GNU Linux-libre 4.9.333-gnu1
[releases.git] / drivers / net / wireless / realtek / rtlwifi / efuse.c
1 /******************************************************************************
2  *
3  * Copyright(c) 2009-2012  Realtek Corporation.
4  *
5  * Tmis program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * Tmis program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * Tme full GNU General Public License is included in this distribution in the
15  * file called LICENSE.
16  *
17  * Contact Information:
18  * wlanfae <wlanfae@realtek.com>
19  * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
20  * Hsinchu 300, Taiwan.
21  *
22  * Larry Finger <Larry.Finger@lwfinger.net>
23  *
24  *****************************************************************************/
25 #include "wifi.h"
26 #include "efuse.h"
27 #include "pci.h"
28 #include <linux/export.h>
29
30 static const u8 MAX_PGPKT_SIZE = 9;
31 static const u8 PGPKT_DATA_SIZE = 8;
32 static const int EFUSE_MAX_SIZE = 512;
33
34 static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
35         {0, 0, 0, 2},
36         {0, 1, 0, 2},
37         {0, 2, 0, 2},
38         {1, 0, 0, 1},
39         {1, 0, 1, 1},
40         {1, 1, 0, 1},
41         {1, 1, 1, 3},
42         {1, 3, 0, 17},
43         {3, 3, 1, 48},
44         {10, 0, 0, 6},
45         {10, 3, 0, 1},
46         {10, 3, 1, 1},
47         {11, 0, 0, 28}
48 };
49
50 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
51                                     u8 *value);
52 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
53                                     u16 *value);
54 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
55                                     u32 *value);
56 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
57                                      u8 value);
58 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
59                                      u16 value);
60 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
61                                      u32 value);
62 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
63                                 u8 data);
64 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
65 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
66                                 u8 *data);
67 static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
68                                  u8 word_en, u8 *data);
69 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
70                                         u8 *targetdata);
71 static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
72                                   u16 efuse_addr, u8 word_en, u8 *data);
73 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write,
74                                u8 pwrstate);
75 static u16 efuse_get_current_size(struct ieee80211_hw *hw);
76 static u8 efuse_calculate_word_cnts(u8 word_en);
77
78 void efuse_initialize(struct ieee80211_hw *hw)
79 {
80         struct rtl_priv *rtlpriv = rtl_priv(hw);
81         u8 bytetemp;
82         u8 temp;
83
84         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
85         temp = bytetemp | 0x20;
86         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
87
88         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
89         temp = bytetemp & 0xFE;
90         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
91
92         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
93         temp = bytetemp | 0x80;
94         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
95
96         rtl_write_byte(rtlpriv, 0x2F8, 0x3);
97
98         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
99
100 }
101
102 u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
103 {
104         struct rtl_priv *rtlpriv = rtl_priv(hw);
105         u8 data;
106         u8 bytetemp;
107         u8 temp;
108         u32 k = 0;
109         const u32 efuse_len =
110                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
111
112         if (address < efuse_len) {
113                 temp = address & 0xFF;
114                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
115                                temp);
116                 bytetemp = rtl_read_byte(rtlpriv,
117                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
118                 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
119                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
120                                temp);
121
122                 bytetemp = rtl_read_byte(rtlpriv,
123                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
124                 temp = bytetemp & 0x7F;
125                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
126                                temp);
127
128                 bytetemp = rtl_read_byte(rtlpriv,
129                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
130                 while (!(bytetemp & 0x80)) {
131                         bytetemp = rtl_read_byte(rtlpriv,
132                                                  rtlpriv->cfg->
133                                                  maps[EFUSE_CTRL] + 3);
134                         k++;
135                         if (k == 1000) {
136                                 k = 0;
137                                 break;
138                         }
139                 }
140                 data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
141                 return data;
142         } else
143                 return 0xFF;
144
145 }
146 EXPORT_SYMBOL(efuse_read_1byte);
147
148 void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
149 {
150         struct rtl_priv *rtlpriv = rtl_priv(hw);
151         u8 bytetemp;
152         u8 temp;
153         u32 k = 0;
154         const u32 efuse_len =
155                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
156
157         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n",
158                  address, value);
159
160         if (address < efuse_len) {
161                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
162
163                 temp = address & 0xFF;
164                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
165                                temp);
166                 bytetemp = rtl_read_byte(rtlpriv,
167                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
168
169                 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
170                 rtl_write_byte(rtlpriv,
171                                rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
172
173                 bytetemp = rtl_read_byte(rtlpriv,
174                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
175                 temp = bytetemp | 0x80;
176                 rtl_write_byte(rtlpriv,
177                                rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
178
179                 bytetemp = rtl_read_byte(rtlpriv,
180                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
181
182                 while (bytetemp & 0x80) {
183                         bytetemp = rtl_read_byte(rtlpriv,
184                                                  rtlpriv->cfg->
