GNU Linux-libre 4.4.289-gnu1
[releases.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169 #include "ipw.h"
170
171 #define IPW2100_VERSION "git-1.2.2"
172
173 #define DRV_NAME        "ipw2100"
174 #define DRV_VERSION     IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
177
178 static struct pm_qos_request ipw2100_pm_qos_req;
179
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG        /* Reception debugging */
183 #endif
184
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217         if (ipw2100_debug_level & (level)) { \
218                 printk(KERN_DEBUG "ipw2100: %c %s ", \
219                        in_interrupt() ? 'I' : 'U',  __func__); \
220                 printk(message); \
221         } \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif                          /* CONFIG_IPW2100_DEBUG */
226
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229         "undefined",
230         "unused",               /* HOST_ATTENTION */
231         "HOST_COMPLETE",
232         "unused",               /* SLEEP */
233         "unused",               /* HOST_POWER_DOWN */
234         "unused",
235         "SYSTEM_CONFIG",
236         "unused",               /* SET_IMR */
237         "SSID",
238         "MANDATORY_BSSID",
239         "AUTHENTICATION_TYPE",
240         "ADAPTER_ADDRESS",
241         "PORT_TYPE",
242         "INTERNATIONAL_MODE",
243         "CHANNEL",
244         "RTS_THRESHOLD",
245         "FRAG_THRESHOLD",
246         "POWER_MODE",
247         "TX_RATES",
248         "BASIC_TX_RATES",
249         "WEP_KEY_INFO",
250         "unused",
251         "unused",
252         "unused",
253         "unused",
254         "WEP_KEY_INDEX",
255         "WEP_FLAGS",
256         "ADD_MULTICAST",
257         "CLEAR_ALL_MULTICAST",
258         "BEACON_INTERVAL",
259         "ATIM_WINDOW",
260         "CLEAR_STATISTICS",
261         "undefined",
262         "undefined",
263         "undefined",
264         "undefined",
265         "TX_POWER_INDEX",
266         "undefined",
267         "undefined",
268         "undefined",
269         "undefined",
270         "undefined",
271         "undefined",
272         "BROADCAST_SCAN",
273         "CARD_DISABLE",
274         "PREFERRED_BSSID",
275         "SET_SCAN_OPTIONS",
276         "SCAN_DWELL_TIME",
277         "SWEEP_TABLE",
278         "AP_OR_STATION_TABLE",
279         "GROUP_ORDINALS",
280         "SHORT_RETRY_LIMIT",
281         "LONG_RETRY_LIMIT",
282         "unused",               /* SAVE_CALIBRATION */
283         "unused",               /* RESTORE_CALIBRATION */
284         "undefined",
285         "undefined",
286         "undefined",
287         "HOST_PRE_POWER_DOWN",
288         "unused",               /* HOST_INTERRUPT_COALESCING */
289         "undefined",
290         "CARD_DISABLE_PHY_OFF",
291         "MSDU_TX_RATES",
292         "undefined",
293         "SET_STATION_STAT_BITS",
294         "CLEAR_STATIONS_STAT_BITS",
295         "LEAP_ROGUE_MODE",
296         "SET_SECURITY_INFORMATION",
297         "DISASSOCIATION_BSSID",
298         "SET_WPA_ASS_IE"
299 };
300 #endif
301
302 static const long ipw2100_frequencies[] = {
303         2412, 2417, 2422, 2427,
304         2432, 2437, 2442, 2447,
305         2452, 2457, 2462, 2467,
306         2472, 2484
307 };
308
309 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
310
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312         { .bitrate = 10 },
313         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330                                struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332                                 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334                                  size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336                                     size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338                                      struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340                                   struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static struct iw_handler_def ipw2100_wx_handler_def;
344
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347         struct ipw2100_priv *priv = libipw_priv(dev);
348
349         *val = ioread32(priv->ioaddr + reg);
350         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355         struct ipw2100_priv *priv = libipw_priv(dev);
356
357         iowrite32(val, priv->ioaddr + reg);
358         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362                                       u16 * val)
363 {
364         struct ipw2100_priv *priv = libipw_priv(dev);
365
366         *val = ioread16(priv->ioaddr + reg);
367         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372         struct ipw2100_priv *priv = libipw_priv(dev);
373
374         *val = ioread8(priv->ioaddr + reg);
375         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380         struct ipw2100_priv *priv = libipw_priv(dev);
381
382         iowrite16(val, priv->ioaddr + reg);
383         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388         struct ipw2100_priv *priv = libipw_priv(dev);
389
390         iowrite8(val, priv->ioaddr + reg);
391         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397                        addr & IPW_REG_INDIRECT_ADDR_MASK);
398         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404                        addr & IPW_REG_INDIRECT_ADDR_MASK);
405         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411                        addr & IPW_REG_INDIRECT_ADDR_MASK);
412         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418                        addr & IPW_REG_INDIRECT_ADDR_MASK);
419         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425                        addr & IPW_REG_INDIRECT_ADDR_MASK);
426         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432                        addr & IPW_REG_INDIRECT_ADDR_MASK);
433         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439                        addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448                                     const u8 * buf)
449 {
450         u32 aligned_addr;
451         u32 aligned_len;
452         u32 dif_len;
453         u32 i;
454
455         /* read first nibble byte by byte */
456         aligned_addr = addr & (~0x3);
457         dif_len = addr - aligned_addr;
458         if (dif_len) {
459                 /* Start reading at aligned_addr + dif_len */
460                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461                                aligned_addr);
462                 for (i = dif_len; i < 4; i++, buf++)
463                         write_register_byte(dev,
464                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
465                                             *buf);
466
467                 len -= dif_len;
468                 aligned_addr += 4;
469         }
470
471         /* read DWs through autoincrement registers */
472         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473         aligned_len = len & (~0x3);
474         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476
477         /* copy the last nibble */
478         dif_len = len - aligned_len;
479         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480         for (i = 0; i < dif_len; i++, buf++)
481                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482                                     *buf);
483 }
484
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486                                    u8 * buf)
487 {
488         u32 aligned_addr;
489         u32 aligned_len;
490         u32 dif_len;
491         u32 i;
492
493         /* read first nibble byte by byte */
494         aligned_addr = addr & (~0x3);
495         dif_len = addr - aligned_addr;
496         if (dif_len) {
497                 /* Start reading at aligned_addr + dif_len */
498                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499                                aligned_addr);
500                 for (i = dif_len; i < 4; i++, buf++)
501                         read_register_byte(dev,
502                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
503                                            buf);
504
505                 len -= dif_len;
506                 aligned_addr += 4;
507         }
508
509         /* read DWs through autoincrement registers */
510         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511         aligned_len = len & (~0x3);
512         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514
515         /* copy the last nibble */
516         dif_len = len - aligned_len;
517         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518         for (i = 0; i < dif_len; i++, buf++)
519                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524         u32 dbg;
525
526         read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527
528         return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532                                void *val, u32 * len)
533 {
534         struct ipw2100_ordinals *ordinals = &priv->ordinals;
535         u32 addr;
536         u32 field_info;
537         u16 field_len;
538         u16 field_count;
539         u32 total_length;
540
541         if (ordinals->table1_addr == 0) {
542                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543                        "before they have been loaded.\n");
544                 return -EINVAL;
545         }
546
547         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
550
551                         printk(KERN_WARNING DRV_NAME
552                                ": ordinal buffer length too small, need %zd\n",
553                                IPW_ORD_TAB_1_ENTRY_SIZE);
554
555                         return -EINVAL;
556                 }
557
558                 read_nic_dword(priv->net_dev,
559                                ordinals->table1_addr + (ord << 2), &addr);
560                 read_nic_dword(priv->net_dev, addr, val);
561
562                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
563
564                 return 0;
565         }
566
567         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568
569                 ord -= IPW_START_ORD_TAB_2;
570
571                 /* get the address of statistic */
572                 read_nic_dword(priv->net_dev,
573                                ordinals->table2_addr + (ord << 3), &addr);
574
575                 /* get the second DW of statistics ;
576                  * two 16-bit words - first is length, second is count */
577                 read_nic_dword(priv->net_dev,
578                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
579                                &field_info);
580
581                 /* get each entry length */
582                 field_len = *((u16 *) & field_info);
583
584                 /* get number of entries */
585                 field_count = *(((u16 *) & field_info) + 1);
586
587                 /* abort if no enough memory */
588                 total_length = field_len * field_count;
589                 if (total_length > *len) {
590                         *len = total_length;
591                         return -EINVAL;
592                 }
593
594                 *len = total_length;
595                 if (!total_length)
596                         return 0;
597
598                 /* read the ordinal data from the SRAM */
599                 read_nic_memory(priv->net_dev, addr, total_length, val);
600
601                 return 0;
602         }
603
604         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605                "in table 2\n", ord);
606
607         return -EINVAL;
608 }
609
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611                                u32 * len)
612 {
613         struct ipw2100_ordinals *ordinals = &priv->ordinals;
614         u32 addr;
615
616         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619                         IPW_DEBUG_INFO("wrong size\n");
620                         return -EINVAL;
621                 }
622
623                 read_nic_dword(priv->net_dev,
624                                ordinals->table1_addr + (ord << 2), &addr);
625
626                 write_nic_dword(priv->net_dev, addr, *val);
627
628                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
629
630                 return 0;
631         }
632
633         IPW_DEBUG_INFO("wrong table\n");
634         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635                 return -EINVAL;
636
637         return -EINVAL;
638 }
639
640 static char *snprint_line(char *buf, size_t count,
641                           const u8 * data, u32 len, u32 ofs)
642 {
643         int out, i, j, l;
644         char c;
645
646         out = snprintf(buf, count, "%08X", ofs);
647
648         for (l = 0, i = 0; i < 2; i++) {
649                 out += snprintf(buf + out, count - out, " ");
650                 for (j = 0; j < 8 && l < len; j++, l++)
651                         out += snprintf(buf + out, count - out, "%02X ",
652                                         data[(i * 8 + j)]);
653                 for (; j < 8; j++)
654                         out += snprintf(buf + out, count - out, "   ");
655         }
656
657         out += snprintf(buf + out, count - out, " ");
658         for (l = 0, i = 0; i < 2; i++) {
659                 out += snprintf(buf + out, count - out, " ");
660                 for (j = 0; j < 8 && l < len; j++, l++) {
661                         c = data[(i * 8 + j)];
662                         if (!isascii(c) || !isprint(c))
663                                 c = '.';
664
665                         out += snprintf(buf + out, count - out, "%c", c);
666                 }
667
668                 for (; j < 8; j++)
669                         out += snprintf(buf + out, count - out, " ");
670         }
671
672         return buf;
673 }
674
675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677         char line[81];
678         u32 ofs = 0;
679         if (!(ipw2100_debug_level & level))
680                 return;
681
682         while (len) {
683                 printk(KERN_DEBUG "%s\n",
684                        snprint_line(line, sizeof(line), &data[ofs],
685                                     min(len, 16U), ofs));
686                 ofs += 16;
687                 len -= min(len, 16U);
688         }
689 }
690
691 #define MAX_RESET_BACKOFF 10
692
693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695         unsigned long now = get_seconds();
696
697         /* If we haven't received a reset request within the backoff period,
698          * then we can reset the backoff interval so this reset occurs
699          * immediately */
700         if (priv->reset_backoff &&
701             (now - priv->last_reset > priv->reset_backoff))
702                 priv->reset_backoff = 0;
703
704         priv->last_reset = get_seconds();
705
706         if (!(priv->status & STATUS_RESET_PENDING)) {
707                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708                                priv->net_dev->name, priv->reset_backoff);
709                 netif_carrier_off(priv->net_dev);
710                 netif_stop_queue(priv->net_dev);
711                 priv->status |= STATUS_RESET_PENDING;
712                 if (priv->reset_backoff)
713                         schedule_delayed_work(&priv->reset_work,
714                                               priv->reset_backoff * HZ);
715                 else
716                         schedule_delayed_work(&priv->reset_work, 0);
717
718                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719                         priv->reset_backoff++;
720
721                 wake_up_interruptible(&priv->wait_command_queue);
722         } else
723                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724                                priv->net_dev->name);
725
726 }
727
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730                                    struct host_command *cmd)
731 {
732         struct list_head *element;
733         struct ipw2100_tx_packet *packet;
734         unsigned long flags;
735         int err = 0;
736
737         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738                      command_types[cmd->host_command], cmd->host_command,
739                      cmd->host_command_length);
740         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741                    cmd->host_command_length);
742
743         spin_lock_irqsave(&priv->low_lock, flags);
744
745         if (priv->fatal_error) {
746                 IPW_DEBUG_INFO
747                     ("Attempt to send command while hardware in fatal error condition.\n");
748                 err = -EIO;
749                 goto fail_unlock;
750         }
751
752         if (!(priv->status & STATUS_RUNNING)) {
753                 IPW_DEBUG_INFO
754                     ("Attempt to send command while hardware is not running.\n");
755                 err = -EIO;
756                 goto fail_unlock;
757         }
758
759         if (priv->status & STATUS_CMD_ACTIVE) {
760                 IPW_DEBUG_INFO
761                     ("Attempt to send command while another command is pending.\n");
762                 err = -EBUSY;
763                 goto fail_unlock;
764         }
765
766         if (list_empty(&priv->msg_free_list)) {
767                 IPW_DEBUG_INFO("no available msg buffers\n");
768                 goto fail_unlock;
769         }
770
771         priv->status |= STATUS_CMD_ACTIVE;
772         priv->messages_sent++;
773
774         element = priv->msg_free_list.next;
775
776         packet = list_entry(element, struct ipw2100_tx_packet, list);
777         packet->jiffy_start = jiffies;
778
779         /* initialize the firmware command packet */
780         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782         packet->info.c_struct.cmd->host_command_len_reg =
783             cmd->host_command_length;
784         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785
786         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787                cmd->host_command_parameters,
788                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789
790         list_del(element);
791         DEC_STAT(&priv->msg_free_stat);
792
793         list_add_tail(element, &priv->msg_pend_list);
794         INC_STAT(&priv->msg_pend_stat);
795
796         ipw2100_tx_send_commands(priv);
797         ipw2100_tx_send_data(priv);
798
799         spin_unlock_irqrestore(&priv->low_lock, flags);
800
801         /*
802          * We must wait for this command to complete before another
803          * command can be sent...  but if we wait more than 3 seconds
804          * then there is a problem.
805          */
806
807         err =
808             wait_event_interruptible_timeout(priv->wait_command_queue,
809                                              !(priv->
810                                                status & STATUS_CMD_ACTIVE),
811                                              HOST_COMPLETE_TIMEOUT);
812
813         if (err == 0) {
814                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817                 priv->status &= ~STATUS_CMD_ACTIVE;
818                 schedule_reset(priv);
819                 return -EIO;
820         }
821
822         if (priv->fatal_error) {
823                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824                        priv->net_dev->name);
825                 return -EIO;
826         }
827
828         /* !!!!! HACK TEST !!!!!
829          * When lots of debug trace statements are enabled, the driver
830          * doesn't seem to have as many firmware restart cycles...
831          *
832          * As a test, we're sticking in a 1/100s delay here */
833         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834
835         return 0;
836
837       fail_unlock:
838         spin_unlock_irqrestore(&priv->low_lock, flags);
839
840         return err;
841 }
842
843 /*
844  * Verify the values and data access of the hardware
845  * No locks needed or used.  No functions called.
846  */
847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849         u32 data1, data2;
850         u32 address;
851
852         u32 val1 = 0x76543210;
853         u32 val2 = 0xFEDCBA98;
854
855         /* Domain 0 check - all values should be DOA_DEBUG */
856         for (address = IPW_REG_DOA_DEBUG_AREA_START;
857              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858                 read_register(priv->net_dev, address, &data1);
859                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860                         return -EIO;
861         }
862
863         /* Domain 1 check - use arbitrary read/write compare  */
864         for (address = 0; address < 5; address++) {
865                 /* The memory area is not used now */
866                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867                                val1);
868                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869                                val2);
870                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871                               &data1);
872                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873                               &data2);
874                 if (val1 == data1 && val2 == data2)
875                         return 0;
876         }
877
878         return -EIO;
879 }
880
881 /*
882  *
883  * Loop until the CARD_DISABLED bit is the same value as the
884  * supplied parameter
885  *
886  * TODO: See if it would be more efficient to do a wait/wake
887  *       cycle and have the completion event trigger the wakeup
888  *
889  */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893         int i;
894         u32 card_state;
895         u32 len = sizeof(card_state);
896         int err;
897
898         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900                                           &card_state, &len);
901                 if (err) {
902                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903                                        "failed.\n");
904                         return 0;
905                 }
906
907                 /* We'll break out if either the HW state says it is
908                  * in the state we want, or if HOST_COMPLETE command
909                  * finishes */
910                 if ((card_state == state) ||
911                     ((priv->status & STATUS_ENABLED) ?
912                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913                         if (state == IPW_HW_STATE_ENABLED)
914                                 priv->status |= STATUS_ENABLED;
915                         else
916                                 priv->status &= ~STATUS_ENABLED;
917
918                         return 0;
919                 }
920
921                 udelay(50);
922         }
923
924         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925                        state ? "DISABLED" : "ENABLED");
926         return -EIO;
927 }
928
929 /*********************************************************************
930     Procedure   :   sw_reset_and_clock
931     Purpose     :   Asserts s/w reset, asserts clock initialization
932                     and waits for clock stabilization
933  ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936         int i;
937         u32 r;
938
939         // assert s/w reset
940         write_register(priv->net_dev, IPW_REG_RESET_REG,
941                        IPW_AUX_HOST_RESET_REG_SW_RESET);
942
943         // wait for clock stabilization
944         for (i = 0; i < 1000; i++) {
945                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946
947                 // check clock ready bit
948                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950                         break;
951         }
952
953         if (i == 1000)
954                 return -EIO;    // TODO: better error value
955
956         /* set "initialization complete" bit to move adapter to
957          * D0 state */
958         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960
961         /* wait for clock stabilization */
962         for (i = 0; i < 10000; i++) {
963                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964
965                 /* check clock ready bit */
966                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968                         break;
969         }
970
971         if (i == 10000)
972                 return -EIO;    /* TODO: better error value */
973
974         /* set D0 standby bit */
975         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978
979         return 0;
980 }
981
982 /*********************************************************************
983     Procedure   :   ipw2100_download_firmware
984     Purpose     :   Initiaze adapter after power on.
985                     The sequence is:
986                     1. assert s/w reset first!
987                     2. awake clocks & wait for clock stabilization
988                     3. hold ARC (don't ask me why...)
989                     4. load Dino ucode and reset/clock init again
990                     5. zero-out shared mem
991                     6. download f/w
992  *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995         u32 address;
996         int err;
997
998 #ifndef CONFIG_PM
999         /* Fetch the firmware and microcode */
1000         struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002
1003         if (priv->fatal_error) {
1004                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005                                 "fatal error %d.  Interface must be brought down.\n",
1006                                 priv->net_dev->name, priv->fatal_error);
1007                 return -EINVAL;
1008         }
1009 #ifdef CONFIG_PM
1010         if (!ipw2100_firmware.version) {
1011                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012                 if (err) {
1013                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014                                         priv->net_dev->name, err);
1015                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016                         goto fail;
1017                 }
1018         }
1019 #else
1020         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021         if (err) {
1022                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023                                 priv->net_dev->name, err);
1024                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025                 goto fail;
1026         }
1027 #endif
1028         priv->firmware_version = ipw2100_firmware.version;
1029
1030         /* s/w reset and clock stabilization */
1031         err = sw_reset_and_clock(priv);
1032         if (err) {
1033                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034                                 priv->net_dev->name, err);
1035                 goto fail;
1036         }
1037
1038         err = ipw2100_verify(priv);
1039         if (err) {
1040                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041                                 priv->net_dev->name, err);
1042                 goto fail;
1043         }
1044
1045         /* Hold ARC */
1046         write_nic_dword(priv->net_dev,
1047                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048
1049         /* allow ARC to run */
1050         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051
1052         /* load microcode */
1053         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054         if (err) {
1055                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056                        priv->net_dev->name, err);
1057                 goto fail;
1058         }
1059
1060         /* release ARC */
1061         write_nic_dword(priv->net_dev,
1062                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063
1064         /* s/w reset and clock stabilization (again!!!) */
1065         err = sw_reset_and_clock(priv);
1066         if (err) {
1067                 printk(KERN_ERR DRV_NAME
1068                        ": %s: sw_reset_and_clock failed: %d\n",
1069                        priv->net_dev->name, err);
1070                 goto fail;
1071         }
1072
1073         /* load f/w */
1074         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075         if (err) {
1076                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077                                 priv->net_dev->name, err);
1078                 goto fail;
1079         }
1080 #ifndef CONFIG_PM
1081         /*
1082          * When the .resume method of the driver is called, the other
1083          * part of the system, i.e. the ide driver could still stay in
1084          * the suspend stage. This prevents us from loading the firmware
1085          * from the disk.  --YZ
1086          */
1087
1088         /* free any storage allocated for firmware image */
1089         ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091
1092         /* zero out Domain 1 area indirectly (Si requirement) */
1093         for (address = IPW_HOST_FW_SHARED_AREA0;
1094              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095                 write_nic_dword(priv->net_dev, address, 0);
1096         for (address = IPW_HOST_FW_SHARED_AREA1;
1097              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098                 write_nic_dword(priv->net_dev, address, 0);
1099         for (address = IPW_HOST_FW_SHARED_AREA2;
1100              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101                 write_nic_dword(priv->net_dev, address, 0);
1102         for (address = IPW_HOST_FW_SHARED_AREA3;
1103              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104                 write_nic_dword(priv->net_dev, address, 0);
1105         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107                 write_nic_dword(priv->net_dev, address, 0);
1108
1109         return 0;
1110
1111       fail:
1112         ipw2100_release_firmware(priv, &ipw2100_firmware);
1113         return err;
1114 }
1115
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118         if (priv->status & STATUS_INT_ENABLED)
1119                 return;
1120         priv->status |= STATUS_INT_ENABLED;
1121         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126         if (!(priv->status & STATUS_INT_ENABLED))
1127                 return;
1128         priv->status &= ~STATUS_INT_ENABLED;
1129         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134         struct ipw2100_ordinals *ord = &priv->ordinals;
1135
1136         IPW_DEBUG_INFO("enter\n");
1137
1138         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139                       &ord->table1_addr);
1140
1141         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142                       &ord->table2_addr);
1143
1144         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146
1147         ord->table2_size &= 0x0000FFFF;
1148
1149         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151         IPW_DEBUG_INFO("exit\n");
1152 }
1153
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156         u32 reg = 0;
1157         /*
1158          * Set GPIO 3 writable by FW; GPIO 1 writable
1159          * by driver and enable clock
1160          */
1161         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162                IPW_BIT_GPIO_LED_OFF);
1163         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170
1171         unsigned short value = 0;
1172         u32 reg = 0;
1173         int i;
1174
1175         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177                 priv->status &= ~STATUS_RF_KILL_HW;
1178                 return 0;
1179         }
1180
1181         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182                 udelay(RF_KILL_CHECK_DELAY);
1183                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185         }
1186
1187         if (value == 0) {
1188                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189                 priv->status |= STATUS_RF_KILL_HW;
1190         } else {
1191                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192                 priv->status &= ~STATUS_RF_KILL_HW;
1193         }
1194
1195         return (value == 0);
1196 }
1197
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200         u32 addr, len;
1201         u32 val;
1202
1203         /*
1204          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205          */
1206         len = sizeof(addr);
1207         if (ipw2100_get_ordinal
1208             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210                                __LINE__);
1211                 return -EIO;
1212         }
1213
1214         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215
1216         /*
1217          * EEPROM version is the byte at offset 0xfd in firmware
1218          * We read 4 bytes, then shift out the byte we actually want */
1219         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220         priv->eeprom_version = (val >> 24) & 0xFF;
1221         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222
1223         /*
1224          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225          *
1226          *  notice that the EEPROM bit is reverse polarity, i.e.
1227          *     bit = 0  signifies HW RF kill switch is supported
1228          *     bit = 1  signifies HW RF kill switch is NOT supported
1229          */
1230         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231         if (!((val >> 24) & 0x01))
1232                 priv->hw_features |= HW_FEATURE_RFKILL;
1233
1234         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236
1237         return 0;
1238 }
1239
1240 /*
1241  * Start firmware execution after power on and intialization
1242  * The sequence is:
1243  *  1. Release ARC
1244  *  2. Wait for f/w initialization completes;
1245  */
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248         int i;
1249         u32 inta, inta_mask, gpio;
1250
1251         IPW_DEBUG_INFO("enter\n");
1252
1253         if (priv->status & STATUS_RUNNING)
1254                 return 0;
1255
1256         /*
1257          * Initialize the hw - drive adapter to DO state by setting
1258          * init_done bit. Wait for clk_ready bit and Download
1259          * fw & dino ucode
1260          */
1261         if (ipw2100_download_firmware(priv)) {
1262                 printk(KERN_ERR DRV_NAME
1263                        ": %s: Failed to power on the adapter.\n",
1264                        priv->net_dev->name);
1265                 return -EIO;
1266         }
1267
1268         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269          * in the firmware RBD and TBD ring queue */
1270         ipw2100_queues_initialize(priv);
1271
1272         ipw2100_hw_set_gpio(priv);
1273
1274         /* TODO -- Look at disabling interrupts here to make sure none
1275          * get fired during FW initialization */
1276
1277         /* Release ARC - clear reset bit */
1278         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279
1280         /* wait for f/w intialization complete */
1281         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282         i = 5000;
1283         do {
1284                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285                 /* Todo... wait for sync command ... */
1286
1287                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288
1289                 /* check "init done" bit */
1290                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291                         /* reset "init done" bit */
1292                         write_register(priv->net_dev, IPW_REG_INTA,
1293                                        IPW2100_INTA_FW_INIT_DONE);
1294                         break;
1295                 }
1296
1297                 /* check error conditions : we check these after the firmware
1298                  * check so that if there is an error, the interrupt handler
1299                  * will see it and the adapter will be reset */
1300                 if (inta &
1301                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302                         /* clear error conditions */
1303                         write_register(priv->net_dev, IPW_REG_INTA,
1304                                        IPW2100_INTA_FATAL_ERROR |
1305                                        IPW2100_INTA_PARITY_ERROR);
1306                 }
1307         } while (--i);
1308
1309         /* Clear out any pending INTAs since we aren't supposed to have
1310          * interrupts enabled at this point... */
1311         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313         inta &= IPW_INTERRUPT_MASK;
1314         /* Clear out any pending interrupts */
1315         if (inta & inta_mask)
1316                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1317
1318         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319                      i ? "SUCCESS" : "FAILED");
1320
1321         if (!i) {
1322                 printk(KERN_WARNING DRV_NAME
1323                        ": %s: Firmware did not initialize.\n",
1324                        priv->net_dev->name);
1325                 return -EIO;
1326         }
1327
1328         /* allow firmware to write to GPIO1 & GPIO3 */
1329         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330
1331         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332
1333         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334
1335         /* Ready to receive commands */
1336         priv->status |= STATUS_RUNNING;
1337
1338         /* The adapter has been reset; we are not associated */
1339         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340
1341         IPW_DEBUG_INFO("exit\n");
1342
1343         return 0;
1344 }
1345
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348         if (!priv->fatal_error)
1349                 return;
1350
1351         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353         priv->fatal_error = 0;
1354 }
1355
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359         u32 reg;
1360         int i;
1361
1362         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363
1364         ipw2100_hw_set_gpio(priv);
1365
1366         /* Step 1. Stop Master Assert */
1367         write_register(priv->net_dev, IPW_REG_RESET_REG,
1368                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369
1370         /* Step 2. Wait for stop Master Assert
1371          *         (not more than 50us, otherwise ret error */
1372         i = 5;
1373         do {
1374                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376
1377                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378                         break;
1379         } while (--i);
1380
1381         priv->status &= ~STATUS_RESET_PENDING;
1382
1383         if (!i) {
1384                 IPW_DEBUG_INFO
1385                     ("exit - waited too long for master assert stop\n");
1386                 return -EIO;
1387         }
1388
1389         write_register(priv->net_dev, IPW_REG_RESET_REG,
1390                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1391
1392         /* Reset any fatal_error conditions */
1393         ipw2100_reset_fatalerror(priv);
1394
1395         /* At this point, the adapter is now stopped and disabled */
1396         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397                           STATUS_ASSOCIATED | STATUS_ENABLED);
1398
1399         return 0;
1400 }
1401
1402 /*
1403  * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404  *
1405  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406  *
1407  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408  * if STATUS_ASSN_LOST is sent.
1409  */
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412
1413 #define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50))
1414
1415         struct host_command cmd = {
1416                 .host_command = CARD_DISABLE_PHY_OFF,
1417                 .host_command_sequence = 0,
1418                 .host_command_length = 0,
1419         };
1420         int err, i;
1421         u32 val1, val2;
1422
1423         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424
1425         /* Turn off the radio */
1426         err = ipw2100_hw_send_command(priv, &cmd);
1427         if (err)
1428                 return err;
1429
1430         for (i = 0; i < 2500; i++) {
1431                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433
1434                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435                     (val2 & IPW2100_COMMAND_PHY_OFF))
1436                         return 0;
1437
1438                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439         }
1440
1441         return -EIO;
1442 }
1443
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446         struct host_command cmd = {
1447                 .host_command = HOST_COMPLETE,
1448                 .host_command_sequence = 0,
1449                 .host_command_length = 0
1450         };
1451         int err = 0;
1452
1453         IPW_DEBUG_HC("HOST_COMPLETE\n");
1454
1455         if (priv->status & STATUS_ENABLED)
1456                 return 0;
1457
1458         mutex_lock(&priv->adapter_mutex);
1459
1460         if (rf_kill_active(priv)) {
1461                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462                 goto fail_up;
1463         }
1464
1465         err = ipw2100_hw_send_command(priv, &cmd);
1466         if (err) {
1467                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468                 goto fail_up;
1469         }
1470
1471         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472         if (err) {
1473                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474                                priv->net_dev->name);
1475                 goto fail_up;
1476         }
1477
1478         if (priv->stop_hang_check) {
1479                 priv->stop_hang_check = 0;
1480                 schedule_delayed_work(&priv->hang_check, HZ / 2);
1481         }
1482
1483       fail_up:
1484         mutex_unlock(&priv->adapter_mutex);
1485         return err;
1486 }
1487
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491
1492         struct host_command cmd = {
1493                 .host_command = HOST_PRE_POWER_DOWN,
1494                 .host_command_sequence = 0,
1495                 .host_command_length = 0,
1496         };
1497         int err, i;
1498         u32 reg;
1499
1500         if (!(priv->status & STATUS_RUNNING))
1501                 return 0;
1502
1503         priv->status |= STATUS_STOPPING;
1504
1505         /* We can only shut down the card if the firmware is operational.  So,
1506          * if we haven't reset since a fatal_error, then we can not send the
1507          * shutdown commands. */
1508         if (!priv->fatal_error) {
1509                 /* First, make sure the adapter is enabled so that the PHY_OFF
1510                  * command can shut it down */
1511                 ipw2100_enable_adapter(priv);
1512
1513                 err = ipw2100_hw_phy_off(priv);
1514                 if (err)
1515                         printk(KERN_WARNING DRV_NAME
1516                                ": Error disabling radio %d\n", err);
1517
1518                 /*
1519                  * If in D0-standby mode going directly to D3 may cause a
1520                  * PCI bus violation.  Therefore we must change out of the D0
1521                  * state.
