GNU Linux-libre 4.14.290-gnu1
[releases.git] / drivers / net / wireless / rsi / rsi_91x_mgmt.c
1 /**
2  * Copyright (c) 2014 Redpine Signals Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/etherdevice.h>
18 #include "rsi_mgmt.h"
19 #include "rsi_common.h"
20 #include "rsi_ps.h"
21 #include "rsi_hal.h"
22
23 static struct bootup_params boot_params_20 = {
24         .magic_number = cpu_to_le16(0x5aa5),
25         .crystal_good_time = 0x0,
26         .valid = cpu_to_le32(VALID_20),
27         .reserved_for_valids = 0x0,
28         .bootup_mode_info = 0x0,
29         .digital_loop_back_params = 0x0,
30         .rtls_timestamp_en = 0x0,
31         .host_spi_intr_cfg = 0x0,
32         .device_clk_info = {{
33                 .pll_config_g = {
34                         .tapll_info_g = {
35                                 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
36                                               (TA_PLL_M_VAL_20)),
37                                 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
38                         },
39                         .pll960_info_g = {
40                                 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
41                                                          (PLL960_N_VAL_20)),
42                                 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
43                                 .pll_reg_3 = 0x0,
44                         },
45                         .afepll_info_g = {
46                                 .pll_reg = cpu_to_le16(0x9f0),
47                         }
48                 },
49                 .switch_clk_g = {
50                         .switch_clk_info = cpu_to_le16(0xb),
51                         .bbp_lmac_clk_reg_val = cpu_to_le16(0x111),
52                         .umac_clock_reg_config = cpu_to_le16(0x48),
53                         .qspi_uart_clock_reg_config = cpu_to_le16(0x1211)
54                 }
55         },
56         {
57                 .pll_config_g = {
58                         .tapll_info_g = {
59                                 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
60                                                          (TA_PLL_M_VAL_20)),
61                                 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
62                         },
63                         .pll960_info_g = {
64                                 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
65                                                          (PLL960_N_VAL_20)),
66                                 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
67                                 .pll_reg_3 = 0x0,
68                         },
69                         .afepll_info_g = {
70                                 .pll_reg = cpu_to_le16(0x9f0),
71                         }
72                 },
73                 .switch_clk_g = {
74                         .switch_clk_info = 0x0,
75                         .bbp_lmac_clk_reg_val = 0x0,
76                         .umac_clock_reg_config = 0x0,
77                         .qspi_uart_clock_reg_config = 0x0
78                 }
79         },
80         {
81                 .pll_config_g = {
82                         .tapll_info_g = {
83                                 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
84                                                          (TA_PLL_M_VAL_20)),
85                                 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
86                         },
87                         .pll960_info_g = {
88                                 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
89                                                          (PLL960_N_VAL_20)),
90                                 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
91                                 .pll_reg_3 = 0x0,
92                         },
93                         .afepll_info_g = {
94                                 .pll_reg = cpu_to_le16(0x9f0),
95                         }
96                 },
97                 .switch_clk_g = {
98                         .switch_clk_info = 0x0,
99                         .bbp_lmac_clk_reg_val = 0x0,
100                         .umac_clock_reg_config = 0x0,
101                         .qspi_uart_clock_reg_config = 0x0
102                 }
103         } },
104         .buckboost_wakeup_cnt = 0x0,
105         .pmu_wakeup_wait = 0x0,
106         .shutdown_wait_time = 0x0,
107         .pmu_slp_clkout_sel = 0x0,
108         .wdt_prog_value = 0x0,
109         .wdt_soc_rst_delay = 0x0,
110         .dcdc_operation_mode = 0x0,
111         .soc_reset_wait_cnt = 0x0,
112         .waiting_time_at_fresh_sleep = 0x0,
113         .max_threshold_to_avoid_sleep = 0x0,
114         .beacon_resedue_alg_en = 0,
115 };
116
117 static struct bootup_params boot_params_40 = {
118         .magic_number = cpu_to_le16(0x5aa5),
119         .crystal_good_time = 0x0,
120         .valid = cpu_to_le32(VALID_40),
121         .reserved_for_valids = 0x0,
122         .bootup_mode_info = 0x0,
123         .digital_loop_back_params = 0x0,
124         .rtls_timestamp_en = 0x0,
125         .host_spi_intr_cfg = 0x0,
126         .device_clk_info = {{
127                 .pll_config_g = {
128                         .tapll_info_g = {
129                                 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
130                                                          (TA_PLL_M_VAL_40)),
131                                 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
132                         },
133                         .pll960_info_g = {
134                                 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
135                                                          (PLL960_N_VAL_40)),
136                                 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
137                                 .pll_reg_3 = 0x0,
138                         },
139                         .afepll_info_g = {
140                                 .pll_reg = cpu_to_le16(0x9f0),
141                         }
142                 },
143                 .switch_clk_g = {
144                         .switch_clk_info = cpu_to_le16(0x09),
145                         .bbp_lmac_clk_reg_val = cpu_to_le16(0x1121),
146                         .umac_clock_reg_config = cpu_to_le16(0x48),
147                         .qspi_uart_clock_reg_config = cpu_to_le16(0x1211)
148                 }
149         },
150         {
151                 .pll_config_g = {
152                         .tapll_info_g = {
153                                 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
154                                                          (TA_PLL_M_VAL_40)),
155                                 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
156                         },
157                         .pll960_info_g = {
158                                 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
159                                                          (PLL960_N_VAL_40)),
160                                 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
161                                 .pll_reg_3 = 0x0,
162                         },
163                         .afepll_info_g = {
164                                 .pll_reg = cpu_to_le16(0x9f0),
165                         }
166                 },
167                 .switch_clk_g = {
168                         .switch_clk_info = 0x0,
169                         .bbp_lmac_clk_reg_val = 0x0,
170                         .umac_clock_reg_config = 0x0,
171                         .qspi_uart_clock_reg_config = 0x0
172                 }
173         },
174         {
175                 .pll_config_g = {
176                         .tapll_info_g = {
177                                 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
178                                                          (TA_PLL_M_VAL_40)),
179                                 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
180                         },
181                         .pll960_info_g = {
182                                 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
183                                                          (PLL960_N_VAL_40)),
184                                 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
185                                 .pll_reg_3 = 0x0,
186                         },
187                         .afepll_info_g = {
188                                 .pll_reg = cpu_to_le16(0x9f0),
189                         }
190                 },
191                 .switch_clk_g = {
192                         .switch_clk_info = 0x0,
193                         .bbp_lmac_clk_reg_val = 0x0,
194                         .umac_clock_reg_config = 0x0,
195                         .qspi_uart_clock_reg_config = 0x0
196                 }
197         } },
198         .buckboost_wakeup_cnt = 0x0,
199         .pmu_wakeup_wait = 0x0,
200         .shutdown_wait_time = 0x0,
201         .pmu_slp_clkout_sel = 0x0,
202         .wdt_prog_value = 0x0,
203         .wdt_soc_rst_delay = 0x0,
204         .dcdc_operation_mode = 0x0,
205         .soc_reset_wait_cnt = 0x0,
206         .waiting_time_at_fresh_sleep = 0x0,
207         .max_threshold_to_avoid_sleep = 0x0,
208         .beacon_resedue_alg_en = 0,
209 };
210
211 static u16 mcs[] = {13, 26, 39, 52, 78, 104, 117, 130};
212
213 /**
214  * rsi_set_default_parameters() - This function sets default parameters.
215  * @common: Pointer to the driver private structure.
216  *
217  * Return: none
218  */
219 static void rsi_set_default_parameters(struct rsi_common *common)
220 {
221         common->band = NL80211_BAND_2GHZ;
222         common->channel_width = BW_20MHZ;
223         common->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
224         common->channel = 1;
225         common->min_rate = 0xffff;
226         common->fsm_state = FSM_CARD_NOT_READY;
227         common->iface_down = true;
228         common->endpoint = EP_2GHZ_20MHZ;
229         common->driver_mode = 1; /* End to end mode */
230         common->lp_ps_handshake_mode = 0; /* Default no handShake mode*/
231         common->ulp_ps_handshake_mode = 2; /* Default PKT handShake mode*/
232         common->rf_power_val = 0; /* Default 1.9V */
233         common->wlan_rf_power_mode = 0;
234         common->obm_ant_sel_val = 2;
235         common->beacon_interval = RSI_BEACON_INTERVAL;
236         common->dtim_cnt = RSI_DTIM_COUNT;
237 }
238
239 /**
240  * rsi_set_contention_vals() - This function sets the contention values for the
241  *                             backoff procedure.
242  * @common: Pointer to the driver private structure.
243  *
244  * Return: None.
245  */
246 static void rsi_set_contention_vals(struct rsi_common *common)
247 {
248         u8 ii = 0;
249
250         for (; ii < NUM_EDCA_QUEUES; ii++) {
251                 common->tx_qinfo[ii].wme_params =
252                         (((common->edca_params[ii].cw_min / 2) +
253                           (common->edca_params[ii].aifs)) *
254                           WMM_SHORT_SLOT_TIME + SIFS_DURATION);
255                 common->tx_qinfo[ii].weight = common->tx_qinfo[ii].wme_params;
256                 common->tx_qinfo[ii].pkt_contended = 0;
257         }
258 }
259
260 /**
261  * rsi_send_internal_mgmt_frame() - This function sends management frames to
262  *                                  firmware.Also schedules packet to queue
263  *                                  for transmission.
