GNU Linux-libre 4.9.326-gnu1
[releases.git] / drivers / net / wireless / zydas / zd1211rw / zd_usb.c
1 /* ZD1211 USB-WLAN driver for Linux
2  *
3  * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4  * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5  * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/firmware.h>
24 #include <linux/device.h>
25 #include <linux/errno.h>
26 #include <linux/slab.h>
27 #include <linux/skbuff.h>
28 #include <linux/usb.h>
29 #include <linux/workqueue.h>
30 #include <linux/module.h>
31 #include <net/mac80211.h>
32 #include <asm/unaligned.h>
33
34 #include "zd_def.h"
35 #include "zd_mac.h"
36 #include "zd_usb.h"
37
38 static struct usb_device_id usb_ids[] = {
39         /* ZD1211 */
40         { USB_DEVICE(0x0105, 0x145f), .driver_info = DEVICE_ZD1211 },
41         { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
42         { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
43         { USB_DEVICE(0x0586, 0x3407), .driver_info = DEVICE_ZD1211 },
44         { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
45         { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
46         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
47         { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
48         { USB_DEVICE(0x0ace, 0xa211), .driver_info = DEVICE_ZD1211 },
49         { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
50         { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
51         { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
52         { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
53         { USB_DEVICE(0x0df6, 0x9075), .driver_info = DEVICE_ZD1211 },
54         { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
55         { USB_DEVICE(0x129b, 0x1666), .driver_info = DEVICE_ZD1211 },
56         { USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
57         { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
58         { USB_DEVICE(0x14ea, 0xab10), .driver_info = DEVICE_ZD1211 },
59         { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
60         { USB_DEVICE(0x157e, 0x300a), .driver_info = DEVICE_ZD1211 },
61         { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
62         { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
63         { USB_DEVICE(0x157e, 0x3207), .driver_info = DEVICE_ZD1211 },
64         { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
65         { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
66         /* ZD1211B */
67         { USB_DEVICE(0x0053, 0x5301), .driver_info = DEVICE_ZD1211B },
68         { USB_DEVICE(0x0409, 0x0248), .driver_info = DEVICE_ZD1211B },
69         { USB_DEVICE(0x0411, 0x00da), .driver_info = DEVICE_ZD1211B },
70         { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
71         { USB_DEVICE(0x0471, 0x1237), .driver_info = DEVICE_ZD1211B },
72         { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
73         { USB_DEVICE(0x054c, 0x0257), .driver_info = DEVICE_ZD1211B },
74         { USB_DEVICE(0x0586, 0x340a), .driver_info = DEVICE_ZD1211B },
75         { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
76         { USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
77         { USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B },
78         { USB_DEVICE(0x0586, 0x3413), .driver_info = DEVICE_ZD1211B },
79         { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
80         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211B },
81         { USB_DEVICE(0x07fa, 0x1196), .driver_info = DEVICE_ZD1211B },
82         { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
83         { USB_DEVICE(0x083a, 0xe501), .driver_info = DEVICE_ZD1211B },
84         { USB_DEVICE(0x083a, 0xe503), .driver_info = DEVICE_ZD1211B },
85         { USB_DEVICE(0x083a, 0xe506), .driver_info = DEVICE_ZD1211B },
86         { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
87         { USB_DEVICE(0x0ace, 0xb215), .driver_info = DEVICE_ZD1211B },
88         { USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
89         { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
90         { USB_DEVICE(0x0cde, 0x001a), .driver_info = DEVICE_ZD1211B },
91         { USB_DEVICE(0x0df6, 0x0036), .driver_info = DEVICE_ZD1211B },
92         { USB_DEVICE(0x129b, 0x1667), .driver_info = DEVICE_ZD1211B },
93         { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
94         { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
95         { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
96         { USB_DEVICE(0x2019, 0x5303), .driver_info = DEVICE_ZD1211B },
97         { USB_DEVICE(0x2019, 0xed01), .driver_info = DEVICE_ZD1211B },
98         /* "Driverless" devices that need ejecting */
99         { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
100         { USB_DEVICE(0x0ace, 0x20ff), .driver_info = DEVICE_INSTALLER },
101         {}
102 };
103
104 MODULE_LICENSE("GPL");
105 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
106 MODULE_AUTHOR("Ulrich Kunitz");
107 MODULE_AUTHOR("Daniel Drake");
108 MODULE_VERSION("1.0");
109 MODULE_DEVICE_TABLE(usb, usb_ids);
110
111 #define FW_ZD1211_PREFIX        "/*(DEBLOBBED)*/"
112 #define FW_ZD1211B_PREFIX       "/*(DEBLOBBED)*/"
113
114 static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
115                             unsigned int count);
116
117 /* USB device initialization */
118 static void int_urb_complete(struct urb *urb);
119
120 static int request_fw_file(
121         const struct firmware **fw, const char *name, struct device *device)
122 {
123         int r;
124
125         dev_dbg_f(device, "fw name %s\n", name);
126
127         r = reject_firmware(fw, name, device);
128         if (r)
129                 dev_err(device,
130                        "Could not load firmware file %s. Error number %d\n",
131                        name, r);
132         return r;
133 }
134
135 static inline u16 get_bcdDevice(const struct usb_device *udev)
136 {
137         return le16_to_cpu(udev->descriptor.bcdDevice);
138 }
139
140 enum upload_code_flags {
141         REBOOT = 1,
142 };
143
144 /* Ensures that MAX_TRANSFER_SIZE is even. */
145 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
146
147 static int upload_code(struct usb_device *udev,
148         const u8 *data, size_t size, u16 code_offset, int flags)
149 {
150         u8 *p;
151         int r;
152
153         /* USB request blocks need "kmalloced" buffers.
154          */
155         p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
156         if (!p) {
157                 r = -ENOMEM;
158                 goto error;
159         }
160
161         size &= ~1;
162         while (size > 0) {
163                 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
164                         size : MAX_TRANSFER_SIZE;
165
166                 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
167
168                 memcpy(p, data, transfer_size);
169                 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
170                         USB_REQ_FIRMWARE_DOWNLOAD,
171                         USB_DIR_OUT | USB_TYPE_VENDOR,
172                         code_offset, 0, p, transfer_size, 1000 /* ms */);
173                 if (r < 0) {
174                         dev_err(&udev->dev,
175                                "USB control request for firmware upload"
176                                " failed. Error number %d\n", r);
177                         goto error;
178                 }
179                 transfer_size = r & ~1;
180
181                 size -= transfer_size;
182                 data += transfer_size;
183                 code_offset += transfer_size/sizeof(u16);
184         }
185
186         if (flags & REBOOT) {
187                 u8 ret;
188
189                 /* Use "DMA-aware" buffer. */
190                 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
191                         USB_REQ_FIRMWARE_CONFIRM,
192                         USB_DIR_IN | USB_TYPE_VENDOR,
193                         0, 0, p, sizeof(ret), 5000 /* ms */);
194                 if (r != sizeof(ret)) {
195                         dev_err(&udev->dev,
196                                 "control request firmware confirmation failed."
197                                 " Return value %d\n", r);
198                         if (r >= 0)
199                                 r = -ENODEV;
200                         goto error;
201                 }
202                 ret = p[0];
203                 if (ret & 0x80) {
204                         dev_err(&udev->dev,
205                                 "Internal error while downloading."
206                                 " Firmware confirm return value %#04x\n",
207                                 (unsigned int)ret);
208                         r = -ENODEV;
209                         goto error;
210                 }
211                 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
212                         (unsigned int)ret);
213         }
214
215         r = 0;
216 error:
217         kfree(p);
218         return r;
219 }
220
221 static u16 get_word(const void *data, u16 offset)
222 {
223         const __le16 *p = data;
224         return le16_to_cpu(p[offset]);
225 }
226
227 static char *get_fw_name(struct zd_usb *usb, char *buffer, size_t size,
228                        const char* postfix)
229 {
230         scnprintf(buffer, size, "%s%s",
231                 usb->is_zd1211b ?
