GNU Linux-libre 6.8.7-gnu
[releases.git] / drivers / net / wireless / ralink / rt2x00 / rt2800mmio.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*      Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3  *      Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4  *      Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5  *      Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6  *      Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7  *      Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8  *      Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9  *      Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10  *      <http://rt2x00.serialmonkey.com>
11  */
12
13 /*      Module: rt2800mmio
14  *      Abstract: rt2800 MMIO device routines.
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/export.h>
20
21 #include "rt2x00.h"
22 #include "rt2x00mmio.h"
23 #include "rt2800.h"
24 #include "rt2800lib.h"
25 #include "rt2800mmio.h"
26
27 unsigned int rt2800mmio_get_dma_done(struct data_queue *queue)
28 {
29         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
30         struct queue_entry *entry;
31         int idx, qid;
32
33         switch (queue->qid) {
34         case QID_AC_VO:
35         case QID_AC_VI:
36         case QID_AC_BE:
37         case QID_AC_BK:
38                 qid = queue->qid;
39                 idx = rt2x00mmio_register_read(rt2x00dev, TX_DTX_IDX(qid));
40                 break;
41         case QID_MGMT:
42                 idx = rt2x00mmio_register_read(rt2x00dev, TX_DTX_IDX(5));
43                 break;
44         case QID_RX:
45                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DMA_DONE);
46                 idx = entry->entry_idx;
47                 break;
48         default:
49                 WARN_ON_ONCE(1);
50                 idx = 0;
51                 break;
52         }
53
54         return idx;
55 }
56 EXPORT_SYMBOL_GPL(rt2800mmio_get_dma_done);
57
58 /*
59  * TX descriptor initialization
60  */
61 __le32 *rt2800mmio_get_txwi(struct queue_entry *entry)
62 {
63         return (__le32 *) entry->skb->data;
64 }
65 EXPORT_SYMBOL_GPL(rt2800mmio_get_txwi);
66
67 void rt2800mmio_write_tx_desc(struct queue_entry *entry,
68                               struct txentry_desc *txdesc)
69 {
70         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
71         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
72         __le32 *txd = entry_priv->desc;
73         u32 word;
74         const unsigned int txwi_size = entry->queue->winfo_size;
75
76         /*
77          * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
78          * must contains a TXWI structure + 802.11 header + padding + 802.11
79          * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
80          * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
81          * data. It means that LAST_SEC0 is always 0.
82          */
83
84         /*
85          * Initialize TX descriptor
86          */
87         word = 0;
88         rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
89         rt2x00_desc_write(txd, 0, word);
90
91         word = 0;
92         rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
93         rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
94                            !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
95         rt2x00_set_field32(&word, TXD_W1_BURST,
96                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
97         rt2x00_set_field32(&word, TXD_W1_SD_LEN0, txwi_size);
98         rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
99         rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
100         rt2x00_desc_write(txd, 1, word);
101
102         word = 0;
103         rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
104                            skbdesc->skb_dma + txwi_size);
105         rt2x00_desc_write(txd, 2, word);
106
107         word = 0;
108         rt2x00_set_field32(&word, TXD_W3_WIV,
109                            !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
110         rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
111         rt2x00_desc_write(txd, 3, word);
112
113         /*
114          * Register descriptor details in skb frame descriptor.
115          */
116         skbdesc->desc = txd;
117         skbdesc->desc_len = TXD_DESC_SIZE;
118 }
119 EXPORT_SYMBOL_GPL(rt2800mmio_write_tx_desc);
120
121 /*
122  * RX control handlers
123  */
124 void rt2800mmio_fill_rxdone(struct queue_entry *entry,
125                             struct rxdone_entry_desc *rxdesc)
126 {
127         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
128         __le32 *rxd = entry_priv->desc;
129         u32 word;
130
131         word = rt2x00_desc_read(rxd, 3);
132
133         if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
134                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
135
136         /*
137          * Unfortunately we don't know the cipher type used during
138          * decryption. This prevents us from correct providing
139          * correct statistics through debugfs.
140          */
141         rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
142
143         if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
144                 /*
145                  * Hardware has stripped IV/EIV data from 802.11 frame during
146                  * decryption. Unfortunately the descriptor doesn't contain
147                  * any fields with the EIV/IV data either, so they can't
148                  * be restored by rt2x00lib.
