GNU Linux-libre 6.8.7-gnu
[releases.git] / drivers / net / wireless / ralink / rt2x00 / rt2x00dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3         Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
4         Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
5         <http://rt2x00.serialmonkey.com>
6
7  */
8
9 /*
10         Module: rt2x00lib
11         Abstract: rt2x00 generic device routines.
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/log2.h>
18 #include <linux/of.h>
19 #include <linux/of_net.h>
20
21 #include "rt2x00.h"
22 #include "rt2x00lib.h"
23
24 /*
25  * Utility functions.
26  */
27 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
28                          struct ieee80211_vif *vif)
29 {
30         /*
31          * When in STA mode, bssidx is always 0 otherwise local_address[5]
32          * contains the bss number, see BSS_ID_MASK comments for details.
33          */
34         if (rt2x00dev->intf_sta_count)
35                 return 0;
36         return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
37 }
38 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
39
40 /*
41  * Radio control handlers.
42  */
43 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
44 {
45         int status;
46
47         /*
48          * Don't enable the radio twice.
49          * And check if the hardware button has been disabled.
50          */
51         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
52                 return 0;
53
54         /*
55          * Initialize all data queues.
56          */
57         rt2x00queue_init_queues(rt2x00dev);
58
59         /*
60          * Enable radio.
61          */
62         status =
63             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
64         if (status)
65                 return status;
66
67         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
68
69         rt2x00leds_led_radio(rt2x00dev, true);
70         rt2x00led_led_activity(rt2x00dev, true);
71
72         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
73
74         /*
75          * Enable queues.
76          */
77         rt2x00queue_start_queues(rt2x00dev);
78         rt2x00link_start_tuner(rt2x00dev);
79
80         /*
81          * Start watchdog monitoring.
82          */
83         rt2x00link_start_watchdog(rt2x00dev);
84
85         return 0;
86 }
87
88 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
89 {
90         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
91                 return;
92
93         /*
94          * Stop watchdog monitoring.
95          */
96         rt2x00link_stop_watchdog(rt2x00dev);
97
98         /*
99          * Stop all queues
100          */
101         rt2x00link_stop_tuner(rt2x00dev);
102         rt2x00queue_stop_queues(rt2x00dev);
103         rt2x00queue_flush_queues(rt2x00dev, true);
104         rt2x00queue_stop_queue(rt2x00dev->bcn);
105
106         /*
107          * Disable radio.
108          */
109         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
110         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
111         rt2x00led_led_activity(rt2x00dev, false);
112         rt2x00leds_led_radio(rt2x00dev, false);
113 }
114
115 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
116                                           struct ieee80211_vif *vif)
117 {
118         struct rt2x00_dev *rt2x00dev = data;
119         struct rt2x00_intf *intf = vif_to_intf(vif);
120
121         /*
122          * It is possible the radio was disabled while the work had been
123          * scheduled. If that happens we should return here immediately,
124          * note that in the spinlock protected area above the delayed_flags
125          * have been cleared correctly.
126          */
127         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
128                 return;
129
130         if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) {
131                 mutex_lock(&intf->beacon_skb_mutex);
132                 rt2x00queue_update_beacon(rt2x00dev, vif);
133                 mutex_unlock(&intf->beacon_skb_mutex);
134         }
135 }
136
137 static void rt2x00lib_intf_scheduled(struct work_struct *work)
138 {
139         struct rt2x00_dev *rt2x00dev =
140             container_of(work, struct rt2x00_dev, intf_work);
141
142         /*
143          * Iterate over each interface and perform the
144          * requested configurations.
145          */
146         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
147                                             IEEE80211_IFACE_ITER_RESUME_ALL,
148                                             rt2x00lib_intf_scheduled_iter,
149                                             rt2x00dev);
150 }
151
152 static void rt2x00lib_autowakeup(struct work_struct *work)
153 {
154         struct rt2x00_dev *rt2x00dev =
155             container_of(work, struct rt2x00_dev, autowakeup_work.work);
156
157         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
158                 return;
159
160         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
161                 rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
162         clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
163 }
164
165 /*
166  * Interrupt context handlers.
167  */
168 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
169                                      struct ieee80211_vif *vif)
170 {
171         struct ieee80211_tx_control control = {};
172         struct rt2x00_dev *rt2x00dev = data;
173         struct sk_buff *skb;
174
175         /*
176          * Only AP mode interfaces do broad- and multicast buffering
177          */
178         if (vif->type != NL80211_IFTYPE_AP)
179                 return;
180
181         /*
182          * Send out buffered broad- and multicast frames
183          */
184         skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
185         while (skb) {
186                 rt2x00mac_tx(rt2x00dev->hw, &control, skb);
187                 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
188         }
189 }
190
191 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
192                                         struct ieee80211_vif *vif)
193 {
194         struct rt2x00_dev *rt2x00dev = data;
195
196         if (vif->type != NL80211_IFTYPE_AP &&
197             vif->type != NL80211_IFTYPE_ADHOC &&
198             vif->type != NL80211_IFTYPE_MESH_POINT)
199                 return;
200
201         /*
202          * Update the beacon without locking. This is safe on PCI devices
203          * as they only update the beacon periodically here. This should
204          * never be called for USB devices.
205          */
206         WARN_ON(rt2x00_is_usb(rt2x00dev));
207         rt2x00queue_update_beacon(rt2x00dev, vif);
208 }
209
210 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
211 {
212         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
213                 return;
214
215         /* send buffered bc/mc frames out for every bssid */
216         ieee80211_iterate_active_interfaces_atomic(
217                 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
218                 rt2x00lib_bc_buffer_iter, rt2x00dev);
219         /*
220          * Devices with pre tbtt interrupt don't need to update the beacon
221          * here as they will fetch the next beacon directly prior to
222          * transmission.
