GNU Linux-libre 4.19.245-gnu1
[releases.git] / drivers / net / wireless / intel / iwlwifi / pcie / rx.c
1 /******************************************************************************
2  *
3  * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
4  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
5  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
6  * Copyright(c) 2018 Intel Corporation
7  *
8  * Portions of this file are derived from the ipw3945 project, as well
9  * as portions of the ieee80211 subsystem header files.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of version 2 of the GNU General Public License as
13  * published by the Free Software Foundation.
14  *
15  * This program is distributed in the hope that it will be useful, but WITHOUT
16  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18  * more details.
19  *
20  * You should have received a copy of the GNU General Public License along with
21  * this program.
22  *
23  * The full GNU General Public License is included in this distribution in the
24  * file called LICENSE.
25  *
26  * Contact Information:
27  *  Intel Linux Wireless <linuxwifi@intel.com>
28  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
29  *
30  *****************************************************************************/
31 #include <linux/sched.h>
32 #include <linux/wait.h>
33 #include <linux/gfp.h>
34
35 #include "iwl-prph.h"
36 #include "iwl-io.h"
37 #include "internal.h"
38 #include "iwl-op-mode.h"
39 #include "iwl-context-info-gen3.h"
40
41 /******************************************************************************
42  *
43  * RX path functions
44  *
45  ******************************************************************************/
46
47 /*
48  * Rx theory of operation
49  *
50  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
51  * each of which point to Receive Buffers to be filled by the NIC.  These get
52  * used not only for Rx frames, but for any command response or notification
53  * from the NIC.  The driver and NIC manage the Rx buffers by means
54  * of indexes into the circular buffer.
55  *
56  * Rx Queue Indexes
57  * The host/firmware share two index registers for managing the Rx buffers.
58  *
59  * The READ index maps to the first position that the firmware may be writing
60  * to -- the driver can read up to (but not including) this position and get
61  * good data.
62  * The READ index is managed by the firmware once the card is enabled.
63  *
64  * The WRITE index maps to the last position the driver has read from -- the
65  * position preceding WRITE is the last slot the firmware can place a packet.
66  *
67  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
68  * WRITE = READ.
69  *
70  * During initialization, the host sets up the READ queue position to the first
71  * INDEX position, and WRITE to the last (READ - 1 wrapped)
72  *
73  * When the firmware places a packet in a buffer, it will advance the READ index
74  * and fire the RX interrupt.  The driver can then query the READ index and
75  * process as many packets as possible, moving the WRITE index forward as it
76  * resets the Rx queue buffers with new memory.
77  *
78  * The management in the driver is as follows:
79  * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
80  *   When the interrupt handler is called, the request is processed.
81  *   The page is either stolen - transferred to the upper layer
82  *   or reused - added immediately to the iwl->rxq->rx_free list.
83  * + When the page is stolen - the driver updates the matching queue's used
84  *   count, detaches the RBD and transfers it to the queue used list.
85  *   When there are two used RBDs - they are transferred to the allocator empty
86  *   list. Work is then scheduled for the allocator to start allocating
87  *   eight buffers.
88  *   When there are another 6 used RBDs - they are transferred to the allocator
89  *   empty list and the driver tries to claim the pre-allocated buffers and
90  *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
91  *   until ready.
92  *   When there are 8+ buffers in the free list - either from allocation or from
93  *   8 reused unstolen pages - restock is called to update the FW and indexes.
94  * + In order to make sure the allocator always has RBDs to use for allocation
95  *   the allocator has initial pool in the size of num_queues*(8-2) - the
96  *   maximum missing RBDs per allocation request (request posted with 2
97  *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
98  *   The queues supplies the recycle of the rest of the RBDs.
99  * + A received packet is processed and handed to the kernel network stack,
100  *   detached from the iwl->rxq.  The driver 'processed' index is updated.
101  * + If there are no allocated buffers in iwl->rxq->rx_free,
102  *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
103  *   If there were enough free buffers and RX_STALLED is set it is cleared.
104  *
105  *
106  * Driver sequence:
107  *
108  * iwl_rxq_alloc()            Allocates rx_free
109  * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
110  *                            iwl_pcie_rxq_restock.
111  *                            Used only during initialization.
112  * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
113  *                            queue, updates firmware pointers, and updates
114  *                            the WRITE index.
115  * iwl_pcie_rx_allocator()     Background work for allocating pages.
116  *
117  * -- enable interrupts --
118  * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
119  *                            READ INDEX, detaching the SKB from the pool.
120  *                            Moves the packet buffer from queue to rx_used.
121  *                            Posts and claims requests to the allocator.
122  *                            Calls iwl_pcie_rxq_restock to refill any empty
123  *                            slots.
124  *
125  * RBD life-cycle:
126  *
127  * Init:
128  * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
129  *
130  * Regular Receive interrupt:
131  * Page Stolen:
132  * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
133  * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
134  * Page not Stolen:
135  * rxq.queue -> rxq.rx_free -> rxq.queue
136  * ...