232                         FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
233                 postfix);
234         return buffer;
235 }
236
237 static int handle_version_mismatch(struct zd_usb *usb,
238         const struct firmware *ub_fw)
239 {
240         struct usb_device *udev = zd_usb_to_usbdev(usb);
241         const struct firmware *ur_fw = NULL;
242         int offset;
243         int r = 0;
244         char fw_name[128];
245
246         r = request_fw_file(&ur_fw,
247                 get_fw_name(usb, fw_name, sizeof(fw_name), "ur"),
248                 &udev->dev);
249         if (r)
250                 goto error;
251
252         r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
253         if (r)
254                 goto error;
255
256         offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
257         r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
258                 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
259
260         /* At this point, the vendor driver downloads the whole firmware
261          * image, hacks around with version IDs, and uploads it again,
262          * completely overwriting the boot code. We do not do this here as
263          * it is not required on any tested devices, and it is suspected to
264          * cause problems. */
265 error:
266         release_firmware(ur_fw);
267         return r;
268 }
269
270 static int upload_firmware(struct zd_usb *usb)
271 {
272         int r;
273         u16 fw_bcdDevice;
274         u16 bcdDevice;
275         struct usb_device *udev = zd_usb_to_usbdev(usb);
276         const struct firmware *ub_fw = NULL;
277         const struct firmware *uph_fw = NULL;
278         char fw_name[128];
279
280         bcdDevice = get_bcdDevice(udev);
281
282         r = request_fw_file(&ub_fw,
283                 get_fw_name(usb, fw_name, sizeof(fw_name), "ub"),
284                 &udev->dev);
285         if (r)
286                 goto error;
287
288         fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
289
290         if (fw_bcdDevice != bcdDevice) {
291                 dev_info(&udev->dev,
292                         "firmware version %#06x and device bootcode version "
293                         "%#06x differ\n", fw_bcdDevice, bcdDevice);
294                 if (bcdDevice <= 0x4313)
295                         dev_warn(&udev->dev, "device has old bootcode, please "
296                                 "report success or failure\n");
297
298                 r = handle_version_mismatch(usb, ub_fw);
299                 if (r)
300                         goto error;
301         } else {
302                 dev_dbg_f(&udev->dev,
303                         "firmware device id %#06x is equal to the "
304                         "actual device id\n", fw_bcdDevice);
305         }
306
307
308         r = request_fw_file(&uph_fw,
309                 get_fw_name(usb, fw_name, sizeof(fw_name), "uphr"),
310                 &udev->dev);
311         if (r)
312                 goto error;
313
314         r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
315         if (r) {
316                 dev_err(&udev->dev,
317                         "Could not upload firmware code uph. Error number %d\n",
318                         r);
319         }
320
321         /* FALL-THROUGH */
322 error:
323         release_firmware(ub_fw);
324         release_firmware(uph_fw);
325         return r;
326 }
327
328 /*(DEBLOBBED)*/
329
330 /* Read data from device address space using "firmware interface" which does
331  * not require firmware to be loaded. */
332 int zd_usb_read_fw(struct zd_usb *usb, zd_addr_t addr, u8 *data, u16 len)
333 {
334         int r;
335         struct usb_device *udev = zd_usb_to_usbdev(usb);
336         u8 *buf;
337
338         /* Use "DMA-aware" buffer. */
339         buf = kmalloc(len, GFP_KERNEL);
340         if (!buf)
341                 return -ENOMEM;
342         r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
343                 USB_REQ_FIRMWARE_READ_DATA, USB_DIR_IN | 0x40, addr, 0,
344                 buf, len, 5000);
345         if (r < 0) {
346                 dev_err(&udev->dev,
347                         "read over firmware interface failed: %d\n", r);
348                 goto exit;
349         } else if (r != len) {
350                 dev_err(&udev->dev,
351                         "incomplete read over firmware interface: %d/%d\n",
352                         r, len);
353                 r = -EIO;
354                 goto exit;
355         }
356         r = 0;
357         memcpy(data, buf, len);
358 exit:
359         kfree(buf);
360         return r;
361 }
362
363 #define urb_dev(urb) (&(urb)->dev->dev)
364
365 static inline void handle_regs_int_override(struct urb *urb)
366 {
367         struct zd_usb *usb = urb->context;
368         struct zd_usb_interrupt *intr = &usb->intr;
369
370         spin_lock(&intr->lock);
371         if (atomic_read(&intr->read_regs_enabled)) {
372                 atomic_set(&intr->read_regs_enabled, 0);
373                 intr->read_regs_int_overridden = 1;
374                 complete(&intr->read_regs.completion);
375         }
376         spin_unlock(&intr->lock);
377 }
378
379 static inline void handle_regs_int(struct urb *urb)
380 {
381         struct zd_usb *usb = urb->context;
382         struct zd_usb_interrupt *intr = &usb->intr;
383         int len;
384         u16 int_num;
385
386         ZD_ASSERT(in_interrupt());
387         spin_lock(&intr->lock);
388
389         int_num = le16_to_cpu(*(__le16 *)(urb->transfer_buffer+2));
390         if (int_num == CR_INTERRUPT) {
391                 struct zd_mac *mac = zd_hw_mac(zd_usb_to_hw(urb->context));
392                 spin_lock(&mac->lock);
393                 memcpy(&mac->intr_buffer, urb->transfer_buffer,
394                                 USB_MAX_EP_INT_BUFFER);
395                 spin_unlock(&mac->lock);
396                 schedule_work(&mac->process_intr);
397         } else if (atomic_read(&intr->read_regs_enabled)) {
398                 len = urb->actual_length;
399                 intr->read_regs.length = urb->actual_length;
400                 if (len > sizeof(intr->read_regs.buffer))
401                         len = sizeof(intr->read_regs.buffer);
402
403                 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
404
405                 /* Sometimes USB_INT_ID_REGS is not overridden, but comes after
406                  * USB_INT_ID_RETRY_FAILED. Read-reg retry then gets this
407                  * delayed USB_INT_ID_REGS, but leaves USB_INT_ID_REGS of
408                  * retry unhandled. Next read-reg command then might catch
409                  * this wrong USB_INT_ID_REGS. Fix by ignoring wrong reads.
410                  */
411                 if (!check_read_regs(usb, intr->read_regs.req,
412                                                 intr->read_regs.req_count))
413                         goto out;
414
415                 atomic_set(&intr->read_regs_enabled, 0);
416                 intr->read_regs_int_overridden = 0;
417                 complete(&intr->read_regs.completion);
418
419                 goto out;
420         }
421
422 out:
423         spin_unlock(&intr->lock);
424
425         /* CR_INTERRUPT might override read_reg too. */
426         if (int_num == CR_INTERRUPT && atomic_read(&intr->read_regs_enabled))
427                 handle_regs_int_override(urb);
428 }
429
430 static void int_urb_complete(struct urb *urb)
431 {
432         int r;
433         struct usb_int_header *hdr;
434         struct zd_usb *usb;
435         struct zd_usb_interrupt *intr;
436
437         switch (urb->status) {
438         case 0:
439                 break;
440         case -ESHUTDOWN:
441         case -EINVAL:
442         case -ENODEV:
443         case -ENOENT:
444         case -ECONNRESET:
445         case -EPIPE:
446                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
447                 return;
448         default:
449                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
450                 goto resubmit;
451         }
452
453         if (urb->actual_length < sizeof(hdr)) {
454                 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
455                 goto resubmit;
456         }
457
458         hdr = urb->transfer_buffer;
459         if (hdr->type != USB_INT_TYPE) {
460                 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
461                 goto resubmit;
462         }
463
464         /* USB_INT_ID_RETRY_FAILED triggered by tx-urb submit can override
465          * pending USB_INT_ID_REGS causing read command timeout.
