GNU Linux-libre 6.8.7-gnu
[releases.git] / drivers / net / wireless / ralink / rt2x00 / rt2500pci.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
4         <http://rt2x00.serialmonkey.com>
5
6  */
7
8 /*
9         Module: rt2500pci
10         Abstract: rt2500pci device specific routines.
11         Supported chipsets: RT2560.
12  */
13
14 #include <linux/delay.h>
15 #include <linux/etherdevice.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/pci.h>
19 #include <linux/eeprom_93cx6.h>
20 #include <linux/slab.h>
21
22 #include "rt2x00.h"
23 #include "rt2x00mmio.h"
24 #include "rt2x00pci.h"
25 #include "rt2500pci.h"
26
27 /*
28  * Register access.
29  * All access to the CSR registers will go through the methods
30  * rt2x00mmio_register_read and rt2x00mmio_register_write.
31  * BBP and RF register require indirect register access,
32  * and use the CSR registers BBPCSR and RFCSR to achieve this.
33  * These indirect registers work with busy bits,
34  * and we will try maximal REGISTER_BUSY_COUNT times to access
35  * the register while taking a REGISTER_BUSY_DELAY us delay
36  * between each attampt. When the busy bit is still set at that time,
37  * the access attempt is considered to have failed,
38  * and we will print an error.
39  */
40 #define WAIT_FOR_BBP(__dev, __reg) \
41         rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
42 #define WAIT_FOR_RF(__dev, __reg) \
43         rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
44
45 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
46                                 const unsigned int word, const u8 value)
47 {
48         u32 reg;
49
50         mutex_lock(&rt2x00dev->csr_mutex);
51
52         /*
53          * Wait until the BBP becomes available, afterwards we
54          * can safely write the new data into the register.
55          */
56         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
57                 reg = 0;
58                 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
59                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
60                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
61                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
62
63                 rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
64         }
65
66         mutex_unlock(&rt2x00dev->csr_mutex);
67 }
68
69 static u8 rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
70                              const unsigned int word)
71 {
72         u32 reg;
73         u8 value;
74
75         mutex_lock(&rt2x00dev->csr_mutex);
76
77         /*
78          * Wait until the BBP becomes available, afterwards we
79          * can safely write the read request into the register.
80          * After the data has been written, we wait until hardware
81          * returns the correct value, if at any time the register
82          * doesn't become available in time, reg will be 0xffffffff
83          * which means we return 0xff to the caller.
84          */
85         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
86                 reg = 0;
87                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
88                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
89                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
90
91                 rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
92
93                 WAIT_FOR_BBP(rt2x00dev, &reg);
94         }
95
96         value = rt2x00_get_field32(reg, BBPCSR_VALUE);
97
98         mutex_unlock(&rt2x00dev->csr_mutex);
99
100         return value;
101 }
102
103 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
104                                const unsigned int word, const u32 value)
105 {
106         u32 reg;
107
108         mutex_lock(&rt2x00dev->csr_mutex);
109
110         /*
111          * Wait until the RF becomes available, afterwards we
112          * can safely write the new data into the register.
113          */
114         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
115                 reg = 0;
116                 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
117                 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
118                 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
119                 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
120
121                 rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
122                 rt2x00_rf_write(rt2x00dev, word, value);
123         }
124
125         mutex_unlock(&rt2x00dev->csr_mutex);
126 }
127
128 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
129 {
130         struct rt2x00_dev *rt2x00dev = eeprom->data;
131         u32 reg;
132
133         reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
134
135         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
136         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
137         eeprom->reg_data_clock =
138             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
139         eeprom->reg_chip_select =
140             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
141 }
142
143 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
144 {
145         struct rt2x00_dev *rt2x00dev = eeprom->data;
146         u32 reg = 0;
147
148         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
149         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
150         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
151                            !!eeprom->reg_data_clock);
152         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
153                            !!eeprom->reg_chip_select);
154
155         rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
156 }
157
158 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
159 static const struct rt2x00debug rt2500pci_rt2x00debug = {
160         .owner  = THIS_MODULE,
161         .csr    = {
162                 .read           = rt2x00mmio_register_read,
163                 .write          = rt2x00mmio_register_write,
164                 .flags          = RT2X00DEBUGFS_OFFSET,
165                 .word_base      = CSR_REG_BASE,
166                 .word_size      = sizeof(u32),
167                 .word_count     = CSR_REG_SIZE / sizeof(u32),
168         },
169         .eeprom = {
170                 .read           = rt2x00_eeprom_read,
171                 .write          = rt2x00_eeprom_write,
172                 .word_base      = EEPROM_BASE,
173                 .word_size      = sizeof(u16),
174                 .word_count     = EEPROM_SIZE / sizeof(u16),
175         },
176         .bbp    = {
177                 .read           = rt2500pci_bbp_read,
178                 .write          = rt2500pci_bbp_write,
179                 .word_base      = BBP_BASE,
180                 .word_size      = sizeof(u8),
181                 .word_count     = BBP_SIZE / sizeof(u8),
182         },
183         .rf     = {
184                 .read           = rt2x00_rf_read,
185                 .write          = rt2500pci_rf_write,
186                 .word_base      = RF_BASE,
187                 .word_size      = sizeof(u32),
188                 .word_count     = RF_SIZE / sizeof(u32),
189         },
190 };
191 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
192
193 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
194 {
195         u32 reg;
196
197         reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
198         return rt2x00_get_field32(reg, GPIOCSR_VAL0);
199 }
200
201 #ifdef CONFIG_RT2X00_LIB_LEDS
202 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
203                                      enum led_brightness brightness)
204 {
205         struct rt2x00_led *led =
206             container_of(led_cdev, struct rt2x00_led, led_dev);
207         unsigned int enabled = brightness != LED_OFF;
208         u32 reg;
209
210         reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
211
212         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
213                 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
214         else if (led->type == LED_TYPE_ACTIVITY)
215                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
216
217         rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
218 }
219
220 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
221                                unsigned long *delay_on,
222                                unsigned long *delay_off)
223 {
224         struct rt2x00_led *led =
225             container_of(led_cdev, struct rt2x00_led, led_dev);
226         u32 reg;
227
228         reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
229         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
230         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
231         rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
232
233         return 0;
234 }
235
236 static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
237                                struct rt2x00_led *led,
238                                enum led_type type)
239 {
240         led->rt2x00dev = rt2x00dev;
241         led->type = type;
242         led->led_dev.brightness_set = rt2500pci_brightness_set;
243         led->led_dev.blink_set = rt2500pci_blink_set;
244         led->flags = LED_INITIALIZED;
245 }
246 #endif /* CONFIG_RT2X00_LIB_LEDS */
247
248 /*
249  * Configuration handlers.
