GNU Linux-libre 6.8.7-gnu
[releases.git] / drivers / net / wireless / zydas / zd1211rw / zd_usb.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* ZD1211 USB-WLAN driver for Linux
3  *
4  * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
5  * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
6  * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11 #include <linux/firmware.h>
12 #include <linux/device.h>
13 #include <linux/errno.h>
14 #include <linux/slab.h>
15 #include <linux/skbuff.h>
16 #include <linux/usb.h>
17 #include <linux/workqueue.h>
18 #include <linux/module.h>
19 #include <net/mac80211.h>
20 #include <asm/unaligned.h>
21
22 #include "zd_def.h"
23 #include "zd_mac.h"
24 #include "zd_usb.h"
25
26 static const struct usb_device_id usb_ids[] = {
27         /* ZD1211 */
28         { USB_DEVICE(0x0105, 0x145f), .driver_info = DEVICE_ZD1211 },
29         { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
30         { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
31         { USB_DEVICE(0x0586, 0x3407), .driver_info = DEVICE_ZD1211 },
32         { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
33         { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
34         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
35         { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
36         { USB_DEVICE(0x0ace, 0xa211), .driver_info = DEVICE_ZD1211 },
37         { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
38         { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
39         { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
40         { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
41         { USB_DEVICE(0x0df6, 0x9075), .driver_info = DEVICE_ZD1211 },
42         { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
43         { USB_DEVICE(0x129b, 0x1666), .driver_info = DEVICE_ZD1211 },
44         { USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
45         { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
46         { USB_DEVICE(0x14ea, 0xab10), .driver_info = DEVICE_ZD1211 },
47         { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
48         { USB_DEVICE(0x157e, 0x300a), .driver_info = DEVICE_ZD1211 },
49         { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
50         { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
51         { USB_DEVICE(0x157e, 0x3207), .driver_info = DEVICE_ZD1211 },
52         { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
53         { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
54         /* ZD1211B */
55         { USB_DEVICE(0x0053, 0x5301), .driver_info = DEVICE_ZD1211B },
56         { USB_DEVICE(0x0409, 0x0248), .driver_info = DEVICE_ZD1211B },
57         { USB_DEVICE(0x0411, 0x00da), .driver_info = DEVICE_ZD1211B },
58         { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
59         { USB_DEVICE(0x0471, 0x1237), .driver_info = DEVICE_ZD1211B },
60         { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
61         { USB_DEVICE(0x054c, 0x0257), .driver_info = DEVICE_ZD1211B },
62         { USB_DEVICE(0x0586, 0x340a), .driver_info = DEVICE_ZD1211B },
63         { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
64         { USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
65         { USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B },
66         { USB_DEVICE(0x0586, 0x3413), .driver_info = DEVICE_ZD1211B },
67         { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
68         { USB_DEVICE(0x07fa, 0x1196), .driver_info = DEVICE_ZD1211B },
69         { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
70         { USB_DEVICE(0x083a, 0xe501), .driver_info = DEVICE_ZD1211B },
71         { USB_DEVICE(0x083a, 0xe503), .driver_info = DEVICE_ZD1211B },
72         { USB_DEVICE(0x083a, 0xe506), .driver_info = DEVICE_ZD1211B },
73         { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
74         { USB_DEVICE(0x0ace, 0xb215), .driver_info = DEVICE_ZD1211B },
75         { USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
76         { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
77         { USB_DEVICE(0x0cde, 0x001a), .driver_info = DEVICE_ZD1211B },
78         { USB_DEVICE(0x0df6, 0x0036), .driver_info = DEVICE_ZD1211B },
79         { USB_DEVICE(0x129b, 0x1667), .driver_info = DEVICE_ZD1211B },
80         { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
81         { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
82         { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
83         { USB_DEVICE(0x2019, 0x5303), .driver_info = DEVICE_ZD1211B },
84         { USB_DEVICE(0x2019, 0xed01), .driver_info = DEVICE_ZD1211B },
85         /* "Driverless" devices that need ejecting */
86         { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
87         { USB_DEVICE(0x0ace, 0x20ff), .driver_info = DEVICE_INSTALLER },
88         {}
89 };
90
91 MODULE_LICENSE("GPL");
92 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
93 MODULE_AUTHOR("Ulrich Kunitz");
94 MODULE_AUTHOR("Daniel Drake");
95 MODULE_VERSION("1.0");
96 MODULE_DEVICE_TABLE(usb, usb_ids);
97
98 #define FW_ZD1211_PREFIX        "/*(DEBLOBBED)*/"
99 #define FW_ZD1211B_PREFIX       "/*(DEBLOBBED)*/"
100
101 static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
102                             unsigned int count);
103
104 /* USB device initialization */
105 static void int_urb_complete(struct urb *urb);
106
107 static int request_fw_file(
108         const struct firmware **fw, const char *name, struct device *device)
109 {
110         int r;
111
112         dev_dbg_f(device, "fw name %s\n", name);
113
114         r = reject_firmware(fw, name, device);
115         if (r)
116                 dev_err(device,
117                        "Could not load firmware file %s. Error number %d\n",
118                        name, r);
119         return r;
120 }
121
122 static inline u16 get_bcdDevice(const struct usb_device *udev)
123 {
124         return le16_to_cpu(udev->descriptor.bcdDevice);
125 }
126
127 enum upload_code_flags {
128         REBOOT = 1,
129 };
130
131 /* Ensures that MAX_TRANSFER_SIZE is even. */
132 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
133
134 static int upload_code(struct usb_device *udev,
135         const u8 *data, size_t size, u16 code_offset, int flags)
136 {
137         u8 *p;
138         int r;
139
140         /* USB request blocks need "kmalloced" buffers.
141          */
142         p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
143         if (!p) {
144                 r = -ENOMEM;
145                 goto error;
146         }
147
148         size &= ~1;
149         while (size > 0) {
150                 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
151                         size : MAX_TRANSFER_SIZE;
152
153                 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
154
155                 memcpy(p, data, transfer_size);
156                 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
157                         USB_REQ_FIRMWARE_DOWNLOAD,
158                         USB_DIR_OUT | USB_TYPE_VENDOR,
159                         code_offset, 0, p, transfer_size, 1000 /* ms */);
160                 if (r < 0) {
161                         dev_err(&udev->dev,
162                                "USB control request for firmware upload"
163                                " failed. Error number %d\n", r);
164                         goto error;
165                 }
166                 transfer_size = r & ~1;
167
168                 size -= transfer_size;
169                 data += transfer_size;
170                 code_offset += transfer_size/sizeof(u16);
171         }
172
173         if (flags & REBOOT) {
174                 u8 ret;
175
176                 /* Use "DMA-aware" buffer. */
177                 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
178                         USB_REQ_FIRMWARE_CONFIRM,
179                         USB_DIR_IN | USB_TYPE_VENDOR,
180                         0, 0, p, sizeof(ret), 5000 /* ms */);
181                 if (r != sizeof(ret)) {
182                         dev_err(&udev->dev,
183                                 "control request firmware confirmation failed."
184                                 " Return value %d\n", r);
185                         if (r >= 0)
186                                 r = -ENODEV;
187                         goto error;
188                 }
189                 ret = p[0];
190                 if (ret & 0x80) {
191                         dev_err(&udev->dev,
192                                 "Internal error while downloading."
193                                 " Firmware confirm return value %#04x\n",
194                                 (unsigned int)ret);
195                         r = -ENODEV;
196                         goto error;
197                 }
198                 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
199                         (unsigned int)ret);
200         }
201
202         r = 0;
203 error:
204         kfree(p);
205         return r;
206 }
207
208 static u16 get_word(const void *data, u16 offset)
209 {
210         const __le16 *p = data;
211         return le16_to_cpu(p[offset]);
212 }
213
214 static char *get_fw_name(struct zd_usb *usb, char *buffer, size_t size,
215                        const char* postfix)
216 {
217         scnprintf(buffer, size, "%s%s",
218                 usb->is_zd1211b ?