264  * @common: Pointer to the driver private structure.
265  * @skb: Pointer to the socket buffer structure.
266  *
267  * Return: 0 on success, -1 on failure.
268  */
269 static int rsi_send_internal_mgmt_frame(struct rsi_common *common,
270                                         struct sk_buff *skb)
271 {
272         struct skb_info *tx_params;
273         struct rsi_cmd_desc *desc;
274
275         if (skb == NULL) {
276                 rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
277                 return -ENOMEM;
278         }
279         desc = (struct rsi_cmd_desc *)skb->data;
280         desc->desc_dword0.len_qno |= cpu_to_le16(DESC_IMMEDIATE_WAKEUP);
281         skb->priority = MGMT_SOFT_Q;
282         tx_params = (struct skb_info *)&IEEE80211_SKB_CB(skb)->driver_data;
283         tx_params->flags |= INTERNAL_MGMT_PKT;
284         skb_queue_tail(&common->tx_queue[MGMT_SOFT_Q], skb);
285         rsi_set_event(&common->tx_thread.event);
286         return 0;
287 }
288
289 /**
290  * rsi_load_radio_caps() - This function is used to send radio capabilities
291  *                         values to firmware.
292  * @common: Pointer to the driver private structure.
293  *
294  * Return: 0 on success, corresponding negative error code on failure.
295  */
296 static int rsi_load_radio_caps(struct rsi_common *common)
297 {
298         struct rsi_radio_caps *radio_caps;
299         struct rsi_hw *adapter = common->priv;
300         u16 inx = 0;
301         u8 ii;
302         u8 radio_id = 0;
303         u16 gc[20] = {0xf0, 0xf0, 0xf0, 0xf0,
304                       0xf0, 0xf0, 0xf0, 0xf0,
305                       0xf0, 0xf0, 0xf0, 0xf0,
306                       0xf0, 0xf0, 0xf0, 0xf0,
307                       0xf0, 0xf0, 0xf0, 0xf0};
308         struct sk_buff *skb;
309         u16 frame_len = sizeof(struct rsi_radio_caps);
310
311         rsi_dbg(INFO_ZONE, "%s: Sending rate symbol req frame\n", __func__);
312
313         skb = dev_alloc_skb(frame_len);
314
315         if (!skb) {
316                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
317                         __func__);
318                 return -ENOMEM;
319         }
320
321         memset(skb->data, 0, frame_len);
322         radio_caps = (struct rsi_radio_caps *)skb->data;
323
324         radio_caps->desc_dword0.frame_type = RADIO_CAPABILITIES;
325         radio_caps->channel_num = common->channel;
326         radio_caps->rf_model = RSI_RF_TYPE;
327
328         if (common->channel_width == BW_40MHZ) {
329                 radio_caps->radio_cfg_info = RSI_LMAC_CLOCK_80MHZ;
330                 radio_caps->radio_cfg_info |= RSI_ENABLE_40MHZ;
331
332                 if (common->fsm_state == FSM_MAC_INIT_DONE) {
333                         struct ieee80211_hw *hw = adapter->hw;
334                         struct ieee80211_conf *conf = &hw->conf;
335
336                         if (conf_is_ht40_plus(conf)) {
337                                 radio_caps->radio_cfg_info =
338                                         RSI_CMDDESC_LOWER_20_ENABLE;
339                                 radio_caps->radio_info =
340                                         RSI_CMDDESC_LOWER_20_ENABLE;
341                         } else if (conf_is_ht40_minus(conf)) {
342                                 radio_caps->radio_cfg_info =
343                                         RSI_CMDDESC_UPPER_20_ENABLE;
344                                 radio_caps->radio_info =
345                                         RSI_CMDDESC_UPPER_20_ENABLE;
346                         } else {
347                                 radio_caps->radio_cfg_info =
348                                         RSI_CMDDESC_40MHZ;
349                                 radio_caps->radio_info =
350                                         RSI_CMDDESC_FULL_40_ENABLE;
351                         }
352                 }
353         }
354         radio_caps->radio_info |= radio_id;
355
356         radio_caps->sifs_tx_11n = cpu_to_le16(SIFS_TX_11N_VALUE);
357         radio_caps->sifs_tx_11b = cpu_to_le16(SIFS_TX_11B_VALUE);
358         radio_caps->slot_rx_11n = cpu_to_le16(SHORT_SLOT_VALUE);
359         radio_caps->ofdm_ack_tout = cpu_to_le16(OFDM_ACK_TOUT_VALUE);
360         radio_caps->cck_ack_tout = cpu_to_le16(CCK_ACK_TOUT_VALUE);
361         radio_caps->preamble_type = cpu_to_le16(LONG_PREAMBLE);
362
363         for (ii = 0; ii < MAX_HW_QUEUES; ii++) {
364                 radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(3);
365                 radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(0x3f);
366                 radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16(2);
367                 radio_caps->qos_params[ii].txop_q = 0;
368         }
369
370         for (ii = 0; ii < NUM_EDCA_QUEUES; ii++) {
371                 radio_caps->qos_params[ii].cont_win_min_q =
372                         cpu_to_le16(common->edca_params[ii].cw_min);
373                 radio_caps->qos_params[ii].cont_win_max_q =
374                         cpu_to_le16(common->edca_params[ii].cw_max);
375                 radio_caps->qos_params[ii].aifsn_val_q =
376                         cpu_to_le16((common->edca_params[ii].aifs) << 8);
377                 radio_caps->qos_params[ii].txop_q =
378                         cpu_to_le16(common->edca_params[ii].txop);
379         }
380
381         radio_caps->qos_params[BROADCAST_HW_Q].txop_q = cpu_to_le16(0xffff);
382         radio_caps->qos_params[MGMT_HW_Q].txop_q = 0;
383         radio_caps->qos_params[BEACON_HW_Q].txop_q = cpu_to_le16(0xffff);
384
385         memcpy(&common->rate_pwr[0], &gc[0], 40);
386         for (ii = 0; ii < 20; ii++)
387                 radio_caps->gcpd_per_rate[inx++] =
388                         cpu_to_le16(common->rate_pwr[ii]  & 0x00FF);
389
390         rsi_set_len_qno(&radio_caps->desc_dword0.len_qno,
391                         (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
392
393         skb_put(skb, frame_len);
394
395         return rsi_send_internal_mgmt_frame(common, skb);
396 }
397
398 /**
399  * rsi_mgmt_pkt_to_core() - This function is the entry point for Mgmt module.
400  * @common: Pointer to the driver private structure.
401  * @msg: Pointer to received packet.
402  * @msg_len: Length of the recieved packet.
403  * @type: Type of recieved packet.
404  *
405  * Return: 0 on success, -1 on failure.
406  */
407 static int rsi_mgmt_pkt_to_core(struct rsi_common *common,
408                                 u8 *msg,
409                                 s32 msg_len)
410 {
411         struct rsi_hw *adapter = common->priv;
412         struct ieee80211_tx_info *info;
413         struct skb_info *rx_params;
414         u8 pad_bytes = msg[4];
415         struct sk_buff *skb;
416
417         if (!adapter->sc_nvifs)
418                 return -ENOLINK;
419
420         msg_len -= pad_bytes;
421         if (msg_len <= 0) {
422                 rsi_dbg(MGMT_RX_ZONE,
423                         "%s: Invalid rx msg of len = %d\n",
424                         __func__, msg_len);
425                 return -EINVAL;
426         }
427
428         skb = dev_alloc_skb(msg_len);
429         if (!skb)
430                 return -ENOMEM;
431
432         skb_put_data(skb,
433                      (u8 *)(msg + FRAME_DESC_SZ + pad_bytes),
434                      msg_len);
435
436         info = IEEE80211_SKB_CB(skb);
437         rx_params = (struct skb_info *)info->driver_data;
438         rx_params->rssi = rsi_get_rssi(msg);
439         rx_params->channel = rsi_get_channel(msg);
440         rsi_indicate_pkt_to_os(common, skb);
441
442         return 0;
443 }
444
445 /**
446  * rsi_hal_send_sta_notify_frame() - This function sends the station notify
447  *                                   frame to firmware.
448  * @common: Pointer to the driver private structure.
449  * @opmode: Operating mode of device.
450  * @notify_event: Notification about station connection.
451  * @bssid: bssid.
452  * @qos_enable: Qos is enabled.
453  * @aid: Aid (unique for all STA).
454  *
455  * Return: status: 0 on success, corresponding negative error code on failure.
