GNU Linux-libre 4.14.328-gnu1
[releases.git] / drivers / net / wireless / ralink / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3         Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4         <http://rt2x00.serialmonkey.com>
5
6         This program is free software; you can redistribute it and/or modify
7         it under the terms of the GNU General Public License as published by
8         the Free Software Foundation; either version 2 of the License, or
9         (at your option) any later version.
10
11         This program is distributed in the hope that it will be useful,
12         but WITHOUT ANY WARRANTY; without even the implied warranty of
13         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14         GNU General Public License for more details.
15
16         You should have received a copy of the GNU General Public License
17         along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19
20 /*
21         Module: rt2x00lib
22         Abstract: rt2x00 generic device routines.
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/log2.h>
29 #include <linux/of.h>
30 #include <linux/of_net.h>
31
32 #include "rt2x00.h"
33 #include "rt2x00lib.h"
34
35 /*
36  * Utility functions.
37  */
38 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
39                          struct ieee80211_vif *vif)
40 {
41         /*
42          * When in STA mode, bssidx is always 0 otherwise local_address[5]
43          * contains the bss number, see BSS_ID_MASK comments for details.
44          */
45         if (rt2x00dev->intf_sta_count)
46                 return 0;
47         return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
48 }
49 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
50
51 /*
52  * Radio control handlers.
53  */
54 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
55 {
56         int status;
57
58         /*
59          * Don't enable the radio twice.
60          * And check if the hardware button has been disabled.
61          */
62         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
63                 return 0;
64
65         /*
66          * Initialize all data queues.
67          */
68         rt2x00queue_init_queues(rt2x00dev);
69
70         /*
71          * Enable radio.
72          */
73         status =
74             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
75         if (status)
76                 return status;
77
78         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
79
80         rt2x00leds_led_radio(rt2x00dev, true);
81         rt2x00led_led_activity(rt2x00dev, true);
82
83         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
84
85         /*
86          * Enable queues.
87          */
88         rt2x00queue_start_queues(rt2x00dev);
89         rt2x00link_start_tuner(rt2x00dev);
90
91         /*
92          * Start watchdog monitoring.
93          */
94         rt2x00link_start_watchdog(rt2x00dev);
95
96         return 0;
97 }
98
99 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
100 {
101         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
102                 return;
103
104         /*
105          * Stop watchdog monitoring.
106          */
107         rt2x00link_stop_watchdog(rt2x00dev);
108
109         /*
110          * Stop all queues
111          */
112         rt2x00link_stop_tuner(rt2x00dev);
113         rt2x00queue_stop_queues(rt2x00dev);
114         rt2x00queue_flush_queues(rt2x00dev, true);
115
116         /*
117          * Disable radio.
118          */
119         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
120         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
121         rt2x00led_led_activity(rt2x00dev, false);
122         rt2x00leds_led_radio(rt2x00dev, false);
123 }
124
125 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
126                                           struct ieee80211_vif *vif)
127 {
128         struct rt2x00_dev *rt2x00dev = data;
129         struct rt2x00_intf *intf = vif_to_intf(vif);
130
131         /*
132          * It is possible the radio was disabled while the work had been
133          * scheduled. If that happens we should return here immediately,
134          * note that in the spinlock protected area above the delayed_flags
135          * have been cleared correctly.
136          */
137         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
138                 return;
139
140         if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) {
141                 mutex_lock(&intf->beacon_skb_mutex);
142                 rt2x00queue_update_beacon(rt2x00dev, vif);
143                 mutex_unlock(&intf->beacon_skb_mutex);
144         }
145 }
146
147 static void rt2x00lib_intf_scheduled(struct work_struct *work)
148 {
149         struct rt2x00_dev *rt2x00dev =
150             container_of(work, struct rt2x00_dev, intf_work);
151
152         /*
153          * Iterate over each interface and perform the
154          * requested configurations.
155          */
156         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
157                                             IEEE80211_IFACE_ITER_RESUME_ALL,
158                                             rt2x00lib_intf_scheduled_iter,
159                                             rt2x00dev);
160 }
161
162 static void rt2x00lib_autowakeup(struct work_struct *work)
163 {
164         struct rt2x00_dev *rt2x00dev =
165             container_of(work, struct rt2x00_dev, autowakeup_work.work);
166
167         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
168                 return;
169
170         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
171                 rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
172         clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
173 }
174
175 /*
176  * Interrupt context handlers.
177  */
178 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
179                                      struct ieee80211_vif *vif)
180 {
181         struct ieee80211_tx_control control = {};
182         struct rt2x00_dev *rt2x00dev = data;
183         struct sk_buff *skb;
184
185         /*
186          * Only AP mode interfaces do broad- and multicast buffering
187          */
188         if (vif->type != NL80211_IFTYPE_AP)
189                 return;
190
191         /*
192          * Send out buffered broad- and multicast frames
193          */
194         skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
195         while (skb) {
196                 rt2x00mac_tx(rt2x00dev->hw, &control, skb);
197                 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
198         }
199 }
200
201 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
202                                         struct ieee80211_vif *vif)
203 {
204         struct rt2x00_dev *rt2x00dev = data;
205
206         if (vif->type != NL80211_IFTYPE_AP &&
207             vif->type != NL80211_IFTYPE_ADHOC &&
208             vif->type != NL80211_IFTYPE_MESH_POINT &&
209             vif->type != NL80211_IFTYPE_WDS)
210                 return;
211
212         /*
213          * Update the beacon without locking. This is safe on PCI devices
214          * as they only update the beacon periodically here. This should
215          * never be called for USB devices.