466          */
467         usb = urb->context;
468         intr = &usb->intr;
469         if (hdr->id != USB_INT_ID_REGS && atomic_read(&intr->read_regs_enabled))
470                 handle_regs_int_override(urb);
471
472         switch (hdr->id) {
473         case USB_INT_ID_REGS:
474                 handle_regs_int(urb);
475                 break;
476         case USB_INT_ID_RETRY_FAILED:
477                 zd_mac_tx_failed(urb);
478                 break;
479         default:
480                 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
481                         (unsigned int)hdr->id);
482                 goto resubmit;
483         }
484
485 resubmit:
486         r = usb_submit_urb(urb, GFP_ATOMIC);
487         if (r) {
488                 dev_dbg_f(urb_dev(urb), "error: resubmit urb %p err code %d\n",
489                           urb, r);
490                 /* TODO: add worker to reset intr->urb */
491         }
492         return;
493 }
494
495 static inline int int_urb_interval(struct usb_device *udev)
496 {
497         switch (udev->speed) {
498         case USB_SPEED_HIGH:
499                 return 4;
500         case USB_SPEED_LOW:
501                 return 10;
502         case USB_SPEED_FULL:
503         default:
504                 return 1;
505         }
506 }
507
508 static inline int usb_int_enabled(struct zd_usb *usb)
509 {
510         unsigned long flags;
511         struct zd_usb_interrupt *intr = &usb->intr;
512         struct urb *urb;
513
514         spin_lock_irqsave(&intr->lock, flags);
515         urb = intr->urb;
516         spin_unlock_irqrestore(&intr->lock, flags);
517         return urb != NULL;
518 }
519
520 int zd_usb_enable_int(struct zd_usb *usb)
521 {
522         int r;
523         struct usb_device *udev = zd_usb_to_usbdev(usb);
524         struct zd_usb_interrupt *intr = &usb->intr;
525         struct urb *urb;
526
527         dev_dbg_f(zd_usb_dev(usb), "\n");
528
529         urb = usb_alloc_urb(0, GFP_KERNEL);
530         if (!urb) {
531                 r = -ENOMEM;
532                 goto out;
533         }
534
535         ZD_ASSERT(!irqs_disabled());
536         spin_lock_irq(&intr->lock);
537         if (intr->urb) {
538                 spin_unlock_irq(&intr->lock);
539                 r = 0;
540                 goto error_free_urb;
541         }
542         intr->urb = urb;
543         spin_unlock_irq(&intr->lock);
544
545         r = -ENOMEM;
546         intr->buffer = usb_alloc_coherent(udev, USB_MAX_EP_INT_BUFFER,
547                                           GFP_KERNEL, &intr->buffer_dma);
548         if (!intr->buffer) {
549                 dev_dbg_f(zd_usb_dev(usb),
550                         "couldn't allocate transfer_buffer\n");
551                 goto error_set_urb_null;
552         }
553
554         usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
555                          intr->buffer, USB_MAX_EP_INT_BUFFER,
556                          int_urb_complete, usb,
557                          intr->interval);
558         urb->transfer_dma = intr->buffer_dma;
559         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
560
561         dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
562         r = usb_submit_urb(urb, GFP_KERNEL);
563         if (r) {
564                 dev_dbg_f(zd_usb_dev(usb),
565                          "Couldn't submit urb. Error number %d\n", r);
566                 goto error;
567         }
568
569         return 0;
570 error:
571         usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER,
572                           intr->buffer, intr->buffer_dma);
573 error_set_urb_null:
574         spin_lock_irq(&intr->lock);
575         intr->urb = NULL;
576         spin_unlock_irq(&intr->lock);
577 error_free_urb:
578         usb_free_urb(urb);
579 out:
580         return r;
581 }
582
583 void zd_usb_disable_int(struct zd_usb *usb)
584 {
585         unsigned long flags;
586         struct usb_device *udev = zd_usb_to_usbdev(usb);
587         struct zd_usb_interrupt *intr = &usb->intr;
588         struct urb *urb;
589         void *buffer;
590         dma_addr_t buffer_dma;
591
592         spin_lock_irqsave(&intr->lock, flags);
593         urb = intr->urb;
594         if (!urb) {
595                 spin_unlock_irqrestore(&intr->lock, flags);
596                 return;
597         }
598         intr->urb = NULL;
599         buffer = intr->buffer;
600         buffer_dma = intr->buffer_dma;
601         intr->buffer = NULL;
602         spin_unlock_irqrestore(&intr->lock, flags);
603
604         usb_kill_urb(urb);
605         dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
606         usb_free_urb(urb);
607
608         if (buffer)
609                 usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER,
610                                   buffer, buffer_dma);
611 }
612
613 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
614                              unsigned int length)
615 {
616         int i;
617         const struct rx_length_info *length_info;
618
619         if (length < sizeof(struct rx_length_info)) {
620                 /* It's not a complete packet anyhow. */
621                 dev_dbg_f(zd_usb_dev(usb), "invalid, small RX packet : %d\n",
622                                            length);
623                 return;
624         }
625         length_info = (struct rx_length_info *)
626                 (buffer + length - sizeof(struct rx_length_info));
627
628         /* It might be that three frames are merged into a single URB
629          * transaction. We have to check for the length info tag.
630          *
631          * While testing we discovered that length_info might be unaligned,
632          * because if USB transactions are merged, the last packet will not
633          * be padded. Unaligned access might also happen if the length_info
634          * structure is not present.
635          */
636         if (get_unaligned_le16(&length_info->tag) == RX_LENGTH_INFO_TAG)
637         {
638                 unsigned int l, k, n;
639                 for (i = 0, l = 0;; i++) {
640                         k = get_unaligned_le16(&length_info->length[i]);
641                         if (k == 0)
642                                 return;
643                         n = l+k;
644                         if (n > length)
645                                 return;
646                         zd_mac_rx(zd_usb_to_hw(usb), buffer+l, k);
647                         if (i >= 2)
648                                 return;
649                         l = (n+3) & ~3;
650                 }
651         } else {
652                 zd_mac_rx(zd_usb_to_hw(usb), buffer, length);
653         }
654 }
655
656 static void rx_urb_complete(struct urb *urb)
657 {
658         int r;
659         struct zd_usb *usb;
660         struct zd_usb_rx *rx;
661         const u8 *buffer;
662         unsigned int length;
663
664         switch (urb->status) {
665         case 0:
666                 break;
667         case -ESHUTDOWN:
668         case -EINVAL:
669         case -ENODEV:
670         case -ENOENT:
671         case -ECONNRESET:
672         case -EPIPE:
673                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
674                 return;
675         default:
676                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
677                 goto resubmit;
678         }
679
680         buffer = urb->transfer_buffer;
681         length = urb->actual_length;
682         usb = urb->context;
683         rx = &usb->rx;
684
685         tasklet_schedule(&rx->reset_timer_tasklet);
686
687         if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
688                 /* If there is an old first fragment, we don't care. */
689                 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
690                 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
691                 spin_lock(&rx->lock);
692                 memcpy(rx->fragment, buffer, length);
693                 rx->fragment_length = length;
694                 spin_unlock(&rx->lock);
695                 goto resubmit;
696         }
697
698         spin_lock(&rx->lock);
699         if (rx->fragment_length > 0) {
700                 /* We are on a second fragment, we believe */
701                 ZD_ASSERT(length + rx->fragment_length <=
702                           ARRAY_SIZE(rx->fragment));
703                 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
704                 memcpy(rx->fragment+rx->fragment_length, buffer, length);
705                 handle_rx_packet(usb, rx->fragment,
706                                  rx->fragment_length + length);
707                 rx->fragment_length = 0;
708                 spin_unlock(&rx->lock);
709         } else {
710                 spin_unlock(&rx->lock);
711                 handle_rx_packet(usb, buffer, length);
712         }
713
714 resubmit:
715         r = usb_submit_urb(urb, GFP_ATOMIC);
716         if (r)
717                 dev_dbg_f(urb_dev(urb), "urb %p resubmit error %d\n", urb, r);
718 }
719
720 static struct urb *alloc_rx_urb(struct zd_usb *usb)
721 {
722         struct usb_device *udev = zd_usb_to_usbdev(usb);
723         struct urb *urb;
724         void *buffer;
725
726         urb = usb_alloc_urb(0, GFP_KERNEL);
727         if (!urb)
728                 return NULL;
729         buffer = usb_alloc_coherent(udev, USB_MAX_RX_SIZE, GFP_KERNEL,
730                                     &urb->transfer_dma);
731         if (!buffer) {
732                 usb_free_urb(urb);
733                 return NULL;
734         }
735
736         usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
737                           buffer, USB_MAX_RX_SIZE,
738                           rx_urb_complete, usb);
739         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
740
741         return urb;
742 }
743
744 static void free_rx_urb(struct urb *urb)
745 {
746         if (!urb)
747                 return;
748         usb_free_coherent(urb->dev, urb->transfer_buffer_length,
749                           urb->transfer_buffer, urb->transfer_dma);
750         usb_free_urb(urb);
751 }
752
753 static int __zd_usb_enable_rx(struct zd_usb *usb)
754 {
755         int i, r;
756         struct zd_usb_rx *rx = &usb->rx;
757         struct urb **urbs;
758
759         dev_dbg_f(zd_usb_dev(usb), "\n");
760
761         r = -ENOMEM;
762         urbs = kcalloc(RX_URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
763         if (!urbs)
764                 goto error;
765         for (i = 0; i < RX_URBS_COUNT; i++) {
766                 urbs[i] = alloc_rx_urb(usb);
767                 if (!urbs[i])
768                         goto error;
769         }
770
771         ZD_ASSERT(!irqs_disabled());
772         spin_lock_irq(&rx->lock);
773         if (rx->urbs) {
774                 spin_unlock_irq(&rx->lock);
775                 r = 0;
776                 goto error;
777         }
778         rx->urbs = urbs;
779         rx->urbs_count = RX_URBS_COUNT;
780         spin_unlock_irq(&rx->lock);
781
782         for (i = 0; i < RX_URBS_COUNT; i++) {
783                 r = usb_submit_urb(urbs[i], GFP_KERNEL);
784                 if (r)
785                         goto error_submit;
786         }
787
788         return 0;
789 error_submit:
790         for (i = 0; i < RX_URBS_COUNT; i++) {
791                 usb_kill_urb(urbs[i]);
792         }
793         spin_lock_irq(&rx->lock);
794         rx->urbs = NULL;
795         rx->urbs_count = 0;
796         spin_unlock_irq(&rx->lock);
797 error:
798         if (urbs) {
799                 for (i = 0; i < RX_URBS_COUNT; i++)
800                         free_rx_urb(urbs[i]);
801         }
802         return r;
803 }
804
805 int zd_usb_enable_rx(struct zd_usb *usb)
806 {
807         int r;
808         struct zd_usb_rx *rx = &usb->rx;
809
810         mutex_lock(&rx->setup_mutex);
811         r = __zd_usb_enable_rx(usb);
812         mutex_unlock(&rx->setup_mutex);
813
814         zd_usb_reset_rx_idle_timer(usb);
815
816         return r;
817 }
818
819 static void __zd_usb_disable_rx(struct zd_usb *usb)
820 {
821         int i;
822         unsigned long flags;
823         struct urb **urbs;
824         unsigned int count;
825         struct zd_usb_rx *rx = &usb->rx;
826
827         spin_lock_irqsave(&rx->lock, flags);
828         urbs = rx->urbs;
829         count = rx->urbs_count;
830         spin_unlock_irqrestore(&rx->lock, flags);
831         if (!urbs)
832                 return;
833
834         for (i = 0; i < count; i++) {
835                 usb_kill_urb(urbs[i]);
836                 free_rx_urb(urbs[i]);
837         }
838         kfree(urbs);
839
840         spin_lock_irqsave(&rx->lock, flags);
841         rx->urbs = NULL;
842         rx->urbs_count = 0;
843         spin_unlock_irqrestore(&rx->lock, flags);
844 }
845
846 void zd_usb_disable_rx(struct zd_usb *usb)
847 {
848         struct zd_usb_rx *rx = &usb->rx;
849
850         mutex_lock(&rx->setup_mutex);
851         __zd_usb_disable_rx(usb);
852         mutex_unlock(&rx->setup_mutex);
853
854         tasklet_kill(&rx->reset_timer_tasklet);
855         cancel_delayed_work_sync(&rx->idle_work);
856 }
857
858 static void zd_usb_reset_rx(struct zd_usb *usb)
859 {
860         bool do_reset;
861         struct zd_usb_rx *rx = &usb->rx;
862         unsigned long flags;
863
864         mutex_lock(&rx->setup_mutex);
865
866         spin_lock_irqsave(&rx->lock, flags);
867         do_reset = rx->urbs != NULL;
868         spin_unlock_irqrestore(&rx->lock, flags);
869
870         if (do_reset) {
871                 __zd_usb_disable_rx(usb);
872                 __zd_usb_enable_rx(usb);
873         }
874
875         mutex_unlock(&rx->setup_mutex);
876
877         if (do_reset)
878                 zd_usb_reset_rx_idle_timer(usb);
879 }
880
881 /**
882  * zd_usb_disable_tx - disable transmission
883  * @usb: the zd1211rw-private USB structure
884  *
885  * Frees all URBs in the free list and marks the transmission as disabled.