456  */
457 static int rsi_hal_send_sta_notify_frame(struct rsi_common *common,
458                                          enum opmode opmode,
459                                          u8 notify_event,
460                                          const unsigned char *bssid,
461                                          u8 qos_enable,
462                                          u16 aid,
463                                          u16 sta_id)
464 {
465         struct ieee80211_vif *vif = common->priv->vifs[0];
466         struct sk_buff *skb = NULL;
467         struct rsi_peer_notify *peer_notify;
468         u16 vap_id = 0;
469         int status;
470         u16 frame_len = sizeof(struct rsi_peer_notify);
471
472         rsi_dbg(MGMT_TX_ZONE, "%s: Sending sta notify frame\n", __func__);
473
474         skb = dev_alloc_skb(frame_len);
475
476         if (!skb) {
477                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
478                         __func__);
479                 return -ENOMEM;
480         }
481
482         memset(skb->data, 0, frame_len);
483         peer_notify = (struct rsi_peer_notify *)skb->data;
484
485         if (opmode == STA_OPMODE)
486                 peer_notify->command = cpu_to_le16(PEER_TYPE_AP << 1);
487         else if (opmode == AP_OPMODE)
488                 peer_notify->command = cpu_to_le16(PEER_TYPE_STA << 1);
489
490         switch (notify_event) {
491         case STA_CONNECTED:
492                 peer_notify->command |= cpu_to_le16(RSI_ADD_PEER);
493                 break;
494         case STA_DISCONNECTED:
495                 peer_notify->command |= cpu_to_le16(RSI_DELETE_PEER);
496                 break;
497         default:
498                 break;
499         }
500
501         peer_notify->command |= cpu_to_le16((aid & 0xfff) << 4);
502         ether_addr_copy(peer_notify->mac_addr, bssid);
503         peer_notify->mpdu_density = cpu_to_le16(RSI_MPDU_DENSITY);
504         peer_notify->sta_flags = cpu_to_le32((qos_enable) ? 1 : 0);
505
506         rsi_set_len_qno(&peer_notify->desc.desc_dword0.len_qno,
507                         (frame_len - FRAME_DESC_SZ),
508                         RSI_WIFI_MGMT_Q);
509         peer_notify->desc.desc_dword0.frame_type = PEER_NOTIFY;
510         peer_notify->desc.desc_dword3.qid_tid = sta_id;
511         peer_notify->desc.desc_dword3.sta_id = vap_id;
512
513         skb_put(skb, frame_len);
514
515         status = rsi_send_internal_mgmt_frame(common, skb);
516
517         if ((vif->type == NL80211_IFTYPE_STATION) &&
518             (!status && qos_enable)) {
519                 rsi_set_contention_vals(common);
520                 status = rsi_load_radio_caps(common);
521         }
522         return status;
523 }
524
525 /**
526  * rsi_send_aggregation_params_frame() - This function sends the ampdu
527  *                                       indication frame to firmware.
528  * @common: Pointer to the driver private structure.
529  * @tid: traffic identifier.
530  * @ssn: ssn.
531  * @buf_size: buffer size.
532  * @event: notification about station connection.
533  *
534  * Return: 0 on success, corresponding negative error code on failure.
535  */
536 int rsi_send_aggregation_params_frame(struct rsi_common *common,
537                                       u16 tid,
538                                       u16 ssn,
539                                       u8 buf_size,
540                                       u8 event,
541                                       u8 sta_id)
542 {
543         struct sk_buff *skb = NULL;
544         struct rsi_aggr_params *aggr_params;
545         u16 frame_len = sizeof(struct rsi_aggr_params);
546
547         skb = dev_alloc_skb(frame_len);
548
549         if (!skb) {
550                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
551                         __func__);
552                 return -ENOMEM;
553         }
554
555         memset(skb->data, 0, frame_len);
556         aggr_params = (struct rsi_aggr_params *)skb->data;
557
558         rsi_dbg(MGMT_TX_ZONE, "%s: Sending AMPDU indication frame\n", __func__);
559
560         rsi_set_len_qno(&aggr_params->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
561         aggr_params->desc_dword0.frame_type = AMPDU_IND;
562
563         aggr_params->aggr_params = tid & RSI_AGGR_PARAMS_TID_MASK;
564         aggr_params->peer_id = sta_id;
565         if (event == STA_TX_ADDBA_DONE) {
566                 aggr_params->seq_start = cpu_to_le16(ssn);
567                 aggr_params->baw_size = cpu_to_le16(buf_size);
568                 aggr_params->aggr_params |= RSI_AGGR_PARAMS_START;
569         } else if (event == STA_RX_ADDBA_DONE) {
570                 aggr_params->seq_start = cpu_to_le16(ssn);
571                 aggr_params->aggr_params |= (RSI_AGGR_PARAMS_START |
572                                              RSI_AGGR_PARAMS_RX_AGGR);
573         } else if (event == STA_RX_DELBA) {
574                 aggr_params->aggr_params |= RSI_AGGR_PARAMS_RX_AGGR;
575         }
576
577         skb_put(skb, frame_len);
578
579         return rsi_send_internal_mgmt_frame(common, skb);
580 }
581
582 /**
583  * rsi_program_bb_rf() - This function starts base band and RF programming.
584  *                       This is called after initial configurations are done.
585  * @common: Pointer to the driver private structure.
586  *
587  * Return: 0 on success, corresponding negative error code on failure.
588  */
589 static int rsi_program_bb_rf(struct rsi_common *common)
590 {
591         struct sk_buff *skb;
592         struct rsi_bb_rf_prog *bb_rf_prog;
593         u16 frame_len = sizeof(struct rsi_bb_rf_prog);
594
595         rsi_dbg(MGMT_TX_ZONE, "%s: Sending program BB/RF frame\n", __func__);
596
597         skb = dev_alloc_skb(frame_len);
598         if (!skb) {
599                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
600                         __func__);
601                 return -ENOMEM;
602         }
603
604         memset(skb->data, 0, frame_len);
605         bb_rf_prog = (struct rsi_bb_rf_prog *)skb->data;
606
607         rsi_set_len_qno(&bb_rf_prog->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
608         bb_rf_prog->desc_dword0.frame_type = BBP_PROG_IN_TA;
609         bb_rf_prog->endpoint = common->endpoint;
610         bb_rf_prog->rf_power_mode = common->wlan_rf_power_mode;
611
612         if (common->rf_reset) {
613                 bb_rf_prog->flags =  cpu_to_le16(RF_RESET_ENABLE);
614                 rsi_dbg(MGMT_TX_ZONE, "%s: ===> RF RESET REQUEST SENT <===\n",
615                         __func__);
616                 common->rf_reset = 0;
617         }
618         common->bb_rf_prog_count = 1;
619         bb_rf_prog->flags |= cpu_to_le16(PUT_BBP_RESET | BBP_REG_WRITE |
620                                          (RSI_RF_TYPE << 4));
621         skb_put(skb, frame_len);
622
623         return rsi_send_internal_mgmt_frame(common, skb);
624 }
625
626 /**
627  * rsi_set_vap_capabilities() - This function send vap capability to firmware.
628  * @common: Pointer to the driver private structure.
629  * @opmode: Operating mode of device.
630  *
631  * Return: 0 on success, corresponding negative error code on failure.
632  */
633 int rsi_set_vap_capabilities(struct rsi_common *common,
634                              enum opmode mode,
635                              u8 *mac_addr,
636                              u8 vap_id,
637                              u8 vap_status)
638 {
639         struct sk_buff *skb = NULL;
640         struct rsi_vap_caps *vap_caps;
641         struct rsi_hw *adapter = common->priv;
642         struct ieee80211_hw *hw = adapter->hw;
643         struct ieee80211_conf *conf = &hw->conf;
644         u16 frame_len = sizeof(struct rsi_vap_caps);
645
646         rsi_dbg(MGMT_TX_ZONE, "%s: Sending VAP capabilities frame\n", __func__);
647
648         skb = dev_alloc_skb(frame_len);
649         if (!skb) {
650                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
651                         __func__);
652                 return -ENOMEM;
653         }
654
655         memset(skb->data, 0, frame_len);
656         vap_caps = (struct rsi_vap_caps *)skb->data;
657
658         rsi_set_len_qno(&vap_caps->desc_dword0.len_qno,
659                         (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
660         vap_caps->desc_dword0.frame_type = VAP_CAPABILITIES;
661         vap_caps->status = vap_status;
662         vap_caps->vif_type = mode;
663         vap_caps->channel_bw = common->channel_width;
664         vap_caps->vap_id = vap_id;
665         vap_caps->radioid_macid = ((common->mac_id & 0xf) << 4) |
666                                    (common->radio_id & 0xf);
667
668         memcpy(vap_caps->mac_addr, mac_addr, IEEE80211_ADDR_LEN);
669         vap_caps->keep_alive_period = cpu_to_le16(90);
670         vap_caps->frag_threshold = cpu_to_le16(IEEE80211_MAX_FRAG_THRESHOLD);
671
672         vap_caps->rts_threshold = cpu_to_le16(common->rts_threshold);
673
674         if (common->band == NL80211_BAND_5GHZ) {
675                 vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_6);
676                 vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_6);
677         } else {
678                 vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_1);
679                 vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_1);
680         }
681         if (conf_is_ht40(conf)) {
682                 if (conf_is_ht40_minus(conf))
683                         vap_caps->ctrl_rate_flags =
684                                 cpu_to_le16(UPPER_20_ENABLE);
685                 else if (conf_is_ht40_plus(conf))
686                         vap_caps->ctrl_rate_flags =
687                                 cpu_to_le16(LOWER_20_ENABLE);
688                 else
689                         vap_caps->ctrl_rate_flags =
690                                 cpu_to_le16(FULL40M_ENABLE);
691         }
692
693         vap_caps->default_data_rate = 0;
694         vap_caps->beacon_interval = cpu_to_le16(common->beacon_interval);
695         vap_caps->dtim_period = cpu_to_le16(common->dtim_cnt);
696
697         skb_put(skb, frame_len);
698
699         return rsi_send_internal_mgmt_frame(common, skb);
700 }
701
702 /**
703  * rsi_hal_load_key() - This function is used to load keys within the firmware.
704  * @common: Pointer to the driver private structure.
705  * @data: Pointer to the key data.
706  * @key_len: Key length to be loaded.
707  * @key_type: Type of key: GROUP/PAIRWISE.