185                                                  maps[EFUSE_CTRL] + 3);
186                         k++;
187                         if (k == 100) {
188                                 k = 0;
189                                 break;
190                         }
191                 }
192         }
193
194 }
195
196 void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
197 {
198         struct rtl_priv *rtlpriv = rtl_priv(hw);
199         u32 value32;
200         u8 readbyte;
201         u16 retry;
202
203         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
204                        (_offset & 0xff));
205         readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
206         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
207                        ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
208
209         readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
210         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
211                        (readbyte & 0x7f));
212
213         retry = 0;
214         value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
215         while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
216                 value32 = rtl_read_dword(rtlpriv,
217                                          rtlpriv->cfg->maps[EFUSE_CTRL]);
218                 retry++;
219         }
220
221         udelay(50);
222         value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
223
224         *pbuf = (u8) (value32 & 0xff);
225 }
226 EXPORT_SYMBOL_GPL(read_efuse_byte);
227
228 void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
229 {
230         struct rtl_priv *rtlpriv = rtl_priv(hw);
231         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
232         u8 *efuse_tbl;
233         u8 rtemp8[1];
234         u16 efuse_addr = 0;
235         u8 offset, wren;
236         u8 u1temp = 0;
237         u16 i;
238         u16 j;
239         const u16 efuse_max_section =
240                 rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
241         const u32 efuse_len =
242                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
243         u16 **efuse_word;
244         u16 efuse_utilized = 0;
245         u8 efuse_usage;
246
247         if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
248                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
249                          "read_efuse(): Invalid offset(%#x) with read bytes(%#x)!!\n",
250                          _offset, _size_byte);
251                 return;
252         }
253
254         /* allocate memory for efuse_tbl and efuse_word */
255         efuse_tbl = kzalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] *
256                             sizeof(u8), GFP_ATOMIC);
257         if (!efuse_tbl)
258                 return;
259         efuse_word = kzalloc(EFUSE_MAX_WORD_UNIT * sizeof(u16 *), GFP_ATOMIC);
260         if (!efuse_word)
261                 goto out;
262         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
263                 efuse_word[i] = kzalloc(efuse_max_section * sizeof(u16),
264                                         GFP_ATOMIC);
265                 if (!efuse_word[i])
266                         goto done;
267         }
268
269         for (i = 0; i < efuse_max_section; i++)
270                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
271                         efuse_word[j][i] = 0xFFFF;
272
273         read_efuse_byte(hw, efuse_addr, rtemp8);
274         if (*rtemp8 != 0xFF) {
275                 efuse_utilized++;
276                 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
277                         "Addr=%d\n", efuse_addr);
278                 efuse_addr++;
279         }
280
281         while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
282                 /*  Check PG header for section num.  */
283                 if ((*rtemp8 & 0x1F) == 0x0F) {/* extended header */
284                         u1temp = ((*rtemp8 & 0xE0) >> 5);
285                         read_efuse_byte(hw, efuse_addr, rtemp8);
286
287                         if ((*rtemp8 & 0x0F) == 0x0F) {
288                                 efuse_addr++;
289                                 read_efuse_byte(hw, efuse_addr, rtemp8);
290
291                                 if (*rtemp8 != 0xFF &&
292                                     (efuse_addr < efuse_len)) {
293                                         efuse_addr++;
294                                 }
295                                 continue;
296                         } else {
297                                 offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
298                                 wren = (*rtemp8 & 0x0F);
299                                 efuse_addr++;
300                         }
301                 } else {
302                         offset = ((*rtemp8 >> 4) & 0x0f);
303                         wren = (*rtemp8 & 0x0f);
304                 }
305
306                 if (offset < efuse_max_section) {
307                         RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
308                                 "offset-%d Worden=%x\n", offset, wren);
309
310                         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
311                                 if (!(wren & 0x01)) {
312                                         RTPRINT(rtlpriv, FEEPROM,
313                                                 EFUSE_READ_ALL,
314                                                 "Addr=%d\n", efuse_addr);
315
316                                         read_efuse_byte(hw, efuse_addr, rtemp8);
317                                         efuse_addr++;
318                                         efuse_utilized++;
319                                         efuse_word[i][offset] =
320                                                          (*rtemp8 & 0xff);
321
322                                         if (efuse_addr >= efuse_len)
323                                                 break;
324
325                                         RTPRINT(rtlpriv, FEEPROM,
326                                                 EFUSE_READ_ALL,
327                                                 "Addr=%d\n", efuse_addr);
328
329                                         read_efuse_byte(hw, efuse_addr, rtemp8);
330                                         efuse_addr++;
331                                         efuse_utilized++;
332                                         efuse_word[i][offset] |=
333                                             (((u16)*rtemp8 << 8) & 0xff00);
334
335                                         if (efuse_addr >= efuse_len)
336                                                 break;
337                                 }
338
339                                 wren >>= 1;
340                         }
341                 }
342
343                 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
344                         "Addr=%d\n", efuse_addr);
345                 read_efuse_byte(hw, efuse_addr, rtemp8);
346                 if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
347                         efuse_utilized++;
348                         efuse_addr++;
349                 }
350         }
351