149                  */
150                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
151
152                 /*
153                  * The hardware has already checked the Michael Mic and has
154                  * stripped it from the frame. Signal this to mac80211.
155                  */
156                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
157
158                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) {
159                         rxdesc->flags |= RX_FLAG_DECRYPTED;
160                 } else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) {
161                         /*
162                          * In order to check the Michael Mic, the packet must have
163                          * been decrypted.  Mac80211 doesnt check the MMIC failure 
164                          * flag to initiate MMIC countermeasures if the decoded flag
165                          * has not been set.
166                          */
167                         rxdesc->flags |= RX_FLAG_DECRYPTED;
168
169                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
170                 }
171         }
172
173         if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
174                 rxdesc->dev_flags |= RXDONE_MY_BSS;
175
176         if (rt2x00_get_field32(word, RXD_W3_L2PAD))
177                 rxdesc->dev_flags |= RXDONE_L2PAD;
178
179         /*
180          * Process the RXWI structure that is at the start of the buffer.
181          */
182         rt2800_process_rxwi(entry, rxdesc);
183 }
184 EXPORT_SYMBOL_GPL(rt2800mmio_fill_rxdone);
185
186 /*
187  * Interrupt functions.
188  */
189 static void rt2800mmio_wakeup(struct rt2x00_dev *rt2x00dev)
190 {
191         struct ieee80211_conf conf = { .flags = 0 };
192         struct rt2x00lib_conf libconf = { .conf = &conf };
193
194         rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
195 }
196
197 static inline void rt2800mmio_enable_interrupt(struct rt2x00_dev *rt2x00dev,
198                                                struct rt2x00_field32 irq_field)
199 {
200         u32 reg;
201
202         /*
203          * Enable a single interrupt. The interrupt mask register
204          * access needs locking.
205          */
206         spin_lock_irq(&rt2x00dev->irqmask_lock);
207         reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
208         rt2x00_set_field32(&reg, irq_field, 1);
209         rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
210         spin_unlock_irq(&rt2x00dev->irqmask_lock);
211 }
212
213 void rt2800mmio_pretbtt_tasklet(struct tasklet_struct *t)
214 {
215         struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
216                                                     pretbtt_tasklet);
217         rt2x00lib_pretbtt(rt2x00dev);
218         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
219                 rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
220 }
221 EXPORT_SYMBOL_GPL(rt2800mmio_pretbtt_tasklet);
222
223 void rt2800mmio_tbtt_tasklet(struct tasklet_struct *t)
224 {
225         struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, tbtt_tasklet);
226         struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
227         u32 reg;
228
229         rt2x00lib_beacondone(rt2x00dev);
230
231         if (rt2x00dev->intf_ap_count) {
232                 /*
233                  * The rt2800pci hardware tbtt timer is off by 1us per tbtt
234                  * causing beacon skew and as a result causing problems with
235                  * some powersaving clients over time. Shorten the beacon
236                  * interval every 64 beacons by 64us to mitigate this effect.
237                  */
238                 if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
239                         reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
240                         rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
241                                            (rt2x00dev->beacon_int * 16) - 1);
242                         rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
243                 } else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
244                         reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
245                         rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
246                                            (rt2x00dev->beacon_int * 16));
247                         rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
248                 }
249                 drv_data->tbtt_tick++;
250                 drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
251         }
252
253         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
254                 rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
255 }
256 EXPORT_SYMBOL_GPL(rt2800mmio_tbtt_tasklet);
257
258 void rt2800mmio_rxdone_tasklet(struct tasklet_struct *t)
259 {
260         struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
261                                                     rxdone_tasklet);
262         if (rt2x00mmio_rxdone(rt2x00dev))
263                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
264         else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
265                 rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
266 }
267 EXPORT_SYMBOL_GPL(rt2800mmio_rxdone_tasklet);
268
269 void rt2800mmio_autowake_tasklet(struct tasklet_struct *t)
270 {
271         struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
272                                                     autowake_tasklet);
273         rt2800mmio_wakeup(rt2x00dev);
274         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
275                 rt2800mmio_enable_interrupt(rt2x00dev,
276                                             INT_MASK_CSR_AUTO_WAKEUP);
277 }
278 EXPORT_SYMBOL_GPL(rt2800mmio_autowake_tasklet);
279
280 static void rt2800mmio_fetch_txstatus(struct rt2x00_dev *rt2x00dev)
281 {
282         u32 status;
283         unsigned long flags;
284
285         /*
286          * The TX_FIFO_STATUS interrupt needs special care. We should
287          * read TX_STA_FIFO but we should do it immediately as otherwise
288          * the register can overflow and we would lose status reports.