250  */
251 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
252                                     const unsigned int filter_flags)
253 {
254         u32 reg;
255
256         /*
257          * Start configuration steps.
258          * Note that the version error will always be dropped
259          * and broadcast frames will always be accepted since
260          * there is no filter for it at this time.
261          */
262         reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
263         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
264                            !(filter_flags & FIF_FCSFAIL));
265         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
266                            !(filter_flags & FIF_PLCPFAIL));
267         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
268                            !(filter_flags & FIF_CONTROL));
269         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
270                            !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
271         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
272                            !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
273                            !rt2x00dev->intf_ap_count);
274         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
275         rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
276                            !(filter_flags & FIF_ALLMULTI));
277         rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
278         rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
279 }
280
281 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
282                                   struct rt2x00_intf *intf,
283                                   struct rt2x00intf_conf *conf,
284                                   const unsigned int flags)
285 {
286         struct data_queue *queue = rt2x00dev->bcn;
287         unsigned int bcn_preload;
288         u32 reg;
289
290         if (flags & CONFIG_UPDATE_TYPE) {
291                 /*
292                  * Enable beacon config
293                  */
294                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
295                 reg = rt2x00mmio_register_read(rt2x00dev, BCNCSR1);
296                 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
297                 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
298                 rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
299
300                 /*
301                  * Enable synchronisation.
302                  */
303                 reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
304                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
305                 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
306         }
307
308         if (flags & CONFIG_UPDATE_MAC)
309                 rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
310                                               conf->mac, sizeof(conf->mac));
311
312         if (flags & CONFIG_UPDATE_BSSID)
313                 rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
314                                               conf->bssid, sizeof(conf->bssid));
315 }
316
317 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
318                                  struct rt2x00lib_erp *erp,
319                                  u32 changed)
320 {
321         int preamble_mask;
322         u32 reg;
323
324         /*
325          * When short preamble is enabled, we should set bit 0x08
326          */
327         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
328                 preamble_mask = erp->short_preamble << 3;
329
330                 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR1);
331                 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
332                 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
333                 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
334                 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
335                 rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
336
337                 reg = rt2x00mmio_register_read(rt2x00dev, ARCSR2);
338                 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
339                 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
340                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
341                                    GET_DURATION(ACK_SIZE, 10));
342                 rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
343
344                 reg = rt2x00mmio_register_read(rt2x00dev, ARCSR3);
345                 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
346                 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
347                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
348                                    GET_DURATION(ACK_SIZE, 20));
349                 rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
350
351                 reg = rt2x00mmio_register_read(rt2x00dev, ARCSR4);
352                 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
353                 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
354                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
355                                    GET_DURATION(ACK_SIZE, 55));
356                 rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
357
358                 reg = rt2x00mmio_register_read(rt2x00dev, ARCSR5);
359                 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
360                 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
361                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
362                                    GET_DURATION(ACK_SIZE, 110));
363                 rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
364         }
365
366         if (changed & BSS_CHANGED_BASIC_RATES)
367                 rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
368
369         if (changed & BSS_CHANGED_ERP_SLOT) {
370                 reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
371                 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
372                 rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
373
374                 reg = rt2x00mmio_register_read(rt2x00dev, CSR18);
375                 rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
376                 rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
377                 rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
378
379                 reg = rt2x00mmio_register_read(rt2x00dev, CSR19);
380                 rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
381                 rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
382                 rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
383         }
384
385         if (changed & BSS_CHANGED_BEACON_INT) {
386                 reg = rt2x00mmio_register_read(rt2x00dev, CSR12);
387                 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
388                                    erp->beacon_int * 16);
389                 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
390                                    erp->beacon_int * 16);
391                 rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
392         }
393
394 }
395
396 static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
397                                  struct antenna_setup *ant)
398 {
399         u32 reg;
400         u8 r14;
401         u8 r2;
402
403         /*
404          * We should never come here because rt2x00lib is supposed
405          * to catch this and send us the correct antenna explicitely.
406          */
407         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
408                ant->tx == ANTENNA_SW_DIVERSITY);
409
410         reg = rt2x00mmio_register_read(rt2x00dev, BBPCSR1);
411         r14 = rt2500pci_bbp_read(rt2x00dev, 14);
412         r2 = rt2500pci_bbp_read(rt2x00dev, 2);
413
414         /*
415          * Configure the TX antenna.
416          */
417         switch (ant->tx) {
418         case ANTENNA_A:
419                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
420                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
421                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
422                 break;
423         case ANTENNA_B:
424         default:
425                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
426                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
427                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
428                 break;
429         }
430
431         /*
432          * Configure the RX antenna.
433          */
434         switch (ant->rx) {
435         case ANTENNA_A:
436                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
437                 break;
438         case ANTENNA_B:
439         default:
440                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
441                 break;
442         }
443
444         /*
445          * RT2525E and RT5222 need to flip TX I/Q
446          */
447         if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
448                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
449                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
450                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
451
452                 /*
453                  * RT2525E does not need RX I/Q Flip.
454                  */
455                 if (rt2x00_rf(rt2x00dev, RF2525E))
456                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
457         } else {
458                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
459                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
460         }
461
462         rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg);
463         rt2500pci_bbp_write(rt2x00dev, 14, r14);
464         rt2500pci_bbp_write(rt2x00dev, 2, r2);
465 }
466
467 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
468                                      struct rf_channel *rf, const int txpower)
469 {
470         u8 r70;
471
472         /*
473          * Set TXpower.
474          */
475         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
476
477         /*
478          * Switch on tuning bits.
479          * For RT2523 devices we do not need to update the R1 register.
480          */
481         if (!rt2x00_rf(rt2x00dev, RF2523))
482                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
483         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
484
485         /*
486          * For RT2525 we should first set the channel to half band higher.
487          */
488         if (rt2x00_rf(rt2x00dev, RF2525)) {
489                 static const u32 vals[] = {
490                         0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
491                         0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
492                         0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
493                         0x00080d2e, 0x00080d3a
494                 };
495
496                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
497                 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
498                 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
499                 if (rf->rf4)
500                         rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
501         }
502
503         rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
504         rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
505         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
506         if (rf->rf4)
507                 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
508
509         /*
510          * Channel 14 requires the Japan filter bit to be set.
511          */
512         r70 = 0x46;
513         rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
514         rt2500pci_bbp_write(rt2x00dev, 70, r70);
515
516         msleep(1);
517
518         /*
519          * Switch off tuning bits.
520          * For RT2523 devices we do not need to update the R1 register.