223          */
224         if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
225                 return;
226
227         /* fetch next beacon */
228         ieee80211_iterate_active_interfaces_atomic(
229                 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
230                 rt2x00lib_beaconupdate_iter, rt2x00dev);
231 }
232 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
233
234 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
235 {
236         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
237                 return;
238
239         /* fetch next beacon */
240         ieee80211_iterate_active_interfaces_atomic(
241                 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
242                 rt2x00lib_beaconupdate_iter, rt2x00dev);
243 }
244 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
245
246 void rt2x00lib_dmastart(struct queue_entry *entry)
247 {
248         set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
249         rt2x00queue_index_inc(entry, Q_INDEX);
250 }
251 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
252
253 void rt2x00lib_dmadone(struct queue_entry *entry)
254 {
255         set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
256         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
257         rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
258 }
259 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
260
261 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
262 {
263         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
264         struct ieee80211_bar *bar = (void *) entry->skb->data;
265         struct rt2x00_bar_list_entry *bar_entry;
266         int ret;
267
268         if (likely(!ieee80211_is_back_req(bar->frame_control)))
269                 return 0;
270
271         /*
272          * Unlike all other frames, the status report for BARs does
273          * not directly come from the hardware as it is incapable of
274          * matching a BA to a previously send BAR. The hardware will
275          * report all BARs as if they weren't acked at all.
276          *
277          * Instead the RX-path will scan for incoming BAs and set the
278          * block_acked flag if it sees one that was likely caused by
279          * a BAR from us.
280          *
281          * Remove remaining BARs here and return their status for
282          * TX done processing.
283          */
284         ret = 0;
285         rcu_read_lock();
286         list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
287                 if (bar_entry->entry != entry)
288                         continue;
289
290                 spin_lock_bh(&rt2x00dev->bar_list_lock);
291                 /* Return whether this BAR was blockacked or not */
292                 ret = bar_entry->block_acked;
293                 /* Remove the BAR from our checklist */
294                 list_del_rcu(&bar_entry->list);
295                 spin_unlock_bh(&rt2x00dev->bar_list_lock);
296                 kfree_rcu(bar_entry, head);
297
298                 break;
299         }
300         rcu_read_unlock();
301
302         return ret;
303 }
304
305 static void rt2x00lib_fill_tx_status(struct rt2x00_dev *rt2x00dev,
306                                      struct ieee80211_tx_info *tx_info,
307                                      struct skb_frame_desc *skbdesc,
308                                      struct txdone_entry_desc *txdesc,
309                                      bool success)
310 {
311         u8 rate_idx, rate_flags, retry_rates;
312         int i;
313
314         rate_idx = skbdesc->tx_rate_idx;
315         rate_flags = skbdesc->tx_rate_flags;
316         retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
317             (txdesc->retry + 1) : 1;
318
319         /*
320          * Initialize TX status
321          */
322         memset(&tx_info->status, 0, sizeof(tx_info->status));
323         tx_info->status.ack_signal = 0;
324
325         /*
326          * Frame was send with retries, hardware tried
327          * different rates to send out the frame, at each
328          * retry it lowered the rate 1 step except when the
329          * lowest rate was used.
330          */
331         for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
332                 tx_info->status.rates[i].idx = rate_idx - i;
333                 tx_info->status.rates[i].flags = rate_flags;
334
335                 if (rate_idx - i == 0) {
336                         /*
337                          * The lowest rate (index 0) was used until the
338                          * number of max retries was reached.
339                          */
340                         tx_info->status.rates[i].count = retry_rates - i;
341                         i++;
342                         break;
343                 }
344                 tx_info->status.rates[i].count = 1;
345         }
346         if (i < (IEEE80211_TX_MAX_RATES - 1))
347                 tx_info->status.rates[i].idx = -1; /* terminate */
348
349         if (test_bit(TXDONE_NO_ACK_REQ, &txdesc->flags))
350                 tx_info->flags |= IEEE80211_TX_CTL_NO_ACK;
351
352         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
353                 if (success)
354                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
355                 else
356                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
357         }
358
359         /*
360          * Every single frame has it's own tx status, hence report
361          * every frame as ampdu of size 1.
362          *
363          * TODO: if we can find out how many frames were aggregated
364          * by the hw we could provide the real ampdu_len to mac80211
365          * which would allow the rc algorithm to better decide on
366          * which rates are suitable.
367          */
368         if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
369             tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
370                 tx_info->flags |= IEEE80211_TX_STAT_AMPDU |
371                                   IEEE80211_TX_CTL_AMPDU;
372                 tx_info->status.ampdu_len = 1;
373                 tx_info->status.ampdu_ack_len = success ? 1 : 0;
374         }
375
376         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
377                 if (success)
378                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
379                 else
380                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
381         }
382 }
383
384 static void rt2x00lib_clear_entry(struct rt2x00_dev *rt2x00dev,
385                                   struct queue_entry *entry)
386 {
387         /*
388          * Make this entry available for reuse.
389          */
390         entry->skb = NULL;
391         entry->flags = 0;
392
393         rt2x00dev->ops->lib->clear_entry(entry);
394
395         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
396
397         /*
398          * If the data queue was below the threshold before the txdone
399          * handler we must make sure the packet queue in the mac80211 stack
400          * is reenabled when the txdone handler has finished. This has to be
401          * serialized with rt2x00mac_tx(), otherwise we can wake up queue
402          * before it was stopped.
403          */
404         spin_lock_bh(&entry->queue->tx_lock);
405         if (!rt2x00queue_threshold(entry->queue))
406                 rt2x00queue_unpause_queue(entry->queue);
407         spin_unlock_bh(&entry->queue->tx_lock);
408 }
409
410 void rt2x00lib_txdone_nomatch(struct queue_entry *entry,
411                               struct txdone_entry_desc *txdesc)
412 {
413         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
414         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
415         struct ieee80211_tx_info txinfo = {};
416         bool success;
417
418         /*
419          * Unmap the skb.