1522                  *
1523                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524                  * hardware from going into standby mode and will transition
1525                  * out of D0-standby if it is already in that state.
1526                  *
1527                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528                  * driver upon completion.  Once received, the driver can
1529                  * proceed to the D3 state.
1530                  *
1531                  * Prepare for power down command to fw.  This command would
1532                  * take HW out of D0-standby and prepare it for D3 state.
1533                  *
1534                  * Currently FW does not support event notification for this
1535                  * event. Therefore, skip waiting for it.  Just wait a fixed
1536                  * 100ms
1537                  */
1538                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539
1540                 err = ipw2100_hw_send_command(priv, &cmd);
1541                 if (err)
1542                         printk(KERN_WARNING DRV_NAME ": "
1543                                "%s: Power down command failed: Error %d\n",
1544                                priv->net_dev->name, err);
1545                 else
1546                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547         }
1548
1549         priv->status &= ~STATUS_ENABLED;
1550
1551         /*
1552          * Set GPIO 3 writable by FW; GPIO 1 writable
1553          * by driver and enable clock
1554          */
1555         ipw2100_hw_set_gpio(priv);
1556
1557         /*
1558          * Power down adapter.  Sequence:
1559          * 1. Stop master assert (RESET_REG[9]=1)
1560          * 2. Wait for stop master (RESET_REG[8]==1)
1561          * 3. S/w reset assert (RESET_REG[7] = 1)
1562          */
1563
1564         /* Stop master assert */
1565         write_register(priv->net_dev, IPW_REG_RESET_REG,
1566                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567
1568         /* wait stop master not more than 50 usec.
1569          * Otherwise return error. */
1570         for (i = 5; i > 0; i--) {
1571                 udelay(10);
1572
1573                 /* Check master stop bit */
1574                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575
1576                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577                         break;
1578         }
1579
1580         if (i == 0)
1581                 printk(KERN_WARNING DRV_NAME
1582                        ": %s: Could now power down adapter.\n",
1583                        priv->net_dev->name);
1584
1585         /* assert s/w reset */
1586         write_register(priv->net_dev, IPW_REG_RESET_REG,
1587                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1588
1589         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590
1591         return 0;
1592 }
1593
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596         struct host_command cmd = {
1597                 .host_command = CARD_DISABLE,
1598                 .host_command_sequence = 0,
1599                 .host_command_length = 0
1600         };
1601         int err = 0;
1602
1603         IPW_DEBUG_HC("CARD_DISABLE\n");
1604
1605         if (!(priv->status & STATUS_ENABLED))
1606                 return 0;
1607
1608         /* Make sure we clear the associated state */
1609         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610
1611         if (!priv->stop_hang_check) {
1612                 priv->stop_hang_check = 1;
1613                 cancel_delayed_work(&priv->hang_check);
1614         }
1615
1616         mutex_lock(&priv->adapter_mutex);
1617
1618         err = ipw2100_hw_send_command(priv, &cmd);
1619         if (err) {
1620                 printk(KERN_WARNING DRV_NAME
1621                        ": exit - failed to send CARD_DISABLE command\n");
1622                 goto fail_up;
1623         }
1624
1625         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626         if (err) {
1627                 printk(KERN_WARNING DRV_NAME
1628                        ": exit - card failed to change to DISABLED\n");
1629                 goto fail_up;
1630         }
1631
1632         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633
1634       fail_up:
1635         mutex_unlock(&priv->adapter_mutex);
1636         return err;
1637 }
1638
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641         struct host_command cmd = {
1642                 .host_command = SET_SCAN_OPTIONS,
1643                 .host_command_sequence = 0,
1644                 .host_command_length = 8
1645         };
1646         int err;
1647
1648         IPW_DEBUG_INFO("enter\n");
1649
1650         IPW_DEBUG_SCAN("setting scan options\n");
1651
1652         cmd.host_command_parameters[0] = 0;
1653
1654         if (!(priv->config & CFG_ASSOCIATE))
1655                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658         if (priv->config & CFG_PASSIVE_SCAN)
1659                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660
1661         cmd.host_command_parameters[1] = priv->channel_mask;
1662
1663         err = ipw2100_hw_send_command(priv, &cmd);
1664
1665         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666                      cmd.host_command_parameters[0]);
1667
1668         return err;
1669 }
1670
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673         struct host_command cmd = {
1674                 .host_command = BROADCAST_SCAN,
1675                 .host_command_sequence = 0,
1676                 .host_command_length = 4
1677         };
1678         int err;
1679
1680         IPW_DEBUG_HC("START_SCAN\n");
1681
1682         cmd.host_command_parameters[0] = 0;
1683
1684         /* No scanning if in monitor mode */
1685         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686                 return 1;
1687
1688         if (priv->status & STATUS_SCANNING) {
1689                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690                 return 0;
1691         }
1692
1693         IPW_DEBUG_INFO("enter\n");
1694
1695         /* Not clearing here; doing so makes iwlist always return nothing...
1696          *
1697          * We should modify the table logic to use aging tables vs. clearing
1698          * the table on each scan start.
1699          */
1700         IPW_DEBUG_SCAN("starting scan\n");
1701
1702         priv->status |= STATUS_SCANNING;
1703         err = ipw2100_hw_send_command(priv, &cmd);
1704         if (err)
1705                 priv->status &= ~STATUS_SCANNING;
1706
1707         IPW_DEBUG_INFO("exit\n");
1708
1709         return err;
1710 }
1711
1712 static const struct libipw_geo ipw_geos[] = {
1713         {                       /* Restricted */
1714          "---",
1715          .bg_channels = 14,
1716          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717                 {2427, 4}, {2432, 5}, {2437, 6},
1718                 {2442, 7}, {2447, 8}, {2452, 9},
1719                 {2457, 10}, {2462, 11}, {2467, 12},
1720                 {2472, 13}, {2484, 14}},
1721          },
1722 };
1723
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726         unsigned long flags;
1727         int rc = 0;
1728         u32 lock;
1729         u32 ord_len = sizeof(lock);
1730
1731         /* Age scan list entries found before suspend */
1732         if (priv->suspend_time) {
1733                 libipw_networks_age(priv->ieee, priv->suspend_time);
1734                 priv->suspend_time = 0;
1735         }
1736
1737         /* Quiet if manually disabled. */
1738         if (priv->status & STATUS_RF_KILL_SW) {
1739                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740                                "switch\n", priv->net_dev->name);
1741                 return 0;
1742         }
1743
1744         /* the ipw2100 hardware really doesn't want power management delays
1745          * longer than 175usec
1746          */
1747         pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748
1749         /* If the interrupt is enabled, turn it off... */
1750         spin_lock_irqsave(&priv->low_lock, flags);
1751         ipw2100_disable_interrupts(priv);
1752
1753         /* Reset any fatal_error conditions */
1754         ipw2100_reset_fatalerror(priv);
1755         spin_unlock_irqrestore(&priv->low_lock, flags);
1756
1757         if (priv->status & STATUS_POWERED ||
1758             (priv->status & STATUS_RESET_PENDING)) {
1759                 /* Power cycle the card ... */
1760                 if (ipw2100_power_cycle_adapter(priv)) {
1761                         printk(KERN_WARNING DRV_NAME
1762                                ": %s: Could not cycle adapter.\n",
1763                                priv->net_dev->name);
1764                         rc = 1;
1765                         goto exit;
1766                 }
1767         } else
1768                 priv->status |= STATUS_POWERED;
1769
1770         /* Load the firmware, start the clocks, etc. */
1771         if (ipw2100_start_adapter(priv)) {
1772                 printk(KERN_ERR DRV_NAME
1773                        ": %s: Failed to start the firmware.\n",
1774                        priv->net_dev->name);
1775                 rc = 1;
1776                 goto exit;
1777         }
1778
1779         ipw2100_initialize_ordinals(priv);
1780
1781         /* Determine capabilities of this particular HW configuration */
1782         if (ipw2100_get_hw_features(priv)) {
1783                 printk(KERN_ERR DRV_NAME
1784                        ": %s: Failed to determine HW features.\n",
1785                        priv->net_dev->name);
1786                 rc = 1;
1787                 goto exit;
1788         }
1789
1790         /* Initialize the geo */
1791         libipw_set_geo(priv->ieee, &ipw_geos[0]);
1792         priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793
1794         lock = LOCK_NONE;
1795         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1796                 printk(KERN_ERR DRV_NAME
1797                        ": %s: Failed to clear ordinal lock.\n",
1798                        priv->net_dev->name);
1799                 rc = 1;
1800                 goto exit;
1801         }
1802
1803         priv->status &= ~STATUS_SCANNING;
1804
1805         if (rf_kill_active(priv)) {
1806                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807                        priv->net_dev->name);
1808
1809                 if (priv->stop_rf_kill) {
1810                         priv->stop_rf_kill = 0;
1811                         schedule_delayed_work(&priv->rf_kill,
1812                                               round_jiffies_relative(HZ));
1813                 }
1814
1815                 deferred = 1;
1816         }
1817
1818         /* Turn on the interrupt so that commands can be processed */
1819         ipw2100_enable_interrupts(priv);
1820
1821         /* Send all of the commands that must be sent prior to
1822          * HOST_COMPLETE */
1823         if (ipw2100_adapter_setup(priv)) {
1824                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1825                        priv->net_dev->name);
1826                 rc = 1;
1827                 goto exit;
1828         }
1829
1830         if (!deferred) {
1831                 /* Enable the adapter - sends HOST_COMPLETE */
1832                 if (ipw2100_enable_adapter(priv)) {
1833                         printk(KERN_ERR DRV_NAME ": "
1834                                "%s: failed in call to enable adapter.\n",
1835                                priv->net_dev->name);
1836                         ipw2100_hw_stop_adapter(priv);
1837                         rc = 1;
1838                         goto exit;
1839                 }
1840
1841                 /* Start a scan . . . */
1842                 ipw2100_set_scan_options(priv);
1843                 ipw2100_start_scan(priv);
1844         }
1845
1846       exit:
1847         return rc;
1848 }
1849
1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852         unsigned long flags;
1853         union iwreq_data wrqu = {
1854                 .ap_addr = {
1855                             .sa_family = ARPHRD_ETHER}
1856         };
1857         int associated = priv->status & STATUS_ASSOCIATED;
1858
1859         /* Kill the RF switch timer */
1860         if (!priv->stop_rf_kill) {
1861                 priv->stop_rf_kill = 1;
1862                 cancel_delayed_work(&priv->rf_kill);
1863         }
1864
1865         /* Kill the firmware hang check timer */
1866         if (!priv->stop_hang_check) {
1867                 priv->stop_hang_check = 1;
1868                 cancel_delayed_work(&priv->hang_check);
1869         }
1870
1871         /* Kill any pending resets */
1872         if (priv->status & STATUS_RESET_PENDING)
1873                 cancel_delayed_work(&priv->reset_work);
1874
1875         /* Make sure the interrupt is on so that FW commands will be
1876          * processed correctly */
1877         spin_lock_irqsave(&priv->low_lock, flags);
1878         ipw2100_enable_interrupts(priv);
1879         spin_unlock_irqrestore(&priv->low_lock, flags);
1880
1881         if (ipw2100_hw_stop_adapter(priv))
1882                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883                        priv->net_dev->name);
1884
1885         /* Do not disable the interrupt until _after_ we disable
1886          * the adaptor.  Otherwise the CARD_DISABLE command will never
1887          * be ack'd by the firmware */
1888         spin_lock_irqsave(&priv->low_lock, flags);
1889         ipw2100_disable_interrupts(priv);
1890         spin_unlock_irqrestore(&priv->low_lock, flags);
1891
1892         pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893
1894         /* We have to signal any supplicant if we are disassociating */
1895         if (associated)
1896                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897
1898         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899         netif_carrier_off(priv->net_dev);
1900         netif_stop_queue(priv->net_dev);
1901 }
1902
1903 static int ipw2100_wdev_init(struct net_device *dev)
1904 {
1905         struct ipw2100_priv *priv = libipw_priv(dev);
1906         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1907         struct wireless_dev *wdev = &priv->ieee->wdev;
1908         int i;
1909
1910         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1911
1912         /* fill-out priv->ieee->bg_band */
1913         if (geo->bg_channels) {
1914                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1915
1916                 bg_band->band = IEEE80211_BAND_2GHZ;
1917                 bg_band->n_channels = geo->bg_channels;
1918                 bg_band->channels = kcalloc(geo->bg_channels,
1919                                             sizeof(struct ieee80211_channel),
1920                                             GFP_KERNEL);
1921                 if (!bg_band->channels) {
1922                         ipw2100_down(priv);
1923                         return -ENOMEM;
1924                 }
1925                 /* translate geo->bg to bg_band.channels */
1926                 for (i = 0; i < geo->bg_channels; i++) {
1927                         bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1928                         bg_band->channels[i].center_freq = geo->bg[i].freq;
1929                         bg_band->channels[i].hw_value = geo->bg[i].channel;
1930                         bg_band->channels[i].max_power = geo->bg[i].max_power;
1931                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1932                                 bg_band->channels[i].flags |=
1933                                         IEEE80211_CHAN_NO_IR;
1934                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1935                                 bg_band->channels[i].flags |=
1936                                         IEEE80211_CHAN_NO_IR;
1937                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1938                                 bg_band->channels[i].flags |=
1939                                         IEEE80211_CHAN_RADAR;
1940                         /* No equivalent for LIBIPW_CH_80211H_RULES,
1941                            LIBIPW_CH_UNIFORM_SPREADING, or
1942                            LIBIPW_CH_B_ONLY... */
1943                 }
1944                 /* point at bitrate info */
1945                 bg_band->bitrates = ipw2100_bg_rates;
1946                 bg_band->n_bitrates = RATE_COUNT;
1947
1948                 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1949         }
1950
1951         wdev->wiphy->cipher_suites = ipw_cipher_suites;
1952         wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1953
1954         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1955         if (wiphy_register(wdev->wiphy))
1956                 return -EIO;
1957         return 0;
1958 }
1959
1960 static void ipw2100_reset_adapter(struct work_struct *work)
1961 {
1962         struct ipw2100_priv *priv =
1963                 container_of(work, struct ipw2100_priv, reset_work.work);
1964         unsigned long flags;
1965         union iwreq_data wrqu = {
1966                 .ap_addr = {
1967                             .sa_family = ARPHRD_ETHER}
1968         };
1969         int associated = priv->status & STATUS_ASSOCIATED;
1970
1971         spin_lock_irqsave(&priv->low_lock, flags);
1972         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1973         priv->resets++;
1974         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1975         priv->status |= STATUS_SECURITY_UPDATED;
1976
1977         /* Force a power cycle even if interface hasn't been opened
1978          * yet */
1979         cancel_delayed_work(&priv->reset_work);
1980         priv->status |= STATUS_RESET_PENDING;
1981         spin_unlock_irqrestore(&priv->low_lock, flags);
1982
1983         mutex_lock(&priv->action_mutex);
1984         /* stop timed checks so that they don't interfere with reset */
1985         priv->stop_hang_check = 1;
1986         cancel_delayed_work(&priv->hang_check);
1987
1988         /* We have to signal any supplicant if we are disassociating */
1989         if (associated)
1990                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1991
1992         ipw2100_up(priv, 0);
1993         mutex_unlock(&priv->action_mutex);
1994
1995 }
1996
1997 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1998 {
1999
2000 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2001         int ret;
2002         unsigned int len, essid_len;
2003         char essid[IW_ESSID_MAX_SIZE];
2004         u32 txrate;
2005         u32 chan;
2006         char *txratename;
2007         u8 bssid[ETH_ALEN];
2008
2009         /*
2010          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2011          *      an actual MAC of the AP. Seems like FW sets this
2012          *      address too late. Read it later and expose through
2013          *      /proc or schedule a later task to query and update
2014          */
2015
2016         essid_len = IW_ESSID_MAX_SIZE;
2017         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2018                                   essid, &essid_len);
2019         if (ret) {
2020                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2021                                __LINE__);
2022                 return;
2023         }
2024
2025         len = sizeof(u32);
2026         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2027         if (ret) {
2028                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2029                                __LINE__);
2030                 return;
2031         }
2032
2033         len = sizeof(u32);
2034         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2035         if (ret) {
2036                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2037                                __LINE__);
2038                 return;
2039         }
2040         len = ETH_ALEN;
2041         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2042                                   &len);
2043         if (ret) {
2044                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2045                                __LINE__);
2046                 return;
2047         }
2048         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2049
2050         switch (txrate) {
2051         case TX_RATE_1_MBIT:
2052                 txratename = "1Mbps";
2053                 break;
2054         case TX_RATE_2_MBIT:
2055                 txratename = "2Mbsp";
2056                 break;
2057         case TX_RATE_5_5_MBIT:
2058                 txratename = "5.5Mbps";
2059                 break;
2060         case TX_RATE_11_MBIT:
2061                 txratename = "11Mbps";
2062                 break;
2063         default:
2064                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2065                 txratename = "unknown rate";
2066                 break;
2067         }
2068
2069         IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n",
2070                        priv->net_dev->name, essid_len, essid,
2071                        txratename, chan, bssid);
2072
2073         /* now we copy read ssid into dev */
2074         if (!(priv->config & CFG_STATIC_ESSID)) {
2075                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2076                 memcpy(priv->essid, essid, priv->essid_len);
2077         }
2078         priv->channel = chan;
2079         memcpy(priv->bssid, bssid, ETH_ALEN);
2080
2081         priv->status |= STATUS_ASSOCIATING;
2082         priv->connect_start = get_seconds();
2083
2084         schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2085 }
2086
2087 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2088                              int length, int batch_mode)
2089 {
2090         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2091         struct host_command cmd = {
2092                 .host_command = SSID,
2093                 .host_command_sequence = 0,
2094                 .host_command_length = ssid_len
2095         };
2096         int err;
2097
2098         IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid);
2099
2100         if (ssid_len)
2101                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2102
2103         if (!batch_mode) {
2104                 err = ipw2100_disable_adapter(priv);
2105                 if (err)
2106                         return err;
2107         }
2108
2109         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2110          * disable auto association -- so we cheat by setting a bogus SSID */
2111         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2112                 int i;
2113                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2114                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2115                         bogus[i] = 0x18 + i;
2116                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2117         }
2118
2119         /* NOTE:  We always send the SSID command even if the provided ESSID is
2120          * the same as what we currently think is set. */
2121
2122         err = ipw2100_hw_send_command(priv, &cmd);
2123         if (!err) {
2124                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2125                 memcpy(priv->essid, essid, ssid_len);
2126                 priv->essid_len = ssid_len;
2127         }
2128
2129         if (!batch_mode) {
2130                 if (ipw2100_enable_adapter(priv))
2131                         err = -EIO;
2132         }
2133
2134         return err;
2135 }
2136
2137 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2138 {
2139         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2140                   "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid,
2141                   priv->bssid);
2142
2143         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2144
2145         if (priv->status & STATUS_STOPPING) {
2146                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2147                 return;
2148         }
2149
2150         eth_zero_addr(priv->bssid);
2151         eth_zero_addr(priv->ieee->bssid);
2152
2153         netif_carrier_off(priv->net_dev);
2154         netif_stop_queue(priv->net_dev);
2155
2156         if (!(priv->status & STATUS_RUNNING))
2157                 return;
2158
2159         if (priv->status & STATUS_SECURITY_UPDATED)
2160                 schedule_delayed_work(&priv->security_work, 0);
2161
2162         schedule_delayed_work(&priv->wx_event_work, 0);
2163 }
2164
2165 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2166 {
2167         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2168                        priv->net_dev->name);
2169
2170         /* RF_KILL is now enabled (else we wouldn't be here) */
2171         wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2172         priv->status |= STATUS_RF_KILL_HW;
2173
2174         /* Make sure the RF Kill check timer is running */
2175         priv->stop_rf_kill = 0;
2176         mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2177 }
2178
2179 static void ipw2100_scan_event(struct work_struct *work)
2180 {
2181         struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2182                                                  scan_event.work);
2183         union iwreq_data wrqu;
2184
2185         wrqu.data.length = 0;
2186         wrqu.data.flags = 0;
2187         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2188 }
2189
2190 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2191 {
2192         IPW_DEBUG_SCAN("scan complete\n");
2193         /* Age the scan results... */
2194         priv->ieee->scans++;
2195         priv->status &= ~STATUS_SCANNING;
2196
2197         /* Only userspace-requested scan completion events go out immediately */
2198         if (!priv->user_requested_scan) {
2199                 schedule_delayed_work(&priv->scan_event,
2200                                       round_jiffies_relative(msecs_to_jiffies(4000)));
2201         } else {
2202                 priv->user_requested_scan = 0;
2203                 mod_delayed_work(system_wq, &priv->scan_event, 0);
2204         }
2205 }
2206
2207 #ifdef CONFIG_IPW2100_DEBUG
2208 #define IPW2100_HANDLER(v, f) { v, f, # v }
2209 struct ipw2100_status_indicator {
2210         int status;
2211         void (*cb) (struct ipw2100_priv * priv, u32 status);
2212         char *name;
2213 };
2214 #else
2215 #define IPW2100_HANDLER(v, f) { v, f }
2216 struct ipw2100_status_indicator {
2217         int status;
2218         void (*cb) (struct ipw2100_priv * priv, u32 status);
2219 };
2220 #endif                          /* CONFIG_IPW2100_DEBUG */
2221
2222 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2223 {
2224         IPW_DEBUG_SCAN("Scanning...\n");
2225         priv->status |= STATUS_SCANNING;
2226 }
2227
2228 static const struct ipw2100_status_indicator status_handlers[] = {
2229         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2230         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2231         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2232         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2233         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2234         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2235         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2236         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2237         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2238         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2239         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2240         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2241         IPW2100_HANDLER(-1, NULL)
2242 };
2243
2244 static void isr_status_change(struct ipw2100_priv *priv, int status)
2245 {
2246         int i;
2247
2248         if (status == IPW_STATE_SCANNING &&
2249             priv->status & STATUS_ASSOCIATED &&
2250             !(priv->status & STATUS_SCANNING)) {
2251                 IPW_DEBUG_INFO("Scan detected while associated, with "
2252                                "no scan request.  Restarting firmware.\n");
2253
2254                 /* Wake up any sleeping jobs */
2255                 schedule_reset(priv);
2256         }
2257
2258         for (i = 0; status_handlers[i].status != -1; i++) {
2259                 if (status == status_handlers[i].status) {
2260                         IPW_DEBUG_NOTIF("Status change: %s\n",
2261                                         status_handlers[i].name);
2262                         if (status_handlers[i].cb)
2263                                 status_handlers[i].cb(priv, status);
2264                         priv->wstats.status = status;
2265                         return;
2266                 }
2267         }
2268
2269         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2270 }
2271
2272 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2273                                     struct ipw2100_cmd_header *cmd)
2274 {
2275 #ifdef CONFIG_IPW2100_DEBUG
2276         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2277                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2278                              command_types[cmd->host_command_reg],
2279                              cmd->host_command_reg);
2280         }
2281 #endif
2282         if (cmd->host_command_reg == HOST_COMPLETE)
2283                 priv->status |= STATUS_ENABLED;
2284
2285         if (cmd->host_command_reg == CARD_DISABLE)
2286                 priv->status &= ~STATUS_ENABLED;
2287
2288         priv->status &= ~STATUS_CMD_ACTIVE;
2289
2290         wake_up_interruptible(&priv->wait_command_queue);
2291 }
2292
2293 #ifdef CONFIG_IPW2100_DEBUG
2294 static const char *frame_types[] = {
2295         "COMMAND_STATUS_VAL",
2296         "STATUS_CHANGE_VAL",
2297         "P80211_DATA_VAL",
2298         "P8023_DATA_VAL",
2299         "HOST_NOTIFICATION_VAL"
2300 };
2301 #endif
2302
2303 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2304                                     struct ipw2100_rx_packet *packet)
2305 {
2306         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2307         if (!packet->skb)
2308                 return -ENOMEM;
2309
2310         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2311         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2312                                           sizeof(struct ipw2100_rx),
2313                                           PCI_DMA_FROMDEVICE);
2314         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2315          *       dma_addr */
2316
2317         return 0;
2318 }
2319
2320 #define SEARCH_ERROR   0xffffffff
2321 #define SEARCH_FAIL    0xfffffffe
2322 #define SEARCH_SUCCESS 0xfffffff0
2323 #define SEARCH_DISCARD 0
2324 #define SEARCH_SNAPSHOT 1
2325
2326 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2327 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2328 {
2329         int i;
2330         if (!priv->snapshot[0])
2331                 return;
2332         for (i = 0; i < 0x30; i++)
2333                 kfree(priv->snapshot[i]);
2334         priv->snapshot[0] = NULL;
2335 }
2336
2337 #ifdef IPW2100_DEBUG_C3
2338 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2339 {
2340         int i;
2341         if (priv->snapshot[0])
2342                 return 1;
2343         for (i = 0; i < 0x30; i++) {
2344                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2345                 if (!priv->snapshot[i]) {
2346                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2347                                        "buffer %d\n", priv->net_dev->name, i);
2348                         while (i > 0)
2349                                 kfree(priv->snapshot[--i]);
2350                         priv->snapshot[0] = NULL;
2351                         return 0;
2352                 }
2353         }
2354
2355         return 1;
2356 }
2357
2358 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2359                                     size_t len, int mode)
2360 {
2361         u32 i, j;
2362         u32 tmp;
2363         u8 *s, *d;
2364         u32 ret;
2365
2366         s = in_buf;
2367         if (mode == SEARCH_SNAPSHOT) {
2368                 if (!ipw2100_snapshot_alloc(priv))
2369                         mode = SEARCH_DISCARD;
2370         }
2371
2372         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2373                 read_nic_dword(priv->net_dev, i, &tmp);
2374                 if (mode == SEARCH_SNAPSHOT)
2375                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2376                 if (ret == SEARCH_FAIL) {
2377                         d = (u8 *) & tmp;
2378                         for (j = 0; j < 4; j++) {
2379                                 if (*s != *d) {
2380                                         s = in_buf;
2381                                         continue;
2382                                 }
2383
2384                                 s++;
2385                                 d++;
2386
2387                                 if ((s - in_buf) == len)
2388                                         ret = (i + j) - len + 1;
2389                         }
2390                 } else if (mode == SEARCH_DISCARD)
2391                         return ret;
2392         }
2393
2394         return ret;
2395 }
2396 #endif
2397
2398 /*
2399  *
2400  * 0) Disconnect the SKB from the firmware (just unmap)
2401  * 1) Pack the ETH header into the SKB
2402  * 2) Pass the SKB to the network stack
2403  *
2404  * When packet is provided by the firmware, it contains the following:
2405  *
2406  * .  libipw_hdr
2407  * .  libipw_snap_hdr
2408  *
2409  * The size of the constructed ethernet
2410  *
2411  */
2412 #ifdef IPW2100_RX_DEBUG
2413 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2414 #endif
2415
2416 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2417 {
2418 #ifdef IPW2100_DEBUG_C3
2419         struct ipw2100_status *status = &priv->status_queue.drv[i];
2420         u32 match, reg;
2421         int j;
2422 #endif
2423
2424         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2425                        i * sizeof(struct ipw2100_status));
2426
2427 #ifdef IPW2100_DEBUG_C3
2428         /* Halt the firmware so we can get a good image */
2429         write_register(priv->net_dev, IPW_REG_RESET_REG,
2430                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2431         j = 5;
2432         do {
2433                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2434                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2435
2436                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2437                         break;
2438         } while (j--);
2439
2440         match = ipw2100_match_buf(priv, (u8 *) status,
2441                                   sizeof(struct ipw2100_status),
2442                                   SEARCH_SNAPSHOT);
2443         if (match < SEARCH_SUCCESS)
2444                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2445                                "offset 0x%06X, length %d:\n",
2446                                priv->net_dev->name, match,
2447                                sizeof(struct ipw2100_status));
2448         else
2449                 IPW_DEBUG_INFO("%s: No DMA status match in "
2450                                "Firmware.\n", priv->net_dev->name);
2451
2452         printk_buf((u8 *) priv->status_queue.drv,
2453                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2454 #endif
2455
2456         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2457         priv->net_dev->stats.rx_errors++;
2458         schedule_reset(priv);
2459 }
2460
2461 static void isr_rx(struct ipw2100_priv *priv, int i,
2462                           struct libipw_rx_stats *stats)
2463 {
2464         struct net_device *dev = priv->net_dev;
2465         struct ipw2100_status *status = &priv->status_queue.drv[i];
2466         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2467
2468         IPW_DEBUG_RX("Handler...\n");
2469
2470         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2471                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2472                                "  Dropping.\n",
2473                                dev->name,
2474                                status->frame_size, skb_tailroom(packet->skb));
2475                 dev->stats.rx_errors++;
2476                 return;
2477         }
2478
2479         if (unlikely(!netif_running(dev))) {
2480                 dev->stats.rx_errors++;
2481                 priv->wstats.discard.misc++;
2482                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2483                 return;
2484         }
2485
2486         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2487                      !(priv->status & STATUS_ASSOCIATED))) {
2488                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2489                 priv->wstats.discard.misc++;
2490                 return;
2491         }
2492
2493         pci_unmap_single(priv->pci_dev,
2494                          packet->dma_addr,
2495                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2496
2497         skb_put(packet->skb, status->frame_size);
2498
2499 #ifdef IPW2100_RX_DEBUG
2500         /* Make a copy of the frame so we can dump it to the logs if
2501          * libipw_rx fails */
2502         skb_copy_from_linear_data(packet->skb, packet_data,
2503                                   min_t(u32, status->frame_size,
2504                                              IPW_RX_NIC_BUFFER_LENGTH));
2505 #endif
2506
2507         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2508 #ifdef IPW2100_RX_DEBUG
2509                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2510                                dev->name);
2511                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2512 #endif
2513                 dev->stats.rx_errors++;
2514
2515                 /* libipw_rx failed, so it didn't free the SKB */
2516                 dev_kfree_skb_any(packet->skb);
2517                 packet->skb = NULL;
2518         }
2519
2520         /* We need to allocate a new SKB and attach it to the RDB. */
2521         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2522                 printk(KERN_WARNING DRV_NAME ": "
2523                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2524                        "adapter.\n", dev->name);
2525                 /* TODO: schedule adapter shutdown */
2526                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2527         }
2528
2529         /* Update the RDB entry */
2530         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2531 }
2532
2533 #ifdef CONFIG_IPW2100_MONITOR
2534
2535 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2536                    struct libipw_rx_stats *stats)
2537 {
2538         struct net_device *dev = priv->net_dev;
2539         struct ipw2100_status *status = &priv->status_queue.drv[i];
2540         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2541
2542         /* Magic struct that slots into the radiotap header -- no reason
2543          * to build this manually element by element, we can write it much
2544          * more efficiently than we can parse it. ORDER MATTERS HERE */
2545         struct ipw_rt_hdr {
2546                 struct ieee80211_radiotap_header rt_hdr;
2547                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2548         } *ipw_rt;
2549
2550         IPW_DEBUG_RX("Handler...\n");
2551
2552         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2553                                 sizeof(struct ipw_rt_hdr))) {
2554                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2555                                "  Dropping.\n",
2556                                dev->name,
2557                                status->frame_size,
2558                                skb_tailroom(packet->skb));
2559                 dev->stats.rx_errors++;
2560                 return;
2561         }
2562
2563         if (unlikely(!netif_running(dev))) {
2564                 dev->stats.rx_errors++;
2565                 priv->wstats.discard.misc++;
2566                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2567                 return;
2568         }
2569
2570         if (unlikely(priv->config & CFG_CRC_CHECK &&
2571                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2572                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2573                 dev->stats.rx_errors++;
2574                 return;
2575         }
2576
2577         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2578                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2579         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2580                 packet->skb->data, status->frame_size);
2581
2582         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2583
2584         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2585         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2586         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2587
2588         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2589
2590         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2591
2592         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2593
2594         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2595                 dev->stats.rx_errors++;
2596
2597                 /* libipw_rx failed, so it didn't free the SKB */
2598                 dev_kfree_skb_any(packet->skb);
2599                 packet->skb = NULL;
2600         }
2601
2602         /* We need to allocate a new SKB and attach it to the RDB. */
2603         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2604                 IPW_DEBUG_WARNING(
2605                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2606                         "adapter.\n", dev->name);
2607                 /* TODO: schedule adapter shutdown */
2608                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2609         }
2610
2611         /* Update the RDB entry */
2612         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2613 }
2614
2615 #endif
2616
2617 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2618 {
2619         struct ipw2100_status *status = &priv->status_queue.drv[i];
2620         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2621         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2622
2623         switch (frame_type) {
2624         case COMMAND_STATUS_VAL:
2625                 return (status->frame_size != sizeof(u->rx_data.command));
2626         case STATUS_CHANGE_VAL:
2627                 return (status->frame_size != sizeof(u->rx_data.status));
2628         case HOST_NOTIFICATION_VAL:
2629                 return (status->frame_size < sizeof(u->rx_data.notification));
2630         case P80211_DATA_VAL:
2631         case P8023_DATA_VAL:
2632 #ifdef CONFIG_IPW2100_MONITOR
2633                 return 0;
2634 #else
2635                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2636                 case IEEE80211_FTYPE_MGMT:
2637                 case IEEE80211_FTYPE_CTL:
2638                         return 0;
2639                 case IEEE80211_FTYPE_DATA:
2640                         return (status->frame_size >
2641                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2642                 }
2643 #endif
2644         }
2645
2646         return 1;
2647 }
2648
2649 /*
2650  * ipw2100 interrupts are disabled at this point, and the ISR
2651  * is the only code that calls this method.  So, we do not need
2652  * to play with any locks.