708  * @key_id: Key index.
709  * @cipher: Type of cipher used.
710  *
711  * Return: 0 on success, -1 on failure.
712  */
713 int rsi_hal_load_key(struct rsi_common *common,
714                      u8 *data,
715                      u16 key_len,
716                      u8 key_type,
717                      u8 key_id,
718                      u32 cipher,
719                      s16 sta_id)
720 {
721         struct ieee80211_vif *vif = common->priv->vifs[0];
722         struct sk_buff *skb = NULL;
723         struct rsi_set_key *set_key;
724         u16 key_descriptor = 0;
725         u16 frame_len = sizeof(struct rsi_set_key);
726
727         rsi_dbg(MGMT_TX_ZONE, "%s: Sending load key frame\n", __func__);
728
729         skb = dev_alloc_skb(frame_len);
730         if (!skb) {
731                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
732                         __func__);
733                 return -ENOMEM;
734         }
735
736         memset(skb->data, 0, frame_len);
737         set_key = (struct rsi_set_key *)skb->data;
738
739         if (key_type == RSI_GROUP_KEY) {
740                 key_descriptor = RSI_KEY_TYPE_BROADCAST;
741                 if (vif->type == NL80211_IFTYPE_AP)
742                         key_descriptor |= RSI_KEY_MODE_AP;
743         }
744         if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
745             (cipher == WLAN_CIPHER_SUITE_WEP104)) {
746                 key_id = 0;
747                 key_descriptor |= RSI_WEP_KEY;
748                 if (key_len >= 13)
749                         key_descriptor |= RSI_WEP_KEY_104;
750         } else if (cipher != KEY_TYPE_CLEAR) {
751                 key_descriptor |= RSI_CIPHER_WPA;
752                 if (cipher == WLAN_CIPHER_SUITE_TKIP)
753                         key_descriptor |= RSI_CIPHER_TKIP;
754         }
755         key_descriptor |= RSI_PROTECT_DATA_FRAMES;
756         key_descriptor |= ((key_id << RSI_KEY_ID_OFFSET) & RSI_KEY_ID_MASK);
757
758         rsi_set_len_qno(&set_key->desc_dword0.len_qno,
759                         (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
760         set_key->desc_dword0.frame_type = SET_KEY_REQ;
761         set_key->key_desc = cpu_to_le16(key_descriptor);
762         set_key->sta_id = sta_id;
763
764         if (data) {
765                 if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
766                     (cipher == WLAN_CIPHER_SUITE_WEP104)) {
767                         memcpy(&set_key->key[key_id][1], data, key_len * 2);
768                 } else {
769                         memcpy(&set_key->key[0][0], data, key_len);
770                 }
771                 memcpy(set_key->tx_mic_key, &data[16], 8);
772                 memcpy(set_key->rx_mic_key, &data[24], 8);
773         } else {
774                 memset(&set_key[FRAME_DESC_SZ], 0, frame_len - FRAME_DESC_SZ);
775         }
776
777         skb_put(skb, frame_len);
778
779         return rsi_send_internal_mgmt_frame(common, skb);
780 }
781
782 /*
783  * This function sends the common device configuration parameters to device.
784  * This frame includes the useful information to make device works on
785  * specific operating mode.
786  */
787 static int rsi_send_common_dev_params(struct rsi_common *common)
788 {
789         struct sk_buff *skb;
790         u16 frame_len;
791         struct rsi_config_vals *dev_cfgs;
792
793         frame_len = sizeof(struct rsi_config_vals);
794
795         rsi_dbg(MGMT_TX_ZONE, "Sending common device config params\n");
796         skb = dev_alloc_skb(frame_len);
797         if (!skb) {
798                 rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
799                 return -ENOMEM;
800         }
801
802         memset(skb->data, 0, frame_len);
803
804         dev_cfgs = (struct rsi_config_vals *)skb->data;
805         memset(dev_cfgs, 0, (sizeof(struct rsi_config_vals)));
806
807         rsi_set_len_qno(&dev_cfgs->len_qno, (frame_len - FRAME_DESC_SZ),
808                         RSI_COEX_Q);
809         dev_cfgs->pkt_type = COMMON_DEV_CONFIG;
810
811         dev_cfgs->lp_ps_handshake = common->lp_ps_handshake_mode;
812         dev_cfgs->ulp_ps_handshake = common->ulp_ps_handshake_mode;
813
814         dev_cfgs->unused_ulp_gpio = RSI_UNUSED_ULP_GPIO_BITMAP;
815         dev_cfgs->unused_soc_gpio_bitmap =
816                                 cpu_to_le32(RSI_UNUSED_SOC_GPIO_BITMAP);
817
818         dev_cfgs->opermode = common->oper_mode;
819         dev_cfgs->wlan_rf_pwr_mode = common->wlan_rf_power_mode;
820         dev_cfgs->driver_mode = common->driver_mode;
821         dev_cfgs->region_code = NL80211_DFS_FCC;
822         dev_cfgs->antenna_sel_val = common->obm_ant_sel_val;
823
824         skb_put(skb, frame_len);
825
826         return rsi_send_internal_mgmt_frame(common, skb);
827 }
828
829 /*
830  * rsi_load_bootup_params() - This function send bootup params to the firmware.
831  * @common: Pointer to the driver private structure.
832  *
833  * Return: 0 on success, corresponding error code on failure.
834  */
835 static int rsi_load_bootup_params(struct rsi_common *common)
836 {
837         struct sk_buff *skb;
838         struct rsi_boot_params *boot_params;
839
840         rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
841         skb = dev_alloc_skb(sizeof(struct rsi_boot_params));
842         if (!skb) {
843                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
844                         __func__);
845                 return -ENOMEM;
846         }
847
848         memset(skb->data, 0, sizeof(struct rsi_boot_params));
849         boot_params = (struct rsi_boot_params *)skb->data;
850
851         rsi_dbg(MGMT_TX_ZONE, "%s:\n", __func__);
852
853         if (common->channel_width == BW_40MHZ) {
854                 memcpy(&boot_params->bootup_params,
855                        &boot_params_40,
856                        sizeof(struct bootup_params));
857                 rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
858                         UMAC_CLK_40BW);
859                 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40BW);
860         } else {
861                 memcpy(&boot_params->bootup_params,
862                        &boot_params_20,
863                        sizeof(struct bootup_params));
864                 if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
865                         boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_20BW);
866                         rsi_dbg(MGMT_TX_ZONE,
867                                 "%s: Packet 20MHZ <=== %d\n", __func__,
868                                 UMAC_CLK_20BW);
869                 } else {
870                         boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40MHZ);
871                         rsi_dbg(MGMT_TX_ZONE,
872                                 "%s: Packet 20MHZ <=== %d\n", __func__,
873                                 UMAC_CLK_40MHZ);
874                 }
875         }
876
877         /**
878          * Bit{0:11} indicates length of the Packet
879          * Bit{12:15} indicates host queue number
880          */
881         boot_params->desc_word[0] = cpu_to_le16(sizeof(struct bootup_params) |
882                                     (RSI_WIFI_MGMT_Q << 12));
883         boot_params->desc_word[1] = cpu_to_le16(BOOTUP_PARAMS_REQUEST);
884
885         skb_put(skb, sizeof(struct rsi_boot_params));
886
887         return rsi_send_internal_mgmt_frame(common, skb);
888 }
889
890 /**
891  * rsi_send_reset_mac() - This function prepares reset MAC request and sends an
892  *                        internal management frame to indicate it to firmware.
893  * @common: Pointer to the driver private structure.
894  *
895  * Return: 0 on success, corresponding error code on failure.
896  */
897 static int rsi_send_reset_mac(struct rsi_common *common)
898 {
899         struct sk_buff *skb;
900         struct rsi_mac_frame *mgmt_frame;
901
902         rsi_dbg(MGMT_TX_ZONE, "%s: Sending reset MAC frame\n", __func__);
903
904         skb = dev_alloc_skb(FRAME_DESC_SZ);
905         if (!skb) {
906                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
907                         __func__);
908                 return -ENOMEM;
909         }
910
911         memset(skb->data, 0, FRAME_DESC_SZ);
912         mgmt_frame = (struct rsi_mac_frame *)skb->data;
913
914         mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
915         mgmt_frame->desc_word[1] = cpu_to_le16(RESET_MAC_REQ);
916         mgmt_frame->desc_word[4] = cpu_to_le16(RETRY_COUNT << 8);
917
918         skb_put(skb, FRAME_DESC_SZ);
919
920         return rsi_send_internal_mgmt_frame(common, skb);
921 }
922
923 /**
924  * rsi_band_check() - This function programs the band
925  * @common: Pointer to the driver private structure.
926  *
927  * Return: 0 on success, corresponding error code on failure.