420          */
421         rt2x00queue_unmap_skb(entry);
422
423         /*
424          * Signal that the TX descriptor is no longer in the skb.
425          */
426         skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
427
428         /*
429          * Send frame to debugfs immediately, after this call is completed
430          * we are going to overwrite the skb->cb array.
431          */
432         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
433
434         /*
435          * Determine if the frame has been successfully transmitted and
436          * remove BARs from our check list while checking for their
437          * TX status.
438          */
439         success =
440             rt2x00lib_txdone_bar_status(entry) ||
441             test_bit(TXDONE_SUCCESS, &txdesc->flags);
442
443         if (!test_bit(TXDONE_UNKNOWN, &txdesc->flags)) {
444                 /*
445                  * Update TX statistics.
446                  */
447                 rt2x00dev->link.qual.tx_success += success;
448                 rt2x00dev->link.qual.tx_failed += !success;
449
450                 rt2x00lib_fill_tx_status(rt2x00dev, &txinfo, skbdesc, txdesc,
451                                          success);
452                 ieee80211_tx_status_noskb(rt2x00dev->hw, skbdesc->sta, &txinfo);
453         }
454
455         dev_kfree_skb_any(entry->skb);
456         rt2x00lib_clear_entry(rt2x00dev, entry);
457 }
458 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_nomatch);
459
460 void rt2x00lib_txdone(struct queue_entry *entry,
461                       struct txdone_entry_desc *txdesc)
462 {
463         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
464         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
465         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
466         u8 skbdesc_flags = skbdesc->flags;
467         unsigned int header_length;
468         bool success;
469
470         /*
471          * Unmap the skb.
472          */
473         rt2x00queue_unmap_skb(entry);
474
475         /*
476          * Remove the extra tx headroom from the skb.
477          */
478         skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
479
480         /*
481          * Signal that the TX descriptor is no longer in the skb.
482          */
483         skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
484
485         /*
486          * Determine the length of 802.11 header.
487          */
488         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
489
490         /*
491          * Remove L2 padding which was added during
492          */
493         if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
494                 rt2x00queue_remove_l2pad(entry->skb, header_length);
495
496         /*
497          * If the IV/EIV data was stripped from the frame before it was
498          * passed to the hardware, we should now reinsert it again because
499          * mac80211 will expect the same data to be present it the
500          * frame as it was passed to us.
501          */
502         if (rt2x00_has_cap_hw_crypto(rt2x00dev))
503                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
504
505         /*
506          * Send frame to debugfs immediately, after this call is completed
507          * we are going to overwrite the skb->cb array.
508          */
509         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
510
511         /*
512          * Determine if the frame has been successfully transmitted and
513          * remove BARs from our check list while checking for their
514          * TX status.
515          */
516         success =
517             rt2x00lib_txdone_bar_status(entry) ||
518             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
519             test_bit(TXDONE_UNKNOWN, &txdesc->flags);
520
521         /*
522          * Update TX statistics.
523          */
524         rt2x00dev->link.qual.tx_success += success;
525         rt2x00dev->link.qual.tx_failed += !success;
526
527         rt2x00lib_fill_tx_status(rt2x00dev, tx_info, skbdesc, txdesc, success);
528
529         /*
530          * Only send the status report to mac80211 when it's a frame
531          * that originated in mac80211. If this was a extra frame coming
532          * through a mac80211 library call (RTS/CTS) then we should not
533          * send the status report back.
534          */
535         if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
536                 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT))
537                         ieee80211_tx_status_skb(rt2x00dev->hw, entry->skb);
538                 else
539                         ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
540         } else {
541                 dev_kfree_skb_any(entry->skb);
542         }
543
544         rt2x00lib_clear_entry(rt2x00dev, entry);
545 }
546 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
547
548 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
549 {
550         struct txdone_entry_desc txdesc;
551
552         txdesc.flags = 0;
553         __set_bit(status, &txdesc.flags);
554         txdesc.retry = 0;
555
556         rt2x00lib_txdone(entry, &txdesc);
557 }
558 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
559
560 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
561 {
562         struct ieee80211_mgmt *mgmt = (void *)data;
563         u8 *pos, *end;
564
565         pos = (u8 *)mgmt->u.beacon.variable;
566         end = data + len;
567         while (pos < end) {
568                 if (pos + 2 + pos[1] > end)
569                         return NULL;
570
571                 if (pos[0] == ie)
572                         return pos;
573
574                 pos += 2 + pos[1];
575         }
576
577         return NULL;
578 }
579
580 static void rt2x00lib_sleep(struct work_struct *work)
581 {
582         struct rt2x00_dev *rt2x00dev =
583             container_of(work, struct rt2x00_dev, sleep_work);
584
585         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
586                 return;
587
588         /*
589          * Check again is powersaving is enabled, to prevent races from delayed
590          * work execution.
