) 2015 EMC Corporation. All Rights Reserved.
18  *
19  *   Redistribution and use in source and binary forms, with or without
20  *   modification, are permitted provided that the following conditions
21  *   are met:
22  *
23  *     * Redistributions of source code must retain the above copyright
24  *       notice, this list of conditions and the following disclaimer.
25  *     * Redistributions in binary form must reproduce the above copy
26  *       notice, this list of conditions and the following disclaimer in
27  *       the documentation and/or other materials provided with the
28  *       distribution.
29  *     * Neither the name of Intel Corporation nor the names of its
30  *       contributors may be used to endorse or promote products derived
31  *       from this software without specific prior written permission.
32  *
33  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44  *
45  * PCIe NTB Transport Linux driver
46  *
47  * Contact Information:
48  * Jon Mason <jon.mason@intel.com>
49  */
50 #include <linux/debugfs.h>
51 #include <linux/delay.h>
52 #include <linux/dmaengine.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/errno.h>
55 #include <linux/export.h>
56 #include <linux/interrupt.h>
57 #include <linux/module.h>
58 #include <linux/pci.h>
59 #include <linux/slab.h>
60 #include <linux/types.h>
61 #include <linux/uaccess.h>
62 #include "linux/ntb.h"
63 #include "linux/ntb_transport.h"
64
65 #define NTB_TRANSPORT_VERSION   4
66 #define NTB_TRANSPORT_VER       "4"
67 #define NTB_TRANSPORT_NAME      "ntb_transport"
68 #define NTB_TRANSPORT_DESC      "Software Queue-Pair Transport over NTB"
69 #define NTB_TRANSPORT_MIN_SPADS (MW0_SZ_HIGH + 2)
70
71 MODULE_DESCRIPTION(NTB_TRANSPORT_DESC);
72 MODULE_VERSION(NTB_TRANSPORT_VER);
73 MODULE_LICENSE("Dual BSD/GPL");
74 MODULE_AUTHOR("Intel Corporation");
75
76 static unsigned long max_mw_size;
77 module_param(max_mw_size, ulong, 0644);
78 MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
79
80 static unsigned int transport_mtu = 0x10000;
81 module_param(transport_mtu, uint, 0644);
82 MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets");
83
84 static unsigned char max_num_clients;
85 module_param(max_num_clients, byte, 0644);
86 MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients");
87
88 static unsigned int copy_bytes = 1024;
89 module_param(copy_bytes, uint, 0644);
90 MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA");
91
92 static bool use_dma;
93 module_param(use_dma, bool, 0644);
94 MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy");
95
96 static struct dentry *nt_debugfs_dir;
97
98 /* Only two-ports NTB devices are supported */
99 #define PIDX            NTB_DEF_PEER_IDX
100
101 struct ntb_queue_entry {
102         /* ntb_queue list reference */
103         struct list_head entry;
104         /* pointers to data to be transferred */
105         void *cb_data;
106         void *buf;
107         unsigned int len;
108         unsigned int flags;
109         int retries;
110         int errors;
111         unsigned int tx_index;
112         unsigned int rx_index;
113
114         struct ntb_transport_qp *qp;
115         union {
116                 struct ntb_payload_header __iomem *tx_hdr;
117                 struct ntb_payload_header *rx_hdr;
118         };
119 };
120
121 struct ntb_rx_info {
122         unsigned int entry;
123 };
124
125 struct ntb_transport_qp {
126         struct ntb_transport_ctx *transport;
127         struct ntb_dev *ndev;
128         void *cb_data;
129         struct dma_chan *tx_dma_chan;
130         struct dma_chan *rx_dma_chan;
131
132         bool client_ready;
133         bool link_is_up;
134         bool active;
135
136         u8 qp_num;      /* Only 64 QP's are allowed.  0-63 */
137         u64 qp_bit;
138
139         struct ntb_rx_info __iomem *rx_info;
140         struct ntb_rx_info *remote_rx_info;
141
142         void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data,
143                            void *data, int len);
144         struct list_head tx_free_q;
145         spinlock_t ntb_tx_free_q_lock;
146         void __iomem *tx_mw;
147         dma_addr_t tx_mw_phys;
148         unsigned int tx_index;
149         unsigned int tx_max_entry;
150         unsigned int tx_max_frame;
151
152         void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data,
153                            void *data, int len);
154         struct list_head rx_post_q;
155         struct list_head rx_pend_q;
156         struct list_head rx_free_q;
157         /* ntb_rx_q_lock: synchronize access to rx_XXXX_q */
158         spinlock_t ntb_rx_q_lock;
159         void *rx_buff;
160         unsigned int rx_index;
161         unsigned int rx_max_entry;
162         unsigned int rx_max_frame;
163         unsigned int rx_alloc_entry;
164         dma_cookie_t last_cookie;
165         struct tasklet_struct rxc_db_work;
166
167         void (*event_handler)(void *data, int status);
168         struct delayed_work link_work;
169         struct work_struct link_cleanup;
170
171         struct dentry *debugfs_dir;
172         struct dentry *debugfs_stats;
173
174         /* Stats */
175         u64 rx_bytes;
176         u64 rx_pkts;
177         u64 rx_ring_empty;
178         u64 rx_err_no_buf;
179         u64 rx_err_oflow;
180         u64 rx_err_ver;
181         u64 rx_memcpy;
182         u64 rx_async;
183         u64 tx_bytes;
184         u64 tx_pkts;
185         u64 tx_ring_full;
186         u64 tx_err_no_buf;
187         u64 tx_memcpy;
188         u64 tx_async;
189 };
190
191 struct ntb_transport_mw {
192         phys_addr_t phys_addr;
193         resource_size_t phys_size;
194         resource_size_t xlat_align;
195         resource_size_t xlat_align_size;
196         void __iomem *vbase;
197         size_t xlat_size;
198         size_t buff_size;
199         void *virt_addr;
200         dma_addr_t dma_addr;
201 };
202
203 struct ntb_transport_client_dev {
204         struct list_head entry;
205         struct ntb_transport_ctx *nt;
206         struct device dev;
207 };
208
209 struct ntb_transport_ctx {
210         struct list_head entry;
211         struct list_head client_devs;
212
213         struct ntb_dev *ndev;
214
215         struct ntb_transport_mw *mw_vec;
216         struct ntb_transport_qp *qp_vec;
217         unsigned int mw_count;
218         unsigned int qp_count;
219         u64 qp_bitmap;
220         u64 qp_bitmap_free;
221
222         bool link_is_up;
223         struct delayed_work link_work;
224         struct work_struct link_cleanup;
225
226         struct dentry *debugfs_node_dir;
227 };
228
229 enum {
230         DESC_DONE_FLAG = BIT(0),
231         LINK_DOWN_FLAG = BIT(1),
232 };
233
234 struct ntb_payload_header {
235         unsigned int ver;
236         unsigned int len;
237         unsigned int flags;
238 };
239
240 enum {
241         VERSION = 0,
242         QP_LINKS,
243         NUM_QPS,
244         NUM_MWS,
245         MW0_SZ_HIGH,
246         MW0_SZ_LOW,
247 };
248
249 #define dev_client_dev(__dev) \
250         container_of((__dev), struct ntb_transport_client_dev, dev)
251
252 #define drv_client(__drv) \
253         container_of((__drv), struct ntb_transport_client, driver)
254
255 #define QP_TO_MW(nt, qp)        ((qp) % nt->mw_count)
256 #define NTB_QP_DEF_NUM_ENTRIES  100
257 #define NTB_LINK_DOWN_TIMEOUT   10
258
259 static void ntb_transport_rxc_db(unsigned long data);
260 static const struct ntb_ctx_ops ntb_transport_ops;
261 static struct ntb_client ntb_transport_client;
262 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
263                                struct ntb_queue_entry *entry);
264 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset);
265 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset);
266 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset);
267
268
269 static int ntb_transport_bus_match(struct device *dev,
270                                    struct device_driver *drv)
271 {
272         return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
273 }
274
275 static int ntb_transport_bus_probe(struct device *dev)
276 {
277         const struct ntb_transport_client *client;
278         int rc = -EINVAL;
279
280         get_device(dev);
281
282         client = drv_client(dev->driver);
283         rc = client->probe(dev);
284         if (rc)
285                 put_device(dev);
286
287         return rc;
288 }
289
290 static int ntb_transport_bus_remove(struct device *dev)
291 {
292         const struct ntb_transport_client *client;
293
294         client = drv_client(dev->driver);
295         client->remove(dev);
296
297         put_device(dev);
298
299         return 0;
300 }
301
302 static struct bus_type ntb_transport_bus = {
303         .name = "ntb_transport",
304         .match = ntb_transport_bus_match,
305         .probe = ntb_transport_bus_probe,
306         .remove = ntb_transport_bus_remove,
307 };
308
309 static LIST_HEAD(ntb_transport_list);
310
311 static int ntb_bus_init(struct ntb_transport_ctx *nt)
312 {
313         list_add_tail(&nt->entry, &ntb_transport_list);
314         return 0;
315 }
316
317 static void ntb_bus_remove(struct ntb_transport_ctx *nt)
318 {
319         struct ntb_transport_client_dev *client_dev, *cd;
320
321         list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) {
322                 dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n",
323                         dev_name(&client_dev->dev));
324                 list_del(&client_dev->entry);
325                 device_unregister(&client_dev->dev);
326         }
327
328         list_del(&nt->entry);
329 }
330
331 static void ntb_transport_client_release(struct device *dev)
332 {
333         struct ntb_transport_client_dev *client_dev;
334
335         client_dev = dev_client_dev(dev);
336         kfree(client_dev);
337 }
338
339 /**
340  * ntb_transport_unregister_client_dev - Unregister NTB client device
341  * @device_name: Name of NTB client device
342  *
343  * Unregister an NTB client device with the NTB transport layer
344  */
345 void ntb_transport_unregister_client_dev(char *device_name)
346 {
347         struct ntb_transport_client_dev *client, *cd;
348         struct ntb_transport_ctx *nt;
349
350         list_for_each_entry(nt, &ntb_transport_list, entry)
351                 list_for_each_entry_safe(client, cd, &nt->client_devs, entry)
352                         if (!strncmp(dev_name(&client->dev), device_name,
353                                      strlen(device_name))) {
354                                 list_del(&client->entry);
355                                 device_unregister(&client->dev);
356                         }
357 }
358 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev);
359
360 /**
361  * ntb_transport_register_client_dev - Register NTB client device
362  * @device_name: Name of NTB client device
363  *
364  * Register an NTB client device with the NTB transport layer
365  */
366 int ntb_transport_register_client_dev(char *device_name)
367 {
368         struct ntb_transport_client_dev *client_dev;