2653  *
2654  * RX Queue works as follows:
2655  *
2656  * Read index - firmware places packet in entry identified by the
2657  *              Read index and advances Read index.  In this manner,
2658  *              Read index will always point to the next packet to
2659  *              be filled--but not yet valid.
2660  *
2661  * Write index - driver fills this entry with an unused RBD entry.
2662  *               This entry has not filled by the firmware yet.
2663  *
2664  * In between the W and R indexes are the RBDs that have been received
2665  * but not yet processed.
2666  *
2667  * The process of handling packets will start at WRITE + 1 and advance
2668  * until it reaches the READ index.
2669  *
2670  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2671  *
2672  */
2673 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2674 {
2675         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2676         struct ipw2100_status_queue *sq = &priv->status_queue;
2677         struct ipw2100_rx_packet *packet;
2678         u16 frame_type;
2679         u32 r, w, i, s;
2680         struct ipw2100_rx *u;
2681         struct libipw_rx_stats stats = {
2682                 .mac_time = jiffies,
2683         };
2684
2685         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2686         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2687
2688         if (r >= rxq->entries) {
2689                 IPW_DEBUG_RX("exit - bad read index\n");
2690                 return;
2691         }
2692
2693         i = (rxq->next + 1) % rxq->entries;
2694         s = i;
2695         while (i != r) {
2696                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2697                    r, rxq->next, i); */
2698
2699                 packet = &priv->rx_buffers[i];
2700
2701                 /* Sync the DMA for the RX buffer so CPU is sure to get
2702                  * the correct values */
2703                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2704                                             sizeof(struct ipw2100_rx),
2705                                             PCI_DMA_FROMDEVICE);
2706
2707                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2708                         ipw2100_corruption_detected(priv, i);
2709                         goto increment;
2710                 }
2711
2712                 u = packet->rxp;
2713                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2714                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2715                 stats.len = sq->drv[i].frame_size;
2716
2717                 stats.mask = 0;
2718                 if (stats.rssi != 0)
2719                         stats.mask |= LIBIPW_STATMASK_RSSI;
2720                 stats.freq = LIBIPW_24GHZ_BAND;
2721
2722                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2723                              priv->net_dev->name, frame_types[frame_type],
2724                              stats.len);
2725
2726                 switch (frame_type) {
2727                 case COMMAND_STATUS_VAL:
2728                         /* Reset Rx watchdog */
2729                         isr_rx_complete_command(priv, &u->rx_data.command);
2730                         break;
2731
2732                 case STATUS_CHANGE_VAL:
2733                         isr_status_change(priv, u->rx_data.status);
2734                         break;
2735
2736                 case P80211_DATA_VAL:
2737                 case P8023_DATA_VAL:
2738 #ifdef CONFIG_IPW2100_MONITOR
2739                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2740                                 isr_rx_monitor(priv, i, &stats);
2741                                 break;
2742                         }
2743 #endif
2744                         if (stats.len < sizeof(struct libipw_hdr_3addr))
2745                                 break;
2746                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2747                         case IEEE80211_FTYPE_MGMT:
2748                                 libipw_rx_mgt(priv->ieee,
2749                                                  &u->rx_data.header, &stats);
2750                                 break;
2751
2752                         case IEEE80211_FTYPE_CTL:
2753                                 break;
2754
2755                         case IEEE80211_FTYPE_DATA:
2756                                 isr_rx(priv, i, &stats);
2757                                 break;
2758
2759                         }
2760                         break;
2761                 }
2762
2763               increment:
2764                 /* clear status field associated with this RBD */
2765                 rxq->drv[i].status.info.field = 0;
2766
2767                 i = (i + 1) % rxq->entries;
2768         }
2769
2770         if (i != s) {
2771                 /* backtrack one entry, wrapping to end if at 0 */
2772                 rxq->next = (i ? i : rxq->entries) - 1;
2773
2774                 write_register(priv->net_dev,
2775                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2776         }
2777 }
2778
2779 /*
2780  * __ipw2100_tx_process
2781  *
2782  * This routine will determine whether the next packet on
2783  * the fw_pend_list has been processed by the firmware yet.
2784  *
2785  * If not, then it does nothing and returns.
2786  *
2787  * If so, then it removes the item from the fw_pend_list, frees
2788  * any associated storage, and places the item back on the
2789  * free list of its source (either msg_free_list or tx_free_list)
2790  *
2791  * TX Queue works as follows:
2792  *
2793  * Read index - points to the next TBD that the firmware will
2794  *              process.  The firmware will read the data, and once
2795  *              done processing, it will advance the Read index.
2796  *
2797  * Write index - driver fills this entry with an constructed TBD
2798  *               entry.  The Write index is not advanced until the
2799  *               packet has been configured.
2800  *
2801  * In between the W and R indexes are the TBDs that have NOT been
2802  * processed.  Lagging behind the R index are packets that have
2803  * been processed but have not been freed by the driver.
2804  *
2805  * In order to free old storage, an internal index will be maintained
2806  * that points to the next packet to be freed.  When all used
2807  * packets have been freed, the oldest index will be the same as the
2808  * firmware's read index.
2809  *
2810  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2811  *
2812  * Because the TBD structure can not contain arbitrary data, the
2813  * driver must keep an internal queue of cached allocations such that
2814  * it can put that data back into the tx_free_list and msg_free_list
2815  * for use by future command and data packets.
2816  *
2817  */
2818 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2819 {
2820         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2821         struct ipw2100_bd *tbd;
2822         struct list_head *element;
2823         struct ipw2100_tx_packet *packet;
2824         int descriptors_used;
2825         int e, i;
2826         u32 r, w, frag_num = 0;
2827
2828         if (list_empty(&priv->fw_pend_list))
2829                 return 0;
2830
2831         element = priv->fw_pend_list.next;
2832
2833         packet = list_entry(element, struct ipw2100_tx_packet, list);
2834         tbd = &txq->drv[packet->index];
2835
2836         /* Determine how many TBD entries must be finished... */
2837         switch (packet->type) {
2838         case COMMAND:
2839                 /* COMMAND uses only one slot; don't advance */
2840                 descriptors_used = 1;
2841                 e = txq->oldest;
2842                 break;
2843
2844         case DATA:
2845                 /* DATA uses two slots; advance and loop position. */
2846                 descriptors_used = tbd->num_fragments;
2847                 frag_num = tbd->num_fragments - 1;
2848                 e = txq->oldest + frag_num;
2849                 e %= txq->entries;
2850                 break;
2851
2852         default:
2853                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2854                        priv->net_dev->name);
2855                 return 0;
2856         }
2857
2858         /* if the last TBD is not done by NIC yet, then packet is
2859          * not ready to be released.
2860          *
2861          */
2862         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2863                       &r);
2864         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2865                       &w);
2866         if (w != txq->next)
2867                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2868                        priv->net_dev->name);
2869
2870         /*
2871          * txq->next is the index of the last packet written txq->oldest is
2872          * the index of the r is the index of the next packet to be read by
2873          * firmware
2874          */
2875
2876         /*
2877          * Quick graphic to help you visualize the following
2878          * if / else statement
2879          *
2880          * ===>|                     s---->|===============
2881          *                               e>|
2882          * | a | b | c | d | e | f | g | h | i | j | k | l
2883          *       r---->|
2884          *               w
2885          *
2886          * w - updated by driver
2887          * r - updated by firmware
2888          * s - start of oldest BD entry (txq->oldest)
2889          * e - end of oldest BD entry
2890          *
2891          */
2892         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2893                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2894                 return 0;
2895         }
2896
2897         list_del(element);
2898         DEC_STAT(&priv->fw_pend_stat);
2899
2900 #ifdef CONFIG_IPW2100_DEBUG
2901         {
2902                 i = txq->oldest;
2903                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2904                              &txq->drv[i],
2905                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2906                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2907
2908                 if (packet->type == DATA) {
2909                         i = (i + 1) % txq->entries;
2910
2911                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2912                                      &txq->drv[i],
2913                                      (u32) (txq->nic + i *
2914                                             sizeof(struct ipw2100_bd)),
2915                                      (u32) txq->drv[i].host_addr,
2916                                      txq->drv[i].buf_length);
2917                 }
2918         }
2919 #endif
2920
2921         switch (packet->type) {
2922         case DATA:
2923                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2924                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2925                                "Expecting DATA TBD but pulled "
2926                                "something else: ids %d=%d.\n",
2927                                priv->net_dev->name, txq->oldest, packet->index);
2928
2929                 /* DATA packet; we have to unmap and free the SKB */
2930                 for (i = 0; i < frag_num; i++) {
2931                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2932
2933                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2934                                      (packet->index + 1 + i) % txq->entries,
2935                                      tbd->host_addr, tbd->buf_length);
2936
2937                         pci_unmap_single(priv->pci_dev,
2938                                          tbd->host_addr,
2939                                          tbd->buf_length, PCI_DMA_TODEVICE);
2940                 }
2941
2942                 libipw_txb_free(packet->info.d_struct.txb);
2943                 packet->info.d_struct.txb = NULL;
2944
2945                 list_add_tail(element, &priv->tx_free_list);
2946                 INC_STAT(&priv->tx_free_stat);
2947
2948                 /* We have a free slot in the Tx queue, so wake up the
2949                  * transmit layer if it is stopped. */
2950                 if (priv->status & STATUS_ASSOCIATED)
2951                         netif_wake_queue(priv->net_dev);
2952
2953                 /* A packet was processed by the hardware, so update the
2954                  * watchdog */
2955                 priv->net_dev->trans_start = jiffies;
2956
2957                 break;
2958
2959         case COMMAND:
2960                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2961                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2962                                "Expecting COMMAND TBD but pulled "
2963                                "something else: ids %d=%d.\n",
2964                                priv->net_dev->name, txq->oldest, packet->index);
2965
2966 #ifdef CONFIG_IPW2100_DEBUG
2967                 if (packet->info.c_struct.cmd->host_command_reg <
2968                     ARRAY_SIZE(command_types))
2969                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2970                                      command_types[packet->info.c_struct.cmd->
2971                                                    host_command_reg],
2972                                      packet->info.c_struct.cmd->
2973                                      host_command_reg,
2974                                      packet->info.c_struct.cmd->cmd_status_reg);
2975 #endif
2976
2977                 list_add_tail(element, &priv->msg_free_list);
2978                 INC_STAT(&priv->msg_free_stat);
2979                 break;
2980         }
2981
2982         /* advance oldest used TBD pointer to start of next entry */
2983         txq->oldest = (e + 1) % txq->entries;
2984         /* increase available TBDs number */
2985         txq->available += descriptors_used;
2986         SET_STAT(&priv->txq_stat, txq->available);
2987
2988         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2989                      jiffies - packet->jiffy_start);
2990
2991         return (!list_empty(&priv->fw_pend_list));
2992 }
2993
2994 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2995 {
2996         int i = 0;
2997
2998         while (__ipw2100_tx_process(priv) && i < 200)
2999                 i++;
3000
3001         if (i == 200) {
3002                 printk(KERN_WARNING DRV_NAME ": "
3003                        "%s: Driver is running slow (%d iters).\n",
3004                        priv->net_dev->name, i);
3005         }
3006 }
3007
3008 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3009 {
3010         struct list_head *element;
3011         struct ipw2100_tx_packet *packet;
3012         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3013         struct ipw2100_bd *tbd;
3014         int next = txq->next;
3015
3016         while (!list_empty(&priv->msg_pend_list)) {
3017                 /* if there isn't enough space in TBD queue, then
3018                  * don't stuff a new one in.
3019                  * NOTE: 3 are needed as a command will take one,
3020                  *       and there is a minimum of 2 that must be
3021                  *       maintained between the r and w indexes
3022                  */
3023                 if (txq->available <= 3) {
3024                         IPW_DEBUG_TX("no room in tx_queue\n");
3025                         break;
3026                 }
3027
3028                 element = priv->msg_pend_list.next;
3029                 list_del(element);
3030                 DEC_STAT(&priv->msg_pend_stat);
3031
3032                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3033
3034                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3035                              &txq->drv[txq->next],
3036                              (u32) (txq->nic + txq->next *
3037                                       sizeof(struct ipw2100_bd)));
3038
3039                 packet->index = txq->next;
3040
3041                 tbd = &txq->drv[txq->next];
3042
3043                 /* initialize TBD */
3044                 tbd->host_addr = packet->info.c_struct.cmd_phys;
3045                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3046                 /* not marking number of fragments causes problems
3047                  * with f/w debug version */
3048                 tbd->num_fragments = 1;
3049                 tbd->status.info.field =
3050                     IPW_BD_STATUS_TX_FRAME_COMMAND |
3051                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3052
3053                 /* update TBD queue counters */
3054                 txq->next++;
3055                 txq->next %= txq->entries;
3056                 txq->available--;
3057                 DEC_STAT(&priv->txq_stat);
3058
3059                 list_add_tail(element, &priv->fw_pend_list);
3060                 INC_STAT(&priv->fw_pend_stat);
3061         }
3062
3063         if (txq->next != next) {
3064                 /* kick off the DMA by notifying firmware the
3065                  * write index has moved; make sure TBD stores are sync'd */
3066                 wmb();
3067                 write_register(priv->net_dev,
3068                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3069                                txq->next);
3070         }
3071 }
3072
3073 /*
3074  * ipw2100_tx_send_data
3075  *
3076  */
3077 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3078 {
3079         struct list_head *element;
3080         struct ipw2100_tx_packet *packet;
3081         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3082         struct ipw2100_bd *tbd;
3083         int next = txq->next;
3084         int i = 0;
3085         struct ipw2100_data_header *ipw_hdr;
3086         struct libipw_hdr_3addr *hdr;
3087
3088         while (!list_empty(&priv->tx_pend_list)) {
3089                 /* if there isn't enough space in TBD queue, then
3090                  * don't stuff a new one in.
3091                  * NOTE: 4 are needed as a data will take two,
3092                  *       and there is a minimum of 2 that must be
3093                  *       maintained between the r and w indexes
3094                  */
3095                 element = priv->tx_pend_list.next;
3096                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3097
3098                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3099                              IPW_MAX_BDS)) {
3100                         /* TODO: Support merging buffers if more than
3101                          * IPW_MAX_BDS are used */
3102                         IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3103                                        "Increase fragmentation level.\n",
3104                                        priv->net_dev->name);
3105                 }
3106
3107                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3108                         IPW_DEBUG_TX("no room in tx_queue\n");
3109                         break;
3110                 }
3111
3112                 list_del(element);
3113                 DEC_STAT(&priv->tx_pend_stat);
3114
3115                 tbd = &txq->drv[txq->next];
3116
3117                 packet->index = txq->next;
3118
3119                 ipw_hdr = packet->info.d_struct.data;
3120                 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3121                     fragments[0]->data;
3122
3123                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3124                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3125                            Addr3 = DA */
3126                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3127                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3128                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3129                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3130                            Addr3 = BSSID */
3131                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3132                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3133                 }
3134
3135                 ipw_hdr->host_command_reg = SEND;
3136                 ipw_hdr->host_command_reg1 = 0;
3137
3138                 /* For now we only support host based encryption */
3139                 ipw_hdr->needs_encryption = 0;
3140                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3141                 if (packet->info.d_struct.txb->nr_frags > 1)
3142                         ipw_hdr->fragment_size =
3143                             packet->info.d_struct.txb->frag_size -
3144                             LIBIPW_3ADDR_LEN;
3145                 else
3146                         ipw_hdr->fragment_size = 0;
3147
3148                 tbd->host_addr = packet->info.d_struct.data_phys;
3149                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3150                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3151                 tbd->status.info.field =
3152                     IPW_BD_STATUS_TX_FRAME_802_3 |
3153                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3154                 txq->next++;
3155                 txq->next %= txq->entries;
3156
3157                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3158                              packet->index, tbd->host_addr, tbd->buf_length);
3159 #ifdef CONFIG_IPW2100_DEBUG
3160                 if (packet->info.d_struct.txb->nr_frags > 1)
3161                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3162                                        packet->info.d_struct.txb->nr_frags);
3163 #endif
3164
3165                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3166                         tbd = &txq->drv[txq->next];
3167                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3168                                 tbd->status.info.field =
3169                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3170                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3171                         else
3172                                 tbd->status.info.field =
3173                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3174                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3175
3176                         tbd->buf_length = packet->info.d_struct.txb->
3177                             fragments[i]->len - LIBIPW_3ADDR_LEN;
3178
3179                         tbd->host_addr = pci_map_single(priv->pci_dev,
3180                                                         packet->info.d_struct.
3181                                                         txb->fragments[i]->
3182                                                         data +
3183                                                         LIBIPW_3ADDR_LEN,
3184                                                         tbd->buf_length,
3185                                                         PCI_DMA_TODEVICE);
3186
3187                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3188                                      txq->next, tbd->host_addr,
3189                                      tbd->buf_length);
3190
3191                         pci_dma_sync_single_for_device(priv->pci_dev,
3192                                                        tbd->host_addr,
3193                                                        tbd->buf_length,
3194                                                        PCI_DMA_TODEVICE);
3195
3196                         txq->next++;
3197                         txq->next %= txq->entries;
3198                 }
3199
3200                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3201                 SET_STAT(&priv->txq_stat, txq->available);
3202
3203                 list_add_tail(element, &priv->fw_pend_list);
3204                 INC_STAT(&priv->fw_pend_stat);
3205         }
3206
3207         if (txq->next != next) {
3208                 /* kick off the DMA by notifying firmware the
3209                  * write index has moved; make sure TBD stores are sync'd */
3210                 write_register(priv->net_dev,
3211                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3212                                txq->next);
3213         }
3214 }
3215
3216 static void ipw2100_irq_tasklet(unsigned long data)
3217 {
3218         struct ipw2100_priv *priv = (struct ipw2100_priv *)data;
3219         struct net_device *dev = priv->net_dev;
3220         unsigned long flags;
3221         u32 inta, tmp;
3222
3223         spin_lock_irqsave(&priv->low_lock, flags);
3224         ipw2100_disable_interrupts(priv);
3225
3226         read_register(dev, IPW_REG_INTA, &inta);
3227
3228         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3229                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3230
3231         priv->in_isr++;
3232         priv->interrupts++;
3233
3234         /* We do not loop and keep polling for more interrupts as this
3235          * is frowned upon and doesn't play nicely with other potentially
3236          * chained IRQs */
3237         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3238                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3239
3240         if (inta & IPW2100_INTA_FATAL_ERROR) {
3241                 printk(KERN_WARNING DRV_NAME
3242                        ": Fatal interrupt. Scheduling firmware restart.\n");
3243                 priv->inta_other++;
3244                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3245
3246                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3247                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3248                                priv->net_dev->name, priv->fatal_error);
3249
3250                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3251                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3252                                priv->net_dev->name, tmp);
3253
3254                 /* Wake up any sleeping jobs */
3255                 schedule_reset(priv);
3256         }
3257
3258         if (inta & IPW2100_INTA_PARITY_ERROR) {
3259                 printk(KERN_ERR DRV_NAME
3260                        ": ***** PARITY ERROR INTERRUPT !!!!\n");
3261                 priv->inta_other++;
3262                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3263         }
3264
3265         if (inta & IPW2100_INTA_RX_TRANSFER) {
3266                 IPW_DEBUG_ISR("RX interrupt\n");
3267
3268                 priv->rx_interrupts++;
3269
3270                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3271
3272                 __ipw2100_rx_process(priv);
3273                 __ipw2100_tx_complete(priv);
3274         }
3275
3276         if (inta & IPW2100_INTA_TX_TRANSFER) {
3277                 IPW_DEBUG_ISR("TX interrupt\n");
3278
3279                 priv->tx_interrupts++;
3280
3281                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3282
3283                 __ipw2100_tx_complete(priv);
3284                 ipw2100_tx_send_commands(priv);
3285                 ipw2100_tx_send_data(priv);
3286         }
3287
3288         if (inta & IPW2100_INTA_TX_COMPLETE) {
3289                 IPW_DEBUG_ISR("TX complete\n");
3290                 priv->inta_other++;
3291                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3292
3293                 __ipw2100_tx_complete(priv);
3294         }
3295
3296         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3297                 /* ipw2100_handle_event(dev); */
3298                 priv->inta_other++;
3299                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3300         }
3301
3302         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3303                 IPW_DEBUG_ISR("FW init done interrupt\n");
3304                 priv->inta_other++;
3305
3306                 read_register(dev, IPW_REG_INTA, &tmp);
3307                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3308                            IPW2100_INTA_PARITY_ERROR)) {
3309                         write_register(dev, IPW_REG_INTA,
3310                                        IPW2100_INTA_FATAL_ERROR |
3311                                        IPW2100_INTA_PARITY_ERROR);
3312                 }
3313
3314                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3315         }
3316
3317         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3318                 IPW_DEBUG_ISR("Status change interrupt\n");
3319                 priv->inta_other++;
3320                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3321         }
3322
3323         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3324                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3325                 priv->inta_other++;
3326                 write_register(dev, IPW_REG_INTA,
3327                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3328         }
3329
3330         priv->in_isr--;
3331         ipw2100_enable_interrupts(priv);
3332
3333         spin_unlock_irqrestore(&priv->low_lock, flags);
3334
3335         IPW_DEBUG_ISR("exit\n");
3336 }
3337
3338 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3339 {
3340         struct ipw2100_priv *priv = data;
3341         u32 inta, inta_mask;
3342
3343         if (!data)
3344                 return IRQ_NONE;
3345
3346         spin_lock(&priv->low_lock);
3347
3348         /* We check to see if we should be ignoring interrupts before
3349          * we touch the hardware.  During ucode load if we try and handle
3350          * an interrupt we can cause keyboard problems as well as cause
3351          * the ucode to fail to initialize */
3352         if (!(priv->status & STATUS_INT_ENABLED)) {
3353                 /* Shared IRQ */
3354                 goto none;
3355         }
3356
3357         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3358         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3359
3360         if (inta == 0xFFFFFFFF) {
3361                 /* Hardware disappeared */
3362                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3363                 goto none;
3364         }
3365
3366         inta &= IPW_INTERRUPT_MASK;
3367
3368         if (!(inta & inta_mask)) {
3369                 /* Shared interrupt */
3370                 goto none;
3371         }
3372
3373         /* We disable the hardware interrupt here just to prevent unneeded
3374          * calls to be made.  We disable this again within the actual
3375          * work tasklet, so if another part of the code re-enables the
3376          * interrupt, that is fine */
3377         ipw2100_disable_interrupts(priv);
3378
3379         tasklet_schedule(&priv->irq_tasklet);
3380         spin_unlock(&priv->low_lock);
3381
3382         return IRQ_HANDLED;
3383       none:
3384         spin_unlock(&priv->low_lock);
3385         return IRQ_NONE;
3386 }
3387
3388 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3389                               struct net_device *dev, int pri)
3390 {
3391         struct ipw2100_priv *priv = libipw_priv(dev);
3392         struct list_head *element;
3393         struct ipw2100_tx_packet *packet;
3394         unsigned long flags;
3395
3396         spin_lock_irqsave(&priv->low_lock, flags);
3397
3398         if (!(priv->status & STATUS_ASSOCIATED)) {
3399                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3400                 priv->net_dev->stats.tx_carrier_errors++;
3401                 netif_stop_queue(dev);
3402                 goto fail_unlock;
3403         }
3404
3405         if (list_empty(&priv->tx_free_list))
3406                 goto fail_unlock;
3407
3408         element = priv->tx_free_list.next;
3409         packet = list_entry(element, struct ipw2100_tx_packet, list);
3410
3411         packet->info.d_struct.txb = txb;
3412
3413         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3414         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3415
3416         packet->jiffy_start = jiffies;
3417
3418         list_del(element);
3419         DEC_STAT(&priv->tx_free_stat);
3420
3421         list_add_tail(element, &priv->tx_pend_list);
3422         INC_STAT(&priv->tx_pend_stat);
3423
3424         ipw2100_tx_send_data(priv);
3425
3426         spin_unlock_irqrestore(&priv->low_lock, flags);
3427         return NETDEV_TX_OK;
3428
3429 fail_unlock:
3430         netif_stop_queue(dev);
3431         spin_unlock_irqrestore(&priv->low_lock, flags);
3432         return NETDEV_TX_BUSY;
3433 }
3434
3435 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3436 {
3437         int i, j, err = -EINVAL;
3438         void *v;
3439         dma_addr_t p;
3440
3441         priv->msg_buffers =
3442             kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3443                     GFP_KERNEL);
3444         if (!priv->msg_buffers)
3445                 return -ENOMEM;
3446
3447         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3448                 v = pci_zalloc_consistent(priv->pci_dev,
3449                                           sizeof(struct ipw2100_cmd_header),
3450                                           &p);
3451                 if (!v) {
3452                         printk(KERN_ERR DRV_NAME ": "
3453                                "%s: PCI alloc failed for msg "
3454                                "buffers.\n", priv->net_dev->name);
3455                         err = -ENOMEM;
3456                         break;
3457                 }
3458
3459                 priv->msg_buffers[i].type = COMMAND;
3460                 priv->msg_buffers[i].info.c_struct.cmd =
3461                     (struct ipw2100_cmd_header *)v;
3462                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3463         }
3464
3465         if (i == IPW_COMMAND_POOL_SIZE)
3466                 return 0;
3467
3468         for (j = 0; j < i; j++) {
3469                 pci_free_consistent(priv->pci_dev,
3470                                     sizeof(struct ipw2100_cmd_header),
3471                                     priv->msg_buffers[j].info.c_struct.cmd,
3472                                     priv->msg_buffers[j].info.c_struct.