928  */
929 int rsi_band_check(struct rsi_common *common)
930 {
931         struct rsi_hw *adapter = common->priv;
932         struct ieee80211_hw *hw = adapter->hw;
933         u8 prev_bw = common->channel_width;
934         u8 prev_ep = common->endpoint;
935         struct ieee80211_channel *curchan = hw->conf.chandef.chan;
936         int status = 0;
937
938         if (common->band != curchan->band) {
939                 common->rf_reset = 1;
940                 common->band = curchan->band;
941         }
942
943         if ((hw->conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT) ||
944             (hw->conf.chandef.width == NL80211_CHAN_WIDTH_20))
945                 common->channel_width = BW_20MHZ;
946         else
947                 common->channel_width = BW_40MHZ;
948
949         if (common->band == NL80211_BAND_2GHZ) {
950                 if (common->channel_width)
951                         common->endpoint = EP_2GHZ_40MHZ;
952                 else
953                         common->endpoint = EP_2GHZ_20MHZ;
954         } else {
955                 if (common->channel_width)
956                         common->endpoint = EP_5GHZ_40MHZ;
957                 else
958                         common->endpoint = EP_5GHZ_20MHZ;
959         }
960
961         if (common->endpoint != prev_ep) {
962                 status = rsi_program_bb_rf(common);
963                 if (status)
964                         return status;
965         }
966
967         if (common->channel_width != prev_bw) {
968                 status = rsi_load_bootup_params(common);
969                 if (status)
970                         return status;
971
972                 status = rsi_load_radio_caps(common);
973                 if (status)
974                         return status;
975         }
976
977         return status;
978 }
979
980 /**
981  * rsi_set_channel() - This function programs the channel.
982  * @common: Pointer to the driver private structure.
983  * @channel: Channel value to be set.
984  *
985  * Return: 0 on success, corresponding error code on failure.
986  */
987 int rsi_set_channel(struct rsi_common *common,
988                     struct ieee80211_channel *channel)
989 {
990         struct sk_buff *skb = NULL;
991         struct rsi_chan_config *chan_cfg;
992         u16 frame_len = sizeof(struct rsi_chan_config);
993
994         rsi_dbg(MGMT_TX_ZONE,
995                 "%s: Sending scan req frame\n", __func__);
996
997         skb = dev_alloc_skb(frame_len);
998         if (!skb) {
999                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1000                         __func__);
1001                 return -ENOMEM;
1002         }
1003
1004         if (!channel) {
1005                 dev_kfree_skb(skb);
1006                 return 0;
1007         }
1008         memset(skb->data, 0, frame_len);
1009         chan_cfg = (struct rsi_chan_config *)skb->data;
1010
1011         rsi_set_len_qno(&chan_cfg->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
1012         chan_cfg->desc_dword0.frame_type = SCAN_REQUEST;
1013         chan_cfg->channel_number = channel->hw_value;
1014         chan_cfg->antenna_gain_offset_2g = channel->max_antenna_gain;
1015         chan_cfg->antenna_gain_offset_5g = channel->max_antenna_gain;
1016         chan_cfg->region_rftype = (RSI_RF_TYPE & 0xf) << 4;
1017
1018         if ((channel->flags & IEEE80211_CHAN_NO_IR) ||
1019             (channel->flags & IEEE80211_CHAN_RADAR)) {
1020                 chan_cfg->antenna_gain_offset_2g |= RSI_CHAN_RADAR;
1021         } else {
1022                 if (common->tx_power < channel->max_power)
1023                         chan_cfg->tx_power = cpu_to_le16(common->tx_power);
1024                 else
1025                         chan_cfg->tx_power = cpu_to_le16(channel->max_power);
1026         }
1027         chan_cfg->region_rftype |= (common->priv->dfs_region & 0xf);
1028
1029         if (common->channel_width == BW_40MHZ)
1030                 chan_cfg->channel_width = 0x1;
1031
1032         common->channel = channel->hw_value;
1033
1034         skb_put(skb, frame_len);
1035
1036         return rsi_send_internal_mgmt_frame(common, skb);
1037 }
1038
1039 /**
1040  * rsi_send_radio_params_update() - This function sends the radio
1041  *                              parameters update to device
1042  * @common: Pointer to the driver private structure.
1043  * @channel: Channel value to be set.
1044  *
1045  * Return: 0 on success, corresponding error code on failure.
1046  */
1047 int rsi_send_radio_params_update(struct rsi_common *common)
1048 {
1049         struct rsi_mac_frame *cmd_frame;
1050         struct sk_buff *skb = NULL;
1051
1052         rsi_dbg(MGMT_TX_ZONE,
1053                 "%s: Sending Radio Params update frame\n", __func__);
1054
1055         skb = dev_alloc_skb(FRAME_DESC_SZ);
1056         if (!skb) {
1057                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1058                         __func__);
1059                 return -ENOMEM;
1060         }
1061
1062         memset(skb->data, 0, FRAME_DESC_SZ);
1063         cmd_frame = (struct rsi_mac_frame *)skb->data;
1064
1065         cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1066         cmd_frame->desc_word[1] = cpu_to_le16(RADIO_PARAMS_UPDATE);
1067         cmd_frame->desc_word[3] = cpu_to_le16(BIT(0));
1068
1069         cmd_frame->desc_word[3] |= cpu_to_le16(common->tx_power << 8);
1070
1071         skb_put(skb, FRAME_DESC_SZ);
1072
1073         return rsi_send_internal_mgmt_frame(common, skb);
1074 }
1075
1076 /* This function programs the threshold. */
1077 int rsi_send_vap_dynamic_update(struct rsi_common *common)
1078 {
1079         struct sk_buff *skb;
1080         struct rsi_dynamic_s *dynamic_frame;
1081
1082         rsi_dbg(MGMT_TX_ZONE,
1083                 "%s: Sending vap update indication frame\n", __func__);
1084
1085         skb = dev_alloc_skb(sizeof(struct rsi_dynamic_s));
1086         if (!skb)
1087                 return -ENOMEM;
1088
1089         memset(skb->data, 0, sizeof(struct rsi_dynamic_s));
1090         dynamic_frame = (struct rsi_dynamic_s *)skb->data;
1091         rsi_set_len_qno(&dynamic_frame->desc_dword0.len_qno,
1092                         sizeof(dynamic_frame->frame_body), RSI_WIFI_MGMT_Q);
1093
1094         dynamic_frame->desc_dword0.frame_type = VAP_DYNAMIC_UPDATE;
1095         dynamic_frame->desc_dword2.pkt_info =
1096                                         cpu_to_le32(common->rts_threshold);
1097         /* Beacon miss threshold */
1098         dynamic_frame->frame_body.keep_alive_period =
1099                                         cpu_to_le16(RSI_DEF_KEEPALIVE);
1100         dynamic_frame->desc_dword3.sta_id = 0; /* vap id */
1101
1102         skb_put(skb, sizeof(struct rsi_dynamic_s));
1103
1104         return rsi_send_internal_mgmt_frame(common, skb);
1105 }
1106
1107 /**
1108  * rsi_compare() - This function is used to compare two integers
1109  * @a: pointer to the first integer
1110  * @b: pointer to the second integer
1111  *
1112  * Return: 0 if both are equal, -1 if the first is smaller, else 1
1113  */
1114 static int rsi_compare(const void *a, const void *b)
1115 {
1116         u16 _a = *(const u16 *)(a);
1117         u16 _b = *(const u16 *)(b);
1118
1119         if (_a > _b)
1120                 return -1;
1121
1122         if (_a < _b)
1123                 return 1;
1124
1125         return 0;
1126 }
1127
1128 /**
1129  * rsi_map_rates() - This function is used to map selected rates to hw rates.
1130  * @rate: The standard rate to be mapped.
1131  * @offset: Offset that will be returned.
1132  *
1133  * Return: 0 if it is a mcs rate, else 1
1134  */
1135 static bool rsi_map_rates(u16 rate, int *offset)
1136 {
1137         int kk;
1138         for (kk = 0; kk < ARRAY_SIZE(rsi_mcsrates); kk++) {
1139                 if (rate == mcs[kk]) {
1140                         *offset = kk;
1141                         return false;
1142                 }
1143         }
1144
1145         for (kk = 0; kk < ARRAY_SIZE(rsi_rates); kk++) {
1146                 if (rate == rsi_rates[kk].bitrate / 5) {
1147                         *offset = kk;
1148                         break;
1149                 }
1150         }
1151         return true;
1152 }
1153
1154 /**
1155  * rsi_send_auto_rate_request() - This function is to set rates for connection
1156  *                                and send autorate request to firmware.
1157  * @common: Pointer to the driver private structure.
1158  *
1159  * Return: 0 on success, corresponding error code on failure.