521          */
522         if (!rt2x00_rf(rt2x00dev, RF2523)) {
523                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
524                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
525         }
526
527         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
528         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
529
530         /*
531          * Clear false CRC during channel switch.
532          */
533         rf->rf1 = rt2x00mmio_register_read(rt2x00dev, CNT0);
534 }
535
536 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
537                                      const int txpower)
538 {
539         u32 rf3;
540
541         rf3 = rt2x00_rf_read(rt2x00dev, 3);
542         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
543         rt2500pci_rf_write(rt2x00dev, 3, rf3);
544 }
545
546 static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
547                                          struct rt2x00lib_conf *libconf)
548 {
549         u32 reg;
550
551         reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
552         rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
553                            libconf->conf->long_frame_max_tx_count);
554         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
555                            libconf->conf->short_frame_max_tx_count);
556         rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
557 }
558
559 static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
560                                 struct rt2x00lib_conf *libconf)
561 {
562         enum dev_state state =
563             (libconf->conf->flags & IEEE80211_CONF_PS) ?
564                 STATE_SLEEP : STATE_AWAKE;
565         u32 reg;
566
567         if (state == STATE_SLEEP) {
568                 reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
569                 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
570                                    (rt2x00dev->beacon_int - 20) * 16);
571                 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
572                                    libconf->conf->listen_interval - 1);
573
574                 /* We must first disable autowake before it can be enabled */
575                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
576                 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
577
578                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
579                 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
580         } else {
581                 reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
582                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
583                 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
584         }
585
586         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
587 }
588
589 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
590                              struct rt2x00lib_conf *libconf,
591                              const unsigned int flags)
592 {
593         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
594                 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
595                                          libconf->conf->power_level);
596         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
597             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
598                 rt2500pci_config_txpower(rt2x00dev,
599                                          libconf->conf->power_level);
600         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
601                 rt2500pci_config_retry_limit(rt2x00dev, libconf);
602         if (flags & IEEE80211_CONF_CHANGE_PS)
603                 rt2500pci_config_ps(rt2x00dev, libconf);
604 }
605
606 /*
607  * Link tuning
608  */
609 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
610                                  struct link_qual *qual)
611 {
612         u32 reg;
613
614         /*
615          * Update FCS error count from register.
616          */
617         reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
618         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
619
620         /*
621          * Update False CCA count from register.
622          */
623         reg = rt2x00mmio_register_read(rt2x00dev, CNT3);
624         qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
625 }
626
627 static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
628                                      struct link_qual *qual, u8 vgc_level)
629 {
630         if (qual->vgc_level_reg != vgc_level) {
631                 rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
632                 qual->vgc_level = vgc_level;
633                 qual->vgc_level_reg = vgc_level;
634         }
635 }
636
637 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
638                                   struct link_qual *qual)
639 {
640         rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
641 }
642
643 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
644                                  struct link_qual *qual, const u32 count)
645 {
646         /*
647          * To prevent collisions with MAC ASIC on chipsets
648          * up to version C the link tuning should halt after 20
649          * seconds while being associated.
650          */
651         if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
652             rt2x00dev->intf_associated && count > 20)
653                 return;
654
655         /*
656          * Chipset versions C and lower should directly continue
657          * to the dynamic CCA tuning. Chipset version D and higher
658          * should go straight to dynamic CCA tuning when they
659          * are not associated.
660          */
661         if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
662             !rt2x00dev->intf_associated)
663                 goto dynamic_cca_tune;
664
665         /*
666          * A too low RSSI will cause too much false CCA which will
667          * then corrupt the R17 tuning. To remidy this the tuning should
668          * be stopped (While making sure the R17 value will not exceed limits)
669          */
670         if (qual->rssi < -80 && count > 20) {
671                 if (qual->vgc_level_reg >= 0x41)
672                         rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
673                 return;
674         }
675
676         /*
677          * Special big-R17 for short distance
678          */
679         if (qual->rssi >= -58) {
680                 rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
681                 return;
682         }
683
684         /*
685          * Special mid-R17 for middle distance
686          */
687         if (qual->rssi >= -74) {
688                 rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
689                 return;
690         }
691
692         /*
693          * Leave short or middle distance condition, restore r17
694          * to the dynamic tuning range.
695          */
696         if (qual->vgc_level_reg >= 0x41) {
697                 rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
698                 return;
699         }
700
701 dynamic_cca_tune:
702
703         /*
704          * R17 is inside the dynamic tuning range,
705          * start tuning the link based on the false cca counter.
706          */
707         if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
708                 rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
709         else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
710                 rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
711 }
712
713 /*
714  * Queue handlers.
715  */
716 static void rt2500pci_start_queue(struct data_queue *queue)
717 {
718         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
719         u32 reg;
720
721         switch (queue->qid) {
722         case QID_RX:
723                 reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
724                 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
725                 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
726                 break;
727         case QID_BEACON:
728                 reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
729                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
730                 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
731                 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
732                 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
733                 break;
734         default:
735                 break;
736         }
737 }
738
739 static void rt2500pci_kick_queue(struct data_queue *queue)
740 {
741         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
742         u32 reg;
743
744         switch (queue->qid) {
745         case QID_AC_VO:
746                 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
747                 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
748                 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
749                 break;
750         case QID_AC_VI:
751                 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
752                 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
753                 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
754                 break;
755         case QID_ATIM:
756                 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
757                 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
758                 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
759                 break;
760         default:
761                 break;
762         }
763 }
764
765 static void rt2500pci_stop_queue(struct data_queue *queue)
766 {
767         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
768         u32 reg;
769
770         switch (queue->qid) {
771         case QID_AC_VO:
772         case QID_AC_VI:
773         case QID_ATIM:
774                 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
775                 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
776                 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
777                 break;
778         case QID_RX:
779                 reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
780                 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
781                 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
782                 break;
783         case QID_BEACON:
784                 reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
785                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
786                 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
787                 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
788                 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
789
790                 /*
791                  * Wait for possibly running tbtt tasklets.
792                  */
793                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
794                 break;
795         default:
796                 break;
797         }
798 }
799
800 /*
801  * Initialization functions.