137  *
138  */
139
140 /*
141  * iwl_rxq_space - Return number of free slots available in queue.
142  */
143 static int iwl_rxq_space(const struct iwl_rxq *rxq)
144 {
145         /* Make sure rx queue size is a power of 2 */
146         WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
147
148         /*
149          * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
150          * between empty and completely full queues.
151          * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
152          * defined for negative dividends.
153          */
154         return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
155 }
156
157 /*
158  * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
159  */
160 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
161 {
162         return cpu_to_le32((u32)(dma_addr >> 8));
163 }
164
165 /*
166  * iwl_pcie_rx_stop - stops the Rx DMA
167  */
168 int iwl_pcie_rx_stop(struct iwl_trans *trans)
169 {
170         if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) {
171                 /* TODO: remove this for 22560 once fw does it */
172                 iwl_write_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
173                 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS_GEN3,
174                                          RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
175         } else if (trans->cfg->mq_rx_supported) {
176                 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
177                 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
178                                            RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
179         } else {
180                 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
181                 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
182                                            FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
183                                            1000);
184         }
185 }
186
187 /*
188  * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
189  */
190 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
191                                     struct iwl_rxq *rxq)
192 {
193         u32 reg;
194
195         lockdep_assert_held(&rxq->lock);
196
197         /*
198          * explicitly wake up the NIC if:
199          * 1. shadow registers aren't enabled
200          * 2. there is a chance that the NIC is asleep
201          */
202         if (!trans->cfg->base_params->shadow_reg_enable &&
203             test_bit(STATUS_TPOWER_PMI, &trans->status)) {
204                 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
205
206                 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
207                         IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
208                                        reg);
209                         iwl_set_bit(trans, CSR_GP_CNTRL,
210                                     BIT(trans->cfg->csr->flag_mac_access_req));
211                         rxq->need_update = true;
212                         return;
213                 }
214         }
215
216         rxq->write_actual = round_down(rxq->write, 8);
217         if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
218                 iwl_write32(trans, HBUS_TARG_WRPTR,
219                             (rxq->write_actual |
220                              ((FIRST_RX_QUEUE + rxq->id) << 16)));
221         else if (trans->cfg->mq_rx_supported)
222                 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
223                             rxq->write_actual);
224         else
225                 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
226 }
227
228 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
229 {
230         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
231         int i;
232
233         for (i = 0; i < trans->num_rx_queues; i++) {
234                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
235
236                 if (!rxq->need_update)
237                         continue;
238                 spin_lock(&rxq->lock);
239                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
240                 rxq->need_update = false;
241                 spin_unlock(&rxq->lock);
242         }
243 }
244
245 static void iwl_pcie_restock_bd(struct iwl_trans *trans,
246                                 struct iwl_rxq *rxq,
247                                 struct iwl_rx_mem_buffer *rxb)
248 {
249         if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) {
250                 struct iwl_rx_transfer_desc *bd = rxq->bd;
251
252                 bd[rxq->write].type_n_size =
253                         cpu_to_le32((IWL_RX_TD_TYPE & IWL_RX_TD_TYPE_MSK) |
254                         ((IWL_RX_TD_SIZE_2K >> 8) & IWL_RX_TD_SIZE_MSK));
255                 bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
256                 bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
257         } else {
258                 __le64 *bd = rxq->bd;
259
260                 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
261         }
262 }
263
264 /*
265  * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
266  */
267 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
268                                   struct iwl_rxq *rxq)
269 {
270         struct iwl_rx_mem_buffer *rxb;
271
272         /*
273          * If the device isn't enabled - no need to try to add buffers...
274          * This can happen when we stop the device and still have an interrupt
275          * pending. We stop the APM before we sync the interrupts because we
276          * have to (see comment there). On the other hand, since the APM is
277          * stopped, we cannot access the HW (in particular not prph).
278          * So don't try to restock if the APM has been already stopped.
279          */
280         if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
281                 return;
282
283         spin_lock(&rxq->lock);
284         while (rxq->free_count) {
285                 /* Get next free Rx buffer, remove from free list */
286                 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
287                                        list);
288                 list_del(&rxb->list);
289                 rxb->invalid = false;
290                 /* 12 first bits are expected to be empty */
291                 WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
292                 /* Point to Rx buffer via next RBD in circular buffer */
293                 iwl_pcie_restock_bd(trans, rxq, rxb);
294                 rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK;
295                 rxq->free_count--;
296         }
297         spin_unlock(&rxq->lock);
298
299         /*
300          * If we've added more space for the firmware to place data, tell it.
301          * Increment device's write pointer in multiples of 8.