216          */
217         WARN_ON(rt2x00_is_usb(rt2x00dev));
218         rt2x00queue_update_beacon(rt2x00dev, vif);
219 }
220
221 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
222 {
223         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
224                 return;
225
226         /* send buffered bc/mc frames out for every bssid */
227         ieee80211_iterate_active_interfaces_atomic(
228                 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
229                 rt2x00lib_bc_buffer_iter, rt2x00dev);
230         /*
231          * Devices with pre tbtt interrupt don't need to update the beacon
232          * here as they will fetch the next beacon directly prior to
233          * transmission.
234          */
235         if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
236                 return;
237
238         /* fetch next beacon */
239         ieee80211_iterate_active_interfaces_atomic(
240                 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
241                 rt2x00lib_beaconupdate_iter, rt2x00dev);
242 }
243 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
244
245 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
246 {
247         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
248                 return;
249
250         /* fetch next beacon */
251         ieee80211_iterate_active_interfaces_atomic(
252                 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
253                 rt2x00lib_beaconupdate_iter, rt2x00dev);
254 }
255 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
256
257 void rt2x00lib_dmastart(struct queue_entry *entry)
258 {
259         set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
260         rt2x00queue_index_inc(entry, Q_INDEX);
261 }
262 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
263
264 void rt2x00lib_dmadone(struct queue_entry *entry)
265 {
266         set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
267         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
268         rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
269 }
270 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
271
272 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
273 {
274         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
275         struct ieee80211_bar *bar = (void *) entry->skb->data;
276         struct rt2x00_bar_list_entry *bar_entry;
277         int ret;
278
279         if (likely(!ieee80211_is_back_req(bar->frame_control)))
280                 return 0;
281
282         /*
283          * Unlike all other frames, the status report for BARs does
284          * not directly come from the hardware as it is incapable of
285          * matching a BA to a previously send BAR. The hardware will
286          * report all BARs as if they weren't acked at all.
287          *
288          * Instead the RX-path will scan for incoming BAs and set the
289          * block_acked flag if it sees one that was likely caused by
290          * a BAR from us.
291          *
292          * Remove remaining BARs here and return their status for
293          * TX done processing.
294          */
295         ret = 0;
296         rcu_read_lock();
297         list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
298                 if (bar_entry->entry != entry)
299                         continue;
300
301                 spin_lock_bh(&rt2x00dev->bar_list_lock);
302                 /* Return whether this BAR was blockacked or not */
303                 ret = bar_entry->block_acked;
304                 /* Remove the BAR from our checklist */
305                 list_del_rcu(&bar_entry->list);
306                 spin_unlock_bh(&rt2x00dev->bar_list_lock);
307                 kfree_rcu(bar_entry, head);
308
309                 break;
310         }
311         rcu_read_unlock();
312
313         return ret;
314 }
315
316 static void rt2x00lib_fill_tx_status(struct rt2x00_dev *rt2x00dev,
317                                      struct ieee80211_tx_info *tx_info,
318                                      struct skb_frame_desc *skbdesc,
319                                      struct txdone_entry_desc *txdesc,
320                                      bool success)
321 {
322         u8 rate_idx, rate_flags, retry_rates;
323         int i;
324
325         rate_idx = skbdesc->tx_rate_idx;
326         rate_flags = skbdesc->tx_rate_flags;
327         retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
328             (txdesc->retry + 1) : 1;
329
330         /*
331          * Initialize TX status
332          */
333         memset(&tx_info->status, 0, sizeof(tx_info->status));
334         tx_info->status.ack_signal = 0;
335
336         /*
337          * Frame was send with retries, hardware tried
338          * different rates to send out the frame, at each
339          * retry it lowered the rate 1 step except when the
340          * lowest rate was used.
341          */
342         for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
343                 tx_info->status.rates[i].idx = rate_idx - i;
344                 tx_info->status.rates[i].flags = rate_flags;
345
346                 if (rate_idx - i == 0) {
347                         /*
348                          * The lowest rate (index 0) was used until the
349                          * number of max retries was reached.
350                          */
351                         tx_info->status.rates[i].count = retry_rates - i;
352                         i++;
353                         break;
354                 }
355                 tx_info->status.rates[i].count = 1;
356         }
357         if (i < (IEEE80211_TX_MAX_RATES - 1))
358                 tx_info->status.rates[i].idx = -1; /* terminate */
359
360         if (test_bit(TXDONE_NO_ACK_REQ, &txdesc->flags))
361                 tx_info->flags |= IEEE80211_TX_CTL_NO_ACK;
362
363         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
364                 if (success)
365                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
366                 else
367                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
368         }
369
370         /*
371          * Every single frame has it's own tx status, hence report
372          * every frame as ampdu of size 1.
373          *
374          * TODO: if we can find out how many frames were aggregated
375          * by the hw we could provide the real ampdu_len to mac80211
376          * which would allow the rc algorithm to better decide on
377          * which rates are suitable.
378          */
379         if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
380             tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
381                 tx_info->flags |= IEEE80211_TX_STAT_AMPDU |
382                                   IEEE80211_TX_CTL_AMPDU;
383                 tx_info->status.ampdu_len = 1;
384                 tx_info->status.ampdu_ack_len = success ? 1 : 0;
385
386                 if (!success)
387                         tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
388         }
389
390         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
391                 if (success)
392                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
393                 else
394                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
395         }
396 }
397
398 static void rt2x00lib_clear_entry(struct rt2x00_dev *rt2x00dev,
399                                   struct queue_entry *entry)
400 {
401         /*
402          * Make this entry available for reuse.
403          */
404         entry->skb = NULL;
405         entry->flags = 0;
406
407         rt2x00dev->ops->lib->clear_entry(entry);
408
409         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
410
411         /*
412          * If the data queue was below the threshold before the txdone
413          * handler we must make sure the packet queue in the mac80211 stack
414          * is reenabled when the txdone handler has finished. This has to be
415          * serialized with rt2x00mac_tx(), otherwise we can wake up queue
416          * before it was stopped.