802  */
803 static bool rt2500pci_get_entry_state(struct queue_entry *entry)
804 {
805         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
806         u32 word;
807
808         if (entry->queue->qid == QID_RX) {
809                 word = rt2x00_desc_read(entry_priv->desc, 0);
810
811                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
812         } else {
813                 word = rt2x00_desc_read(entry_priv->desc, 0);
814
815                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
816                         rt2x00_get_field32(word, TXD_W0_VALID));
817         }
818 }
819
820 static void rt2500pci_clear_entry(struct queue_entry *entry)
821 {
822         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
823         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
824         u32 word;
825
826         if (entry->queue->qid == QID_RX) {
827                 word = rt2x00_desc_read(entry_priv->desc, 1);
828                 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
829                 rt2x00_desc_write(entry_priv->desc, 1, word);
830
831                 word = rt2x00_desc_read(entry_priv->desc, 0);
832                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
833                 rt2x00_desc_write(entry_priv->desc, 0, word);
834         } else {
835                 word = rt2x00_desc_read(entry_priv->desc, 0);
836                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
837                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
838                 rt2x00_desc_write(entry_priv->desc, 0, word);
839         }
840 }
841
842 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
843 {
844         struct queue_entry_priv_mmio *entry_priv;
845         u32 reg;
846
847         /*
848          * Initialize registers.
849          */
850         reg = rt2x00mmio_register_read(rt2x00dev, TXCSR2);
851         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
852         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
853         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
854         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
855         rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
856
857         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
858         reg = rt2x00mmio_register_read(rt2x00dev, TXCSR3);
859         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
860                            entry_priv->desc_dma);
861         rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
862
863         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
864         reg = rt2x00mmio_register_read(rt2x00dev, TXCSR5);
865         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
866                            entry_priv->desc_dma);
867         rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
868
869         entry_priv = rt2x00dev->atim->entries[0].priv_data;
870         reg = rt2x00mmio_register_read(rt2x00dev, TXCSR4);
871         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
872                            entry_priv->desc_dma);
873         rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
874
875         entry_priv = rt2x00dev->bcn->entries[0].priv_data;
876         reg = rt2x00mmio_register_read(rt2x00dev, TXCSR6);
877         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
878                            entry_priv->desc_dma);
879         rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
880
881         reg = rt2x00mmio_register_read(rt2x00dev, RXCSR1);
882         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
883         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
884         rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
885
886         entry_priv = rt2x00dev->rx->entries[0].priv_data;
887         reg = rt2x00mmio_register_read(rt2x00dev, RXCSR2);
888         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
889                            entry_priv->desc_dma);
890         rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
891
892         return 0;
893 }
894
895 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
896 {
897         u32 reg;
898
899         rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
900         rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
901         rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002);
902         rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
903
904         reg = rt2x00mmio_register_read(rt2x00dev, TIMECSR);
905         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
906         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
907         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
908         rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
909
910         reg = rt2x00mmio_register_read(rt2x00dev, CSR9);
911         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
912                            rt2x00dev->rx->data_size / 128);
913         rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
914
915         /*
916          * Always use CWmin and CWmax set in descriptor.
917          */
918         reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
919         rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
920         rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
921
922         reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
923         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
924         rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
925         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
926         rt2x00_set_field32(&reg, CSR14_TCFP, 0);
927         rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
928         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
929         rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
930         rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
931         rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
932
933         rt2x00mmio_register_write(rt2x00dev, CNT3, 0);
934
935         reg = rt2x00mmio_register_read(rt2x00dev, TXCSR8);
936         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
937         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
938         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
939         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
940         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
941         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
942         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
943         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
944         rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg);
945
946         reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR0);
947         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
948         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
949         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
950         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
951         rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg);
952
953         reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR1);
954         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
955         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
956         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
957         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
958         rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg);
959
960         reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR2);
961         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
962         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
963         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
964         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
965         rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg);
966
967         reg = rt2x00mmio_register_read(rt2x00dev, RXCSR3);
968         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
969         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
970         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
971         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
972         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
973         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
974         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
975         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
976         rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
977
978         reg = rt2x00mmio_register_read(rt2x00dev, PCICSR);
979         rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
980         rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
981         rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
982         rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
983         rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
984         rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
985         rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
986         rt2x00mmio_register_write(rt2x00dev, PCICSR, reg);
987
988         rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
989
990         rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
991         rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0);
992
993         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
994                 return -EBUSY;
995
996         rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223);
997         rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
998
999         reg = rt2x00mmio_register_read(rt2x00dev, MACCSR2);
1000         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
1001         rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
1002
1003         reg = rt2x00mmio_register_read(rt2x00dev, RALINKCSR);
1004         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
1005         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
1006         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
1007         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
1008         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
1009         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
1010         rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
1011
1012         rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200);
1013
1014         rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
1015
1016         reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
1017         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
1018         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
1019         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
1020         rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1021
1022         reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
1023         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
1024         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
1025         rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1026
1027         /*
1028          * We must clear the FCS and FIFO error count.
1029          * These registers are cleared on read,
1030          * so we may pass a useless variable to store the value.
1031          */
1032         reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
1033         reg = rt2x00mmio_register_read(rt2x00dev, CNT4);
1034
1035         return 0;
1036 }
1037
1038 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1039 {
1040         unsigned int i;
1041         u8 value;
1042
1043         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1044                 value = rt2500pci_bbp_read(rt2x00dev, 0);
1045                 if ((value != 0xff) && (value != 0x00))
1046                         return 0;
1047                 udelay(REGISTER_BUSY_DELAY);
1048         }
1049
1050         rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1051         return -EACCES;
1052 }
1053
1054 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1055 {
1056         unsigned int i;
1057         u16 eeprom;
1058         u8 reg_id;
1059         u8 value;
1060
1061         if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
1062                 return -EACCES;
1063
1064         rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
1065         rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
1066         rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
1067         rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
1068         rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
1069         rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
1070         rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
1071         rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
1072         rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
1073         rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
1074         rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1075         rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1076         rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1077         rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1078         rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1079         rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1080         rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1081         rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1082         rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1083         rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1084         rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1085         rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1086         rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1087         rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1088         rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1089         rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1090         rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1091         rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1092         rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1093         rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1094
1095         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1096                 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
1097
1098                 if (eeprom != 0xffff && eeprom != 0x0000) {
1099                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1100                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1101                         rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1102                 }
1103         }
1104
1105         return 0;
1106 }
1107
1108 /*
1109  * Device state switch handlers.
1110  */
1111 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1112                                  enum dev_state state)
1113 {
1114         int mask = (state == STATE_RADIO_IRQ_OFF);
1115         u32 reg;
1116         unsigned long flags;
1117
1118         /*
1119          * When interrupts are being enabled, the interrupt registers
1120          * should clear the register to assure a clean state.
1121          */
1122         if (state == STATE_RADIO_IRQ_ON) {
1123                 reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
1124                 rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1125         }
1126
1127         /*
1128          * Only toggle the interrupts bits we are going to use.
1129          * Non-checked interrupt bits are disabled by default.