1160  */
1161 static int rsi_send_auto_rate_request(struct rsi_common *common,
1162                                       struct ieee80211_sta *sta,
1163                                       u16 sta_id)
1164 {
1165         struct ieee80211_vif *vif = common->priv->vifs[0];
1166         struct sk_buff *skb;
1167         struct rsi_auto_rate *auto_rate;
1168         int ii = 0, jj = 0, kk = 0;
1169         struct ieee80211_hw *hw = common->priv->hw;
1170         u8 band = hw->conf.chandef.chan->band;
1171         u8 num_supported_rates = 0;
1172         u8 rate_table_offset, rate_offset = 0;
1173         u32 rate_bitmap;
1174         u16 *selected_rates, min_rate;
1175         bool is_ht = false, is_sgi = false;
1176         u16 frame_len = sizeof(struct rsi_auto_rate);
1177
1178         rsi_dbg(MGMT_TX_ZONE,
1179                 "%s: Sending auto rate request frame\n", __func__);
1180
1181         skb = dev_alloc_skb(frame_len);
1182         if (!skb) {
1183                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1184                         __func__);
1185                 return -ENOMEM;
1186         }
1187
1188         selected_rates = kzalloc(2 * RSI_TBL_SZ, GFP_KERNEL);
1189         if (!selected_rates) {
1190                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of mem\n",
1191                         __func__);
1192                 dev_kfree_skb(skb);
1193                 return -ENOMEM;
1194         }
1195
1196         auto_rate = (struct rsi_auto_rate *)skb->data;
1197
1198         auto_rate->aarf_rssi = cpu_to_le16(((u16)3 << 6) | (u16)(18 & 0x3f));
1199         auto_rate->collision_tolerance = cpu_to_le16(3);
1200         auto_rate->failure_limit = cpu_to_le16(3);
1201         auto_rate->initial_boundary = cpu_to_le16(3);
1202         auto_rate->max_threshold_limt = cpu_to_le16(27);
1203
1204         auto_rate->desc.desc_dword0.frame_type = AUTO_RATE_IND;
1205
1206         if (common->channel_width == BW_40MHZ)
1207                 auto_rate->desc.desc_dword3.qid_tid = BW_40MHZ;
1208         auto_rate->desc.desc_dword3.sta_id = sta_id;
1209
1210         if (vif->type == NL80211_IFTYPE_STATION) {
1211                 rate_bitmap = common->bitrate_mask[band];
1212                 is_ht = common->vif_info[0].is_ht;
1213                 is_sgi = common->vif_info[0].sgi;
1214         } else {
1215                 rate_bitmap = sta->supp_rates[band];
1216                 is_ht = sta->ht_cap.ht_supported;
1217                 if ((sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ||
1218                     (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40))
1219                         is_sgi = true;
1220         }
1221
1222         if (band == NL80211_BAND_2GHZ) {
1223                 if ((rate_bitmap == 0) && (is_ht))
1224                         min_rate = RSI_RATE_MCS0;
1225                 else
1226                         min_rate = RSI_RATE_1;
1227                 rate_table_offset = 0;
1228         } else {
1229                 if ((rate_bitmap == 0) && (is_ht))
1230                         min_rate = RSI_RATE_MCS0;
1231                 else
1232                         min_rate = RSI_RATE_6;
1233                 rate_table_offset = 4;
1234         }
1235
1236         for (ii = 0, jj = 0;
1237              ii < (ARRAY_SIZE(rsi_rates) - rate_table_offset); ii++) {
1238                 if (rate_bitmap & BIT(ii)) {
1239                         selected_rates[jj++] =
1240                         (rsi_rates[ii + rate_table_offset].bitrate / 5);
1241                         rate_offset++;
1242                 }
1243         }
1244         num_supported_rates = jj;
1245
1246         if (is_ht) {
1247                 for (ii = 0; ii < ARRAY_SIZE(mcs); ii++)
1248                         selected_rates[jj++] = mcs[ii];
1249                 num_supported_rates += ARRAY_SIZE(mcs);
1250                 rate_offset += ARRAY_SIZE(mcs);
1251         }
1252
1253         sort(selected_rates, jj, sizeof(u16), &rsi_compare, NULL);
1254
1255         /* mapping the rates to RSI rates */
1256         for (ii = 0; ii < jj; ii++) {
1257                 if (rsi_map_rates(selected_rates[ii], &kk)) {
1258                         auto_rate->supported_rates[ii] =
1259                                 cpu_to_le16(rsi_rates[kk].hw_value);
1260                 } else {
1261                         auto_rate->supported_rates[ii] =
1262                                 cpu_to_le16(rsi_mcsrates[kk]);
1263                 }
1264         }
1265
1266         /* loading HT rates in the bottom half of the auto rate table */
1267         if (is_ht) {
1268                 for (ii = rate_offset, kk = ARRAY_SIZE(rsi_mcsrates) - 1;
1269                      ii < rate_offset + 2 * ARRAY_SIZE(rsi_mcsrates); ii++) {
1270                         if (is_sgi || conf_is_ht40(&common->priv->hw->conf))
1271                                 auto_rate->supported_rates[ii++] =
1272                                         cpu_to_le16(rsi_mcsrates[kk] | BIT(9));
1273                         else
1274                                 auto_rate->supported_rates[ii++] =
1275                                         cpu_to_le16(rsi_mcsrates[kk]);
1276                         auto_rate->supported_rates[ii] =
1277                                 cpu_to_le16(rsi_mcsrates[kk--]);
1278                 }
1279
1280                 for (; ii < (RSI_TBL_SZ - 1); ii++) {
1281                         auto_rate->supported_rates[ii] =
1282                                 cpu_to_le16(rsi_mcsrates[0]);
1283                 }
1284         }
1285
1286         for (; ii < RSI_TBL_SZ; ii++)
1287                 auto_rate->supported_rates[ii] = cpu_to_le16(min_rate);
1288
1289         auto_rate->num_supported_rates = cpu_to_le16(num_supported_rates * 2);
1290         auto_rate->moderate_rate_inx = cpu_to_le16(num_supported_rates / 2);
1291         num_supported_rates *= 2;
1292
1293         rsi_set_len_qno(&auto_rate->desc.desc_dword0.len_qno,
1294                         (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1295
1296         skb_put(skb, frame_len);
1297         kfree(selected_rates);
1298
1299         return rsi_send_internal_mgmt_frame(common, skb);
1300 }
1301
1302 /**
1303  * rsi_inform_bss_status() - This function informs about bss status with the
1304  *                           help of sta notify params by sending an internal
1305  *                           management frame to firmware.
1306  * @common: Pointer to the driver private structure.
1307  * @status: Bss status type.
1308  * @bssid: Bssid.
1309  * @qos_enable: Qos is enabled.
1310  * @aid: Aid (unique for all STAs).
1311  *
1312  * Return: None.
1313  */
1314 void rsi_inform_bss_status(struct rsi_common *common,
1315                            enum opmode opmode,
1316                            u8 status,
1317                            const u8 *addr,
1318                            u8 qos_enable,
1319                            u16 aid,
1320                            struct ieee80211_sta *sta,
1321                            u16 sta_id)
1322 {
1323         if (status) {
1324                 if (opmode == STA_OPMODE)
1325                         common->hw_data_qs_blocked = true;
1326                 rsi_hal_send_sta_notify_frame(common,
1327                                               opmode,
1328                                               STA_CONNECTED,
1329                                               addr,
1330                                               qos_enable,
1331                                               aid, sta_id);
1332                 if (common->min_rate == 0xffff)
1333                         rsi_send_auto_rate_request(common, sta, sta_id);
1334                 if (opmode == STA_OPMODE) {
1335                         if (!rsi_send_block_unblock_frame(common, false))
1336                                 common->hw_data_qs_blocked = false;
1337                 }
1338         } else {
1339                 if (opmode == STA_OPMODE)
1340                         common->hw_data_qs_blocked = true;
1341                 rsi_hal_send_sta_notify_frame(common,
1342                                               opmode,
1343                                               STA_DISCONNECTED,
1344                                               addr,
1345                                               qos_enable,
1346                                               aid, sta_id);
1347                 if (opmode == STA_OPMODE)
1348                         rsi_send_block_unblock_frame(common, true);
1349         }
1350 }
1351
1352 /**
1353  * rsi_eeprom_read() - This function sends a frame to read the mac address
1354  *                     from the eeprom.
1355  * @common: Pointer to the driver private structure.
1356  *
1357  * Return: 0 on success, -1 on failure.
1358  */
1359 static int rsi_eeprom_read(struct rsi_common *common)
1360 {
1361         struct rsi_eeprom_read_frame *mgmt_frame;
1362         struct rsi_hw *adapter = common->priv;
1363         struct sk_buff *skb;
1364
1365         rsi_dbg(MGMT_TX_ZONE, "%s: Sending EEPROM read req frame\n", __func__);
1366
1367         skb = dev_alloc_skb(FRAME_DESC_SZ);
1368         if (!skb) {
1369                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1370                         __func__);
1371                 return -ENOMEM;
1372         }
1373
1374         memset(skb->data, 0, FRAME_DESC_SZ);
1375         mgmt_frame = (struct rsi_eeprom_read_frame *)skb->data;
1376
1377         /* FrameType */
1378         rsi_set_len_qno(&mgmt_frame->len_qno, 0, RSI_WIFI_MGMT_Q);
1379         mgmt_frame->pkt_type = EEPROM_READ;
1380
1381         /* Number of bytes to read */
1382         mgmt_frame->pkt_info =
1383                 cpu_to_le32((adapter->eeprom.length << RSI_EEPROM_LEN_OFFSET) &
1384                             RSI_EEPROM_LEN_MASK);
1385         mgmt_frame->pkt_info |= cpu_to_le32((3 << RSI_EEPROM_HDR_SIZE_OFFSET) &
1386                                             RSI_EEPROM_HDR_SIZE_MASK);
1387
1388         /* Address to read */
1389         mgmt_frame->eeprom_offset = cpu_to_le32(adapter->eeprom.offset);
1390
1391         skb_put(skb, FRAME_DESC_SZ);
1392
1393         return rsi_send_internal_mgmt_frame(common, skb);
1394 }
1395
1396 /**
1397  * This function sends a frame to block/unblock
1398  * data queues in the firmware
1399  *
1400  * @param common Pointer to the driver private structure.
1401  * @param block event - block if true, unblock if false
1402  * @return 0 on success, -1 on failure.