289          *
290          * Hence, read the TX_STA_FIFO register and copy all tx status
291          * reports into a kernel FIFO which is handled in the txstatus
292          * tasklet. We use a tasklet to process the tx status reports
293          * because we can schedule the tasklet multiple times (when the
294          * interrupt fires again during tx status processing).
295          *
296          * We also read statuses from tx status timeout timer, use
297          * lock to prevent concurent writes to fifo.
298          */
299
300         spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
301
302         while (!kfifo_is_full(&rt2x00dev->txstatus_fifo)) {
303                 status = rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO);
304                 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
305                         break;
306
307                 kfifo_put(&rt2x00dev->txstatus_fifo, status);
308         }
309
310         spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
311 }
312
313 void rt2800mmio_txstatus_tasklet(struct tasklet_struct *t)
314 {
315         struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
316                                                     txstatus_tasklet);
317
318         rt2800_txdone(rt2x00dev, 16);
319
320         if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
321                 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
322
323 }
324 EXPORT_SYMBOL_GPL(rt2800mmio_txstatus_tasklet);
325
326 irqreturn_t rt2800mmio_interrupt(int irq, void *dev_instance)
327 {
328         struct rt2x00_dev *rt2x00dev = dev_instance;
329         u32 reg, mask;
330
331         /* Read status and ACK all interrupts */
332         reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
333         rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
334
335         if (!reg)
336                 return IRQ_NONE;
337
338         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
339                 return IRQ_HANDLED;
340
341         /*
342          * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
343          * for interrupts and interrupt masks we can just use the value of
344          * INT_SOURCE_CSR to create the interrupt mask.
345          */
346         mask = ~reg;
347
348         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
349                 rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
350                 rt2800mmio_fetch_txstatus(rt2x00dev);
351                 if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
352                         tasklet_schedule(&rt2x00dev->txstatus_tasklet);
353         }
354
355         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
356                 tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
357
358         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
359                 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
360
361         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
362                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
363
364         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
365                 tasklet_schedule(&rt2x00dev->autowake_tasklet);
366
367         /*
368          * Disable all interrupts for which a tasklet was scheduled right now,
369          * the tasklet will reenable the appropriate interrupts.
370          */
371         spin_lock(&rt2x00dev->irqmask_lock);
372         reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
373         reg &= mask;
374         rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
375         spin_unlock(&rt2x00dev->irqmask_lock);
376
377         return IRQ_HANDLED;
378 }
379 EXPORT_SYMBOL_GPL(rt2800mmio_interrupt);
380
381 void rt2800mmio_toggle_irq(struct rt2x00_dev *rt2x00dev,
382                            enum dev_state state)
383 {
384         u32 reg;
385         unsigned long flags;
386
387         /*
388          * When interrupts are being enabled, the interrupt registers
389          * should clear the register to assure a clean state.
390          */
391         if (state == STATE_RADIO_IRQ_ON) {
392                 reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
393                 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
394         }
395
396         spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
397         reg = 0;
398         if (state == STATE_RADIO_IRQ_ON) {
399                 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
400                 rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
401                 rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
402                 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
403                 rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
404         }
405         rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
406         spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
407
408         if (state == STATE_RADIO_IRQ_OFF) {
409                 /*
410                  * Wait for possibly running tasklets to finish.
411                  */
412                 tasklet_kill(&rt2x00dev->txstatus_tasklet);
413                 tasklet_kill(&rt2x00dev->rxdone_tasklet);
414                 tasklet_kill(&rt2x00dev->autowake_tasklet);
415                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
416                 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
417         }
418 }
419 EXPORT_SYMBOL_GPL(rt2800mmio_toggle_irq);
420
421 /*
422  * Queue handlers.
