GNU Linux-libre 4.14.251-gnu1
[releases.git] / drivers / net / wireless / realtek / rtlwifi / efuse.c
1 /******************************************************************************
2  *
3  * Copyright(c) 2009-2012  Realtek Corporation.
4  *
5  * Tmis program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * Tmis program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * Tme full GNU General Public License is included in this distribution in the
15  * file called LICENSE.
16  *
17  * Contact Information:
18  * wlanfae <wlanfae@realtek.com>
19  * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
20  * Hsinchu 300, Taiwan.
21  *
22  * Larry Finger <Larry.Finger@lwfinger.net>
23  *
24  *****************************************************************************/
25 #include "wifi.h"
26 #include "efuse.h"
27 #include "pci.h"
28 #include <linux/export.h>
29
30 static const u8 MAX_PGPKT_SIZE = 9;
31 static const u8 PGPKT_DATA_SIZE = 8;
32 static const int EFUSE_MAX_SIZE = 512;
33
34 #define START_ADDRESS           0x1000
35 #define REG_MCUFWDL             0x0080
36
37 static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
38         {0, 0, 0, 2},
39         {0, 1, 0, 2},
40         {0, 2, 0, 2},
41         {1, 0, 0, 1},
42         {1, 0, 1, 1},
43         {1, 1, 0, 1},
44         {1, 1, 1, 3},
45         {1, 3, 0, 17},
46         {3, 3, 1, 48},
47         {10, 0, 0, 6},
48         {10, 3, 0, 1},
49         {10, 3, 1, 1},
50         {11, 0, 0, 28}
51 };
52
53 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
54                                     u8 *value);
55 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
56                                     u16 *value);
57 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
58                                     u32 *value);
59 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
60                                      u8 value);
61 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
62                                      u16 value);
63 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
64                                      u32 value);
65 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
66                                 u8 data);
67 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
68 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
69                                 u8 *data);
70 static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
71                                  u8 word_en, u8 *data);
72 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
73                                         u8 *targetdata);
74 static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
75                                   u16 efuse_addr, u8 word_en, u8 *data);
76 static u16 efuse_get_current_size(struct ieee80211_hw *hw);
77 static u8 efuse_calculate_word_cnts(u8 word_en);
78
79 void efuse_initialize(struct ieee80211_hw *hw)
80 {
81         struct rtl_priv *rtlpriv = rtl_priv(hw);
82         u8 bytetemp;
83         u8 temp;
84
85         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
86         temp = bytetemp | 0x20;
87         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
88
89         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
90         temp = bytetemp & 0xFE;
91         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
92
93         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
94         temp = bytetemp | 0x80;
95         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
96
97         rtl_write_byte(rtlpriv, 0x2F8, 0x3);
98
99         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
100
101 }
102
103 u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
104 {
105         struct rtl_priv *rtlpriv = rtl_priv(hw);
106         u8 data;
107         u8 bytetemp;
108         u8 temp;
109         u32 k = 0;
110         const u32 efuse_len =
111                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
112
113         if (address < efuse_len) {
114                 temp = address & 0xFF;
115                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
116                                temp);
117                 bytetemp = rtl_read_byte(rtlpriv,
118                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
119                 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
120                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
121                                temp);
122
123                 bytetemp = rtl_read_byte(rtlpriv,
124                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
125                 temp = bytetemp & 0x7F;
126                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
127                                temp);
128
129                 bytetemp = rtl_read_byte(rtlpriv,
130                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
131                 while (!(bytetemp & 0x80)) {
132                         bytetemp = rtl_read_byte(rtlpriv,
133                                                  rtlpriv->cfg->
134                                                  maps[EFUSE_CTRL] + 3);
135                         k++;
136                         if (k == 1000) {
137                                 k = 0;
138                                 break;
139                         }
140                 }
141                 data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
142                 return data;
143         } else
144                 return 0xFF;
145
146 }
147 EXPORT_SYMBOL(efuse_read_1byte);
148
149 void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
150 {
151         struct rtl_priv *rtlpriv = rtl_priv(hw);
152         u8 bytetemp;
153         u8 temp;
154         u32 k = 0;
155         const u32 efuse_len =
156                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
157
158         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n",
159                  address, value);
160
161         if (address < efuse_len) {
162                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
163
164                 temp = address & 0xFF;
165                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
166                                temp);
167                 bytetemp = rtl_read_byte(rtlpriv,
168                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
169
170                 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
171                 rtl_write_byte(rtlpriv,
172                                rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
173
174                 bytetemp = rtl_read_byte(rtlpriv,
175                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
176                 temp = bytetemp | 0x80;
177                 rtl_write_byte(rtlpriv,
178                                rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
179
180                 bytetemp = rtl_read_byte(rtlpriv,
181                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
182
183                 while (bytetemp & 0x80) {
184                         bytetemp = rtl_read_byte(rtlpriv,
185                                                  rtlpriv->cfg->
186                                                  maps[EFUSE_CTRL] + 3);
187                         k++;