1403  */
1404 int rsi_send_block_unblock_frame(struct rsi_common *common, bool block_event)
1405 {
1406         struct rsi_block_unblock_data *mgmt_frame;
1407         struct sk_buff *skb;
1408
1409         rsi_dbg(MGMT_TX_ZONE, "%s: Sending block/unblock frame\n", __func__);
1410
1411         skb = dev_alloc_skb(FRAME_DESC_SZ);
1412         if (!skb) {
1413                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1414                         __func__);
1415                 return -ENOMEM;
1416         }
1417
1418         memset(skb->data, 0, FRAME_DESC_SZ);
1419         mgmt_frame = (struct rsi_block_unblock_data *)skb->data;
1420
1421         rsi_set_len_qno(&mgmt_frame->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
1422         mgmt_frame->desc_dword0.frame_type = BLOCK_HW_QUEUE;
1423         mgmt_frame->host_quiet_info = QUIET_INFO_VALID;
1424
1425         if (block_event) {
1426                 rsi_dbg(INFO_ZONE, "blocking the data qs\n");
1427                 mgmt_frame->block_q_bitmap = cpu_to_le16(0xf);
1428                 mgmt_frame->block_q_bitmap |= cpu_to_le16(0xf << 4);
1429         } else {
1430                 rsi_dbg(INFO_ZONE, "unblocking the data qs\n");
1431                 mgmt_frame->unblock_q_bitmap = cpu_to_le16(0xf);
1432                 mgmt_frame->unblock_q_bitmap |= cpu_to_le16(0xf << 4);
1433         }
1434
1435         skb_put(skb, FRAME_DESC_SZ);
1436
1437         return rsi_send_internal_mgmt_frame(common, skb);
1438 }
1439
1440 /**
1441  * rsi_send_rx_filter_frame() - Sends a frame to filter the RX packets
1442  *
1443  * @common: Pointer to the driver private structure.
1444  * @rx_filter_word: Flags of filter packets
1445  *
1446  * @Return: 0 on success, -1 on failure.
1447  */
1448 int rsi_send_rx_filter_frame(struct rsi_common *common, u16 rx_filter_word)
1449 {
1450         struct rsi_mac_frame *cmd_frame;
1451         struct sk_buff *skb;
1452
1453         rsi_dbg(MGMT_TX_ZONE, "Sending RX filter frame\n");
1454
1455         skb = dev_alloc_skb(FRAME_DESC_SZ);
1456         if (!skb) {
1457                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1458                         __func__);
1459                 return -ENOMEM;
1460         }
1461
1462         memset(skb->data, 0, FRAME_DESC_SZ);
1463         cmd_frame = (struct rsi_mac_frame *)skb->data;
1464
1465         cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1466         cmd_frame->desc_word[1] = cpu_to_le16(SET_RX_FILTER);
1467         cmd_frame->desc_word[4] = cpu_to_le16(rx_filter_word);
1468
1469         skb_put(skb, FRAME_DESC_SZ);
1470
1471         return rsi_send_internal_mgmt_frame(common, skb);
1472 }
1473
1474 int rsi_send_ps_request(struct rsi_hw *adapter, bool enable)
1475 {
1476         struct rsi_common *common = adapter->priv;
1477         struct ieee80211_bss_conf *bss = &adapter->vifs[0]->bss_conf;
1478         struct rsi_request_ps *ps;
1479         struct rsi_ps_info *ps_info;
1480         struct sk_buff *skb;
1481         int frame_len = sizeof(*ps);
1482
1483         skb = dev_alloc_skb(frame_len);
1484         if (!skb)
1485                 return -ENOMEM;
1486         memset(skb->data, 0, frame_len);
1487
1488         ps = (struct rsi_request_ps *)skb->data;
1489         ps_info = &adapter->ps_info;
1490
1491         rsi_set_len_qno(&ps->desc.desc_dword0.len_qno,
1492                         (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1493         ps->desc.desc_dword0.frame_type = WAKEUP_SLEEP_REQUEST;
1494         if (enable) {
1495                 ps->ps_sleep.enable = RSI_PS_ENABLE;
1496                 ps->desc.desc_dword3.token = cpu_to_le16(RSI_SLEEP_REQUEST);
1497         } else {
1498                 ps->ps_sleep.enable = RSI_PS_DISABLE;
1499                 ps->desc.desc_dword0.len_qno |= cpu_to_le16(RSI_PS_DISABLE_IND);
1500                 ps->desc.desc_dword3.token = cpu_to_le16(RSI_WAKEUP_REQUEST);
1501         }
1502
1503         ps->ps_uapsd_acs = common->uapsd_bitmap;
1504
1505         ps->ps_sleep.sleep_type = ps_info->sleep_type;
1506         ps->ps_sleep.num_bcns_per_lis_int =
1507                 cpu_to_le16(ps_info->num_bcns_per_lis_int);
1508         ps->ps_sleep.sleep_duration =
1509                 cpu_to_le32(ps_info->deep_sleep_wakeup_period);
1510
1511         if (bss->assoc)
1512                 ps->ps_sleep.connected_sleep = RSI_CONNECTED_SLEEP;
1513         else
1514                 ps->ps_sleep.connected_sleep = RSI_DEEP_SLEEP;
1515
1516         ps->ps_listen_interval = cpu_to_le32(ps_info->listen_interval);
1517         ps->ps_dtim_interval_duration =
1518                 cpu_to_le32(ps_info->dtim_interval_duration);
1519
1520         if (ps_info->listen_interval > ps_info->dtim_interval_duration)
1521                 ps->ps_listen_interval = cpu_to_le32(RSI_PS_DISABLE);
1522
1523         ps->ps_num_dtim_intervals = cpu_to_le16(ps_info->num_dtims_per_sleep);
1524         skb_put(skb, frame_len);
1525
1526         return rsi_send_internal_mgmt_frame(common, skb);
1527 }
1528
1529 /**
1530  * rsi_set_antenna() - This fuction send antenna configuration request
1531  *                     to device
1532  *
1533  * @common: Pointer to the driver private structure.
1534  * @antenna: bitmap for tx antenna selection
1535  *
1536  * Return: 0 on Success, negative error code on failure
1537  */
1538 int rsi_set_antenna(struct rsi_common *common, u8 antenna)
1539 {
1540         struct rsi_ant_sel_frame *ant_sel_frame;
1541         struct sk_buff *skb;
1542
1543         skb = dev_alloc_skb(FRAME_DESC_SZ);
1544         if (!skb) {
1545                 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1546                         __func__);
1547                 return -ENOMEM;
1548         }
1549
1550         memset(skb->data, 0, FRAME_DESC_SZ);
1551
1552         ant_sel_frame = (struct rsi_ant_sel_frame *)skb->data;
1553         ant_sel_frame->desc_dword0.frame_type = ANT_SEL_FRAME;
1554         ant_sel_frame->sub_frame_type = ANTENNA_SEL_TYPE;
1555         ant_sel_frame->ant_value = cpu_to_le16(antenna & ANTENNA_MASK_VALUE);
1556         rsi_set_len_qno(&ant_sel_frame->desc_dword0.len_qno,
1557                         0, RSI_WIFI_MGMT_Q);
1558         skb_put(skb, FRAME_DESC_SZ);
1559
1560         return rsi_send_internal_mgmt_frame(common, skb);
1561 }
1562
1563 static int rsi_send_beacon(struct rsi_common *common)
1564 {
1565         struct sk_buff *skb = NULL;
1566         u8 dword_align_bytes = 0;
1567
1568         skb = dev_alloc_skb(MAX_MGMT_PKT_SIZE);
1569         if (!skb)
1570                 return -ENOMEM;
1571
1572         memset(skb->data, 0, MAX_MGMT_PKT_SIZE);
1573
1574         dword_align_bytes = ((unsigned long)skb->data & 0x3f);
1575         if (dword_align_bytes)
1576                 skb_pull(skb, (64 - dword_align_bytes));
1577         if (rsi_prepare_beacon(common, skb)) {
1578                 rsi_dbg(ERR_ZONE, "Failed to prepare beacon\n");
1579                 dev_kfree_skb(skb);
1580                 return -EINVAL;
1581         }
1582         skb_queue_tail(&common->tx_queue[MGMT_BEACON_Q], skb);
1583         rsi_set_event(&common->tx_thread.event);
1584         rsi_dbg(DATA_TX_ZONE, "%s: Added to beacon queue\n", __func__);
1585
1586         return 0;
1587 }
1588
1589 /**
1590  * rsi_handle_ta_confirm_type() - This function handles the confirm frames.
1591  * @common: Pointer to the driver private structure.
1592  * @msg: Pointer to received packet.
1593  *
1594  * Return: 0 on success, -1 on failure.