352         for (i = 0; i < efuse_max_section; i++) {
353                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
354                         efuse_tbl[(i * 8) + (j * 2)] =
355                             (efuse_word[j][i] & 0xff);
356                         efuse_tbl[(i * 8) + ((j * 2) + 1)] =
357                             ((efuse_word[j][i] >> 8) & 0xff);
358                 }
359         }
360
361         for (i = 0; i < _size_byte; i++)
362                 pbuf[i] = efuse_tbl[_offset + i];
363
364         rtlefuse->efuse_usedbytes = efuse_utilized;
365         efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len);
366         rtlefuse->efuse_usedpercentage = efuse_usage;
367         rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
368                                       (u8 *)&efuse_utilized);
369         rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
370                                       &efuse_usage);
371 done:
372         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
373                 kfree(efuse_word[i]);
374         kfree(efuse_word);
375 out:
376         kfree(efuse_tbl);
377 }
378
379 bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
380 {
381         struct rtl_priv *rtlpriv = rtl_priv(hw);
382         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
383         u8 section_idx, i, Base;
384         u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
385         bool wordchanged, result = true;
386
387         for (section_idx = 0; section_idx < 16; section_idx++) {
388                 Base = section_idx * 8;
389                 wordchanged = false;
390
391                 for (i = 0; i < 8; i = i + 2) {
392                         if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] !=
393                              rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) ||
394                             (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] !=
395                              rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i +
396                                                                    1])) {
397                                 words_need++;
398                                 wordchanged = true;
399                         }
400                 }
401
402                 if (wordchanged)
403                         hdr_num++;
404         }
405
406         totalbytes = hdr_num + words_need * 2;
407         efuse_used = rtlefuse->efuse_usedbytes;
408
409         if ((totalbytes + efuse_used) >=
410             (EFUSE_MAX_SIZE - rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))
411                 result = false;
412
413         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
414                  "efuse_shadow_update_chk(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
415                  totalbytes, hdr_num, words_need, efuse_used);
416
417         return result;
418 }
419
420 void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
421                        u16 offset, u32 *value)
422 {
423         if (type == 1)
424                 efuse_shadow_read_1byte(hw, offset, (u8 *)value);
425         else if (type == 2)
426                 efuse_shadow_read_2byte(hw, offset, (u16 *)value);
427         else if (type == 4)
428                 efuse_shadow_read_4byte(hw, offset, value);
429
430 }
431 EXPORT_SYMBOL(efuse_shadow_read);
432
433 void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
434                                 u32 value)
435 {
436         if (type == 1)
437                 efuse_shadow_write_1byte(hw, offset, (u8) value);
438         else if (type == 2)
439                 efuse_shadow_write_2byte(hw, offset, (u16) value);
440         else if (type == 4)
441                 efuse_shadow_write_4byte(hw, offset, value);
442
443 }
444
445 bool efuse_shadow_update(struct ieee80211_hw *hw)
446 {
447         struct rtl_priv *rtlpriv = rtl_priv(hw);
448         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
449         u16 i, offset, base;
450         u8 word_en = 0x0F;
451         u8 first_pg = false;
452
453         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
454
455         if (!efuse_shadow_update_chk(hw)) {
456                 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
457                 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
458                        &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
459                        rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
460
461                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
462                          "efuse out of capacity!!\n");
463                 return false;
464         }
465         efuse_power_switch(hw, true, true);
466
467         for (offset = 0; offset < 16; offset++) {
468
469                 word_en = 0x0F;
470                 base = offset * 8;
471
472                 for (i = 0; i < 8; i++) {
473                         if (first_pg) {
474                                 word_en &= ~(BIT(i / 2));
475
476                                 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
477                                     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
478                         } else {
479
480                                 if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
481                                     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
482                                         word_en &= ~(BIT(i / 2));
483
484                                         rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
485                                             rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
486                                 }
487                         }
488                 }
489
490                 if (word_en != 0x0F) {
491                         u8 tmpdata[8];
492                         memcpy(tmpdata,
493                                &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
494                                8);
495                         RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
496                                       "U-efuse\n", tmpdata, 8);
497
498                         if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
499                                                    tmpdata)) {
500                                 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
501                                          "PG section(%#x) fail!!\n", offset);
502                                 break;
503                         }
504                 }
505
506         }
507
508         efuse_power_switch(hw, true, false);
509         efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
510
511         memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
512                &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
513                rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
514
515         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
516         return true;
517 }
518
519 void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
520 {
521         struct rtl_priv *rtlpriv = rtl_priv(hw);
522         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