3473                                     cmd_phys);
3474         }
3475
3476         kfree(priv->msg_buffers);
3477         priv->msg_buffers = NULL;
3478
3479         return err;
3480 }
3481
3482 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3483 {
3484         int i;
3485
3486         INIT_LIST_HEAD(&priv->msg_free_list);
3487         INIT_LIST_HEAD(&priv->msg_pend_list);
3488
3489         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3490                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3491         SET_STAT(&priv->msg_free_stat, i);
3492
3493         return 0;
3494 }
3495
3496 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3497 {
3498         int i;
3499
3500         if (!priv->msg_buffers)
3501                 return;
3502
3503         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3504                 pci_free_consistent(priv->pci_dev,
3505                                     sizeof(struct ipw2100_cmd_header),
3506                                     priv->msg_buffers[i].info.c_struct.cmd,
3507                                     priv->msg_buffers[i].info.c_struct.
3508                                     cmd_phys);
3509         }
3510
3511         kfree(priv->msg_buffers);
3512         priv->msg_buffers = NULL;
3513 }
3514
3515 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3516                         char *buf)
3517 {
3518         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3519         char *out = buf;
3520         int i, j;
3521         u32 val;
3522
3523         for (i = 0; i < 16; i++) {
3524                 out += sprintf(out, "[%08X] ", i * 16);
3525                 for (j = 0; j < 16; j += 4) {
3526                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3527                         out += sprintf(out, "%08X ", val);
3528                 }
3529                 out += sprintf(out, "\n");
3530         }
3531
3532         return out - buf;
3533 }
3534
3535 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3536
3537 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3538                         char *buf)
3539 {
3540         struct ipw2100_priv *p = dev_get_drvdata(d);
3541         return sprintf(buf, "0x%08x\n", (int)p->config);
3542 }
3543
3544 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3545
3546 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3547                            char *buf)
3548 {
3549         struct ipw2100_priv *p = dev_get_drvdata(d);
3550         return sprintf(buf, "0x%08x\n", (int)p->status);
3551 }
3552
3553 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3554
3555 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3556                                char *buf)
3557 {
3558         struct ipw2100_priv *p = dev_get_drvdata(d);
3559         return sprintf(buf, "0x%08x\n", (int)p->capability);
3560 }
3561
3562 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3563
3564 #define IPW2100_REG(x) { IPW_ ##x, #x }
3565 static const struct {
3566         u32 addr;
3567         const char *name;
3568 } hw_data[] = {
3569 IPW2100_REG(REG_GP_CNTRL),
3570             IPW2100_REG(REG_GPIO),
3571             IPW2100_REG(REG_INTA),
3572             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3573 #define IPW2100_NIC(x, s) { x, #x, s }
3574 static const struct {
3575         u32 addr;
3576         const char *name;
3577         size_t size;
3578 } nic_data[] = {
3579 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3580             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3581 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3582 static const struct {
3583         u8 index;
3584         const char *name;
3585         const char *desc;
3586 } ord_data[] = {
3587 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3588             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3589                                 "successful Host Tx's (MSDU)"),
3590             IPW2100_ORD(STAT_TX_DIR_DATA,
3591                                 "successful Directed Tx's (MSDU)"),
3592             IPW2100_ORD(STAT_TX_DIR_DATA1,
3593                                 "successful Directed Tx's (MSDU) @ 1MB"),
3594             IPW2100_ORD(STAT_TX_DIR_DATA2,
3595                                 "successful Directed Tx's (MSDU) @ 2MB"),
3596             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3597                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3598             IPW2100_ORD(STAT_TX_DIR_DATA11,
3599                                 "successful Directed Tx's (MSDU) @ 11MB"),
3600             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3601                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3602             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3603                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3604             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3605                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3606             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3607                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3608             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3609             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3610             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3611             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3612             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3613             IPW2100_ORD(STAT_TX_ASSN_RESP,
3614                                 "successful Association response Tx's"),
3615             IPW2100_ORD(STAT_TX_REASSN,
3616                                 "successful Reassociation Tx's"),
3617             IPW2100_ORD(STAT_TX_REASSN_RESP,
3618                                 "successful Reassociation response Tx's"),
3619             IPW2100_ORD(STAT_TX_PROBE,
3620                                 "probes successfully transmitted"),
3621             IPW2100_ORD(STAT_TX_PROBE_RESP,
3622                                 "probe responses successfully transmitted"),
3623             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3624             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3625             IPW2100_ORD(STAT_TX_DISASSN,
3626                                 "successful Disassociation TX"),
3627             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3628             IPW2100_ORD(STAT_TX_DEAUTH,
3629                                 "successful Deauthentication TX"),
3630             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3631                                 "Total successful Tx data bytes"),
3632             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3633             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3634             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3635             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3636             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3637             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3638             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3639                                 "times max tries in a hop failed"),
3640             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3641                                 "times disassociation failed"),
3642             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3643             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3644             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3645             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3646             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3647             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3648             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3649                                 "directed packets at 5.5MB"),
3650             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3651             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3652             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3653                                 "nondirected packets at 1MB"),
3654             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3655                                 "nondirected packets at 2MB"),
3656             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3657                                 "nondirected packets at 5.5MB"),
3658             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3659                                 "nondirected packets at 11MB"),
3660             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3661             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3662                                                                     "Rx CTS"),
3663             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3664             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3665             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3666             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3667             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3668             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3669             IPW2100_ORD(STAT_RX_REASSN_RESP,
3670                                 "Reassociation response Rx's"),
3671             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3672             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3673             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3674             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3675             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3676             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3677             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3678             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3679                                 "Total rx data bytes received"),
3680             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3681             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3682             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3683             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3684             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3685             IPW2100_ORD(STAT_RX_DUPLICATE1,
3686                                 "duplicate rx packets at 1MB"),
3687             IPW2100_ORD(STAT_RX_DUPLICATE2,
3688                                 "duplicate rx packets at 2MB"),
3689             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3690                                 "duplicate rx packets at 5.5MB"),
3691             IPW2100_ORD(STAT_RX_DUPLICATE11,
3692                                 "duplicate rx packets at 11MB"),
3693             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3694             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3695             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3696             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3697             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3698                                 "rx frames with invalid protocol"),
3699             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3700             IPW2100_ORD(STAT_RX_NO_BUFFER,
3701                                 "rx frames rejected due to no buffer"),
3702             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3703                                 "rx frames dropped due to missing fragment"),
3704             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3705                                 "rx frames dropped due to non-sequential fragment"),
3706             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3707                                 "rx frames dropped due to unmatched 1st frame"),
3708             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3709                                 "rx frames dropped due to uncompleted frame"),
3710             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3711                                 "ICV errors during decryption"),
3712             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3713             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3714             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3715                                 "poll response timeouts"),
3716             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3717                                 "timeouts waiting for last {broad,multi}cast pkt"),
3718             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3719             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3720             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3721             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3722             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3723                                 "current calculation of % missed beacons"),
3724             IPW2100_ORD(STAT_PERCENT_RETRIES,
3725                                 "current calculation of % missed tx retries"),
3726             IPW2100_ORD(ASSOCIATED_AP_PTR,
3727                                 "0 if not associated, else pointer to AP table entry"),
3728             IPW2100_ORD(AVAILABLE_AP_CNT,
3729                                 "AP's decsribed in the AP table"),
3730             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3731             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3732             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3733             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3734                                 "failures due to response fail"),
3735             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3736             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3737             IPW2100_ORD(STAT_ROAM_INHIBIT,
3738                                 "times roaming was inhibited due to activity"),
3739             IPW2100_ORD(RSSI_AT_ASSN,
3740                                 "RSSI of associated AP at time of association"),
3741             IPW2100_ORD(STAT_ASSN_CAUSE1,
3742                                 "reassociation: no probe response or TX on hop"),
3743             IPW2100_ORD(STAT_ASSN_CAUSE2,
3744                                 "reassociation: poor tx/rx quality"),
3745             IPW2100_ORD(STAT_ASSN_CAUSE3,
3746                                 "reassociation: tx/rx quality (excessive AP load"),
3747             IPW2100_ORD(STAT_ASSN_CAUSE4,
3748                                 "reassociation: AP RSSI level"),
3749             IPW2100_ORD(STAT_ASSN_CAUSE5,
3750                                 "reassociations due to load leveling"),
3751             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3752             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3753                                 "times authentication response failed"),
3754             IPW2100_ORD(STATION_TABLE_CNT,
3755                                 "entries in association table"),
3756             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3757             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3758             IPW2100_ORD(COUNTRY_CODE,
3759                                 "IEEE country code as recv'd from beacon"),
3760             IPW2100_ORD(COUNTRY_CHANNELS,
3761                                 "channels supported by country"),
3762             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3763             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3764             IPW2100_ORD(ANTENNA_DIVERSITY,
3765                                 "TRUE if antenna diversity is disabled"),
3766             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3767             IPW2100_ORD(OUR_FREQ,
3768                                 "current radio freq lower digits - channel ID"),
3769             IPW2100_ORD(RTC_TIME, "current RTC time"),
3770             IPW2100_ORD(PORT_TYPE, "operating mode"),
3771             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3772             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3773             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3774             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3775             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3776             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3777             IPW2100_ORD(CAPABILITIES,
3778                                 "Management frame capability field"),
3779             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3780             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3781             IPW2100_ORD(RTS_THRESHOLD,
3782                                 "Min packet length for RTS handshaking"),
3783             IPW2100_ORD(INT_MODE, "International mode"),
3784             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3785                                 "protocol frag threshold"),
3786             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3787                                 "EEPROM offset in SRAM"),
3788             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3789                                 "EEPROM size in SRAM"),
3790             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3791             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3792                                 "EEPROM IBSS 11b channel set"),
3793             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3794             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3795             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3796             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3797             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3798
3799 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3800                               char *buf)
3801 {
3802         int i;
3803         struct ipw2100_priv *priv = dev_get_drvdata(d);
3804         struct net_device *dev = priv->net_dev;
3805         char *out = buf;
3806         u32 val = 0;
3807
3808         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3809
3810         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3811                 read_register(dev, hw_data[i].addr, &val);
3812                 out += sprintf(out, "%30s [%08X] : %08X\n",
3813                                hw_data[i].name, hw_data[i].addr, val);
3814         }
3815
3816         return out - buf;
3817 }
3818
3819 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3820
3821 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3822                              char *buf)
3823 {
3824         struct ipw2100_priv *priv = dev_get_drvdata(d);
3825         struct net_device *dev = priv->net_dev;
3826         char *out = buf;
3827         int i;
3828
3829         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3830
3831         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3832                 u8 tmp8;
3833                 u16 tmp16;
3834                 u32 tmp32;
3835
3836                 switch (nic_data[i].size) {
3837                 case 1:
3838                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3839                         out += sprintf(out, "%30s [%08X] : %02X\n",
3840                                        nic_data[i].name, nic_data[i].addr,
3841                                        tmp8);
3842                         break;
3843                 case 2:
3844                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3845                         out += sprintf(out, "%30s [%08X] : %04X\n",
3846                                        nic_data[i].name, nic_data[i].addr,
3847                                        tmp16);
3848                         break;
3849                 case 4:
3850                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3851                         out += sprintf(out, "%30s [%08X] : %08X\n",
3852                                        nic_data[i].name, nic_data[i].addr,
3853                                        tmp32);
3854                         break;
3855                 }
3856         }
3857         return out - buf;
3858 }
3859
3860 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3861
3862 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3863                            char *buf)
3864 {
3865         struct ipw2100_priv *priv = dev_get_drvdata(d);
3866         struct net_device *dev = priv->net_dev;
3867         static unsigned long loop = 0;
3868         int len = 0;
3869         u32 buffer[4];
3870         int i;
3871         char line[81];
3872
3873         if (loop >= 0x30000)
3874                 loop = 0;
3875
3876         /* sysfs provides us PAGE_SIZE buffer */
3877         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3878
3879                 if (priv->snapshot[0])
3880                         for (i = 0; i < 4; i++)
3881                                 buffer[i] =
3882                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3883                 else
3884                         for (i = 0; i < 4; i++)
3885                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3886
3887                 if (priv->dump_raw)
3888                         len += sprintf(buf + len,
3889                                        "%c%c%c%c"
3890                                        "%c%c%c%c"
3891                                        "%c%c%c%c"
3892                                        "%c%c%c%c",
3893                                        ((u8 *) buffer)[0x0],
3894                                        ((u8 *) buffer)[0x1],
3895                                        ((u8 *) buffer)[0x2],
3896                                        ((u8 *) buffer)[0x3],
3897                                        ((u8 *) buffer)[0x4],
3898                                        ((u8 *) buffer)[0x5],
3899                                        ((u8 *) buffer)[0x6],
3900                                        ((u8 *) buffer)[0x7],
3901                                        ((u8 *) buffer)[0x8],
3902                                        ((u8 *) buffer)[0x9],
3903                                        ((u8 *) buffer)[0xa],
3904                                        ((u8 *) buffer)[0xb],
3905                                        ((u8 *) buffer)[0xc],
3906                                        ((u8 *) buffer)[0xd],
3907                                        ((u8 *) buffer)[0xe],
3908                                        ((u8 *) buffer)[0xf]);
3909                 else
3910                         len += sprintf(buf + len, "%s\n",
3911                                        snprint_line(line, sizeof(line),
3912                                                     (u8 *) buffer, 16, loop));
3913                 loop += 16;
3914         }
3915
3916         return len;
3917 }
3918
3919 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3920                             const char *buf, size_t count)
3921 {
3922         struct ipw2100_priv *priv = dev_get_drvdata(d);
3923         struct net_device *dev = priv->net_dev;
3924         const char *p = buf;
3925
3926         (void)dev;              /* kill unused-var warning for debug-only code */
3927
3928         if (count < 1)
3929                 return count;
3930
3931         if (p[0] == '1' ||
3932             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3933                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3934                                dev->name);
3935                 priv->dump_raw = 1;
3936
3937         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3938                                    tolower(p[1]) == 'f')) {
3939                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3940                                dev->name);
3941                 priv->dump_raw = 0;
3942
3943         } else if (tolower(p[0]) == 'r') {
3944                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3945                 ipw2100_snapshot_free(priv);
3946
3947         } else
3948                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3949                                "reset = clear memory snapshot\n", dev->name);
3950
3951         return count;
3952 }
3953
3954 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3955
3956 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3957                              char *buf)
3958 {
3959         struct ipw2100_priv *priv = dev_get_drvdata(d);
3960         u32 val = 0;
3961         int len = 0;
3962         u32 val_len;
3963         static int loop = 0;
3964
3965         if (priv->status & STATUS_RF_KILL_MASK)
3966                 return 0;
3967
3968         if (loop >= ARRAY_SIZE(ord_data))
3969                 loop = 0;
3970
3971         /* sysfs provides us PAGE_SIZE buffer */
3972         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3973                 val_len = sizeof(u32);
3974
3975                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3976                                         &val_len))
3977                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3978                                        ord_data[loop].index,
3979                                        ord_data[loop].desc);
3980                 else
3981                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3982                                        ord_data[loop].index, val,
3983                                        ord_data[loop].desc);
3984                 loop++;
3985         }
3986
3987         return len;
3988 }
3989
3990 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3991
3992 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3993                           char *buf)
3994 {
3995         struct ipw2100_priv *priv = dev_get_drvdata(d);
3996         char *out = buf;
3997
3998         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3999                        priv->interrupts, priv->tx_interrupts,
4000                        priv->rx_interrupts, priv->inta_other);
4001         out += sprintf(out, "firmware resets: %d\n", priv->resets);
4002         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4003 #ifdef CONFIG_IPW2100_DEBUG
4004         out += sprintf(out, "packet mismatch image: %s\n",
4005                        priv->snapshot[0] ? "YES" : "NO");
4006 #endif
4007
4008         return out - buf;
4009 }
4010
4011 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4012
4013 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4014 {
4015         int err;
4016
4017         if (mode == priv->ieee->iw_mode)
4018                 return 0;
4019
4020         err = ipw2100_disable_adapter(priv);
4021         if (err) {
4022                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4023                        priv->net_dev->name, err);
4024                 return err;
4025         }
4026
4027         switch (mode) {
4028         case IW_MODE_INFRA:
4029                 priv->net_dev->type = ARPHRD_ETHER;
4030                 break;
4031         case IW_MODE_ADHOC:
4032                 priv->net_dev->type = ARPHRD_ETHER;
4033                 break;
4034 #ifdef CONFIG_IPW2100_MONITOR
4035         case IW_MODE_MONITOR:
4036                 priv->last_mode = priv->ieee->iw_mode;
4037                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4038                 break;
4039 #endif                          /* CONFIG_IPW2100_MONITOR */
4040         }
4041
4042         priv->ieee->iw_mode = mode;
4043
4044 #ifdef CONFIG_PM
4045         /* Indicate ipw2100_download_firmware download firmware
4046          * from disk instead of memory. */
4047         ipw2100_firmware.version = 0;
4048 #endif
4049
4050         printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4051         priv->reset_backoff = 0;
4052         schedule_reset(priv);
4053
4054         return 0;
4055 }
4056
4057 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4058                               char *buf)
4059 {
4060         struct ipw2100_priv *priv = dev_get_drvdata(d);
4061         int len = 0;
4062
4063 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4064
4065         if (priv->status & STATUS_ASSOCIATED)
4066                 len += sprintf(buf + len, "connected: %lu\n",
4067                                get_seconds() - priv->connect_start);
4068         else
4069                 len += sprintf(buf + len, "not connected\n");
4070
4071         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4072         DUMP_VAR(status, "08lx");
4073         DUMP_VAR(config, "08lx");
4074         DUMP_VAR(capability, "08lx");
4075
4076         len +=
4077             sprintf(buf + len, "last_rtc: %lu\n",
4078                     (unsigned long)priv->last_rtc);
4079
4080         DUMP_VAR(fatal_error, "d");
4081         DUMP_VAR(stop_hang_check, "d");
4082         DUMP_VAR(stop_rf_kill, "d");
4083         DUMP_VAR(messages_sent, "d");
4084
4085         DUMP_VAR(tx_pend_stat.value, "d");
4086         DUMP_VAR(tx_pend_stat.hi, "d");
4087
4088         DUMP_VAR(tx_free_stat.value, "d");
4089         DUMP_VAR(tx_free_stat.lo, "d");
4090
4091         DUMP_VAR(msg_free_stat.value, "d");
4092         DUMP_VAR(msg_free_stat.lo, "d");
4093
4094         DUMP_VAR(msg_pend_stat.value, "d");
4095         DUMP_VAR(msg_pend_stat.hi, "d");
4096
4097         DUMP_VAR(fw_pend_stat.value, "d");
4098         DUMP_VAR(fw_pend_stat.hi, "d");
4099
4100         DUMP_VAR(txq_stat.value, "d");
4101         DUMP_VAR(txq_stat.lo, "d");
4102
4103         DUMP_VAR(ieee->scans, "d");
4104         DUMP_VAR(reset_backoff, "d");
4105
4106         return len;
4107 }
4108
4109 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4110
4111 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4112                             char *buf)
4113 {
4114         struct ipw2100_priv *priv = dev_get_drvdata(d);
4115         char essid[IW_ESSID_MAX_SIZE + 1];
4116         u8 bssid[ETH_ALEN];
4117         u32 chan = 0;
4118         char *out = buf;
4119         unsigned int length;
4120         int ret;
4121
4122         if (priv->status & STATUS_RF_KILL_MASK)
4123                 return 0;
4124
4125         memset(essid, 0, sizeof(essid));
4126         memset(bssid, 0, sizeof(bssid));
4127
4128         length = IW_ESSID_MAX_SIZE;
4129         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4130         if (ret)
4131                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4132                                __LINE__);
4133
4134         length = sizeof(bssid);
4135         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4136                                   bssid, &length);
4137         if (ret)
4138                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4139                                __LINE__);
4140
4141         length = sizeof(u32);
4142         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4143         if (ret)
4144                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4145                                __LINE__);
4146
4147         out += sprintf(out, "ESSID: %s\n", essid);
4148         out += sprintf(out, "BSSID:   %pM\n", bssid);
4149         out += sprintf(out, "Channel: %d\n", chan);
4150
4151         return out - buf;
4152 }
4153
4154 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4155
4156 #ifdef CONFIG_IPW2100_DEBUG
4157 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4158 {
4159         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4160 }
4161
4162 static ssize_t store_debug_level(struct device_driver *d,
4163                                  const char *buf, size_t count)
4164 {
4165         u32 val;
4166         int ret;
4167
4168         ret = kstrtou32(buf, 0, &val);
4169         if (ret)
4170                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4171         else
4172                 ipw2100_debug_level = val;
4173
4174         return strnlen(buf, count);
4175 }
4176
4177 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4178                    store_debug_level);
4179 #endif                          /* CONFIG_IPW2100_DEBUG */
4180
4181 static ssize_t show_fatal_error(struct device *d,
4182                                 struct device_attribute *attr, char *buf)
4183 {
4184         struct ipw2100_priv *priv = dev_get_drvdata(d);
4185         char *out = buf;
4186         int i;
4187
4188         if (priv->fatal_error)
4189                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4190         else
4191                 out += sprintf(out, "0\n");
4192
4193         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4194                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4195                                         IPW2100_ERROR_QUEUE])
4196                         continue;
4197
4198                 out += sprintf(out, "%d. 0x%08X\n", i,
4199                                priv->fatal_errors[(priv->fatal_index - i) %
4200                                                   IPW2100_ERROR_QUEUE]);
4201         }
4202
4203         return out - buf;
4204 }
4205
4206 static ssize_t store_fatal_error(struct device *d,
4207                                  struct device_attribute *attr, const char *buf,
4208                                  size_t count)
4209 {
4210         struct ipw2100_priv *priv = dev_get_drvdata(d);
4211         schedule_reset(priv);
4212         return count;
4213 }
4214
4215 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4216                    store_fatal_error);
4217
4218 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4219                              char *buf)
4220 {
4221         struct ipw2100_priv *priv = dev_get_drvdata(d);
4222         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4223 }
4224
4225 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4226                               const char *buf, size_t count)
4227 {
4228         struct ipw2100_priv *priv = dev_get_drvdata(d);
4229         struct net_device *dev = priv->net_dev;
4230         unsigned long val;
4231         int ret;
4232
4233         (void)dev;              /* kill unused-var warning for debug-only code */
4234
4235         IPW_DEBUG_INFO("enter\n");
4236
4237         ret = kstrtoul(buf, 0, &val);
4238         if (ret) {
4239                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4240         } else {
4241                 priv->ieee->scan_age = val;
4242                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4243         }
4244
4245         IPW_DEBUG_INFO("exit\n");
4246         return strnlen(buf, count);
4247 }
4248
4249 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4250
4251 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4252                             char *buf)
4253 {
4254         /* 0 - RF kill not enabled
4255            1 - SW based RF kill active (sysfs)
4256            2 - HW based RF kill active
4257            3 - Both HW and SW baed RF kill active */
4258         struct ipw2100_priv *priv = dev_get_drvdata(d);
4259         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4260             (rf_kill_active(priv) ? 0x2 : 0x0);
4261         return sprintf(buf, "%i\n", val);
4262 }
4263
4264 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4265 {
4266         if ((disable_radio ? 1 : 0) ==
4267             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4268                 return 0;
4269
4270         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4271                           disable_radio ? "OFF" : "ON");
4272
4273         mutex_lock(&priv->action_mutex);
4274
4275         if (disable_radio) {
4276                 priv->status |= STATUS_RF_KILL_SW;
4277                 ipw2100_down(priv);
4278         } else {
4279                 priv->status &= ~STATUS_RF_KILL_SW;
4280                 if (rf_kill_active(priv)) {
4281                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4282                                           "disabled by HW switch\n");
4283                         /* Make sure the RF_KILL check timer is running */
4284                         priv->stop_rf_kill = 0;
4285                         mod_delayed_work(system_wq, &priv->rf_kill,
4286                                          round_jiffies_relative(HZ));
4287                 } else
4288                         schedule_reset(priv);
4289         }
4290
4291         mutex_unlock(&priv->action_mutex);
4292         return 1;
4293 }
4294
4295 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4296                              const char *buf, size_t count)
4297 {
4298         struct ipw2100_priv *priv = dev_get_drvdata(d);
4299         ipw_radio_kill_sw(priv, buf[0] == '1');
4300         return count;
4301 }
4302
4303 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4304
4305 static struct attribute *ipw2100_sysfs_entries[] = {
4306         &dev_attr_hardware.attr,
4307         &dev_attr_registers.attr,
4308         &dev_attr_ordinals.attr,
4309         &dev_attr_pci.attr,
4310         &dev_attr_stats.attr,
4311         &dev_attr_internals.attr,
4312         &dev_attr_bssinfo.attr,
4313         &dev_attr_memory.attr,
4314         &dev_attr_scan_age.attr,
4315         &dev_attr_fatal_error.attr,
4316         &dev_attr_rf_kill.attr,
4317         &dev_attr_cfg.attr,
4318         &dev_attr_status.attr,
4319         &dev_attr_capability.attr,
4320         NULL,
4321 };
4322
4323 static struct attribute_group ipw2100_attribute_group = {
4324         .attrs = ipw2100_sysfs_entries,
4325 };
4326
4327 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4328 {
4329         struct ipw2100_status_queue *q = &priv->status_queue;
4330
4331         IPW_DEBUG_INFO("enter\n");
4332
4333         q->size = entries * sizeof(struct ipw2100_status);
4334         q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4335         if (!q->drv) {
4336                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4337                 return -ENOMEM;
4338         }
4339
4340         IPW_DEBUG_INFO("exit\n");
4341
4342         return 0;
4343 }
4344
4345 static void status_queue_free(struct ipw2100_priv *priv)
4346 {
4347         IPW_DEBUG_INFO("enter\n");
4348
4349         if (priv->status_queue.drv) {
4350                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4351                                     priv->status_queue.drv,
4352                                     priv->status_queue.nic);
4353                 priv->status_queue.drv = NULL;
4354         }
4355
4356         IPW_DEBUG_INFO("exit\n");
4357 }
4358
4359 static int bd_queue_allocate(struct ipw2100_priv *priv,
4360                              struct ipw2100_bd_queue *q, int entries)
4361 {
4362         IPW_DEBUG_INFO("enter\n");
4363
4364         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4365
4366         q->entries = entries;
4367         q->size = entries * sizeof(struct ipw2100_bd);
4368         q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4369         if (!q->drv) {
4370                 IPW_DEBUG_INFO
4371                     ("can't allocate shared memory for buffer descriptors\n");
4372                 return -ENOMEM;
4373         }
4374
4375         IPW_DEBUG_INFO("exit\n");
4376
4377         return 0;
4378 }
4379
4380 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4381 {
4382         IPW_DEBUG_INFO("enter\n");
4383
4384         if (!q)
4385                 return;
4386
4387         if (q->drv) {
4388                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4389                 q->drv = NULL;
4390         }
4391
4392         IPW_DEBUG_INFO("exit\n");
4393 }
4394
4395 static void bd_queue_initialize(struct ipw2100_priv *priv,
4396                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4397                                 u32 r, u32 w)
4398 {
4399         IPW_DEBUG_INFO("enter\n");
4400
4401         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4402                        (u32) q->nic);
4403
4404         write_register(priv->net_dev, base, q->nic);
4405         write_register(priv->net_dev, size, q->entries);
4406         write_register(priv->net_dev, r, q->oldest);
4407         write_register(priv->net_dev, w, q->next);
4408
4409         IPW_DEBUG_INFO("exit\n");
4410 }
4411
4412 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4413 {
4414         priv->stop_rf_kill = 1;
4415         priv->stop_hang_check = 1;
4416         cancel_delayed_work_sync(&priv->reset_work);
4417         cancel_delayed_work_sync(&priv->security_work);
4418         cancel_delayed_work_sync(&priv->wx_event_work);
4419         cancel_delayed_work_sync(&priv->hang_check);
4420         cancel_delayed_work_sync(&priv->rf_kill);
4421         cancel_delayed_work_sync(&priv->scan_event);
4422 }
4423
4424 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4425 {
4426         int i, j, err = -EINVAL;
4427         void *v;
4428         dma_addr_t p;
4429
4430         IPW_DEBUG_INFO("enter\n");
4431
4432         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4433         if (err) {
4434                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4435                                 priv->net_dev->name);
4436                 return err;
4437         }
4438
4439         priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4440                                          sizeof(struct ipw2100_tx_packet),
4441                                          GFP_ATOMIC);
4442         if (!priv->tx_buffers) {
4443                 bd_queue_free(priv, &priv->tx_queue);
4444                 return -ENOMEM;
4445         }
4446
4447         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4448                 v = pci_alloc_consistent(priv->pci_dev,
4449                                          sizeof(struct ipw2100_data_header),
4450                                          &p);
4451                 if (!v) {
4452                         printk(KERN_ERR DRV_NAME
4453                                ": %s: PCI alloc failed for tx " "buffers.\n",
4454                                priv->net_dev->name);
4455                         err = -ENOMEM;
4456                         break;
4457                 }
4458
4459                 priv->tx_buffers[i].type = DATA;
4460                 priv->tx_buffers[i].info.d_struct.data =
4461                     (struct ipw2100_data_header *)v;
4462                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4463                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4464         }
4465
4466         if (i == TX_PENDED_QUEUE_LENGTH)
4467                 return 0;
4468
4469         for (j = 0; j < i; j++) {
4470                 pci_free_consistent(priv->pci_dev,
4471                                     sizeof(struct ipw2100_data_header),
4472                                     priv->tx_buffers[j].info.d_struct.data,
4473                                     priv->tx_buffers[j].info.d_struct.