219                         FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
220                 postfix);
221         return buffer;
222 }
223
224 static int handle_version_mismatch(struct zd_usb *usb,
225         const struct firmware *ub_fw)
226 {
227         struct usb_device *udev = zd_usb_to_usbdev(usb);
228         const struct firmware *ur_fw = NULL;
229         int offset;
230         int r = 0;
231         char fw_name[128];
232
233         r = request_fw_file(&ur_fw,
234                 get_fw_name(usb, fw_name, sizeof(fw_name), "ur"),
235                 &udev->dev);
236         if (r)
237                 goto error;
238
239         r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
240         if (r)
241                 goto error;
242
243         offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
244         r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
245                 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
246
247         /* At this point, the vendor driver downloads the whole firmware
248          * image, hacks around with version IDs, and uploads it again,
249          * completely overwriting the boot code. We do not do this here as
250          * it is not required on any tested devices, and it is suspected to
251          * cause problems. */
252 error:
253         release_firmware(ur_fw);
254         return r;
255 }
256
257 static int upload_firmware(struct zd_usb *usb)
258 {
259         int r;
260         u16 fw_bcdDevice;
261         u16 bcdDevice;
262         struct usb_device *udev = zd_usb_to_usbdev(usb);
263         const struct firmware *ub_fw = NULL;
264         const struct firmware *uph_fw = NULL;
265         char fw_name[128];
266
267         bcdDevice = get_bcdDevice(udev);
268
269         r = request_fw_file(&ub_fw,
270                 get_fw_name(usb, fw_name, sizeof(fw_name), "ub"),
271                 &udev->dev);
272         if (r)
273                 goto error;
274
275         fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
276
277         if (fw_bcdDevice != bcdDevice) {
278                 dev_info(&udev->dev,
279                         "firmware version %#06x and device bootcode version "
280                         "%#06x differ\n", fw_bcdDevice, bcdDevice);
281                 if (bcdDevice <= 0x4313)
282                         dev_warn(&udev->dev, "device has old bootcode, please "
283                                 "report success or failure\n");
284
285                 r = handle_version_mismatch(usb, ub_fw);
286                 if (r)
287                         goto error;
288         } else {
289                 dev_dbg_f(&udev->dev,
290                         "firmware device id %#06x is equal to the "
291                         "actual device id\n", fw_bcdDevice);
292         }
293
294
295         r = request_fw_file(&uph_fw,
296                 get_fw_name(usb, fw_name, sizeof(fw_name), "uphr"),
297                 &udev->dev);
298         if (r)
299                 goto error;
300
301         r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
302         if (r) {
303                 dev_err(&udev->dev,
304                         "Could not upload firmware code uph. Error number %d\n",
305                         r);
306         }
307
308         /* FALL-THROUGH */
309 error:
310         release_firmware(ub_fw);
311         release_firmware(uph_fw);
312         return r;
313 }
314
315 /*(DEBLOBBED)*/
316
317 /* Read data from device address space using "firmware interface" which does
318  * not require firmware to be loaded. */
319 int zd_usb_read_fw(struct zd_usb *usb, zd_addr_t addr, u8 *data, u16 len)
320 {
321         int r;
322         struct usb_device *udev = zd_usb_to_usbdev(usb);
323         u8 *buf;
324
325         /* Use "DMA-aware" buffer. */
326         buf = kmalloc(len, GFP_KERNEL);
327         if (!buf)
328                 return -ENOMEM;
329         r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
330                 USB_REQ_FIRMWARE_READ_DATA, USB_DIR_IN | 0x40, addr, 0,
331                 buf, len, 5000);
332         if (r < 0) {
333                 dev_err(&udev->dev,
334                         "read over firmware interface failed: %d\n", r);
335                 goto exit;
336         } else if (r != len) {
337                 dev_err(&udev->dev,
338                         "incomplete read over firmware interface: %d/%d\n",
339                         r, len);
340                 r = -EIO;
341                 goto exit;
342         }
343         r = 0;
344         memcpy(data, buf, len);
345 exit:
346         kfree(buf);
347         return r;
348 }
349
350 #define urb_dev(urb) (&(urb)->dev->dev)
351
352 static inline void handle_regs_int_override(struct urb *urb)
353 {
354         struct zd_usb *usb = urb->context;
355         struct zd_usb_interrupt *intr = &usb->intr;
356         unsigned long flags;
357
358         spin_lock_irqsave(&intr->lock, flags);
359         if (atomic_read(&intr->read_regs_enabled)) {
360                 atomic_set(&intr->read_regs_enabled, 0);
361                 intr->read_regs_int_overridden = 1;
362                 complete(&intr->read_regs.completion);
363         }
364         spin_unlock_irqrestore(&intr->lock, flags);
365 }
366
367 static inline void handle_regs_int(struct urb *urb)
368 {
369         struct zd_usb *usb = urb->context;
370         struct zd_usb_interrupt *intr = &usb->intr;
371         unsigned long flags;
372         int len;
373         u16 int_num;
374
375         spin_lock_irqsave(&intr->lock, flags);
376
377         int_num = le16_to_cpu(*(__le16 *)(urb->transfer_buffer+2));
378         if (int_num == CR_INTERRUPT) {
379                 struct zd_mac *mac = zd_hw_mac(zd_usb_to_hw(urb->context));
380                 spin_lock(&mac->lock);
381                 memcpy(&mac->intr_buffer, urb->transfer_buffer,
382                                 USB_MAX_EP_INT_BUFFER);
383                 spin_unlock(&mac->lock);
384                 schedule_work(&mac->process_intr);
385         } else if (atomic_read(&intr->read_regs_enabled)) {
386                 len = urb->actual_length;
387                 intr->read_regs.length = urb->actual_length;
388                 if (len > sizeof(intr->read_regs.buffer))
389                         len = sizeof(intr->read_regs.buffer);
390
391                 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
392
393                 /* Sometimes USB_INT_ID_REGS is not overridden, but comes after
394                  * USB_INT_ID_RETRY_FAILED. Read-reg retry then gets this
395                  * delayed USB_INT_ID_REGS, but leaves USB_INT_ID_REGS of
396                  * retry unhandled. Next read-reg command then might catch
397                  * this wrong USB_INT_ID_REGS. Fix by ignoring wrong reads.
398                  */
399                 if (!check_read_regs(usb, intr->read_regs.req,
400                                                 intr->read_regs.req_count))
401                         goto out;
402
403                 atomic_set(&intr->read_regs_enabled, 0);
404                 intr->read_regs_int_overridden = 0;
405                 complete(&intr->read_regs.completion);
406
407                 goto out;
408         }
409
410 out:
411         spin_unlock_irqrestore(&intr->lock, flags);
412
413         /* CR_INTERRUPT might override read_reg too. */
414         if (int_num == CR_INTERRUPT && atomic_read(&intr->read_regs_enabled))
415                 handle_regs_int_override(urb);
416 }
417
418 static void int_urb_complete(struct urb *urb)
419 {
420         int r;
421         struct usb_int_header *hdr;
422         struct zd_usb *usb;
423         struct zd_usb_interrupt *intr;
424
425         switch (urb->status) {
426         case 0:
427                 break;
428         case -ESHUTDOWN:
429         case -EINVAL:
430         case -ENODEV:
431         case -ENOENT:
432         case -ECONNRESET:
433         case -EPIPE:
434                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
435                 return;
436         default:
437                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
438                 goto resubmit;
439         }
440
441         if (urb->actual_length < sizeof(hdr)) {
442                 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
443                 goto resubmit;
444         }
445
446         hdr = urb->transfer_buffer;
447         if (hdr->type != USB_INT_TYPE) {
448                 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
449                 goto resubmit;
450         }
451
452         /* USB_INT_ID_RETRY_FAILED triggered by tx-urb submit can override
453          * pending USB_INT_ID_REGS causing read command timeout.