423  */
424 void rt2800mmio_start_queue(struct data_queue *queue)
425 {
426         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
427         u32 reg;
428
429         switch (queue->qid) {
430         case QID_RX:
431                 reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
432                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
433                 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
434                 break;
435         case QID_BEACON:
436                 reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
437                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
438                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
439                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
440                 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
441
442                 reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
443                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
444                 rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
445                 break;
446         default:
447                 break;
448         }
449 }
450 EXPORT_SYMBOL_GPL(rt2800mmio_start_queue);
451
452 /* 200 ms */
453 #define TXSTATUS_TIMEOUT 200000000
454
455 void rt2800mmio_kick_queue(struct data_queue *queue)
456 {
457         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
458         struct queue_entry *entry;
459
460         switch (queue->qid) {
461         case QID_AC_VO:
462         case QID_AC_VI:
463         case QID_AC_BE:
464         case QID_AC_BK:
465                 WARN_ON_ONCE(rt2x00queue_empty(queue));
466                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
467                 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
468                                           entry->entry_idx);
469                 hrtimer_start(&rt2x00dev->txstatus_timer,
470                               TXSTATUS_TIMEOUT, HRTIMER_MODE_REL);
471                 break;
472         case QID_MGMT:
473                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
474                 rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5),
475                                           entry->entry_idx);
476                 break;
477         default:
478                 break;
479         }
480 }
481 EXPORT_SYMBOL_GPL(rt2800mmio_kick_queue);
482
483 void rt2800mmio_flush_queue(struct data_queue *queue, bool drop)
484 {
485         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
486         bool tx_queue = false;
487         unsigned int i;
488
489         switch (queue->qid) {
490         case QID_AC_VO:
491         case QID_AC_VI:
492         case QID_AC_BE:
493         case QID_AC_BK:
494                 tx_queue = true;
495                 break;
496         case QID_RX:
497                 break;
498         default:
499                 return;
500         }
501
502         for (i = 0; i < 5; i++) {
503                 /*
504                  * Check if the driver is already done, otherwise we
505                  * have to sleep a little while to give the driver/hw
506                  * the oppurtunity to complete interrupt process itself.
507                  */
508                 if (rt2x00queue_empty(queue))
509                         break;
510
511                 /*
512                  * For TX queues schedule completion tasklet to catch
513                  * tx status timeouts, othewise just wait.
514                  */
515                 if (tx_queue)
516                         queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work);
517
518                 /*
519                  * Wait for a little while to give the driver
520                  * the oppurtunity to recover itself.
521                  */
522                 msleep(50);
523         }
524 }
525 EXPORT_SYMBOL_GPL(rt2800mmio_flush_queue);
526
527 void rt2800mmio_stop_queue(struct data_queue *queue)
528 {
529         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
530         u32 reg;
531
532         switch (queue->qid) {
533         case QID_RX:
534                 reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
535                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
536                 rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
537                 break;
538         case QID_BEACON:
539                 reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
540                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
541                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
542                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
543                 rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
544
545                 reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
546                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
547                 rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
548
549                 /*
550                  * Wait for current invocation to finish. The tasklet
551                  * won't be scheduled anymore afterwards since we disabled
552                  * the TBTT and PRE TBTT timer.
553                  */
554                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
555                 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
556
557                 break;
558         default:
559                 break;
560         }
561 }
562 EXPORT_SYMBOL_GPL(rt2800mmio_stop_queue);
563
564 void rt2800mmio_queue_init(struct data_queue *queue)
565 {
566         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
567         unsigned short txwi_size, rxwi_size;
568
569         rt2800_get_txwi_rxwi_size(rt2x00dev, &txwi_size, &rxwi_size);
570
571         switch (queue->qid) {
572         case QID_RX:
573                 queue->limit = 128;
574                 queue->data_size = AGGREGATION_SIZE;
575                 queue->desc_size = RXD_DESC_SIZE;
576                 queue->winfo_size = rxwi_size;
577                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
578                 break;
579
580         case QID_AC_VO:
581         case QID_AC_VI:
582         case QID_AC_BE:
583         case QID_AC_BK:
584                 queue->limit = 64;
585                 queue->data_size = AGGREGATION_SIZE;
586                 queue->desc_size = TXD_DESC_SIZE;
587                 queue->winfo_size = txwi_size;
588                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
589                 break;
590
591         case QID_BEACON:
592                 queue->limit = 8;
593                 queue->data_size = 0; /* No DMA required for beacons */
594                 queue->desc_size = TXD_DESC_SIZE;
595                 queue->winfo_size = txwi_size;
596                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
597                 break;
598
599         case QID_ATIM:
600         default:
601                 BUG();
602                 break;
603         }
604 }
605 EXPORT_SYMBOL_GPL(rt2800mmio_queue_init);
606
607 /*
608  * Initialization functions.