417          */
418         spin_lock_bh(&entry->queue->tx_lock);
419         if (!rt2x00queue_threshold(entry->queue))
420                 rt2x00queue_unpause_queue(entry->queue);
421         spin_unlock_bh(&entry->queue->tx_lock);
422 }
423
424 void rt2x00lib_txdone_nomatch(struct queue_entry *entry,
425                               struct txdone_entry_desc *txdesc)
426 {
427         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
428         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
429         struct ieee80211_tx_info txinfo = {};
430         bool success;
431
432         /*
433          * Unmap the skb.
434          */
435         rt2x00queue_unmap_skb(entry);
436
437         /*
438          * Signal that the TX descriptor is no longer in the skb.
439          */
440         skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
441
442         /*
443          * Send frame to debugfs immediately, after this call is completed
444          * we are going to overwrite the skb->cb array.
445          */
446         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
447
448         /*
449          * Determine if the frame has been successfully transmitted and
450          * remove BARs from our check list while checking for their
451          * TX status.
452          */
453         success =
454             rt2x00lib_txdone_bar_status(entry) ||
455             test_bit(TXDONE_SUCCESS, &txdesc->flags);
456
457         if (!test_bit(TXDONE_UNKNOWN, &txdesc->flags)) {
458                 /*
459                  * Update TX statistics.
460                  */
461                 rt2x00dev->link.qual.tx_success += success;
462                 rt2x00dev->link.qual.tx_failed += !success;
463
464                 rt2x00lib_fill_tx_status(rt2x00dev, &txinfo, skbdesc, txdesc,
465                                          success);
466                 ieee80211_tx_status_noskb(rt2x00dev->hw, skbdesc->sta, &txinfo);
467         }
468
469         dev_kfree_skb_any(entry->skb);
470         rt2x00lib_clear_entry(rt2x00dev, entry);
471 }
472 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_nomatch);
473
474 void rt2x00lib_txdone(struct queue_entry *entry,
475                       struct txdone_entry_desc *txdesc)
476 {
477         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
478         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
479         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
480         u8 skbdesc_flags = skbdesc->flags;
481         unsigned int header_length;
482         bool success;
483
484         /*
485          * Unmap the skb.
486          */
487         rt2x00queue_unmap_skb(entry);
488
489         /*
490          * Remove the extra tx headroom from the skb.
491          */
492         skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
493
494         /*
495          * Signal that the TX descriptor is no longer in the skb.
496          */
497         skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
498
499         /*
500          * Determine the length of 802.11 header.
501          */
502         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
503
504         /*
505          * Remove L2 padding which was added during
506          */
507         if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
508                 rt2x00queue_remove_l2pad(entry->skb, header_length);
509
510         /*
511          * If the IV/EIV data was stripped from the frame before it was
512          * passed to the hardware, we should now reinsert it again because
513          * mac80211 will expect the same data to be present it the
514          * frame as it was passed to us.
515          */
516         if (rt2x00_has_cap_hw_crypto(rt2x00dev))
517                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
518
519         /*
520          * Send frame to debugfs immediately, after this call is completed
521          * we are going to overwrite the skb->cb array.
522          */
523         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
524
525         /*
526          * Determine if the frame has been successfully transmitted and
527          * remove BARs from our check list while checking for their
528          * TX status.
529          */
530         success =
531             rt2x00lib_txdone_bar_status(entry) ||
532             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
533             test_bit(TXDONE_UNKNOWN, &txdesc->flags);
534
535         /*
536          * Update TX statistics.
537          */
538         rt2x00dev->link.qual.tx_success += success;
539         rt2x00dev->link.qual.tx_failed += !success;
540
541         rt2x00lib_fill_tx_status(rt2x00dev, tx_info, skbdesc, txdesc, success);
542
543         /*
544          * Only send the status report to mac80211 when it's a frame
545          * that originated in mac80211. If this was a extra frame coming
546          * through a mac80211 library call (RTS/CTS) then we should not
547          * send the status report back.
548          */
549         if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
550                 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT))
551                         ieee80211_tx_status(rt2x00dev->hw, entry->skb);
552                 else
553                         ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
554         } else {
555                 dev_kfree_skb_any(entry->skb);
556         }
557
558         rt2x00lib_clear_entry(rt2x00dev, entry);
559 }
560 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
561
562 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
563 {
564         struct txdone_entry_desc txdesc;
565
566         txdesc.flags = 0;
567         __set_bit(status, &txdesc.flags);
568         txdesc.retry = 0;
569
570         rt2x00lib_txdone(entry, &txdesc);
571 }
572 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
573
574 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
575 {
576         struct ieee80211_mgmt *mgmt = (void *)data;
577         u8 *pos, *end;
578
579         pos = (u8 *)mgmt->u.beacon.variable;
580         end = data + len;
581         while (pos < end) {
582                 if (pos + 2 + pos[1] > end)
583                         return NULL;
584
585                 if (pos[0] == ie)
586                         return pos;
587
588                 pos += 2 + pos[1];
589         }
590
591         return NULL;
592 }
593
594 static void rt2x00lib_sleep(struct work_struct *work)
595 {
596         struct rt2x00_dev *rt2x00dev =
597             container_of(work, struct rt2x00_dev, sleep_work);
598
599         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
600                 return;
601
602         /*
603          * Check again is powersaving is enabled, to prevent races from delayed
604          * work execution.