454          */
455         usb = urb->context;
456         intr = &usb->intr;
457         if (hdr->id != USB_INT_ID_REGS && atomic_read(&intr->read_regs_enabled))
458                 handle_regs_int_override(urb);
459
460         switch (hdr->id) {
461         case USB_INT_ID_REGS:
462                 handle_regs_int(urb);
463                 break;
464         case USB_INT_ID_RETRY_FAILED:
465                 zd_mac_tx_failed(urb);
466                 break;
467         default:
468                 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
469                         (unsigned int)hdr->id);
470                 goto resubmit;
471         }
472
473 resubmit:
474         r = usb_submit_urb(urb, GFP_ATOMIC);
475         if (r) {
476                 dev_dbg_f(urb_dev(urb), "error: resubmit urb %p err code %d\n",
477                           urb, r);
478                 /* TODO: add worker to reset intr->urb */
479         }
480         return;
481 }
482
483 static inline int int_urb_interval(struct usb_device *udev)
484 {
485         switch (udev->speed) {
486         case USB_SPEED_HIGH:
487                 return 4;
488         case USB_SPEED_LOW:
489                 return 10;
490         case USB_SPEED_FULL:
491         default:
492                 return 1;
493         }
494 }
495
496 static inline int usb_int_enabled(struct zd_usb *usb)
497 {
498         unsigned long flags;
499         struct zd_usb_interrupt *intr = &usb->intr;
500         struct urb *urb;
501
502         spin_lock_irqsave(&intr->lock, flags);
503         urb = intr->urb;
504         spin_unlock_irqrestore(&intr->lock, flags);
505         return urb != NULL;
506 }
507
508 int zd_usb_enable_int(struct zd_usb *usb)
509 {
510         int r;
511         struct usb_device *udev = zd_usb_to_usbdev(usb);
512         struct zd_usb_interrupt *intr = &usb->intr;
513         struct urb *urb;
514
515         dev_dbg_f(zd_usb_dev(usb), "\n");
516
517         urb = usb_alloc_urb(0, GFP_KERNEL);
518         if (!urb) {
519                 r = -ENOMEM;
520                 goto out;
521         }
522
523         ZD_ASSERT(!irqs_disabled());
524         spin_lock_irq(&intr->lock);
525         if (intr->urb) {
526                 spin_unlock_irq(&intr->lock);
527                 r = 0;
528                 goto error_free_urb;
529         }
530         intr->urb = urb;
531         spin_unlock_irq(&intr->lock);
532
533         r = -ENOMEM;
534         intr->buffer = usb_alloc_coherent(udev, USB_MAX_EP_INT_BUFFER,
535                                           GFP_KERNEL, &intr->buffer_dma);
536         if (!intr->buffer) {
537                 dev_dbg_f(zd_usb_dev(usb),
538                         "couldn't allocate transfer_buffer\n");
539                 goto error_set_urb_null;
540         }
541
542         usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
543                          intr->buffer, USB_MAX_EP_INT_BUFFER,
544                          int_urb_complete, usb,
545                          intr->interval);
546         urb->transfer_dma = intr->buffer_dma;
547         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
548
549         dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
550         r = usb_submit_urb(urb, GFP_KERNEL);
551         if (r) {
552                 dev_dbg_f(zd_usb_dev(usb),
553                          "Couldn't submit urb. Error number %d\n", r);
554                 goto error;
555         }
556
557         return 0;
558 error:
559         usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER,
560                           intr->buffer, intr->buffer_dma);
561 error_set_urb_null:
562         spin_lock_irq(&intr->lock);
563         intr->urb = NULL;
564         spin_unlock_irq(&intr->lock);
565 error_free_urb:
566         usb_free_urb(urb);
567 out:
568         return r;
569 }
570
571 void zd_usb_disable_int(struct zd_usb *usb)
572 {
573         unsigned long flags;
574         struct usb_device *udev = zd_usb_to_usbdev(usb);
575         struct zd_usb_interrupt *intr = &usb->intr;
576         struct urb *urb;
577         void *buffer;
578         dma_addr_t buffer_dma;
579
580         spin_lock_irqsave(&intr->lock, flags);
581         urb = intr->urb;
582         if (!urb) {
583                 spin_unlock_irqrestore(&intr->lock, flags);
584                 return;
585         }
586         intr->urb = NULL;
587         buffer = intr->buffer;
588         buffer_dma = intr->buffer_dma;
589         intr->buffer = NULL;
590         spin_unlock_irqrestore(&intr->lock, flags);
591
592         usb_kill_urb(urb);
593         dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
594         usb_free_urb(urb);
595
596         usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER, buffer, buffer_dma);
597 }
598
599 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
600                              unsigned int length)
601 {
602         int i;
603         const struct rx_length_info *length_info;
604
605         if (length < sizeof(struct rx_length_info)) {
606                 /* It's not a complete packet anyhow. */
607                 dev_dbg_f(zd_usb_dev(usb), "invalid, small RX packet : %d\n",
608                                            length);
609                 return;
610         }
611         length_info = (struct rx_length_info *)
612                 (buffer + length - sizeof(struct rx_length_info));
613
614         /* It might be that three frames are merged into a single URB
615          * transaction. We have to check for the length info tag.
616          *
617          * While testing we discovered that length_info might be unaligned,
618          * because if USB transactions are merged, the last packet will not
619          * be padded. Unaligned access might also happen if the length_info
620          * structure is not present.
621          */
622         if (get_unaligned_le16(&length_info->tag) == RX_LENGTH_INFO_TAG)
623         {
624                 unsigned int l, k, n;
625                 for (i = 0, l = 0;; i++) {
626                         k = get_unaligned_le16(&length_info->length[i]);
627                         if (k == 0)
628                                 return;
629                         n = l+k;
630                         if (n > length)
631                                 return;
632                         zd_mac_rx(zd_usb_to_hw(usb), buffer+l, k);
633                         if (i >= 2)
634                                 return;
635                         l = (n+3) & ~3;
636                 }
637         } else {
638                 zd_mac_rx(zd_usb_to_hw(usb), buffer, length);
639         }
640 }
641
642 static void rx_urb_complete(struct urb *urb)
643 {
644         int r;
645         struct zd_usb *usb;
646         struct zd_usb_rx *rx;
647         const u8 *buffer;
648         unsigned int length;
649         unsigned long flags;
650
651         switch (urb->status) {
652         case 0:
653                 break;
654         case -ESHUTDOWN:
655         case -EINVAL:
656         case -ENODEV:
657         case -ENOENT:
658         case -ECONNRESET:
659         case -EPIPE:
660                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
661                 return;
662         default:
663                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
664                 goto resubmit;
665         }
666
667         buffer = urb->transfer_buffer;
668         length = urb->actual_length;
669         usb = urb->context;
670         rx = &usb->rx;
671
672         tasklet_schedule(&rx->reset_timer_tasklet);
673
674         if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
675                 /* If there is an old first fragment, we don't care. */
676                 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
677                 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
678                 spin_lock_irqsave(&rx->lock, flags);
679                 memcpy(rx->fragment, buffer, length);
680                 rx->fragment_length = length;
681                 spin_unlock_irqrestore(&rx->lock, flags);
682                 goto resubmit;
683         }
684
685         spin_lock_irqsave(&rx->lock, flags);
686         if (rx->fragment_length > 0) {
687                 /* We are on a second fragment, we believe */
688                 ZD_ASSERT(length + rx->fragment_length <=
689                           ARRAY_SIZE(rx->fragment));
690                 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
691                 memcpy(rx->fragment+rx->fragment_length, buffer, length);
692                 handle_rx_packet(usb, rx->fragment,
693                                  rx->fragment_length + length);
694                 rx->fragment_length = 0;
695                 spin_unlock_irqrestore(&rx->lock, flags);
696         } else {
697                 spin_unlock_irqrestore(&rx->lock, flags);
698                 handle_rx_packet(usb, buffer, length);
699         }
700
701 resubmit:
702         r = usb_submit_urb(urb, GFP_ATOMIC);
703         if (r)
704                 dev_dbg_f(urb_dev(urb), "urb %p resubmit error %d\n", urb, r);
705 }
706
707 static struct urb *alloc_rx_urb(struct zd_usb *usb)
708 {
709         struct usb_device *udev = zd_usb_to_usbdev(usb);
710         struct urb *urb;