4474                                     data_phys);
4475         }
4476
4477         kfree(priv->tx_buffers);
4478         priv->tx_buffers = NULL;
4479
4480         return err;
4481 }
4482
4483 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4484 {
4485         int i;
4486
4487         IPW_DEBUG_INFO("enter\n");
4488
4489         /*
4490          * reinitialize packet info lists
4491          */
4492         INIT_LIST_HEAD(&priv->fw_pend_list);
4493         INIT_STAT(&priv->fw_pend_stat);
4494
4495         /*
4496          * reinitialize lists
4497          */
4498         INIT_LIST_HEAD(&priv->tx_pend_list);
4499         INIT_LIST_HEAD(&priv->tx_free_list);
4500         INIT_STAT(&priv->tx_pend_stat);
4501         INIT_STAT(&priv->tx_free_stat);
4502
4503         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4504                 /* We simply drop any SKBs that have been queued for
4505                  * transmit */
4506                 if (priv->tx_buffers[i].info.d_struct.txb) {
4507                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4508                                            txb);
4509                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4510                 }
4511
4512                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4513         }
4514
4515         SET_STAT(&priv->tx_free_stat, i);
4516
4517         priv->tx_queue.oldest = 0;
4518         priv->tx_queue.available = priv->tx_queue.entries;
4519         priv->tx_queue.next = 0;
4520         INIT_STAT(&priv->txq_stat);
4521         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4522
4523         bd_queue_initialize(priv, &priv->tx_queue,
4524                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4525                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4526                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4527                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4528
4529         IPW_DEBUG_INFO("exit\n");
4530
4531 }
4532
4533 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4534 {
4535         int i;
4536
4537         IPW_DEBUG_INFO("enter\n");
4538
4539         bd_queue_free(priv, &priv->tx_queue);
4540
4541         if (!priv->tx_buffers)
4542                 return;
4543
4544         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4545                 if (priv->tx_buffers[i].info.d_struct.txb) {
4546                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4547                                            txb);
4548                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4549                 }
4550                 if (priv->tx_buffers[i].info.d_struct.data)
4551                         pci_free_consistent(priv->pci_dev,
4552                                             sizeof(struct ipw2100_data_header),
4553                                             priv->tx_buffers[i].info.d_struct.
4554                                             data,
4555                                             priv->tx_buffers[i].info.d_struct.
4556                                             data_phys);
4557         }
4558
4559         kfree(priv->tx_buffers);
4560         priv->tx_buffers = NULL;
4561
4562         IPW_DEBUG_INFO("exit\n");
4563 }
4564
4565 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4566 {
4567         int i, j, err = -EINVAL;
4568
4569         IPW_DEBUG_INFO("enter\n");
4570
4571         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4572         if (err) {
4573                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4574                 return err;
4575         }
4576
4577         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4578         if (err) {
4579                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4580                 bd_queue_free(priv, &priv->rx_queue);
4581                 return err;
4582         }
4583
4584         /*
4585          * allocate packets
4586          */
4587         priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4588                                    sizeof(struct ipw2100_rx_packet),
4589                                    GFP_KERNEL);
4590         if (!priv->rx_buffers) {
4591                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4592
4593                 bd_queue_free(priv, &priv->rx_queue);
4594
4595                 status_queue_free(priv);
4596
4597                 return -ENOMEM;
4598         }
4599
4600         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4601                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4602
4603                 err = ipw2100_alloc_skb(priv, packet);
4604                 if (unlikely(err)) {
4605                         err = -ENOMEM;
4606                         break;
4607                 }
4608
4609                 /* The BD holds the cache aligned address */
4610                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4611                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4612                 priv->status_queue.drv[i].status_fields = 0;
4613         }
4614
4615         if (i == RX_QUEUE_LENGTH)
4616                 return 0;
4617
4618         for (j = 0; j < i; j++) {
4619                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4620                                  sizeof(struct ipw2100_rx_packet),
4621                                  PCI_DMA_FROMDEVICE);
4622                 dev_kfree_skb(priv->rx_buffers[j].skb);
4623         }
4624
4625         kfree(priv->rx_buffers);
4626         priv->rx_buffers = NULL;
4627
4628         bd_queue_free(priv, &priv->rx_queue);
4629
4630         status_queue_free(priv);
4631
4632         return err;
4633 }
4634
4635 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4636 {
4637         IPW_DEBUG_INFO("enter\n");
4638
4639         priv->rx_queue.oldest = 0;
4640         priv->rx_queue.available = priv->rx_queue.entries - 1;
4641         priv->rx_queue.next = priv->rx_queue.entries - 1;
4642
4643         INIT_STAT(&priv->rxq_stat);
4644         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4645
4646         bd_queue_initialize(priv, &priv->rx_queue,
4647                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4648                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4649                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4650                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4651
4652         /* set up the status queue */
4653         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4654                        priv->status_queue.nic);
4655
4656         IPW_DEBUG_INFO("exit\n");
4657 }
4658
4659 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4660 {
4661         int i;
4662
4663         IPW_DEBUG_INFO("enter\n");
4664
4665         bd_queue_free(priv, &priv->rx_queue);
4666         status_queue_free(priv);
4667
4668         if (!priv->rx_buffers)
4669                 return;
4670
4671         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4672                 if (priv->rx_buffers[i].rxp) {
4673                         pci_unmap_single(priv->pci_dev,
4674                                          priv->rx_buffers[i].dma_addr,
4675                                          sizeof(struct ipw2100_rx),
4676                                          PCI_DMA_FROMDEVICE);
4677                         dev_kfree_skb(priv->rx_buffers[i].skb);
4678                 }
4679         }
4680
4681         kfree(priv->rx_buffers);
4682         priv->rx_buffers = NULL;
4683
4684         IPW_DEBUG_INFO("exit\n");
4685 }
4686
4687 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4688 {
4689         u32 length = ETH_ALEN;
4690         u8 addr[ETH_ALEN];
4691
4692         int err;
4693
4694         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4695         if (err) {
4696                 IPW_DEBUG_INFO("MAC address read failed\n");
4697                 return -EIO;
4698         }
4699
4700         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4701         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4702
4703         return 0;
4704 }
4705
4706 /********************************************************************
4707  *
4708  * Firmware Commands
4709  *
4710  ********************************************************************/
4711
4712 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4713 {
4714         struct host_command cmd = {
4715                 .host_command = ADAPTER_ADDRESS,
4716                 .host_command_sequence = 0,
4717                 .host_command_length = ETH_ALEN
4718         };
4719         int err;
4720
4721         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4722
4723         IPW_DEBUG_INFO("enter\n");
4724
4725         if (priv->config & CFG_CUSTOM_MAC) {
4726                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4727                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4728         } else
4729                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4730                        ETH_ALEN);
4731
4732         err = ipw2100_hw_send_command(priv, &cmd);
4733
4734         IPW_DEBUG_INFO("exit\n");
4735         return err;
4736 }
4737
4738 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4739                                  int batch_mode)
4740 {
4741         struct host_command cmd = {
4742                 .host_command = PORT_TYPE,
4743                 .host_command_sequence = 0,
4744                 .host_command_length = sizeof(u32)
4745         };
4746         int err;
4747
4748         switch (port_type) {
4749         case IW_MODE_INFRA:
4750                 cmd.host_command_parameters[0] = IPW_BSS;
4751                 break;
4752         case IW_MODE_ADHOC:
4753                 cmd.host_command_parameters[0] = IPW_IBSS;
4754                 break;
4755         }
4756
4757         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4758                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4759
4760         if (!batch_mode) {
4761                 err = ipw2100_disable_adapter(priv);
4762                 if (err) {
4763                         printk(KERN_ERR DRV_NAME
4764                                ": %s: Could not disable adapter %d\n",
4765                                priv->net_dev->name, err);
4766                         return err;
4767                 }
4768         }
4769
4770         /* send cmd to firmware */
4771         err = ipw2100_hw_send_command(priv, &cmd);
4772
4773         if (!batch_mode)
4774                 ipw2100_enable_adapter(priv);
4775
4776         return err;
4777 }
4778
4779 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4780                                int batch_mode)
4781 {
4782         struct host_command cmd = {
4783                 .host_command = CHANNEL,
4784                 .host_command_sequence = 0,
4785                 .host_command_length = sizeof(u32)
4786         };
4787         int err;
4788
4789         cmd.host_command_parameters[0] = channel;
4790
4791         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4792
4793         /* If BSS then we don't support channel selection */
4794         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4795                 return 0;
4796
4797         if ((channel != 0) &&
4798             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4799                 return -EINVAL;
4800
4801         if (!batch_mode) {
4802                 err = ipw2100_disable_adapter(priv);
4803                 if (err)
4804                         return err;
4805         }
4806
4807         err = ipw2100_hw_send_command(priv, &cmd);
4808         if (err) {
4809                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4810                 return err;
4811         }
4812
4813         if (channel)
4814                 priv->config |= CFG_STATIC_CHANNEL;
4815         else
4816                 priv->config &= ~CFG_STATIC_CHANNEL;
4817
4818         priv->channel = channel;
4819
4820         if (!batch_mode) {
4821                 err = ipw2100_enable_adapter(priv);
4822                 if (err)
4823                         return err;
4824         }
4825
4826         return 0;
4827 }
4828
4829 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4830 {
4831         struct host_command cmd = {
4832                 .host_command = SYSTEM_CONFIG,
4833                 .host_command_sequence = 0,
4834                 .host_command_length = 12,
4835         };
4836         u32 ibss_mask, len = sizeof(u32);
4837         int err;
4838
4839         /* Set system configuration */
4840
4841         if (!batch_mode) {
4842                 err = ipw2100_disable_adapter(priv);
4843                 if (err)
4844                         return err;
4845         }
4846
4847         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4848                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4849
4850         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4851             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4852
4853         if (!(priv->config & CFG_LONG_PREAMBLE))
4854                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4855
4856         err = ipw2100_get_ordinal(priv,
4857                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4858                                   &ibss_mask, &len);
4859         if (err)
4860                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4861
4862         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4863         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4864
4865         /* 11b only */
4866         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4867
4868         err = ipw2100_hw_send_command(priv, &cmd);
4869         if (err)
4870                 return err;
4871
4872 /* If IPv6 is configured in the kernel then we don't want to filter out all
4873  * of the multicast packets as IPv6 needs some. */
4874 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4875         cmd.host_command = ADD_MULTICAST;
4876         cmd.host_command_sequence = 0;
4877         cmd.host_command_length = 0;
4878
4879         ipw2100_hw_send_command(priv, &cmd);
4880 #endif
4881         if (!batch_mode) {
4882                 err = ipw2100_enable_adapter(priv);
4883                 if (err)
4884                         return err;
4885         }
4886
4887         return 0;
4888 }
4889
4890 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4891                                 int batch_mode)
4892 {
4893         struct host_command cmd = {
4894                 .host_command = BASIC_TX_RATES,
4895                 .host_command_sequence = 0,
4896                 .host_command_length = 4
4897         };
4898         int err;
4899
4900         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4901
4902         if (!batch_mode) {
4903                 err = ipw2100_disable_adapter(priv);
4904                 if (err)
4905                         return err;
4906         }
4907
4908         /* Set BASIC TX Rate first */
4909         ipw2100_hw_send_command(priv, &cmd);
4910
4911         /* Set TX Rate */
4912         cmd.host_command = TX_RATES;
4913         ipw2100_hw_send_command(priv, &cmd);
4914
4915         /* Set MSDU TX Rate */
4916         cmd.host_command = MSDU_TX_RATES;
4917         ipw2100_hw_send_command(priv, &cmd);
4918
4919         if (!batch_mode) {
4920                 err = ipw2100_enable_adapter(priv);
4921                 if (err)
4922                         return err;
4923         }
4924
4925         priv->tx_rates = rate;
4926
4927         return 0;
4928 }
4929
4930 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4931 {
4932         struct host_command cmd = {
4933                 .host_command = POWER_MODE,
4934                 .host_command_sequence = 0,
4935                 .host_command_length = 4
4936         };
4937         int err;
4938
4939         cmd.host_command_parameters[0] = power_level;
4940
4941         err = ipw2100_hw_send_command(priv, &cmd);
4942         if (err)
4943                 return err;
4944
4945         if (power_level == IPW_POWER_MODE_CAM)
4946                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4947         else
4948                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4949
4950 #ifdef IPW2100_TX_POWER
4951         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4952                 /* Set beacon interval */
4953                 cmd.host_command = TX_POWER_INDEX;
4954                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4955
4956                 err = ipw2100_hw_send_command(priv, &cmd);
4957                 if (err)
4958                         return err;
4959         }
4960 #endif
4961
4962         return 0;
4963 }
4964
4965 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4966 {
4967         struct host_command cmd = {
4968                 .host_command = RTS_THRESHOLD,
4969                 .host_command_sequence = 0,
4970                 .host_command_length = 4
4971         };
4972         int err;
4973
4974         if (threshold & RTS_DISABLED)
4975                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4976         else
4977                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4978
4979         err = ipw2100_hw_send_command(priv, &cmd);
4980         if (err)
4981                 return err;
4982
4983         priv->rts_threshold = threshold;
4984
4985         return 0;
4986 }
4987
4988 #if 0
4989 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4990                                         u32 threshold, int batch_mode)
4991 {
4992         struct host_command cmd = {
4993                 .host_command = FRAG_THRESHOLD,
4994                 .host_command_sequence = 0,
4995                 .host_command_length = 4,
4996                 .host_command_parameters[0] = 0,
4997         };
4998         int err;
4999
5000         if (!batch_mode) {
5001                 err = ipw2100_disable_adapter(priv);
5002                 if (err)
5003                         return err;
5004         }
5005
5006         if (threshold == 0)
5007                 threshold = DEFAULT_FRAG_THRESHOLD;
5008         else {
5009                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5010                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5011         }
5012
5013         cmd.host_command_parameters[0] = threshold;
5014
5015         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5016
5017         err = ipw2100_hw_send_command(priv, &cmd);
5018
5019         if (!batch_mode)
5020                 ipw2100_enable_adapter(priv);
5021
5022         if (!err)
5023                 priv->frag_threshold = threshold;
5024
5025         return err;
5026 }
5027 #endif
5028
5029 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5030 {
5031         struct host_command cmd = {
5032                 .host_command = SHORT_RETRY_LIMIT,
5033                 .host_command_sequence = 0,
5034                 .host_command_length = 4
5035         };
5036         int err;
5037
5038         cmd.host_command_parameters[0] = retry;
5039
5040         err = ipw2100_hw_send_command(priv, &cmd);
5041         if (err)
5042                 return err;
5043
5044         priv->short_retry_limit = retry;
5045
5046         return 0;
5047 }
5048
5049 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5050 {
5051         struct host_command cmd = {
5052                 .host_command = LONG_RETRY_LIMIT,
5053                 .host_command_sequence = 0,
5054                 .host_command_length = 4
5055         };
5056         int err;
5057
5058         cmd.host_command_parameters[0] = retry;
5059
5060         err = ipw2100_hw_send_command(priv, &cmd);
5061         if (err)
5062                 return err;
5063
5064         priv->long_retry_limit = retry;
5065
5066         return 0;
5067 }
5068
5069 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5070                                        int batch_mode)
5071 {
5072         struct host_command cmd = {
5073                 .host_command = MANDATORY_BSSID,
5074                 .host_command_sequence = 0,
5075                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5076         };
5077         int err;
5078
5079 #ifdef CONFIG_IPW2100_DEBUG
5080         if (bssid != NULL)
5081                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5082         else
5083                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5084 #endif
5085         /* if BSSID is empty then we disable mandatory bssid mode */
5086         if (bssid != NULL)
5087                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5088
5089         if (!batch_mode) {
5090                 err = ipw2100_disable_adapter(priv);
5091                 if (err)
5092                         return err;
5093         }
5094
5095         err = ipw2100_hw_send_command(priv, &cmd);
5096
5097         if (!batch_mode)
5098                 ipw2100_enable_adapter(priv);
5099
5100         return err;
5101 }
5102
5103 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5104 {
5105         struct host_command cmd = {
5106                 .host_command = DISASSOCIATION_BSSID,
5107                 .host_command_sequence = 0,
5108                 .host_command_length = ETH_ALEN
5109         };
5110         int err;
5111         int len;
5112
5113         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5114
5115         len = ETH_ALEN;
5116         /* The Firmware currently ignores the BSSID and just disassociates from
5117          * the currently associated AP -- but in the off chance that a future
5118          * firmware does use the BSSID provided here, we go ahead and try and
5119          * set it to the currently associated AP's BSSID */
5120         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5121
5122         err = ipw2100_hw_send_command(priv, &cmd);
5123
5124         return err;
5125 }
5126
5127 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5128                               struct ipw2100_wpa_assoc_frame *, int)
5129     __attribute__ ((unused));
5130
5131 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5132                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5133                               int batch_mode)
5134 {
5135         struct host_command cmd = {
5136                 .host_command = SET_WPA_IE,
5137                 .host_command_sequence = 0,
5138                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5139         };
5140         int err;
5141
5142         IPW_DEBUG_HC("SET_WPA_IE\n");
5143
5144         if (!batch_mode) {
5145                 err = ipw2100_disable_adapter(priv);
5146                 if (err)
5147                         return err;
5148         }
5149
5150         memcpy(cmd.host_command_parameters, wpa_frame,
5151                sizeof(struct ipw2100_wpa_assoc_frame));
5152
5153         err = ipw2100_hw_send_command(priv, &cmd);
5154
5155         if (!batch_mode) {
5156                 if (ipw2100_enable_adapter(priv))
5157                         err = -EIO;
5158         }
5159
5160         return err;
5161 }
5162
5163 struct security_info_params {
5164         u32 allowed_ciphers;
5165         u16 version;
5166         u8 auth_mode;
5167         u8 replay_counters_number;
5168         u8 unicast_using_group;
5169 } __packed;
5170
5171 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5172                                             int auth_mode,
5173                                             int security_level,
5174                                             int unicast_using_group,
5175                                             int batch_mode)
5176 {
5177         struct host_command cmd = {
5178                 .host_command = SET_SECURITY_INFORMATION,
5179                 .host_command_sequence = 0,
5180                 .host_command_length = sizeof(struct security_info_params)
5181         };
5182         struct security_info_params *security =
5183             (struct security_info_params *)&cmd.host_command_parameters;
5184         int err;
5185         memset(security, 0, sizeof(*security));
5186
5187         /* If shared key AP authentication is turned on, then we need to
5188          * configure the firmware to try and use it.
5189          *
5190          * Actual data encryption/decryption is handled by the host. */
5191         security->auth_mode = auth_mode;
5192         security->unicast_using_group = unicast_using_group;
5193
5194         switch (security_level) {
5195         default:
5196         case SEC_LEVEL_0:
5197                 security->allowed_ciphers = IPW_NONE_CIPHER;
5198                 break;
5199         case SEC_LEVEL_1:
5200                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5201                     IPW_WEP104_CIPHER;
5202                 break;
5203         case SEC_LEVEL_2:
5204                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5205                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5206                 break;
5207         case SEC_LEVEL_2_CKIP:
5208                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5209                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5210                 break;
5211         case SEC_LEVEL_3:
5212                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5213                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5214                 break;
5215         }
5216
5217         IPW_DEBUG_HC
5218             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5219              security->auth_mode, security->allowed_ciphers, security_level);
5220
5221         security->replay_counters_number = 0;
5222
5223         if (!batch_mode) {
5224                 err = ipw2100_disable_adapter(priv);
5225                 if (err)
5226                         return err;
5227         }
5228
5229         err = ipw2100_hw_send_command(priv, &cmd);
5230
5231         if (!batch_mode)
5232                 ipw2100_enable_adapter(priv);
5233
5234         return err;
5235 }
5236
5237 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5238 {
5239         struct host_command cmd = {
5240                 .host_command = TX_POWER_INDEX,
5241                 .host_command_sequence = 0,
5242                 .host_command_length = 4
5243         };
5244         int err = 0;
5245         u32 tmp = tx_power;
5246
5247         if (tx_power != IPW_TX_POWER_DEFAULT)
5248                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5249                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5250
5251         cmd.host_command_parameters[0] = tmp;
5252
5253         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5254                 err = ipw2100_hw_send_command(priv, &cmd);
5255         if (!err)
5256                 priv->tx_power = tx_power;
5257
5258         return 0;
5259 }
5260
5261 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5262                                             u32 interval, int batch_mode)
5263 {
5264         struct host_command cmd = {
5265                 .host_command = BEACON_INTERVAL,
5266                 .host_command_sequence = 0,
5267                 .host_command_length = 4
5268         };
5269         int err;
5270
5271         cmd.host_command_parameters[0] = interval;
5272
5273         IPW_DEBUG_INFO("enter\n");
5274
5275         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5276                 if (!batch_mode) {
5277                         err = ipw2100_disable_adapter(priv);
5278                         if (err)
5279                                 return err;
5280                 }
5281
5282                 ipw2100_hw_send_command(priv, &cmd);
5283
5284                 if (!batch_mode) {
5285                         err = ipw2100_enable_adapter(priv);
5286                         if (err)
5287                                 return err;
5288                 }
5289         }
5290
5291         IPW_DEBUG_INFO("exit\n");
5292
5293         return 0;
5294 }
5295
5296 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5297 {
5298         ipw2100_tx_initialize(priv);
5299         ipw2100_rx_initialize(priv);
5300         ipw2100_msg_initialize(priv);
5301 }
5302
5303 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5304 {
5305         ipw2100_tx_free(priv);
5306         ipw2100_rx_free(priv);
5307         ipw2100_msg_free(priv);
5308 }
5309
5310 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5311 {
5312         if (ipw2100_tx_allocate(priv) ||
5313             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5314                 goto fail;
5315
5316         return 0;
5317
5318       fail:
5319         ipw2100_tx_free(priv);
5320         ipw2100_rx_free(priv);
5321         ipw2100_msg_free(priv);
5322         return -ENOMEM;
5323 }
5324
5325 #define IPW_PRIVACY_CAPABLE 0x0008
5326
5327 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5328                                  int batch_mode)
5329 {
5330         struct host_command cmd = {
5331                 .host_command = WEP_FLAGS,
5332                 .host_command_sequence = 0,
5333                 .host_command_length = 4
5334         };
5335         int err;
5336
5337         cmd.host_command_parameters[0] = flags;
5338
5339         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5340
5341         if (!batch_mode) {
5342                 err = ipw2100_disable_adapter(priv);
5343                 if (err) {
5344                         printk(KERN_ERR DRV_NAME
5345                                ": %s: Could not disable adapter %d\n",
5346                                priv->net_dev->name, err);
5347                         return err;
5348                 }
5349         }
5350
5351         /* send cmd to firmware */
5352         err = ipw2100_hw_send_command(priv, &cmd);
5353
5354         if (!batch_mode)
5355                 ipw2100_enable_adapter(priv);
5356
5357         return err;
5358 }
5359
5360 struct ipw2100_wep_key {
5361         u8 idx;
5362         u8 len;
5363         u8 key[13];
5364 };
5365
5366 /* Macros to ease up priting WEP keys */
5367 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5368 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5369 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5370 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5371
5372 /**
5373  * Set a the wep key
5374  *
5375  * @priv: struct to work on
5376  * @idx: index of the key we want to set
5377  * @key: ptr to the key data to set
5378  * @len: length of the buffer at @key
5379  * @batch_mode: FIXME perform the operation in batch mode, not
5380  *              disabling the device.
5381  *
5382  * @returns 0 if OK, < 0 errno code on error.
5383  *
5384  * Fill out a command structure with the new wep key, length an
5385  * index and send it down the wire.
5386  */
5387 static int ipw2100_set_key(struct ipw2100_priv *priv,
5388                            int idx, char *key, int len, int batch_mode)
5389 {
5390         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5391         struct host_command cmd = {
5392                 .host_command = WEP_KEY_INFO,
5393                 .host_command_sequence = 0,
5394                 .host_command_length = sizeof(struct ipw2100_wep_key),
5395         };
5396         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5397         int err;
5398
5399         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5400                      idx, keylen, len);
5401
5402         /* NOTE: We don't check cached values in case the firmware was reset
5403          * or some other problem is occurring.  If the user is setting the key,
5404          * then we push the change */
5405
5406         wep_key->idx = idx;
5407         wep_key->len = keylen;
5408
5409         if (keylen) {
5410                 memcpy(wep_key->key, key, len);
5411                 memset(wep_key->key + len, 0, keylen - len);
5412         }
5413
5414         /* Will be optimized out on debug not being configured in */
5415         if (keylen == 0)
5416                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5417                               priv->net_dev->name, wep_key->idx);
5418         else if (keylen == 5)
5419                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5420                               priv->net_dev->name, wep_key->idx, wep_key->len,
5421                               WEP_STR_64(wep_key->key));
5422         else
5423                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5424                               "\n",
5425                               priv->net_dev->name, wep_key->idx, wep_key->len,
5426                               WEP_STR_128(wep_key->key));
5427
5428         if (!batch_mode) {
5429                 err = ipw2100_disable_adapter(priv);
5430                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5431                 if (err) {
5432                         printk(KERN_ERR DRV_NAME
5433                                ": %s: Could not disable adapter %d\n",
5434                                priv->net_dev->name, err);
5435                         return err;
5436                 }
5437         }
5438
5439         /* send cmd to firmware */
5440         err = ipw2100_hw_send_command(priv, &cmd);
5441
5442         if (!batch_mode) {
5443                 int err2 = ipw2100_enable_adapter(priv);
5444                 if (err == 0)
5445                         err = err2;
5446         }
5447         return err;
5448 }
5449
5450 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5451                                  int idx, int batch_mode)
5452 {
5453         struct host_command cmd = {
5454                 .host_command = WEP_KEY_INDEX,
5455                 .host_command_sequence = 0,
5456                 .host_command_length = 4,
5457                 .host_command_parameters = {idx},
5458         };
5459         int err;
5460
5461         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5462
5463         if (idx < 0 || idx > 3)
5464                 return -EINVAL;
5465
5466         if (!batch_mode) {
5467                 err = ipw2100_disable_adapter(priv);
5468                 if (err) {
5469                         printk(KERN_ERR DRV_NAME
5470                                ": %s: Could not disable adapter %d\n",
5471                                priv->net_dev->name, err);
5472                         return err;
5473                 }
5474         }
5475
5476         /* send cmd to firmware */
5477         err = ipw2100_hw_send_command(priv, &cmd);
5478
5479         if (!batch_mode)
5480                 ipw2100_enable_adapter(priv);
5481
5482         return err;
5483 }
5484
5485 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5486 {
5487         int i, err, auth_mode, sec_level, use_group;
5488
5489         if (!(priv->status & STATUS_RUNNING))
5490                 return 0;
5491
5492         if (!batch_mode) {
5493                 err = ipw2100_disable_adapter(priv);
5494                 if (err)
5495                         return err;
5496         }
5497
5498         if (!priv->ieee->sec.enabled) {
5499                 err =
5500                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5501                                                      SEC_LEVEL_0, 0, 1);
5502         } else {
5503                 auth_mode = IPW_AUTH_OPEN;
5504                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5505                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5506                                 auth_mode = IPW_AUTH_SHARED;
5507                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5508                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5509                 }
5510
5511                 sec_level = SEC_LEVEL_0;
5512                 if (priv->ieee->sec.flags & SEC_LEVEL)
5513                         sec_level = priv->ieee->sec.level;
5514
5515                 use_group = 0;
5516                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5517                         use_group = priv->ieee->sec.unicast_uses_group;
5518
5519                 err =
5520                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5521                                                      use_group, 1);
5522         }
5523
5524         if (err)
5525                 goto exit;
5526
5527         if (priv->ieee->sec.enabled) {
5528                 for (i = 0; i < 4; i++) {
5529                         if (!(priv->ieee->sec.flags & (1 << i))) {
5530                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5531                                 priv->ieee->sec.key_sizes[i] = 0;
5532                         } else {
5533                                 err = ipw2100_set_key(priv, i,
5534                                                       priv->ieee->sec.keys[i],
5535                                                       priv->ieee->sec.
5536                                                       key_sizes[i], 1);
5537                                 if (err)
5538                                         goto exit;
5539                         }
5540                 }
5541
5542                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5543         }
5544
5545         /* Always enable privacy so the Host can filter WEP packets if
5546          * encrypted data is sent up */
5547         err =
5548             ipw2100_set_wep_flags(priv,
5549                                   priv->ieee->sec.
5550                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5551         if (err)
5552                 goto exit;
5553
5554         priv->status &= ~STATUS_SECURITY_UPDATED;
5555
5556       exit:
5557         if (!batch_mode)
5558                 ipw2100_enable_adapter(priv);
5559
5560         return err;
5561 }
5562
5563 static void ipw2100_security_work(struct work_struct *work)
5564 {
5565         struct ipw2100_priv *priv =
5566                 container_of(work, struct ipw2100_priv, security_work.work);
5567
5568         /* If we happen to have reconnected before we get a chance to
5569          * process this, then update the security settings--which causes
5570          * a disassociation to occur */
5571         if (!(priv->status & STATUS_ASSOCIATED) &&
5572             priv->status & STATUS_SECURITY_UPDATED)
5573                 ipw2100_configure_security(priv, 0);
5574 }
5575
5576 static void shim__set_security(struct net_device *dev,
5577                                struct libipw_security *sec)
5578 {
5579         struct ipw2100_priv *priv = libipw_priv(dev);
5580         int i, force_update = 0;
5581
5582         mutex_lock(&priv->action_mutex);
5583         if (!(priv->status & STATUS_INITIALIZED))
5584                 goto done;
5585
5586         for (i = 0; i < 4; i++) {
5587                 if (sec->flags & (1 << i)) {
5588                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5589                         if (sec->key_sizes[i] == 0)
5590                                 priv->ieee->sec.flags &= ~(1 << i);
5591                         else
5592                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5593                                        sec->key_sizes[i]);
5594                         if (sec->level == SEC_LEVEL_1) {
5595                                 priv->ieee->sec.flags |= (1 << i);
5596                                 priv->status |= STATUS_SECURITY_UPDATED;
5597                         } else
5598                                 priv->ieee->sec.flags &= ~(1 << i);
5599                 }
5600         }
5601
5602         if ((sec->flags & SEC_ACTIVE_KEY) &&
5603             priv->ieee->sec.active_key != sec->active_key) {
5604                 if (sec->active_key <= 3) {
5605                         priv->ieee->sec.active_key = sec->active_key;
5606                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5607                 } else
5608                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5609
5610                 priv->status |= STATUS_SECURITY_UPDATED;
5611         }
5612
5613         if ((sec->flags & SEC_AUTH_MODE) &&
5614             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5615                 priv->ieee->sec.auth_mode = sec->auth_mode;
5616                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5617                 priv->status |= STATUS_SECURITY_UPDATED;
5618         }
5619
5620         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5621                 priv->ieee->sec.flags |= SEC_ENABLED;
5622                 priv->ieee->sec.enabled = sec->enabled;
5623                 priv->status |= STATUS_SECURITY_UPDATED;
5624                 force_update = 1;
5625         }
5626
5627         if (sec->flags & SEC_ENCRYPT)
5628                 priv->ieee->sec.encrypt = sec->encrypt;
5629
5630         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5631                 priv->ieee->sec.level = sec->level;
5632                 priv->ieee->sec.flags |= SEC_LEVEL;
5633                 priv->status |= STATUS_SECURITY_UPDATED;
5634         }
5635
5636         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5637                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5638                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5639                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5640                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5641                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5642                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5643                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5644                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5645                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5646
5647 /* As a temporary work around to enable WPA until we figure out why
5648  * wpa_supplicant toggles the security capability of the driver, which
5649  * forces a disassocation with force_update...