188                         if (k == 100) {
189                                 k = 0;
190                                 break;
191                         }
192                 }
193         }
194
195 }
196
197 void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
198 {
199         struct rtl_priv *rtlpriv = rtl_priv(hw);
200         u32 value32;
201         u8 readbyte;
202         u16 retry;
203
204         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
205                        (_offset & 0xff));
206         readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
207         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
208                        ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
209
210         readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
211         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
212                        (readbyte & 0x7f));
213
214         retry = 0;
215         value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
216         while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
217                 value32 = rtl_read_dword(rtlpriv,
218                                          rtlpriv->cfg->maps[EFUSE_CTRL]);
219                 retry++;
220         }
221
222         udelay(50);
223         value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
224
225         *pbuf = (u8) (value32 & 0xff);
226 }
227 EXPORT_SYMBOL_GPL(read_efuse_byte);
228
229 void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
230 {
231         struct rtl_priv *rtlpriv = rtl_priv(hw);
232         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
233         u8 *efuse_tbl;
234         u8 rtemp8[1];
235         u16 efuse_addr = 0;
236         u8 offset, wren;
237         u8 u1temp = 0;
238         u16 i;
239         u16 j;
240         const u16 efuse_max_section =
241                 rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
242         const u32 efuse_len =
243                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
244         u16 **efuse_word;
245         u16 efuse_utilized = 0;
246         u8 efuse_usage;
247
248         if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
249                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
250                          "read_efuse(): Invalid offset(%#x) with read bytes(%#x)!!\n",
251                          _offset, _size_byte);
252                 return;
253         }
254
255         /* allocate memory for efuse_tbl and efuse_word */
256         efuse_tbl = kzalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] *
257                             sizeof(u8), GFP_ATOMIC);
258         if (!efuse_tbl)
259                 return;
260         efuse_word = kzalloc(EFUSE_MAX_WORD_UNIT * sizeof(u16 *), GFP_ATOMIC);
261         if (!efuse_word)
262                 goto out;
263         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
264                 efuse_word[i] = kzalloc(efuse_max_section * sizeof(u16),
265                                         GFP_ATOMIC);
266                 if (!efuse_word[i])
267                         goto done;
268         }
269
270         for (i = 0; i < efuse_max_section; i++)
271                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
272                         efuse_word[j][i] = 0xFFFF;
273
274         read_efuse_byte(hw, efuse_addr, rtemp8);
275         if (*rtemp8 != 0xFF) {
276                 efuse_utilized++;
277                 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
278                         "Addr=%d\n", efuse_addr);
279                 efuse_addr++;
280         }
281
282         while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
283                 /*  Check PG header for section num.  */
284                 if ((*rtemp8 & 0x1F) == 0x0F) {/* extended header */
285                         u1temp = ((*rtemp8 & 0xE0) >> 5);
286                         read_efuse_byte(hw, efuse_addr, rtemp8);
287
288                         if ((*rtemp8 & 0x0F) == 0x0F) {
289                                 efuse_addr++;
290                                 read_efuse_byte(hw, efuse_addr, rtemp8);
291
292                                 if (*rtemp8 != 0xFF &&
293                                     (efuse_addr < efuse_len)) {
294                                         efuse_addr++;
295                                 }
296                                 continue;
297                         } else {
298                                 offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
299                                 wren = (*rtemp8 & 0x0F);
300                                 efuse_addr++;
301                         }
302                 } else {
303                         offset = ((*rtemp8 >> 4) & 0x0f);
304                         wren = (*rtemp8 & 0x0f);
305                 }
306
307                 if (offset < efuse_max_section) {
308                         RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
309                                 "offset-%d Worden=%x\n", offset, wren);
310
311                         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
312                                 if (!(wren & 0x01)) {
313                                         RTPRINT(rtlpriv, FEEPROM,
314                                                 EFUSE_READ_ALL,
315                                                 "Addr=%d\n", efuse_addr);
316
317                                         read_efuse_byte(hw, efuse_addr, rtemp8);
318                                         efuse_addr++;
319                                         efuse_utilized++;
320                                         efuse_word[i][offset] =
321                                                          (*rtemp8 & 0xff);
322
323                                         if (efuse_addr >= efuse_len)
324                                                 break;
325
326                                         RTPRINT(rtlpriv, FEEPROM,
327                                                 EFUSE_READ_ALL,
328                                                 "Addr=%d\n", efuse_addr);
329
330                                         read_efuse_byte(hw, efuse_addr, rtemp8);
331                                         efuse_addr++;
332                                         efuse_utilized++;
333                                         efuse_word[i][offset] |=
334                                             (((u16)*rtemp8 << 8) & 0xff00);
335
336                                         if (efuse_addr >= efuse_len)
337                                                 break;
338                                 }
339
340                                 wren >>= 1;
341                         }
342                 }
343
344                 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
345                         "Addr=%d\n", efuse_addr);
346                 read_efuse_byte(hw, efuse_addr, rtemp8);
347                 if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
348                         efuse_utilized++;
349                         efuse_addr++;
350                 }
351         }
352
353         for (i = 0; i < efuse_max_section; i++) {
354                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