711         void *buffer;
712
713         urb = usb_alloc_urb(0, GFP_KERNEL);
714         if (!urb)
715                 return NULL;
716         buffer = usb_alloc_coherent(udev, USB_MAX_RX_SIZE, GFP_KERNEL,
717                                     &urb->transfer_dma);
718         if (!buffer) {
719                 usb_free_urb(urb);
720                 return NULL;
721         }
722
723         usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
724                           buffer, USB_MAX_RX_SIZE,
725                           rx_urb_complete, usb);
726         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
727
728         return urb;
729 }
730
731 static void free_rx_urb(struct urb *urb)
732 {
733         if (!urb)
734                 return;
735         usb_free_coherent(urb->dev, urb->transfer_buffer_length,
736                           urb->transfer_buffer, urb->transfer_dma);
737         usb_free_urb(urb);
738 }
739
740 static int __zd_usb_enable_rx(struct zd_usb *usb)
741 {
742         int i, r;
743         struct zd_usb_rx *rx = &usb->rx;
744         struct urb **urbs;
745
746         dev_dbg_f(zd_usb_dev(usb), "\n");
747
748         r = -ENOMEM;
749         urbs = kcalloc(RX_URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
750         if (!urbs)
751                 goto error;
752         for (i = 0; i < RX_URBS_COUNT; i++) {
753                 urbs[i] = alloc_rx_urb(usb);
754                 if (!urbs[i])
755                         goto error;
756         }
757
758         ZD_ASSERT(!irqs_disabled());
759         spin_lock_irq(&rx->lock);
760         if (rx->urbs) {
761                 spin_unlock_irq(&rx->lock);
762                 r = 0;
763                 goto error;
764         }
765         rx->urbs = urbs;
766         rx->urbs_count = RX_URBS_COUNT;
767         spin_unlock_irq(&rx->lock);
768
769         for (i = 0; i < RX_URBS_COUNT; i++) {
770                 r = usb_submit_urb(urbs[i], GFP_KERNEL);
771                 if (r)
772                         goto error_submit;
773         }
774
775         return 0;
776 error_submit:
777         for (i = 0; i < RX_URBS_COUNT; i++) {
778                 usb_kill_urb(urbs[i]);
779         }
780         spin_lock_irq(&rx->lock);
781         rx->urbs = NULL;
782         rx->urbs_count = 0;
783         spin_unlock_irq(&rx->lock);
784 error:
785         if (urbs) {
786                 for (i = 0; i < RX_URBS_COUNT; i++)
787                         free_rx_urb(urbs[i]);
788         }
789         return r;
790 }
791
792 int zd_usb_enable_rx(struct zd_usb *usb)
793 {
794         int r;
795         struct zd_usb_rx *rx = &usb->rx;
796
797         mutex_lock(&rx->setup_mutex);
798         r = __zd_usb_enable_rx(usb);
799         mutex_unlock(&rx->setup_mutex);
800
801         zd_usb_reset_rx_idle_timer(usb);
802
803         return r;
804 }
805
806 static void __zd_usb_disable_rx(struct zd_usb *usb)
807 {
808         int i;
809         unsigned long flags;
810         struct urb **urbs;
811         unsigned int count;
812         struct zd_usb_rx *rx = &usb->rx;
813
814         spin_lock_irqsave(&rx->lock, flags);
815         urbs = rx->urbs;
816         count = rx->urbs_count;
817         spin_unlock_irqrestore(&rx->lock, flags);
818         if (!urbs)
819                 return;
820
821         for (i = 0; i < count; i++) {
822                 usb_kill_urb(urbs[i]);
823                 free_rx_urb(urbs[i]);
824         }
825         kfree(urbs);
826
827         spin_lock_irqsave(&rx->lock, flags);
828         rx->urbs = NULL;
829         rx->urbs_count = 0;
830         spin_unlock_irqrestore(&rx->lock, flags);
831 }
832
833 void zd_usb_disable_rx(struct zd_usb *usb)
834 {
835         struct zd_usb_rx *rx = &usb->rx;
836
837         mutex_lock(&rx->setup_mutex);
838         __zd_usb_disable_rx(usb);
839         mutex_unlock(&rx->setup_mutex);
840
841         tasklet_kill(&rx->reset_timer_tasklet);
842         cancel_delayed_work_sync(&rx->idle_work);
843 }
844
845 static void zd_usb_reset_rx(struct zd_usb *usb)
846 {
847         bool do_reset;
848         struct zd_usb_rx *rx = &usb->rx;
849         unsigned long flags;
850
851         mutex_lock(&rx->setup_mutex);
852
853         spin_lock_irqsave(&rx->lock, flags);
854         do_reset = rx->urbs != NULL;
855         spin_unlock_irqrestore(&rx->lock, flags);
856
857         if (do_reset) {
858                 __zd_usb_disable_rx(usb);
859                 __zd_usb_enable_rx(usb);
860         }
861
862         mutex_unlock(&rx->setup_mutex);
863
864         if (do_reset)
865                 zd_usb_reset_rx_idle_timer(usb);
866 }
867
868 /**
869  * zd_usb_disable_tx - disable transmission
870  * @usb: the zd1211rw-private USB structure
871  *
872  * Frees all URBs in the free list and marks the transmission as disabled.
873  */
874 void zd_usb_disable_tx(struct zd_usb *usb)
875 {
876         struct zd_usb_tx *tx = &usb->tx;
877         unsigned long flags;
878
879         atomic_set(&tx->enabled, 0);
880
881         /* kill all submitted tx-urbs */
882         usb_kill_anchored_urbs(&tx->submitted);
883
884         spin_lock_irqsave(&tx->lock, flags);
885         WARN_ON(!skb_queue_empty(&tx->submitted_skbs));
886         WARN_ON(tx->submitted_urbs != 0);
887         tx->submitted_urbs = 0;
888         spin_unlock_irqrestore(&tx->lock, flags);
889
890         /* The stopped state is ignored, relying on ieee80211_wake_queues()
891          * in a potentionally following zd_usb_enable_tx().
892          */
893 }
894
895 /**
896  * zd_usb_enable_tx - enables transmission
897  * @usb: a &struct zd_usb pointer
898  *
899  * This function enables transmission and prepares the &zd_usb_tx data
900  * structure.
901  */
902 void zd_usb_enable_tx(struct zd_usb *usb)
903 {
904         unsigned long flags;
905         struct zd_usb_tx *tx = &usb->tx;
906
907         spin_lock_irqsave(&tx->lock, flags);
908         atomic_set(&tx->enabled, 1);
909         tx->submitted_urbs = 0;
910         ieee80211_wake_queues(zd_usb_to_hw(usb));
911         tx->stopped = 0;
912         spin_unlock_irqrestore(&tx->lock, flags);
913 }
914
915 static void tx_dec_submitted_urbs(struct zd_usb *usb)
916 {
917         struct zd_usb_tx *tx = &usb->tx;
918         unsigned long flags;
919
920         spin_lock_irqsave(&tx->lock, flags);
921         --tx->submitted_urbs;
922         if (tx->stopped && tx->submitted_urbs <= ZD_USB_TX_LOW) {
923                 ieee80211_wake_queues(zd_usb_to_hw(usb));
924                 tx->stopped = 0;
925         }
926         spin_unlock_irqrestore(&tx->lock, flags);
927 }
928
929 static void tx_inc_submitted_urbs(struct zd_usb *usb)
930 {
931         struct zd_usb_tx *tx = &usb->tx;
932         unsigned long flags;
933
934         spin_lock_irqsave(&tx->lock, flags);
935         ++tx->submitted_urbs;
936         if (!tx->stopped && tx->submitted_urbs > ZD_USB_TX_HIGH) {
937                 ieee80211_stop_queues(zd_usb_to_hw(usb));
938                 tx->stopped = 1;
939         }
940         spin_unlock_irqrestore(&tx->lock, flags);
941 }
942
943 /**
944  * tx_urb_complete - completes the execution of an URB
945  * @urb: a URB
946  *
947  * This function is called if the URB has been transferred to a device or an
948  * error has happened.
949  */
950 static void tx_urb_complete(struct urb *urb)
951 {
952         int r;
953         struct sk_buff *skb;
954         struct ieee80211_tx_info *info;
955         struct zd_usb *usb;
956         struct zd_usb_tx *tx;
957
958         skb = (struct sk_buff *)urb->context;
959         info = IEEE80211_SKB_CB(skb);
960         /*
961          * grab 'usb' pointer before handing off the skb (since
962          * it might be freed by zd_mac_tx_to_dev or mac80211)
963          */
964         usb = &zd_hw_mac(info->rate_driver_data[0])->chip.usb;
965         tx = &usb->tx;
966
967         switch (urb->status) {
968         case 0:
969                 break;
970         case -ESHUTDOWN:
971         case -EINVAL:
972         case -ENODEV:
973         case -ENOENT:
974         case -ECONNRESET:
975         case -EPIPE:
976                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
977                 break;
978         default:
979                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
980                 goto resubmit;
981         }
982 free_urb:
983         skb_unlink(skb, &usb->tx.submitted_skbs);
984         zd_mac_tx_to_dev(skb, urb->status);
985         usb_free_urb(urb);
986         tx_dec_submitted_urbs(usb);
987         return;
988 resubmit:
989         usb_anchor_urb(urb, &tx->submitted);
990         r = usb_submit_urb(urb, GFP_ATOMIC);
991         if (r) {
992                 usb_unanchor_urb(urb);
993                 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
994                 goto free_urb;
995         }
996 }
997
998 /**
999  * zd_usb_tx: initiates transfer of a frame of the device
1000  *
1001  * @usb: the zd1211rw-private USB structure
1002  * @skb: a &struct sk_buff pointer
1003  *
1004  * This function transmits a frame to the device. It doesn't wait for
1005  * completion. The frame must contain the control set and have all the
1006  * control set information available.
1007  *
1008  * The function returns 0 if the transfer has been successfully initiated.