591          */
592         if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
593                 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
594                                  IEEE80211_CONF_CHANGE_PS);
595 }
596
597 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
598                                       struct sk_buff *skb,
599                                       struct rxdone_entry_desc *rxdesc)
600 {
601         struct rt2x00_bar_list_entry *entry;
602         struct ieee80211_bar *ba = (void *)skb->data;
603
604         if (likely(!ieee80211_is_back(ba->frame_control)))
605                 return;
606
607         if (rxdesc->size < sizeof(*ba) + FCS_LEN)
608                 return;
609
610         rcu_read_lock();
611         list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
612
613                 if (ba->start_seq_num != entry->start_seq_num)
614                         continue;
615
616 #define TID_CHECK(a, b) (                                               \
617         ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) ==        \
618         ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)))          \
619
620                 if (!TID_CHECK(ba->control, entry->control))
621                         continue;
622
623 #undef TID_CHECK
624
625                 if (!ether_addr_equal_64bits(ba->ra, entry->ta))
626                         continue;
627
628                 if (!ether_addr_equal_64bits(ba->ta, entry->ra))
629                         continue;
630
631                 /* Mark BAR since we received the according BA */
632                 spin_lock_bh(&rt2x00dev->bar_list_lock);
633                 entry->block_acked = 1;
634                 spin_unlock_bh(&rt2x00dev->bar_list_lock);
635                 break;
636         }
637         rcu_read_unlock();
638
639 }
640
641 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
642                                       struct sk_buff *skb,
643                                       struct rxdone_entry_desc *rxdesc)
644 {
645         struct ieee80211_hdr *hdr = (void *) skb->data;
646         struct ieee80211_tim_ie *tim_ie;
647         u8 *tim;
648         u8 tim_len;
649         bool cam;
650
651         /* If this is not a beacon, or if mac80211 has no powersaving
652          * configured, or if the device is already in powersaving mode
653          * we can exit now. */
654         if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
655                    !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
656                 return;
657
658         /* min. beacon length + FCS_LEN */
659         if (skb->len <= 40 + FCS_LEN)
660                 return;
661
662         /* and only beacons from the associated BSSID, please */
663         if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
664             !rt2x00dev->aid)
665                 return;
666
667         rt2x00dev->last_beacon = jiffies;
668
669         tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
670         if (!tim)
671                 return;
672
673         if (tim[1] < sizeof(*tim_ie))
674                 return;
675
676         tim_len = tim[1];
677         tim_ie = (struct ieee80211_tim_ie *) &tim[2];
678
679         /* Check whenever the PHY can be turned off again. */
680
681         /* 1. What about buffered unicast traffic for our AID? */
682         cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
683
684         /* 2. Maybe the AP wants to send multicast/broadcast data? */
685         cam |= (tim_ie->bitmap_ctrl & 0x01);
686
687         if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
688                 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
689 }
690
691 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
692                                         struct rxdone_entry_desc *rxdesc)
693 {
694         struct ieee80211_supported_band *sband;
695         const struct rt2x00_rate *rate;
696         unsigned int i;
697         int signal = rxdesc->signal;
698         int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
699
700         switch (rxdesc->rate_mode) {
701         case RATE_MODE_CCK:
702         case RATE_MODE_OFDM:
703                 /*
704                  * For non-HT rates the MCS value needs to contain the
705                  * actually used rate modulation (CCK or OFDM).
706                  */
707                 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
708                         signal = RATE_MCS(rxdesc->rate_mode, signal);
709
710                 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
711                 for (i = 0; i < sband->n_bitrates; i++) {
712                         rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
713                         if (((type == RXDONE_SIGNAL_PLCP) &&
714                              (rate->plcp == signal)) ||
715                             ((type == RXDONE_SIGNAL_BITRATE) &&
716                               (rate->bitrate == signal)) ||
717                             ((type == RXDONE_SIGNAL_MCS) &&
718                               (rate->mcs == signal))) {
719                                 return i;
720                         }
721                 }
722                 break;
723         case RATE_MODE_HT_MIX:
724         case RATE_MODE_HT_GREENFIELD:
725                 if (signal >= 0 && signal <= 76)
726                         return signal;
727                 break;
728         default:
729                 break;
730         }
731
732         rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
733                     rxdesc->rate_mode, signal, type);
734         return 0;
735 }
736
737 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
738 {
739         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
740         struct rxdone_entry_desc rxdesc;
741         struct sk_buff *skb;
742         struct ieee80211_rx_status *rx_status;
743         unsigned int header_length;
744         int rate_idx;
745
746         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
747             !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
748                 goto submit_entry;
749
750         if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
751                 goto submit_entry;
752
753         /*
754          * Allocate a new sk_buffer. If no new buffer available, drop the
755          * received frame and reuse the existing buffer.
756          */
757         skb = rt2x00queue_alloc_rxskb(entry, gfp);
758         if (!skb)
759                 goto submit_entry;
760
761         /*
762          * Unmap the skb.
763          */
764         rt2x00queue_unmap_skb(entry);
765
766         /*
767          * Extract the RXD details.
768          */
769         memset(&rxdesc, 0, sizeof(rxdesc));
770         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
771
772         /*
773          * Check for valid size in case we get corrupted descriptor from
774          * hardware.
775          */
776         if (unlikely(rxdesc.size == 0 ||
777                      rxdesc.size > entry->queue->data_size)) {
778                 rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
779                            rxdesc.size, entry->queue->data_size);
780                 dev_kfree_skb(entry->skb);
781                 goto renew_skb;
782         }
783
784         /*
785          * The data behind the ieee80211 header must be
786          * aligned on a 4 byte boundary.
787          */
788         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
789
790         /*
791          * Hardware might have stripped the IV/EIV/ICV data,
792          * in that case it is possible that the data was
793          * provided separately (through hardware descriptor)
794          * in which case we should reinsert the data into the frame.
795          */
796         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
797             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
798                 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
799                                           &rxdesc);
800         else if (header_length &&
801                  (rxdesc.size > header_length) &&
802                  (rxdesc.dev_flags & RXDONE_L2PAD))
803                 rt2x00queue_remove_l2pad(entry->skb, header_length);
804
805         /* Trim buffer to correct size */
806         skb_trim(entry->skb, rxdesc.size);
807
808         /*
809          * Translate the signal to the correct bitrate index.
810          */
811         rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
812         if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
813             rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
814                 rxdesc.encoding = RX_ENC_HT;
815
816         /*
817          * Check if this is a beacon, and more frames have been
818          * buffered while we were in powersaving mode.
819          */
820         rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
821
822         /*
823          * Check for incoming BlockAcks to match to the BlockAckReqs
824          * we've send out.