302          */
303         if (rxq->write_actual != (rxq->write & ~0x7)) {
304                 spin_lock(&rxq->lock);
305                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
306                 spin_unlock(&rxq->lock);
307         }
308 }
309
310 /*
311  * iwl_pcie_rxsq_restock - restock implementation for single queue rx
312  */
313 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
314                                   struct iwl_rxq *rxq)
315 {
316         struct iwl_rx_mem_buffer *rxb;
317
318         /*
319          * If the device isn't enabled - not need to try to add buffers...
320          * This can happen when we stop the device and still have an interrupt
321          * pending. We stop the APM before we sync the interrupts because we
322          * have to (see comment there). On the other hand, since the APM is
323          * stopped, we cannot access the HW (in particular not prph).
324          * So don't try to restock if the APM has been already stopped.
325          */
326         if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
327                 return;
328
329         spin_lock(&rxq->lock);
330         while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
331                 __le32 *bd = (__le32 *)rxq->bd;
332                 /* The overwritten rxb must be a used one */
333                 rxb = rxq->queue[rxq->write];
334                 BUG_ON(rxb && rxb->page);
335
336                 /* Get next free Rx buffer, remove from free list */
337                 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
338                                        list);
339                 list_del(&rxb->list);
340                 rxb->invalid = false;
341
342                 /* Point to Rx buffer via next RBD in circular buffer */
343                 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
344                 rxq->queue[rxq->write] = rxb;
345                 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
346                 rxq->free_count--;
347         }
348         spin_unlock(&rxq->lock);
349
350         /* If we've added more space for the firmware to place data, tell it.
351          * Increment device's write pointer in multiples of 8. */
352         if (rxq->write_actual != (rxq->write & ~0x7)) {
353                 spin_lock(&rxq->lock);
354                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
355                 spin_unlock(&rxq->lock);
356         }
357 }
358
359 /*
360  * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
361  *
362  * If there are slots in the RX queue that need to be restocked,
363  * and we have free pre-allocated buffers, fill the ranks as much
364  * as we can, pulling from rx_free.
365  *
366  * This moves the 'write' index forward to catch up with 'processed', and
367  * also updates the memory address in the firmware to reference the new
368  * target buffer.
369  */
370 static
371 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
372 {
373         if (trans->cfg->mq_rx_supported)
374                 iwl_pcie_rxmq_restock(trans, rxq);
375         else
376                 iwl_pcie_rxsq_restock(trans, rxq);
377 }
378
379 /*
380  * iwl_pcie_rx_alloc_page - allocates and returns a page.
381  *
382  */
383 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
384                                            gfp_t priority)
385 {
386         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
387         struct page *page;
388         gfp_t gfp_mask = priority;
389
390         if (trans_pcie->rx_page_order > 0)
391                 gfp_mask |= __GFP_COMP;
392
393         /* Alloc a new receive buffer */
394         page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
395         if (!page) {
396                 if (net_ratelimit())
397                         IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
398                                        trans_pcie->rx_page_order);
399                 /*
400                  * Issue an error if we don't have enough pre-allocated
401                   * buffers.
402 `                */
403                 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
404                         IWL_CRIT(trans,
405                                  "Failed to alloc_pages\n");
406                 return NULL;
407         }
408         return page;
409 }
410
411 /*
412  * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
413  *
414  * A used RBD is an Rx buffer that has been given to the stack. To use it again
415  * a page must be allocated and the RBD must point to the page. This function
416  * doesn't change the HW pointer but handles the list of pages that is used by
417  * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
418  * allocated buffers.
419  */
420 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
421                             struct iwl_rxq *rxq)
422 {
423         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
424         struct iwl_rx_mem_buffer *rxb;
425         struct page *page;
426
427         while (1) {
428                 spin_lock(&rxq->lock);
429                 if (list_empty(&rxq->rx_used)) {
430                         spin_unlock(&rxq->lock);
431                         return;
432                 }
433                 spin_unlock(&rxq->lock);
434
435                 /* Alloc a new receive buffer */
436                 page = iwl_pcie_rx_alloc_page(trans, priority);
437                 if (!page)
438                         return;
439
440                 spin_lock(&rxq->lock);
441
442                 if (list_empty(&rxq->rx_used)) {
443                         spin_unlock(&rxq->lock);
444                         __free_pages(page, trans_pcie->rx_page_order);
445                         return;
446                 }
447                 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
448                                        list);
449                 list_del(&rxb->list);
450                 spin_unlock(&rxq->lock);
451
452                 BUG_ON(rxb->page);
453                 rxb->page = page;
454                 /* Get physical address of the RB */
455                 rxb->page_dma =
456                         dma_map_page(trans->dev, page, 0,
457                                      PAGE_SIZE << trans_pcie->rx_page_order,
458                                      DMA_FROM_DEVICE);
459                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
460                         rxb->page = NULL;
461                         spin_lock(&rxq->lock);
462                         list_add(&rxb->list, &rxq->rx_used);
463                         spin_unlock(&rxq->lock);
464                         __free_pages(page, trans_pcie->rx_page_order);
465                         return;
466                 }
467
468                 spin_lock(&rxq->lock);
469
470                 list_add_tail(&rxb->list, &rxq->rx_free);
471                 rxq->free_count++;
472
473                 spin_unlock(&rxq->lock);
474         }
475 }
476
477 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
478 {
479         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
480         int i;
481
482         for (i = 0; i < RX_POOL_SIZE; i++) {
483                 if (!trans_pcie->rx_pool[i].page)
484                         continue;
485                 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
486                                PAGE_SIZE << trans_pcie->rx_page_order,
487                                DMA_FROM_DEVICE);
488                 __free_pages(trans_pcie->rx_pool[i].page,
489                              trans_pcie->rx_page_order);
490                 trans_pcie->rx_pool[i].page = NULL;
491         }
492 }
493
494 /*
495  * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
496  *
497  * Allocates for each received request 8 pages
498  * Called as a scheduled work item.