1130          */
1131         spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1132
1133         reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1134         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1135         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1136         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1137         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1138         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1139         rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1140
1141         spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1142
1143         if (state == STATE_RADIO_IRQ_OFF) {
1144                 /*
1145                  * Ensure that all tasklets are finished.
1146                  */
1147                 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1148                 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1149                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1150         }
1151 }
1152
1153 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1154 {
1155         /*
1156          * Initialize all registers.
1157          */
1158         if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1159                      rt2500pci_init_registers(rt2x00dev) ||
1160                      rt2500pci_init_bbp(rt2x00dev)))
1161                 return -EIO;
1162
1163         return 0;
1164 }
1165
1166 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1167 {
1168         /*
1169          * Disable power
1170          */
1171         rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
1172 }
1173
1174 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1175                                enum dev_state state)
1176 {
1177         u32 reg, reg2;
1178         unsigned int i;
1179         bool put_to_sleep;
1180         u8 bbp_state;
1181         u8 rf_state;
1182
1183         put_to_sleep = (state != STATE_AWAKE);
1184
1185         reg = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
1186         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1187         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1188         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1189         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1190         rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1191
1192         /*
1193          * Device is not guaranteed to be in the requested state yet.
1194          * We must wait until the register indicates that the
1195          * device has entered the correct state.
1196          */
1197         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1198                 reg2 = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
1199                 bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1200                 rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1201                 if (bbp_state == state && rf_state == state)
1202                         return 0;
1203                 rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1204                 msleep(10);
1205         }
1206
1207         return -EBUSY;
1208 }
1209
1210 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1211                                       enum dev_state state)
1212 {
1213         int retval = 0;
1214
1215         switch (state) {
1216         case STATE_RADIO_ON:
1217                 retval = rt2500pci_enable_radio(rt2x00dev);
1218                 break;
1219         case STATE_RADIO_OFF:
1220                 rt2500pci_disable_radio(rt2x00dev);
1221                 break;
1222         case STATE_RADIO_IRQ_ON:
1223         case STATE_RADIO_IRQ_OFF:
1224                 rt2500pci_toggle_irq(rt2x00dev, state);
1225                 break;
1226         case STATE_DEEP_SLEEP:
1227         case STATE_SLEEP:
1228         case STATE_STANDBY:
1229         case STATE_AWAKE:
1230                 retval = rt2500pci_set_state(rt2x00dev, state);
1231                 break;
1232         default:
1233                 retval = -ENOTSUPP;
1234                 break;
1235         }
1236
1237         if (unlikely(retval))
1238                 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1239                            state, retval);
1240
1241         return retval;
1242 }
1243
1244 /*
1245  * TX descriptor initialization
1246  */
1247 static void rt2500pci_write_tx_desc(struct queue_entry *entry,
1248                                     struct txentry_desc *txdesc)
1249 {
1250         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1251         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1252         __le32 *txd = entry_priv->desc;
1253         u32 word;
1254
1255         /*
1256          * Start writing the descriptor words.
1257          */
1258         word = rt2x00_desc_read(txd, 1);
1259         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1260         rt2x00_desc_write(txd, 1, word);
1261
1262         word = rt2x00_desc_read(txd, 2);
1263         rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1264         rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
1265         rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
1266         rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
1267         rt2x00_desc_write(txd, 2, word);
1268
1269         word = rt2x00_desc_read(txd, 3);
1270         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1271         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1272         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
1273                            txdesc->u.plcp.length_low);
1274         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
1275                            txdesc->u.plcp.length_high);
1276         rt2x00_desc_write(txd, 3, word);
1277
1278         word = rt2x00_desc_read(txd, 10);
1279         rt2x00_set_field32(&word, TXD_W10_RTS,
1280                            test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1281         rt2x00_desc_write(txd, 10, word);
1282
1283         /*
1284          * Writing TXD word 0 must the last to prevent a race condition with
1285          * the device, whereby the device may take hold of the TXD before we
1286          * finished updating it.
1287          */
1288         word = rt2x00_desc_read(txd, 0);
1289         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1290         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1291         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1292                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1293         rt2x00_set_field32(&word, TXD_W0_ACK,
1294                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1295         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1296                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1297         rt2x00_set_field32(&word, TXD_W0_OFDM,
1298                            (txdesc->rate_mode == RATE_MODE_OFDM));
1299         rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1300         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1301         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1302                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1303         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1304         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1305         rt2x00_desc_write(txd, 0, word);
1306
1307         /*
1308          * Register descriptor details in skb frame descriptor.
1309          */
1310         skbdesc->desc = txd;
1311         skbdesc->desc_len = TXD_DESC_SIZE;
1312 }
1313
1314 /*
1315  * TX data initialization
1316  */
1317 static void rt2500pci_write_beacon(struct queue_entry *entry,
1318                                    struct txentry_desc *txdesc)
1319 {
1320         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1321         u32 reg;
1322
1323         /*
1324          * Disable beaconing while we are reloading the beacon data,
1325          * otherwise we might be sending out invalid data.
1326          */
1327         reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
1328         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1329         rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1330
1331         if (rt2x00queue_map_txskb(entry)) {
1332                 rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
1333                 goto out;
1334         }
1335
1336         /*
1337          * Write the TX descriptor for the beacon.
1338          */
1339         rt2500pci_write_tx_desc(entry, txdesc);
1340
1341         /*
1342          * Dump beacon to userspace through debugfs.
1343          */
1344         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1345 out:
1346         /*
1347          * Enable beaconing again.
1348          */
1349         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1350         rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1351 }
1352
1353 /*
1354  * RX control handlers
1355  */
1356 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1357                                   struct rxdone_entry_desc *rxdesc)
1358 {
1359         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1360         u32 word0;
1361         u32 word2;
1362
1363         word0 = rt2x00_desc_read(entry_priv->desc, 0);
1364         word2 = rt2x00_desc_read(entry_priv->desc, 2);
1365
1366         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1367                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1368         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1369                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1370
1371         /*
1372          * Obtain the status about this packet.
1373          * When frame was received with an OFDM bitrate,
1374          * the signal is the PLCP value. If it was received with
1375          * a CCK bitrate the signal is the rate in 100kbit/s.
1376          */
1377         rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1378         rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1379             entry->queue->rt2x00dev->rssi_offset;
1380         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1381
1382         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1383                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1384         else
1385                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1386         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1387                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1388 }
1389
1390 /*
1391  * Interrupt functions.