825          */
826         rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
827
828         /*
829          * Update extra components
830          */
831         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
832         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
833         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry);
834
835         /*
836          * Initialize RX status information, and send frame
837          * to mac80211.
838          */
839         rx_status = IEEE80211_SKB_RXCB(entry->skb);
840
841         /* Ensure that all fields of rx_status are initialized
842          * properly. The skb->cb array was used for driver
843          * specific informations, so rx_status might contain
844          * garbage.
845          */
846         memset(rx_status, 0, sizeof(*rx_status));
847
848         rx_status->mactime = rxdesc.timestamp;
849         rx_status->band = rt2x00dev->curr_band;
850         rx_status->freq = rt2x00dev->curr_freq;
851         rx_status->rate_idx = rate_idx;
852         rx_status->signal = rxdesc.rssi;
853         rx_status->flag = rxdesc.flags;
854         rx_status->enc_flags = rxdesc.enc_flags;
855         rx_status->encoding = rxdesc.encoding;
856         rx_status->bw = rxdesc.bw;
857         rx_status->antenna = rt2x00dev->link.ant.active.rx;
858
859         ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
860
861 renew_skb:
862         /*
863          * Replace the skb with the freshly allocated one.
864          */
865         entry->skb = skb;
866
867 submit_entry:
868         entry->flags = 0;
869         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
870         if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
871             test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
872                 rt2x00dev->ops->lib->clear_entry(entry);
873 }
874 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
875
876 /*
877  * Driver initialization handlers.
878  */
879 const struct rt2x00_rate rt2x00_supported_rates[12] = {
880         {
881                 .flags = DEV_RATE_CCK,
882                 .bitrate = 10,
883                 .ratemask = BIT(0),
884                 .plcp = 0x00,
885                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
886         },
887         {
888                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
889                 .bitrate = 20,
890                 .ratemask = BIT(1),
891                 .plcp = 0x01,
892                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
893         },
894         {
895                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
896                 .bitrate = 55,
897                 .ratemask = BIT(2),
898                 .plcp = 0x02,
899                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
900         },
901         {
902                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
903                 .bitrate = 110,
904                 .ratemask = BIT(3),
905                 .plcp = 0x03,
906                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
907         },
908         {
909                 .flags = DEV_RATE_OFDM,
910                 .bitrate = 60,
911                 .ratemask = BIT(4),
912                 .plcp = 0x0b,
913                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
914         },
915         {
916                 .flags = DEV_RATE_OFDM,
917                 .bitrate = 90,
918                 .ratemask = BIT(5),
919                 .plcp = 0x0f,
920                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
921         },
922         {
923                 .flags = DEV_RATE_OFDM,
924                 .bitrate = 120,
925                 .ratemask = BIT(6),
926                 .plcp = 0x0a,
927                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
928         },
929         {
930                 .flags = DEV_RATE_OFDM,
931                 .bitrate = 180,
932                 .ratemask = BIT(7),
933                 .plcp = 0x0e,
934                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
935         },
936         {
937                 .flags = DEV_RATE_OFDM,
938                 .bitrate = 240,
939                 .ratemask = BIT(8),
940                 .plcp = 0x09,
941                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
942         },
943         {
944                 .flags = DEV_RATE_OFDM,
945                 .bitrate = 360,
946                 .ratemask = BIT(9),
947                 .plcp = 0x0d,
948                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
949         },
950         {
951                 .flags = DEV_RATE_OFDM,
952                 .bitrate = 480,
953                 .ratemask = BIT(10),
954                 .plcp = 0x08,
955                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
956         },
957         {
958                 .flags = DEV_RATE_OFDM,
959                 .bitrate = 540,
960                 .ratemask = BIT(11),
961                 .plcp = 0x0c,
962                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
963         },
964 };
965
966 static void rt2x00lib_channel(struct ieee80211_channel *entry,
967                               const int channel, const int tx_power,
968                               const int value)
969 {
970         /* XXX: this assumption about the band is wrong for 802.11j */
971         entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
972         entry->center_freq = ieee80211_channel_to_frequency(channel,
973                                                             entry->band);
974         entry->hw_value = value;
975         entry->max_power = tx_power;
976         entry->max_antenna_gain = 0xff;
977 }
978
979 static void rt2x00lib_rate(struct ieee80211_rate *entry,
980                            const u16 index, const struct rt2x00_rate *rate)
981 {
982         entry->flags = 0;
983         entry->bitrate = rate->bitrate;
984         entry->hw_value = index;
985         entry->hw_value_short = index;
986
987         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
988                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
989 }
990
991 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr)
992 {
993         of_get_mac_address(rt2x00dev->dev->of_node, eeprom_mac_addr);
994
995         if (!is_valid_ether_addr(eeprom_mac_addr)) {
996                 eth_random_addr(eeprom_mac_addr);
997                 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr);
998         }
999 }
1000 EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address);
1001
1002 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
1003                                     struct hw_mode_spec *spec)
1004 {
1005         struct ieee80211_hw *hw = rt2x00dev->hw;
1006         struct ieee80211_channel *channels;
1007         struct ieee80211_rate *rates;
1008         unsigned int num_rates;
1009         unsigned int i;
1010
1011         num_rates = 0;
1012         if (spec->supported_rates & SUPPORT_RATE_CCK)
1013                 num_rates += 4;
1014         if (spec->supported_rates & SUPPORT_RATE_OFDM)
1015                 num_rates += 8;
1016
1017         channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
1018         if (!channels)
1019                 return -ENOMEM;
1020
1021         rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
1022         if (!rates)
1023                 goto exit_free_channels;
1024
1025         /*
1026          * Initialize Rate list.
1027          */
1028         for (i = 0; i < num_rates; i++)
1029                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
1030
1031         /*
1032          * Initialize Channel list.