369         struct ntb_transport_ctx *nt;
370         int node;
371         int rc, i = 0;
372
373         if (list_empty(&ntb_transport_list))
374                 return -ENODEV;
375
376         list_for_each_entry(nt, &ntb_transport_list, entry) {
377                 struct device *dev;
378
379                 node = dev_to_node(&nt->ndev->dev);
380
381                 client_dev = kzalloc_node(sizeof(*client_dev),
382                                           GFP_KERNEL, node);
383                 if (!client_dev) {
384                         rc = -ENOMEM;
385                         goto err;
386                 }
387
388                 dev = &client_dev->dev;
389
390                 /* setup and register client devices */
391                 dev_set_name(dev, "%s%d", device_name, i);
392                 dev->bus = &ntb_transport_bus;
393                 dev->release = ntb_transport_client_release;
394                 dev->parent = &nt->ndev->dev;
395
396                 rc = device_register(dev);
397                 if (rc) {
398                         kfree(client_dev);
399                         goto err;
400                 }
401
402                 list_add_tail(&client_dev->entry, &nt->client_devs);
403                 i++;
404         }
405
406         return 0;
407
408 err:
409         ntb_transport_unregister_client_dev(device_name);
410
411         return rc;
412 }
413 EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev);
414
415 /**
416  * ntb_transport_register_client - Register NTB client driver
417  * @drv: NTB client driver to be registered
418  *
419  * Register an NTB client driver with the NTB transport layer
420  *
421  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
422  */
423 int ntb_transport_register_client(struct ntb_transport_client *drv)
424 {
425         drv->driver.bus = &ntb_transport_bus;
426
427         if (list_empty(&ntb_transport_list))
428                 return -ENODEV;
429
430         return driver_register(&drv->driver);
431 }
432 EXPORT_SYMBOL_GPL(ntb_transport_register_client);
433
434 /**
435  * ntb_transport_unregister_client - Unregister NTB client driver
436  * @drv: NTB client driver to be unregistered
437  *
438  * Unregister an NTB client driver with the NTB transport layer
439  *
440  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
441  */
442 void ntb_transport_unregister_client(struct ntb_transport_client *drv)
443 {
444         driver_unregister(&drv->driver);
445 }
446 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client);
447
448 static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
449                             loff_t *offp)
450 {
451         struct ntb_transport_qp *qp;
452         char *buf;
453         ssize_t ret, out_offset, out_count;
454
455         qp = filp->private_data;
456
457         if (!qp || !qp->link_is_up)
458                 return 0;
459
460         out_count = 1000;
461
462         buf = kmalloc(out_count, GFP_KERNEL);
463         if (!buf)
464                 return -ENOMEM;
465
466         out_offset = 0;
467         out_offset += snprintf(buf + out_offset, out_count - out_offset,
468                                "\nNTB QP stats:\n\n");
469         out_offset += snprintf(buf + out_offset, out_count - out_offset,
470                                "rx_bytes - \t%llu\n", qp->rx_bytes);
471         out_offset += snprintf(buf + out_offset, out_count - out_offset,
472                                "rx_pkts - \t%llu\n", qp->rx_pkts);
473         out_offset += snprintf(buf + out_offset, out_count - out_offset,
474                                "rx_memcpy - \t%llu\n", qp->rx_memcpy);
475         out_offset += snprintf(buf + out_offset, out_count - out_offset,
476                                "rx_async - \t%llu\n", qp->rx_async);
477         out_offset += snprintf(buf + out_offset, out_count - out_offset,
478                                "rx_ring_empty - %llu\n", qp->rx_ring_empty);
479         out_offset += snprintf(buf + out_offset, out_count - out_offset,
480                                "rx_err_no_buf - %llu\n", qp->rx_err_no_buf);
481         out_offset += snprintf(buf + out_offset, out_count - out_offset,
482                                "rx_err_oflow - \t%llu\n", qp->rx_err_oflow);
483         out_offset += snprintf(buf + out_offset, out_count - out_offset,
484                                "rx_err_ver - \t%llu\n", qp->rx_err_ver);
485         out_offset += snprintf(buf + out_offset, out_count - out_offset,
486                                "rx_buff - \t0x%p\n", qp->rx_buff);
487         out_offset += snprintf(buf + out_offset, out_count - out_offset,
488                                "rx_index - \t%u\n", qp->rx_index);
489         out_offset += snprintf(buf + out_offset, out_count - out_offset,
490                                "rx_max_entry - \t%u\n", qp->rx_max_entry);
491         out_offset += snprintf(buf + out_offset, out_count - out_offset,
492                                "rx_alloc_entry - \t%u\n\n", qp->rx_alloc_entry);
493
494         out_offset += snprintf(buf + out_offset, out_count - out_offset,
495                                "tx_bytes - \t%llu\n", qp->tx_bytes);
496         out_offset += snprintf(buf + out_offset, out_count - out_offset,
497                                "tx_pkts - \t%llu\n", qp->tx_pkts);
498         out_offset += snprintf(buf + out_offset, out_count - out_offset,
499                                "tx_memcpy - \t%llu\n", qp->tx_memcpy);
500         out_offset += snprintf(buf + out_offset, out_count - out_offset,
501                                "tx_async - \t%llu\n", qp->tx_async);
502         out_offset += snprintf(buf + out_offset, out_count - out_offset,
503                                "tx_ring_full - \t%llu\n", qp->tx_ring_full);
504         out_offset += snprintf(buf + out_offset, out_count - out_offset,
505                                "tx_err_no_buf - %llu\n", qp->tx_err_no_buf);
506         out_offset += snprintf(buf + out_offset, out_count - out_offset,
507                                "tx_mw - \t0x%p\n", qp->tx_mw);
508         out_offset += snprintf(buf + out_offset, out_count - out_offset,
509                                "tx_index (H) - \t%u\n", qp->tx_index);
510         out_offset += snprintf(buf + out_offset, out_count - out_offset,
511                                "RRI (T) - \t%u\n",
512                                qp->remote_rx_info->entry);
513         out_offset += snprintf(buf + out_offset, out_count - out_offset,
514                                "tx_max_entry - \t%u\n", qp->tx_max_entry);
515         out_offset += snprintf(buf + out_offset, out_count - out_offset,
516                                "free tx - \t%u\n",
517                                ntb_transport_tx_free_entry(qp));
518
519         out_offset += snprintf(buf + out_offset, out_count - out_offset,
520                                "\n");
521         out_offset += snprintf(buf + out_offset, out_count - out_offset,
522                                "Using TX DMA - \t%s\n",
523                                qp->tx_dma_chan ? "Yes" : "No");
524         out_offset += snprintf(buf + out_offset, out_count - out_offset,
525                                "Using RX DMA - \t%s\n",
526                                qp->rx_dma_chan ? "Yes" : "No");
527         out_offset += snprintf(buf + out_offset, out_count - out_offset,
528                                "QP Link - \t%s\n",
529                                qp->link_is_up ? "Up" : "Down");
530         out_offset += snprintf(buf + out_offset, out_count - out_offset,
531                                "\n");
532
533         if (out_offset > out_count)
534                 out_offset = out_count;
535
536         ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
537         kfree(buf);
538         return ret;
539 }
540
541 static const struct file_operations ntb_qp_debugfs_stats = {
542         .owner = THIS_MODULE,
543         .open = simple_open,
544         .read = debugfs_read,
545 };
546
547 static void ntb_list_add(spinlock_t *lock, struct list_head *entry,
548                          struct list_head *list)
549 {
550         unsigned long flags;
551
552         spin_lock_irqsave(lock, flags);
553         list_add_tail(entry, list);
554         spin_unlock_irqrestore(lock, flags);
555 }
556
557 static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock,
558                                            struct list_head *list)
559 {
560         struct ntb_queue_entry *entry;
561         unsigned long flags;
562
563         spin_lock_irqsave(lock, flags);
564         if (list_empty(list)) {
565                 entry = NULL;
566                 goto out;
567         }
568         entry = list_first_entry(list, struct ntb_queue_entry, entry);
569         list_del(&entry->entry);
570
571 out:
572         spin_unlock_irqrestore(lock, flags);
573
574         return entry;
575 }
576
577 static struct ntb_queue_entry *ntb_list_mv(spinlock_t *lock,
578                                            struct list_head *list,
579                                            struct list_head *to_list)
580 {
581         struct ntb_queue_entry *entry;
582         unsigned long flags;
583
584         spin_lock_irqsave(lock, flags);
585
586         if (list_empty(list)) {
587                 entry = NULL;
588         } else {
589                 entry = list_first_entry(list, struct ntb_queue_entry, entry);
590                 list_move_tail(&entry->entry, to_list);
591         }
592
593         spin_unlock_irqrestore(lock, flags);
594
595         return entry;
596 }
597
598 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt,
599                                      unsigned int qp_num)
600 {
601         struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
602         struct ntb_transport_mw *mw;
603         struct ntb_dev *ndev = nt->ndev;
604         struct ntb_queue_entry *entry;
605         unsigned int rx_size, num_qps_mw;
606         unsigned int mw_num, mw_count, qp_count;
607         unsigned int i;
608         int node;
609
610         mw_count = nt->mw_count;
611         qp_count = nt->qp_count;
612
613         mw_num = QP_TO_MW(nt, qp_num);
614         mw = &nt->mw_vec[mw_num];
615
616         if (!mw->virt_addr)
617                 return -ENOMEM;
618
619         if (mw_num < qp_count % mw_count)
620                 num_qps_mw = qp_count / mw_count + 1;
621         else
622                 num_qps_mw = qp_count / mw_count;
623
624         rx_size = (unsigned int)mw->xlat_size / num_qps_mw;
625         qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count);
626         rx_size -= sizeof(struct ntb_rx_info);
627
628         qp->remote_rx_info = qp->rx_buff + rx_size;
629
630         /* Due to housekeeping, there must be atleast 2 buffs */
631         qp->rx_max_frame = min(transport_mtu, rx_size / 2);
632         qp->rx_max_entry = rx_size / qp->rx_max_frame;
633         qp->rx_index = 0;
634
635         /*
636          * Checking to see if we have more entries than the default.