1392  */
1393 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1394                              const enum data_queue_qid queue_idx)
1395 {
1396         struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1397         struct queue_entry_priv_mmio *entry_priv;
1398         struct queue_entry *entry;
1399         struct txdone_entry_desc txdesc;
1400         u32 word;
1401
1402         while (!rt2x00queue_empty(queue)) {
1403                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1404                 entry_priv = entry->priv_data;
1405                 word = rt2x00_desc_read(entry_priv->desc, 0);
1406
1407                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1408                     !rt2x00_get_field32(word, TXD_W0_VALID))
1409                         break;
1410
1411                 /*
1412                  * Obtain the status about this packet.
1413                  */
1414                 txdesc.flags = 0;
1415                 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1416                 case 0: /* Success */
1417                 case 1: /* Success with retry */
1418                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1419                         break;
1420                 case 2: /* Failure, excessive retries */
1421                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1422                         fallthrough;    /* this is a failed frame! */
1423                 default: /* Failure */
1424                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
1425                 }
1426                 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1427
1428                 rt2x00lib_txdone(entry, &txdesc);
1429         }
1430 }
1431
1432 static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1433                                               struct rt2x00_field32 irq_field)
1434 {
1435         u32 reg;
1436
1437         /*
1438          * Enable a single interrupt. The interrupt mask register
1439          * access needs locking.
1440          */
1441         spin_lock_irq(&rt2x00dev->irqmask_lock);
1442
1443         reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1444         rt2x00_set_field32(&reg, irq_field, 0);
1445         rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1446
1447         spin_unlock_irq(&rt2x00dev->irqmask_lock);
1448 }
1449
1450 static void rt2500pci_txstatus_tasklet(struct tasklet_struct *t)
1451 {
1452         struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
1453                                                     txstatus_tasklet);
1454         u32 reg;
1455
1456         /*
1457          * Handle all tx queues.
1458          */
1459         rt2500pci_txdone(rt2x00dev, QID_ATIM);
1460         rt2500pci_txdone(rt2x00dev, QID_AC_VO);
1461         rt2500pci_txdone(rt2x00dev, QID_AC_VI);
1462
1463         /*
1464          * Enable all TXDONE interrupts again.
1465          */
1466         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1467                 spin_lock_irq(&rt2x00dev->irqmask_lock);
1468
1469                 reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1470                 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1471                 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1472                 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1473                 rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1474
1475                 spin_unlock_irq(&rt2x00dev->irqmask_lock);
1476         }
1477 }
1478
1479 static void rt2500pci_tbtt_tasklet(struct tasklet_struct *t)
1480 {
1481         struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, tbtt_tasklet);
1482         rt2x00lib_beacondone(rt2x00dev);
1483         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1484                 rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1485 }
1486
1487 static void rt2500pci_rxdone_tasklet(struct tasklet_struct *t)
1488 {
1489         struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
1490                                                     rxdone_tasklet);
1491         if (rt2x00mmio_rxdone(rt2x00dev))
1492                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1493         else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1494                 rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1495 }
1496
1497 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1498 {
1499         struct rt2x00_dev *rt2x00dev = dev_instance;
1500         u32 reg, mask;
1501
1502         /*
1503          * Get the interrupt sources & saved to local variable.
1504          * Write register value back to clear pending interrupts.
1505          */
1506         reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
1507         rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1508
1509         if (!reg)
1510                 return IRQ_NONE;
1511
1512         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1513                 return IRQ_HANDLED;
1514
1515         mask = reg;
1516
1517         /*
1518          * Schedule tasklets for interrupt handling.
1519          */
1520         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1521                 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1522
1523         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1524                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1525
1526         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1527             rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1528             rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1529                 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1530                 /*
1531                  * Mask out all txdone interrupts.
1532                  */
1533                 rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1534                 rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1535                 rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1536         }
1537
1538         /*
1539          * Disable all interrupts for which a tasklet was scheduled right now,
1540          * the tasklet will reenable the appropriate interrupts.
1541          */
1542         spin_lock(&rt2x00dev->irqmask_lock);
1543
1544         reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1545         reg |= mask;
1546         rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1547
1548         spin_unlock(&rt2x00dev->irqmask_lock);
1549
1550         return IRQ_HANDLED;
1551 }
1552
1553 /*
1554  * Device probe functions.
1555  */
1556 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1557 {
1558         struct eeprom_93cx6 eeprom;
1559         u32 reg;
1560         u16 word;
1561         u8 *mac;
1562
1563         reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
1564
1565         eeprom.data = rt2x00dev;
1566         eeprom.register_read = rt2500pci_eepromregister_read;
1567         eeprom.register_write = rt2500pci_eepromregister_write;
1568         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1569             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1570         eeprom.reg_data_in = 0;
1571         eeprom.reg_data_out = 0;
1572         eeprom.reg_data_clock = 0;
1573         eeprom.reg_chip_select = 0;
1574
1575         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1576                                EEPROM_SIZE / sizeof(u16));
1577
1578         /*
1579          * Start validation of the data that has been read.
1580          */
1581         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1582         rt2x00lib_set_mac_address(rt2x00dev, mac);
1583
1584         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1585         if (word == 0xffff) {
1586                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1587                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1588                                    ANTENNA_SW_DIVERSITY);
1589                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1590                                    ANTENNA_SW_DIVERSITY);
1591                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1592                                    LED_MODE_DEFAULT);
1593                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1594                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1595                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1596                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1597                 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1598         }
1599
1600         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1601         if (word == 0xffff) {
1602                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1603                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1604                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1605                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1606                 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1607         }
1608
1609         word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1610         if (word == 0xffff) {
1611                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1612                                    DEFAULT_RSSI_OFFSET);
1613                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1614                 rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1615                                   word);
1616         }
1617
1618         return 0;
1619 }
1620
1621 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1622 {
1623         u32 reg;
1624         u16 value;
1625         u16 eeprom;
1626
1627         /*
1628          * Read EEPROM word for configuration.
1629          */
1630         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1631
1632         /*
1633          * Identify RF chipset.
1634          */
1635         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1636         reg = rt2x00mmio_register_read(rt2x00dev, CSR0);
1637         rt2x00_set_chip(rt2x00dev, RT2560, value,
1638                         rt2x00_get_field32(reg, CSR0_REVISION));
1639
1640         if (!rt2x00_rf(rt2x00dev, RF2522) &&
1641             !rt2x00_rf(rt2x00dev, RF2523) &&
1642             !rt2x00_rf(rt2x00dev, RF2524) &&
1643             !rt2x00_rf(rt2x00dev, RF2525) &&
1644             !rt2x00_rf(rt2x00dev, RF2525E) &&
1645             !rt2x00_rf(rt2x00dev, RF5222)) {
1646                 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1647                 return -ENODEV;
1648         }
1649
1650         /*
1651          * Identify default antenna configuration.