355                         efuse_tbl[(i * 8) + (j * 2)] =
356                             (efuse_word[j][i] & 0xff);
357                         efuse_tbl[(i * 8) + ((j * 2) + 1)] =
358                             ((efuse_word[j][i] >> 8) & 0xff);
359                 }
360         }
361
362         for (i = 0; i < _size_byte; i++)
363                 pbuf[i] = efuse_tbl[_offset + i];
364
365         rtlefuse->efuse_usedbytes = efuse_utilized;
366         efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len);
367         rtlefuse->efuse_usedpercentage = efuse_usage;
368         rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
369                                       (u8 *)&efuse_utilized);
370         rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
371                                       &efuse_usage);
372 done:
373         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
374                 kfree(efuse_word[i]);
375         kfree(efuse_word);
376 out:
377         kfree(efuse_tbl);
378 }
379
380 bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
381 {
382         struct rtl_priv *rtlpriv = rtl_priv(hw);
383         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
384         u8 section_idx, i, Base;
385         u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
386         bool wordchanged, result = true;
387
388         for (section_idx = 0; section_idx < 16; section_idx++) {
389                 Base = section_idx * 8;
390                 wordchanged = false;
391
392                 for (i = 0; i < 8; i = i + 2) {
393                         if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] !=
394                              rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) ||
395                             (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] !=
396                              rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i +
397                                                                    1])) {
398                                 words_need++;
399                                 wordchanged = true;
400                         }
401                 }
402
403                 if (wordchanged)
404                         hdr_num++;
405         }
406
407         totalbytes = hdr_num + words_need * 2;
408         efuse_used = rtlefuse->efuse_usedbytes;
409
410         if ((totalbytes + efuse_used) >=
411             (EFUSE_MAX_SIZE - rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))
412                 result = false;
413
414         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
415                  "efuse_shadow_update_chk(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
416                  totalbytes, hdr_num, words_need, efuse_used);
417
418         return result;
419 }
420
421 void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
422                        u16 offset, u32 *value)
423 {
424         if (type == 1)
425                 efuse_shadow_read_1byte(hw, offset, (u8 *)value);
426         else if (type == 2)
427                 efuse_shadow_read_2byte(hw, offset, (u16 *)value);
428         else if (type == 4)
429                 efuse_shadow_read_4byte(hw, offset, value);
430
431 }
432 EXPORT_SYMBOL(efuse_shadow_read);
433
434 void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
435                                 u32 value)
436 {
437         if (type == 1)
438                 efuse_shadow_write_1byte(hw, offset, (u8) value);
439         else if (type == 2)
440                 efuse_shadow_write_2byte(hw, offset, (u16) value);
441         else if (type == 4)
442                 efuse_shadow_write_4byte(hw, offset, value);
443
444 }
445
446 bool efuse_shadow_update(struct ieee80211_hw *hw)
447 {
448         struct rtl_priv *rtlpriv = rtl_priv(hw);
449         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
450         u16 i, offset, base;
451         u8 word_en = 0x0F;
452         u8 first_pg = false;
453
454         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
455
456         if (!efuse_shadow_update_chk(hw)) {
457                 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
458                 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
459                        &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
460                        rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
461
462                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
463                          "efuse out of capacity!!\n");
464                 return false;
465         }
466         efuse_power_switch(hw, true, true);
467
468         for (offset = 0; offset < 16; offset++) {
469
470                 word_en = 0x0F;
471                 base = offset * 8;
472
473                 for (i = 0; i < 8; i++) {
474                         if (first_pg) {
475                                 word_en &= ~(BIT(i / 2));
476
477                                 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
478                                     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
479                         } else {
480
481                                 if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
482                                     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
483                                         word_en &= ~(BIT(i / 2));
484
485                                         rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
486                                             rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
487                                 }
488                         }
489                 }
490
491                 if (word_en != 0x0F) {
492                         u8 tmpdata[8];
493                         memcpy(tmpdata,
494                                &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
495                                8);
496                         RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
497                                       "U-efuse\n", tmpdata, 8);
498
499                         if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
500                                                    tmpdata)) {
501                                 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
502                                          "PG section(%#x) fail!!\n", offset);
503                                 break;
504                         }
505                 }
506
507         }
508
509         efuse_power_switch(hw, true, false);
510         efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
511
512         memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
513                &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
514                rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
515
516         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
517         return true;
518 }
519
520 void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
521 {
522         struct rtl_priv *rtlpriv = rtl_priv(hw);
523         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
524
525         if (rtlefuse->autoload_failflag)
526                 memset((&rtlefuse->efuse_map[EFUSE_INIT_MAP][0]),
527                        0xFF, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