499  */
500 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
501 {
502         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
503         struct iwl_rb_allocator *rba = &trans_pcie->rba;
504         struct list_head local_empty;
505         int pending = atomic_read(&rba->req_pending);
506
507         IWL_DEBUG_RX(trans, "Pending allocation requests = %d\n", pending);
508
509         /* If we were scheduled - there is at least one request */
510         spin_lock(&rba->lock);
511         /* swap out the rba->rbd_empty to a local list */
512         list_replace_init(&rba->rbd_empty, &local_empty);
513         spin_unlock(&rba->lock);
514
515         while (pending) {
516                 int i;
517                 LIST_HEAD(local_allocated);
518                 gfp_t gfp_mask = GFP_KERNEL;
519
520                 /* Do not post a warning if there are only a few requests */
521                 if (pending < RX_PENDING_WATERMARK)
522                         gfp_mask |= __GFP_NOWARN;
523
524                 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
525                         struct iwl_rx_mem_buffer *rxb;
526                         struct page *page;
527
528                         /* List should never be empty - each reused RBD is
529                          * returned to the list, and initial pool covers any
530                          * possible gap between the time the page is allocated
531                          * to the time the RBD is added.
532                          */
533                         BUG_ON(list_empty(&local_empty));
534                         /* Get the first rxb from the rbd list */
535                         rxb = list_first_entry(&local_empty,
536                                                struct iwl_rx_mem_buffer, list);
537                         BUG_ON(rxb->page);
538
539                         /* Alloc a new receive buffer */
540                         page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
541                         if (!page)
542                                 continue;
543                         rxb->page = page;
544
545                         /* Get physical address of the RB */
546                         rxb->page_dma = dma_map_page(trans->dev, page, 0,
547                                         PAGE_SIZE << trans_pcie->rx_page_order,
548                                         DMA_FROM_DEVICE);
549                         if (dma_mapping_error(trans->dev, rxb->page_dma)) {
550                                 rxb->page = NULL;
551                                 __free_pages(page, trans_pcie->rx_page_order);
552                                 continue;
553                         }
554
555                         /* move the allocated entry to the out list */
556                         list_move(&rxb->list, &local_allocated);
557                         i++;
558                 }
559
560                 atomic_dec(&rba->req_pending);
561                 pending--;
562
563                 if (!pending) {
564                         pending = atomic_read(&rba->req_pending);
565                         IWL_DEBUG_RX(trans,
566                                      "Got more pending allocation requests = %d\n",
567                                      pending);
568                 }
569
570                 spin_lock(&rba->lock);
571                 /* add the allocated rbds to the allocator allocated list */
572                 list_splice_tail(&local_allocated, &rba->rbd_allocated);
573                 /* get more empty RBDs for current pending requests */
574                 list_splice_tail_init(&rba->rbd_empty, &local_empty);
575                 spin_unlock(&rba->lock);
576
577                 atomic_inc(&rba->req_ready);
578
579         }
580
581         spin_lock(&rba->lock);
582         /* return unused rbds to the allocator empty list */
583         list_splice_tail(&local_empty, &rba->rbd_empty);
584         spin_unlock(&rba->lock);
585
586         IWL_DEBUG_RX(trans, "%s, exit.\n", __func__);
587 }
588
589 /*
590  * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
591 .*
592 .* Called by queue when the queue posted allocation request and
593  * has freed 8 RBDs in order to restock itself.
594  * This function directly moves the allocated RBs to the queue's ownership
595  * and updates the relevant counters.
596  */
597 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
598                                       struct iwl_rxq *rxq)
599 {
600         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
601         struct iwl_rb_allocator *rba = &trans_pcie->rba;
602         int i;
603
604         lockdep_assert_held(&rxq->lock);
605
606         /*
607          * atomic_dec_if_positive returns req_ready - 1 for any scenario.