1652          */
1653         rt2x00dev->default_ant.tx =
1654             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1655         rt2x00dev->default_ant.rx =
1656             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1657
1658         /*
1659          * Store led mode, for correct led behaviour.
1660          */
1661 #ifdef CONFIG_RT2X00_LIB_LEDS
1662         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1663
1664         rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1665         if (value == LED_MODE_TXRX_ACTIVITY ||
1666             value == LED_MODE_DEFAULT ||
1667             value == LED_MODE_ASUS)
1668                 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1669                                    LED_TYPE_ACTIVITY);
1670 #endif /* CONFIG_RT2X00_LIB_LEDS */
1671
1672         /*
1673          * Detect if this device has an hardware controlled radio.
1674          */
1675         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) {
1676                 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1677                 /*
1678                  * On this device RFKILL initialized during probe does not work.
1679                  */
1680                 __set_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags);
1681         }
1682
1683         /*
1684          * Check if the BBP tuning should be enabled.
1685          */
1686         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1687         if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1688                 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1689
1690         /*
1691          * Read the RSSI <-> dBm offset information.
1692          */
1693         eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1694         rt2x00dev->rssi_offset =
1695             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1696
1697         return 0;
1698 }
1699
1700 /*
1701  * RF value list for RF2522
1702  * Supports: 2.4 GHz
1703  */
1704 static const struct rf_channel rf_vals_bg_2522[] = {
1705         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1706         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1707         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1708         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1709         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1710         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1711         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1712         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1713         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1714         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1715         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1716         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1717         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1718         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1719 };
1720
1721 /*
1722  * RF value list for RF2523
1723  * Supports: 2.4 GHz
1724  */
1725 static const struct rf_channel rf_vals_bg_2523[] = {
1726         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1727         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1728         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1729         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1730         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1731         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1732         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1733         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1734         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1735         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1736         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1737         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1738         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1739         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1740 };
1741
1742 /*
1743  * RF value list for RF2524
1744  * Supports: 2.4 GHz
1745  */
1746 static const struct rf_channel rf_vals_bg_2524[] = {
1747         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1748         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1749         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1750         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1751         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1752         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1753         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1754         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1755         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1756         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1757         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1758         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1759         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1760         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1761 };
1762
1763 /*
1764  * RF value list for RF2525
1765  * Supports: 2.4 GHz
1766  */
1767 static const struct rf_channel rf_vals_bg_2525[] = {
1768         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1769         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1770         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1771         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1772         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1773         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1774         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1775         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1776         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1777         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1778         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1779         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1780         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1781         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1782 };
1783
1784 /*
1785  * RF value list for RF2525e
1786  * Supports: 2.4 GHz
1787  */
1788 static const struct rf_channel rf_vals_bg_2525e[] = {
1789         { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1790         { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1791         { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1792         { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1793         { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1794         { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1795         { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1796         { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1797         { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1798         { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1799         { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1800         { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1801         { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1802         { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1803 };
1804
1805 /*
1806  * RF value list for RF5222
1807  * Supports: 2.4 GHz & 5.2 GHz
1808  */
1809 static const struct rf_channel rf_vals_5222[] = {
1810         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1811         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1812         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1813         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1814         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1815         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1816         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1817         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1818         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1819         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1820         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1821         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1822         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1823         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1824
1825         /* 802.11 UNI / HyperLan 2 */
1826         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1827         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1828         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1829         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1830         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1831         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1832         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1833         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1834
1835         /* 802.11 HyperLan 2 */
1836         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1837         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1838         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1839         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1840         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1841         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1842         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1843         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1844         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1845         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1846
1847         /* 802.11 UNII */
1848         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1849         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1850         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1851         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1852         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1853 };
1854
1855 static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1856 {
1857         struct hw_mode_spec *spec = &rt2x00dev->spec;
1858         struct channel_info *info;
1859         u8 *tx_power;
1860         unsigned int i;
1861
1862         /*
1863          * Initialize all hw fields.
1864          */
1865         ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1866         ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1867         ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
1868         ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1869
1870         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1871         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1872                                 rt2x00_eeprom_addr(rt2x00dev,
1873                                                    EEPROM_MAC_ADDR_0));
1874
1875         /*
1876          * Disable powersaving as default.
1877          */
1878         rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1879
1880         /*
1881          * Initialize hw_mode information.
1882          */
1883         spec->supported_bands = SUPPORT_BAND_2GHZ;
1884         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1885
1886         if (rt2x00_rf(rt2x00dev, RF2522)) {
1887                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1888                 spec->channels = rf_vals_bg_2522;
1889         } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1890                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1891                 spec->channels = rf_vals_bg_2523;
1892         } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1893                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1894                 spec->channels = rf_vals_bg_2524;
1895         } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1896                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1897                 spec->channels = rf_vals_bg_2525;
1898         } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1899                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1900                 spec->channels = rf_vals_bg_2525e;
1901         } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1902                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1903                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1904                 spec->channels = rf_vals_5222;
1905         }
1906
1907         /*
1908          * Create channel information array
1909          */
1910         info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1911         if (!info)
1912                 return -ENOMEM;
1913
1914         spec->channels_info = info;
1915
1916         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1917         for (i = 0; i < 14; i++) {
1918                 info[i].max_power = MAX_TXPOWER;
1919                 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1920         }
1921
1922         if (spec->num_channels > 14) {
1923                 for (i = 14; i < spec->num_channels; i++) {
1924                         info[i].max_power = MAX_TXPOWER;
1925                         info[i].default_power1 = DEFAULT_TXPOWER;
1926                 }
1927         }
1928
1929         return 0;
1930 }
1931
1932 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1933 {
1934         int retval;
1935         u32 reg;
1936
1937         /*
1938          * Allocate eeprom data.
1939          */
1940         retval = rt2500pci_validate_eeprom(rt2x00dev);
1941         if (retval)
1942                 return retval;
1943
1944         retval = rt2500pci_init_eeprom(rt2x00dev);
1945         if (retval)
1946                 return retval;
1947
1948         /*
1949          * Enable rfkill polling by setting GPIO direction of the
1950          * rfkill switch GPIO pin correctly.
1951          */
1952         reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
1953         rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
1954         rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
1955
1956         /*
1957          * Initialize hw specifications.
1958          */
1959         retval = rt2500pci_probe_hw_mode(rt2x00dev);
1960         if (retval)
1961                 return retval;
1962
1963         /*
1964          * This device requires the atim queue and DMA-mapped skbs.
1965          */
1966         __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1967         __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1968         __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1969
1970         /*
1971          * Set the rssi offset.