528         else
529                 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
530
531         memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
532                         &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
533                         rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
534
535 }
536 EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
537
538 void efuse_force_write_vendor_Id(struct ieee80211_hw *hw)
539 {
540         u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
541
542         efuse_power_switch(hw, true, true);
543
544         efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
545
546         efuse_power_switch(hw, true, false);
547
548 }
549
550 void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
551 {
552 }
553
554 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
555                                     u16 offset, u8 *value)
556 {
557         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
558         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
559 }
560
561 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
562                                     u16 offset, u16 *value)
563 {
564         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
565
566         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
567         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
568
569 }
570
571 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
572                                     u16 offset, u32 *value)
573 {
574         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
575
576         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
577         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
578         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
579         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
580 }
581
582 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
583                                      u16 offset, u8 value)
584 {
585         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
586
587         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
588 }
589
590 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
591                                      u16 offset, u16 value)
592 {
593         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
594
595         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
596         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
597
598 }
599
600 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
601                                      u16 offset, u32 value)
602 {
603         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
604
605         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
606             (u8) (value & 0x000000FF);
607         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
608             (u8) ((value >> 8) & 0x0000FF);
609         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
610             (u8) ((value >> 16) & 0x00FF);
611         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
612             (u8) ((value >> 24) & 0xFF);
613
614 }
615
616 int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
617 {
618         struct rtl_priv *rtlpriv = rtl_priv(hw);
619         u8 tmpidx = 0;
620         int result;
621
622         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
623                        (u8) (addr & 0xff));
624         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
625                        ((u8) ((addr >> 8) & 0x03)) |
626                        (rtl_read_byte(rtlpriv,
627                                       rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
628                         0xFC));
629
630         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
631
632         while (!(0x80 & rtl_read_byte(rtlpriv,
633                                       rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
634                && (tmpidx < 100)) {
635                 tmpidx++;
636         }
637
638         if (tmpidx < 100) {
639                 *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
640                 result = true;
641         } else {
642                 *data = 0xff;
643                 result = false;
644         }
645         return result;
646 }
647 EXPORT_SYMBOL(efuse_one_byte_read);
648
649 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
650 {
651         struct rtl_priv *rtlpriv = rtl_priv(hw);
652         u8 tmpidx = 0;
653
654         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
655                  "Addr = %x Data=%x\n", addr, data);
656
657         rtl_write_byte(rtlpriv,
658                        rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
659         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
660                        (rtl_read_byte(rtlpriv,
661                          rtlpriv->cfg->maps[EFUSE_CTRL] +
662                          2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
663
664         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
665         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
666
667         while ((0x80 & rtl_read_byte(rtlpriv,
668                                      rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
669                && (tmpidx < 100)) {
670                 tmpidx++;
671         }
672
673         if (tmpidx < 100)
674                 return true;
675         return false;
676 }
677
678 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse)
679 {
680         struct rtl_priv *rtlpriv = rtl_priv(hw);
681         efuse_power_switch(hw, false, true);
682         read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
683         efuse_power_switch(hw, false, false);
684 }
685
686 static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
687                                 u8 efuse_data, u8 offset, u8 *tmpdata,
688                                 u8 *readstate)
689 {
690         bool dataempty = true;
691         u8 hoffset;
692         u8 tmpidx;
693         u8 hworden;
694         u8 word_cnts;
695
696         hoffset = (efuse_data >> 4) & 0x0F;
697         hworden = efuse_data & 0x0F;
698         word_cnts = efuse_calculate_word_cnts(hworden);
699
700         if (hoffset == offset) {
701                 for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
702                         if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
703                                                 &efuse_data)) {
704                                 tmpdata[tmpidx] = efuse_data;
705                                 if (efuse_data != 0xff)
706                                         dataempty = false;
707                         }
708                 }
709
710                 if (!dataempty) {
711                         *readstate = PG_STATE_DATA;
712                 } else {
713                         *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
714                         *readstate = PG_STATE_HEADER;
715                 }
716
717         } else {
718                 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
719                 *readstate = PG_STATE_HEADER;
720         }
721 }
722
723 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
724 {