523
524         if (rtlefuse->autoload_failflag)
525                 memset((&rtlefuse->efuse_map[EFUSE_INIT_MAP][0]),
526                        0xFF, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
527         else
528                 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
529
530         memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
531                         &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
532                         rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
533
534 }
535 EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
536
537 void efuse_force_write_vendor_Id(struct ieee80211_hw *hw)
538 {
539         u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
540
541         efuse_power_switch(hw, true, true);
542
543         efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
544
545         efuse_power_switch(hw, true, false);
546
547 }
548
549 void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
550 {
551 }
552
553 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
554                                     u16 offset, u8 *value)
555 {
556         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
557         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
558 }
559
560 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
561                                     u16 offset, u16 *value)
562 {
563         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
564
565         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
566         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
567
568 }
569
570 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
571                                     u16 offset, u32 *value)
572 {
573         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
574
575         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
576         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
577         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
578         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
579 }
580
581 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
582                                      u16 offset, u8 value)
583 {
584         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
585
586         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
587 }
588
589 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
590                                      u16 offset, u16 value)
591 {
592         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
593
594         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
595         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
596
597 }
598
599 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
600                                      u16 offset, u32 value)
601 {
602         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
603
604         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
605             (u8) (value & 0x000000FF);
606         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
607             (u8) ((value >> 8) & 0x0000FF);
608         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
609             (u8) ((value >> 16) & 0x00FF);
610         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
611             (u8) ((value >> 24) & 0xFF);
612
613 }
614
615 int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
616 {
617         struct rtl_priv *rtlpriv = rtl_priv(hw);
618         u8 tmpidx = 0;
619         int result;
620
621         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
622                        (u8) (addr & 0xff));
623         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
624                        ((u8) ((addr >> 8) & 0x03)) |
625                        (rtl_read_byte(rtlpriv,
626                                       rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
627                         0xFC));
628
629         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
630
631         while (!(0x80 & rtl_read_byte(rtlpriv,
632                                       rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
633                && (tmpidx < 100)) {
634                 tmpidx++;
635         }
636
637         if (tmpidx < 100) {
638                 *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
639                 result = true;
640         } else {
641                 *data = 0xff;
642                 result = false;
643         }
644         return result;
645 }
646 EXPORT_SYMBOL(efuse_one_byte_read);
647
648 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
649 {
650         struct rtl_priv *rtlpriv = rtl_priv(hw);
651         u8 tmpidx = 0;
652
653         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
654                  "Addr = %x Data=%x\n", addr, data);
655
656         rtl_write_byte(rtlpriv,
657                        rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
658         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
659                        (rtl_read_byte(rtlpriv,
660                          rtlpriv->cfg->maps[EFUSE_CTRL] +
661                          2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
662
663         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
664         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
665
666         while ((0x80 & rtl_read_byte(rtlpriv,
667                                      rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
668                && (tmpidx < 100)) {
669                 tmpidx++;
670         }
671
672         if (tmpidx < 100)
673                 return true;
674         return false;
675 }
676
677 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse)
678 {
679         struct rtl_priv *rtlpriv = rtl_priv(hw);
680         efuse_power_switch(hw, false, true);
681         read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
682         efuse_power_switch(hw, false, false);
683 }
684
685 static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
686                                 u8 efuse_data, u8 offset, u8 *tmpdata,
687                                 u8 *readstate)
688 {
689         bool dataempty = true;
690         u8 hoffset;
691         u8 tmpidx;
692         u8 hworden;
693         u8 word_cnts;
694
695         hoffset = (efuse_data >> 4) & 0x0F;
696         hworden = efuse_data & 0x0F;
697         word_cnts = efuse_calculate_word_cnts(hworden);
698
699         if (hoffset == offset) {
700                 for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
701                         if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
702                                                 &efuse_data)) {
703                                 tmpdata[tmpidx] = efuse_data;
704                                 if (efuse_data != 0xff)
705                                         dataempty = false;
706                         }
707                 }
708
709                 if (!dataempty) {
710                         *readstate = PG_STATE_DATA;
711                 } else {
712                         *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
713                         *readstate = PG_STATE_HEADER;
714                 }