1972          */
1973         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1974
1975         return 0;
1976 }
1977
1978 /*
1979  * IEEE80211 stack callback functions.
1980  */
1981 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
1982                              struct ieee80211_vif *vif)
1983 {
1984         struct rt2x00_dev *rt2x00dev = hw->priv;
1985         u64 tsf;
1986         u32 reg;
1987
1988         reg = rt2x00mmio_register_read(rt2x00dev, CSR17);
1989         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1990         reg = rt2x00mmio_register_read(rt2x00dev, CSR16);
1991         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1992
1993         return tsf;
1994 }
1995
1996 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1997 {
1998         struct rt2x00_dev *rt2x00dev = hw->priv;
1999         u32 reg;
2000
2001         reg = rt2x00mmio_register_read(rt2x00dev, CSR15);
2002         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
2003 }
2004
2005 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
2006         .tx                     = rt2x00mac_tx,
2007         .wake_tx_queue          = ieee80211_handle_wake_tx_queue,
2008         .start                  = rt2x00mac_start,
2009         .stop                   = rt2x00mac_stop,
2010         .add_interface          = rt2x00mac_add_interface,
2011         .remove_interface       = rt2x00mac_remove_interface,
2012         .config                 = rt2x00mac_config,
2013         .configure_filter       = rt2x00mac_configure_filter,
2014         .sw_scan_start          = rt2x00mac_sw_scan_start,
2015         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
2016         .get_stats              = rt2x00mac_get_stats,
2017         .bss_info_changed       = rt2x00mac_bss_info_changed,
2018         .conf_tx                = rt2x00mac_conf_tx,
2019         .get_tsf                = rt2500pci_get_tsf,
2020         .tx_last_beacon         = rt2500pci_tx_last_beacon,
2021         .rfkill_poll            = rt2x00mac_rfkill_poll,
2022         .flush                  = rt2x00mac_flush,
2023         .set_antenna            = rt2x00mac_set_antenna,
2024         .get_antenna            = rt2x00mac_get_antenna,
2025         .get_ringparam          = rt2x00mac_get_ringparam,
2026         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
2027 };
2028
2029 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
2030         .irq_handler            = rt2500pci_interrupt,
2031         .txstatus_tasklet       = rt2500pci_txstatus_tasklet,
2032         .tbtt_tasklet           = rt2500pci_tbtt_tasklet,
2033         .rxdone_tasklet         = rt2500pci_rxdone_tasklet,
2034         .probe_hw               = rt2500pci_probe_hw,
2035         .initialize             = rt2x00mmio_initialize,
2036         .uninitialize           = rt2x00mmio_uninitialize,
2037         .get_entry_state        = rt2500pci_get_entry_state,
2038         .clear_entry            = rt2500pci_clear_entry,
2039         .set_device_state       = rt2500pci_set_device_state,
2040         .rfkill_poll            = rt2500pci_rfkill_poll,
2041         .link_stats             = rt2500pci_link_stats,
2042         .reset_tuner            = rt2500pci_reset_tuner,
2043         .link_tuner             = rt2500pci_link_tuner,
2044         .start_queue            = rt2500pci_start_queue,
2045         .kick_queue             = rt2500pci_kick_queue,
2046         .stop_queue             = rt2500pci_stop_queue,
2047         .flush_queue            = rt2x00mmio_flush_queue,
2048         .write_tx_desc          = rt2500pci_write_tx_desc,
2049         .write_beacon           = rt2500pci_write_beacon,
2050         .fill_rxdone            = rt2500pci_fill_rxdone,
2051         .config_filter          = rt2500pci_config_filter,
2052         .config_intf            = rt2500pci_config_intf,
2053         .config_erp             = rt2500pci_config_erp,
2054         .config_ant             = rt2500pci_config_ant,
2055         .config                 = rt2500pci_config,
2056 };
2057
2058 static void rt2500pci_queue_init(struct data_queue *queue)
2059 {
2060         switch (queue->qid) {
2061         case QID_RX:
2062                 queue->limit = 32;
2063                 queue->data_size = DATA_FRAME_SIZE;
2064                 queue->desc_size = RXD_DESC_SIZE;
2065                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2066                 break;
2067
2068         case QID_AC_VO:
2069         case QID_AC_VI:
2070         case QID_AC_BE:
2071         case QID_AC_BK:
2072                 queue->limit = 32;
2073                 queue->data_size = DATA_FRAME_SIZE;
2074                 queue->desc_size = TXD_DESC_SIZE;
2075                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2076                 break;
2077
2078         case QID_BEACON:
2079                 queue->limit = 1;
2080                 queue->data_size = MGMT_FRAME_SIZE;
2081                 queue->desc_size = TXD_DESC_SIZE;
2082                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2083                 break;
2084
2085         case QID_ATIM:
2086                 queue->limit = 8;
2087                 queue->data_size = DATA_FRAME_SIZE;
2088                 queue->desc_size = TXD_DESC_SIZE;
2089                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2090                 break;
2091
2092         default:
2093                 BUG();
2094                 break;
2095         }
2096 }
2097
2098 static const struct rt2x00_ops rt2500pci_ops = {
2099         .name                   = KBUILD_MODNAME,
2100         .max_ap_intf            = 1,
2101         .eeprom_size            = EEPROM_SIZE,
2102         .rf_size                = RF_SIZE,
2103         .tx_queues              = NUM_TX_QUEUES,
2104         .queue_init             = rt2500pci_queue_init,
2105         .lib                    = &rt2500pci_rt2x00_ops,
2106         .hw                     = &rt2500pci_mac80211_ops,
2107 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2108         .debugfs                = &rt2500pci_rt2x00debug,
2109 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2110 };
2111
2112 /*
2113  * RT2500pci module information.
2114  */
2115 static const struct pci_device_id rt2500pci_device_table[] = {
2116         { PCI_DEVICE(0x1814, 0x0201) },
2117         { 0, }
2118 };
2119
2120 MODULE_AUTHOR(DRV_PROJECT);
2121 MODULE_VERSION(DRV_VERSION);
2122 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
2123 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
2124 MODULE_LICENSE("GPL");
2125
2126 static int rt2500pci_probe(struct pci_dev *pci_dev,
2127                            const struct pci_device_id *id)
2128 {
2129         return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
2130 }
2131
2132 static struct pci_driver rt2500pci_driver = {
2133         .name           = KBUILD_MODNAME,
2134         .id_table       = rt2500pci_device_table,
2135         .probe          = rt2500pci_probe,
2136         .remove         = rt2x00pci_remove,
2137         .driver.pm      = &rt2x00pci_pm_ops,
2138 };
2139
2140 module_pci_driver(rt2500pci_driver);