609  */
610 bool rt2800mmio_get_entry_state(struct queue_entry *entry)
611 {
612         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
613         u32 word;
614
615         if (entry->queue->qid == QID_RX) {
616                 word = rt2x00_desc_read(entry_priv->desc, 1);
617
618                 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
619         } else {
620                 word = rt2x00_desc_read(entry_priv->desc, 1);
621
622                 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
623         }
624 }
625 EXPORT_SYMBOL_GPL(rt2800mmio_get_entry_state);
626
627 void rt2800mmio_clear_entry(struct queue_entry *entry)
628 {
629         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
630         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
631         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
632         u32 word;
633
634         if (entry->queue->qid == QID_RX) {
635                 word = rt2x00_desc_read(entry_priv->desc, 0);
636                 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
637                 rt2x00_desc_write(entry_priv->desc, 0, word);
638
639                 word = rt2x00_desc_read(entry_priv->desc, 1);
640                 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
641                 rt2x00_desc_write(entry_priv->desc, 1, word);
642
643                 /*
644                  * Set RX IDX in register to inform hardware that we have
645                  * handled this entry and it is available for reuse again.
646                  */
647                 rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
648                                           entry->entry_idx);
649         } else {
650                 word = rt2x00_desc_read(entry_priv->desc, 1);
651                 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
652                 rt2x00_desc_write(entry_priv->desc, 1, word);
653
654                 /* If last entry stop txstatus timer */
655                 if (entry->queue->length == 1)
656                         hrtimer_cancel(&rt2x00dev->txstatus_timer);
657         }
658 }
659 EXPORT_SYMBOL_GPL(rt2800mmio_clear_entry);
660
661 int rt2800mmio_init_queues(struct rt2x00_dev *rt2x00dev)
662 {
663         struct queue_entry_priv_mmio *entry_priv;
664
665         /*
666          * Initialize registers.
667          */
668         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
669         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0,
670                                   entry_priv->desc_dma);
671         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0,
672                                   rt2x00dev->tx[0].limit);
673         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0);
674         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0);
675
676         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
677         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1,
678                                   entry_priv->desc_dma);
679         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1,
680                                   rt2x00dev->tx[1].limit);
681         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0);
682         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0);
683
684         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
685         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2,
686                                   entry_priv->desc_dma);
687         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2,
688                                   rt2x00dev->tx[2].limit);
689         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0);
690         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0);
691
692         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
693         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3,
694                                   entry_priv->desc_dma);
695         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3,
696                                   rt2x00dev->tx[3].limit);
697         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0);
698         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0);
699
700         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0);
701         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0);
702         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0);
703         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0);
704
705         rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0);
706         rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0);
707         rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0);
708         rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0);
709
710         entry_priv = rt2x00dev->rx->entries[0].priv_data;
711         rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR,
712                                   entry_priv->desc_dma);
713         rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT,
714                                   rt2x00dev->rx[0].limit);
715         rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
716                                   rt2x00dev->rx[0].limit - 1);
717         rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0);
718
719         rt2800_disable_wpdma(rt2x00dev);
720
721         rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0);
722
723         return 0;
724 }
725 EXPORT_SYMBOL_GPL(rt2800mmio_init_queues);
726
727 int rt2800mmio_init_registers(struct rt2x00_dev *rt2x00dev)
728 {
729         u32 reg;
730
731         /*
732          * Reset DMA indexes
733          */
734         reg = rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX);
735         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
736         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
737         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
738         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
739         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
740         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
741         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
742         rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
743
744         rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
745         rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
746
747         if (rt2x00_is_pcie(rt2x00dev) &&
748             (rt2x00_rt(rt2x00dev, RT3090) ||
749              rt2x00_rt(rt2x00dev, RT3390) ||
750              rt2x00_rt(rt2x00dev, RT3572) ||
751              rt2x00_rt(rt2x00dev, RT3593) ||
752              rt2x00_rt(rt2x00dev, RT5390) ||
753              rt2x00_rt(rt2x00dev, RT5392) ||
754              rt2x00_rt(rt2x00dev, RT5592))) {
755                 reg = rt2x00mmio_register_read(rt2x00dev, AUX_CTRL);
756                 rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
757                 rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
758                 rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg);
759         }
760
761         rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
762
763         if (rt2x00_rt(rt2x00dev, RT6352))
764                 return 0;
765
766         reg = 0;
767         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
768         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
769         rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
770
771         rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
772
773         return 0;
774 }
775 EXPORT_SYMBOL_GPL(rt2800mmio_init_registers);
776
777 /*
778  * Device state switch handlers.