608          * If req_ready is 0 atomic_dec_if_positive will return -1 and this
609          * function will return early, as there are no ready requests.
610          * atomic_dec_if_positive will perofrm the *actual* decrement only if
611          * req_ready > 0, i.e. - there are ready requests and the function
612          * hands one request to the caller.
613          */
614         if (atomic_dec_if_positive(&rba->req_ready) < 0)
615                 return;
616
617         spin_lock(&rba->lock);
618         for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
619                 /* Get next free Rx buffer, remove it from free list */
620                 struct iwl_rx_mem_buffer *rxb =
621                         list_first_entry(&rba->rbd_allocated,
622                                          struct iwl_rx_mem_buffer, list);
623
624                 list_move(&rxb->list, &rxq->rx_free);
625         }
626         spin_unlock(&rba->lock);
627
628         rxq->used_count -= RX_CLAIM_REQ_ALLOC;
629         rxq->free_count += RX_CLAIM_REQ_ALLOC;
630 }
631
632 void iwl_pcie_rx_allocator_work(struct work_struct *data)
633 {
634         struct iwl_rb_allocator *rba_p =
635                 container_of(data, struct iwl_rb_allocator, rx_alloc);
636         struct iwl_trans_pcie *trans_pcie =
637                 container_of(rba_p, struct iwl_trans_pcie, rba);
638
639         iwl_pcie_rx_allocator(trans_pcie->trans);
640 }
641
642 static int iwl_pcie_free_bd_size(struct iwl_trans *trans, bool use_rx_td)
643 {
644         struct iwl_rx_transfer_desc *rx_td;
645
646         if (use_rx_td)
647                 return sizeof(*rx_td);
648         else
649                 return trans->cfg->mq_rx_supported ? sizeof(__le64) :
650                         sizeof(__le32);
651 }
652
653 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
654                                   struct iwl_rxq *rxq)
655 {
656         struct device *dev = trans->dev;
657         bool use_rx_td = (trans->cfg->device_family >=
658                           IWL_DEVICE_FAMILY_22560);
659         int free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
660
661         if (rxq->bd)
662                 dma_free_coherent(trans->dev,
663                                   free_size * rxq->queue_size,
664                                   rxq->bd, rxq->bd_dma);
665         rxq->bd_dma = 0;
666         rxq->bd = NULL;
667
668         if (rxq->rb_stts)
669                 dma_free_coherent(trans->dev,
670                                   use_rx_td ? sizeof(__le16) :
671                                   sizeof(struct iwl_rb_status),
672                                   rxq->rb_stts, rxq->rb_stts_dma);
673         rxq->rb_stts_dma = 0;
674         rxq->rb_stts = NULL;
675
676         if (rxq->used_bd)
677                 dma_free_coherent(trans->dev,
678                                   (use_rx_td ? sizeof(*rxq->cd) :
679                                    sizeof(__le32)) * rxq->queue_size,
680                                   rxq->used_bd, rxq->used_bd_dma);
681         rxq->used_bd_dma = 0;
682         rxq->used_bd = NULL;
683
684         if (trans->cfg->device_family < IWL_DEVICE_FAMILY_22560)
685                 return;
686
687         if (rxq->tr_tail)
688                 dma_free_coherent(dev, sizeof(__le16),
689                                   rxq->tr_tail, rxq->tr_tail_dma);
690         rxq->tr_tail_dma = 0;
691         rxq->tr_tail = NULL;
692
693         if (rxq->cr_tail)
694                 dma_free_coherent(dev, sizeof(__le16),
695                                   rxq->cr_tail, rxq->cr_tail_dma);
696         rxq->cr_tail_dma = 0;
697         rxq->cr_tail = NULL;
698 }
699
700 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
701                                   struct iwl_rxq *rxq)
702 {
703         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
704         struct device *dev = trans->dev;
705         int i;
706         int free_size;
707         bool use_rx_td = (trans->cfg->device_family >=
708                           IWL_DEVICE_FAMILY_22560);
709
710         spin_lock_init(&rxq->lock);
711         if (trans->cfg->mq_rx_supported)
712                 rxq->queue_size = MQ_RX_TABLE_SIZE;
713         else
714                 rxq->queue_size = RX_QUEUE_SIZE;
715
716         free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
717
718         /*
719          * Allocate the circular buffer of Read Buffer Descriptors
720          * (RBDs)
721          */
722         rxq->bd = dma_zalloc_coherent(dev,
723                                       free_size * rxq->queue_size,
724                                       &rxq->bd_dma, GFP_KERNEL);
725         if (!rxq->bd)
726                 goto err;
727
728         if (trans->cfg->mq_rx_supported) {
729                 rxq->used_bd = dma_zalloc_coherent(dev,
730                                                    (use_rx_td ?