715
716         } else {
717                 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
718                 *readstate = PG_STATE_HEADER;
719         }
720 }
721
722 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
723 {
724         u8 readstate = PG_STATE_HEADER;
725
726         bool continual = true;
727
728         u8 efuse_data, word_cnts = 0;
729         u16 efuse_addr = 0;
730         u8 tmpdata[8];
731
732         if (data == NULL)
733                 return false;
734         if (offset > 15)
735                 return false;
736
737         memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
738         memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
739
740         while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
741                 if (readstate & PG_STATE_HEADER) {
742                         if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
743                             && (efuse_data != 0xFF))
744                                 efuse_read_data_case1(hw, &efuse_addr,
745                                                       efuse_data, offset,
746                                                       tmpdata, &readstate);
747                         else
748                                 continual = false;
749                 } else if (readstate & PG_STATE_DATA) {
750                         efuse_word_enable_data_read(0, tmpdata, data);
751                         efuse_addr = efuse_addr + (word_cnts * 2) + 1;
752                         readstate = PG_STATE_HEADER;
753                 }
754
755         }
756
757         if ((data[0] == 0xff) && (data[1] == 0xff) &&
758             (data[2] == 0xff) && (data[3] == 0xff) &&
759             (data[4] == 0xff) && (data[5] == 0xff) &&
760             (data[6] == 0xff) && (data[7] == 0xff))
761                 return false;
762         else
763                 return true;
764
765 }
766
767 static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
768                                    u8 efuse_data, u8 offset,
769                                    int *continual, u8 *write_state,
770                                    struct pgpkt_struct *target_pkt,
771                                    int *repeat_times, int *result, u8 word_en)
772 {
773         struct rtl_priv *rtlpriv = rtl_priv(hw);
774         struct pgpkt_struct tmp_pkt;
775         int dataempty = true;
776         u8 originaldata[8 * sizeof(u8)];
777         u8 badworden = 0x0F;
778         u8 match_word_en, tmp_word_en;
779         u8 tmpindex;
780         u8 tmp_header = efuse_data;
781         u8 tmp_word_cnts;
782
783         tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
784         tmp_pkt.word_en = tmp_header & 0x0F;
785         tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
786
787         if (tmp_pkt.offset != target_pkt->offset) {
788                 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
789                 *write_state = PG_STATE_HEADER;
790         } else {
791                 for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
792                         if (efuse_one_byte_read(hw,
793                                                 (*efuse_addr + 1 + tmpindex),
794                                                 &efuse_data) &&
795                             (efuse_data != 0xFF))
796                                 dataempty = false;
797                 }
798
799                 if (!dataempty) {
800                         *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
801                         *write_state = PG_STATE_HEADER;
802                 } else {
803                         match_word_en = 0x0F;
804                         if (!((target_pkt->word_en & BIT(0)) |
805                             (tmp_pkt.word_en & BIT(0))))
806                                 match_word_en &= (~BIT(0));
807
808                         if (!((target_pkt->word_en & BIT(1)) |
809                             (tmp_pkt.word_en & BIT(1))))
810                                 match_word_en &= (~BIT(1));
811
812                         if (!((target_pkt->word_en & BIT(2)) |
813                             (tmp_pkt.word_en & BIT(2))))
814                                 match_word_en &= (~BIT(2));
815
816                         if (!((target_pkt->word_en & BIT(3)) |
817                             (tmp_pkt.word_en & BIT(3))))
818                                 match_word_en &= (~BIT(3));
819
820                         if ((match_word_en & 0x0F) != 0x0F) {
821                                 badworden =
822                                   enable_efuse_data_write(hw,
823                                                           *efuse_addr + 1,
824                                                           tmp_pkt.word_en,
825                                                           target_pkt->data);
826
827                                 if (0x0F != (badworden & 0x0F)) {
828                                         u8 reorg_offset = offset;
829                                         u8 reorg_worden = badworden;
830                                         efuse_pg_packet_write(hw, reorg_offset,
831                                                               reorg_worden,
832                                                               originaldata);
833                                 }
834
835                                 tmp_word_en = 0x0F;
836                                 if ((target_pkt->word_en & BIT(0)) ^
837                                     (match_word_en & BIT(0)))
838                                         tmp_word_en &= (~BIT(0));
839
840                                 if ((target_pkt->word_en & BIT(1)) ^
841                                     (match_word_en & BIT(1)))
842                                         tmp_word_en &= (~BIT(1));
843
844                                 if ((target_pkt->word_en & BIT(2)) ^
845                                     (match_word_en & BIT(2)))
846                                         tmp_word_en &= (~BIT(2));
847
848                                 if ((target_pkt->word_en & BIT(3)) ^
849                                     (match_word_en & BIT(3)))
850                                         tmp_word_en &= (~BIT(3));
851
852                                 if ((tmp_word_en & 0x0F) != 0x0F) {
853                                         *efuse_addr = efuse_get_current_size(hw);
854                                         target_pkt->offset = offset;
855                                         target_pkt->word_en = tmp_word_en;
856                                 } else {
857                                         *continual = false;
858                                 }
859                                 *write_state = PG_STATE_HEADER;
860                                 *repeat_times += 1;
861                                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
862                                         *continual = false;
863                                         *result = false;
864                                 }
865                         } else {
866                                 *efuse_addr += (2 * tmp_word_cnts) + 1;
867                                 target_pkt->offset = offset;