605          */
606         if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
607                 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
608                                  IEEE80211_CONF_CHANGE_PS);
609 }
610
611 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
612                                       struct sk_buff *skb,
613                                       struct rxdone_entry_desc *rxdesc)
614 {
615         struct rt2x00_bar_list_entry *entry;
616         struct ieee80211_bar *ba = (void *)skb->data;
617
618         if (likely(!ieee80211_is_back(ba->frame_control)))
619                 return;
620
621         if (rxdesc->size < sizeof(*ba) + FCS_LEN)
622                 return;
623
624         rcu_read_lock();
625         list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
626
627                 if (ba->start_seq_num != entry->start_seq_num)
628                         continue;
629
630 #define TID_CHECK(a, b) (                                               \
631         ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) ==        \
632         ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)))          \
633
634                 if (!TID_CHECK(ba->control, entry->control))
635                         continue;
636
637 #undef TID_CHECK
638
639                 if (!ether_addr_equal_64bits(ba->ra, entry->ta))
640                         continue;
641
642                 if (!ether_addr_equal_64bits(ba->ta, entry->ra))
643                         continue;
644
645                 /* Mark BAR since we received the according BA */
646                 spin_lock_bh(&rt2x00dev->bar_list_lock);
647                 entry->block_acked = 1;
648                 spin_unlock_bh(&rt2x00dev->bar_list_lock);
649                 break;
650         }
651         rcu_read_unlock();
652
653 }
654
655 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
656                                       struct sk_buff *skb,
657                                       struct rxdone_entry_desc *rxdesc)
658 {
659         struct ieee80211_hdr *hdr = (void *) skb->data;
660         struct ieee80211_tim_ie *tim_ie;
661         u8 *tim;
662         u8 tim_len;
663         bool cam;
664
665         /* If this is not a beacon, or if mac80211 has no powersaving
666          * configured, or if the device is already in powersaving mode
667          * we can exit now. */
668         if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
669                    !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
670                 return;
671
672         /* min. beacon length + FCS_LEN */
673         if (skb->len <= 40 + FCS_LEN)
674                 return;
675
676         /* and only beacons from the associated BSSID, please */
677         if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
678             !rt2x00dev->aid)
679                 return;
680
681         rt2x00dev->last_beacon = jiffies;
682
683         tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
684         if (!tim)
685                 return;
686
687         if (tim[1] < sizeof(*tim_ie))
688                 return;
689
690         tim_len = tim[1];
691         tim_ie = (struct ieee80211_tim_ie *) &tim[2];
692
693         /* Check whenever the PHY can be turned off again. */
694
695         /* 1. What about buffered unicast traffic for our AID? */
696         cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
697
698         /* 2. Maybe the AP wants to send multicast/broadcast data? */
699         cam |= (tim_ie->bitmap_ctrl & 0x01);
700
701         if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
702                 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
703 }
704
705 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
706                                         struct rxdone_entry_desc *rxdesc)
707 {
708         struct ieee80211_supported_band *sband;
709         const struct rt2x00_rate *rate;
710         unsigned int i;
711         int signal = rxdesc->signal;
712         int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
713
714         switch (rxdesc->rate_mode) {
715         case RATE_MODE_CCK:
716         case RATE_MODE_OFDM:
717                 /*
718                  * For non-HT rates the MCS value needs to contain the
719                  * actually used rate modulation (CCK or OFDM).
720                  */
721                 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
722                         signal = RATE_MCS(rxdesc->rate_mode, signal);
723
724                 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
725                 for (i = 0; i < sband->n_bitrates; i++) {
726                         rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
727                         if (((type == RXDONE_SIGNAL_PLCP) &&
728                              (rate->plcp == signal)) ||
729                             ((type == RXDONE_SIGNAL_BITRATE) &&
730                               (rate->bitrate == signal)) ||
731                             ((type == RXDONE_SIGNAL_MCS) &&
732                               (rate->mcs == signal))) {
733                                 return i;
734                         }
735                 }
736                 break;
737         case RATE_MODE_HT_MIX:
738         case RATE_MODE_HT_GREENFIELD:
739                 if (signal >= 0 && signal <= 76)
740                         return signal;
741                 break;
742         default:
743                 break;
744         }
745
746         rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
747                     rxdesc->rate_mode, signal, type);
748         return 0;
749 }
750
751 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
752 {
753         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
754         struct rxdone_entry_desc rxdesc;
755         struct sk_buff *skb;
756         struct ieee80211_rx_status *rx_status;
757         unsigned int header_length;
758         int rate_idx;
759
760         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
761             !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
762                 goto submit_entry;
763
764         if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
765                 goto submit_entry;
766
767         /*
768          * Allocate a new sk_buffer. If no new buffer available, drop the
769          * received frame and reuse the existing buffer.
770          */
771         skb = rt2x00queue_alloc_rxskb(entry, gfp);
772         if (!skb)
773                 goto submit_entry;
774
775         /*
776          * Unmap the skb.
777          */
778         rt2x00queue_unmap_skb(entry);
779
780         /*
781          * Extract the RXD details.
782          */
783         memset(&rxdesc, 0, sizeof(rxdesc));
784         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
785
786         /*
787          * Check for valid size in case we get corrupted descriptor from
788          * hardware.
789          */
790         if (unlikely(rxdesc.size == 0 ||
791                      rxdesc.size > entry->queue->data_size)) {
792                 rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
793                            rxdesc.size, entry->queue->data_size);
794                 dev_kfree_skb(entry->skb);
795                 goto renew_skb;
796         }
797
798         /*
799          * The data behind the ieee80211 header must be
800          * aligned on a 4 byte boundary.
801          */
802         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
803
804         /*
805          * Hardware might have stripped the IV/EIV/ICV data,
806          * in that case it is possible that the data was
807          * provided separately (through hardware descriptor)
808          * in which case we should reinsert the data into the frame.