725         u8 readstate = PG_STATE_HEADER;
726
727         bool continual = true;
728
729         u8 efuse_data, word_cnts = 0;
730         u16 efuse_addr = 0;
731         u8 tmpdata[8];
732
733         if (data == NULL)
734                 return false;
735         if (offset > 15)
736                 return false;
737
738         memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
739         memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
740
741         while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
742                 if (readstate & PG_STATE_HEADER) {
743                         if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
744                             && (efuse_data != 0xFF))
745                                 efuse_read_data_case1(hw, &efuse_addr,
746                                                       efuse_data, offset,
747                                                       tmpdata, &readstate);
748                         else
749                                 continual = false;
750                 } else if (readstate & PG_STATE_DATA) {
751                         efuse_word_enable_data_read(0, tmpdata, data);
752                         efuse_addr = efuse_addr + (word_cnts * 2) + 1;
753                         readstate = PG_STATE_HEADER;
754                 }
755
756         }
757
758         if ((data[0] == 0xff) && (data[1] == 0xff) &&
759             (data[2] == 0xff) && (data[3] == 0xff) &&
760             (data[4] == 0xff) && (data[5] == 0xff) &&
761             (data[6] == 0xff) && (data[7] == 0xff))
762                 return false;
763         else
764                 return true;
765
766 }
767
768 static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
769                                    u8 efuse_data, u8 offset,
770                                    int *continual, u8 *write_state,
771                                    struct pgpkt_struct *target_pkt,
772                                    int *repeat_times, int *result, u8 word_en)
773 {
774         struct rtl_priv *rtlpriv = rtl_priv(hw);
775         struct pgpkt_struct tmp_pkt;
776         int dataempty = true;
777         u8 originaldata[8 * sizeof(u8)];
778         u8 badworden = 0x0F;
779         u8 match_word_en, tmp_word_en;
780         u8 tmpindex;
781         u8 tmp_header = efuse_data;
782         u8 tmp_word_cnts;
783
784         tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
785         tmp_pkt.word_en = tmp_header & 0x0F;
786         tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
787
788         if (tmp_pkt.offset != target_pkt->offset) {
789                 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
790                 *write_state = PG_STATE_HEADER;
791         } else {
792                 for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
793                         if (efuse_one_byte_read(hw,
794                                                 (*efuse_addr + 1 + tmpindex),
795                                                 &efuse_data) &&
796                             (efuse_data != 0xFF))
797                                 dataempty = false;
798                 }
799
800                 if (!dataempty) {
801                         *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
802                         *write_state = PG_STATE_HEADER;
803                 } else {
804                         match_word_en = 0x0F;
805                         if (!((target_pkt->word_en & BIT(0)) |
806                             (tmp_pkt.word_en & BIT(0))))
807                                 match_word_en &= (~BIT(0));
808
809                         if (!((target_pkt->word_en & BIT(1)) |
810                             (tmp_pkt.word_en & BIT(1))))
811                                 match_word_en &= (~BIT(1));
812
813                         if (!((target_pkt->word_en & BIT(2)) |
814                             (tmp_pkt.word_en & BIT(2))))
815                                 match_word_en &= (~BIT(2));
816
817                         if (!((target_pkt->word_en & BIT(3)) |
818                             (tmp_pkt.word_en & BIT(3))))
819                                 match_word_en &= (~BIT(3));
820
821                         if ((match_word_en & 0x0F) != 0x0F) {
822                                 badworden =
823                                   enable_efuse_data_write(hw,
824                                                           *efuse_addr + 1,
825                                                           tmp_pkt.word_en,
826                                                           target_pkt->data);
827
828                                 if (0x0F != (badworden & 0x0F)) {
829                                         u8 reorg_offset = offset;
830                                         u8 reorg_worden = badworden;
831                                         efuse_pg_packet_write(hw, reorg_offset,
832                                                               reorg_worden,
833                                                               originaldata);
834                                 }
835
836                                 tmp_word_en = 0x0F;
837                                 if ((target_pkt->word_en & BIT(0)) ^
838                                     (match_word_en & BIT(0)))
839                                         tmp_word_en &= (~BIT(0));
840
841                                 if ((target_pkt->word_en & BIT(1)) ^
842                                     (match_word_en & BIT(1)))
843                                         tmp_word_en &= (~BIT(1));
844
845                                 if ((target_pkt->word_en & BIT(2)) ^
846                                     (match_word_en & BIT(2)))
847                                         tmp_word_en &= (~BIT(2));
848
849                                 if ((target_pkt->word_en & BIT(3)) ^
850                                     (match_word_en & BIT(3)))
851                                         tmp_word_en &= (~BIT(3));
852
853                                 if ((tmp_word_en & 0x0F) != 0x0F) {
854                                         *efuse_addr = efuse_get_current_size(hw);
855                                         target_pkt->offset = offset;
856                                         target_pkt->word_en = tmp_word_en;
857                                 } else {
858                                         *continual = false;
859                                 }
860                                 *write_state = PG_STATE_HEADER;
861                                 *repeat_times += 1;
862                                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
863                                         *continual = false;
864                                         *result = false;
865                                 }
866                         } else {
867                                 *efuse_addr += (2 * tmp_word_cnts) + 1;
868                                 target_pkt->offset = offset;
869                                 target_pkt->word_en = word_en;
870                                 *write_state = PG_STATE_HEADER;
871                         }
872                 }
873         }
874         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-1\n");
875 }
876