1033          */
1034         for (i = 0; i < spec->num_channels; i++) {
1035                 rt2x00lib_channel(&channels[i],
1036                                   spec->channels[i].channel,
1037                                   spec->channels_info[i].max_power, i);
1038         }
1039
1040         /*
1041          * Intitialize 802.11b, 802.11g
1042          * Rates: CCK, OFDM.
1043          * Channels: 2.4 GHz
1044          */
1045         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
1046                 rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14;
1047                 rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates;
1048                 rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels;
1049                 rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates;
1050                 hw->wiphy->bands[NL80211_BAND_2GHZ] =
1051                     &rt2x00dev->bands[NL80211_BAND_2GHZ];
1052                 memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap,
1053                        &spec->ht, sizeof(spec->ht));
1054         }
1055
1056         /*
1057          * Intitialize 802.11a
1058          * Rates: OFDM.
1059          * Channels: OFDM, UNII, HiperLAN2.
1060          */
1061         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
1062                 rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels =
1063                     spec->num_channels - 14;
1064                 rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates =
1065                     num_rates - 4;
1066                 rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14];
1067                 rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4];
1068                 hw->wiphy->bands[NL80211_BAND_5GHZ] =
1069                     &rt2x00dev->bands[NL80211_BAND_5GHZ];
1070                 memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap,
1071                        &spec->ht, sizeof(spec->ht));
1072         }
1073
1074         return 0;
1075
1076  exit_free_channels:
1077         kfree(channels);
1078         rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1079         return -ENOMEM;
1080 }
1081
1082 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1083 {
1084         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1085                 ieee80211_unregister_hw(rt2x00dev->hw);
1086
1087         if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) {
1088                 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels);
1089                 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates);
1090                 rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL;
1091                 rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL;
1092         }
1093
1094         kfree(rt2x00dev->spec.channels_info);
1095         kfree(rt2x00dev->chan_survey);
1096 }
1097
1098 static const struct ieee80211_tpt_blink rt2x00_tpt_blink[] = {
1099         { .throughput = 0 * 1024, .blink_time = 334 },
1100         { .throughput = 1 * 1024, .blink_time = 260 },
1101         { .throughput = 2 * 1024, .blink_time = 220 },
1102         { .throughput = 5 * 1024, .blink_time = 190 },
1103         { .throughput = 10 * 1024, .blink_time = 170 },
1104         { .throughput = 25 * 1024, .blink_time = 150 },
1105         { .throughput = 54 * 1024, .blink_time = 130 },
1106         { .throughput = 120 * 1024, .blink_time = 110 },
1107         { .throughput = 265 * 1024, .blink_time = 80 },
1108         { .throughput = 586 * 1024, .blink_time = 50 },
1109 };
1110
1111 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1112 {
1113         struct hw_mode_spec *spec = &rt2x00dev->spec;
1114         int status;
1115
1116         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1117                 return 0;
1118
1119         /*
1120          * Initialize HW modes.
1121          */
1122         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1123         if (status)
1124                 return status;
1125
1126         /*
1127          * Initialize HW fields.
1128          */
1129         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1130
1131         /*
1132          * Initialize extra TX headroom required.
1133          */
1134         rt2x00dev->hw->extra_tx_headroom =
1135                 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1136                       rt2x00dev->extra_tx_headroom);
1137
1138         /*
1139          * Take TX headroom required for alignment into account.
1140          */
1141         if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
1142                 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1143         else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA))
1144                 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1145
1146         /*
1147          * Tell mac80211 about the size of our private STA structure.
1148          */
1149         rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1150
1151         /*
1152          * Allocate tx status FIFO for driver use.
1153          */
1154         if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) {
1155                 /*
1156                  * Allocate the txstatus fifo. In the worst case the tx
1157                  * status fifo has to hold the tx status of all entries
1158                  * in all tx queues. Hence, calculate the kfifo size as
1159                  * tx_queues * entry_num and round up to the nearest
1160                  * power of 2.
1161                  */
1162                 int kfifo_size =
1163                         roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1164                                            rt2x00dev->tx->limit *
1165                                            sizeof(u32));
1166
1167                 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1168                                      GFP_KERNEL);
1169                 if (status)
1170                         return status;
1171         }
1172
1173         /*
1174          * Initialize tasklets if used by the driver. Tasklets are
1175          * disabled until the interrupts are turned on. The driver
1176          * has to handle that.
1177          */
1178 #define RT2X00_TASKLET_INIT(taskletname) \
1179         if (rt2x00dev->ops->lib->taskletname) { \
1180                 tasklet_setup(&rt2x00dev->taskletname, \
1181                              rt2x00dev->ops->lib->taskletname); \
1182         }
1183
1184         RT2X00_TASKLET_INIT(txstatus_tasklet);
1185         RT2X00_TASKLET_INIT(pretbtt_tasklet);
1186         RT2X00_TASKLET_INIT(tbtt_tasklet);
1187         RT2X00_TASKLET_INIT(rxdone_tasklet);
1188         RT2X00_TASKLET_INIT(autowake_tasklet);
1189
1190 #undef RT2X00_TASKLET_INIT
1191
1192         ieee80211_create_tpt_led_trigger(rt2x00dev->hw,
1193                                          IEEE80211_TPT_LEDTRIG_FL_RADIO,
1194                                          rt2x00_tpt_blink,
1195                                          ARRAY_SIZE(rt2x00_tpt_blink));
1196
1197         /*
1198          * Register HW.
1199          */
1200         status = ieee80211_register_hw(rt2x00dev->hw);
1201         if (status)
1202                 return status;
1203
1204         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1205
1206         return 0;
1207 }
1208
1209 /*
1210  * Initialization/uninitialization handlers.