809          */
810         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
811             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
812                 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
813                                           &rxdesc);
814         else if (header_length &&
815                  (rxdesc.size > header_length) &&
816                  (rxdesc.dev_flags & RXDONE_L2PAD))
817                 rt2x00queue_remove_l2pad(entry->skb, header_length);
818
819         /* Trim buffer to correct size */
820         skb_trim(entry->skb, rxdesc.size);
821
822         /*
823          * Translate the signal to the correct bitrate index.
824          */
825         rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
826         if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
827             rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
828                 rxdesc.encoding = RX_ENC_HT;
829
830         /*
831          * Check if this is a beacon, and more frames have been
832          * buffered while we were in powersaving mode.
833          */
834         rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
835
836         /*
837          * Check for incoming BlockAcks to match to the BlockAckReqs
838          * we've send out.
839          */
840         rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
841
842         /*
843          * Update extra components
844          */
845         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
846         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
847         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry);
848
849         /*
850          * Initialize RX status information, and send frame
851          * to mac80211.
852          */
853         rx_status = IEEE80211_SKB_RXCB(entry->skb);
854
855         /* Ensure that all fields of rx_status are initialized
856          * properly. The skb->cb array was used for driver
857          * specific informations, so rx_status might contain
858          * garbage.
859          */
860         memset(rx_status, 0, sizeof(*rx_status));
861
862         rx_status->mactime = rxdesc.timestamp;
863         rx_status->band = rt2x00dev->curr_band;
864         rx_status->freq = rt2x00dev->curr_freq;
865         rx_status->rate_idx = rate_idx;
866         rx_status->signal = rxdesc.rssi;
867         rx_status->flag = rxdesc.flags;
868         rx_status->enc_flags = rxdesc.enc_flags;
869         rx_status->encoding = rxdesc.encoding;
870         rx_status->bw = rxdesc.bw;
871         rx_status->antenna = rt2x00dev->link.ant.active.rx;
872
873         ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
874
875 renew_skb:
876         /*
877          * Replace the skb with the freshly allocated one.
878          */
879         entry->skb = skb;
880
881 submit_entry:
882         entry->flags = 0;
883         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
884         if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
885             test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
886                 rt2x00dev->ops->lib->clear_entry(entry);
887 }
888 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
889
890 /*
891  * Driver initialization handlers.
892  */
893 const struct rt2x00_rate rt2x00_supported_rates[12] = {
894         {
895                 .flags = DEV_RATE_CCK,
896                 .bitrate = 10,
897                 .ratemask = BIT(0),
898                 .plcp = 0x00,
899                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
900         },
901         {
902                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
903                 .bitrate = 20,
904                 .ratemask = BIT(1),
905                 .plcp = 0x01,
906                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
907         },
908         {
909                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
910                 .bitrate = 55,
911                 .ratemask = BIT(2),
912                 .plcp = 0x02,
913                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
914         },
915         {
916                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
917                 .bitrate = 110,
918                 .ratemask = BIT(3),
919                 .plcp = 0x03,
920                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
921         },
922         {
923                 .flags = DEV_RATE_OFDM,
924                 .bitrate = 60,
925                 .ratemask = BIT(4),
926                 .plcp = 0x0b,
927                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
928         },
929         {
930                 .flags = DEV_RATE_OFDM,
931                 .bitrate = 90,
932                 .ratemask = BIT(5),
933                 .plcp = 0x0f,
934                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
935         },
936         {
937                 .flags = DEV_RATE_OFDM,
938                 .bitrate = 120,
939                 .ratemask = BIT(6),
940                 .plcp = 0x0a,
941                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
942         },
943         {
944                 .flags = DEV_RATE_OFDM,
945                 .bitrate = 180,
946                 .ratemask = BIT(7),
947                 .plcp = 0x0e,
948                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
949         },
950         {
951                 .flags = DEV_RATE_OFDM,
952                 .bitrate = 240,
953                 .ratemask = BIT(8),
954                 .plcp = 0x09,
955                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
956         },
957         {
958                 .flags = DEV_RATE_OFDM,
959                 .bitrate = 360,
960                 .ratemask = BIT(9),
961                 .plcp = 0x0d,
962                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
963         },
964         {
965                 .flags = DEV_RATE_OFDM,
966                 .bitrate = 480,
967                 .ratemask = BIT(10),
968                 .plcp = 0x08,
969                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
970         },
971         {
972                 .flags = DEV_RATE_OFDM,
973                 .bitrate = 540,
974                 .ratemask = BIT(11),
975                 .plcp = 0x0c,
976                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
977         },
978 };
979
980 static void rt2x00lib_channel(struct ieee80211_channel *entry,
981                               const int channel, const int tx_power,
982                               const int value)
983 {
984         /* XXX: this assumption about the band is wrong for 802.11j */
985         entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
986         entry->center_freq = ieee80211_channel_to_frequency(channel,
987                                                             entry->band);
988         entry->hw_value = value;
989         entry->max_power = tx_power;
990         entry->max_antenna_gain = 0xff;
991 }
992
993 static void rt2x00lib_rate(struct ieee80211_rate *entry,
994                            const u16 index, const struct rt2x00_rate *rate)
995 {
996         entry->flags = 0;
997         entry->bitrate = rate->bitrate;
998         entry->hw_value = index;
999         entry->hw_value_short = index;
1000
1001         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
1002                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
1003 }
1004
1005 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr)
1006 {
1007         const char *mac_addr;
1008
1009         mac_addr = of_get_mac_address(rt2x00dev->dev->of_node);
1010         if (mac_addr)
1011                 ether_addr_copy(eeprom_mac_addr, mac_addr);
1012
1013         if (!is_valid_ether_addr(eeprom_mac_addr)) {
1014                 eth_random_addr(eeprom_mac_addr);
1015                 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr);
1016         }
1017 }
1018 EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address);
1019
1020 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
1021                                     struct hw_mode_spec *spec)
1022 {
1023         struct ieee80211_hw *hw = rt2x00dev->hw;
1024         struct ieee80211_channel *channels;
1025         struct ieee80211_rate *rates;
1026         unsigned int num_rates;
1027         unsigned int i;
1028
1029         num_rates = 0;
1030         if (spec->supported_rates & SUPPORT_RATE_CCK)
1031                 num_rates += 4;
1032         if (spec->supported_rates & SUPPORT_RATE_OFDM)
1033                 num_rates += 8;
1034
1035         channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
1036         if (!channels)
1037                 return -ENOMEM;
1038
1039         rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
1040         if (!rates)
1041                 goto exit_free_channels;
1042
1043         /*
1044          * Initialize Rate list.