886  */
887 void zd_usb_disable_tx(struct zd_usb *usb)
888 {
889         struct zd_usb_tx *tx = &usb->tx;
890         unsigned long flags;
891
892         atomic_set(&tx->enabled, 0);
893
894         /* kill all submitted tx-urbs */
895         usb_kill_anchored_urbs(&tx->submitted);
896
897         spin_lock_irqsave(&tx->lock, flags);
898         WARN_ON(!skb_queue_empty(&tx->submitted_skbs));
899         WARN_ON(tx->submitted_urbs != 0);
900         tx->submitted_urbs = 0;
901         spin_unlock_irqrestore(&tx->lock, flags);
902
903         /* The stopped state is ignored, relying on ieee80211_wake_queues()
904          * in a potentionally following zd_usb_enable_tx().
905          */
906 }
907
908 /**
909  * zd_usb_enable_tx - enables transmission
910  * @usb: a &struct zd_usb pointer
911  *
912  * This function enables transmission and prepares the &zd_usb_tx data
913  * structure.
914  */
915 void zd_usb_enable_tx(struct zd_usb *usb)
916 {
917         unsigned long flags;
918         struct zd_usb_tx *tx = &usb->tx;
919
920         spin_lock_irqsave(&tx->lock, flags);
921         atomic_set(&tx->enabled, 1);
922         tx->submitted_urbs = 0;
923         ieee80211_wake_queues(zd_usb_to_hw(usb));
924         tx->stopped = 0;
925         spin_unlock_irqrestore(&tx->lock, flags);
926 }
927
928 static void tx_dec_submitted_urbs(struct zd_usb *usb)
929 {
930         struct zd_usb_tx *tx = &usb->tx;
931         unsigned long flags;
932
933         spin_lock_irqsave(&tx->lock, flags);
934         --tx->submitted_urbs;
935         if (tx->stopped && tx->submitted_urbs <= ZD_USB_TX_LOW) {
936                 ieee80211_wake_queues(zd_usb_to_hw(usb));
937                 tx->stopped = 0;
938         }
939         spin_unlock_irqrestore(&tx->lock, flags);
940 }
941
942 static void tx_inc_submitted_urbs(struct zd_usb *usb)
943 {
944         struct zd_usb_tx *tx = &usb->tx;
945         unsigned long flags;
946
947         spin_lock_irqsave(&tx->lock, flags);
948         ++tx->submitted_urbs;
949         if (!tx->stopped && tx->submitted_urbs > ZD_USB_TX_HIGH) {
950                 ieee80211_stop_queues(zd_usb_to_hw(usb));
951                 tx->stopped = 1;
952         }
953         spin_unlock_irqrestore(&tx->lock, flags);
954 }
955
956 /**
957  * tx_urb_complete - completes the execution of an URB
958  * @urb: a URB
959  *
960  * This function is called if the URB has been transferred to a device or an
961  * error has happened.
962  */
963 static void tx_urb_complete(struct urb *urb)
964 {
965         int r;
966         struct sk_buff *skb;
967         struct ieee80211_tx_info *info;
968         struct zd_usb *usb;
969         struct zd_usb_tx *tx;
970
971         skb = (struct sk_buff *)urb->context;
972         info = IEEE80211_SKB_CB(skb);
973         /*
974          * grab 'usb' pointer before handing off the skb (since
975          * it might be freed by zd_mac_tx_to_dev or mac80211)
976          */
977         usb = &zd_hw_mac(info->rate_driver_data[0])->chip.usb;
978         tx = &usb->tx;
979
980         switch (urb->status) {
981         case 0:
982                 break;
983         case -ESHUTDOWN:
984         case -EINVAL:
985         case -ENODEV:
986         case -ENOENT:
987         case -ECONNRESET:
988         case -EPIPE:
989                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
990                 break;
991         default:
992                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
993                 goto resubmit;
994         }
995 free_urb:
996         skb_unlink(skb, &usb->tx.submitted_skbs);
997         zd_mac_tx_to_dev(skb, urb->status);
998         usb_free_urb(urb);
999         tx_dec_submitted_urbs(usb);
1000         return;
1001 resubmit:
1002         usb_anchor_urb(urb, &tx->submitted);
1003         r = usb_submit_urb(urb, GFP_ATOMIC);
1004         if (r) {
1005                 usb_unanchor_urb(urb);
1006                 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
1007                 goto free_urb;
1008         }
1009 }
1010
1011 /**
1012  * zd_usb_tx: initiates transfer of a frame of the device
1013  *
1014  * @usb: the zd1211rw-private USB structure
1015  * @skb: a &struct sk_buff pointer
1016  *
1017  * This function tranmits a frame to the device. It doesn't wait for
1018  * completion. The frame must contain the control set and have all the
1019  * control set information available.
1020  *
1021  * The function returns 0 if the transfer has been successfully initiated.