637          * We should add additional entries if that is the case so we
638          * can be in sync with the transport frames.
639          */
640         node = dev_to_node(&ndev->dev);
641         for (i = qp->rx_alloc_entry; i < qp->rx_max_entry; i++) {
642                 entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
643                 if (!entry)
644                         return -ENOMEM;
645
646                 entry->qp = qp;
647                 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
648                              &qp->rx_free_q);
649                 qp->rx_alloc_entry++;
650         }
651
652         qp->remote_rx_info->entry = qp->rx_max_entry - 1;
653
654         /* setup the hdr offsets with 0's */
655         for (i = 0; i < qp->rx_max_entry; i++) {
656                 void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) -
657                                 sizeof(struct ntb_payload_header));
658                 memset(offset, 0, sizeof(struct ntb_payload_header));
659         }
660
661         qp->rx_pkts = 0;
662         qp->tx_pkts = 0;
663         qp->tx_index = 0;
664
665         return 0;
666 }
667
668 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
669 {
670         struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
671         struct pci_dev *pdev = nt->ndev->pdev;
672
673         if (!mw->virt_addr)
674                 return;
675
676         ntb_mw_clear_trans(nt->ndev, PIDX, num_mw);
677         dma_free_coherent(&pdev->dev, mw->buff_size,
678                           mw->virt_addr, mw->dma_addr);
679         mw->xlat_size = 0;
680         mw->buff_size = 0;
681         mw->virt_addr = NULL;
682 }
683
684 static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
685                       resource_size_t size)
686 {
687         struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
688         struct pci_dev *pdev = nt->ndev->pdev;
689         size_t xlat_size, buff_size;
690         int rc;
691
692         if (!size)
693                 return -EINVAL;
694
695         xlat_size = round_up(size, mw->xlat_align_size);
696         buff_size = round_up(size, mw->xlat_align);
697
698         /* No need to re-setup */
699         if (mw->xlat_size == xlat_size)
700                 return 0;
701
702         if (mw->buff_size)
703                 ntb_free_mw(nt, num_mw);
704
705         /* Alloc memory for receiving data.  Must be aligned */
706         mw->xlat_size = xlat_size;
707         mw->buff_size = buff_size;
708
709         mw->virt_addr = dma_alloc_coherent(&pdev->dev, buff_size,
710                                            &mw->dma_addr, GFP_KERNEL);
711         if (!mw->virt_addr) {
712                 mw->xlat_size = 0;
713                 mw->buff_size = 0;
714                 dev_err(&pdev->dev, "Unable to alloc MW buff of size %zu\n",
715                         buff_size);
716                 return -ENOMEM;
717         }
718
719         /*
720          * we must ensure that the memory address allocated is BAR size
721          * aligned in order for the XLAT register to take the value. This
722          * is a requirement of the hardware. It is recommended to setup CMA
723          * for BAR sizes equal or greater than 4MB.
724          */
725         if (!IS_ALIGNED(mw->dma_addr, mw->xlat_align)) {
726                 dev_err(&pdev->dev, "DMA memory %pad is not aligned\n",
727                         &mw->dma_addr);
728                 ntb_free_mw(nt, num_mw);
729                 return -ENOMEM;
730         }
731
732         /* Notify HW the memory location of the receive buffer */
733         rc = ntb_mw_set_trans(nt->ndev, PIDX, num_mw, mw->dma_addr,
734                               mw->xlat_size);
735         if (rc) {
736                 dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
737                 ntb_free_mw(nt, num_mw);
738                 return -EIO;
739         }
740
741         return 0;
742 }
743
744 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
745 {
746         qp->link_is_up = false;
747         qp->active = false;
748
749         qp->tx_index = 0;
750         qp->rx_index = 0;
751         qp->rx_bytes = 0;
752         qp->rx_pkts = 0;
753         qp->rx_ring_empty = 0;
754         qp->rx_err_no_buf = 0;
755         qp->rx_err_oflow = 0;
756         qp->rx_err_ver = 0;
757         qp->rx_memcpy = 0;
758         qp->rx_async = 0;
759         qp->tx_bytes = 0;
760         qp->tx_pkts = 0;
761         qp->tx_ring_full = 0;
762         qp->tx_err_no_buf = 0;
763         qp->tx_memcpy = 0;
764         qp->tx_async = 0;
765 }
766
767 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
768 {
769         struct ntb_transport_ctx *nt = qp->transport;
770         struct pci_dev *pdev = nt->ndev->pdev;
771
772         dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num);
773
774         cancel_delayed_work_sync(&qp->link_work);
775         ntb_qp_link_down_reset(qp);
776
777         if (qp->event_handler)
778                 qp->event_handler(qp->cb_data, qp->link_is_up);
779 }
780
781 static void ntb_qp_link_cleanup_work(struct work_struct *work)
782 {
783         struct ntb_transport_qp *qp = container_of(work,
784                                                    struct ntb_transport_qp,
785                                                    link_cleanup);
786         struct ntb_transport_ctx *nt = qp->transport;
787
788         ntb_qp_link_cleanup(qp);
789
790         if (nt->link_is_up)
791                 schedule_delayed_work(&qp->link_work,
792                                       msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
793 }
794
795 static void ntb_qp_link_down(struct ntb_transport_qp *qp)
796 {
797         schedule_work(&qp->link_cleanup);
798 }
799
800 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt)
801 {
802         struct ntb_transport_qp *qp;
803         u64 qp_bitmap_alloc;
804         unsigned int i, count;
805
806         qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
807
808         /* Pass along the info to any clients */
809         for (i = 0; i < nt->qp_count; i++)
810                 if (qp_bitmap_alloc & BIT_ULL(i)) {
811                         qp = &nt->qp_vec[i];
812                         ntb_qp_link_cleanup(qp);
813                         cancel_work_sync(&qp->link_cleanup);
814                         cancel_delayed_work_sync(&qp->link_work);
815                 }
816
817         if (!nt->link_is_up)
818                 cancel_delayed_work_sync(&nt->link_work);
819
820         /* The scratchpad registers keep the values if the remote side
821          * goes down, blast them now to give them a sane value the next
822          * time they are accessed
823          */
824         count = ntb_spad_count(nt->ndev);
825         for (i = 0; i < count; i++)
826                 ntb_spad_write(nt->ndev, i, 0);
827 }
828
829 static void ntb_transport_link_cleanup_work(struct work_struct *work)
830 {
831         struct ntb_transport_ctx *nt =
832                 container_of(work, struct ntb_transport_ctx, link_cleanup);
833
834         ntb_transport_link_cleanup(nt);
835 }
836
837 static void ntb_transport_event_callback(void *data)
838 {
839         struct ntb_transport_ctx *nt = data;
840
841         if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1)
842                 schedule_delayed_work(&nt->link_work, 0);
843         else
844                 schedule_work(&nt->link_cleanup);
845 }
846
847 static void ntb_transport_link_work(struct work_struct *work)
848 {
849         struct ntb_transport_ctx *nt =
850                 container_of(work, struct ntb_transport_ctx, link_work.work);
851         struct ntb_dev *ndev = nt->ndev;
852         struct pci_dev *pdev = ndev->pdev;
853         resource_size_t size;
854         u32 val;
855         int rc = 0, i, spad;
856
857         /* send the local info, in the opposite order of the way we read it */
858         for (i = 0; i < nt->mw_count; i++) {
859                 size = nt->mw_vec[i].phys_size;
860
861                 if (max_mw_size && size > max_mw_size)
862                         size = max_mw_size;
863
864                 spad = MW0_SZ_HIGH + (i * 2);
865                 ntb_peer_spad_write(ndev, PIDX, spad, upper_32_bits(size));
866
867                 spad = MW0_SZ_LOW + (i * 2);
868                 ntb_peer_spad_write(ndev, PIDX, spad, lower_32_bits(size));
869         }
870
871         ntb_peer_spad_write(ndev, PIDX, NUM_MWS, nt->mw_count);
872
873         ntb_peer_spad_write(ndev, PIDX, NUM_QPS, nt->qp_count);
874
875         ntb_peer_spad_write(ndev, PIDX, VERSION, NTB_TRANSPORT_VERSION);
876
877         /* Query the remote side for its info */
878         val = ntb_spad_read(ndev, VERSION);
879         dev_dbg(&pdev->dev, "Remote version = %d\n", val);
880         if (val != NTB_TRANSPORT_VERSION)
881                 goto out;
882
883         val = ntb_spad_read(ndev, NUM_QPS);
884         dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val);
885         if (val != nt->qp_count)
886                 goto out;
887
888         val = ntb_spad_read(ndev, NUM_MWS);
889         dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val);
890         if (val != nt->mw_count)
891                 goto out;
892
893         for (i = 0; i < nt->mw_count; i++) {
894                 u64 val64;
895
896                 val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2));
897                 val64 = (u64)val << 32;
898
899                 val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2));
900                 val64 |= val;
901
902                 dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64);
903
904                 rc = ntb_set_mw(nt, i, val64);
905                 if (rc)
906                         goto out1;
907         }
908
909         nt->link_is_up = true;
910
911         for (i = 0; i < nt->qp_count; i++) {
912                 struct ntb_transport_qp *qp = &nt->qp_vec[i];