5650  *
5651  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5652         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5653                 ipw2100_configure_security(priv, 0);
5654       done:
5655         mutex_unlock(&priv->action_mutex);
5656 }
5657
5658 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5659 {
5660         int err;
5661         int batch_mode = 1;
5662         u8 *bssid;
5663
5664         IPW_DEBUG_INFO("enter\n");
5665
5666         err = ipw2100_disable_adapter(priv);
5667         if (err)
5668                 return err;
5669 #ifdef CONFIG_IPW2100_MONITOR
5670         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5671                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5672                 if (err)
5673                         return err;
5674
5675                 IPW_DEBUG_INFO("exit\n");
5676
5677                 return 0;
5678         }
5679 #endif                          /* CONFIG_IPW2100_MONITOR */
5680
5681         err = ipw2100_read_mac_address(priv);
5682         if (err)
5683                 return -EIO;
5684
5685         err = ipw2100_set_mac_address(priv, batch_mode);
5686         if (err)
5687                 return err;
5688
5689         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5690         if (err)
5691                 return err;
5692
5693         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5694                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5695                 if (err)
5696                         return err;
5697         }
5698
5699         err = ipw2100_system_config(priv, batch_mode);
5700         if (err)
5701                 return err;
5702
5703         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5704         if (err)
5705                 return err;
5706
5707         /* Default to power mode OFF */
5708         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5709         if (err)
5710                 return err;
5711
5712         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5713         if (err)
5714                 return err;
5715
5716         if (priv->config & CFG_STATIC_BSSID)
5717                 bssid = priv->bssid;
5718         else
5719                 bssid = NULL;
5720         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5721         if (err)
5722                 return err;
5723
5724         if (priv->config & CFG_STATIC_ESSID)
5725                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5726                                         batch_mode);
5727         else
5728                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5729         if (err)
5730                 return err;
5731
5732         err = ipw2100_configure_security(priv, batch_mode);
5733         if (err)
5734                 return err;
5735
5736         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5737                 err =
5738                     ipw2100_set_ibss_beacon_interval(priv,
5739                                                      priv->beacon_interval,
5740                                                      batch_mode);
5741                 if (err)
5742                         return err;
5743
5744                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5745                 if (err)
5746                         return err;
5747         }
5748
5749         /*
5750            err = ipw2100_set_fragmentation_threshold(
5751            priv, priv->frag_threshold, batch_mode);
5752            if (err)
5753            return err;
5754          */
5755
5756         IPW_DEBUG_INFO("exit\n");
5757
5758         return 0;
5759 }
5760
5761 /*************************************************************************
5762  *
5763  * EXTERNALLY CALLED METHODS
5764  *
5765  *************************************************************************/
5766
5767 /* This method is called by the network layer -- not to be confused with
5768  * ipw2100_set_mac_address() declared above called by this driver (and this
5769  * method as well) to talk to the firmware */
5770 static int ipw2100_set_address(struct net_device *dev, void *p)
5771 {
5772         struct ipw2100_priv *priv = libipw_priv(dev);
5773         struct sockaddr *addr = p;
5774         int err = 0;
5775
5776         if (!is_valid_ether_addr(addr->sa_data))
5777                 return -EADDRNOTAVAIL;
5778
5779         mutex_lock(&priv->action_mutex);
5780
5781         priv->config |= CFG_CUSTOM_MAC;
5782         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5783
5784         err = ipw2100_set_mac_address(priv, 0);
5785         if (err)
5786                 goto done;
5787
5788         priv->reset_backoff = 0;
5789         mutex_unlock(&priv->action_mutex);
5790         ipw2100_reset_adapter(&priv->reset_work.work);
5791         return 0;
5792
5793       done:
5794         mutex_unlock(&priv->action_mutex);
5795         return err;
5796 }
5797
5798 static int ipw2100_open(struct net_device *dev)
5799 {
5800         struct ipw2100_priv *priv = libipw_priv(dev);
5801         unsigned long flags;
5802         IPW_DEBUG_INFO("dev->open\n");
5803
5804         spin_lock_irqsave(&priv->low_lock, flags);
5805         if (priv->status & STATUS_ASSOCIATED) {
5806                 netif_carrier_on(dev);
5807                 netif_start_queue(dev);
5808         }
5809         spin_unlock_irqrestore(&priv->low_lock, flags);
5810
5811         return 0;
5812 }
5813
5814 static int ipw2100_close(struct net_device *dev)
5815 {
5816         struct ipw2100_priv *priv = libipw_priv(dev);
5817         unsigned long flags;
5818         struct list_head *element;
5819         struct ipw2100_tx_packet *packet;
5820
5821         IPW_DEBUG_INFO("enter\n");
5822
5823         spin_lock_irqsave(&priv->low_lock, flags);
5824
5825         if (priv->status & STATUS_ASSOCIATED)
5826                 netif_carrier_off(dev);
5827         netif_stop_queue(dev);
5828
5829         /* Flush the TX queue ... */
5830         while (!list_empty(&priv->tx_pend_list)) {
5831                 element = priv->tx_pend_list.next;
5832                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5833
5834                 list_del(element);
5835                 DEC_STAT(&priv->tx_pend_stat);
5836
5837                 libipw_txb_free(packet->info.d_struct.txb);
5838                 packet->info.d_struct.txb = NULL;
5839
5840                 list_add_tail(element, &priv->tx_free_list);
5841                 INC_STAT(&priv->tx_free_stat);
5842         }
5843         spin_unlock_irqrestore(&priv->low_lock, flags);
5844
5845         IPW_DEBUG_INFO("exit\n");
5846
5847         return 0;
5848 }
5849
5850 /*
5851  * TODO:  Fix this function... its just wrong
5852  */
5853 static void ipw2100_tx_timeout(struct net_device *dev)
5854 {
5855         struct ipw2100_priv *priv = libipw_priv(dev);
5856
5857         dev->stats.tx_errors++;
5858
5859 #ifdef CONFIG_IPW2100_MONITOR
5860         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5861                 return;
5862 #endif
5863
5864         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5865                        dev->name);
5866         schedule_reset(priv);
5867 }
5868
5869 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5870 {
5871         /* This is called when wpa_supplicant loads and closes the driver
5872          * interface. */
5873         priv->ieee->wpa_enabled = value;
5874         return 0;
5875 }
5876
5877 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5878 {
5879
5880         struct libipw_device *ieee = priv->ieee;
5881         struct libipw_security sec = {
5882                 .flags = SEC_AUTH_MODE,
5883         };
5884         int ret = 0;
5885
5886         if (value & IW_AUTH_ALG_SHARED_KEY) {
5887                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5888                 ieee->open_wep = 0;
5889         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5890                 sec.auth_mode = WLAN_AUTH_OPEN;
5891                 ieee->open_wep = 1;
5892         } else if (value & IW_AUTH_ALG_LEAP) {
5893                 sec.auth_mode = WLAN_AUTH_LEAP;
5894                 ieee->open_wep = 1;
5895         } else
5896                 return -EINVAL;
5897
5898         if (ieee->set_security)
5899                 ieee->set_security(ieee->dev, &sec);
5900         else
5901                 ret = -EOPNOTSUPP;
5902
5903         return ret;
5904 }
5905
5906 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5907                                     char *wpa_ie, int wpa_ie_len)
5908 {
5909
5910         struct ipw2100_wpa_assoc_frame frame;
5911
5912         frame.fixed_ie_mask = 0;
5913
5914         /* copy WPA IE */
5915         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5916         frame.var_ie_len = wpa_ie_len;
5917
5918         /* make sure WPA is enabled */
5919         ipw2100_wpa_enable(priv, 1);
5920         ipw2100_set_wpa_ie(priv, &frame, 0);
5921 }
5922
5923 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5924                                     struct ethtool_drvinfo *info)
5925 {
5926         struct ipw2100_priv *priv = libipw_priv(dev);
5927         char fw_ver[64], ucode_ver[64];
5928
5929         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5930         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5931
5932         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5933         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5934
5935         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5936                  fw_ver, priv->eeprom_version, ucode_ver);
5937
5938         strlcpy(info->bus_info, pci_name(priv->pci_dev),
5939                 sizeof(info->bus_info));
5940 }
5941
5942 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5943 {
5944         struct ipw2100_priv *priv = libipw_priv(dev);
5945         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5946 }
5947
5948 static const struct ethtool_ops ipw2100_ethtool_ops = {
5949         .get_link = ipw2100_ethtool_get_link,
5950         .get_drvinfo = ipw_ethtool_get_drvinfo,
5951 };
5952
5953 static void ipw2100_hang_check(struct work_struct *work)
5954 {
5955         struct ipw2100_priv *priv =
5956                 container_of(work, struct ipw2100_priv, hang_check.work);
5957         unsigned long flags;
5958         u32 rtc = 0xa5a5a5a5;
5959         u32 len = sizeof(rtc);
5960         int restart = 0;
5961
5962         spin_lock_irqsave(&priv->low_lock, flags);
5963
5964         if (priv->fatal_error != 0) {
5965                 /* If fatal_error is set then we need to restart */
5966                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5967                                priv->net_dev->name);
5968
5969                 restart = 1;
5970         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5971                    (rtc == priv->last_rtc)) {
5972                 /* Check if firmware is hung */
5973                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5974                                priv->net_dev->name);
5975
5976                 restart = 1;
5977         }
5978
5979         if (restart) {
5980                 /* Kill timer */
5981                 priv->stop_hang_check = 1;
5982                 priv->hangs++;
5983
5984                 /* Restart the NIC */
5985                 schedule_reset(priv);
5986         }
5987
5988         priv->last_rtc = rtc;
5989
5990         if (!priv->stop_hang_check)
5991                 schedule_delayed_work(&priv->hang_check, HZ / 2);
5992
5993         spin_unlock_irqrestore(&priv->low_lock, flags);
5994 }
5995
5996 static void ipw2100_rf_kill(struct work_struct *work)
5997 {
5998         struct ipw2100_priv *priv =
5999                 container_of(work, struct ipw2100_priv, rf_kill.work);
6000         unsigned long flags;
6001
6002         spin_lock_irqsave(&priv->low_lock, flags);
6003
6004         if (rf_kill_active(priv)) {
6005                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6006                 if (!priv->stop_rf_kill)
6007                         schedule_delayed_work(&priv->rf_kill,
6008                                               round_jiffies_relative(HZ));
6009                 goto exit_unlock;
6010         }
6011
6012         /* RF Kill is now disabled, so bring the device back up */
6013
6014         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6015                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6016                                   "device\n");
6017                 schedule_reset(priv);
6018         } else
6019                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6020                                   "enabled\n");
6021
6022       exit_unlock:
6023         spin_unlock_irqrestore(&priv->low_lock, flags);
6024 }
6025
6026 static void ipw2100_irq_tasklet(unsigned long data);
6027
6028 static const struct net_device_ops ipw2100_netdev_ops = {
6029         .ndo_open               = ipw2100_open,
6030         .ndo_stop               = ipw2100_close,
6031         .ndo_start_xmit         = libipw_xmit,
6032         .ndo_change_mtu         = libipw_change_mtu,
6033         .ndo_tx_timeout         = ipw2100_tx_timeout,
6034         .ndo_set_mac_address    = ipw2100_set_address,
6035         .ndo_validate_addr      = eth_validate_addr,
6036 };
6037
6038 /* Look into using netdev destructor to shutdown libipw? */
6039
6040 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6041                                                void __iomem * ioaddr)
6042 {
6043         struct ipw2100_priv *priv;
6044         struct net_device *dev;
6045
6046         dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6047         if (!dev)
6048                 return NULL;
6049         priv = libipw_priv(dev);
6050         priv->ieee = netdev_priv(dev);
6051         priv->pci_dev = pci_dev;
6052         priv->net_dev = dev;
6053         priv->ioaddr = ioaddr;
6054
6055         priv->ieee->hard_start_xmit = ipw2100_tx;
6056         priv->ieee->set_security = shim__set_security;
6057
6058         priv->ieee->perfect_rssi = -20;
6059         priv->ieee->worst_rssi = -85;
6060
6061         dev->netdev_ops = &ipw2100_netdev_ops;
6062         dev->ethtool_ops = &ipw2100_ethtool_ops;
6063         dev->wireless_handlers = &ipw2100_wx_handler_def;
6064         priv->wireless_data.libipw = priv->ieee;
6065         dev->wireless_data = &priv->wireless_data;
6066         dev->watchdog_timeo = 3 * HZ;
6067         dev->irq = 0;
6068
6069         /* NOTE: We don't use the wireless_handlers hook
6070          * in dev as the system will start throwing WX requests
6071          * to us before we're actually initialized and it just
6072          * ends up causing problems.  So, we just handle
6073          * the WX extensions through the ipw2100_ioctl interface */
6074
6075         /* memset() puts everything to 0, so we only have explicitly set
6076          * those values that need to be something else */
6077
6078         /* If power management is turned on, default to AUTO mode */
6079         priv->power_mode = IPW_POWER_AUTO;
6080
6081 #ifdef CONFIG_IPW2100_MONITOR
6082         priv->config |= CFG_CRC_CHECK;
6083 #endif
6084         priv->ieee->wpa_enabled = 0;
6085         priv->ieee->drop_unencrypted = 0;
6086         priv->ieee->privacy_invoked = 0;
6087         priv->ieee->ieee802_1x = 1;
6088
6089         /* Set module parameters */
6090         switch (network_mode) {
6091         case 1:
6092                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6093                 break;
6094 #ifdef CONFIG_IPW2100_MONITOR
6095         case 2:
6096                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6097                 break;
6098 #endif
6099         default:
6100         case 0:
6101                 priv->ieee->iw_mode = IW_MODE_INFRA;
6102                 break;
6103         }
6104
6105         if (disable == 1)
6106                 priv->status |= STATUS_RF_KILL_SW;
6107
6108         if (channel != 0 &&
6109             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6110                 priv->config |= CFG_STATIC_CHANNEL;
6111                 priv->channel = channel;
6112         }
6113
6114         if (associate)
6115                 priv->config |= CFG_ASSOCIATE;
6116
6117         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6118         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6119         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6120         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6121         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6122         priv->tx_power = IPW_TX_POWER_DEFAULT;
6123         priv->tx_rates = DEFAULT_TX_RATES;
6124
6125         strcpy(priv->nick, "ipw2100");
6126
6127         spin_lock_init(&priv->low_lock);
6128         mutex_init(&priv->action_mutex);
6129         mutex_init(&priv->adapter_mutex);
6130
6131         init_waitqueue_head(&priv->wait_command_queue);
6132
6133         netif_carrier_off(dev);
6134
6135         INIT_LIST_HEAD(&priv->msg_free_list);
6136         INIT_LIST_HEAD(&priv->msg_pend_list);
6137         INIT_STAT(&priv->msg_free_stat);
6138         INIT_STAT(&priv->msg_pend_stat);
6139
6140         INIT_LIST_HEAD(&priv->tx_free_list);
6141         INIT_LIST_HEAD(&priv->tx_pend_list);
6142         INIT_STAT(&priv->tx_free_stat);
6143         INIT_STAT(&priv->tx_pend_stat);
6144
6145         INIT_LIST_HEAD(&priv->fw_pend_list);
6146         INIT_STAT(&priv->fw_pend_stat);
6147
6148         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6149         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6150         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6151         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6152         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6153         INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6154
6155         tasklet_init(&priv->irq_tasklet,
6156                      ipw2100_irq_tasklet, (unsigned long)priv);
6157
6158         /* NOTE:  We do not start the deferred work for status checks yet */
6159         priv->stop_rf_kill = 1;
6160         priv->stop_hang_check = 1;
6161
6162         return dev;
6163 }
6164
6165 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6166                                 const struct pci_device_id *ent)
6167 {
6168         void __iomem *ioaddr;
6169         struct net_device *dev = NULL;
6170         struct ipw2100_priv *priv = NULL;
6171         int err = 0;
6172         int registered = 0;
6173         u32 val;
6174
6175         IPW_DEBUG_INFO("enter\n");
6176
6177         if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6178                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6179                 err = -ENODEV;
6180                 goto out;
6181         }
6182
6183         ioaddr = pci_iomap(pci_dev, 0, 0);
6184         if (!ioaddr) {
6185                 printk(KERN_WARNING DRV_NAME
6186                        "Error calling ioremap_nocache.\n");
6187                 err = -EIO;
6188                 goto fail;
6189         }
6190
6191         /* allocate and initialize our net_device */
6192         dev = ipw2100_alloc_device(pci_dev, ioaddr);
6193         if (!dev) {
6194                 printk(KERN_WARNING DRV_NAME
6195                        "Error calling ipw2100_alloc_device.\n");
6196                 err = -ENOMEM;
6197                 goto fail;
6198         }
6199
6200         /* set up PCI mappings for device */
6201         err = pci_enable_device(pci_dev);
6202         if (err) {
6203                 printk(KERN_WARNING DRV_NAME
6204                        "Error calling pci_enable_device.\n");
6205                 return err;
6206         }
6207
6208         priv = libipw_priv(dev);
6209
6210         pci_set_master(pci_dev);
6211         pci_set_drvdata(pci_dev, priv);
6212
6213         err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6214         if (err) {
6215                 printk(KERN_WARNING DRV_NAME
6216                        "Error calling pci_set_dma_mask.\n");
6217                 pci_disable_device(pci_dev);
6218                 return err;
6219         }
6220
6221         err = pci_request_regions(pci_dev, DRV_NAME);
6222         if (err) {
6223                 printk(KERN_WARNING DRV_NAME
6224                        "Error calling pci_request_regions.\n");
6225                 pci_disable_device(pci_dev);
6226                 return err;
6227         }
6228
6229         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6230          * PCI Tx retries from interfering with C3 CPU state */
6231         pci_read_config_dword(pci_dev, 0x40, &val);
6232         if ((val & 0x0000ff00) != 0)
6233                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6234
6235         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6236                 printk(KERN_WARNING DRV_NAME
6237                        "Device not found via register read.\n");
6238                 err = -ENODEV;
6239                 goto fail;
6240         }
6241
6242         SET_NETDEV_DEV(dev, &pci_dev->dev);
6243
6244         /* Force interrupts to be shut off on the device */
6245         priv->status |= STATUS_INT_ENABLED;
6246         ipw2100_disable_interrupts(priv);
6247
6248         /* Allocate and initialize the Tx/Rx queues and lists */
6249         if (ipw2100_queues_allocate(priv)) {
6250                 printk(KERN_WARNING DRV_NAME
6251                        "Error calling ipw2100_queues_allocate.\n");
6252                 err = -ENOMEM;
6253                 goto fail;
6254         }
6255         ipw2100_queues_initialize(priv);
6256
6257         err = request_irq(pci_dev->irq,
6258                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6259         if (err) {
6260                 printk(KERN_WARNING DRV_NAME
6261                        "Error calling request_irq: %d.\n", pci_dev->irq);
6262                 goto fail;
6263         }
6264         dev->irq = pci_dev->irq;
6265
6266         IPW_DEBUG_INFO("Attempting to register device...\n");
6267
6268         printk(KERN_INFO DRV_NAME
6269                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6270
6271         err = ipw2100_up(priv, 1);
6272         if (err)
6273                 goto fail;
6274
6275         err = ipw2100_wdev_init(dev);
6276         if (err)
6277                 goto fail;
6278         registered = 1;
6279
6280         /* Bring up the interface.  Pre 0.46, after we registered the
6281          * network device we would call ipw2100_up.  This introduced a race
6282          * condition with newer hotplug configurations (network was coming
6283          * up and making calls before the device was initialized).
6284          */
6285         err = register_netdev(dev);
6286         if (err) {
6287                 printk(KERN_WARNING DRV_NAME
6288                        "Error calling register_netdev.\n");
6289                 goto fail;
6290         }
6291         registered = 2;
6292
6293         mutex_lock(&priv->action_mutex);
6294
6295         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6296
6297         /* perform this after register_netdev so that dev->name is set */
6298         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6299         if (err)
6300                 goto fail_unlock;
6301
6302         /* If the RF Kill switch is disabled, go ahead and complete the
6303          * startup sequence */
6304         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6305                 /* Enable the adapter - sends HOST_COMPLETE */
6306                 if (ipw2100_enable_adapter(priv)) {
6307                         printk(KERN_WARNING DRV_NAME
6308                                ": %s: failed in call to enable adapter.\n",
6309                                priv->net_dev->name);
6310                         ipw2100_hw_stop_adapter(priv);
6311                         err = -EIO;
6312                         goto fail_unlock;
6313                 }
6314
6315                 /* Start a scan . . . */
6316                 ipw2100_set_scan_options(priv);
6317                 ipw2100_start_scan(priv);
6318         }
6319
6320         IPW_DEBUG_INFO("exit\n");
6321
6322         priv->status |= STATUS_INITIALIZED;
6323
6324         mutex_unlock(&priv->action_mutex);
6325 out:
6326         return err;
6327
6328       fail_unlock:
6329         mutex_unlock(&priv->action_mutex);
6330       fail:
6331         if (dev) {
6332                 if (registered >= 2)
6333                         unregister_netdev(dev);
6334
6335                 if (registered) {
6336                         wiphy_unregister(priv->ieee->wdev.wiphy);
6337                         kfree(priv->ieee->bg_band.channels);
6338                 }
6339
6340                 ipw2100_hw_stop_adapter(priv);
6341
6342                 ipw2100_disable_interrupts(priv);
6343
6344                 if (dev->irq)
6345                         free_irq(dev->irq, priv);
6346
6347                 ipw2100_kill_works(priv);
6348
6349                 /* These are safe to call even if they weren't allocated */
6350                 ipw2100_queues_free(priv);
6351                 sysfs_remove_group(&pci_dev->dev.kobj,
6352                                    &ipw2100_attribute_group);
6353
6354                 free_libipw(dev, 0);
6355         }
6356
6357         pci_iounmap(pci_dev, ioaddr);
6358
6359         pci_release_regions(pci_dev);
6360         pci_disable_device(pci_dev);
6361         goto out;
6362 }
6363
6364 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6365 {
6366         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6367         struct net_device *dev = priv->net_dev;
6368
6369         mutex_lock(&priv->action_mutex);
6370
6371         priv->status &= ~STATUS_INITIALIZED;
6372
6373         sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6374
6375 #ifdef CONFIG_PM
6376         if (ipw2100_firmware.version)
6377                 ipw2100_release_firmware(priv, &ipw2100_firmware);
6378 #endif
6379         /* Take down the hardware */
6380         ipw2100_down(priv);
6381
6382         /* Release the mutex so that the network subsystem can
6383          * complete any needed calls into the driver... */
6384         mutex_unlock(&priv->action_mutex);
6385
6386         /* Unregister the device first - this results in close()
6387          * being called if the device is open.  If we free storage
6388          * first, then close() will crash.
6389          * FIXME: remove the comment above. */
6390         unregister_netdev(dev);
6391
6392         ipw2100_kill_works(priv);
6393
6394         ipw2100_queues_free(priv);
6395
6396         /* Free potential debugging firmware snapshot */
6397         ipw2100_snapshot_free(priv);
6398
6399         free_irq(dev->irq, priv);
6400
6401         pci_iounmap(pci_dev, priv->ioaddr);
6402
6403         /* wiphy_unregister needs to be here, before free_libipw */
6404         wiphy_unregister(priv->ieee->wdev.wiphy);
6405         kfree(priv->ieee->bg_band.channels);
6406         free_libipw(dev, 0);
6407
6408         pci_release_regions(pci_dev);
6409         pci_disable_device(pci_dev);
6410
6411         IPW_DEBUG_INFO("exit\n");
6412 }
6413
6414 #ifdef CONFIG_PM
6415 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6416 {
6417         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6418         struct net_device *dev = priv->net_dev;
6419
6420         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6421
6422         mutex_lock(&priv->action_mutex);
6423         if (priv->status & STATUS_INITIALIZED) {
6424                 /* Take down the device; powers it off, etc. */
6425                 ipw2100_down(priv);
6426         }
6427
6428         /* Remove the PRESENT state of the device */
6429         netif_device_detach(dev);
6430
6431         pci_save_state(pci_dev);
6432         pci_disable_device(pci_dev);
6433         pci_set_power_state(pci_dev, PCI_D3hot);
6434
6435         priv->suspend_at = get_seconds();
6436
6437         mutex_unlock(&priv->action_mutex);
6438
6439         return 0;
6440 }
6441
6442 static int ipw2100_resume(struct pci_dev *pci_dev)
6443 {
6444         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6445         struct net_device *dev = priv->net_dev;
6446         int err;
6447         u32 val;
6448
6449         if (IPW2100_PM_DISABLED)
6450                 return 0;
6451
6452         mutex_lock(&priv->action_mutex);
6453
6454         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6455
6456         pci_set_power_state(pci_dev, PCI_D0);
6457         err = pci_enable_device(pci_dev);
6458         if (err) {
6459                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6460                        dev->name);
6461                 mutex_unlock(&priv->action_mutex);
6462                 return err;
6463         }
6464         pci_restore_state(pci_dev);
6465
6466         /*
6467          * Suspend/Resume resets the PCI configuration space, so we have to
6468          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6469          * from interfering with C3 CPU state. pci_restore_state won't help
6470          * here since it only restores the first 64 bytes pci config header.
6471          */
6472         pci_read_config_dword(pci_dev, 0x40, &val);
6473         if ((val & 0x0000ff00) != 0)
6474                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6475
6476         /* Set the device back into the PRESENT state; this will also wake
6477          * the queue of needed */
6478         netif_device_attach(dev);
6479
6480         priv->suspend_time = get_seconds() - priv->suspend_at;
6481
6482         /* Bring the device back up */
6483         if (!(priv->status & STATUS_RF_KILL_SW))
6484                 ipw2100_up(priv, 0);
6485
6486         mutex_unlock(&priv->action_mutex);
6487
6488         return 0;
6489 }
6490 #endif
6491
6492 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6493 {
6494         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6495
6496         /* Take down the device; powers it off, etc. */
6497         ipw2100_down(priv);
6498
6499         pci_disable_device(pci_dev);
6500 }
6501
6502 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6503
6504 static const struct pci_device_id ipw2100_pci_id_table[] = {
6505         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6506         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6507         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6508         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6509         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6510         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6511         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6512         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6513         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6514         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6515         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6516         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6517         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6518
6519         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6520         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6521         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6522         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6523         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6524
6525         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6526         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6527         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6528         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6529         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6530         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6531         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6532
6533         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6534
6535         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6536         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6537         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6538         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6539         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6540         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6541         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6542
6543         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6544         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6545         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6546         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6547         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6548         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6549
6550         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6551         {0,},
6552 };
6553
6554 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6555
6556 static struct pci_driver ipw2100_pci_driver = {
6557         .name = DRV_NAME,
6558         .id_table = ipw2100_pci_id_table,
6559         .probe = ipw2100_pci_init_one,
6560         .remove = ipw2100_pci_remove_one,
6561 #ifdef CONFIG_PM
6562         .suspend = ipw2100_suspend,
6563         .resume = ipw2100_resume,
6564 #endif
6565         .shutdown = ipw2100_shutdown,
6566 };
6567
6568 /**
6569  * Initialize the ipw2100 driver/module
6570  *
6571  * @returns 0 if ok, < 0 errno node con error.
6572  *
6573  * Note: we cannot init the /proc stuff until the PCI driver is there,
6574  * or we risk an unlikely race condition on someone accessing
6575  * uninitialized data in the PCI dev struct through /proc.