1009  */
1010 int zd_usb_tx(struct zd_usb *usb, struct sk_buff *skb)
1011 {
1012         int r;
1013         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1014         struct usb_device *udev = zd_usb_to_usbdev(usb);
1015         struct urb *urb;
1016         struct zd_usb_tx *tx = &usb->tx;
1017
1018         if (!atomic_read(&tx->enabled)) {
1019                 r = -ENOENT;
1020                 goto out;
1021         }
1022
1023         urb = usb_alloc_urb(0, GFP_ATOMIC);
1024         if (!urb) {
1025                 r = -ENOMEM;
1026                 goto out;
1027         }
1028
1029         usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
1030                           skb->data, skb->len, tx_urb_complete, skb);
1031
1032         info->rate_driver_data[1] = (void *)jiffies;
1033         skb_queue_tail(&tx->submitted_skbs, skb);
1034         usb_anchor_urb(urb, &tx->submitted);
1035
1036         r = usb_submit_urb(urb, GFP_ATOMIC);
1037         if (r) {
1038                 dev_dbg_f(zd_usb_dev(usb), "error submit urb %p %d\n", urb, r);
1039                 usb_unanchor_urb(urb);
1040                 skb_unlink(skb, &tx->submitted_skbs);
1041                 goto error;
1042         }
1043         tx_inc_submitted_urbs(usb);
1044         return 0;
1045 error:
1046         usb_free_urb(urb);
1047 out:
1048         return r;
1049 }
1050
1051 static bool zd_tx_timeout(struct zd_usb *usb)
1052 {
1053         struct zd_usb_tx *tx = &usb->tx;
1054         struct sk_buff_head *q = &tx->submitted_skbs;
1055         struct sk_buff *skb, *skbnext;
1056         struct ieee80211_tx_info *info;
1057         unsigned long flags, trans_start;
1058         bool have_timedout = false;
1059
1060         spin_lock_irqsave(&q->lock, flags);
1061         skb_queue_walk_safe(q, skb, skbnext) {
1062                 info = IEEE80211_SKB_CB(skb);
1063                 trans_start = (unsigned long)info->rate_driver_data[1];
1064
1065                 if (time_is_before_jiffies(trans_start + ZD_TX_TIMEOUT)) {
1066                         have_timedout = true;
1067                         break;
1068                 }
1069         }
1070         spin_unlock_irqrestore(&q->lock, flags);
1071
1072         return have_timedout;
1073 }
1074
1075 static void zd_tx_watchdog_handler(struct work_struct *work)
1076 {
1077         struct zd_usb *usb =
1078                 container_of(work, struct zd_usb, tx.watchdog_work.work);
1079         struct zd_usb_tx *tx = &usb->tx;
1080
1081         if (!atomic_read(&tx->enabled) || !tx->watchdog_enabled)
1082                 goto out;
1083         if (!zd_tx_timeout(usb))
1084                 goto out;
1085
1086         /* TX halted, try reset */
1087         dev_warn(zd_usb_dev(usb), "TX-stall detected, resetting device...");
1088
1089         usb_queue_reset_device(usb->intf);
1090
1091         /* reset will stop this worker, don't rearm */
1092         return;
1093 out:
1094         queue_delayed_work(zd_workqueue, &tx->watchdog_work,
1095                            ZD_TX_WATCHDOG_INTERVAL);
1096 }
1097
1098 void zd_tx_watchdog_enable(struct zd_usb *usb)
1099 {
1100         struct zd_usb_tx *tx = &usb->tx;
1101
1102         if (!tx->watchdog_enabled) {
1103                 dev_dbg_f(zd_usb_dev(usb), "\n");
1104                 queue_delayed_work(zd_workqueue, &tx->watchdog_work,
1105                                    ZD_TX_WATCHDOG_INTERVAL);
1106                 tx->watchdog_enabled = 1;
1107         }
1108 }
1109
1110 void zd_tx_watchdog_disable(struct zd_usb *usb)
1111 {
1112         struct zd_usb_tx *tx = &usb->tx;
1113
1114         if (tx->watchdog_enabled) {
1115                 dev_dbg_f(zd_usb_dev(usb), "\n");
1116                 tx->watchdog_enabled = 0;
1117                 cancel_delayed_work_sync(&tx->watchdog_work);
1118         }
1119 }
1120
1121 static void zd_rx_idle_timer_handler(struct work_struct *work)
1122 {
1123         struct zd_usb *usb =
1124                 container_of(work, struct zd_usb, rx.idle_work.work);
1125         struct zd_mac *mac = zd_usb_to_mac(usb);
1126
1127         if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1128                 return;
1129
1130         dev_dbg_f(zd_usb_dev(usb), "\n");
1131
1132         /* 30 seconds since last rx, reset rx */
1133         zd_usb_reset_rx(usb);
1134 }
1135
1136 static void zd_usb_reset_rx_idle_timer_tasklet(struct tasklet_struct *t)
1137 {
1138         struct zd_usb *usb = from_tasklet(usb, t, rx.reset_timer_tasklet);
1139
1140         zd_usb_reset_rx_idle_timer(usb);
1141 }
1142
1143 void zd_usb_reset_rx_idle_timer(struct zd_usb *usb)
1144 {
1145         struct zd_usb_rx *rx = &usb->rx;
1146
1147         mod_delayed_work(zd_workqueue, &rx->idle_work, ZD_RX_IDLE_INTERVAL);
1148 }
1149
1150 static inline void init_usb_interrupt(struct zd_usb *usb)
1151 {
1152         struct zd_usb_interrupt *intr = &usb->intr;
1153
1154         spin_lock_init(&intr->lock);
1155         intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
1156         init_completion(&intr->read_regs.completion);
1157         atomic_set(&intr->read_regs_enabled, 0);
1158         intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
1159 }
1160
1161 static inline void init_usb_rx(struct zd_usb *usb)
1162 {
1163         struct zd_usb_rx *rx = &usb->rx;
1164
1165         spin_lock_init(&rx->lock);
1166         mutex_init(&rx->setup_mutex);
1167         if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
1168                 rx->usb_packet_size = 512;
1169         } else {
1170                 rx->usb_packet_size = 64;
1171         }
1172         ZD_ASSERT(rx->fragment_length == 0);
1173         INIT_DELAYED_WORK(&rx->idle_work, zd_rx_idle_timer_handler);
1174         rx->reset_timer_tasklet.func = (void (*))
1175                                         zd_usb_reset_rx_idle_timer_tasklet;
1176         rx->reset_timer_tasklet.data = (unsigned long)&rx->reset_timer_tasklet;
1177 }
1178
1179 static inline void init_usb_tx(struct zd_usb *usb)
1180 {
1181         struct zd_usb_tx *tx = &usb->tx;
1182
1183         spin_lock_init(&tx->lock);
1184         atomic_set(&tx->enabled, 0);
1185         tx->stopped = 0;
1186         skb_queue_head_init(&tx->submitted_skbs);
1187         init_usb_anchor(&tx->submitted);
1188         tx->submitted_urbs = 0;
1189         tx->watchdog_enabled = 0;
1190         INIT_DELAYED_WORK(&tx->watchdog_work, zd_tx_watchdog_handler);
1191 }
1192
1193 void zd_usb_init(struct zd_usb *usb, struct ieee80211_hw *hw,
1194                  struct usb_interface *intf)
1195 {
1196         memset(usb, 0, sizeof(*usb));
1197         usb->intf = usb_get_intf(intf);
1198         usb_set_intfdata(usb->intf, hw);
1199         init_usb_anchor(&usb->submitted_cmds);
1200         init_usb_interrupt(usb);
1201         init_usb_tx(usb);
1202         init_usb_rx(usb);
1203 }
1204
1205 void zd_usb_clear(struct zd_usb *usb)
1206 {
1207         usb_set_intfdata(usb->intf, NULL);
1208         usb_put_intf(usb->intf);
1209         ZD_MEMCLEAR(usb, sizeof(*usb));
1210         /* FIXME: usb_interrupt, usb_tx, usb_rx? */
1211 }
1212
1213 static const char *speed(enum usb_device_speed speed)
1214 {
1215         switch (speed) {
1216         case USB_SPEED_LOW:
1217                 return "low";
1218         case USB_SPEED_FULL:
1219                 return "full";
1220         case USB_SPEED_HIGH:
1221                 return "high";
1222         default:
1223                 return "unknown speed";
1224         }
1225 }
1226
1227 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
1228 {
1229         return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
1230                 le16_to_cpu(udev->descriptor.idVendor),
1231                 le16_to_cpu(udev->descriptor.idProduct),
1232                 get_bcdDevice(udev),
1233                 speed(udev->speed));
1234 }
1235
1236 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
1237 {
1238         struct usb_device *udev = interface_to_usbdev(usb->intf);
1239         return scnprint_id(udev, buffer, size);
1240 }
1241
1242 #ifdef DEBUG
1243 static void print_id(struct usb_device *udev)
1244 {
1245         char buffer[40];
1246
1247         scnprint_id(udev, buffer, sizeof(buffer));
1248         buffer[sizeof(buffer)-1] = 0;
1249         dev_dbg_f(&udev->dev, "%s\n", buffer);
1250 }
1251 #else
1252 #define print_id(udev) do { } while (0)
1253 #endif
1254
1255 static int eject_installer(struct usb_interface *intf)
1256 {
1257         struct usb_device *udev = interface_to_usbdev(intf);
1258         struct usb_host_interface *iface_desc = intf->cur_altsetting;
1259         struct usb_endpoint_descriptor *endpoint;
1260         unsigned char *cmd;
1261         u8 bulk_out_ep;
1262         int r;
1263
1264         if (iface_desc->desc.bNumEndpoints < 2)
1265                 return -ENODEV;
1266
1267         /* Find bulk out endpoint */
1268         for (r = 1; r >= 0; r--) {
1269                 endpoint = &iface_desc->endpoint[r].desc;
1270                 if (usb_endpoint_dir_out(endpoint) &&
1271                     usb_endpoint_xfer_bulk(endpoint)) {
1272                         bulk_out_ep = endpoint->bEndpointAddress;
1273                         break;
1274                 }
1275         }
1276         if (r == -1) {
1277                 dev_err(&udev->dev,
1278                         "zd1211rw: Could not find bulk out endpoint\n");
1279                 return -ENODEV;
1280         }
1281
1282         cmd = kzalloc(31, GFP_KERNEL);