913
914                 ntb_transport_setup_qp_mw(nt, i);
915
916                 if (qp->client_ready)
917                         schedule_delayed_work(&qp->link_work, 0);
918         }
919
920         return;
921
922 out1:
923         for (i = 0; i < nt->mw_count; i++)
924                 ntb_free_mw(nt, i);
925
926         /* if there's an actual failure, we should just bail */
927         if (rc < 0)
928                 return;
929
930 out:
931         if (ntb_link_is_up(ndev, NULL, NULL) == 1)
932                 schedule_delayed_work(&nt->link_work,
933                                       msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
934 }
935
936 static void ntb_qp_link_work(struct work_struct *work)
937 {
938         struct ntb_transport_qp *qp = container_of(work,
939                                                    struct ntb_transport_qp,
940                                                    link_work.work);
941         struct pci_dev *pdev = qp->ndev->pdev;
942         struct ntb_transport_ctx *nt = qp->transport;
943         int val;
944
945         WARN_ON(!nt->link_is_up);
946
947         val = ntb_spad_read(nt->ndev, QP_LINKS);
948
949         ntb_peer_spad_write(nt->ndev, PIDX, QP_LINKS, val | BIT(qp->qp_num));
950
951         /* query remote spad for qp ready bits */
952         dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
953
954         /* See if the remote side is up */
955         if (val & BIT(qp->qp_num)) {
956                 dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num);
957                 qp->link_is_up = true;
958                 qp->active = true;
959
960                 if (qp->event_handler)
961                         qp->event_handler(qp->cb_data, qp->link_is_up);
962
963                 if (qp->active)
964                         tasklet_schedule(&qp->rxc_db_work);
965         } else if (nt->link_is_up)
966                 schedule_delayed_work(&qp->link_work,
967                                       msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
968 }
969
970 static int ntb_transport_init_queue(struct ntb_transport_ctx *nt,
971                                     unsigned int qp_num)
972 {
973         struct ntb_transport_qp *qp;
974         phys_addr_t mw_base;
975         resource_size_t mw_size;
976         unsigned int num_qps_mw, tx_size;
977         unsigned int mw_num, mw_count, qp_count;
978         u64 qp_offset;
979
980         mw_count = nt->mw_count;
981         qp_count = nt->qp_count;
982
983         mw_num = QP_TO_MW(nt, qp_num);
984
985         qp = &nt->qp_vec[qp_num];
986         qp->qp_num = qp_num;
987         qp->transport = nt;
988         qp->ndev = nt->ndev;
989         qp->client_ready = false;
990         qp->event_handler = NULL;
991         ntb_qp_link_down_reset(qp);
992
993         if (mw_num < qp_count % mw_count)
994                 num_qps_mw = qp_count / mw_count + 1;
995         else
996                 num_qps_mw = qp_count / mw_count;
997
998         mw_base = nt->mw_vec[mw_num].phys_addr;
999         mw_size = nt->mw_vec[mw_num].phys_size;
1000
1001         if (max_mw_size && mw_size > max_mw_size)
1002                 mw_size = max_mw_size;
1003
1004         tx_size = (unsigned int)mw_size / num_qps_mw;
1005         qp_offset = tx_size * (qp_num / mw_count);
1006
1007         qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset;
1008         if (!qp->tx_mw)
1009                 return -EINVAL;
1010
1011         qp->tx_mw_phys = mw_base + qp_offset;
1012         if (!qp->tx_mw_phys)
1013                 return -EINVAL;
1014
1015         tx_size -= sizeof(struct ntb_rx_info);
1016         qp->rx_info = qp->tx_mw + tx_size;
1017
1018         /* Due to housekeeping, there must be atleast 2 buffs */
1019         qp->tx_max_frame = min(transport_mtu, tx_size / 2);
1020         qp->tx_max_entry = tx_size / qp->tx_max_frame;
1021
1022         if (nt->debugfs_node_dir) {
1023                 char debugfs_name[4];
1024
1025                 snprintf(debugfs_name, 4, "qp%d", qp_num);
1026                 qp->debugfs_dir = debugfs_create_dir(debugfs_name,
1027                                                      nt->debugfs_node_dir);
1028
1029                 qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR,
1030                                                         qp->debugfs_dir, qp,
1031                                                         &ntb_qp_debugfs_stats);
1032         } else {
1033                 qp->debugfs_dir = NULL;
1034                 qp->debugfs_stats = NULL;
1035         }
1036
1037         INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work);
1038         INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work);
1039
1040         spin_lock_init(&qp->ntb_rx_q_lock);
1041         spin_lock_init(&qp->ntb_tx_free_q_lock);
1042
1043         INIT_LIST_HEAD(&qp->rx_post_q);
1044         INIT_LIST_HEAD(&qp->rx_pend_q);
1045         INIT_LIST_HEAD(&qp->rx_free_q);
1046         INIT_LIST_HEAD(&qp->tx_free_q);
1047
1048         tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db,
1049                      (unsigned long)qp);
1050
1051         return 0;
1052 }
1053
1054 static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
1055 {
1056         struct ntb_transport_ctx *nt;
1057         struct ntb_transport_mw *mw;
1058         unsigned int mw_count, qp_count, spad_count, max_mw_count_for_spads;
1059         u64 qp_bitmap;
1060         int node;
1061         int rc, i;
1062
1063         mw_count = ntb_peer_mw_count(ndev);
1064
1065         if (!ndev->ops->mw_set_trans) {
1066                 dev_err(&ndev->dev, "Inbound MW based NTB API is required\n");
1067                 return -EINVAL;
1068         }
1069
1070         if (ntb_db_is_unsafe(ndev))
1071                 dev_dbg(&ndev->dev,
1072                         "doorbell is unsafe, proceed anyway...\n");
1073         if (ntb_spad_is_unsafe(ndev))
1074                 dev_dbg(&ndev->dev,
1075                         "scratchpad is unsafe, proceed anyway...\n");
1076
1077         if (ntb_peer_port_count(ndev) != NTB_DEF_PEER_CNT)
1078                 dev_warn(&ndev->dev, "Multi-port NTB devices unsupported\n");
1079
1080         node = dev_to_node(&ndev->dev);
1081
1082         nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node);
1083         if (!nt)
1084                 return -ENOMEM;
1085
1086         nt->ndev = ndev;
1087         spad_count = ntb_spad_count(ndev);
1088
1089         /* Limit the MW's based on the availability of scratchpads */
1090
1091         if (spad_count < NTB_TRANSPORT_MIN_SPADS) {
1092                 nt->mw_count = 0;
1093                 rc = -EINVAL;
1094                 goto err;
1095         }
1096
1097         max_mw_count_for_spads = (spad_count - MW0_SZ_HIGH) / 2;
1098         nt->mw_count = min(mw_count, max_mw_count_for_spads);
1099
1100         nt->mw_vec = kzalloc_node(mw_count * sizeof(*nt->mw_vec),
1101                                   GFP_KERNEL, node);
1102         if (!nt->mw_vec) {
1103                 rc = -ENOMEM;
1104                 goto err;
1105         }
1106
1107         for (i = 0; i < mw_count; i++) {
1108                 mw = &nt->mw_vec[i];
1109
1110                 rc = ntb_mw_get_align(ndev, PIDX, i, &mw->xlat_align,
1111                                       &mw->xlat_align_size, NULL);
1112                 if (rc)
1113                         goto err1;
1114
1115                 rc = ntb_peer_mw_get_addr(ndev, i, &mw->phys_addr,
1116                                           &mw->phys_size);
1117                 if (rc)
1118                         goto err1;
1119
1120                 mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
1121                 if (!mw->vbase) {
1122                         rc = -ENOMEM;
1123                         goto err1;
1124                 }
1125
1126                 mw->buff_size = 0;
1127                 mw->xlat_size = 0;
1128                 mw->virt_addr = NULL;
1129                 mw->dma_addr = 0;
1130         }
1131
1132         qp_bitmap = ntb_db_valid_mask(ndev);
1133
1134         qp_count = ilog2(qp_bitmap);
1135         if (max_num_clients && max_num_clients < qp_count)
1136                 qp_count = max_num_clients;
1137         else if (nt->mw_count < qp_count)
1138                 qp_count = nt->mw_count;
1139
1140         qp_bitmap &= BIT_ULL(qp_count) - 1;
1141
1142         nt->qp_count = qp_count;
1143         nt->qp_bitmap = qp_bitmap;
1144         nt->qp_bitmap_free = qp_bitmap;
1145
1146         nt->qp_vec = kzalloc_node(qp_count * sizeof(*nt->qp_vec),
1147                                   GFP_KERNEL, node);
1148         if (!nt->qp_vec) {
1149                 rc = -ENOMEM;
1150                 goto err1;
1151         }
1152
1153         if (nt_debugfs_dir) {
1154                 nt->debugfs_node_dir =
1155                         debugfs_create_dir(pci_name(ndev->pdev),
1156                                            nt_debugfs_dir);
1157         }
1158
1159         for (i = 0; i < qp_count; i++) {
1160                 rc = ntb_transport_init_queue(nt, i);
1161                 if (rc)
1162                         goto err2;
1163         }
1164
1165         INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work);
1166         INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work);
1167
1168         rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops);
1169         if (rc)
1170                 goto err2;
1171
1172         INIT_LIST_HEAD(&nt->client_devs);
1173         rc = ntb_bus_init(nt);
1174         if (rc)
1175                 goto err3;
1176
1177         nt->link_is_up = false;
1178         ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1179         ntb_link_event(ndev);
1180
1181         return 0;
1182
1183 err3:
1184         ntb_clear_ctx(ndev);
1185 err2:
1186         kfree(nt->qp_vec);
1187 err1:
1188         while (i--) {
1189                 mw = &nt->mw_vec[i];