6576  */
6577 static int __init ipw2100_init(void)
6578 {
6579         int ret;
6580
6581         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6582         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6583
6584         pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6585                            PM_QOS_DEFAULT_VALUE);
6586
6587         ret = pci_register_driver(&ipw2100_pci_driver);
6588         if (ret)
6589                 goto out;
6590
6591 #ifdef CONFIG_IPW2100_DEBUG
6592         ipw2100_debug_level = debug;
6593         ret = driver_create_file(&ipw2100_pci_driver.driver,
6594                                  &driver_attr_debug_level);
6595 #endif
6596
6597 out:
6598         return ret;
6599 }
6600
6601 /**
6602  * Cleanup ipw2100 driver registration
6603  */
6604 static void __exit ipw2100_exit(void)
6605 {
6606         /* FIXME: IPG: check that we have no instances of the devices open */
6607 #ifdef CONFIG_IPW2100_DEBUG
6608         driver_remove_file(&ipw2100_pci_driver.driver,
6609                            &driver_attr_debug_level);
6610 #endif
6611         pci_unregister_driver(&ipw2100_pci_driver);
6612         pm_qos_remove_request(&ipw2100_pm_qos_req);
6613 }
6614
6615 module_init(ipw2100_init);
6616 module_exit(ipw2100_exit);
6617
6618 static int ipw2100_wx_get_name(struct net_device *dev,
6619                                struct iw_request_info *info,
6620                                union iwreq_data *wrqu, char *extra)
6621 {
6622         /*
6623          * This can be called at any time.  No action lock required
6624          */
6625
6626         struct ipw2100_priv *priv = libipw_priv(dev);
6627         if (!(priv->status & STATUS_ASSOCIATED))
6628                 strcpy(wrqu->name, "unassociated");
6629         else
6630                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6631
6632         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6633         return 0;
6634 }
6635
6636 static int ipw2100_wx_set_freq(struct net_device *dev,
6637                                struct iw_request_info *info,
6638                                union iwreq_data *wrqu, char *extra)
6639 {
6640         struct ipw2100_priv *priv = libipw_priv(dev);
6641         struct iw_freq *fwrq = &wrqu->freq;
6642         int err = 0;
6643
6644         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6645                 return -EOPNOTSUPP;
6646
6647         mutex_lock(&priv->action_mutex);
6648         if (!(priv->status & STATUS_INITIALIZED)) {
6649                 err = -EIO;
6650                 goto done;
6651         }
6652
6653         /* if setting by freq convert to channel */
6654         if (fwrq->e == 1) {
6655                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6656                         int f = fwrq->m / 100000;
6657                         int c = 0;
6658
6659                         while ((c < REG_MAX_CHANNEL) &&
6660                                (f != ipw2100_frequencies[c]))
6661                                 c++;
6662
6663                         /* hack to fall through */
6664                         fwrq->e = 0;
6665                         fwrq->m = c + 1;
6666                 }
6667         }
6668
6669         if (fwrq->e > 0 || fwrq->m > 1000) {
6670                 err = -EOPNOTSUPP;
6671                 goto done;
6672         } else {                /* Set the channel */
6673                 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6674                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6675         }
6676
6677       done:
6678         mutex_unlock(&priv->action_mutex);
6679         return err;
6680 }
6681
6682 static int ipw2100_wx_get_freq(struct net_device *dev,
6683                                struct iw_request_info *info,
6684                                union iwreq_data *wrqu, char *extra)
6685 {
6686         /*
6687          * This can be called at any time.  No action lock required
6688          */
6689
6690         struct ipw2100_priv *priv = libipw_priv(dev);
6691
6692         wrqu->freq.e = 0;
6693
6694         /* If we are associated, trying to associate, or have a statically
6695          * configured CHANNEL then return that; otherwise return ANY */
6696         if (priv->config & CFG_STATIC_CHANNEL ||
6697             priv->status & STATUS_ASSOCIATED)
6698                 wrqu->freq.m = priv->channel;
6699         else
6700                 wrqu->freq.m = 0;
6701
6702         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6703         return 0;
6704
6705 }
6706
6707 static int ipw2100_wx_set_mode(struct net_device *dev,
6708                                struct iw_request_info *info,
6709                                union iwreq_data *wrqu, char *extra)
6710 {
6711         struct ipw2100_priv *priv = libipw_priv(dev);
6712         int err = 0;
6713
6714         IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6715
6716         if (wrqu->mode == priv->ieee->iw_mode)
6717                 return 0;
6718
6719         mutex_lock(&priv->action_mutex);
6720         if (!(priv->status & STATUS_INITIALIZED)) {
6721                 err = -EIO;
6722                 goto done;
6723         }
6724
6725         switch (wrqu->mode) {
6726 #ifdef CONFIG_IPW2100_MONITOR
6727         case IW_MODE_MONITOR:
6728                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6729                 break;
6730 #endif                          /* CONFIG_IPW2100_MONITOR */
6731         case IW_MODE_ADHOC:
6732                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6733                 break;
6734         case IW_MODE_INFRA:
6735         case IW_MODE_AUTO:
6736         default:
6737                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6738                 break;
6739         }
6740
6741       done:
6742         mutex_unlock(&priv->action_mutex);
6743         return err;
6744 }
6745
6746 static int ipw2100_wx_get_mode(struct net_device *dev,
6747                                struct iw_request_info *info,
6748                                union iwreq_data *wrqu, char *extra)
6749 {
6750         /*
6751          * This can be called at any time.  No action lock required
6752          */
6753
6754         struct ipw2100_priv *priv = libipw_priv(dev);
6755
6756         wrqu->mode = priv->ieee->iw_mode;
6757         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6758
6759         return 0;
6760 }
6761
6762 #define POWER_MODES 5
6763
6764 /* Values are in microsecond */
6765 static const s32 timeout_duration[POWER_MODES] = {
6766         350000,
6767         250000,
6768         75000,
6769         37000,
6770         25000,
6771 };
6772
6773 static const s32 period_duration[POWER_MODES] = {
6774         400000,
6775         700000,
6776         1000000,
6777         1000000,
6778         1000000
6779 };
6780
6781 static int ipw2100_wx_get_range(struct net_device *dev,
6782                                 struct iw_request_info *info,
6783                                 union iwreq_data *wrqu, char *extra)
6784 {
6785         /*
6786          * This can be called at any time.  No action lock required
6787          */
6788
6789         struct ipw2100_priv *priv = libipw_priv(dev);
6790         struct iw_range *range = (struct iw_range *)extra;
6791         u16 val;
6792         int i, level;
6793
6794         wrqu->data.length = sizeof(*range);
6795         memset(range, 0, sizeof(*range));
6796
6797         /* Let's try to keep this struct in the same order as in
6798          * linux/include/wireless.h
6799          */
6800
6801         /* TODO: See what values we can set, and remove the ones we can't
6802          * set, or fill them with some default data.
6803          */
6804
6805         /* ~5 Mb/s real (802.11b) */
6806         range->throughput = 5 * 1000 * 1000;
6807
6808 //      range->sensitivity;     /* signal level threshold range */
6809
6810         range->max_qual.qual = 100;
6811         /* TODO: Find real max RSSI and stick here */
6812         range->max_qual.level = 0;
6813         range->max_qual.noise = 0;
6814         range->max_qual.updated = 7;    /* Updated all three */
6815
6816         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6817         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6818         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6819         range->avg_qual.noise = 0;
6820         range->avg_qual.updated = 7;    /* Updated all three */
6821
6822         range->num_bitrates = RATE_COUNT;
6823
6824         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6825                 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6826         }
6827
6828         range->min_rts = MIN_RTS_THRESHOLD;
6829         range->max_rts = MAX_RTS_THRESHOLD;
6830         range->min_frag = MIN_FRAG_THRESHOLD;
6831         range->max_frag = MAX_FRAG_THRESHOLD;
6832
6833         range->min_pmp = period_duration[0];    /* Minimal PM period */
6834         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6835         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6836         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6837
6838         /* How to decode max/min PM period */
6839         range->pmp_flags = IW_POWER_PERIOD;
6840         /* How to decode max/min PM period */
6841         range->pmt_flags = IW_POWER_TIMEOUT;
6842         /* What PM options are supported */
6843         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6844
6845         range->encoding_size[0] = 5;
6846         range->encoding_size[1] = 13;   /* Different token sizes */
6847         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6848         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6849 //      range->encoding_login_index;            /* token index for login token */
6850
6851         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6852                 range->txpower_capa = IW_TXPOW_DBM;
6853                 range->num_txpower = IW_MAX_TXPOWER;
6854                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6855                      i < IW_MAX_TXPOWER;
6856                      i++, level -=
6857                      ((IPW_TX_POWER_MAX_DBM -
6858                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6859                         range->txpower[i] = level / 16;
6860         } else {
6861                 range->txpower_capa = 0;
6862                 range->num_txpower = 0;
6863         }
6864
6865         /* Set the Wireless Extension versions */
6866         range->we_version_compiled = WIRELESS_EXT;
6867         range->we_version_source = 18;
6868
6869 //      range->retry_capa;      /* What retry options are supported */
6870 //      range->retry_flags;     /* How to decode max/min retry limit */
6871 //      range->r_time_flags;    /* How to decode max/min retry life */
6872 //      range->min_retry;       /* Minimal number of retries */
6873 //      range->max_retry;       /* Maximal number of retries */
6874 //      range->min_r_time;      /* Minimal retry lifetime */
6875 //      range->max_r_time;      /* Maximal retry lifetime */
6876
6877         range->num_channels = FREQ_COUNT;
6878
6879         val = 0;
6880         for (i = 0; i < FREQ_COUNT; i++) {
6881                 // TODO: Include only legal frequencies for some countries
6882 //              if (local->channel_mask & (1 << i)) {
6883                 range->freq[val].i = i + 1;
6884                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6885                 range->freq[val].e = 1;
6886                 val++;
6887 //              }
6888                 if (val == IW_MAX_FREQUENCIES)
6889                         break;
6890         }
6891         range->num_frequency = val;
6892
6893         /* Event capability (kernel + driver) */
6894         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6895                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6896         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6897
6898         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6899                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6900
6901         IPW_DEBUG_WX("GET Range\n");
6902
6903         return 0;
6904 }
6905
6906 static int ipw2100_wx_set_wap(struct net_device *dev,
6907                               struct iw_request_info *info,
6908                               union iwreq_data *wrqu, char *extra)
6909 {
6910         struct ipw2100_priv *priv = libipw_priv(dev);
6911         int err = 0;
6912
6913         // sanity checks
6914         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6915                 return -EINVAL;
6916
6917         mutex_lock(&priv->action_mutex);
6918         if (!(priv->status & STATUS_INITIALIZED)) {
6919                 err = -EIO;
6920                 goto done;
6921         }
6922
6923         if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6924             is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6925                 /* we disable mandatory BSSID association */
6926                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6927                 priv->config &= ~CFG_STATIC_BSSID;
6928                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6929                 goto done;
6930         }
6931
6932         priv->config |= CFG_STATIC_BSSID;
6933         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6934
6935         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6936
6937         IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6938
6939       done:
6940         mutex_unlock(&priv->action_mutex);
6941         return err;
6942 }
6943
6944 static int ipw2100_wx_get_wap(struct net_device *dev,
6945                               struct iw_request_info *info,
6946                               union iwreq_data *wrqu, char *extra)
6947 {
6948         /*
6949          * This can be called at any time.  No action lock required
6950          */
6951
6952         struct ipw2100_priv *priv = libipw_priv(dev);
6953
6954         /* If we are associated, trying to associate, or have a statically
6955          * configured BSSID then return that; otherwise return ANY */
6956         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6957                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6958                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6959         } else
6960                 eth_zero_addr(wrqu->ap_addr.sa_data);
6961
6962         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6963         return 0;
6964 }
6965
6966 static int ipw2100_wx_set_essid(struct net_device *dev,
6967                                 struct iw_request_info *info,
6968                                 union iwreq_data *wrqu, char *extra)
6969 {
6970         struct ipw2100_priv *priv = libipw_priv(dev);
6971         char *essid = "";       /* ANY */
6972         int length = 0;
6973         int err = 0;
6974
6975         mutex_lock(&priv->action_mutex);
6976         if (!(priv->status & STATUS_INITIALIZED)) {
6977                 err = -EIO;
6978                 goto done;
6979         }
6980
6981         if (wrqu->essid.flags && wrqu->essid.length) {
6982                 length = wrqu->essid.length;
6983                 essid = extra;
6984         }
6985
6986         if (length == 0) {
6987                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6988                 priv->config &= ~CFG_STATIC_ESSID;
6989                 err = ipw2100_set_essid(priv, NULL, 0, 0);
6990                 goto done;
6991         }
6992
6993         length = min(length, IW_ESSID_MAX_SIZE);
6994
6995         priv->config |= CFG_STATIC_ESSID;
6996
6997         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6998                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6999                 err = 0;
7000                 goto done;
7001         }
7002
7003         IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length);
7004
7005         priv->essid_len = length;
7006         memcpy(priv->essid, essid, priv->essid_len);
7007
7008         err = ipw2100_set_essid(priv, essid, length, 0);
7009
7010       done:
7011         mutex_unlock(&priv->action_mutex);
7012         return err;
7013 }
7014
7015 static int ipw2100_wx_get_essid(struct net_device *dev,
7016                                 struct iw_request_info *info,
7017                                 union iwreq_data *wrqu, char *extra)
7018 {
7019         /*
7020          * This can be called at any time.  No action lock required
7021          */
7022
7023         struct ipw2100_priv *priv = libipw_priv(dev);
7024
7025         /* If we are associated, trying to associate, or have a statically
7026          * configured ESSID then return that; otherwise return ANY */
7027         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7028                 IPW_DEBUG_WX("Getting essid: '%*pE'\n",
7029                              priv->essid_len, priv->essid);
7030                 memcpy(extra, priv->essid, priv->essid_len);
7031                 wrqu->essid.length = priv->essid_len;
7032                 wrqu->essid.flags = 1;  /* active */
7033         } else {
7034                 IPW_DEBUG_WX("Getting essid: ANY\n");
7035                 wrqu->essid.length = 0;
7036                 wrqu->essid.flags = 0;  /* active */
7037         }
7038
7039         return 0;
7040 }
7041
7042 static int ipw2100_wx_set_nick(struct net_device *dev,
7043                                struct iw_request_info *info,
7044                                union iwreq_data *wrqu, char *extra)
7045 {
7046         /*
7047          * This can be called at any time.  No action lock required
7048          */
7049
7050         struct ipw2100_priv *priv = libipw_priv(dev);
7051
7052         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7053                 return -E2BIG;
7054
7055         wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
7056         memset(priv->nick, 0, sizeof(priv->nick));
7057         memcpy(priv->nick, extra, wrqu->data.length);
7058
7059         IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7060
7061         return 0;
7062 }
7063
7064 static int ipw2100_wx_get_nick(struct net_device *dev,
7065                                struct iw_request_info *info,
7066                                union iwreq_data *wrqu, char *extra)
7067 {
7068         /*
7069          * This can be called at any time.  No action lock required
7070          */
7071
7072         struct ipw2100_priv *priv = libipw_priv(dev);
7073
7074         wrqu->data.length = strlen(priv->nick);
7075         memcpy(extra, priv->nick, wrqu->data.length);
7076         wrqu->data.flags = 1;   /* active */
7077
7078         IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7079
7080         return 0;
7081 }
7082
7083 static int ipw2100_wx_set_rate(struct net_device *dev,
7084                                struct iw_request_info *info,
7085                                union iwreq_data *wrqu, char *extra)
7086 {
7087         struct ipw2100_priv *priv = libipw_priv(dev);
7088         u32 target_rate = wrqu->bitrate.value;
7089         u32 rate;
7090         int err = 0;
7091
7092         mutex_lock(&priv->action_mutex);
7093         if (!(priv->status & STATUS_INITIALIZED)) {
7094                 err = -EIO;
7095                 goto done;
7096         }
7097
7098         rate = 0;
7099
7100         if (target_rate == 1000000 ||
7101             (!wrqu->bitrate.fixed && target_rate > 1000000))
7102                 rate |= TX_RATE_1_MBIT;
7103         if (target_rate == 2000000 ||
7104             (!wrqu->bitrate.fixed && target_rate > 2000000))
7105                 rate |= TX_RATE_2_MBIT;
7106         if (target_rate == 5500000 ||
7107             (!wrqu->bitrate.fixed && target_rate > 5500000))
7108                 rate |= TX_RATE_5_5_MBIT;
7109         if (target_rate == 11000000 ||
7110             (!wrqu->bitrate.fixed && target_rate > 11000000))
7111                 rate |= TX_RATE_11_MBIT;
7112         if (rate == 0)
7113                 rate = DEFAULT_TX_RATES;
7114
7115         err = ipw2100_set_tx_rates(priv, rate, 0);
7116
7117         IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7118       done:
7119         mutex_unlock(&priv->action_mutex);
7120         return err;
7121 }
7122
7123 static int ipw2100_wx_get_rate(struct net_device *dev,
7124                                struct iw_request_info *info,
7125                                union iwreq_data *wrqu, char *extra)
7126 {
7127         struct ipw2100_priv *priv = libipw_priv(dev);
7128         int val;
7129         unsigned int len = sizeof(val);
7130         int err = 0;
7131
7132         if (!(priv->status & STATUS_ENABLED) ||
7133             priv->status & STATUS_RF_KILL_MASK ||
7134             !(priv->status & STATUS_ASSOCIATED)) {
7135                 wrqu->bitrate.value = 0;
7136                 return 0;
7137         }
7138
7139         mutex_lock(&priv->action_mutex);
7140         if (!(priv->status & STATUS_INITIALIZED)) {
7141                 err = -EIO;
7142                 goto done;
7143         }
7144
7145         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7146         if (err) {
7147                 IPW_DEBUG_WX("failed querying ordinals.\n");
7148                 goto done;
7149         }
7150
7151         switch (val & TX_RATE_MASK) {
7152         case TX_RATE_1_MBIT:
7153                 wrqu->bitrate.value = 1000000;
7154                 break;
7155         case TX_RATE_2_MBIT:
7156                 wrqu->bitrate.value = 2000000;
7157                 break;
7158         case TX_RATE_5_5_MBIT:
7159                 wrqu->bitrate.value = 5500000;
7160                 break;
7161         case TX_RATE_11_MBIT:
7162                 wrqu->bitrate.value = 11000000;
7163                 break;
7164         default:
7165                 wrqu->bitrate.value = 0;
7166         }
7167
7168         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7169
7170       done:
7171         mutex_unlock(&priv->action_mutex);
7172         return err;
7173 }
7174
7175 static int ipw2100_wx_set_rts(struct net_device *dev,
7176                               struct iw_request_info *info,
7177                               union iwreq_data *wrqu, char *extra)
7178 {
7179         struct ipw2100_priv *priv = libipw_priv(dev);
7180         int value, err;
7181
7182         /* Auto RTS not yet supported */
7183         if (wrqu->rts.fixed == 0)
7184                 return -EINVAL;
7185
7186         mutex_lock(&priv->action_mutex);
7187         if (!(priv->status & STATUS_INITIALIZED)) {
7188                 err = -EIO;
7189                 goto done;
7190         }
7191
7192         if (wrqu->rts.disabled)
7193                 value = priv->rts_threshold | RTS_DISABLED;
7194         else {
7195                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7196                         err = -EINVAL;
7197                         goto done;
7198                 }
7199                 value = wrqu->rts.value;
7200         }
7201
7202         err = ipw2100_set_rts_threshold(priv, value);
7203
7204         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7205       done:
7206         mutex_unlock(&priv->action_mutex);
7207         return err;
7208 }
7209
7210 static int ipw2100_wx_get_rts(struct net_device *dev,
7211                               struct iw_request_info *info,
7212                               union iwreq_data *wrqu, char *extra)
7213 {
7214         /*
7215          * This can be called at any time.  No action lock required
7216          */
7217
7218         struct ipw2100_priv *priv = libipw_priv(dev);
7219
7220         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7221         wrqu->rts.fixed = 1;    /* no auto select */
7222
7223         /* If RTS is set to the default value, then it is disabled */
7224         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7225
7226         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7227
7228         return 0;
7229 }
7230
7231 static int ipw2100_wx_set_txpow(struct net_device *dev,
7232                                 struct iw_request_info *info,
7233                                 union iwreq_data *wrqu, char *extra)
7234 {
7235         struct ipw2100_priv *priv = libipw_priv(dev);
7236         int err = 0, value;
7237         
7238         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7239                 return -EINPROGRESS;
7240
7241         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7242                 return 0;
7243
7244         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7245                 return -EINVAL;
7246
7247         if (wrqu->txpower.fixed == 0)
7248                 value = IPW_TX_POWER_DEFAULT;
7249         else {
7250                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7251                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7252                         return -EINVAL;
7253
7254                 value = wrqu->txpower.value;
7255         }
7256
7257         mutex_lock(&priv->action_mutex);
7258         if (!(priv->status & STATUS_INITIALIZED)) {
7259                 err = -EIO;
7260                 goto done;
7261         }
7262
7263         err = ipw2100_set_tx_power(priv, value);
7264
7265         IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7266
7267       done:
7268         mutex_unlock(&priv->action_mutex);
7269         return err;
7270 }
7271
7272 static int ipw2100_wx_get_txpow(struct net_device *dev,
7273                                 struct iw_request_info *info,
7274                                 union iwreq_data *wrqu, char *extra)
7275 {
7276         /*
7277          * This can be called at any time.  No action lock required
7278          */
7279
7280         struct ipw2100_priv *priv = libipw_priv(dev);
7281
7282         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7283
7284         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7285                 wrqu->txpower.fixed = 0;
7286                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7287         } else {
7288                 wrqu->txpower.fixed = 1;
7289                 wrqu->txpower.value = priv->tx_power;
7290         }
7291
7292         wrqu->txpower.flags = IW_TXPOW_DBM;
7293
7294         IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7295
7296         return 0;
7297 }
7298
7299 static int ipw2100_wx_set_frag(struct net_device *dev,
7300                                struct iw_request_info *info,
7301                                union iwreq_data *wrqu, char *extra)
7302 {
7303         /*
7304          * This can be called at any time.  No action lock required
7305          */
7306
7307         struct ipw2100_priv *priv = libipw_priv(dev);
7308
7309         if (!wrqu->frag.fixed)
7310                 return -EINVAL;
7311
7312         if (wrqu->frag.disabled) {
7313                 priv->frag_threshold |= FRAG_DISABLED;
7314                 priv->ieee->fts = DEFAULT_FTS;
7315         } else {
7316                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7317                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7318                         return -EINVAL;
7319
7320                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7321                 priv->frag_threshold = priv->ieee->fts;
7322         }
7323
7324         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7325
7326         return 0;
7327 }
7328
7329 static int ipw2100_wx_get_frag(struct net_device *dev,
7330                                struct iw_request_info *info,
7331                                union iwreq_data *wrqu, char *extra)
7332 {
7333         /*
7334          * This can be called at any time.  No action lock required
7335          */
7336
7337         struct ipw2100_priv *priv = libipw_priv(dev);
7338         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7339         wrqu->frag.fixed = 0;   /* no auto select */
7340         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7341
7342         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7343
7344         return 0;
7345 }
7346
7347 static int ipw2100_wx_set_retry(struct net_device *dev,
7348                                 struct iw_request_info *info,
7349                                 union iwreq_data *wrqu, char *extra)
7350 {
7351         struct ipw2100_priv *priv = libipw_priv(dev);
7352         int err = 0;
7353
7354         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7355                 return -EINVAL;
7356
7357         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7358                 return 0;
7359
7360         mutex_lock(&priv->action_mutex);
7361         if (!(priv->status & STATUS_INITIALIZED)) {
7362                 err = -EIO;
7363                 goto done;
7364         }
7365
7366         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7367                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7368                 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7369                              wrqu->retry.value);
7370                 goto done;
7371         }
7372
7373         if (wrqu->retry.flags & IW_RETRY_LONG) {
7374                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7375                 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7376                              wrqu->retry.value);
7377                 goto done;
7378         }
7379
7380         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7381         if (!err)
7382                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7383
7384         IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7385
7386       done:
7387         mutex_unlock(&priv->action_mutex);
7388         return err;
7389 }
7390
7391 static int ipw2100_wx_get_retry(struct net_device *dev,
7392                                 struct iw_request_info *info,
7393                                 union iwreq_data *wrqu, char *extra)
7394 {
7395         /*
7396          * This can be called at any time.  No action lock required
7397          */
7398
7399         struct ipw2100_priv *priv = libipw_priv(dev);
7400
7401         wrqu->retry.disabled = 0;       /* can't be disabled */
7402
7403         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7404                 return -EINVAL;
7405
7406         if (wrqu->retry.flags & IW_RETRY_LONG) {
7407                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7408                 wrqu->retry.value = priv->long_retry_limit;
7409         } else {
7410                 wrqu->retry.flags =
7411                     (priv->short_retry_limit !=
7412                      priv->long_retry_limit) ?
7413                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7414
7415                 wrqu->retry.value = priv->short_retry_limit;
7416         }
7417
7418         IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7419
7420         return 0;
7421 }
7422
7423 static int ipw2100_wx_set_scan(struct net_device *dev,
7424                                struct iw_request_info *info,
7425                                union iwreq_data *wrqu, char *extra)
7426 {
7427         struct ipw2100_priv *priv = libipw_priv(dev);
7428         int err = 0;
7429
7430         mutex_lock(&priv->action_mutex);
7431         if (!(priv->status & STATUS_INITIALIZED)) {
7432                 err = -EIO;
7433                 goto done;
7434         }
7435
7436         IPW_DEBUG_WX("Initiating scan...\n");
7437
7438         priv->user_requested_scan = 1;
7439         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7440                 IPW_DEBUG_WX("Start scan failed.\n");
7441
7442                 /* TODO: Mark a scan as pending so when hardware initialized
7443                  *       a scan starts */
7444         }
7445
7446       done:
7447         mutex_unlock(&priv->action_mutex);
7448         return err;
7449 }
7450
7451 static int ipw2100_wx_get_scan(struct net_device *dev,
7452                                struct iw_request_info *info,
7453                                union iwreq_data *wrqu, char *extra)
7454 {
7455         /*
7456          * This can be called at any time.  No action lock required
7457          */
7458
7459         struct ipw2100_priv *priv = libipw_priv(dev);
7460         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7461 }
7462
7463 /*
7464  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7465  */
7466 static int ipw2100_wx_set_encode(struct net_device *dev,
7467                                  struct iw_request_info *info,
7468                                  union iwreq_data *wrqu, char *key)
7469 {
7470         /*
7471          * No check of STATUS_INITIALIZED required
7472          */
7473
7474         struct ipw2100_priv *priv = libipw_priv(dev);
7475         return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7476 }
7477
7478 static int ipw2100_wx_get_encode(struct net_device *dev,
7479                                  struct iw_request_info *info,
7480                                  union iwreq_data *wrqu, char *key)
7481 {
7482         /*
7483          * This can be called at any time.  No action lock required
7484          */
7485
7486         struct ipw2100_priv *priv = libipw_priv(dev);
7487         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7488 }
7489
7490 static int ipw2100_wx_set_power(struct net_device *dev,
7491                                 struct iw_request_info *info,
7492                                 union iwreq_data *wrqu, char *extra)
7493 {
7494         struct ipw2100_priv *priv = libipw_priv(dev);
7495         int err = 0;
7496
7497         mutex_lock(&priv->action_mutex);
7498         if (!(priv->status & STATUS_INITIALIZED)) {
7499                 err = -EIO;
7500                 goto done;
7501         }
7502
7503         if (wrqu->power.disabled) {
7504                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7505                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7506                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7507                 goto done;
7508         }
7509
7510         switch (wrqu->power.flags & IW_POWER_MODE) {
7511         case IW_POWER_ON:       /* If not specified */
7512         case IW_POWER_MODE:     /* If set all mask */
7513         case IW_POWER_ALL_R:    /* If explicitly state all */
7514                 break;
7515         default:                /* Otherwise we don't support it */
7516                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7517                              wrqu->power.flags);
7518                 err = -EOPNOTSUPP;
7519                 goto done;
7520         }
7521
7522         /* If the user hasn't specified a power management mode yet, default
7523          * to BATTERY */
7524         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7525         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7526
7527         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7528
7529       done:
7530         mutex_unlock(&priv->action_mutex);
7531         return err;
7532
7533 }
7534
7535 static int ipw2100_wx_get_power(struct net_device *dev,
7536                                 struct iw_request_info *info,
7537                                 union iwreq_data *wrqu, char *extra)
7538 {
7539         /*
7540          * This can be called at any time.  No action lock required
7541          */
7542
7543         struct ipw2100_priv *priv = libipw_priv(dev);
7544
7545         if (!(priv->power_mode & IPW_POWER_ENABLED))
7546                 wrqu->power.disabled = 1;
7547         else {
7548                 wrqu->power.disabled = 0;
7549                 wrqu->power.flags = 0;
7550         }
7551
7552         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7553
7554         return 0;
7555 }
7556
7557 /*
7558  * WE-18 WPA support
7559  */
7560
7561 /* SIOCSIWGENIE */
7562 static int ipw2100_wx_set_genie(struct net_device *dev,
7563                                 struct iw_request_info *info,
7564                                 union iwreq_data *wrqu, char *extra)
7565 {
7566
7567         struct ipw2100_priv *priv = libipw_priv(dev);
7568         struct libipw_device *ieee = priv->ieee;
7569         u8 *buf;
7570
7571         if (!ieee->wpa_enabled)
7572                 return -EOPNOTSUPP;
7573
7574         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7575             (wrqu->data.length && extra == NULL))
7576                 return -EINVAL;
7577
7578         if (wrqu->data.length) {
7579                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7580                 if (buf == NULL)
7581                         return -ENOMEM;
7582
7583                 kfree(ieee->wpa_ie);
7584                 ieee->wpa_ie = buf;
7585                 ieee->wpa_ie_len = wrqu->data.length;
7586         } else {
7587                 kfree(ieee->wpa_ie);
7588                 ieee->wpa_ie = NULL;
7589                 ieee->wpa_ie_len = 0;
7590         }
7591
7592         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7593
7594         return 0;
7595 }
7596
7597 /* SIOCGIWGENIE */
7598 static int ipw2100_wx_get_genie(struct net_device *dev,
7599                                 struct iw_request_info *info,
7600                                 union iwreq_data *wrqu, char *extra)
7601 {
7602         struct ipw2100_priv *priv = libipw_priv(dev);
7603         struct libipw_device *ieee = priv->ieee;
7604
7605         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7606                 wrqu->data.length = 0;
7607                 return 0;
7608         }
7609
7610         if (wrqu->data.length < ieee->wpa_ie_len)
7611                 return -E2BIG;
7612
7613         wrqu->data.length = ieee->wpa_ie_len;
7614         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7615
7616         return 0;
7617 }
7618
7619 /* SIOCSIWAUTH */
7620 static int ipw2100_wx_set_auth(struct net_device *dev,
7621                                struct iw_request_info *info,
7622                                union iwreq_data *wrqu, char *extra)
7623 {
7624         struct ipw2100_priv *priv = libipw_priv(dev);
7625         struct libipw_device *ieee = priv->ieee;
7626         struct iw_param *param = &wrqu->param;
7627         struct lib80211_crypt_data *crypt;
7628         unsigned long flags;
7629         int ret = 0;
7630
7631         switch (param->flags & IW_AUTH_INDEX) {
7632         case IW_AUTH_WPA_VERSION:
7633         case IW_AUTH_CIPHER_PAIRWISE:
7634         case IW_AUTH_CIPHER_GROUP:
7635         case IW_AUTH_KEY_MGMT:
7636                 /*
7637                  * ipw2200 does not use these parameters
7638                  */
7639                 break;
7640
7641         case IW_AUTH_TKIP_COUNTERMEASURES:
7642                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7643                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7644                         break;
7645
7646                 flags = crypt->ops->get_flags(crypt->priv);
7647
7648                 if (param->value)
7649                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7650                 else
7651                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7652
7653                 crypt->ops->set_flags(flags, crypt->priv);
7654
7655                 break;
7656
7657         case IW_AUTH_DROP_UNENCRYPTED:{
7658                         /* HACK:
7659                          *
7660                          * wpa_supplicant calls set_wpa_enabled when the driver
7661                          * is loaded and unloaded, regardless of if WPA is being
7662                          * used.  No other calls are made which can be used to
7663                          * determine if encryption will be used or not prior to
7664                          * association being expected.  If encryption is not being
7665                          * used, drop_unencrypted is set to false, else true -- we
7666                          * can use this to determine if the CAP_PRIVACY_ON bit should
7667                          * be set.