868                                 target_pkt->word_en = word_en;
869                                 *write_state = PG_STATE_HEADER;
870                         }
871                 }
872         }
873         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-1\n");
874 }
875
876 static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
877                                    int *continual, u8 *write_state,
878                                    struct pgpkt_struct target_pkt,
879                                    int *repeat_times, int *result)
880 {
881         struct rtl_priv *rtlpriv = rtl_priv(hw);
882         struct pgpkt_struct tmp_pkt;
883         u8 pg_header;
884         u8 tmp_header;
885         u8 originaldata[8 * sizeof(u8)];
886         u8 tmp_word_cnts;
887         u8 badworden = 0x0F;
888
889         pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
890         efuse_one_byte_write(hw, *efuse_addr, pg_header);
891         efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
892
893         if (tmp_header == pg_header) {
894                 *write_state = PG_STATE_DATA;
895         } else if (tmp_header == 0xFF) {
896                 *write_state = PG_STATE_HEADER;
897                 *repeat_times += 1;
898                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
899                         *continual = false;
900                         *result = false;
901                 }
902         } else {
903                 tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
904                 tmp_pkt.word_en = tmp_header & 0x0F;
905
906                 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
907
908                 memset(originaldata, 0xff,  8 * sizeof(u8));
909
910                 if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
911                         badworden = enable_efuse_data_write(hw,
912                                                             *efuse_addr + 1,
913                                                             tmp_pkt.word_en,
914                                                             originaldata);
915
916                         if (0x0F != (badworden & 0x0F)) {
917                                 u8 reorg_offset = tmp_pkt.offset;
918                                 u8 reorg_worden = badworden;
919                                 efuse_pg_packet_write(hw, reorg_offset,
920                                                       reorg_worden,
921                                                       originaldata);
922                                 *efuse_addr = efuse_get_current_size(hw);
923                         } else {
924                                 *efuse_addr = *efuse_addr +
925                                               (tmp_word_cnts * 2) + 1;
926                         }
927                 } else {
928                         *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
929                 }
930
931                 *write_state = PG_STATE_HEADER;
932                 *repeat_times += 1;
933                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
934                         *continual = false;
935                         *result = false;
936                 }
937
938                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
939                         "efuse PG_STATE_HEADER-2\n");
940         }
941 }
942
943 static int efuse_pg_packet_write(struct ieee80211_hw *hw,
944                                  u8 offset, u8 word_en, u8 *data)
945 {
946         struct rtl_priv *rtlpriv = rtl_priv(hw);
947         struct pgpkt_struct target_pkt;
948         u8 write_state = PG_STATE_HEADER;
949         int continual = true, dataempty = true, result = true;
950         u16 efuse_addr = 0;
951         u8 efuse_data;
952         u8 target_word_cnts = 0;
953         u8 badworden = 0x0F;
954         static int repeat_times;
955
956         if (efuse_get_current_size(hw) >= (EFUSE_MAX_SIZE -
957                 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
958                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
959                         "efuse_pg_packet_write error\n");
960                 return false;
961         }
962
963         target_pkt.offset = offset;
964         target_pkt.word_en = word_en;
965
966         memset(target_pkt.data, 0xFF,  8 * sizeof(u8));
967
968         efuse_word_enable_data_read(word_en, data, target_pkt.data);
969         target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
970
971         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse Power ON\n");
972
973         while (continual && (efuse_addr < (EFUSE_MAX_SIZE -
974                 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))) {
975
976                 if (write_state == PG_STATE_HEADER) {
977                         dataempty = true;
978                         badworden = 0x0F;
979                         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
980                                 "efuse PG_STATE_HEADER\n");
981
982                         if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
983                             (efuse_data != 0xFF))
984                                 efuse_write_data_case1(hw, &efuse_addr,
985                                                        efuse_data, offset,
986                                                        &continual,
987                                                        &write_state,
988                                                        &target_pkt,
989                                                        &repeat_times, &result,
990                                                        word_en);
991                         else
992                                 efuse_write_data_case2(hw, &efuse_addr,
993                                                        &continual,
994                                                        &write_state,
995                                                        target_pkt,
996                                                        &repeat_times,
997                                                        &result);
998
999                 } else if (write_state == PG_STATE_DATA) {
1000                         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1001                                 "efuse PG_STATE_DATA\n");
1002                         badworden = 0x0f;
1003                         badworden =
1004                             enable_efuse_data_write(hw, efuse_addr + 1,
1005                                                     target_pkt.word_en,
1006                                                     target_pkt.data);
1007
1008                         if ((badworden & 0x0F) == 0x0F) {
1009                                 continual = false;
1010                         } else {
1011                                 efuse_addr =
1012                                     efuse_addr + (2 * target_word_cnts) + 1;
1013
1014                                 target_pkt.offset = offset;
1015                                 target_pkt.word_en = badworden;
1016                                 target_word_cnts =
1017                                     efuse_calculate_word_cnts(target_pkt.