1190                 iounmap(mw->vbase);
1191         }
1192         kfree(nt->mw_vec);
1193 err:
1194         kfree(nt);
1195         return rc;
1196 }
1197
1198 static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev)
1199 {
1200         struct ntb_transport_ctx *nt = ndev->ctx;
1201         struct ntb_transport_qp *qp;
1202         u64 qp_bitmap_alloc;
1203         int i;
1204
1205         ntb_transport_link_cleanup(nt);
1206         cancel_work_sync(&nt->link_cleanup);
1207         cancel_delayed_work_sync(&nt->link_work);
1208
1209         qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1210
1211         /* verify that all the qp's are freed */
1212         for (i = 0; i < nt->qp_count; i++) {
1213                 qp = &nt->qp_vec[i];
1214                 if (qp_bitmap_alloc & BIT_ULL(i))
1215                         ntb_transport_free_queue(qp);
1216                 debugfs_remove_recursive(qp->debugfs_dir);
1217         }
1218
1219         ntb_link_disable(ndev);
1220         ntb_clear_ctx(ndev);
1221
1222         ntb_bus_remove(nt);
1223
1224         for (i = nt->mw_count; i--; ) {
1225                 ntb_free_mw(nt, i);
1226                 iounmap(nt->mw_vec[i].vbase);
1227         }
1228
1229         kfree(nt->qp_vec);
1230         kfree(nt->mw_vec);
1231         kfree(nt);
1232 }
1233
1234 static void ntb_complete_rxc(struct ntb_transport_qp *qp)
1235 {
1236         struct ntb_queue_entry *entry;
1237         void *cb_data;
1238         unsigned int len;
1239         unsigned long irqflags;
1240
1241         spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1242
1243         while (!list_empty(&qp->rx_post_q)) {
1244                 entry = list_first_entry(&qp->rx_post_q,
1245                                          struct ntb_queue_entry, entry);
1246                 if (!(entry->flags & DESC_DONE_FLAG))
1247                         break;
1248
1249                 entry->rx_hdr->flags = 0;
1250                 iowrite32(entry->rx_index, &qp->rx_info->entry);
1251
1252                 cb_data = entry->cb_data;
1253                 len = entry->len;
1254
1255                 list_move_tail(&entry->entry, &qp->rx_free_q);
1256
1257                 spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1258
1259                 if (qp->rx_handler && qp->client_ready)
1260                         qp->rx_handler(qp, qp->cb_data, cb_data, len);
1261
1262                 spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1263         }
1264
1265         spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1266 }
1267
1268 static void ntb_rx_copy_callback(void *data,
1269                                  const struct dmaengine_result *res)
1270 {
1271         struct ntb_queue_entry *entry = data;
1272
1273         /* we need to check DMA results if we are using DMA */
1274         if (res) {
1275                 enum dmaengine_tx_result dma_err = res->result;
1276
1277                 switch (dma_err) {
1278                 case DMA_TRANS_READ_FAILED:
1279                 case DMA_TRANS_WRITE_FAILED:
1280                         entry->errors++;
1281                 case DMA_TRANS_ABORTED:
1282                 {
1283                         struct ntb_transport_qp *qp = entry->qp;
1284                         void *offset = qp->rx_buff + qp->rx_max_frame *
1285                                         qp->rx_index;
1286
1287                         ntb_memcpy_rx(entry, offset);
1288                         qp->rx_memcpy++;
1289                         return;
1290                 }
1291
1292                 case DMA_TRANS_NOERROR:
1293                 default:
1294                         break;
1295                 }
1296         }
1297
1298         entry->flags |= DESC_DONE_FLAG;
1299
1300         ntb_complete_rxc(entry->qp);
1301 }
1302
1303 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset)
1304 {
1305         void *buf = entry->buf;
1306         size_t len = entry->len;
1307
1308         memcpy(buf, offset, len);
1309
1310         /* Ensure that the data is fully copied out before clearing the flag */
1311         wmb();
1312
1313         ntb_rx_copy_callback(entry, NULL);
1314 }
1315
1316 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset)
1317 {
1318         struct dma_async_tx_descriptor *txd;
1319         struct ntb_transport_qp *qp = entry->qp;
1320         struct dma_chan *chan = qp->rx_dma_chan;
1321         struct dma_device *device;
1322         size_t pay_off, buff_off, len;
1323         struct dmaengine_unmap_data *unmap;
1324         dma_cookie_t cookie;
1325         void *buf = entry->buf;
1326
1327         len = entry->len;
1328         device = chan->device;
1329         pay_off = (size_t)offset & ~PAGE_MASK;
1330         buff_off = (size_t)buf & ~PAGE_MASK;
1331
1332         if (!is_dma_copy_aligned(device, pay_off, buff_off, len))
1333                 goto err;
1334
1335         unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT);
1336         if (!unmap)
1337                 goto err;
1338
1339         unmap->len = len;
1340         unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset),
1341                                       pay_off, len, DMA_TO_DEVICE);
1342         if (dma_mapping_error(device->dev, unmap->addr[0]))
1343                 goto err_get_unmap;
1344
1345         unmap->to_cnt = 1;
1346
1347         unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf),
1348                                       buff_off, len, DMA_FROM_DEVICE);
1349         if (dma_mapping_error(device->dev, unmap->addr[1]))
1350                 goto err_get_unmap;
1351
1352         unmap->from_cnt = 1;
1353
1354         txd = device->device_prep_dma_memcpy(chan, unmap->addr[1],
1355                                              unmap->addr[0], len,
1356                                              DMA_PREP_INTERRUPT);
1357         if (!txd)
1358                 goto err_get_unmap;
1359
1360         txd->callback_result = ntb_rx_copy_callback;
1361         txd->callback_param = entry;
1362         dma_set_unmap(txd, unmap);
1363
1364         cookie = dmaengine_submit(txd);
1365         if (dma_submit_error(cookie))
1366                 goto err_set_unmap;
1367
1368         dmaengine_unmap_put(unmap);
1369
1370         qp->last_cookie = cookie;
1371
1372         qp->rx_async++;
1373
1374         return 0;
1375
1376 err_set_unmap:
1377         dmaengine_unmap_put(unmap);
1378 err_get_unmap:
1379         dmaengine_unmap_put(unmap);
1380 err:
1381         return -ENXIO;
1382 }
1383
1384 static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset)
1385 {
1386         struct ntb_transport_qp *qp = entry->qp;
1387         struct dma_chan *chan = qp->rx_dma_chan;
1388         int res;
1389
1390         if (!chan)
1391                 goto err;
1392
1393         if (entry->len < copy_bytes)
1394                 goto err;
1395
1396         res = ntb_async_rx_submit(entry, offset);
1397         if (res < 0)
1398                 goto err;
1399
1400         if (!entry->retries)
1401                 qp->rx_async++;
1402
1403         return;
1404
1405 err:
1406         ntb_memcpy_rx(entry, offset);
1407         qp->rx_memcpy++;
1408 }
1409
1410 static int ntb_process_rxc(struct ntb_transport_qp *qp)
1411 {
1412         struct ntb_payload_header *hdr;
1413         struct ntb_queue_entry *entry;
1414         void *offset;
1415
1416         offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index;
1417         hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header);
1418
1419         dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n",
1420                 qp->qp_num, hdr->ver, hdr->len, hdr->flags);
1421
1422         if (!(hdr->flags & DESC_DONE_FLAG)) {
1423                 dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n");
1424                 qp->rx_ring_empty++;
1425                 return -EAGAIN;
1426         }
1427
1428         if (hdr->flags & LINK_DOWN_FLAG) {
1429                 dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n");
1430                 ntb_qp_link_down(qp);
1431                 hdr->flags = 0;
1432                 return -EAGAIN;
1433         }
1434
1435         if (hdr->ver != (u32)qp->rx_pkts) {
1436                 dev_dbg(&qp->ndev->pdev->dev,
1437                         "version mismatch, expected %llu - got %u\n",
1438                         qp->rx_pkts, hdr->ver);
1439                 qp->rx_err_ver++;
1440                 return -EIO;
1441         }
1442
1443         entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q);
1444         if (!entry) {
1445                 dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n");
1446                 qp->rx_err_no_buf++;
1447                 return -EAGAIN;
1448         }
1449
1450         entry->rx_hdr = hdr;
1451         entry->rx_index = qp->rx_index;
1452
1453         if (hdr->len > entry->len) {
1454                 dev_dbg(&qp->ndev->pdev->dev,
1455                         "receive buffer overflow! Wanted %d got %d\n",
1456                         hdr->len, entry->len);
1457                 qp->rx_err_oflow++;
1458
1459                 entry->len = -EIO;
1460                 entry->flags |= DESC_DONE_FLAG;
1461
1462                 ntb_complete_rxc(qp);
1463         } else {
1464                 dev_dbg(&qp->ndev->pdev->dev,
1465                         "RX OK index %u ver %u size %d into buf size %d\n",
1466                         qp->rx_index, hdr->ver, hdr->len, entry->len);
1467
1468                 qp->rx_bytes += hdr->len;
1469                 qp->rx_pkts++;
1470
1471                 entry->len = hdr->len;
1472
1473                 ntb_async_rx(entry, offset);
1474         }
1475
1476         qp->rx_index++;
1477         qp->rx_index %= qp->rx_max_entry;
1478
1479         return 0;
1480 }
1481
1482 static void ntb_transport_rxc_db(unsigned long data)
1483 {
1484         struct ntb_transport_qp *qp = (void *)data;
1485         int rc, i;