1595  */
1596 static int rsi_handle_ta_confirm_type(struct rsi_common *common,
1597                                       u8 *msg)
1598 {
1599         struct rsi_hw *adapter = common->priv;
1600         u8 sub_type = (msg[15] & 0xff);
1601         u16 msg_len = ((u16 *)msg)[0] & 0xfff;
1602         u8 offset;
1603
1604         switch (sub_type) {
1605         case BOOTUP_PARAMS_REQUEST:
1606                 rsi_dbg(FSM_ZONE, "%s: Boot up params confirm received\n",
1607                         __func__);
1608                 if (common->fsm_state == FSM_BOOT_PARAMS_SENT) {
1609                         adapter->eeprom.length = (IEEE80211_ADDR_LEN +
1610                                                   WLAN_MAC_MAGIC_WORD_LEN +
1611                                                   WLAN_HOST_MODE_LEN);
1612                         adapter->eeprom.offset = WLAN_MAC_EEPROM_ADDR;
1613                         if (rsi_eeprom_read(common)) {
1614                                 common->fsm_state = FSM_CARD_NOT_READY;
1615                                 goto out;
1616                         }
1617                         common->fsm_state = FSM_EEPROM_READ_MAC_ADDR;
1618                 } else {
1619                         rsi_dbg(INFO_ZONE,
1620                                 "%s: Received bootup params cfm in %d state\n",
1621                                  __func__, common->fsm_state);
1622                         return 0;
1623                 }
1624                 break;
1625
1626         case EEPROM_READ:
1627                 rsi_dbg(FSM_ZONE, "EEPROM READ confirm received\n");
1628                 if (msg_len <= 0) {
1629                         rsi_dbg(FSM_ZONE,
1630                                 "%s: [EEPROM_READ] Invalid len %d\n",
1631                                 __func__, msg_len);
1632                         goto out;
1633                 }
1634                 if (msg[16] != MAGIC_WORD) {
1635                         rsi_dbg(FSM_ZONE,
1636                                 "%s: [EEPROM_READ] Invalid token\n", __func__);
1637                         common->fsm_state = FSM_CARD_NOT_READY;
1638                         goto out;
1639                 }
1640                 if (common->fsm_state == FSM_EEPROM_READ_MAC_ADDR) {
1641                         offset = (FRAME_DESC_SZ + WLAN_HOST_MODE_LEN +
1642                                   WLAN_MAC_MAGIC_WORD_LEN);
1643                         memcpy(common->mac_addr, &msg[offset], ETH_ALEN);
1644                         adapter->eeprom.length =
1645                                 ((WLAN_MAC_MAGIC_WORD_LEN + 3) & (~3));
1646                         adapter->eeprom.offset = WLAN_EEPROM_RFTYPE_ADDR;
1647                         if (rsi_eeprom_read(common)) {
1648                                 rsi_dbg(ERR_ZONE,
1649                                         "%s: Failed reading RF band\n",
1650                                         __func__);
1651                                 common->fsm_state = FSM_CARD_NOT_READY;
1652                                 goto out;
1653                         }
1654                         common->fsm_state = FSM_EEPROM_READ_RF_TYPE;
1655                 } else if (common->fsm_state == FSM_EEPROM_READ_RF_TYPE) {
1656                         if ((msg[17] & 0x3) == 0x3) {
1657                                 rsi_dbg(INIT_ZONE, "Dual band supported\n");
1658                                 common->band = NL80211_BAND_5GHZ;
1659                                 common->num_supp_bands = 2;
1660                         } else if ((msg[17] & 0x3) == 0x1) {
1661                                 rsi_dbg(INIT_ZONE,
1662                                         "Only 2.4Ghz band supported\n");
1663                                 common->band = NL80211_BAND_2GHZ;
1664                                 common->num_supp_bands = 1;
1665                         }
1666                         if (rsi_send_reset_mac(common))
1667                                 goto out;
1668                         common->fsm_state = FSM_RESET_MAC_SENT;
1669                 } else {
1670                         rsi_dbg(ERR_ZONE, "%s: Invalid EEPROM read type\n",
1671                                 __func__);
1672                         return 0;
1673                 }
1674                 break;
1675
1676         case RESET_MAC_REQ:
1677                 if (common->fsm_state == FSM_RESET_MAC_SENT) {
1678                         rsi_dbg(FSM_ZONE, "%s: Reset MAC cfm received\n",
1679                                 __func__);
1680
1681                         if (rsi_load_radio_caps(common))
1682                                 goto out;
1683                         else
1684                                 common->fsm_state = FSM_RADIO_CAPS_SENT;
1685                 } else {
1686                         rsi_dbg(ERR_ZONE,
1687                                 "%s: Received reset mac cfm in %d state\n",
1688                                  __func__, common->fsm_state);
1689                         return 0;
1690                 }
1691                 break;
1692
1693         case RADIO_CAPABILITIES:
1694                 if (common->fsm_state == FSM_RADIO_CAPS_SENT) {
1695                         common->rf_reset = 1;
1696                         if (rsi_program_bb_rf(common)) {
1697                                 goto out;
1698                         } else {
1699                                 common->fsm_state = FSM_BB_RF_PROG_SENT;
1700                                 rsi_dbg(FSM_ZONE, "%s: Radio cap cfm received\n",
1701                                         __func__);
1702                         }
1703                 } else {
1704                         rsi_dbg(INFO_ZONE,
1705                                 "%s: Received radio caps cfm in %d state\n",
1706                                  __func__, common->fsm_state);
1707                         return 0;
1708                 }
1709                 break;
1710
1711         case BB_PROG_VALUES_REQUEST:
1712         case RF_PROG_VALUES_REQUEST:
1713         case BBP_PROG_IN_TA:
1714                 rsi_dbg(FSM_ZONE, "%s: BB/RF cfm received\n", __func__);
1715                 if (common->fsm_state == FSM_BB_RF_PROG_SENT) {
1716                         common->bb_rf_prog_count--;
1717                         if (!common->bb_rf_prog_count) {
1718                                 common->fsm_state = FSM_MAC_INIT_DONE;
1719                                 return rsi_mac80211_attach(common);
1720                         }
1721                 } else {
1722                         rsi_dbg(INFO_ZONE,
1723                                 "%s: Received bbb_rf cfm in %d state\n",
1724                                  __func__, common->fsm_state);
1725                         return 0;
1726                 }
1727                 break;
1728         case WAKEUP_SLEEP_REQUEST:
1729                 rsi_dbg(INFO_ZONE, "Wakeup/Sleep confirmation.\n");
1730                 return rsi_handle_ps_confirm(adapter, msg);
1731         default:
1732                 rsi_dbg(INFO_ZONE, "%s: Invalid TA confirm pkt received\n",
1733                         __func__);
1734                 break;
1735         }
1736         return 0;
1737 out:
1738         rsi_dbg(ERR_ZONE, "%s: Unable to send pkt/Invalid frame received\n",
1739                 __func__);
1740         return -EINVAL;
1741 }
1742
1743 static int rsi_handle_card_ready(struct rsi_common *common, u8 *msg)
1744 {
1745         switch (common->fsm_state) {
1746         case FSM_CARD_NOT_READY:
1747                 rsi_dbg(INIT_ZONE, "Card ready indication from Common HAL\n");
1748                 rsi_set_default_parameters(common);
1749                 if (rsi_send_common_dev_params(common) < 0)
1750                         return -EINVAL;
1751                 common->fsm_state = FSM_COMMON_DEV_PARAMS_SENT;
1752                 break;
1753         case FSM_COMMON_DEV_PARAMS_SENT:
1754                 rsi_dbg(INIT_ZONE, "Card ready indication from WLAN HAL\n");
1755
1756                 /* Get usb buffer status register address */
1757                 common->priv->usb_buffer_status_reg = *(u32 *)&msg[8];
1758                 rsi_dbg(INFO_ZONE, "USB buffer status register = %x\n",
1759                         common->priv->usb_buffer_status_reg);
1760
1761                 if (rsi_load_bootup_params(common)) {
1762                         common->fsm_state = FSM_CARD_NOT_READY;
1763                         return -EINVAL;
1764                 }
1765                 common->fsm_state = FSM_BOOT_PARAMS_SENT;
1766                 break;
1767         default:
1768                 rsi_dbg(ERR_ZONE,
1769                         "%s: card ready indication in invalid state %d.\n",
1770                         __func__, common->fsm_state);
1771                 return -EINVAL;
1772         }
1773
1774         return 0;
1775 }
1776
1777 /**
1778  * rsi_mgmt_pkt_recv() - This function processes the management packets
1779  *                       recieved from the hardware.
1780  * @common: Pointer to the driver private structure.
1781  * @msg: Pointer to the received packet.
1782  *
1783  * Return: 0 on success, -1 on failure.
1784  */
1785 int rsi_mgmt_pkt_recv(struct rsi_common *common, u8 *msg)
1786 {
1787         s32 msg_len = (le16_to_cpu(*(__le16 *)&msg[0]) & 0x0fff);
1788         u16 msg_type = (msg[2]);
1789
1790         rsi_dbg(FSM_ZONE, "%s: Msg Len: %d, Msg Type: %4x\n",
1791                 __func__, msg_len, msg_type);
1792
1793         switch (msg_type) {
1794         case TA_CONFIRM_TYPE:
1795                 return rsi_handle_ta_confirm_type(common, msg);
1796         case CARD_READY_IND:
1797                 rsi_dbg(FSM_ZONE, "%s: Card ready indication received\n",
1798                         __func__);
1799                 return rsi_handle_card_ready(common, msg);
1800         case TX_STATUS_IND:
1801                 if (msg[15] == PROBEREQ_CONFIRM) {
1802                         common->mgmt_q_block = false;
1803                         rsi_dbg(FSM_ZONE, "%s: Probe confirm received\n",
1804                                 __func__);
1805                 }
1806                 break;
1807         case BEACON_EVENT_IND:
1808                 rsi_dbg(INFO_ZONE, "Beacon event\n");
1809                 if (common->fsm_state != FSM_MAC_INIT_DONE)
1810                         return -1;
1811                 if (common->iface_down)
1812                         return -1;
1813                 if (!common->beacon_enabled)
1814                         return -1;
1815                 rsi_send_beacon(common);
1816                 break;
1817         case RX_DOT11_MGMT:
1818                 return rsi_mgmt_pkt_to_core(common, msg, msg_len);
1819         default:
1820                 rsi_dbg(INFO_ZONE, "Received packet type: 0x%x\n", msg_type);
1821         }
1822         return 0;
1823 }