1211  */
1212 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1213 {
1214         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1215                 return;
1216
1217         /*
1218          * Stop rfkill polling.
1219          */
1220         if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1221                 rt2x00rfkill_unregister(rt2x00dev);
1222
1223         /*
1224          * Allow the HW to uninitialize.
1225          */
1226         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1227
1228         /*
1229          * Free allocated queue entries.
1230          */
1231         rt2x00queue_uninitialize(rt2x00dev);
1232 }
1233
1234 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1235 {
1236         int status;
1237
1238         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1239                 return 0;
1240
1241         /*
1242          * Allocate all queue entries.
1243          */
1244         status = rt2x00queue_initialize(rt2x00dev);
1245         if (status)
1246                 return status;
1247
1248         /*
1249          * Initialize the device.
1250          */
1251         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1252         if (status) {
1253                 rt2x00queue_uninitialize(rt2x00dev);
1254                 return status;
1255         }
1256
1257         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1258
1259         /*
1260          * Start rfkill polling.
1261          */
1262         if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1263                 rt2x00rfkill_register(rt2x00dev);
1264
1265         return 0;
1266 }
1267
1268 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1269 {
1270         int retval = 0;
1271
1272         /*
1273          * If this is the first interface which is added,
1274          * we should load the firmware now.
1275          */
1276         retval = rt2x00lib_load_firmware(rt2x00dev);
1277         if (retval)
1278                 goto out;
1279
1280         /*
1281          * Initialize the device.
1282          */
1283         retval = rt2x00lib_initialize(rt2x00dev);
1284         if (retval)
1285                 goto out;
1286
1287         rt2x00dev->intf_ap_count = 0;
1288         rt2x00dev->intf_sta_count = 0;
1289         rt2x00dev->intf_associated = 0;
1290         rt2x00dev->intf_beaconing = 0;
1291
1292         /* Enable the radio */
1293         retval = rt2x00lib_enable_radio(rt2x00dev);
1294         if (retval)
1295                 goto out;
1296
1297         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1298
1299 out:
1300         return retval;
1301 }
1302
1303 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1304 {
1305         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1306                 return;
1307
1308         /*
1309          * Perhaps we can add something smarter here,
1310          * but for now just disabling the radio should do.
1311          */
1312         rt2x00lib_disable_radio(rt2x00dev);
1313
1314         rt2x00dev->intf_ap_count = 0;
1315         rt2x00dev->intf_sta_count = 0;
1316         rt2x00dev->intf_associated = 0;
1317         rt2x00dev->intf_beaconing = 0;
1318 }
1319
1320 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1321 {
1322         struct ieee80211_iface_limit *if_limit;
1323         struct ieee80211_iface_combination *if_combination;
1324
1325         if (rt2x00dev->ops->max_ap_intf < 2)
1326                 return;
1327
1328         /*
1329          * Build up AP interface limits structure.
1330          */
1331         if_limit = &rt2x00dev->if_limits_ap;
1332         if_limit->max = rt2x00dev->ops->max_ap_intf;
1333         if_limit->types = BIT(NL80211_IFTYPE_AP);
1334 #ifdef CONFIG_MAC80211_MESH
1335         if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1336 #endif
1337
1338         /*
1339          * Build up AP interface combinations structure.
1340          */
1341         if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1342         if_combination->limits = if_limit;
1343         if_combination->n_limits = 1;
1344         if_combination->max_interfaces = if_limit->max;
1345         if_combination->num_different_channels = 1;
1346
1347         /*
1348          * Finally, specify the possible combinations to mac80211.
1349          */
1350         rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1351         rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1352 }
1353
1354 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
1355 {
1356         if (WARN_ON(!rt2x00dev->tx))
1357                 return 0;
1358
1359         if (rt2x00_is_usb(rt2x00dev))
1360                 return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
1361
1362         return rt2x00dev->tx[0].winfo_size;
1363 }
1364
1365 /*
1366  * driver allocation handlers.
1367  */
1368 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1369 {
1370         int retval = -ENOMEM;
1371
1372         /*
1373          * Set possible interface combinations.
1374          */
1375         rt2x00lib_set_if_combinations(rt2x00dev);
1376
1377         /*
1378          * Allocate the driver data memory, if necessary.
1379          */
1380         if (rt2x00dev->ops->drv_data_size > 0) {
1381                 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1382                                               GFP_KERNEL);
1383                 if (!rt2x00dev->drv_data) {
1384                         retval = -ENOMEM;
1385                         goto exit;
1386                 }
1387         }
1388
1389         spin_lock_init(&rt2x00dev->irqmask_lock);
1390         mutex_init(&rt2x00dev->csr_mutex);
1391         mutex_init(&rt2x00dev->conf_mutex);
1392         INIT_LIST_HEAD(&rt2x00dev->bar_list);
1393         spin_lock_init(&rt2x00dev->bar_list_lock);
1394         hrtimer_init(&rt2x00dev->txstatus_timer, CLOCK_MONOTONIC,
1395                      HRTIMER_MODE_REL);
1396
1397         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1398
1399         /*
1400          * Make room for rt2x00_intf inside the per-interface
1401          * structure ieee80211_vif.
1402          */
1403         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1404
1405         /*
1406          * rt2x00 devices can only use the last n bits of the MAC address
1407          * for virtual interfaces.
1408          */
1409         rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1410                 (rt2x00dev->ops->max_ap_intf - 1);
1411
1412         /*
1413          * Initialize work.
1414          */
1415         rt2x00dev->workqueue =
1416             alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
1417         if (!rt2x00dev->workqueue) {
1418                 retval = -ENOMEM;
1419                 goto exit;
1420         }
1421
1422         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1423         INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1424         INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1425
1426         /*
1427          * Let the driver probe the device to detect the capabilities.