877 static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
878                                    int *continual, u8 *write_state,
879                                    struct pgpkt_struct target_pkt,
880                                    int *repeat_times, int *result)
881 {
882         struct rtl_priv *rtlpriv = rtl_priv(hw);
883         struct pgpkt_struct tmp_pkt;
884         u8 pg_header;
885         u8 tmp_header;
886         u8 originaldata[8 * sizeof(u8)];
887         u8 tmp_word_cnts;
888         u8 badworden = 0x0F;
889
890         pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
891         efuse_one_byte_write(hw, *efuse_addr, pg_header);
892         efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
893
894         if (tmp_header == pg_header) {
895                 *write_state = PG_STATE_DATA;
896         } else if (tmp_header == 0xFF) {
897                 *write_state = PG_STATE_HEADER;
898                 *repeat_times += 1;
899                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
900                         *continual = false;
901                         *result = false;
902                 }
903         } else {
904                 tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
905                 tmp_pkt.word_en = tmp_header & 0x0F;
906
907                 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
908
909                 memset(originaldata, 0xff,  8 * sizeof(u8));
910
911                 if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
912                         badworden = enable_efuse_data_write(hw,
913                                                             *efuse_addr + 1,
914                                                             tmp_pkt.word_en,
915                                                             originaldata);
916
917                         if (0x0F != (badworden & 0x0F)) {
918                                 u8 reorg_offset = tmp_pkt.offset;
919                                 u8 reorg_worden = badworden;
920                                 efuse_pg_packet_write(hw, reorg_offset,
921                                                       reorg_worden,
922                                                       originaldata);
923                                 *efuse_addr = efuse_get_current_size(hw);
924                         } else {
925                                 *efuse_addr = *efuse_addr +
926                                               (tmp_word_cnts * 2) + 1;
927                         }
928                 } else {
929                         *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
930                 }
931
932                 *write_state = PG_STATE_HEADER;
933                 *repeat_times += 1;
934                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
935                         *continual = false;
936                         *result = false;
937                 }
938
939                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
940                         "efuse PG_STATE_HEADER-2\n");
941         }
942 }
943
944 static int efuse_pg_packet_write(struct ieee80211_hw *hw,
945                                  u8 offset, u8 word_en, u8 *data)
946 {
947         struct rtl_priv *rtlpriv = rtl_priv(hw);
948         struct pgpkt_struct target_pkt;
949         u8 write_state = PG_STATE_HEADER;
950         int continual = true, dataempty = true, result = true;
951         u16 efuse_addr = 0;
952         u8 efuse_data;
953         u8 target_word_cnts = 0;
954         u8 badworden = 0x0F;
955         static int repeat_times;
956
957         if (efuse_get_current_size(hw) >= (EFUSE_MAX_SIZE -
958                 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
959                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
960                         "efuse_pg_packet_write error\n");
961                 return false;
962         }
963
964         target_pkt.offset = offset;
965         target_pkt.word_en = word_en;
966
967         memset(target_pkt.data, 0xFF,  8 * sizeof(u8));
968
969         efuse_word_enable_data_read(word_en, data, target_pkt.data);
970         target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
971
972         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse Power ON\n");
973
974         while (continual && (efuse_addr < (EFUSE_MAX_SIZE -
975                 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))) {
976
977                 if (write_state == PG_STATE_HEADER) {
978                         dataempty = true;
979                         badworden = 0x0F;
980                         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
981                                 "efuse PG_STATE_HEADER\n");
982
983                         if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
984                             (efuse_data != 0xFF))
985                                 efuse_write_data_case1(hw, &efuse_addr,
986                                                        efuse_data, offset,
987                                                        &continual,
988                                                        &write_state,
989                                                        &target_pkt,
990                                                        &repeat_times, &result,
991                                                        word_en);
992                         else
993                                 efuse_write_data_case2(hw, &efuse_addr,
994                                                        &continual,
995                                                        &write_state,
996                                                        target_pkt,
997                                                        &repeat_times,
998                                                        &result);
999
1000                 } else if (write_state == PG_STATE_DATA) {
1001                         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1002                                 "efuse PG_STATE_DATA\n");
1003                         badworden = 0x0f;
1004                         badworden =
1005                             enable_efuse_data_write(hw, efuse_addr + 1,
1006                                                     target_pkt.word_en,
1007                                                     target_pkt.data);
1008
1009                         if ((badworden & 0x0F) == 0x0F) {
1010                                 continual = false;
1011                         } else {
1012                                 efuse_addr =
1013                                     efuse_addr + (2 * target_word_cnts) + 1;
1014
1015                                 target_pkt.offset = offset;
1016                                 target_pkt.word_en = badworden;
1017                                 target_word_cnts =
1018                                     efuse_calculate_word_cnts(target_pkt.
1019                                                               word_en);
1020                                 write_state = PG_STATE_HEADER;
1021                                 repeat_times++;
1022                                 if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
1023                                         continual = false;