1486
1487         dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n",
1488                 __func__, qp->qp_num);
1489
1490         /* Limit the number of packets processed in a single interrupt to
1491          * provide fairness to others
1492          */
1493         for (i = 0; i < qp->rx_max_entry; i++) {
1494                 rc = ntb_process_rxc(qp);
1495                 if (rc)
1496                         break;
1497         }
1498
1499         if (i && qp->rx_dma_chan)
1500                 dma_async_issue_pending(qp->rx_dma_chan);
1501
1502         if (i == qp->rx_max_entry) {
1503                 /* there is more work to do */
1504                 if (qp->active)
1505                         tasklet_schedule(&qp->rxc_db_work);
1506         } else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) {
1507                 /* the doorbell bit is set: clear it */
1508                 ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num));
1509                 /* ntb_db_read ensures ntb_db_clear write is committed */
1510                 ntb_db_read(qp->ndev);
1511
1512                 /* an interrupt may have arrived between finishing
1513                  * ntb_process_rxc and clearing the doorbell bit:
1514                  * there might be some more work to do.
1515                  */
1516                 if (qp->active)
1517                         tasklet_schedule(&qp->rxc_db_work);
1518         }
1519 }
1520
1521 static void ntb_tx_copy_callback(void *data,
1522                                  const struct dmaengine_result *res)
1523 {
1524         struct ntb_queue_entry *entry = data;
1525         struct ntb_transport_qp *qp = entry->qp;
1526         struct ntb_payload_header __iomem *hdr = entry->tx_hdr;
1527
1528         /* we need to check DMA results if we are using DMA */
1529         if (res) {
1530                 enum dmaengine_tx_result dma_err = res->result;
1531
1532                 switch (dma_err) {
1533                 case DMA_TRANS_READ_FAILED:
1534                 case DMA_TRANS_WRITE_FAILED:
1535                         entry->errors++;
1536                 case DMA_TRANS_ABORTED:
1537                 {
1538                         void __iomem *offset =
1539                                 qp->tx_mw + qp->tx_max_frame *
1540                                 entry->tx_index;
1541
1542                         /* resubmit via CPU */
1543                         ntb_memcpy_tx(entry, offset);
1544                         qp->tx_memcpy++;
1545                         return;
1546                 }
1547
1548                 case DMA_TRANS_NOERROR:
1549                 default:
1550                         break;
1551                 }
1552         }
1553
1554         iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags);
1555
1556         ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num));
1557
1558         /* The entry length can only be zero if the packet is intended to be a
1559          * "link down" or similar.  Since no payload is being sent in these
1560          * cases, there is nothing to add to the completion queue.
1561          */
1562         if (entry->len > 0) {
1563                 qp->tx_bytes += entry->len;
1564
1565                 if (qp->tx_handler)
1566                         qp->tx_handler(qp, qp->cb_data, entry->cb_data,
1567                                        entry->len);
1568         }
1569
1570         ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q);
1571 }
1572
1573 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset)
1574 {
1575 #ifdef ARCH_HAS_NOCACHE_UACCESS
1576         /*
1577          * Using non-temporal mov to improve performance on non-cached
1578          * writes, even though we aren't actually copying from user space.
1579          */
1580         __copy_from_user_inatomic_nocache(offset, entry->buf, entry->len);
1581 #else
1582         memcpy_toio(offset, entry->buf, entry->len);
1583 #endif
1584
1585         /* Ensure that the data is fully copied out before setting the flags */
1586         wmb();
1587
1588         ntb_tx_copy_callback(entry, NULL);
1589 }
1590
1591 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
1592                                struct ntb_queue_entry *entry)
1593 {
1594         struct dma_async_tx_descriptor *txd;
1595         struct dma_chan *chan = qp->tx_dma_chan;
1596         struct dma_device *device;
1597         size_t len = entry->len;
1598         void *buf = entry->buf;
1599         size_t dest_off, buff_off;
1600         struct dmaengine_unmap_data *unmap;
1601         dma_addr_t dest;
1602         dma_cookie_t cookie;
1603
1604         device = chan->device;
1605         dest = qp->tx_mw_phys + qp->tx_max_frame * entry->tx_index;
1606         buff_off = (size_t)buf & ~PAGE_MASK;
1607         dest_off = (size_t)dest & ~PAGE_MASK;
1608
1609         if (!is_dma_copy_aligned(device, buff_off, dest_off, len))
1610                 goto err;
1611
1612         unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
1613         if (!unmap)
1614                 goto err;
1615
1616         unmap->len = len;
1617         unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf),
1618                                       buff_off, len, DMA_TO_DEVICE);
1619         if (dma_mapping_error(device->dev, unmap->addr[0]))
1620                 goto err_get_unmap;
1621
1622         unmap->to_cnt = 1;
1623
1624         txd = device->device_prep_dma_memcpy(chan, dest, unmap->addr[0], len,
1625                                              DMA_PREP_INTERRUPT);
1626         if (!txd)
1627                 goto err_get_unmap;
1628
1629         txd->callback_result = ntb_tx_copy_callback;
1630         txd->callback_param = entry;
1631         dma_set_unmap(txd, unmap);
1632
1633         cookie = dmaengine_submit(txd);
1634         if (dma_submit_error(cookie))
1635                 goto err_set_unmap;
1636
1637         dmaengine_unmap_put(unmap);
1638
1639         dma_async_issue_pending(chan);
1640
1641         return 0;
1642 err_set_unmap:
1643         dmaengine_unmap_put(unmap);
1644 err_get_unmap:
1645         dmaengine_unmap_put(unmap);
1646 err:
1647         return -ENXIO;
1648 }
1649
1650 static void ntb_async_tx(struct ntb_transport_qp *qp,
1651                          struct ntb_queue_entry *entry)
1652 {
1653         struct ntb_payload_header __iomem *hdr;
1654         struct dma_chan *chan = qp->tx_dma_chan;
1655         void __iomem *offset;
1656         int res;
1657
1658         entry->tx_index = qp->tx_index;
1659         offset = qp->tx_mw + qp->tx_max_frame * entry->tx_index;
1660         hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
1661         entry->tx_hdr = hdr;
1662
1663         iowrite32(entry->len, &hdr->len);
1664         iowrite32((u32)qp->tx_pkts, &hdr->ver);
1665
1666         if (!chan)
1667                 goto err;
1668
1669         if (entry->len < copy_bytes)
1670                 goto err;
1671
1672         res = ntb_async_tx_submit(qp, entry);
1673         if (res < 0)
1674                 goto err;
1675
1676         if (!entry->retries)
1677                 qp->tx_async++;
1678
1679         return;
1680
1681 err:
1682         ntb_memcpy_tx(entry, offset);
1683         qp->tx_memcpy++;
1684 }
1685
1686 static int ntb_process_tx(struct ntb_transport_qp *qp,
1687                           struct ntb_queue_entry *entry)
1688 {
1689         if (qp->tx_index == qp->remote_rx_info->entry) {
1690                 qp->tx_ring_full++;
1691                 return -EAGAIN;
1692         }
1693
1694         if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
1695                 if (qp->tx_handler)
1696                         qp->tx_handler(qp, qp->cb_data, NULL, -EIO);
1697
1698                 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1699                              &qp->tx_free_q);
1700                 return 0;
1701         }
1702
1703         ntb_async_tx(qp, entry);
1704
1705         qp->tx_index++;
1706         qp->tx_index %= qp->tx_max_entry;
1707
1708         qp->tx_pkts++;
1709
1710         return 0;
1711 }
1712
1713 static void ntb_send_link_down(struct ntb_transport_qp *qp)
1714 {
1715         struct pci_dev *pdev = qp->ndev->pdev;
1716         struct ntb_queue_entry *entry;
1717         int i, rc;
1718
1719         if (!qp->link_is_up)
1720                 return;
1721
1722         dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num);
1723
1724         for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) {
1725                 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1726                 if (entry)
1727                         break;
1728                 msleep(100);
1729         }
1730
1731         if (!entry)
1732                 return;
1733
1734         entry->cb_data = NULL;
1735         entry->buf = NULL;
1736         entry->len = 0;
1737         entry->flags = LINK_DOWN_FLAG;
1738
1739         rc = ntb_process_tx(qp, entry);
1740         if (rc)
1741                 dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n",
1742                         qp->qp_num);
1743
1744         ntb_qp_link_down_reset(qp);
1745 }
1746
1747 static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node)
1748 {
1749         return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
1750 }
1751
1752 /**
1753  * ntb_transport_create_queue - Create a new NTB transport layer queue
1754  * @rx_handler: receive callback function
1755  * @tx_handler: transmit callback function
1756  * @event_handler: event callback function
1757  *
1758  * Create a new NTB transport layer queue and provide the queue with a callback
1759  * routine for both transmit and receive.  The receive callback routine will be
1760  * used to pass up data when the transport has received it on the queue.   The
1761  * transmit callback routine will be called when the transport has completed the
1762  * transmission of the data on the queue and the data is ready to be freed.