1428          */
1429         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1430         if (retval) {
1431                 rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1432                 goto exit;
1433         }
1434
1435         /*
1436          * Allocate queue array.
1437          */
1438         retval = rt2x00queue_allocate(rt2x00dev);
1439         if (retval)
1440                 goto exit;
1441
1442         /* Cache TX headroom value */
1443         rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
1444
1445         /*
1446          * Determine which operating modes are supported, all modes
1447          * which require beaconing, depend on the availability of
1448          * beacon entries.
1449          */
1450         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1451         if (rt2x00dev->bcn->limit > 0)
1452                 rt2x00dev->hw->wiphy->interface_modes |=
1453                     BIT(NL80211_IFTYPE_ADHOC) |
1454 #ifdef CONFIG_MAC80211_MESH
1455                     BIT(NL80211_IFTYPE_MESH_POINT) |
1456 #endif
1457                     BIT(NL80211_IFTYPE_AP);
1458
1459         rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1460
1461         wiphy_ext_feature_set(rt2x00dev->hw->wiphy,
1462                               NL80211_EXT_FEATURE_CQM_RSSI_LIST);
1463
1464         /*
1465          * Initialize ieee80211 structure.
1466          */
1467         retval = rt2x00lib_probe_hw(rt2x00dev);
1468         if (retval) {
1469                 rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1470                 goto exit;
1471         }
1472
1473         /*
1474          * Register extra components.
1475          */
1476         rt2x00link_register(rt2x00dev);
1477         rt2x00leds_register(rt2x00dev);
1478         rt2x00debug_register(rt2x00dev);
1479
1480         /*
1481          * Start rfkill polling.
1482          */
1483         if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1484                 rt2x00rfkill_register(rt2x00dev);
1485
1486         return 0;
1487
1488 exit:
1489         rt2x00lib_remove_dev(rt2x00dev);
1490
1491         return retval;
1492 }
1493 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1494
1495 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1496 {
1497         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1498
1499         /*
1500          * Stop rfkill polling.
1501          */
1502         if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1503                 rt2x00rfkill_unregister(rt2x00dev);
1504
1505         /*
1506          * Disable radio.
1507          */
1508         rt2x00lib_disable_radio(rt2x00dev);
1509
1510         /*
1511          * Stop all work.
1512          */
1513         cancel_work_sync(&rt2x00dev->intf_work);
1514         cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1515         cancel_work_sync(&rt2x00dev->sleep_work);
1516
1517         hrtimer_cancel(&rt2x00dev->txstatus_timer);
1518
1519         /*
1520          * Kill the tx status tasklet.
1521          */
1522         tasklet_kill(&rt2x00dev->txstatus_tasklet);
1523         tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1524         tasklet_kill(&rt2x00dev->tbtt_tasklet);
1525         tasklet_kill(&rt2x00dev->rxdone_tasklet);
1526         tasklet_kill(&rt2x00dev->autowake_tasklet);
1527
1528         /*
1529          * Uninitialize device.
1530          */
1531         rt2x00lib_uninitialize(rt2x00dev);
1532
1533         if (rt2x00dev->workqueue)
1534                 destroy_workqueue(rt2x00dev->workqueue);
1535
1536         /*
1537          * Free the tx status fifo.
1538          */
1539         kfifo_free(&rt2x00dev->txstatus_fifo);
1540
1541         /*
1542          * Free extra components
1543          */
1544         rt2x00debug_deregister(rt2x00dev);
1545         rt2x00leds_unregister(rt2x00dev);
1546
1547         /*
1548          * Free ieee80211_hw memory.
1549          */
1550         rt2x00lib_remove_hw(rt2x00dev);
1551
1552         /*
1553          * Free firmware image.
1554          */
1555         rt2x00lib_free_firmware(rt2x00dev);
1556
1557         /*
1558          * Free queue structures.
1559          */
1560         rt2x00queue_free(rt2x00dev);
1561
1562         /*
1563          * Free the driver data.
1564          */
1565         kfree(rt2x00dev->drv_data);
1566 }
1567 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1568
1569 /*
1570  * Device state handlers
1571  */
1572 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev)
1573 {
1574         rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1575
1576         /*
1577          * Prevent mac80211 from accessing driver while suspended.
1578          */
1579         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1580                 return 0;
1581
1582         /*
1583          * Cleanup as much as possible.
1584          */
1585         rt2x00lib_uninitialize(rt2x00dev);
1586
1587         /*
1588          * Suspend/disable extra components.
1589          */
1590         rt2x00leds_suspend(rt2x00dev);
1591         rt2x00debug_deregister(rt2x00dev);
1592
1593         /*
1594          * Set device mode to sleep for power management,
1595          * on some hardware this call seems to consistently fail.
1596          * From the specifications it is hard to tell why it fails,
1597          * and if this is a "bad thing".
1598          * Overall it is safe to just ignore the failure and
1599          * continue suspending. The only downside is that the
1600          * device will not be in optimal power save mode, but with
1601          * the radio and the other components already disabled the
1602          * device is as good as disabled.
1603          */
1604         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1605                 rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
1606
1607         return 0;
1608 }
1609 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1610
1611 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1612 {
1613         rt2x00_dbg(rt2x00dev, "Waking up\n");
1614
1615         /*
1616          * Restore/enable extra components.
1617          */
1618         rt2x00debug_register(rt2x00dev);
1619         rt2x00leds_resume(rt2x00dev);
1620
1621         /*
1622          * We are ready again to receive requests from mac80211.
1623          */
1624         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1625
1626         return 0;
1627 }
1628 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1629
1630 /*
1631  * rt2x00lib module information.
1632  */
1633 MODULE_AUTHOR(DRV_PROJECT);
1634 MODULE_VERSION(DRV_VERSION);
1635 MODULE_DESCRIPTION("rt2x00 library");
1636 MODULE_LICENSE("GPL");