731                                                    sizeof(*rxq->cd) :
732                                                    sizeof(__le32)) *
733                                                    rxq->queue_size,
734                                                    &rxq->used_bd_dma,
735                                                    GFP_KERNEL);
736                 if (!rxq->used_bd)
737                         goto err;
738         }
739
740         /* Allocate the driver's pointer to receive buffer status */
741         rxq->rb_stts = dma_zalloc_coherent(dev, use_rx_td ?
742                                            sizeof(__le16) :
743                                            sizeof(struct iwl_rb_status),
744                                            &rxq->rb_stts_dma,
745                                            GFP_KERNEL);
746         if (!rxq->rb_stts)
747                 goto err;
748
749         if (!use_rx_td)
750                 return 0;
751
752         /* Allocate the driver's pointer to TR tail */
753         rxq->tr_tail = dma_zalloc_coherent(dev, sizeof(__le16),
754                                            &rxq->tr_tail_dma,
755                                            GFP_KERNEL);
756         if (!rxq->tr_tail)
757                 goto err;
758
759         /* Allocate the driver's pointer to CR tail */
760         rxq->cr_tail = dma_zalloc_coherent(dev, sizeof(__le16),
761                                            &rxq->cr_tail_dma,
762                                            GFP_KERNEL);
763         if (!rxq->cr_tail)
764                 goto err;
765         /*
766          * W/A 22560 device step Z0 must be non zero bug
767          * TODO: remove this when stop supporting Z0
768          */
769         *rxq->cr_tail = cpu_to_le16(500);
770
771         return 0;
772
773 err:
774         for (i = 0; i < trans->num_rx_queues; i++) {
775                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
776
777                 iwl_pcie_free_rxq_dma(trans, rxq);
778         }
779         kfree(trans_pcie->rxq);
780
781         return -ENOMEM;
782 }
783
784 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
785 {
786         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
787         struct iwl_rb_allocator *rba = &trans_pcie->rba;
788         int i, ret;
789
790         if (WARN_ON(trans_pcie->rxq))
791                 return -EINVAL;
792
793         trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
794                                   GFP_KERNEL);
795         if (!trans_pcie->rxq)
796                 return -EINVAL;
797
798         spin_lock_init(&rba->lock);
799
800         for (i = 0; i < trans->num_rx_queues; i++) {
801                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
802
803                 ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
804                 if (ret)
805                         return ret;
806         }
807         return 0;
808 }
809
810 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
811 {
812         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
813         u32 rb_size;
814         unsigned long flags;
815         const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
816
817         switch (trans_pcie->rx_buf_size) {
818         case IWL_AMSDU_4K:
819                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
820                 break;
821         case IWL_AMSDU_8K:
822                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
823                 break;
824         case IWL_AMSDU_12K:
825                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
826                 break;
827         default:
828                 WARN_ON(1);
829                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
830         }
831
832         if (!iwl_trans_grab_nic_access(trans, &flags))
833                 return;
834
835         /* Stop Rx DMA */
836         iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
837         /* reset and flush pointers */
838         iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
839         iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
840         iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
841
842         /* Reset driver's Rx queue write index */
843         iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
844
845         /* Tell device where to find RBD circular buffer in DRAM */
846         iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
847                     (u32)(rxq->bd_dma >> 8));
848
849         /* Tell device where in DRAM to update its Rx status */
850         iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
851                     rxq->rb_stts_dma >> 4);
852
853         /* Enable Rx DMA
854          * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
855          *      the credit mechanism in 5000 HW RX FIFO
856          * Direct rx interrupts to hosts
857          * Rx buffer size 4 or 8k or 12k
858          * RB timeout 0x10
859          * 256 RBDs
860          */
861         iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
862                     FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
863                     FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
864                     FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
865                     rb_size |
866                     (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
867                     (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
868
869         iwl_trans_release_nic_access(trans, &flags);
870
871         /* Set interrupt coalescing timer to default (2048 usecs) */
872         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
873
874         /* W/A for interrupt coalescing bug in 7260 and 3160 */
875         if (trans->cfg->host_interrupt_operation_mode)
876                 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
877 }
878
879 void iwl_pcie_enable_rx_wake(struct iwl_trans *trans, bool enable)
880 {
881         if (trans->cfg->device_family != IWL_DEVICE_FAMILY_9000)
882                 return;
883
884         if (CSR_HW_REV_STEP(trans->hw_rev) != SILICON_A_STEP)
885                 return;
886
887         if (!trans->cfg->integrated)
888                 return;
889
890         /*
891          * Turn on the chicken-bits that cause MAC wakeup for RX-related
892          * values.