1022  */
1023 int zd_usb_tx(struct zd_usb *usb, struct sk_buff *skb)
1024 {
1025         int r;
1026         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1027         struct usb_device *udev = zd_usb_to_usbdev(usb);
1028         struct urb *urb;
1029         struct zd_usb_tx *tx = &usb->tx;
1030
1031         if (!atomic_read(&tx->enabled)) {
1032                 r = -ENOENT;
1033                 goto out;
1034         }
1035
1036         urb = usb_alloc_urb(0, GFP_ATOMIC);
1037         if (!urb) {
1038                 r = -ENOMEM;
1039                 goto out;
1040         }
1041
1042         usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
1043                           skb->data, skb->len, tx_urb_complete, skb);
1044
1045         info->rate_driver_data[1] = (void *)jiffies;
1046         skb_queue_tail(&tx->submitted_skbs, skb);
1047         usb_anchor_urb(urb, &tx->submitted);
1048
1049         r = usb_submit_urb(urb, GFP_ATOMIC);
1050         if (r) {
1051                 dev_dbg_f(zd_usb_dev(usb), "error submit urb %p %d\n", urb, r);
1052                 usb_unanchor_urb(urb);
1053                 skb_unlink(skb, &tx->submitted_skbs);
1054                 goto error;
1055         }
1056         tx_inc_submitted_urbs(usb);
1057         return 0;
1058 error:
1059         usb_free_urb(urb);
1060 out:
1061         return r;
1062 }
1063
1064 static bool zd_tx_timeout(struct zd_usb *usb)
1065 {
1066         struct zd_usb_tx *tx = &usb->tx;
1067         struct sk_buff_head *q = &tx->submitted_skbs;
1068         struct sk_buff *skb, *skbnext;
1069         struct ieee80211_tx_info *info;
1070         unsigned long flags, trans_start;
1071         bool have_timedout = false;
1072
1073         spin_lock_irqsave(&q->lock, flags);
1074         skb_queue_walk_safe(q, skb, skbnext) {
1075                 info = IEEE80211_SKB_CB(skb);
1076                 trans_start = (unsigned long)info->rate_driver_data[1];
1077
1078                 if (time_is_before_jiffies(trans_start + ZD_TX_TIMEOUT)) {
1079                         have_timedout = true;
1080                         break;
1081                 }
1082         }
1083         spin_unlock_irqrestore(&q->lock, flags);
1084
1085         return have_timedout;
1086 }
1087
1088 static void zd_tx_watchdog_handler(struct work_struct *work)
1089 {
1090         struct zd_usb *usb =
1091                 container_of(work, struct zd_usb, tx.watchdog_work.work);
1092         struct zd_usb_tx *tx = &usb->tx;
1093
1094         if (!atomic_read(&tx->enabled) || !tx->watchdog_enabled)
1095                 goto out;
1096         if (!zd_tx_timeout(usb))
1097                 goto out;
1098
1099         /* TX halted, try reset */
1100         dev_warn(zd_usb_dev(usb), "TX-stall detected, resetting device...");
1101
1102         usb_queue_reset_device(usb->intf);
1103
1104         /* reset will stop this worker, don't rearm */
1105         return;
1106 out:
1107         queue_delayed_work(zd_workqueue, &tx->watchdog_work,
1108                            ZD_TX_WATCHDOG_INTERVAL);
1109 }
1110
1111 void zd_tx_watchdog_enable(struct zd_usb *usb)
1112 {
1113         struct zd_usb_tx *tx = &usb->tx;
1114
1115         if (!tx->watchdog_enabled) {
1116                 dev_dbg_f(zd_usb_dev(usb), "\n");
1117                 queue_delayed_work(zd_workqueue, &tx->watchdog_work,
1118                                    ZD_TX_WATCHDOG_INTERVAL);
1119                 tx->watchdog_enabled = 1;
1120         }
1121 }
1122
1123 void zd_tx_watchdog_disable(struct zd_usb *usb)
1124 {
1125         struct zd_usb_tx *tx = &usb->tx;
1126
1127         if (tx->watchdog_enabled) {
1128                 dev_dbg_f(zd_usb_dev(usb), "\n");
1129                 tx->watchdog_enabled = 0;
1130                 cancel_delayed_work_sync(&tx->watchdog_work);
1131         }
1132 }
1133
1134 static void zd_rx_idle_timer_handler(struct work_struct *work)
1135 {
1136         struct zd_usb *usb =
1137                 container_of(work, struct zd_usb, rx.idle_work.work);
1138         struct zd_mac *mac = zd_usb_to_mac(usb);
1139
1140         if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1141                 return;
1142
1143         dev_dbg_f(zd_usb_dev(usb), "\n");
1144
1145         /* 30 seconds since last rx, reset rx */
1146         zd_usb_reset_rx(usb);
1147 }
1148
1149 static void zd_usb_reset_rx_idle_timer_tasklet(unsigned long param)
1150 {
1151         struct zd_usb *usb = (struct zd_usb *)param;
1152
1153         zd_usb_reset_rx_idle_timer(usb);
1154 }
1155
1156 void zd_usb_reset_rx_idle_timer(struct zd_usb *usb)
1157 {
1158         struct zd_usb_rx *rx = &usb->rx;
1159
1160         mod_delayed_work(zd_workqueue, &rx->idle_work, ZD_RX_IDLE_INTERVAL);
1161 }
1162
1163 static inline void init_usb_interrupt(struct zd_usb *usb)
1164 {
1165         struct zd_usb_interrupt *intr = &usb->intr;
1166
1167         spin_lock_init(&intr->lock);
1168         intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
1169         init_completion(&intr->read_regs.completion);
1170         atomic_set(&intr->read_regs_enabled, 0);
1171         intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
1172 }
1173
1174 static inline void init_usb_rx(struct zd_usb *usb)
1175 {
1176         struct zd_usb_rx *rx = &usb->rx;
1177
1178         spin_lock_init(&rx->lock);
1179         mutex_init(&rx->setup_mutex);
1180         if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
1181                 rx->usb_packet_size = 512;
1182         } else {
1183                 rx->usb_packet_size = 64;
1184         }
1185         ZD_ASSERT(rx->fragment_length == 0);
1186         INIT_DELAYED_WORK(&rx->idle_work, zd_rx_idle_timer_handler);
1187         rx->reset_timer_tasklet.func = zd_usb_reset_rx_idle_timer_tasklet;
1188         rx->reset_timer_tasklet.data = (unsigned long)usb;
1189 }
1190
1191 static inline void init_usb_tx(struct zd_usb *usb)
1192 {
1193         struct zd_usb_tx *tx = &usb->tx;
1194
1195         spin_lock_init(&tx->lock);
1196         atomic_set(&tx->enabled, 0);
1197         tx->stopped = 0;
1198         skb_queue_head_init(&tx->submitted_skbs);
1199         init_usb_anchor(&tx->submitted);
1200         tx->submitted_urbs = 0;
1201         tx->watchdog_enabled = 0;
1202         INIT_DELAYED_WORK(&tx->watchdog_work, zd_tx_watchdog_handler);
1203 }
1204
1205 void zd_usb_init(struct zd_usb *usb, struct ieee80211_hw *hw,
1206                  struct usb_interface *intf)
1207 {
1208         memset(usb, 0, sizeof(*usb));
1209         usb->intf = usb_get_intf(intf);
1210         usb_set_intfdata(usb->intf, hw);
1211         init_usb_anchor(&usb->submitted_cmds);
1212         init_usb_interrupt(usb);
1213         init_usb_tx(usb);
1214         init_usb_rx(usb);
1215 }
1216
1217 void zd_usb_clear(struct zd_usb *usb)
1218 {
1219         usb_set_intfdata(usb->intf, NULL);
1220         usb_put_intf(usb->intf);
1221         ZD_MEMCLEAR(usb, sizeof(*usb));
1222         /* FIXME: usb_interrupt, usb_tx, usb_rx? */
1223 }
1224
1225 static const char *speed(enum usb_device_speed speed)
1226 {
1227         switch (speed) {
1228         case USB_SPEED_LOW:
1229                 return "low";
1230         case USB_SPEED_FULL:
1231                 return "full";
1232         case USB_SPEED_HIGH:
1233                 return "high";
1234         default:
1235                 return "unknown speed";
1236         }
1237 }
1238
1239 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
1240 {
1241         return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
1242                 le16_to_cpu(udev->descriptor.idVendor),
1243                 le16_to_cpu(udev->descriptor.idProduct),
1244                 get_bcdDevice(udev),
1245                 speed(udev->speed));
1246 }
1247
1248 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
1249 {
1250         struct usb_device *udev = interface_to_usbdev(usb->intf);
1251         return scnprint_id(udev, buffer, size);
1252 }
1253
1254 #ifdef DEBUG
1255 static void print_id(struct usb_device *udev)
1256 {
1257         char buffer[40];
1258
1259         scnprint_id(udev, buffer, sizeof(buffer));
1260         buffer[sizeof(buffer)-1] = 0;
1261         dev_dbg_f(&udev->dev, "%s\n", buffer);
1262 }
1263 #else
1264 #define print_id(udev) do { } while (0)
1265 #endif
1266
1267 static int eject_installer(struct usb_interface *intf)
1268 {
1269         struct usb_device *udev = interface_to_usbdev(intf);
1270         struct usb_host_interface *iface_desc = intf->cur_altsetting;
1271         struct usb_endpoint_descriptor *endpoint;
1272         unsigned char *cmd;
1273         u8 bulk_out_ep;
1274         int r;
1275
1276         if (iface_desc->desc.bNumEndpoints < 2)
1277                 return -ENODEV;
1278
1279         /* Find bulk out endpoint */
1280         for (r = 1; r >= 0; r--) {
1281                 endpoint = &iface_desc->endpoint[r].desc;
1282                 if (usb_endpoint_dir_out(endpoint) &&
1283                     usb_endpoint_xfer_bulk(endpoint)) {
1284                         bulk_out_ep = endpoint->bEndpointAddress;
1285                         break;
1286                 }
1287         }
1288         if (r == -1) {
1289                 dev_err(&udev->dev,
1290                         "zd1211rw: Could not find bulk out endpoint\n");
1291                 return -ENODEV;
1292         }
1293
1294         cmd = kzalloc(31, GFP_KERNEL);
1295         if (cmd == NULL)