1045          */
1046         for (i = 0; i < num_rates; i++)
1047                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
1048
1049         /*
1050          * Initialize Channel list.
1051          */
1052         for (i = 0; i < spec->num_channels; i++) {
1053                 rt2x00lib_channel(&channels[i],
1054                                   spec->channels[i].channel,
1055                                   spec->channels_info[i].max_power, i);
1056         }
1057
1058         /*
1059          * Intitialize 802.11b, 802.11g
1060          * Rates: CCK, OFDM.
1061          * Channels: 2.4 GHz
1062          */
1063         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
1064                 rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14;
1065                 rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates;
1066                 rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels;
1067                 rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates;
1068                 hw->wiphy->bands[NL80211_BAND_2GHZ] =
1069                     &rt2x00dev->bands[NL80211_BAND_2GHZ];
1070                 memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap,
1071                        &spec->ht, sizeof(spec->ht));
1072         }
1073
1074         /*
1075          * Intitialize 802.11a
1076          * Rates: OFDM.
1077          * Channels: OFDM, UNII, HiperLAN2.
1078          */
1079         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
1080                 rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels =
1081                     spec->num_channels - 14;
1082                 rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates =
1083                     num_rates - 4;
1084                 rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14];
1085                 rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4];
1086                 hw->wiphy->bands[NL80211_BAND_5GHZ] =
1087                     &rt2x00dev->bands[NL80211_BAND_5GHZ];
1088                 memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap,
1089                        &spec->ht, sizeof(spec->ht));
1090         }
1091
1092         return 0;
1093
1094  exit_free_channels:
1095         kfree(channels);
1096         rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1097         return -ENOMEM;
1098 }
1099
1100 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1101 {
1102         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1103                 ieee80211_unregister_hw(rt2x00dev->hw);
1104
1105         if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) {
1106                 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels);
1107                 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates);
1108                 rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL;
1109                 rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL;
1110         }
1111
1112         kfree(rt2x00dev->spec.channels_info);
1113 }
1114
1115 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1116 {
1117         struct hw_mode_spec *spec = &rt2x00dev->spec;
1118         int status;
1119
1120         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1121                 return 0;
1122
1123         /*
1124          * Initialize HW modes.
1125          */
1126         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1127         if (status)
1128                 return status;
1129
1130         /*
1131          * Initialize HW fields.
1132          */
1133         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1134
1135         /*
1136          * Initialize extra TX headroom required.
1137          */
1138         rt2x00dev->hw->extra_tx_headroom =
1139                 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1140                       rt2x00dev->extra_tx_headroom);
1141
1142         /*
1143          * Take TX headroom required for alignment into account.
1144          */
1145         if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
1146                 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1147         else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA))
1148                 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1149
1150         /*
1151          * Tell mac80211 about the size of our private STA structure.
1152          */
1153         rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1154
1155         /*
1156          * Allocate tx status FIFO for driver use.
1157          */
1158         if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) {
1159                 /*
1160                  * Allocate the txstatus fifo. In the worst case the tx
1161                  * status fifo has to hold the tx status of all entries
1162                  * in all tx queues. Hence, calculate the kfifo size as
1163                  * tx_queues * entry_num and round up to the nearest
1164                  * power of 2.
1165                  */
1166                 int kfifo_size =
1167                         roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1168                                            rt2x00dev->tx->limit *
1169                                            sizeof(u32));
1170
1171                 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1172                                      GFP_KERNEL);
1173                 if (status)
1174                         return status;
1175         }
1176
1177         /*
1178          * Initialize tasklets if used by the driver. Tasklets are
1179          * disabled until the interrupts are turned on. The driver
1180          * has to handle that.
1181          */
1182 #define RT2X00_TASKLET_INIT(taskletname) \
1183         if (rt2x00dev->ops->lib->taskletname) { \
1184                 tasklet_init(&rt2x00dev->taskletname, \
1185                              rt2x00dev->ops->lib->taskletname, \
1186                              (unsigned long)rt2x00dev); \
1187         }
1188
1189         RT2X00_TASKLET_INIT(txstatus_tasklet);
1190         RT2X00_TASKLET_INIT(pretbtt_tasklet);
1191         RT2X00_TASKLET_INIT(tbtt_tasklet);
1192         RT2X00_TASKLET_INIT(rxdone_tasklet);
1193         RT2X00_TASKLET_INIT(autowake_tasklet);
1194
1195 #undef RT2X00_TASKLET_INIT
1196
1197         /*
1198          * Register HW.
1199          */
1200         status = ieee80211_register_hw(rt2x00dev->hw);
1201         if (status)
1202                 return status;
1203
1204         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1205
1206         return 0;
1207 }
1208
1209 /*
1210  * Initialization/uninitialization handlers.
1211  */
1212 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1213 {
1214         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1215                 return;
1216
1217         /*
1218          * Stop rfkill polling.