893          * This costs some power, but needed for W/A 9000 integrated A-step
894          * bug where shadow registers are not in the retention list and their
895          * value is lost when NIC powers down
896          */
897         iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL,
898                     CSR_MAC_SHADOW_REG_CTRL_RX_WAKE);
899         iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTL2,
900                     CSR_MAC_SHADOW_REG_CTL2_RX_WAKE);
901 }
902
903 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
904 {
905         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
906         u32 rb_size, enabled = 0;
907         unsigned long flags;
908         int i;
909
910         switch (trans_pcie->rx_buf_size) {
911         case IWL_AMSDU_2K:
912                 rb_size = RFH_RXF_DMA_RB_SIZE_2K;
913                 break;
914         case IWL_AMSDU_4K:
915                 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
916                 break;
917         case IWL_AMSDU_8K:
918                 rb_size = RFH_RXF_DMA_RB_SIZE_8K;
919                 break;
920         case IWL_AMSDU_12K:
921                 rb_size = RFH_RXF_DMA_RB_SIZE_12K;
922                 break;
923         default:
924                 WARN_ON(1);
925                 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
926         }
927
928         if (!iwl_trans_grab_nic_access(trans, &flags))
929                 return;
930
931         /* Stop Rx DMA */
932         iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
933         /* disable free amd used rx queue operation */
934         iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
935
936         for (i = 0; i < trans->num_rx_queues; i++) {
937                 /* Tell device where to find RBD free table in DRAM */
938                 iwl_write_prph64_no_grab(trans,
939                                          RFH_Q_FRBDCB_BA_LSB(i),
940                                          trans_pcie->rxq[i].bd_dma);
941                 /* Tell device where to find RBD used table in DRAM */
942                 iwl_write_prph64_no_grab(trans,
943                                          RFH_Q_URBDCB_BA_LSB(i),
944                                          trans_pcie->rxq[i].used_bd_dma);
945                 /* Tell device where in DRAM to update its Rx status */
946                 iwl_write_prph64_no_grab(trans,
947                                          RFH_Q_URBD_STTS_WPTR_LSB(i),
948                                          trans_pcie->rxq[i].rb_stts_dma);
949                 /* Reset device indice tables */
950                 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
951                 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
952                 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
953
954                 enabled |= BIT(i) | BIT(i + 16);
955         }
956
957         /*
958          * Enable Rx DMA
959          * Rx buffer size 4 or 8k or 12k
960          * Min RB size 4 or 8
961          * Drop frames that exceed RB size
962          * 512 RBDs
963          */
964         iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
965                                RFH_DMA_EN_ENABLE_VAL | rb_size |
966                                RFH_RXF_DMA_MIN_RB_4_8 |
967                                RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
968                                RFH_RXF_DMA_RBDCB_SIZE_512);
969
970         /*
971          * Activate DMA snooping.
972          * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
973          * Default queue is 0
974          */
975         iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
976                                RFH_GEN_CFG_RFH_DMA_SNOOP |
977                                RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
978                                RFH_GEN_CFG_SERVICE_DMA_SNOOP |
979                                RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
980                                                trans->cfg->integrated ?
981                                                RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
982                                                RFH_GEN_CFG_RB_CHUNK_SIZE_128));
983         /* Enable the relevant rx queues */
984         iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
985
986         iwl_trans_release_nic_access(trans, &flags);
987
988         /* Set interrupt coalescing timer to default (2048 usecs) */
989         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
990
991         iwl_pcie_enable_rx_wake(trans, true);
992 }
993
994 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
995 {
996         lockdep_assert_held(&rxq->lock);
997
998         INIT_LIST_HEAD(&rxq->rx_free);
999         INIT_LIST_HEAD(&rxq->rx_used);
1000         rxq->free_count = 0;
1001         rxq->used_count = 0;
1002 }
1003
1004 int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
1005 {
1006         WARN_ON(1);
1007         return 0;
1008 }
1009
1010 static int _iwl_pcie_rx_init(struct iwl_trans *trans)
1011 {
1012         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1013         struct iwl_rxq *def_rxq;
1014         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1015         int i, err, queue_size, allocator_pool_size, num_alloc;
1016
1017         if (!trans_pcie->rxq) {
1018                 err = iwl_pcie_rx_alloc(trans);
1019                 if (err)
1020                         return err;
1021         }
1022         def_rxq = trans_pcie->rxq;
1023
1024         cancel_work_sync(&rba->rx_alloc);
1025
1026         spin_lock(&rba->lock);
1027         atomic_set(&rba->req_pending, 0);
1028         atomic_set(&rba->req_ready, 0);
1029         INIT_LIST_HEAD(&rba->rbd_allocated);
1030         INIT_LIST_HEAD(&rba->rbd_empty);
1031         spin_unlock(&rba->lock);
1032
1033         /* free all first - we might be reconfigured for a different size */
1034         iwl_pcie_free_rbs_pool(trans);
1035
1036         for (i = 0; i < RX_QUEUE_SIZE; i++)
1037                 def_rxq->queue[i] = NULL;
1038
1039         for (i = 0; i < trans->num_rx_queues; i++) {
1040                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1041
1042                 rxq->id = i;
1043
1044                 spin_lock(&rxq->lock);
1045                 /*
1046                  * Set read write pointer to reflect that we have processed
1047                  * and used all buffers, but have not restocked the Rx queue
1048                  * with fresh buffers
1049                  */
1050                 rxq->read = 0;
1051                 rxq->write = 0;
1052                 rxq->write_actual = 0;
1053                 memset(rxq->rb_stts, 0,
1054                        (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) ?