1296                 return -ENODEV;
1297
1298         /* USB bulk command block */
1299         cmd[0] = 0x55;  /* bulk command signature */
1300         cmd[1] = 0x53;  /* bulk command signature */
1301         cmd[2] = 0x42;  /* bulk command signature */
1302         cmd[3] = 0x43;  /* bulk command signature */
1303         cmd[14] = 6;    /* command length */
1304
1305         cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
1306         cmd[19] = 0x2;  /* eject disc */
1307
1308         dev_info(&udev->dev, "Ejecting virtual installer media...\n");
1309         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
1310                 cmd, 31, NULL, 2000);
1311         kfree(cmd);
1312         if (r)
1313                 return r;
1314
1315         /* At this point, the device disconnects and reconnects with the real
1316          * ID numbers. */
1317
1318         usb_set_intfdata(intf, NULL);
1319         return 0;
1320 }
1321
1322 int zd_usb_init_hw(struct zd_usb *usb)
1323 {
1324         int r;
1325         struct zd_mac *mac = zd_usb_to_mac(usb);
1326
1327         dev_dbg_f(zd_usb_dev(usb), "\n");
1328
1329         r = upload_firmware(usb);
1330         if (r) {
1331                 dev_err(zd_usb_dev(usb),
1332                        "couldn't load firmware. Error number %d\n", r);
1333                 return r;
1334         }
1335
1336         r = usb_reset_configuration(zd_usb_to_usbdev(usb));
1337         if (r) {
1338                 dev_dbg_f(zd_usb_dev(usb),
1339                         "couldn't reset configuration. Error number %d\n", r);
1340                 return r;
1341         }
1342
1343         r = zd_mac_init_hw(mac->hw);
1344         if (r) {
1345                 dev_dbg_f(zd_usb_dev(usb),
1346                          "couldn't initialize mac. Error number %d\n", r);
1347                 return r;
1348         }
1349
1350         usb->initialized = 1;
1351         return 0;
1352 }
1353
1354 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
1355 {
1356         int r;
1357         struct usb_device *udev = interface_to_usbdev(intf);
1358         struct zd_usb *usb;
1359         struct ieee80211_hw *hw = NULL;
1360
1361         print_id(udev);
1362
1363         if (id->driver_info & DEVICE_INSTALLER)
1364                 return eject_installer(intf);
1365
1366         switch (udev->speed) {
1367         case USB_SPEED_LOW:
1368         case USB_SPEED_FULL:
1369         case USB_SPEED_HIGH:
1370                 break;
1371         default:
1372                 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
1373                 r = -ENODEV;
1374                 goto error;
1375         }
1376
1377         r = usb_reset_device(udev);
1378         if (r) {
1379                 dev_err(&intf->dev,
1380                         "couldn't reset usb device. Error number %d\n", r);
1381                 goto error;
1382         }
1383
1384         hw = zd_mac_alloc_hw(intf);
1385         if (hw == NULL) {
1386                 r = -ENOMEM;
1387                 goto error;
1388         }
1389
1390         usb = &zd_hw_mac(hw)->chip.usb;
1391         usb->is_zd1211b = (id->driver_info == DEVICE_ZD1211B) != 0;
1392
1393         r = zd_mac_preinit_hw(hw);
1394         if (r) {
1395                 dev_dbg_f(&intf->dev,
1396                          "couldn't initialize mac. Error number %d\n", r);
1397                 goto error;
1398         }
1399
1400         r = ieee80211_register_hw(hw);
1401         if (r) {
1402                 dev_dbg_f(&intf->dev,
1403                          "couldn't register device. Error number %d\n", r);
1404                 goto error;
1405         }
1406
1407         dev_dbg_f(&intf->dev, "successful\n");
1408         dev_info(&intf->dev, "%s\n", wiphy_name(hw->wiphy));
1409         return 0;
1410 error:
1411         usb_reset_device(interface_to_usbdev(intf));
1412         if (hw) {
1413                 zd_mac_clear(zd_hw_mac(hw));
1414                 ieee80211_free_hw(hw);
1415         }
1416         return r;
1417 }
1418
1419 static void disconnect(struct usb_interface *intf)
1420 {
1421         struct ieee80211_hw *hw = zd_intf_to_hw(intf);
1422         struct zd_mac *mac;
1423         struct zd_usb *usb;
1424
1425         /* Either something really bad happened, or we're just dealing with
1426          * a DEVICE_INSTALLER. */
1427         if (hw == NULL)
1428                 return;
1429
1430         mac = zd_hw_mac(hw);
1431         usb = &mac->chip.usb;
1432
1433         dev_dbg_f(zd_usb_dev(usb), "\n");
1434
1435         ieee80211_unregister_hw(hw);
1436
1437         /* Just in case something has gone wrong! */
1438         zd_usb_disable_tx(usb);
1439         zd_usb_disable_rx(usb);
1440         zd_usb_disable_int(usb);
1441
1442         /* If the disconnect has been caused by a removal of the
1443          * driver module, the reset allows reloading of the driver. If the
1444          * reset will not be executed here, the upload of the firmware in the
1445          * probe function caused by the reloading of the driver will fail.
1446          */
1447         usb_reset_device(interface_to_usbdev(intf));
1448
1449         zd_mac_clear(mac);
1450         ieee80211_free_hw(hw);
1451         dev_dbg(&intf->dev, "disconnected\n");
1452 }
1453
1454 static void zd_usb_resume(struct zd_usb *usb)
1455 {
1456         struct zd_mac *mac = zd_usb_to_mac(usb);
1457         int r;
1458
1459         dev_dbg_f(zd_usb_dev(usb), "\n");
1460
1461         r = zd_op_start(zd_usb_to_hw(usb));
1462         if (r < 0) {
1463                 dev_warn(zd_usb_dev(usb), "Device resume failed "
1464                          "with error code %d. Retrying...\n", r);
1465                 if (usb->was_running)
1466                         set_bit(ZD_DEVICE_RUNNING, &mac->flags);
1467                 usb_queue_reset_device(usb->intf);
1468                 return;
1469         }
1470
1471         if (mac->type != NL80211_IFTYPE_UNSPECIFIED) {
1472                 r = zd_restore_settings(mac);
1473                 if (r < 0) {
1474                         dev_dbg(zd_usb_dev(usb),
1475                                 "failed to restore settings, %d\n", r);
1476                         return;
1477                 }
1478         }
1479 }
1480
1481 static void zd_usb_stop(struct zd_usb *usb)
1482 {
1483         dev_dbg_f(zd_usb_dev(usb), "\n");
1484
1485         zd_op_stop(zd_usb_to_hw(usb));
1486
1487         zd_usb_disable_tx(usb);
1488         zd_usb_disable_rx(usb);
1489         zd_usb_disable_int(usb);
1490
1491         usb->initialized = 0;
1492 }
1493
1494 static int pre_reset(struct usb_interface *intf)
1495 {
1496         struct ieee80211_hw *hw = usb_get_intfdata(intf);
1497         struct zd_mac *mac;
1498         struct zd_usb *usb;
1499
1500         if (!hw || intf->condition != USB_INTERFACE_BOUND)
1501                 return 0;
1502
1503         mac = zd_hw_mac(hw);
1504         usb = &mac->chip.usb;
1505
1506         usb->was_running = test_bit(ZD_DEVICE_RUNNING, &mac->flags);
1507
1508         zd_usb_stop(usb);
1509
1510         mutex_lock(&mac->chip.mutex);
1511         return 0;
1512 }
1513
1514 static int post_reset(struct usb_interface *intf)
1515 {
1516         struct ieee80211_hw *hw = usb_get_intfdata(intf);
1517         struct zd_mac *mac;
1518         struct zd_usb *usb;
1519
1520         if (!hw || intf->condition != USB_INTERFACE_BOUND)
1521                 return 0;
1522
1523         mac = zd_hw_mac(hw);
1524         usb = &mac->chip.usb;
1525
1526         mutex_unlock(&mac->chip.mutex);
1527
1528         if (usb->was_running)
1529                 zd_usb_resume(usb);
1530         return 0;
1531 }
1532
1533 static struct usb_driver driver = {
1534         .name           = KBUILD_MODNAME,
1535         .id_table       = usb_ids,
1536         .probe          = probe,
1537         .disconnect     = disconnect,
1538         .pre_reset      = pre_reset,
1539         .post_reset     = post_reset,
1540         .disable_hub_initiated_lpm = 1,
1541 };
1542
1543 struct workqueue_struct *zd_workqueue;
1544
1545 static int __init usb_init(void)
1546 {
1547         int r;
1548
1549         pr_debug("%s usb_init()\n", driver.name);
1550
1551         zd_workqueue = create_singlethread_workqueue(driver.name);
1552         if (zd_workqueue == NULL) {
1553                 printk(KERN_ERR "%s couldn't create workqueue\n", driver.name);
1554                 return -ENOMEM;
1555         }
1556
1557         r = usb_register(&driver);
1558         if (r) {
1559                 destroy_workqueue(zd_workqueue);
1560                 printk(KERN_ERR "%s usb_register() failed. Error number %d\n",
1561                        driver.name, r);
1562                 return r;
1563         }
1564
1565         pr_debug("%s initialized\n", driver.name);
1566         return 0;
1567 }
1568
1569 static void __exit usb_exit(void)
1570 {
1571         pr_debug("%s usb_exit()\n", driver.name);
1572         usb_deregister(&driver);
1573         destroy_workqueue(zd_workqueue);
1574 }
1575
1576 module_init(usb_init);
1577 module_exit(usb_exit);
1578
1579 static int zd_ep_regs_out_msg(struct usb_device *udev, void *data, int len,
1580                               int *actual_length, int timeout)
1581 {
1582         /* In USB 2.0 mode EP_REGS_OUT endpoint is interrupt type. However in
1583          * USB 1.1 mode endpoint is bulk. Select correct type URB by endpoint
1584          * descriptor.