1763  *
1764  * RETURNS: pointer to newly created ntb_queue, NULL on error.
1765  */
1766 struct ntb_transport_qp *
1767 ntb_transport_create_queue(void *data, struct device *client_dev,
1768                            const struct ntb_queue_handlers *handlers)
1769 {
1770         struct ntb_dev *ndev;
1771         struct pci_dev *pdev;
1772         struct ntb_transport_ctx *nt;
1773         struct ntb_queue_entry *entry;
1774         struct ntb_transport_qp *qp;
1775         u64 qp_bit;
1776         unsigned int free_queue;
1777         dma_cap_mask_t dma_mask;
1778         int node;
1779         int i;
1780
1781         ndev = dev_ntb(client_dev->parent);
1782         pdev = ndev->pdev;
1783         nt = ndev->ctx;
1784
1785         node = dev_to_node(&ndev->dev);
1786
1787         free_queue = ffs(nt->qp_bitmap_free);
1788         if (!free_queue)
1789                 goto err;
1790
1791         /* decrement free_queue to make it zero based */
1792         free_queue--;
1793
1794         qp = &nt->qp_vec[free_queue];
1795         qp_bit = BIT_ULL(qp->qp_num);
1796
1797         nt->qp_bitmap_free &= ~qp_bit;
1798
1799         qp->cb_data = data;
1800         qp->rx_handler = handlers->rx_handler;
1801         qp->tx_handler = handlers->tx_handler;
1802         qp->event_handler = handlers->event_handler;
1803
1804         dma_cap_zero(dma_mask);
1805         dma_cap_set(DMA_MEMCPY, dma_mask);
1806
1807         if (use_dma) {
1808                 qp->tx_dma_chan =
1809                         dma_request_channel(dma_mask, ntb_dma_filter_fn,
1810                                             (void *)(unsigned long)node);
1811                 if (!qp->tx_dma_chan)
1812                         dev_info(&pdev->dev, "Unable to allocate TX DMA channel\n");
1813
1814                 qp->rx_dma_chan =
1815                         dma_request_channel(dma_mask, ntb_dma_filter_fn,
1816                                             (void *)(unsigned long)node);
1817                 if (!qp->rx_dma_chan)
1818                         dev_info(&pdev->dev, "Unable to allocate RX DMA channel\n");
1819         } else {
1820                 qp->tx_dma_chan = NULL;
1821                 qp->rx_dma_chan = NULL;
1822         }
1823
1824         dev_dbg(&pdev->dev, "Using %s memcpy for TX\n",
1825                 qp->tx_dma_chan ? "DMA" : "CPU");
1826
1827         dev_dbg(&pdev->dev, "Using %s memcpy for RX\n",
1828                 qp->rx_dma_chan ? "DMA" : "CPU");
1829
1830         for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
1831                 entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1832                 if (!entry)
1833                         goto err1;
1834
1835                 entry->qp = qp;
1836                 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
1837                              &qp->rx_free_q);
1838         }
1839         qp->rx_alloc_entry = NTB_QP_DEF_NUM_ENTRIES;
1840
1841         for (i = 0; i < qp->tx_max_entry; i++) {
1842                 entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1843                 if (!entry)
1844                         goto err2;
1845
1846                 entry->qp = qp;
1847                 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1848                              &qp->tx_free_q);
1849         }
1850
1851         ntb_db_clear(qp->ndev, qp_bit);
1852         ntb_db_clear_mask(qp->ndev, qp_bit);
1853
1854         dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num);
1855
1856         return qp;
1857
1858 err2:
1859         while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1860                 kfree(entry);
1861 err1:
1862         qp->rx_alloc_entry = 0;
1863         while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1864                 kfree(entry);
1865         if (qp->tx_dma_chan)
1866                 dma_release_channel(qp->tx_dma_chan);
1867         if (qp->rx_dma_chan)
1868                 dma_release_channel(qp->rx_dma_chan);
1869         nt->qp_bitmap_free |= qp_bit;
1870 err:
1871         return NULL;
1872 }
1873 EXPORT_SYMBOL_GPL(ntb_transport_create_queue);
1874
1875 /**
1876  * ntb_transport_free_queue - Frees NTB transport queue
1877  * @qp: NTB queue to be freed
1878  *
1879  * Frees NTB transport queue
1880  */
1881 void ntb_transport_free_queue(struct ntb_transport_qp *qp)
1882 {
1883         struct pci_dev *pdev;
1884         struct ntb_queue_entry *entry;
1885         u64 qp_bit;
1886
1887         if (!qp)
1888                 return;
1889
1890         pdev = qp->ndev->pdev;
1891
1892         qp->active = false;
1893
1894         if (qp->tx_dma_chan) {
1895                 struct dma_chan *chan = qp->tx_dma_chan;
1896                 /* Putting the dma_chan to NULL will force any new traffic to be
1897                  * processed by the CPU instead of the DAM engine
1898                  */
1899                 qp->tx_dma_chan = NULL;
1900
1901                 /* Try to be nice and wait for any queued DMA engine
1902                  * transactions to process before smashing it with a rock
1903                  */
1904                 dma_sync_wait(chan, qp->last_cookie);
1905                 dmaengine_terminate_all(chan);
1906                 dma_release_channel(chan);
1907         }
1908
1909         if (qp->rx_dma_chan) {
1910                 struct dma_chan *chan = qp->rx_dma_chan;
1911                 /* Putting the dma_chan to NULL will force any new traffic to be
1912                  * processed by the CPU instead of the DAM engine
1913                  */
1914                 qp->rx_dma_chan = NULL;
1915
1916                 /* Try to be nice and wait for any queued DMA engine
1917                  * transactions to process before smashing it with a rock
1918                  */
1919                 dma_sync_wait(chan, qp->last_cookie);
1920                 dmaengine_terminate_all(chan);
1921                 dma_release_channel(chan);
1922         }
1923
1924         qp_bit = BIT_ULL(qp->qp_num);
1925
1926         ntb_db_set_mask(qp->ndev, qp_bit);
1927         tasklet_kill(&qp->rxc_db_work);
1928
1929         cancel_delayed_work_sync(&qp->link_work);
1930
1931         qp->cb_data = NULL;
1932         qp->rx_handler = NULL;
1933         qp->tx_handler = NULL;
1934         qp->event_handler = NULL;
1935
1936         while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1937                 kfree(entry);
1938
1939         while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) {
1940                 dev_warn(&pdev->dev, "Freeing item from non-empty rx_pend_q\n");
1941                 kfree(entry);
1942         }
1943
1944         while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) {
1945                 dev_warn(&pdev->dev, "Freeing item from non-empty rx_post_q\n");
1946                 kfree(entry);
1947         }
1948
1949         while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1950                 kfree(entry);
1951
1952         qp->transport->qp_bitmap_free |= qp_bit;
1953
1954         dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num);
1955 }
1956 EXPORT_SYMBOL_GPL(ntb_transport_free_queue);
1957
1958 /**
1959  * ntb_transport_rx_remove - Dequeues enqueued rx packet
1960  * @qp: NTB queue to be freed
1961  * @len: pointer to variable to write enqueued buffers length
1962  *
1963  * Dequeues unused buffers from receive queue.  Should only be used during
1964  * shutdown of qp.