1283         if (cmd == NULL)
1284                 return -ENODEV;
1285
1286         /* USB bulk command block */
1287         cmd[0] = 0x55;  /* bulk command signature */
1288         cmd[1] = 0x53;  /* bulk command signature */
1289         cmd[2] = 0x42;  /* bulk command signature */
1290         cmd[3] = 0x43;  /* bulk command signature */
1291         cmd[14] = 6;    /* command length */
1292
1293         cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
1294         cmd[19] = 0x2;  /* eject disc */
1295
1296         dev_info(&udev->dev, "Ejecting virtual installer media...\n");
1297         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
1298                 cmd, 31, NULL, 2000);
1299         kfree(cmd);
1300         if (r)
1301                 return r;
1302
1303         /* At this point, the device disconnects and reconnects with the real
1304          * ID numbers. */
1305
1306         usb_set_intfdata(intf, NULL);
1307         return 0;
1308 }
1309
1310 int zd_usb_init_hw(struct zd_usb *usb)
1311 {
1312         int r;
1313         struct zd_mac *mac = zd_usb_to_mac(usb);
1314
1315         dev_dbg_f(zd_usb_dev(usb), "\n");
1316
1317         r = upload_firmware(usb);
1318         if (r) {
1319                 dev_err(zd_usb_dev(usb),
1320                        "couldn't load firmware. Error number %d\n", r);
1321                 return r;
1322         }
1323
1324         r = usb_reset_configuration(zd_usb_to_usbdev(usb));
1325         if (r) {
1326                 dev_dbg_f(zd_usb_dev(usb),
1327                         "couldn't reset configuration. Error number %d\n", r);
1328                 return r;
1329         }
1330
1331         r = zd_mac_init_hw(mac->hw);
1332         if (r) {
1333                 dev_dbg_f(zd_usb_dev(usb),
1334                          "couldn't initialize mac. Error number %d\n", r);
1335                 return r;
1336         }
1337
1338         usb->initialized = 1;
1339         return 0;
1340 }
1341
1342 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
1343 {
1344         int r;
1345         struct usb_device *udev = interface_to_usbdev(intf);
1346         struct zd_usb *usb;
1347         struct ieee80211_hw *hw = NULL;
1348
1349         print_id(udev);
1350
1351         if (id->driver_info & DEVICE_INSTALLER)
1352                 return eject_installer(intf);
1353
1354         switch (udev->speed) {
1355         case USB_SPEED_LOW:
1356         case USB_SPEED_FULL:
1357         case USB_SPEED_HIGH:
1358                 break;
1359         default:
1360                 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
1361                 r = -ENODEV;
1362                 goto error;
1363         }
1364
1365         r = usb_reset_device(udev);
1366         if (r) {
1367                 dev_err(&intf->dev,
1368                         "couldn't reset usb device. Error number %d\n", r);
1369                 goto error;
1370         }
1371
1372         hw = zd_mac_alloc_hw(intf);
1373         if (hw == NULL) {
1374                 r = -ENOMEM;
1375                 goto error;
1376         }
1377
1378         usb = &zd_hw_mac(hw)->chip.usb;
1379         usb->is_zd1211b = (id->driver_info == DEVICE_ZD1211B) != 0;
1380
1381         r = zd_mac_preinit_hw(hw);
1382         if (r) {
1383                 dev_dbg_f(&intf->dev,
1384                          "couldn't initialize mac. Error number %d\n", r);
1385                 goto error;
1386         }
1387
1388         r = ieee80211_register_hw(hw);
1389         if (r) {
1390                 dev_dbg_f(&intf->dev,
1391                          "couldn't register device. Error number %d\n", r);
1392                 goto error;
1393         }
1394
1395         dev_dbg_f(&intf->dev, "successful\n");
1396         dev_info(&intf->dev, "%s\n", wiphy_name(hw->wiphy));
1397         return 0;
1398 error:
1399         usb_reset_device(interface_to_usbdev(intf));
1400         if (hw) {
1401                 zd_mac_clear(zd_hw_mac(hw));
1402                 ieee80211_free_hw(hw);
1403         }
1404         return r;
1405 }
1406
1407 static void disconnect(struct usb_interface *intf)
1408 {
1409         struct ieee80211_hw *hw = zd_intf_to_hw(intf);
1410         struct zd_mac *mac;
1411         struct zd_usb *usb;
1412
1413         /* Either something really bad happened, or we're just dealing with
1414          * a DEVICE_INSTALLER. */
1415         if (hw == NULL)
1416                 return;
1417
1418         mac = zd_hw_mac(hw);
1419         usb = &mac->chip.usb;
1420
1421         dev_dbg_f(zd_usb_dev(usb), "\n");
1422
1423         ieee80211_unregister_hw(hw);
1424
1425         /* Just in case something has gone wrong! */
1426         zd_usb_disable_tx(usb);
1427         zd_usb_disable_rx(usb);
1428         zd_usb_disable_int(usb);
1429
1430         /* If the disconnect has been caused by a removal of the
1431          * driver module, the reset allows reloading of the driver. If the
1432          * reset will not be executed here, the upload of the firmware in the
1433          * probe function caused by the reloading of the driver will fail.
1434          */
1435         usb_reset_device(interface_to_usbdev(intf));
1436
1437         zd_mac_clear(mac);
1438         ieee80211_free_hw(hw);
1439         dev_dbg(&intf->dev, "disconnected\n");
1440 }
1441
1442 static void zd_usb_resume(struct zd_usb *usb)
1443 {
1444         struct zd_mac *mac = zd_usb_to_mac(usb);
1445         int r;
1446
1447         dev_dbg_f(zd_usb_dev(usb), "\n");
1448
1449         r = zd_op_start(zd_usb_to_hw(usb));
1450         if (r < 0) {
1451                 dev_warn(zd_usb_dev(usb), "Device resume failed "
1452                          "with error code %d. Retrying...\n", r);
1453                 if (usb->was_running)
1454                         set_bit(ZD_DEVICE_RUNNING, &mac->flags);
1455                 usb_queue_reset_device(usb->intf);
1456                 return;
1457         }
1458
1459         if (mac->type != NL80211_IFTYPE_UNSPECIFIED) {
1460                 r = zd_restore_settings(mac);
1461                 if (r < 0) {
1462                         dev_dbg(zd_usb_dev(usb),
1463                                 "failed to restore settings, %d\n", r);
1464                         return;
1465                 }
1466         }
1467 }
1468
1469 static void zd_usb_stop(struct zd_usb *usb)
1470 {
1471         dev_dbg_f(zd_usb_dev(usb), "\n");
1472
1473         zd_op_stop(zd_usb_to_hw(usb));
1474
1475         zd_usb_disable_tx(usb);
1476         zd_usb_disable_rx(usb);
1477         zd_usb_disable_int(usb);
1478
1479         usb->initialized = 0;
1480 }
1481
1482 static int pre_reset(struct usb_interface *intf)
1483 {
1484         struct ieee80211_hw *hw = usb_get_intfdata(intf);
1485         struct zd_mac *mac;
1486         struct zd_usb *usb;
1487
1488         if (!hw || intf->condition != USB_INTERFACE_BOUND)
1489                 return 0;
1490
1491         mac = zd_hw_mac(hw);
1492         usb = &mac->chip.usb;
1493
1494         usb->was_running = test_bit(ZD_DEVICE_RUNNING, &mac->flags);
1495
1496         zd_usb_stop(usb);
1497
1498         mutex_lock(&mac->chip.mutex);
1499         return 0;
1500 }
1501
1502 static int post_reset(struct usb_interface *intf)
1503 {
1504         struct ieee80211_hw *hw = usb_get_intfdata(intf);
1505         struct zd_mac *mac;
1506         struct zd_usb *usb;
1507
1508         if (!hw || intf->condition != USB_INTERFACE_BOUND)
1509                 return 0;
1510
1511         mac = zd_hw_mac(hw);
1512         usb = &mac->chip.usb;
1513
1514         mutex_unlock(&mac->chip.mutex);
1515
1516         if (usb->was_running)
1517                 zd_usb_resume(usb);
1518         return 0;
1519 }
1520
1521 static struct usb_driver driver = {
1522         .name           = KBUILD_MODNAME,
1523         .id_table       = usb_ids,
1524         .probe          = probe,
1525         .disconnect     = disconnect,
1526         .pre_reset      = pre_reset,
1527         .post_reset     = post_reset,
1528         .disable_hub_initiated_lpm = 1,
1529 };
1530
1531 struct workqueue_struct *zd_workqueue;
1532
1533 static int __init usb_init(void)
1534 {
1535         int r;
1536
1537         pr_debug("%s usb_init()\n", driver.name);
1538
1539         zd_workqueue = create_singlethread_workqueue(driver.name);
1540         if (zd_workqueue == NULL) {
1541                 pr_err("%s couldn't create workqueue\n", driver.name);
1542                 return -ENOMEM;
1543         }
1544
1545         r = usb_register(&driver);
1546         if (r) {
1547                 destroy_workqueue(zd_workqueue);
1548                 pr_err("%s usb_register() failed. Error number %d\n",
1549                        driver.name, r);
1550                 return r;
1551         }
1552
1553         pr_debug("%s initialized\n", driver.name);
1554         return 0;
1555 }
1556
1557 static void __exit usb_exit(void)
1558 {
1559         pr_debug("%s usb_exit()\n", driver.name);
1560         usb_deregister(&driver);
1561         destroy_workqueue(zd_workqueue);
1562 }
1563
1564 module_init(usb_init);
1565 module_exit(usb_exit);
1566
1567 static int zd_ep_regs_out_msg(struct usb_device *udev, void *data, int len,
1568                               int *actual_length, int timeout)
1569 {
1570         /* In USB 2.0 mode EP_REGS_OUT endpoint is interrupt type. However in
1571          * USB 1.1 mode endpoint is bulk. Select correct type URB by endpoint
1572          * descriptor.