1585          */
1586         struct usb_host_endpoint *ep;
1587         unsigned int pipe;
1588
1589         pipe = usb_sndintpipe(udev, EP_REGS_OUT);
1590         ep = usb_pipe_endpoint(udev, pipe);
1591         if (!ep)
1592                 return -EINVAL;
1593
1594         if (usb_endpoint_xfer_int(&ep->desc)) {
1595                 return usb_interrupt_msg(udev, pipe, data, len,
1596                                          actual_length, timeout);
1597         } else {
1598                 pipe = usb_sndbulkpipe(udev, EP_REGS_OUT);
1599                 return usb_bulk_msg(udev, pipe, data, len, actual_length,
1600                                     timeout);
1601         }
1602 }
1603
1604 static int usb_int_regs_length(unsigned int count)
1605 {
1606         return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1607 }
1608
1609 static void prepare_read_regs_int(struct zd_usb *usb,
1610                                   struct usb_req_read_regs *req,
1611                                   unsigned int count)
1612 {
1613         struct zd_usb_interrupt *intr = &usb->intr;
1614
1615         spin_lock_irq(&intr->lock);
1616         atomic_set(&intr->read_regs_enabled, 1);
1617         intr->read_regs.req = req;
1618         intr->read_regs.req_count = count;
1619         reinit_completion(&intr->read_regs.completion);
1620         spin_unlock_irq(&intr->lock);
1621 }
1622
1623 static void disable_read_regs_int(struct zd_usb *usb)
1624 {
1625         struct zd_usb_interrupt *intr = &usb->intr;
1626
1627         spin_lock_irq(&intr->lock);
1628         atomic_set(&intr->read_regs_enabled, 0);
1629         spin_unlock_irq(&intr->lock);
1630 }
1631
1632 static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
1633                             unsigned int count)
1634 {
1635         int i;
1636         struct zd_usb_interrupt *intr = &usb->intr;
1637         struct read_regs_int *rr = &intr->read_regs;
1638         struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1639
1640         /* The created block size seems to be larger than expected.
1641          * However results appear to be correct.
1642          */
1643         if (rr->length < usb_int_regs_length(count)) {
1644                 dev_dbg_f(zd_usb_dev(usb),
1645                          "error: actual length %d less than expected %d\n",
1646                          rr->length, usb_int_regs_length(count));
1647                 return false;
1648         }
1649
1650         if (rr->length > sizeof(rr->buffer)) {
1651                 dev_dbg_f(zd_usb_dev(usb),
1652                          "error: actual length %d exceeds buffer size %zu\n",
1653                          rr->length, sizeof(rr->buffer));
1654                 return false;
1655         }
1656
1657         for (i = 0; i < count; i++) {
1658                 struct reg_data *rd = &regs->regs[i];
1659                 if (rd->addr != req->addr[i]) {
1660                         dev_dbg_f(zd_usb_dev(usb),
1661                                  "rd[%d] addr %#06hx expected %#06hx\n", i,
1662                                  le16_to_cpu(rd->addr),
1663                                  le16_to_cpu(req->addr[i]));
1664                         return false;
1665                 }
1666         }
1667
1668         return true;
1669 }
1670
1671 static int get_results(struct zd_usb *usb, u16 *values,
1672                        struct usb_req_read_regs *req, unsigned int count,
1673                        bool *retry)
1674 {
1675         int r;
1676         int i;
1677         struct zd_usb_interrupt *intr = &usb->intr;
1678         struct read_regs_int *rr = &intr->read_regs;
1679         struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1680
1681         spin_lock_irq(&intr->lock);
1682
1683         r = -EIO;
1684
1685         /* Read failed because firmware bug? */
1686         *retry = !!intr->read_regs_int_overridden;
1687         if (*retry)
1688                 goto error_unlock;
1689
1690         if (!check_read_regs(usb, req, count)) {
1691                 dev_dbg_f(zd_usb_dev(usb), "error: invalid read regs\n");
1692                 goto error_unlock;
1693         }
1694
1695         for (i = 0; i < count; i++) {
1696                 struct reg_data *rd = &regs->regs[i];
1697                 values[i] = le16_to_cpu(rd->value);
1698         }
1699
1700         r = 0;
1701 error_unlock:
1702         spin_unlock_irq(&intr->lock);
1703         return r;
1704 }
1705
1706 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1707                      const zd_addr_t *addresses, unsigned int count)
1708 {
1709         int r, i, req_len, actual_req_len, try_count = 0;
1710         struct usb_device *udev;
1711         struct usb_req_read_regs *req = NULL;
1712         unsigned long timeout;
1713         bool retry = false;
1714
1715         if (count < 1) {
1716                 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1717                 return -EINVAL;
1718         }
1719         if (count > USB_MAX_IOREAD16_COUNT) {
1720                 dev_dbg_f(zd_usb_dev(usb),
1721                          "error: count %u exceeds possible max %u\n",
1722                          count, USB_MAX_IOREAD16_COUNT);
1723                 return -EINVAL;
1724         }
1725         if (in_atomic()) {
1726                 dev_dbg_f(zd_usb_dev(usb),
1727                          "error: io in atomic context not supported\n");
1728                 return -EWOULDBLOCK;
1729         }
1730         if (!usb_int_enabled(usb)) {
1731                 dev_dbg_f(zd_usb_dev(usb),
1732                           "error: usb interrupt not enabled\n");
1733                 return -EWOULDBLOCK;
1734         }
1735
1736         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1737         BUILD_BUG_ON(sizeof(struct usb_req_read_regs) + USB_MAX_IOREAD16_COUNT *
1738                      sizeof(__le16) > sizeof(usb->req_buf));
1739         BUG_ON(sizeof(struct usb_req_read_regs) + count * sizeof(__le16) >
1740                sizeof(usb->req_buf));
1741
1742         req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1743         req = (void *)usb->req_buf;
1744
1745         req->id = cpu_to_le16(USB_REQ_READ_REGS);
1746         for (i = 0; i < count; i++)
1747                 req->addr[i] = cpu_to_le16((u16)addresses[i]);
1748
1749 retry_read:
1750         try_count++;
1751         udev = zd_usb_to_usbdev(usb);
1752         prepare_read_regs_int(usb, req, count);
1753         r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
1754         if (r) {
1755                 dev_dbg_f(zd_usb_dev(usb),
1756                         "error in zd_ep_regs_out_msg(). Error number %d\n", r);
1757                 goto error;
1758         }
1759         if (req_len != actual_req_len) {
1760                 dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()\n"
1761                         " req_len %d != actual_req_len %d\n",
1762                         req_len, actual_req_len);
1763                 r = -EIO;
1764                 goto error;
1765         }
1766
1767         timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1768                                               msecs_to_jiffies(50));
1769         if (!timeout) {
1770                 disable_read_regs_int(usb);
1771                 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1772                 r = -ETIMEDOUT;
1773                 goto error;
1774         }
1775
1776         r = get_results(usb, values, req, count, &retry);
1777         if (retry && try_count < 20) {
1778                 dev_dbg_f(zd_usb_dev(usb), "read retry, tries so far: %d\n",
1779                                 try_count);
1780                 goto retry_read;
1781         }
1782 error:
1783         return r;
1784 }
1785
1786 static void iowrite16v_urb_complete(struct urb *urb)
1787 {
1788         struct zd_usb *usb = urb->context;
1789
1790         if (urb->status && !usb->cmd_error)
1791                 usb->cmd_error = urb->status;
1792
1793         if (!usb->cmd_error &&
1794                         urb->actual_length != urb->transfer_buffer_length)
1795                 usb->cmd_error = -EIO;
1796 }
1797
1798 static int zd_submit_waiting_urb(struct zd_usb *usb, bool last)
1799 {
1800         int r = 0;
1801         struct urb *urb = usb->urb_async_waiting;
1802
1803         if (!urb)
1804                 return 0;
1805
1806         usb->urb_async_waiting = NULL;
1807
1808         if (!last)
1809                 urb->transfer_flags |= URB_NO_INTERRUPT;
1810
1811         usb_anchor_urb(urb, &usb->submitted_cmds);
1812         r = usb_submit_urb(urb, GFP_KERNEL);
1813         if (r) {
1814                 usb_unanchor_urb(urb);
1815                 dev_dbg_f(zd_usb_dev(usb),
1816                         "error in usb_submit_urb(). Error number %d\n", r);
1817                 goto error;
1818         }
1819
1820         /* fall-through with r == 0 */
1821 error:
1822         usb_free_urb(urb);