1219          */
1220         if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1221                 rt2x00rfkill_unregister(rt2x00dev);
1222
1223         /*
1224          * Allow the HW to uninitialize.
1225          */
1226         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1227
1228         /*
1229          * Free allocated queue entries.
1230          */
1231         rt2x00queue_uninitialize(rt2x00dev);
1232 }
1233
1234 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1235 {
1236         int status;
1237
1238         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1239                 return 0;
1240
1241         /*
1242          * Allocate all queue entries.
1243          */
1244         status = rt2x00queue_initialize(rt2x00dev);
1245         if (status)
1246                 return status;
1247
1248         /*
1249          * Initialize the device.
1250          */
1251         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1252         if (status) {
1253                 rt2x00queue_uninitialize(rt2x00dev);
1254                 return status;
1255         }
1256
1257         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1258
1259         /*
1260          * Start rfkill polling.
1261          */
1262         if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1263                 rt2x00rfkill_register(rt2x00dev);
1264
1265         return 0;
1266 }
1267
1268 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1269 {
1270         int retval;
1271
1272         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1273                 return 0;
1274
1275         /*
1276          * If this is the first interface which is added,
1277          * we should load the firmware now.
1278          */
1279         retval = rt2x00lib_load_firmware(rt2x00dev);
1280         if (retval)
1281                 return retval;
1282
1283         /*
1284          * Initialize the device.
1285          */
1286         retval = rt2x00lib_initialize(rt2x00dev);
1287         if (retval)
1288                 return retval;
1289
1290         rt2x00dev->intf_ap_count = 0;
1291         rt2x00dev->intf_sta_count = 0;
1292         rt2x00dev->intf_associated = 0;
1293
1294         /* Enable the radio */
1295         retval = rt2x00lib_enable_radio(rt2x00dev);
1296         if (retval)
1297                 return retval;
1298
1299         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1300
1301         return 0;
1302 }
1303
1304 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1305 {
1306         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1307                 return;
1308
1309         /*
1310          * Perhaps we can add something smarter here,
1311          * but for now just disabling the radio should do.
1312          */
1313         rt2x00lib_disable_radio(rt2x00dev);
1314
1315         rt2x00dev->intf_ap_count = 0;
1316         rt2x00dev->intf_sta_count = 0;
1317         rt2x00dev->intf_associated = 0;
1318 }
1319
1320 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1321 {
1322         struct ieee80211_iface_limit *if_limit;
1323         struct ieee80211_iface_combination *if_combination;
1324
1325         if (rt2x00dev->ops->max_ap_intf < 2)
1326                 return;
1327
1328         /*
1329          * Build up AP interface limits structure.
1330          */
1331         if_limit = &rt2x00dev->if_limits_ap;
1332         if_limit->max = rt2x00dev->ops->max_ap_intf;
1333         if_limit->types = BIT(NL80211_IFTYPE_AP);
1334 #ifdef CONFIG_MAC80211_MESH
1335         if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1336 #endif
1337
1338         /*
1339          * Build up AP interface combinations structure.
1340          */
1341         if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1342         if_combination->limits = if_limit;
1343         if_combination->n_limits = 1;
1344         if_combination->max_interfaces = if_limit->max;
1345         if_combination->num_different_channels = 1;
1346
1347         /*
1348          * Finally, specify the possible combinations to mac80211.
1349          */
1350         rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1351         rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1352 }
1353
1354 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
1355 {
1356         if (WARN_ON(!rt2x00dev->tx))
1357                 return 0;
1358
1359         if (rt2x00_is_usb(rt2x00dev))
1360                 return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
1361
1362         return rt2x00dev->tx[0].winfo_size;
1363 }
1364
1365 /*
1366  * driver allocation handlers.
1367  */
1368 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1369 {
1370         int retval = -ENOMEM;
1371
1372         /*
1373          * Set possible interface combinations.
1374          */
1375         rt2x00lib_set_if_combinations(rt2x00dev);
1376
1377         /*
1378          * Allocate the driver data memory, if necessary.
1379          */
1380         if (rt2x00dev->ops->drv_data_size > 0) {
1381                 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1382                                               GFP_KERNEL);
1383                 if (!rt2x00dev->drv_data) {
1384                         retval = -ENOMEM;
1385                         goto exit;
1386                 }
1387         }
1388
1389         spin_lock_init(&rt2x00dev->irqmask_lock);
1390         mutex_init(&rt2x00dev->csr_mutex);
1391         mutex_init(&rt2x00dev->conf_mutex);
1392         INIT_LIST_HEAD(&rt2x00dev->bar_list);
1393         spin_lock_init(&rt2x00dev->bar_list_lock);
1394
1395         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1396
1397         /*
1398          * Make room for rt2x00_intf inside the per-interface
1399          * structure ieee80211_vif.
1400          */
1401         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1402
1403         /*
1404          * rt2x00 devices can only use the last n bits of the MAC address
1405          * for virtual interfaces.
1406          */
1407         rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1408                 (rt2x00dev->ops->max_ap_intf - 1);
1409
1410         /*
1411          * Initialize work.
1412          */
1413         rt2x00dev->workqueue =
1414             alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
1415         if (!rt2x00dev->workqueue) {
1416                 retval = -ENOMEM;
1417                 goto exit;
1418         }
1419
1420         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1421         INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1422         INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1423
1424         /*
1425          * Let the driver probe the device to detect the capabilities.
1426          */
1427         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1428         if (retval) {
1429                 rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1430                 goto exit;
1431         }
1432
1433         /*
1434          * Allocate queue array.