1573          */
1574         struct usb_host_endpoint *ep;
1575         unsigned int pipe;
1576
1577         pipe = usb_sndintpipe(udev, EP_REGS_OUT);
1578         ep = usb_pipe_endpoint(udev, pipe);
1579         if (!ep)
1580                 return -EINVAL;
1581
1582         if (usb_endpoint_xfer_int(&ep->desc)) {
1583                 return usb_interrupt_msg(udev, pipe, data, len,
1584                                          actual_length, timeout);
1585         } else {
1586                 pipe = usb_sndbulkpipe(udev, EP_REGS_OUT);
1587                 return usb_bulk_msg(udev, pipe, data, len, actual_length,
1588                                     timeout);
1589         }
1590 }
1591
1592 static void prepare_read_regs_int(struct zd_usb *usb,
1593                                   struct usb_req_read_regs *req,
1594                                   unsigned int count)
1595 {
1596         struct zd_usb_interrupt *intr = &usb->intr;
1597
1598         spin_lock_irq(&intr->lock);
1599         atomic_set(&intr->read_regs_enabled, 1);
1600         intr->read_regs.req = req;
1601         intr->read_regs.req_count = count;
1602         reinit_completion(&intr->read_regs.completion);
1603         spin_unlock_irq(&intr->lock);
1604 }
1605
1606 static void disable_read_regs_int(struct zd_usb *usb)
1607 {
1608         struct zd_usb_interrupt *intr = &usb->intr;
1609
1610         spin_lock_irq(&intr->lock);
1611         atomic_set(&intr->read_regs_enabled, 0);
1612         spin_unlock_irq(&intr->lock);
1613 }
1614
1615 static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
1616                             unsigned int count)
1617 {
1618         int i;
1619         struct zd_usb_interrupt *intr = &usb->intr;
1620         struct read_regs_int *rr = &intr->read_regs;
1621         struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1622
1623         /* The created block size seems to be larger than expected.
1624          * However results appear to be correct.
1625          */
1626         if (rr->length < struct_size(regs, regs, count)) {
1627                 dev_dbg_f(zd_usb_dev(usb),
1628                          "error: actual length %d less than expected %zu\n",
1629                          rr->length, struct_size(regs, regs, count));
1630                 return false;
1631         }
1632
1633         if (rr->length > sizeof(rr->buffer)) {
1634                 dev_dbg_f(zd_usb_dev(usb),
1635                          "error: actual length %d exceeds buffer size %zu\n",
1636                          rr->length, sizeof(rr->buffer));
1637                 return false;
1638         }
1639
1640         for (i = 0; i < count; i++) {
1641                 struct reg_data *rd = &regs->regs[i];
1642                 if (rd->addr != req->addr[i]) {
1643                         dev_dbg_f(zd_usb_dev(usb),
1644                                  "rd[%d] addr %#06hx expected %#06hx\n", i,
1645                                  le16_to_cpu(rd->addr),
1646                                  le16_to_cpu(req->addr[i]));
1647                         return false;
1648                 }
1649         }
1650
1651         return true;
1652 }
1653
1654 static int get_results(struct zd_usb *usb, u16 *values,
1655                        struct usb_req_read_regs *req, unsigned int count,
1656                        bool *retry)
1657 {
1658         int r;
1659         int i;
1660         struct zd_usb_interrupt *intr = &usb->intr;
1661         struct read_regs_int *rr = &intr->read_regs;
1662         struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1663
1664         spin_lock_irq(&intr->lock);
1665
1666         r = -EIO;
1667
1668         /* Read failed because firmware bug? */
1669         *retry = !!intr->read_regs_int_overridden;
1670         if (*retry)
1671                 goto error_unlock;
1672
1673         if (!check_read_regs(usb, req, count)) {
1674                 dev_dbg_f(zd_usb_dev(usb), "error: invalid read regs\n");
1675                 goto error_unlock;
1676         }
1677
1678         for (i = 0; i < count; i++) {
1679                 struct reg_data *rd = &regs->regs[i];
1680                 values[i] = le16_to_cpu(rd->value);
1681         }
1682
1683         r = 0;
1684 error_unlock:
1685         spin_unlock_irq(&intr->lock);
1686         return r;
1687 }
1688
1689 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1690                      const zd_addr_t *addresses, unsigned int count)
1691 {
1692         int r, i, req_len, actual_req_len, try_count = 0;
1693         struct usb_device *udev;
1694         struct usb_req_read_regs *req = NULL;
1695         unsigned long timeout;
1696         bool retry = false;
1697
1698         if (count < 1) {
1699                 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1700                 return -EINVAL;
1701         }
1702         if (count > USB_MAX_IOREAD16_COUNT) {
1703                 dev_dbg_f(zd_usb_dev(usb),
1704                          "error: count %u exceeds possible max %u\n",
1705                          count, USB_MAX_IOREAD16_COUNT);
1706                 return -EINVAL;
1707         }
1708         if (!usb_int_enabled(usb)) {
1709                 dev_dbg_f(zd_usb_dev(usb),
1710                           "error: usb interrupt not enabled\n");
1711                 return -EWOULDBLOCK;
1712         }
1713
1714         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1715         BUILD_BUG_ON(sizeof(struct usb_req_read_regs) + USB_MAX_IOREAD16_COUNT *
1716                      sizeof(__le16) > sizeof(usb->req_buf));
1717         BUG_ON(sizeof(struct usb_req_read_regs) + count * sizeof(__le16) >
1718                sizeof(usb->req_buf));
1719
1720         req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1721         req = (void *)usb->req_buf;
1722
1723         req->id = cpu_to_le16(USB_REQ_READ_REGS);
1724         for (i = 0; i < count; i++)
1725                 req->addr[i] = cpu_to_le16((u16)addresses[i]);
1726
1727 retry_read:
1728         try_count++;
1729         udev = zd_usb_to_usbdev(usb);
1730         prepare_read_regs_int(usb, req, count);
1731         r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
1732         if (r) {
1733                 dev_dbg_f(zd_usb_dev(usb),
1734                         "error in zd_ep_regs_out_msg(). Error number %d\n", r);
1735                 goto error;
1736         }
1737         if (req_len != actual_req_len) {
1738                 dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()\n"
1739                         " req_len %d != actual_req_len %d\n",
1740                         req_len, actual_req_len);
1741                 r = -EIO;
1742                 goto error;
1743         }
1744
1745         timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1746                                               msecs_to_jiffies(50));
1747         if (!timeout) {
1748                 disable_read_regs_int(usb);
1749                 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1750                 r = -ETIMEDOUT;
1751                 goto error;
1752         }
1753
1754         r = get_results(usb, values, req, count, &retry);
1755         if (retry && try_count < 20) {
1756                 dev_dbg_f(zd_usb_dev(usb), "read retry, tries so far: %d\n",
1757                                 try_count);
1758                 goto retry_read;
1759         }
1760 error:
1761         return r;
1762 }
1763
1764 static void iowrite16v_urb_complete(struct urb *urb)
1765 {
1766         struct zd_usb *usb = urb->context;
1767
1768         if (urb->status && !usb->cmd_error)
1769                 usb->cmd_error = urb->status;
1770
1771         if (!usb->cmd_error &&
1772                         urb->actual_length != urb->transfer_buffer_length)
1773                 usb->cmd_error = -EIO;
1774 }
1775
1776 static int zd_submit_waiting_urb(struct zd_usb *usb, bool last)
1777 {
1778         int r = 0;
1779         struct urb *urb = usb->urb_async_waiting;
1780
1781         if (!urb)
1782                 return 0;
1783
1784         usb->urb_async_waiting = NULL;
1785
1786         if (!last)
1787                 urb->transfer_flags |= URB_NO_INTERRUPT;
1788
1789         usb_anchor_urb(urb, &usb->submitted_cmds);
1790         r = usb_submit_urb(urb, GFP_KERNEL);
1791         if (r) {
1792                 usb_unanchor_urb(urb);
1793                 dev_dbg_f(zd_usb_dev(usb),
1794                         "error in usb_submit_urb(). Error number %d\n", r);
1795                 goto error;
1796         }
1797
1798         /* fall-through with r == 0 */