1965  *
1966  * RETURNS: NULL error value on error, or void* for success.
1967  */
1968 void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len)
1969 {
1970         struct ntb_queue_entry *entry;
1971         void *buf;
1972
1973         if (!qp || qp->client_ready)
1974                 return NULL;
1975
1976         entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q);
1977         if (!entry)
1978                 return NULL;
1979
1980         buf = entry->cb_data;
1981         *len = entry->len;
1982
1983         ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_free_q);
1984
1985         return buf;
1986 }
1987 EXPORT_SYMBOL_GPL(ntb_transport_rx_remove);
1988
1989 /**
1990  * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry
1991  * @qp: NTB transport layer queue the entry is to be enqueued on
1992  * @cb: per buffer pointer for callback function to use
1993  * @data: pointer to data buffer that incoming packets will be copied into
1994  * @len: length of the data buffer
1995  *
1996  * Enqueue a new receive buffer onto the transport queue into which a NTB
1997  * payload can be received into.
1998  *
1999  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2000  */
2001 int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2002                              unsigned int len)
2003 {
2004         struct ntb_queue_entry *entry;
2005
2006         if (!qp)
2007                 return -EINVAL;
2008
2009         entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q);
2010         if (!entry)
2011                 return -ENOMEM;
2012
2013         entry->cb_data = cb;
2014         entry->buf = data;
2015         entry->len = len;
2016         entry->flags = 0;
2017         entry->retries = 0;
2018         entry->errors = 0;
2019         entry->rx_index = 0;
2020
2021         ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_pend_q);
2022
2023         if (qp->active)
2024                 tasklet_schedule(&qp->rxc_db_work);
2025
2026         return 0;
2027 }
2028 EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue);
2029
2030 /**
2031  * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry
2032  * @qp: NTB transport layer queue the entry is to be enqueued on
2033  * @cb: per buffer pointer for callback function to use
2034  * @data: pointer to data buffer that will be sent
2035  * @len: length of the data buffer
2036  *
2037  * Enqueue a new transmit buffer onto the transport queue from which a NTB
2038  * payload will be transmitted.  This assumes that a lock is being held to
2039  * serialize access to the qp.
2040  *
2041  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2042  */
2043 int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2044                              unsigned int len)
2045 {
2046         struct ntb_queue_entry *entry;
2047         int rc;
2048
2049         if (!qp || !qp->link_is_up || !len)
2050                 return -EINVAL;
2051
2052         entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
2053         if (!entry) {
2054                 qp->tx_err_no_buf++;
2055                 return -EBUSY;
2056         }
2057
2058         entry->cb_data = cb;
2059         entry->buf = data;
2060         entry->len = len;
2061         entry->flags = 0;
2062         entry->errors = 0;
2063         entry->retries = 0;
2064         entry->tx_index = 0;
2065
2066         rc = ntb_process_tx(qp, entry);
2067         if (rc)
2068                 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2069                              &qp->tx_free_q);
2070
2071         return rc;
2072 }
2073 EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue);
2074
2075 /**
2076  * ntb_transport_link_up - Notify NTB transport of client readiness to use queue
2077  * @qp: NTB transport layer queue to be enabled
2078  *
2079  * Notify NTB transport layer of client readiness to use queue
2080  */
2081 void ntb_transport_link_up(struct ntb_transport_qp *qp)
2082 {
2083         if (!qp)
2084                 return;
2085
2086         qp->client_ready = true;
2087
2088         if (qp->transport->link_is_up)
2089                 schedule_delayed_work(&qp->link_work, 0);
2090 }
2091 EXPORT_SYMBOL_GPL(ntb_transport_link_up);
2092
2093 /**
2094  * ntb_transport_link_down - Notify NTB transport to no longer enqueue data
2095  * @qp: NTB transport layer queue to be disabled
2096  *
2097  * Notify NTB transport layer of client's desire to no longer receive data on
2098  * transport queue specified.  It is the client's responsibility to ensure all
2099  * entries on queue are purged or otherwise handled appropriately.
2100  */
2101 void ntb_transport_link_down(struct ntb_transport_qp *qp)
2102 {
2103         int val;
2104
2105         if (!qp)
2106                 return;
2107
2108         qp->client_ready = false;
2109
2110         val = ntb_spad_read(qp->ndev, QP_LINKS);
2111
2112         ntb_peer_spad_write(qp->ndev, PIDX, QP_LINKS, val & ~BIT(qp->qp_num));
2113
2114         if (qp->link_is_up)
2115                 ntb_send_link_down(qp);
2116         else
2117                 cancel_delayed_work_sync(&qp->link_work);
2118 }
2119 EXPORT_SYMBOL_GPL(ntb_transport_link_down);
2120
2121 /**
2122  * ntb_transport_link_query - Query transport link state
2123  * @qp: NTB transport layer queue to be queried
2124  *
2125  * Query connectivity to the remote system of the NTB transport queue
2126  *
2127  * RETURNS: true for link up or false for link down
2128  */
2129 bool ntb_transport_link_query(struct ntb_transport_qp *qp)
2130 {
2131         if (!qp)
2132                 return false;
2133
2134         return qp->link_is_up;
2135 }
2136 EXPORT_SYMBOL_GPL(ntb_transport_link_query);
2137
2138 /**
2139  * ntb_transport_qp_num - Query the qp number
2140  * @qp: NTB transport layer queue to be queried
2141  *
2142  * Query qp number of the NTB transport queue
2143  *
2144  * RETURNS: a zero based number specifying the qp number
2145  */
2146 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp)
2147 {
2148         if (!qp)
2149                 return 0;
2150
2151         return qp->qp_num;
2152 }
2153 EXPORT_SYMBOL_GPL(ntb_transport_qp_num);
2154
2155 /**
2156  * ntb_transport_max_size - Query the max payload size of a qp
2157  * @qp: NTB transport layer queue to be queried
2158  *
2159  * Query the maximum payload size permissible on the given qp
2160  *
2161  * RETURNS: the max payload size of a qp
2162  */
2163 unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp)
2164 {
2165         unsigned int max_size;
2166         unsigned int copy_align;
2167         struct dma_chan *rx_chan, *tx_chan;
2168
2169         if (!qp)
2170                 return 0;
2171
2172         rx_chan = qp->rx_dma_chan;
2173         tx_chan = qp->tx_dma_chan;
2174
2175         copy_align = max(rx_chan ? rx_chan->device->copy_align : 0,
2176                          tx_chan ? tx_chan->device->copy_align : 0);
2177
2178         /* If DMA engine usage is possible, try to find the max size for that */
2179         max_size = qp->tx_max_frame - sizeof(struct ntb_payload_header);
2180         max_size = round_down(max_size, 1 << copy_align);
2181
2182         return max_size;
2183 }
2184 EXPORT_SYMBOL_GPL(ntb_transport_max_size);
2185
2186 unsigned int ntb_transport_tx_free_entry(struct ntb_transport_qp *qp)
2187 {
2188         unsigned int head = qp->tx_index;
2189         unsigned int tail = qp->remote_rx_info->entry;
2190
2191         return tail > head ? tail - head : qp->tx_max_entry + tail - head;
2192 }
2193 EXPORT_SYMBOL_GPL(ntb_transport_tx_free_entry);
2194
2195 static void ntb_transport_doorbell_callback(void *data, int vector)
2196 {
2197         struct ntb_transport_ctx *nt = data;
2198         struct ntb_transport_qp *qp;
2199         u64 db_bits;
2200         unsigned int qp_num;
2201
2202         db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free &
2203                    ntb_db_vector_mask(nt->ndev, vector));
2204
2205         while (db_bits) {
2206                 qp_num = __ffs(db_bits);
2207                 qp = &nt->qp_vec[qp_num];
2208
2209                 if (qp->active)
2210                         tasklet_schedule(&qp->rxc_db_work);
2211
2212                 db_bits &= ~BIT_ULL(qp_num);
2213         }
2214 }
2215
2216 static const struct ntb_ctx_ops ntb_transport_ops = {
2217         .link_event = ntb_transport_event_callback,
2218         .db_event = ntb_transport_doorbell_callback,
2219 };
2220
2221 static struct ntb_client ntb_transport_client = {
2222         .ops = {
2223                 .probe = ntb_transport_probe,
2224                 .remove = ntb_transport_free,
2225         },
2226 };
2227
2228 static int __init ntb_transport_init(void)
2229 {
2230         int rc;
2231
2232         pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER);
2233
2234         if (debugfs_initialized())
2235                 nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
2236
2237         rc = bus_register(&ntb_transport_bus);
2238         if (rc)
2239                 goto err_bus;
2240
2241         rc = ntb_register_client(&ntb_transport_client);
2242         if (rc)
2243                 goto err_client;
2244
2245         return 0;
2246
2247 err_client:
2248         bus_unregister(&ntb_transport_bus);
2249 err_bus:
2250         debugfs_remove_recursive(nt_debugfs_dir);
2251         return rc;
2252 }
2253 module_init(ntb_transport_init);
2254
2255 static void __exit ntb_transport_exit(void)
2256 {
2257         ntb_unregister_client(&ntb_transport_client);
2258         bus_unregister(&ntb_transport_bus);
2259         debugfs_remove_recursive(nt_debugfs_dir);
2260 }
2261 module_exit(ntb_transport_exit);