1024                                         result = false;
1025                                 }
1026                                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1027                                         "efuse PG_STATE_HEADER-3\n");
1028                         }
1029                 }
1030         }
1031
1032         if (efuse_addr >= (EFUSE_MAX_SIZE -
1033                 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
1034                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1035                          "efuse_addr(%#x) Out of size!!\n", efuse_addr);
1036         }
1037
1038         return true;
1039 }
1040
1041 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
1042                                         u8 *targetdata)
1043 {
1044         if (!(word_en & BIT(0))) {
1045                 targetdata[0] = sourdata[0];
1046                 targetdata[1] = sourdata[1];
1047         }
1048
1049         if (!(word_en & BIT(1))) {
1050                 targetdata[2] = sourdata[2];
1051                 targetdata[3] = sourdata[3];
1052         }
1053
1054         if (!(word_en & BIT(2))) {
1055                 targetdata[4] = sourdata[4];
1056                 targetdata[5] = sourdata[5];
1057         }
1058
1059         if (!(word_en & BIT(3))) {
1060                 targetdata[6] = sourdata[6];
1061                 targetdata[7] = sourdata[7];
1062         }
1063 }
1064
1065 static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
1066                                   u16 efuse_addr, u8 word_en, u8 *data)
1067 {
1068         struct rtl_priv *rtlpriv = rtl_priv(hw);
1069         u16 tmpaddr;
1070         u16 start_addr = efuse_addr;
1071         u8 badworden = 0x0F;
1072         u8 tmpdata[8];
1073
1074         memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
1075         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1076                  "word_en = %x efuse_addr=%x\n", word_en, efuse_addr);
1077
1078         if (!(word_en & BIT(0))) {
1079                 tmpaddr = start_addr;
1080                 efuse_one_byte_write(hw, start_addr++, data[0]);
1081                 efuse_one_byte_write(hw, start_addr++, data[1]);
1082
1083                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
1084                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
1085                 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
1086                         badworden &= (~BIT(0));
1087         }
1088
1089         if (!(word_en & BIT(1))) {
1090                 tmpaddr = start_addr;
1091                 efuse_one_byte_write(hw, start_addr++, data[2]);
1092                 efuse_one_byte_write(hw, start_addr++, data[3]);
1093
1094                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
1095                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
1096                 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
1097                         badworden &= (~BIT(1));
1098         }
1099
1100         if (!(word_en & BIT(2))) {
1101                 tmpaddr = start_addr;
1102                 efuse_one_byte_write(hw, start_addr++, data[4]);
1103                 efuse_one_byte_write(hw, start_addr++, data[5]);
1104
1105                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
1106                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
1107                 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
1108                         badworden &= (~BIT(2));
1109         }
1110
1111         if (!(word_en & BIT(3))) {
1112                 tmpaddr = start_addr;
1113                 efuse_one_byte_write(hw, start_addr++, data[6]);
1114                 efuse_one_byte_write(hw, start_addr++, data[7]);
1115
1116                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
1117                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
1118                 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
1119                         badworden &= (~BIT(3));
1120         }
1121
1122         return badworden;
1123 }
1124
1125 void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
1126 {
1127         struct rtl_priv *rtlpriv = rtl_priv(hw);
1128         struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1129         u8 tempval;
1130         u16 tmpV16;
1131
1132         if (pwrstate && (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)) {
1133
1134                 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1135                     rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE) {
1136                         rtl_write_byte(rtlpriv,
1137                                        rtlpriv->cfg->maps[EFUSE_ACCESS], 0x69);
1138                 } else {
1139                         tmpV16 =
1140                           rtl_read_word(rtlpriv,
1141                                         rtlpriv->cfg->maps[SYS_ISO_CTRL]);
1142                         if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
1143                                 tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
1144                                 rtl_write_word(rtlpriv,
1145                                                rtlpriv->cfg->maps[SYS_ISO_CTRL],
1146                                                tmpV16);
1147                         }
1148                 }
1149                 tmpV16 = rtl_read_word(rtlpriv,
1150                                        rtlpriv->cfg->maps[SYS_FUNC_EN]);
1151                 if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
1152                         tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
1153                         rtl_write_word(rtlpriv,
1154                                        rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16);
1155                 }
1156
1157                 tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
1158                 if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
1159                     (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
1160                         tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
1161                                    rtlpriv->cfg->maps[EFUSE_ANA8M]);
1162                         rtl_write_word(rtlpriv,
1163                                        rtlpriv->cfg->maps[SYS_CLK], tmpV16);
1164                 }
1165         }
1166
1167         if (pwrstate) {
1168                 if (write) {
1169                         tempval = rtl_read_byte(rtlpriv,
1170                                                 rtlpriv->cfg->maps[EFUSE_TEST] +
1171                                                 3);
1172
1173                         if (rtlhal->hw_type == HARDWARE_TYPE_RTL8812AE) {
1174                                 tempval &= ~(BIT(3) | BIT(4) | BIT(5) | BIT(6));
1175                                 tempval |= (VOLTAGE_V25 << 3);
1176                         } else if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
1177                                 tempval &= 0x0F;
1178                                 tempval |= (VOLTAGE_V25 << 4);
1179                         }
1180
1181                         rtl_write_byte(rtlpriv,
1182                                        rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1183                                        (tempval | 0x80));