1799 error:
1800         usb_free_urb(urb);
1801         return r;
1802 }
1803
1804 void zd_usb_iowrite16v_async_start(struct zd_usb *usb)
1805 {
1806         ZD_ASSERT(usb_anchor_empty(&usb->submitted_cmds));
1807         ZD_ASSERT(usb->urb_async_waiting == NULL);
1808         ZD_ASSERT(!usb->in_async);
1809
1810         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1811
1812         usb->in_async = 1;
1813         usb->cmd_error = 0;
1814         usb->urb_async_waiting = NULL;
1815 }
1816
1817 int zd_usb_iowrite16v_async_end(struct zd_usb *usb, unsigned int timeout)
1818 {
1819         int r;
1820
1821         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1822         ZD_ASSERT(usb->in_async);
1823
1824         /* Submit last iowrite16v URB */
1825         r = zd_submit_waiting_urb(usb, true);
1826         if (r) {
1827                 dev_dbg_f(zd_usb_dev(usb),
1828                         "error in zd_submit_waiting_usb(). "
1829                         "Error number %d\n", r);
1830
1831                 usb_kill_anchored_urbs(&usb->submitted_cmds);
1832                 goto error;
1833         }
1834
1835         if (timeout)
1836                 timeout = usb_wait_anchor_empty_timeout(&usb->submitted_cmds,
1837                                                         timeout);
1838         if (!timeout) {
1839                 usb_kill_anchored_urbs(&usb->submitted_cmds);
1840                 if (usb->cmd_error == -ENOENT) {
1841                         dev_dbg_f(zd_usb_dev(usb), "timed out");
1842                         r = -ETIMEDOUT;
1843                         goto error;
1844                 }
1845         }
1846
1847         r = usb->cmd_error;
1848 error:
1849         usb->in_async = 0;
1850         return r;
1851 }
1852
1853 int zd_usb_iowrite16v_async(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1854                             unsigned int count)
1855 {
1856         int r;
1857         struct usb_device *udev;
1858         struct usb_req_write_regs *req = NULL;
1859         int i, req_len;
1860         struct urb *urb;
1861         struct usb_host_endpoint *ep;
1862
1863         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1864         ZD_ASSERT(usb->in_async);
1865
1866         if (count == 0)
1867                 return 0;
1868         if (count > USB_MAX_IOWRITE16_COUNT) {
1869                 dev_dbg_f(zd_usb_dev(usb),
1870                         "error: count %u exceeds possible max %u\n",
1871                         count, USB_MAX_IOWRITE16_COUNT);
1872                 return -EINVAL;
1873         }
1874
1875         udev = zd_usb_to_usbdev(usb);
1876
1877         ep = usb_pipe_endpoint(udev, usb_sndintpipe(udev, EP_REGS_OUT));
1878         if (!ep)
1879                 return -ENOENT;
1880
1881         urb = usb_alloc_urb(0, GFP_KERNEL);
1882         if (!urb)
1883                 return -ENOMEM;
1884
1885         req_len = struct_size(req, reg_writes, count);
1886         req = kmalloc(req_len, GFP_KERNEL);
1887         if (!req) {
1888                 r = -ENOMEM;
1889                 goto error;
1890         }
1891
1892         req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1893         for (i = 0; i < count; i++) {
1894                 struct reg_data *rw  = &req->reg_writes[i];
1895                 rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1896                 rw->value = cpu_to_le16(ioreqs[i].value);
1897         }
1898
1899         /* In USB 2.0 mode endpoint is interrupt type. However in USB 1.1 mode
1900          * endpoint is bulk. Select correct type URB by endpoint descriptor.
1901          */
1902         if (usb_endpoint_xfer_int(&ep->desc))
1903                 usb_fill_int_urb(urb, udev, usb_sndintpipe(udev, EP_REGS_OUT),
1904                                  req, req_len, iowrite16v_urb_complete, usb,
1905                                  ep->desc.bInterval);
1906         else
1907                 usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1908                                   req, req_len, iowrite16v_urb_complete, usb);
1909
1910         urb->transfer_flags |= URB_FREE_BUFFER;
1911
1912         /* Submit previous URB */
1913         r = zd_submit_waiting_urb(usb, false);
1914         if (r) {
1915                 dev_dbg_f(zd_usb_dev(usb),
1916                         "error in zd_submit_waiting_usb(). "
1917                         "Error number %d\n", r);
1918                 goto error;
1919         }
1920
1921         /* Delay submit so that URB_NO_INTERRUPT flag can be set for all URBs
1922          * of currect batch except for very last.
1923          */
1924         usb->urb_async_waiting = urb;
1925         return 0;
1926 error:
1927         usb_free_urb(urb);
1928         return r;
1929 }
1930
1931 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1932                         unsigned int count)
1933 {
1934         int r;
1935
1936         zd_usb_iowrite16v_async_start(usb);
1937         r = zd_usb_iowrite16v_async(usb, ioreqs, count);
1938         if (r) {
1939                 zd_usb_iowrite16v_async_end(usb, 0);
1940                 return r;
1941         }
1942         return zd_usb_iowrite16v_async_end(usb, 50 /* ms */);
1943 }
1944
1945 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1946 {
1947         int r;
1948         struct usb_device *udev;
1949         struct usb_req_rfwrite *req = NULL;
1950         int i, req_len, actual_req_len;
1951         u16 bit_value_template;
1952
1953         if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1954                 dev_dbg_f(zd_usb_dev(usb),
1955                         "error: bits %d are smaller than"
1956                         " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1957                         bits, USB_MIN_RFWRITE_BIT_COUNT);
1958                 return -EINVAL;
1959         }
1960         if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1961                 dev_dbg_f(zd_usb_dev(usb),
1962                         "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1963                         bits, USB_MAX_RFWRITE_BIT_COUNT);
1964                 return -EINVAL;
1965         }
1966 #ifdef DEBUG
1967         if (value & (~0UL << bits)) {
1968                 dev_dbg_f(zd_usb_dev(usb),
1969                         "error: value %#09x has bits >= %d set\n",
1970                         value, bits);
1971                 return -EINVAL;
1972         }
1973 #endif /* DEBUG */
1974
1975         dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1976
1977         r = zd_usb_ioread16(usb, &bit_value_template, ZD_CR203);
1978         if (r) {
1979                 dev_dbg_f(zd_usb_dev(usb),
1980                         "error %d: Couldn't read ZD_CR203\n", r);
1981                 return r;
1982         }
1983         bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
1984
1985         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1986         BUILD_BUG_ON(sizeof(struct usb_req_rfwrite) +
1987                      USB_MAX_RFWRITE_BIT_COUNT * sizeof(__le16) >
1988                      sizeof(usb->req_buf));
1989         BUG_ON(sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16) >
1990                sizeof(usb->req_buf));
1991
1992         req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
1993         req = (void *)usb->req_buf;
1994
1995         req->id = cpu_to_le16(USB_REQ_WRITE_RF);
1996         /* 1: 3683a, but not used in ZYDAS driver */
1997         req->value = cpu_to_le16(2);
1998         req->bits = cpu_to_le16(bits);
1999
2000         for (i = 0; i < bits; i++) {
2001                 u16 bv = bit_value_template;
2002                 if (value & (1 << (bits-1-i)))
2003                         bv |= RF_DATA;
2004                 req->bit_values[i] = cpu_to_le16(bv);
2005         }
2006
2007         udev = zd_usb_to_usbdev(usb);
2008         r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
2009         if (r) {
2010                 dev_dbg_f(zd_usb_dev(usb),
2011                         "error in zd_ep_regs_out_msg(). Error number %d\n", r);
2012                 goto out;
2013         }
2014         if (req_len != actual_req_len) {
2015                 dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()"
2016                         " req_len %d != actual_req_len %d\n",
2017                         req_len, actual_req_len);
2018                 r = -EIO;
2019                 goto out;
2020         }
2021
2022         /* FALL-THROUGH with r == 0 */
2023 out:
2024         return r;
2025 }