1018                                                               word_en);
1019                                 write_state = PG_STATE_HEADER;
1020                                 repeat_times++;
1021                                 if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
1022                                         continual = false;
1023                                         result = false;
1024                                 }
1025                                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1026                                         "efuse PG_STATE_HEADER-3\n");
1027                         }
1028                 }
1029         }
1030
1031         if (efuse_addr >= (EFUSE_MAX_SIZE -
1032                 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
1033                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1034                          "efuse_addr(%#x) Out of size!!\n", efuse_addr);
1035         }
1036
1037         return true;
1038 }
1039
1040 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
1041                                         u8 *targetdata)
1042 {
1043         if (!(word_en & BIT(0))) {
1044                 targetdata[0] = sourdata[0];
1045                 targetdata[1] = sourdata[1];
1046         }
1047
1048         if (!(word_en & BIT(1))) {
1049                 targetdata[2] = sourdata[2];
1050                 targetdata[3] = sourdata[3];
1051         }
1052
1053         if (!(word_en & BIT(2))) {
1054                 targetdata[4] = sourdata[4];
1055                 targetdata[5] = sourdata[5];
1056         }
1057
1058         if (!(word_en & BIT(3))) {
1059                 targetdata[6] = sourdata[6];
1060                 targetdata[7] = sourdata[7];
1061         }
1062 }
1063
1064 static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
1065                                   u16 efuse_addr, u8 word_en, u8 *data)
1066 {
1067         struct rtl_priv *rtlpriv = rtl_priv(hw);
1068         u16 tmpaddr;
1069         u16 start_addr = efuse_addr;
1070         u8 badworden = 0x0F;
1071         u8 tmpdata[8];
1072
1073         memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
1074         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1075                  "word_en = %x efuse_addr=%x\n", word_en, efuse_addr);
1076
1077         if (!(word_en & BIT(0))) {
1078                 tmpaddr = start_addr;
1079                 efuse_one_byte_write(hw, start_addr++, data[0]);
1080                 efuse_one_byte_write(hw, start_addr++, data[1]);
1081
1082                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
1083                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
1084                 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
1085                         badworden &= (~BIT(0));
1086         }
1087
1088         if (!(word_en & BIT(1))) {
1089                 tmpaddr = start_addr;
1090                 efuse_one_byte_write(hw, start_addr++, data[2]);
1091                 efuse_one_byte_write(hw, start_addr++, data[3]);
1092
1093                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
1094                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
1095                 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
1096                         badworden &= (~BIT(1));
1097         }
1098
1099         if (!(word_en & BIT(2))) {
1100                 tmpaddr = start_addr;
1101                 efuse_one_byte_write(hw, start_addr++, data[4]);
1102                 efuse_one_byte_write(hw, start_addr++, data[5]);
1103
1104                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
1105                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
1106                 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
1107                         badworden &= (~BIT(2));
1108         }
1109
1110         if (!(word_en & BIT(3))) {
1111                 tmpaddr = start_addr;
1112                 efuse_one_byte_write(hw, start_addr++, data[6]);
1113                 efuse_one_byte_write(hw, start_addr++, data[7]);
1114
1115                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
1116                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
1117                 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
1118                         badworden &= (~BIT(3));
1119         }
1120
1121         return badworden;
1122 }
1123
1124 static void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
1125 {
1126         struct rtl_priv *rtlpriv = rtl_priv(hw);
1127         struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1128         u8 tempval;
1129         u16 tmpV16;
1130
1131         if (pwrstate && (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)) {
1132
1133                 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1134                     rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE) {
1135                         rtl_write_byte(rtlpriv,
1136                                        rtlpriv->cfg->maps[EFUSE_ACCESS], 0x69);
1137                 } else {
1138                         tmpV16 =
1139                           rtl_read_word(rtlpriv,
1140                                         rtlpriv->cfg->maps[SYS_ISO_CTRL]);
1141                         if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
1142                                 tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
1143                                 rtl_write_word(rtlpriv,
1144                                                rtlpriv->cfg->maps[SYS_ISO_CTRL],
1145                                                tmpV16);
1146                         }
1147                 }
1148                 tmpV16 = rtl_read_word(rtlpriv,
1149                                        rtlpriv->cfg->maps[SYS_FUNC_EN]);
1150                 if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
1151                         tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
1152                         rtl_write_word(rtlpriv,
1153                                        rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16);
1154                 }
1155
1156                 tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
1157                 if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
1158                     (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
1159                         tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
1160                                    rtlpriv->cfg->maps[EFUSE_ANA8M]);
1161                         rtl_write_word(rtlpriv,
1162                                        rtlpriv->cfg->maps[SYS_CLK], tmpV16);
1163                 }
1164         }
1165
1166         if (pwrstate) {
1167                 if (write) {