7668                          */
7669                         struct libipw_security sec = {
7670                                 .flags = SEC_ENABLED,
7671                                 .enabled = param->value,
7672                         };
7673                         priv->ieee->drop_unencrypted = param->value;
7674                         /* We only change SEC_LEVEL for open mode. Others
7675                          * are set by ipw_wpa_set_encryption.
7676                          */
7677                         if (!param->value) {
7678                                 sec.flags |= SEC_LEVEL;
7679                                 sec.level = SEC_LEVEL_0;
7680                         } else {
7681                                 sec.flags |= SEC_LEVEL;
7682                                 sec.level = SEC_LEVEL_1;
7683                         }
7684                         if (priv->ieee->set_security)
7685                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7686                         break;
7687                 }
7688
7689         case IW_AUTH_80211_AUTH_ALG:
7690                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7691                 break;
7692
7693         case IW_AUTH_WPA_ENABLED:
7694                 ret = ipw2100_wpa_enable(priv, param->value);
7695                 break;
7696
7697         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7698                 ieee->ieee802_1x = param->value;
7699                 break;
7700
7701                 //case IW_AUTH_ROAMING_CONTROL:
7702         case IW_AUTH_PRIVACY_INVOKED:
7703                 ieee->privacy_invoked = param->value;
7704                 break;
7705
7706         default:
7707                 return -EOPNOTSUPP;
7708         }
7709         return ret;
7710 }
7711
7712 /* SIOCGIWAUTH */
7713 static int ipw2100_wx_get_auth(struct net_device *dev,
7714                                struct iw_request_info *info,
7715                                union iwreq_data *wrqu, char *extra)
7716 {
7717         struct ipw2100_priv *priv = libipw_priv(dev);
7718         struct libipw_device *ieee = priv->ieee;
7719         struct lib80211_crypt_data *crypt;
7720         struct iw_param *param = &wrqu->param;
7721         int ret = 0;
7722
7723         switch (param->flags & IW_AUTH_INDEX) {
7724         case IW_AUTH_WPA_VERSION:
7725         case IW_AUTH_CIPHER_PAIRWISE:
7726         case IW_AUTH_CIPHER_GROUP:
7727         case IW_AUTH_KEY_MGMT:
7728                 /*
7729                  * wpa_supplicant will control these internally
7730                  */
7731                 ret = -EOPNOTSUPP;
7732                 break;
7733
7734         case IW_AUTH_TKIP_COUNTERMEASURES:
7735                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7736                 if (!crypt || !crypt->ops->get_flags) {
7737                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7738                                           "crypt not set!\n");
7739                         break;
7740                 }
7741
7742                 param->value = (crypt->ops->get_flags(crypt->priv) &
7743                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7744
7745                 break;
7746
7747         case IW_AUTH_DROP_UNENCRYPTED:
7748                 param->value = ieee->drop_unencrypted;
7749                 break;
7750
7751         case IW_AUTH_80211_AUTH_ALG:
7752                 param->value = priv->ieee->sec.auth_mode;
7753                 break;
7754
7755         case IW_AUTH_WPA_ENABLED:
7756                 param->value = ieee->wpa_enabled;
7757                 break;
7758
7759         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7760                 param->value = ieee->ieee802_1x;
7761                 break;
7762
7763         case IW_AUTH_ROAMING_CONTROL:
7764         case IW_AUTH_PRIVACY_INVOKED:
7765                 param->value = ieee->privacy_invoked;
7766                 break;
7767
7768         default:
7769                 return -EOPNOTSUPP;
7770         }
7771         return 0;
7772 }
7773
7774 /* SIOCSIWENCODEEXT */
7775 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7776                                     struct iw_request_info *info,
7777                                     union iwreq_data *wrqu, char *extra)
7778 {
7779         struct ipw2100_priv *priv = libipw_priv(dev);
7780         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7781 }
7782
7783 /* SIOCGIWENCODEEXT */
7784 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7785                                     struct iw_request_info *info,
7786                                     union iwreq_data *wrqu, char *extra)
7787 {
7788         struct ipw2100_priv *priv = libipw_priv(dev);
7789         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7790 }
7791
7792 /* SIOCSIWMLME */
7793 static int ipw2100_wx_set_mlme(struct net_device *dev,
7794                                struct iw_request_info *info,
7795                                union iwreq_data *wrqu, char *extra)
7796 {
7797         struct ipw2100_priv *priv = libipw_priv(dev);
7798         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7799         __le16 reason;
7800
7801         reason = cpu_to_le16(mlme->reason_code);
7802
7803         switch (mlme->cmd) {
7804         case IW_MLME_DEAUTH:
7805                 // silently ignore
7806                 break;
7807
7808         case IW_MLME_DISASSOC:
7809                 ipw2100_disassociate_bssid(priv);
7810                 break;
7811
7812         default:
7813                 return -EOPNOTSUPP;
7814         }
7815         return 0;
7816 }
7817
7818 /*
7819  *
7820  * IWPRIV handlers
7821  *
7822  */
7823 #ifdef CONFIG_IPW2100_MONITOR
7824 static int ipw2100_wx_set_promisc(struct net_device *dev,
7825                                   struct iw_request_info *info,
7826                                   union iwreq_data *wrqu, char *extra)
7827 {
7828         struct ipw2100_priv *priv = libipw_priv(dev);
7829         int *parms = (int *)extra;
7830         int enable = (parms[0] > 0);
7831         int err = 0;
7832
7833         mutex_lock(&priv->action_mutex);
7834         if (!(priv->status & STATUS_INITIALIZED)) {
7835                 err = -EIO;
7836                 goto done;
7837         }
7838
7839         if (enable) {
7840                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7841                         err = ipw2100_set_channel(priv, parms[1], 0);
7842                         goto done;
7843                 }
7844                 priv->channel = parms[1];
7845                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7846         } else {
7847                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7848                         err = ipw2100_switch_mode(priv, priv->last_mode);
7849         }
7850       done:
7851         mutex_unlock(&priv->action_mutex);
7852         return err;
7853 }
7854
7855 static int ipw2100_wx_reset(struct net_device *dev,
7856                             struct iw_request_info *info,
7857                             union iwreq_data *wrqu, char *extra)
7858 {
7859         struct ipw2100_priv *priv = libipw_priv(dev);
7860         if (priv->status & STATUS_INITIALIZED)
7861                 schedule_reset(priv);
7862         return 0;
7863 }
7864
7865 #endif
7866
7867 static int ipw2100_wx_set_powermode(struct net_device *dev,
7868                                     struct iw_request_info *info,
7869                                     union iwreq_data *wrqu, char *extra)
7870 {
7871         struct ipw2100_priv *priv = libipw_priv(dev);
7872         int err = 0, mode = *(int *)extra;
7873
7874         mutex_lock(&priv->action_mutex);
7875         if (!(priv->status & STATUS_INITIALIZED)) {
7876                 err = -EIO;
7877                 goto done;
7878         }
7879
7880         if ((mode < 0) || (mode > POWER_MODES))
7881                 mode = IPW_POWER_AUTO;
7882
7883         if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7884                 err = ipw2100_set_power_mode(priv, mode);
7885       done:
7886         mutex_unlock(&priv->action_mutex);
7887         return err;
7888 }
7889
7890 #define MAX_POWER_STRING 80
7891 static int ipw2100_wx_get_powermode(struct net_device *dev,
7892                                     struct iw_request_info *info,
7893                                     union iwreq_data *wrqu, char *extra)
7894 {
7895         /*
7896          * This can be called at any time.  No action lock required
7897          */
7898
7899         struct ipw2100_priv *priv = libipw_priv(dev);
7900         int level = IPW_POWER_LEVEL(priv->power_mode);
7901         s32 timeout, period;
7902
7903         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7904                 snprintf(extra, MAX_POWER_STRING,
7905                          "Power save level: %d (Off)", level);
7906         } else {
7907                 switch (level) {
7908                 case IPW_POWER_MODE_CAM:
7909                         snprintf(extra, MAX_POWER_STRING,
7910                                  "Power save level: %d (None)", level);
7911                         break;
7912                 case IPW_POWER_AUTO:
7913                         snprintf(extra, MAX_POWER_STRING,
7914                                  "Power save level: %d (Auto)", level);
7915                         break;
7916                 default:
7917                         timeout = timeout_duration[level - 1] / 1000;
7918                         period = period_duration[level - 1] / 1000;
7919                         snprintf(extra, MAX_POWER_STRING,
7920                                  "Power save level: %d "
7921                                  "(Timeout %dms, Period %dms)",
7922                                  level, timeout, period);
7923                 }
7924         }
7925
7926         wrqu->data.length = strlen(extra) + 1;
7927
7928         return 0;
7929 }
7930
7931 static int ipw2100_wx_set_preamble(struct net_device *dev,
7932                                    struct iw_request_info *info,
7933                                    union iwreq_data *wrqu, char *extra)
7934 {
7935         struct ipw2100_priv *priv = libipw_priv(dev);
7936         int err, mode = *(int *)extra;
7937
7938         mutex_lock(&priv->action_mutex);
7939         if (!(priv->status & STATUS_INITIALIZED)) {
7940                 err = -EIO;
7941                 goto done;
7942         }
7943
7944         if (mode == 1)
7945                 priv->config |= CFG_LONG_PREAMBLE;
7946         else if (mode == 0)
7947                 priv->config &= ~CFG_LONG_PREAMBLE;
7948         else {
7949                 err = -EINVAL;
7950                 goto done;
7951         }
7952
7953         err = ipw2100_system_config(priv, 0);
7954
7955       done:
7956         mutex_unlock(&priv->action_mutex);
7957         return err;
7958 }
7959
7960 static int ipw2100_wx_get_preamble(struct net_device *dev,
7961                                    struct iw_request_info *info,
7962                                    union iwreq_data *wrqu, char *extra)
7963 {
7964         /*
7965          * This can be called at any time.  No action lock required
7966          */
7967
7968         struct ipw2100_priv *priv = libipw_priv(dev);
7969
7970         if (priv->config & CFG_LONG_PREAMBLE)
7971                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7972         else
7973                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7974
7975         return 0;
7976 }
7977
7978 #ifdef CONFIG_IPW2100_MONITOR
7979 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7980                                     struct iw_request_info *info,
7981                                     union iwreq_data *wrqu, char *extra)
7982 {
7983         struct ipw2100_priv *priv = libipw_priv(dev);
7984         int err, mode = *(int *)extra;
7985
7986         mutex_lock(&priv->action_mutex);
7987         if (!(priv->status & STATUS_INITIALIZED)) {
7988                 err = -EIO;
7989                 goto done;
7990         }
7991
7992         if (mode == 1)
7993                 priv->config |= CFG_CRC_CHECK;
7994         else if (mode == 0)
7995                 priv->config &= ~CFG_CRC_CHECK;
7996         else {
7997                 err = -EINVAL;
7998                 goto done;
7999         }
8000         err = 0;
8001
8002       done:
8003         mutex_unlock(&priv->action_mutex);
8004         return err;
8005 }
8006
8007 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8008                                     struct iw_request_info *info,
8009                                     union iwreq_data *wrqu, char *extra)
8010 {
8011         /*
8012          * This can be called at any time.  No action lock required
8013          */
8014
8015         struct ipw2100_priv *priv = libipw_priv(dev);
8016
8017         if (priv->config & CFG_CRC_CHECK)
8018                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8019         else
8020                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8021
8022         return 0;
8023 }
8024 #endif                          /* CONFIG_IPW2100_MONITOR */
8025
8026 static iw_handler ipw2100_wx_handlers[] = {
8027         IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8028         IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8029         IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8030         IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8031         IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8032         IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8033         IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8034         IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8035         IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8036         IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8037         IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8038         IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8039         IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8040         IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8041         IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8042         IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8043         IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8044         IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8045         IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8046         IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8047         IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8048         IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8049         IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8050         IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8051         IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8052         IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8053         IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8054         IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8055         IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8056         IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8057         IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8058         IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8059         IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8060         IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8061         IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8062 };
8063
8064 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8065 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8066 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8067 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8068 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8069 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8070 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8071 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8072
8073 static const struct iw_priv_args ipw2100_private_args[] = {
8074
8075 #ifdef CONFIG_IPW2100_MONITOR
8076         {
8077          IPW2100_PRIV_SET_MONITOR,
8078          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8079         {
8080          IPW2100_PRIV_RESET,
8081          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8082 #endif                          /* CONFIG_IPW2100_MONITOR */
8083
8084         {
8085          IPW2100_PRIV_SET_POWER,
8086          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8087         {
8088          IPW2100_PRIV_GET_POWER,
8089          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8090          "get_power"},
8091         {
8092          IPW2100_PRIV_SET_LONGPREAMBLE,
8093          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8094         {
8095          IPW2100_PRIV_GET_LONGPREAMBLE,
8096          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8097 #ifdef CONFIG_IPW2100_MONITOR
8098         {
8099          IPW2100_PRIV_SET_CRC_CHECK,
8100          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8101         {
8102          IPW2100_PRIV_GET_CRC_CHECK,
8103          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8104 #endif                          /* CONFIG_IPW2100_MONITOR */
8105 };
8106
8107 static iw_handler ipw2100_private_handler[] = {
8108 #ifdef CONFIG_IPW2100_MONITOR
8109         ipw2100_wx_set_promisc,
8110         ipw2100_wx_reset,
8111 #else                           /* CONFIG_IPW2100_MONITOR */
8112         NULL,
8113         NULL,
8114 #endif                          /* CONFIG_IPW2100_MONITOR */
8115         ipw2100_wx_set_powermode,
8116         ipw2100_wx_get_powermode,
8117         ipw2100_wx_set_preamble,
8118         ipw2100_wx_get_preamble,
8119 #ifdef CONFIG_IPW2100_MONITOR
8120         ipw2100_wx_set_crc_check,
8121         ipw2100_wx_get_crc_check,
8122 #else                           /* CONFIG_IPW2100_MONITOR */
8123         NULL,
8124         NULL,
8125 #endif                          /* CONFIG_IPW2100_MONITOR */
8126 };
8127
8128 /*
8129  * Get wireless statistics.
8130  * Called by /proc/net/wireless
8131  * Also called by SIOCGIWSTATS
8132  */
8133 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8134 {
8135         enum {
8136                 POOR = 30,
8137                 FAIR = 60,
8138                 GOOD = 80,
8139                 VERY_GOOD = 90,
8140                 EXCELLENT = 95,
8141                 PERFECT = 100
8142         };
8143         int rssi_qual;
8144         int tx_qual;
8145         int beacon_qual;
8146         int quality;
8147
8148         struct ipw2100_priv *priv = libipw_priv(dev);
8149         struct iw_statistics *wstats;
8150         u32 rssi, tx_retries, missed_beacons, tx_failures;
8151         u32 ord_len = sizeof(u32);
8152
8153         if (!priv)
8154                 return (struct iw_statistics *)NULL;
8155
8156         wstats = &priv->wstats;
8157
8158         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8159          * ipw2100_wx_wireless_stats seems to be called before fw is
8160          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8161          * and associated; if not associcated, the values are all meaningless
8162          * anyway, so set them all to NULL and INVALID */
8163         if (!(priv->status & STATUS_ASSOCIATED)) {
8164                 wstats->miss.beacon = 0;
8165                 wstats->discard.retries = 0;
8166                 wstats->qual.qual = 0;
8167                 wstats->qual.level = 0;
8168                 wstats->qual.noise = 0;
8169                 wstats->qual.updated = 7;
8170                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8171                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8172                 return wstats;
8173         }
8174
8175         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8176                                 &missed_beacons, &ord_len))
8177                 goto fail_get_ordinal;
8178
8179         /* If we don't have a connection the quality and level is 0 */
8180         if (!(priv->status & STATUS_ASSOCIATED)) {
8181                 wstats->qual.qual = 0;
8182                 wstats->qual.level = 0;
8183         } else {
8184                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8185                                         &rssi, &ord_len))
8186                         goto fail_get_ordinal;
8187                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8188                 if (rssi < 10)
8189                         rssi_qual = rssi * POOR / 10;
8190                 else if (rssi < 15)
8191                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8192                 else if (rssi < 20)
8193                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8194                 else if (rssi < 30)
8195                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8196                             10 + GOOD;
8197                 else
8198                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8199                             10 + VERY_GOOD;
8200
8201                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8202                                         &tx_retries, &ord_len))
8203                         goto fail_get_ordinal;
8204
8205                 if (tx_retries > 75)
8206                         tx_qual = (90 - tx_retries) * POOR / 15;
8207                 else if (tx_retries > 70)
8208                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8209                 else if (tx_retries > 65)
8210                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8211                 else if (tx_retries > 50)
8212                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8213                             15 + GOOD;
8214                 else
8215                         tx_qual = (50 - tx_retries) *
8216                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8217
8218                 if (missed_beacons > 50)
8219                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8220                 else if (missed_beacons > 40)
8221                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8222                             10 + POOR;
8223                 else if (missed_beacons > 32)
8224                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8225                             18 + FAIR;
8226                 else if (missed_beacons > 20)
8227                         beacon_qual = (32 - missed_beacons) *
8228                             (VERY_GOOD - GOOD) / 20 + GOOD;
8229                 else
8230                         beacon_qual = (20 - missed_beacons) *
8231                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8232
8233                 quality = min(tx_qual, rssi_qual);
8234                 quality = min(beacon_qual, quality);
8235
8236 #ifdef CONFIG_IPW2100_DEBUG
8237                 if (beacon_qual == quality)
8238                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8239                 else if (tx_qual == quality)
8240                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8241                 else if (quality != 100)
8242                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8243                 else
8244                         IPW_DEBUG_WX("Quality not clamped.\n");
8245 #endif
8246
8247                 wstats->qual.qual = quality;
8248                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8249         }
8250
8251         wstats->qual.noise = 0;
8252         wstats->qual.updated = 7;
8253         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8254
8255         /* FIXME: this is percent and not a # */
8256         wstats->miss.beacon = missed_beacons;
8257
8258         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8259                                 &tx_failures, &ord_len))
8260                 goto fail_get_ordinal;
8261         wstats->discard.retries = tx_failures;
8262
8263         return wstats;
8264
8265       fail_get_ordinal:
8266         IPW_DEBUG_WX("failed querying ordinals.\n");
8267
8268         return (struct iw_statistics *)NULL;
8269 }
8270
8271 static struct iw_handler_def ipw2100_wx_handler_def = {
8272         .standard = ipw2100_wx_handlers,
8273         .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8274         .num_private = ARRAY_SIZE(ipw2100_private_handler),
8275         .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8276         .private = (iw_handler *) ipw2100_private_handler,
8277         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8278         .get_wireless_stats = ipw2100_wx_wireless_stats,
8279 };
8280
8281 static void ipw2100_wx_event_work(struct work_struct *work)
8282 {
8283         struct ipw2100_priv *priv =
8284                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8285         union iwreq_data wrqu;
8286         unsigned int len = ETH_ALEN;
8287
8288         if (priv->status & STATUS_STOPPING)
8289                 return;
8290
8291         mutex_lock(&priv->action_mutex);
8292
8293         IPW_DEBUG_WX("enter\n");
8294
8295         mutex_unlock(&priv->action_mutex);
8296
8297         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8298
8299         /* Fetch BSSID from the hardware */
8300         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8301             priv->status & STATUS_RF_KILL_MASK ||
8302             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8303                                 &priv->bssid, &len)) {
8304                 eth_zero_addr(wrqu.ap_addr.sa_data);
8305         } else {
8306                 /* We now have the BSSID, so can finish setting to the full
8307                  * associated state */
8308                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8309                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8310                 priv->status &= ~STATUS_ASSOCIATING;
8311                 priv->status |= STATUS_ASSOCIATED;
8312                 netif_carrier_on(priv->net_dev);
8313                 netif_wake_queue(priv->net_dev);
8314         }
8315
8316         if (!(priv->status & STATUS_ASSOCIATED)) {
8317                 IPW_DEBUG_WX("Configuring ESSID\n");
8318                 mutex_lock(&priv->action_mutex);
8319                 /* This is a disassociation event, so kick the firmware to
8320                  * look for another AP */
8321                 if (priv->config & CFG_STATIC_ESSID)
8322                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8323                                           0);
8324                 else
8325                         ipw2100_set_essid(priv, NULL, 0, 0);
8326                 mutex_unlock(&priv->action_mutex);
8327         }
8328
8329         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8330 }
8331
8332 /*(DEBLOBBED)*/
8333
8334 #define IPW2100_FW_PREFIX "/*(DEBLOBBED)*/" /*(DEBLOBBED)*/
8335
8336 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX /*(DEBLOBBED)*/
8337
8338 /*
8339
8340 BINARY FIRMWARE HEADER FORMAT
8341
8342 offset      length   desc
8343 0           2        version
8344 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8345 4           4        fw_len
8346 8           4        uc_len
8347 C           fw_len   firmware data
8348 12 + fw_len uc_len   microcode data
8349
8350 */
8351
8352 struct ipw2100_fw_header {
8353         short version;
8354         short mode;
8355         unsigned int fw_size;
8356         unsigned int uc_size;
8357 } __packed;
8358
8359 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8360 {
8361         struct ipw2100_fw_header *h =
8362             (struct ipw2100_fw_header *)fw->fw_entry->data;
8363
8364         /*(DEBLOBBED)*/
8365
8366         fw->version = h->version;
8367         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8368         fw->fw.size = h->fw_size;
8369         fw->uc.data = fw->fw.data + h->fw_size;
8370         fw->uc.size = h->uc_size;
8371
8372         return 0;
8373 }
8374
8375 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8376                                 struct ipw2100_fw *fw)
8377 {
8378         char *fw_name;
8379         int rc;
8380
8381         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8382                        priv->net_dev->name);
8383
8384         switch (priv->ieee->iw_mode) {
8385         case IW_MODE_ADHOC:
8386                 fw_name = IPW2100_FW_NAME("-i");
8387                 break;
8388 #ifdef CONFIG_IPW2100_MONITOR
8389         case IW_MODE_MONITOR:
8390                 fw_name = IPW2100_FW_NAME("-p");
8391                 break;
8392 #endif
8393         case IW_MODE_INFRA:
8394         default:
8395                 fw_name = IPW2100_FW_NAME("");
8396                 break;
8397         }
8398
8399         rc = reject_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8400
8401         if (rc < 0) {
8402                 printk(KERN_ERR DRV_NAME ": "
8403                        "%s: Firmware '%s' not available or load failed.\n",
8404                        priv->net_dev->name, fw_name);
8405                 return rc;
8406         }
8407         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8408                        fw->fw_entry->size);
8409
8410         ipw2100_mod_firmware_load(fw);
8411
8412         return 0;
8413 }
8414
8415 /*(DEBLOBBED)*/
8416 #ifdef CONFIG_IPW2100_MONITOR
8417 /*(DEBLOBBED)*/
8418 #endif
8419 /*(DEBLOBBED)*/
8420
8421 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8422                                      struct ipw2100_fw *fw)
8423 {
8424         fw->version = 0;
8425         release_firmware(fw->fw_entry);
8426         fw->fw_entry = NULL;
8427 }
8428
8429 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8430                                  size_t max)
8431 {
8432         char ver[MAX_FW_VERSION_LEN];
8433         u32 len = MAX_FW_VERSION_LEN;
8434         u32 tmp;
8435         int i;
8436         /* firmware version is an ascii string (max len of 14) */
8437         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8438                 return -EIO;
8439         tmp = max;
8440         if (len >= max)
8441                 len = max - 1;
8442         for (i = 0; i < len; i++)
8443                 buf[i] = ver[i];
8444         buf[i] = '\0';
8445         return tmp;
8446 }
8447
8448 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8449                                     size_t max)
8450 {
8451         u32 ver;
8452         u32 len = sizeof(ver);
8453         /* microcode version is a 32 bit integer */
8454         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8455                 return -EIO;
8456         return snprintf(buf, max, "%08X", ver);
8457 }
8458
8459 /*
8460  * On exit, the firmware will have been freed from the fw list
8461  */
8462 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8463 {
8464         /* firmware is constructed of N contiguous entries, each entry is
8465          * structured as:
8466          *
8467          * offset    sie         desc
8468          * 0         4           address to write to
8469          * 4         2           length of data run
8470          * 6         length      data
8471          */
8472         unsigned int addr;
8473         unsigned short len;
8474
8475         const unsigned char *firmware_data = fw->fw.data;
8476         unsigned int firmware_data_left = fw->fw.size;
8477
8478         while (firmware_data_left > 0) {
8479                 addr = *(u32 *) (firmware_data);
8480                 firmware_data += 4;
8481                 firmware_data_left -= 4;
8482
8483                 len = *(u16 *) (firmware_data);
8484                 firmware_data += 2;
8485                 firmware_data_left -= 2;
8486
8487                 if (len > 32) {
8488                         printk(KERN_ERR DRV_NAME ": "
8489                                "Invalid firmware run-length of %d bytes\n",
8490                                len);
8491                         return -EINVAL;
8492                 }
8493
8494                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8495                 firmware_data += len;
8496                 firmware_data_left -= len;
8497         }
8498
8499         return 0;
8500 }
8501
8502 struct symbol_alive_response {
8503         u8 cmd_id;
8504         u8 seq_num;
8505         u8 ucode_rev;
8506         u8 eeprom_valid;
8507         u16 valid_flags;
8508         u8 IEEE_addr[6];
8509         u16 flags;
8510         u16 pcb_rev;
8511         u16 clock_settle_time;  // 1us LSB
8512         u16 powerup_settle_time;        // 1us LSB
8513         u16 hop_settle_time;    // 1us LSB
8514         u8 date[3];             // month, day, year
8515         u8 time[2];             // hours, minutes
8516         u8 ucode_valid;
8517 };
8518
8519 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8520                                   struct ipw2100_fw *fw)
8521 {
8522         struct net_device *dev = priv->net_dev;
8523         const unsigned char *microcode_data = fw->uc.data;
8524         unsigned int microcode_data_left = fw->uc.size;
8525         void __iomem *reg = priv->ioaddr;
8526
8527         struct symbol_alive_response response;
8528         int i, j;
8529         u8 data;
8530
8531         /* Symbol control */
8532         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8533         readl(reg);
8534         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8535         readl(reg);
8536
8537         /* HW config */
8538         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8539         readl(reg);
8540         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8541         readl(reg);
8542
8543         /* EN_CS_ACCESS bit to reset control store pointer */
8544         write_nic_byte(dev, 0x210000, 0x40);
8545         readl(reg);
8546         write_nic_byte(dev, 0x210000, 0x0);
8547         readl(reg);
8548         write_nic_byte(dev, 0x210000, 0x40);
8549         readl(reg);
8550
8551         /* copy microcode from buffer into Symbol */
8552
8553         while (microcode_data_left > 0) {
8554                 write_nic_byte(dev, 0x210010, *microcode_data++);
8555                 write_nic_byte(dev, 0x210010, *microcode_data++);
8556                 microcode_data_left -= 2;
8557         }
8558
8559         /* EN_CS_ACCESS bit to reset the control store pointer */
8560         write_nic_byte(dev, 0x210000, 0x0);
8561         readl(reg);
8562
8563         /* Enable System (Reg 0)
8564          * first enable causes garbage in RX FIFO */
8565         write_nic_byte(dev, 0x210000, 0x0);
8566         readl(reg);
8567         write_nic_byte(dev, 0x210000, 0x80);
8568         readl(reg);
8569
8570         /* Reset External Baseband Reg */
8571         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8572         readl(reg);
8573         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8574         readl(reg);
8575
8576         /* HW Config (Reg 5) */
8577         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8578         readl(reg);
8579         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8580         readl(reg);
8581
8582         /* Enable System (Reg 0)
8583          * second enable should be OK */
8584         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8585         readl(reg);
8586         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8587
8588         /* check Symbol is enabled - upped this from 5 as it wasn't always
8589          * catching the update */
8590         for (i = 0; i < 10; i++) {
8591                 udelay(10);
8592
8593                 /* check Dino is enabled bit */
8594                 read_nic_byte(dev, 0x210000, &data);
8595                 if (data & 0x1)
8596                         break;
8597         }
8598
8599         if (i == 10) {
8600                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8601                        dev->name);
8602                 return -EIO;
8603         }
8604
8605         /* Get Symbol alive response */
8606         for (i = 0; i < 30; i++) {
8607                 /* Read alive response structure */
8608                 for (j = 0;
8609                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8610                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8611
8612                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8613                         break;
8614                 udelay(10);
8615         }
8616
8617         if (i == 30) {
8618                 printk(KERN_ERR DRV_NAME
8619                        ": %s: No response from Symbol - hw not alive\n",
8620                        dev->name);
8621                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8622                 return -EIO;
8623         }
8624
8625         return 0;
8626 }