1435          */
1436         retval = rt2x00queue_allocate(rt2x00dev);
1437         if (retval)
1438                 goto exit;
1439
1440         /* Cache TX headroom value */
1441         rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
1442
1443         /*
1444          * Determine which operating modes are supported, all modes
1445          * which require beaconing, depend on the availability of
1446          * beacon entries.
1447          */
1448         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1449         if (rt2x00dev->bcn->limit > 0)
1450                 rt2x00dev->hw->wiphy->interface_modes |=
1451                     BIT(NL80211_IFTYPE_ADHOC) |
1452 #ifdef CONFIG_MAC80211_MESH
1453                     BIT(NL80211_IFTYPE_MESH_POINT) |
1454 #endif
1455 #ifdef CONFIG_WIRELESS_WDS
1456                     BIT(NL80211_IFTYPE_WDS) |
1457 #endif
1458                     BIT(NL80211_IFTYPE_AP);
1459
1460         rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1461
1462         wiphy_ext_feature_set(rt2x00dev->hw->wiphy,
1463                               NL80211_EXT_FEATURE_CQM_RSSI_LIST);
1464
1465         /*
1466          * Initialize ieee80211 structure.
1467          */
1468         retval = rt2x00lib_probe_hw(rt2x00dev);
1469         if (retval) {
1470                 rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1471                 goto exit;
1472         }
1473
1474         /*
1475          * Register extra components.
1476          */
1477         rt2x00link_register(rt2x00dev);
1478         rt2x00leds_register(rt2x00dev);
1479         rt2x00debug_register(rt2x00dev);
1480
1481         /*
1482          * Start rfkill polling.
1483          */
1484         if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1485                 rt2x00rfkill_register(rt2x00dev);
1486
1487         return 0;
1488
1489 exit:
1490         rt2x00lib_remove_dev(rt2x00dev);
1491
1492         return retval;
1493 }
1494 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1495
1496 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1497 {
1498         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1499
1500         /*
1501          * Stop rfkill polling.
1502          */
1503         if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1504                 rt2x00rfkill_unregister(rt2x00dev);
1505
1506         /*
1507          * Disable radio.
1508          */
1509         rt2x00lib_disable_radio(rt2x00dev);
1510
1511         /*
1512          * Stop all work.
1513          */
1514         cancel_work_sync(&rt2x00dev->intf_work);
1515         cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1516         cancel_work_sync(&rt2x00dev->sleep_work);
1517
1518         /*
1519          * Kill the tx status tasklet.
1520          */
1521         tasklet_kill(&rt2x00dev->txstatus_tasklet);
1522         tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1523         tasklet_kill(&rt2x00dev->tbtt_tasklet);
1524         tasklet_kill(&rt2x00dev->rxdone_tasklet);
1525         tasklet_kill(&rt2x00dev->autowake_tasklet);
1526
1527         /*
1528          * Uninitialize device.
1529          */
1530         rt2x00lib_uninitialize(rt2x00dev);
1531
1532         if (rt2x00dev->workqueue)
1533                 destroy_workqueue(rt2x00dev->workqueue);
1534
1535         /*
1536          * Free the tx status fifo.
1537          */
1538         kfifo_free(&rt2x00dev->txstatus_fifo);
1539
1540         /*
1541          * Free extra components
1542          */
1543         rt2x00debug_deregister(rt2x00dev);
1544         rt2x00leds_unregister(rt2x00dev);
1545
1546         /*
1547          * Free ieee80211_hw memory.
1548          */
1549         rt2x00lib_remove_hw(rt2x00dev);
1550
1551         /*
1552          * Free firmware image.
1553          */
1554         rt2x00lib_free_firmware(rt2x00dev);
1555
1556         /*
1557          * Free queue structures.
1558          */
1559         rt2x00queue_free(rt2x00dev);
1560
1561         /*
1562          * Free the driver data.
1563          */
1564         kfree(rt2x00dev->drv_data);
1565 }
1566 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1567
1568 /*
1569  * Device state handlers
1570  */
1571 #ifdef CONFIG_PM
1572 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1573 {
1574         rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1575
1576         /*
1577          * Prevent mac80211 from accessing driver while suspended.
1578          */
1579         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1580                 return 0;
1581
1582         /*
1583          * Cleanup as much as possible.
1584          */
1585         rt2x00lib_uninitialize(rt2x00dev);
1586
1587         /*
1588          * Suspend/disable extra components.
1589          */
1590         rt2x00leds_suspend(rt2x00dev);
1591         rt2x00debug_deregister(rt2x00dev);
1592
1593         /*
1594          * Set device mode to sleep for power management,
1595          * on some hardware this call seems to consistently fail.
1596          * From the specifications it is hard to tell why it fails,
1597          * and if this is a "bad thing".
1598          * Overall it is safe to just ignore the failure and
1599          * continue suspending. The only downside is that the
1600          * device will not be in optimal power save mode, but with
1601          * the radio and the other components already disabled the
1602          * device is as good as disabled.
1603          */
1604         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1605                 rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
1606
1607         return 0;
1608 }
1609 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1610
1611 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1612 {
1613         rt2x00_dbg(rt2x00dev, "Waking up\n");
1614
1615         /*
1616          * Restore/enable extra components.
1617          */
1618         rt2x00debug_register(rt2x00dev);
1619         rt2x00leds_resume(rt2x00dev);
1620
1621         /*
1622          * We are ready again to receive requests from mac80211.
1623          */
1624         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1625
1626         return 0;
1627 }
1628 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1629 #endif /* CONFIG_PM */
1630
1631 /*
1632  * rt2x00lib module information.
1633  */
1634 MODULE_AUTHOR(DRV_PROJECT);
1635 MODULE_VERSION(DRV_VERSION);
1636 MODULE_DESCRIPTION("rt2x00 library");
1637 MODULE_LICENSE("GPL");