1823         return r;
1824 }
1825
1826 void zd_usb_iowrite16v_async_start(struct zd_usb *usb)
1827 {
1828         ZD_ASSERT(usb_anchor_empty(&usb->submitted_cmds));
1829         ZD_ASSERT(usb->urb_async_waiting == NULL);
1830         ZD_ASSERT(!usb->in_async);
1831
1832         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1833
1834         usb->in_async = 1;
1835         usb->cmd_error = 0;
1836         usb->urb_async_waiting = NULL;
1837 }
1838
1839 int zd_usb_iowrite16v_async_end(struct zd_usb *usb, unsigned int timeout)
1840 {
1841         int r;
1842
1843         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1844         ZD_ASSERT(usb->in_async);
1845
1846         /* Submit last iowrite16v URB */
1847         r = zd_submit_waiting_urb(usb, true);
1848         if (r) {
1849                 dev_dbg_f(zd_usb_dev(usb),
1850                         "error in zd_submit_waiting_usb(). "
1851                         "Error number %d\n", r);
1852
1853                 usb_kill_anchored_urbs(&usb->submitted_cmds);
1854                 goto error;
1855         }
1856
1857         if (timeout)
1858                 timeout = usb_wait_anchor_empty_timeout(&usb->submitted_cmds,
1859                                                         timeout);
1860         if (!timeout) {
1861                 usb_kill_anchored_urbs(&usb->submitted_cmds);
1862                 if (usb->cmd_error == -ENOENT) {
1863                         dev_dbg_f(zd_usb_dev(usb), "timed out");
1864                         r = -ETIMEDOUT;
1865                         goto error;
1866                 }
1867         }
1868
1869         r = usb->cmd_error;
1870 error:
1871         usb->in_async = 0;
1872         return r;
1873 }
1874
1875 int zd_usb_iowrite16v_async(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1876                             unsigned int count)
1877 {
1878         int r;
1879         struct usb_device *udev;
1880         struct usb_req_write_regs *req = NULL;
1881         int i, req_len;
1882         struct urb *urb;
1883         struct usb_host_endpoint *ep;
1884
1885         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1886         ZD_ASSERT(usb->in_async);
1887
1888         if (count == 0)
1889                 return 0;
1890         if (count > USB_MAX_IOWRITE16_COUNT) {
1891                 dev_dbg_f(zd_usb_dev(usb),
1892                         "error: count %u exceeds possible max %u\n",
1893                         count, USB_MAX_IOWRITE16_COUNT);
1894                 return -EINVAL;
1895         }
1896         if (in_atomic()) {
1897                 dev_dbg_f(zd_usb_dev(usb),
1898                         "error: io in atomic context not supported\n");
1899                 return -EWOULDBLOCK;
1900         }
1901
1902         udev = zd_usb_to_usbdev(usb);
1903
1904         ep = usb_pipe_endpoint(udev, usb_sndintpipe(udev, EP_REGS_OUT));
1905         if (!ep)
1906                 return -ENOENT;
1907
1908         urb = usb_alloc_urb(0, GFP_KERNEL);
1909         if (!urb)
1910                 return -ENOMEM;
1911
1912         req_len = sizeof(struct usb_req_write_regs) +
1913                   count * sizeof(struct reg_data);
1914         req = kmalloc(req_len, GFP_KERNEL);
1915         if (!req) {
1916                 r = -ENOMEM;
1917                 goto error;
1918         }
1919
1920         req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1921         for (i = 0; i < count; i++) {
1922                 struct reg_data *rw  = &req->reg_writes[i];
1923                 rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1924                 rw->value = cpu_to_le16(ioreqs[i].value);
1925         }
1926
1927         /* In USB 2.0 mode endpoint is interrupt type. However in USB 1.1 mode
1928          * endpoint is bulk. Select correct type URB by endpoint descriptor.
1929          */
1930         if (usb_endpoint_xfer_int(&ep->desc))
1931                 usb_fill_int_urb(urb, udev, usb_sndintpipe(udev, EP_REGS_OUT),
1932                                  req, req_len, iowrite16v_urb_complete, usb,
1933                                  ep->desc.bInterval);
1934         else
1935                 usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1936                                   req, req_len, iowrite16v_urb_complete, usb);
1937
1938         urb->transfer_flags |= URB_FREE_BUFFER;
1939
1940         /* Submit previous URB */
1941         r = zd_submit_waiting_urb(usb, false);
1942         if (r) {
1943                 dev_dbg_f(zd_usb_dev(usb),
1944                         "error in zd_submit_waiting_usb(). "
1945                         "Error number %d\n", r);
1946                 goto error;
1947         }
1948
1949         /* Delay submit so that URB_NO_INTERRUPT flag can be set for all URBs
1950          * of currect batch except for very last.
1951          */
1952         usb->urb_async_waiting = urb;
1953         return 0;
1954 error:
1955         usb_free_urb(urb);
1956         return r;
1957 }
1958
1959 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1960                         unsigned int count)
1961 {
1962         int r;
1963
1964         zd_usb_iowrite16v_async_start(usb);
1965         r = zd_usb_iowrite16v_async(usb, ioreqs, count);
1966         if (r) {
1967                 zd_usb_iowrite16v_async_end(usb, 0);
1968                 return r;
1969         }
1970         return zd_usb_iowrite16v_async_end(usb, 50 /* ms */);
1971 }
1972
1973 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1974 {
1975         int r;
1976         struct usb_device *udev;
1977         struct usb_req_rfwrite *req = NULL;
1978         int i, req_len, actual_req_len;
1979         u16 bit_value_template;
1980
1981         if (in_atomic()) {
1982                 dev_dbg_f(zd_usb_dev(usb),
1983                         "error: io in atomic context not supported\n");
1984                 return -EWOULDBLOCK;
1985         }
1986         if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1987                 dev_dbg_f(zd_usb_dev(usb),
1988                         "error: bits %d are smaller than"
1989                         " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1990                         bits, USB_MIN_RFWRITE_BIT_COUNT);
1991                 return -EINVAL;
1992         }
1993         if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1994                 dev_dbg_f(zd_usb_dev(usb),
1995                         "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1996                         bits, USB_MAX_RFWRITE_BIT_COUNT);
1997                 return -EINVAL;
1998         }
1999 #ifdef DEBUG
2000         if (value & (~0UL << bits)) {
2001                 dev_dbg_f(zd_usb_dev(usb),
2002                         "error: value %#09x has bits >= %d set\n",
2003                         value, bits);
2004                 return -EINVAL;
2005         }
2006 #endif /* DEBUG */
2007
2008         dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
2009
2010         r = zd_usb_ioread16(usb, &bit_value_template, ZD_CR203);
2011         if (r) {
2012                 dev_dbg_f(zd_usb_dev(usb),
2013                         "error %d: Couldn't read ZD_CR203\n", r);
2014                 return r;
2015         }
2016         bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
2017
2018         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
2019         BUILD_BUG_ON(sizeof(struct usb_req_rfwrite) +
2020                      USB_MAX_RFWRITE_BIT_COUNT * sizeof(__le16) >
2021                      sizeof(usb->req_buf));
2022         BUG_ON(sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16) >
2023                sizeof(usb->req_buf));
2024
2025         req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
2026         req = (void *)usb->req_buf;
2027
2028         req->id = cpu_to_le16(USB_REQ_WRITE_RF);
2029         /* 1: 3683a, but not used in ZYDAS driver */
2030         req->value = cpu_to_le16(2);
2031         req->bits = cpu_to_le16(bits);
2032
2033         for (i = 0; i < bits; i++) {
2034                 u16 bv = bit_value_template;
2035                 if (value & (1 << (bits-1-i)))
2036                         bv |= RF_DATA;
2037                 req->bit_values[i] = cpu_to_le16(bv);
2038         }
2039
2040         udev = zd_usb_to_usbdev(usb);
2041         r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
2042         if (r) {
2043                 dev_dbg_f(zd_usb_dev(usb),
2044                         "error in zd_ep_regs_out_msg(). Error number %d\n", r);
2045                 goto out;
2046         }
2047         if (req_len != actual_req_len) {
2048                 dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()"
2049                         " req_len %d != actual_req_len %d\n",
2050                         req_len, actual_req_len);
2051                 r = -EIO;
2052                 goto out;
2053         }
2054
2055         /* FALL-THROUGH with r == 0 */
2056 out:
2057         return r;
2058 }