1168                         tempval = rtl_read_byte(rtlpriv,
1169                                                 rtlpriv->cfg->maps[EFUSE_TEST] +
1170                                                 3);
1171
1172                         if (rtlhal->hw_type == HARDWARE_TYPE_RTL8812AE) {
1173                                 tempval &= ~(BIT(3) | BIT(4) | BIT(5) | BIT(6));
1174                                 tempval |= (VOLTAGE_V25 << 3);
1175                         } else if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
1176                                 tempval &= 0x0F;
1177                                 tempval |= (VOLTAGE_V25 << 4);
1178                         }
1179
1180                         rtl_write_byte(rtlpriv,
1181                                        rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1182                                        (tempval | 0x80));
1183                 }
1184
1185                 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1186                         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1187                                        0x03);
1188                 }
1189         } else {
1190                 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1191                     rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE)
1192                         rtl_write_byte(rtlpriv,
1193                                        rtlpriv->cfg->maps[EFUSE_ACCESS], 0);
1194
1195                 if (write) {
1196                         tempval = rtl_read_byte(rtlpriv,
1197                                                 rtlpriv->cfg->maps[EFUSE_TEST] +
1198                                                 3);
1199                         rtl_write_byte(rtlpriv,
1200                                        rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1201                                        (tempval & 0x7F));
1202                 }
1203
1204                 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1205                         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1206                                        0x02);
1207                 }
1208         }
1209 }
1210
1211 static u16 efuse_get_current_size(struct ieee80211_hw *hw)
1212 {
1213         int continual = true;
1214         u16 efuse_addr = 0;
1215         u8 hoffset, hworden;
1216         u8 efuse_data, word_cnts;
1217
1218         while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
1219                (efuse_addr < EFUSE_MAX_SIZE)) {
1220                 if (efuse_data != 0xFF) {
1221                         hoffset = (efuse_data >> 4) & 0x0F;
1222                         hworden = efuse_data & 0x0F;
1223                         word_cnts = efuse_calculate_word_cnts(hworden);
1224                         efuse_addr = efuse_addr + (word_cnts * 2) + 1;
1225                 } else {
1226                         continual = false;
1227                 }
1228         }
1229
1230         return efuse_addr;
1231 }
1232
1233 static u8 efuse_calculate_word_cnts(u8 word_en)
1234 {
1235         u8 word_cnts = 0;
1236         if (!(word_en & BIT(0)))
1237                 word_cnts++;
1238         if (!(word_en & BIT(1)))
1239                 word_cnts++;
1240         if (!(word_en & BIT(2)))
1241                 word_cnts++;
1242         if (!(word_en & BIT(3)))
1243                 word_cnts++;
1244         return word_cnts;
1245 }
1246
1247 int rtl_get_hwinfo(struct ieee80211_hw *hw, struct rtl_priv *rtlpriv,
1248                    int max_size, u8 *hwinfo, int *params)
1249 {
1250         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1251         struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
1252         struct device *dev = &rtlpcipriv->dev.pdev->dev;
1253         u16 eeprom_id;
1254         u16 i, usvalue;
1255
1256         switch (rtlefuse->epromtype) {
1257         case EEPROM_BOOT_EFUSE:
1258                 rtl_efuse_shadow_map_update(hw);
1259                 break;
1260
1261         case EEPROM_93C46:
1262                 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1263                          "RTL8XXX did not boot from eeprom, check it !!\n");
1264                 return 1;
1265
1266         default:
1267                 dev_warn(dev, "no efuse data\n");
1268                 return 1;
1269         }
1270
1271         memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], max_size);
1272
1273         RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1274                       hwinfo, max_size);
1275
1276         eeprom_id = *((u16 *)&hwinfo[0]);
1277         if (eeprom_id != params[0]) {
1278                 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1279                          "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1280                 rtlefuse->autoload_failflag = true;
1281         } else {
1282                 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1283                 rtlefuse->autoload_failflag = false;
1284         }
1285
1286         if (rtlefuse->autoload_failflag)
1287                 return 1;
1288
1289         rtlefuse->eeprom_vid = *(u16 *)&hwinfo[params[1]];
1290         rtlefuse->eeprom_did = *(u16 *)&hwinfo[params[2]];
1291         rtlefuse->eeprom_svid = *(u16 *)&hwinfo[params[3]];
1292         rtlefuse->eeprom_smid = *(u16 *)&hwinfo[params[4]];
1293         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1294                  "EEPROMId = 0x%4x\n", eeprom_id);
1295         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1296                  "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1297         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1298                  "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1299         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1300                  "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1301         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1302                  "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1303
1304         for (i = 0; i < 6; i += 2) {
1305                 usvalue = *(u16 *)&hwinfo[params[5] + i];
1306                 *((u16 *)(&rtlefuse->dev_addr[i])) = usvalue;
1307         }
1308         RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1309
1310         rtlefuse->eeprom_channelplan = *&hwinfo[params[6]];
1311         rtlefuse->eeprom_version = *(u16 *)&hwinfo[params[7]];
1312         rtlefuse->txpwr_fromeprom = true;
1313         rtlefuse->eeprom_oemid = *&hwinfo[params[8]];
1314
1315         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1316                  "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
1317
1318         /* set channel plan to world wide 13 */
1319         rtlefuse->channel_plan = params[9];
1320
1321         return 0;
1322 }
1323 EXPORT_SYMBOL_GPL(rtl_get_hwinfo);