1184                 }
1185
1186                 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1187                         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1188                                        0x03);
1189                 }
1190         } else {
1191                 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1192                     rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE)
1193                         rtl_write_byte(rtlpriv,
1194                                        rtlpriv->cfg->maps[EFUSE_ACCESS], 0);
1195
1196                 if (write) {
1197                         tempval = rtl_read_byte(rtlpriv,
1198                                                 rtlpriv->cfg->maps[EFUSE_TEST] +
1199                                                 3);
1200                         rtl_write_byte(rtlpriv,
1201                                        rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1202                                        (tempval & 0x7F));
1203                 }
1204
1205                 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1206                         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1207                                        0x02);
1208                 }
1209         }
1210 }
1211 EXPORT_SYMBOL(efuse_power_switch);
1212
1213 static u16 efuse_get_current_size(struct ieee80211_hw *hw)
1214 {
1215         int continual = true;
1216         u16 efuse_addr = 0;
1217         u8 hoffset, hworden;
1218         u8 efuse_data, word_cnts;
1219
1220         while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
1221                (efuse_addr < EFUSE_MAX_SIZE)) {
1222                 if (efuse_data != 0xFF) {
1223                         hoffset = (efuse_data >> 4) & 0x0F;
1224                         hworden = efuse_data & 0x0F;
1225                         word_cnts = efuse_calculate_word_cnts(hworden);
1226                         efuse_addr = efuse_addr + (word_cnts * 2) + 1;
1227                 } else {
1228                         continual = false;
1229                 }
1230         }
1231
1232         return efuse_addr;
1233 }
1234
1235 static u8 efuse_calculate_word_cnts(u8 word_en)
1236 {
1237         u8 word_cnts = 0;
1238         if (!(word_en & BIT(0)))
1239                 word_cnts++;
1240         if (!(word_en & BIT(1)))
1241                 word_cnts++;
1242         if (!(word_en & BIT(2)))
1243                 word_cnts++;
1244         if (!(word_en & BIT(3)))
1245                 word_cnts++;
1246         return word_cnts;
1247 }
1248
1249 int rtl_get_hwinfo(struct ieee80211_hw *hw, struct rtl_priv *rtlpriv,
1250                    int max_size, u8 *hwinfo, int *params)
1251 {
1252         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1253         struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
1254         struct device *dev = &rtlpcipriv->dev.pdev->dev;
1255         u16 eeprom_id;
1256         u16 i, usvalue;
1257
1258         switch (rtlefuse->epromtype) {
1259         case EEPROM_BOOT_EFUSE:
1260                 rtl_efuse_shadow_map_update(hw);
1261                 break;
1262
1263         case EEPROM_93C46:
1264                 pr_err("RTL8XXX did not boot from eeprom, check it !!\n");
1265                 return 1;
1266
1267         default:
1268                 dev_warn(dev, "no efuse data\n");
1269                 return 1;
1270         }
1271
1272         memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], max_size);
1273
1274         RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1275                       hwinfo, max_size);
1276
1277         eeprom_id = *((u16 *)&hwinfo[0]);
1278         if (eeprom_id != params[0]) {
1279                 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1280                          "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1281                 rtlefuse->autoload_failflag = true;
1282         } else {
1283                 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1284                 rtlefuse->autoload_failflag = false;
1285         }
1286
1287         if (rtlefuse->autoload_failflag)
1288                 return 1;
1289
1290         rtlefuse->eeprom_vid = *(u16 *)&hwinfo[params[1]];
1291         rtlefuse->eeprom_did = *(u16 *)&hwinfo[params[2]];
1292         rtlefuse->eeprom_svid = *(u16 *)&hwinfo[params[3]];
1293         rtlefuse->eeprom_smid = *(u16 *)&hwinfo[params[4]];
1294         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1295                  "EEPROMId = 0x%4x\n", eeprom_id);
1296         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1297                  "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1298         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1299                  "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1300         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1301                  "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1302         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1303                  "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1304
1305         for (i = 0; i < 6; i += 2) {
1306                 usvalue = *(u16 *)&hwinfo[params[5] + i];
1307                 *((u16 *)(&rtlefuse->dev_addr[i])) = usvalue;
1308         }
1309         RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1310
1311         rtlefuse->eeprom_channelplan = *&hwinfo[params[6]];
1312         rtlefuse->eeprom_version = *(u16 *)&hwinfo[params[7]];
1313         rtlefuse->txpwr_fromeprom = true;
1314         rtlefuse->eeprom_oemid = *&hwinfo[params[8]];
1315
1316         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1317                  "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
1318
1319         /* set channel plan to world wide 13 */
1320         rtlefuse->channel_plan = params[9];
1321
1322         return 0;
1323 }
1324 EXPORT_SYMBOL_GPL(rtl_get_hwinfo);
1325
1326 void rtl_fw_block_write(struct ieee80211_hw *hw, const u8 *buffer, u32 size)
1327 {
1328         struct rtl_priv *rtlpriv = rtl_priv(hw);
1329         u8 *pu4byteptr = (u8 *)buffer;
1330         u32 i;
1331
1332         for (i = 0; i < size; i++)
1333                 rtl_write_byte(rtlpriv, (START_ADDRESS + i), *(pu4byteptr + i));
1334 }
1335 EXPORT_SYMBOL_GPL(rtl_fw_block_write);
1336
1337 void rtl_fw_page_write(struct ieee80211_hw *hw, u32 page, const u8 *buffer,
1338                        u32 size)
1339 {
1340         struct rtl_priv *rtlpriv = rtl_priv(hw);
1341         u8 value8;
1342         u8 u8page = (u8)(page & 0x07);
1343
1344         value8 = (rtl_read_byte(rtlpriv, REG_MCUFWDL + 2) & 0xF8) | u8page;
1345
1346         rtl_write_byte(rtlpriv, (REG_MCUFWDL + 2), value8);
1347         rtl_fw_block_write(hw, buffer, size);
1348 }
1349 EXPORT_SYMBOL_GPL(rtl_fw_page_write);
1350
1351 void rtl_fill_dummy(u8 *pfwbuf, u32 *pfwlen)
1352 {
1353         u32 fwlen = *pfwlen;
1354         u8 remain = (u8)(fwlen % 4);
1355
1356         remain = (remain == 0) ? 0 : (4 - remain);
1357
1358         while (remain > 0) {
1359                 pfwbuf[fwlen] = 0;
1360                 fwlen++;
1361                 remain--;
1362         }
1363
1364         *pfwlen = fwlen;
1365 }
1366 EXPORT_SYMBOL_GPL(rtl_fill_dummy);