779  */
780 int rt2800mmio_enable_radio(struct rt2x00_dev *rt2x00dev)
781 {
782         /* Wait for DMA, ignore error until we initialize queues. */
783         rt2800_wait_wpdma_ready(rt2x00dev);
784
785         if (unlikely(rt2800mmio_init_queues(rt2x00dev)))
786                 return -EIO;
787
788         return rt2800_enable_radio(rt2x00dev);
789 }
790 EXPORT_SYMBOL_GPL(rt2800mmio_enable_radio);
791
792 static void rt2800mmio_work_txdone(struct work_struct *work)
793 {
794         struct rt2x00_dev *rt2x00dev =
795             container_of(work, struct rt2x00_dev, txdone_work);
796
797         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
798                 return;
799
800         while (!kfifo_is_empty(&rt2x00dev->txstatus_fifo) ||
801                rt2800_txstatus_timeout(rt2x00dev)) {
802
803                 tasklet_disable(&rt2x00dev->txstatus_tasklet);
804                 rt2800_txdone(rt2x00dev, UINT_MAX);
805                 rt2800_txdone_nostatus(rt2x00dev);
806                 tasklet_enable(&rt2x00dev->txstatus_tasklet);
807         }
808
809         if (rt2800_txstatus_pending(rt2x00dev))
810                 hrtimer_start(&rt2x00dev->txstatus_timer,
811                               TXSTATUS_TIMEOUT, HRTIMER_MODE_REL);
812 }
813
814 static enum hrtimer_restart rt2800mmio_tx_sta_fifo_timeout(struct hrtimer *timer)
815 {
816         struct rt2x00_dev *rt2x00dev =
817             container_of(timer, struct rt2x00_dev, txstatus_timer);
818
819         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
820                 goto out;
821
822         if (!rt2800_txstatus_pending(rt2x00dev))
823                 goto out;
824
825         rt2800mmio_fetch_txstatus(rt2x00dev);
826         if (!kfifo_is_empty(&rt2x00dev->txstatus_fifo))
827                 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
828         else
829                 queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work);
830 out:
831         return HRTIMER_NORESTART;
832 }
833
834 int rt2800mmio_probe_hw(struct rt2x00_dev *rt2x00dev)
835 {
836         int retval;
837
838         retval = rt2800_probe_hw(rt2x00dev);
839         if (retval)
840                 return retval;
841
842         /*
843          * Set txstatus timer function.
844          */
845         rt2x00dev->txstatus_timer.function = rt2800mmio_tx_sta_fifo_timeout;
846
847         /*
848          * Overwrite TX done handler
849          */
850         INIT_WORK(&rt2x00dev->txdone_work, rt2800mmio_work_txdone);
851
852         return 0;
853 }
854 EXPORT_SYMBOL_GPL(rt2800mmio_probe_hw);
855
856 MODULE_AUTHOR(DRV_PROJECT);
857 MODULE_VERSION(DRV_VERSION);
858 MODULE_DESCRIPTION("rt2800 MMIO library");
859 MODULE_LICENSE("GPL");