1055                        sizeof(__le16) : sizeof(struct iwl_rb_status));
1056
1057                 iwl_pcie_rx_init_rxb_lists(rxq);
1058
1059                 if (!rxq->napi.poll)
1060                         netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
1061                                        iwl_pcie_dummy_napi_poll, 64);
1062
1063                 spin_unlock(&rxq->lock);
1064         }
1065
1066         /* move the pool to the default queue and allocator ownerships */
1067         queue_size = trans->cfg->mq_rx_supported ?
1068                      MQ_RX_NUM_RBDS : RX_QUEUE_SIZE;
1069         allocator_pool_size = trans->num_rx_queues *
1070                 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1071         num_alloc = queue_size + allocator_pool_size;
1072         BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) !=
1073                      ARRAY_SIZE(trans_pcie->rx_pool));
1074         for (i = 0; i < num_alloc; i++) {
1075                 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1076
1077                 if (i < allocator_pool_size)
1078                         list_add(&rxb->list, &rba->rbd_empty);
1079                 else
1080                         list_add(&rxb->list, &def_rxq->rx_used);
1081                 trans_pcie->global_table[i] = rxb;
1082                 rxb->vid = (u16)(i + 1);
1083                 rxb->invalid = true;
1084         }
1085
1086         iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1087
1088         return 0;
1089 }
1090
1091 int iwl_pcie_rx_init(struct iwl_trans *trans)
1092 {
1093         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1094         int ret = _iwl_pcie_rx_init(trans);
1095
1096         if (ret)
1097                 return ret;
1098
1099         if (trans->cfg->mq_rx_supported)
1100                 iwl_pcie_rx_mq_hw_init(trans);
1101         else
1102                 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1103
1104         iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1105
1106         spin_lock(&trans_pcie->rxq->lock);
1107         iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1108         spin_unlock(&trans_pcie->rxq->lock);
1109
1110         return 0;
1111 }
1112
1113 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1114 {
1115         /*
1116          * We don't configure the RFH.
1117          * Restock will be done at alive, after firmware configured the RFH.
1118          */
1119         return _iwl_pcie_rx_init(trans);
1120 }
1121
1122 void iwl_pcie_rx_free(struct iwl_trans *trans)
1123 {
1124         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1125         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1126         int i;
1127
1128         /*
1129          * if rxq is NULL, it means that nothing has been allocated,
1130          * exit now
1131          */
1132         if (!trans_pcie->rxq) {
1133                 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1134                 return;
1135         }
1136
1137         cancel_work_sync(&rba->rx_alloc);
1138
1139         iwl_pcie_free_rbs_pool(trans);
1140
1141         for (i = 0; i < trans->num_rx_queues; i++) {
1142                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1143
1144                 iwl_pcie_free_rxq_dma(trans, rxq);
1145
1146                 if (rxq->napi.poll)
1147                         netif_napi_del(&rxq->napi);
1148         }
1149         kfree(trans_pcie->rxq);
1150 }
1151
1152 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1153                                           struct iwl_rb_allocator *rba)
1154 {
1155         spin_lock(&rba->lock);
1156         list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1157         spin_unlock(&rba->lock);
1158 }
1159
1160 /*
1161  * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1162  *
1163  * Called when a RBD can be reused. The RBD is transferred to the allocator.
1164  * When there are 2 empty RBDs - a request for allocation is posted
1165  */
1166 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1167                                   struct iwl_rx_mem_buffer *rxb,
1168                                   struct iwl_rxq *rxq, bool emergency)
1169 {
1170         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1171         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1172
1173         /* Move the RBD to the used list, will be moved to allocator in batches
1174          * before claiming or posting a request*/
1175         list_add_tail(&rxb->list, &rxq->rx_used);
1176
1177         if (unlikely(emergency))
1178                 return;
1179
1180         /* Count the allocator owned RBDs */
1181         rxq->used_count++;
1182
1183         /* If we have RX_POST_REQ_ALLOC new released rx buffers -
1184          * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1185          * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1186          * after but we still need to post another request.
1187          */
1188         if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1189                 /* Move the 2 RBDs to the allocator ownership.
1190                  Allocator has another 6 from pool for the request completion*/
1191                 iwl_pcie_rx_move_to_allocator(rxq, rba);
1192
1193                 atomic_inc(&rba->req_pending);
1194                 queue_work(rba->alloc_wq, &rba->rx_alloc);
1195         }
1196 }
1197
1198 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1199                                 struct iwl_rxq *rxq,
1200                                 struct iwl_rx_mem_buffer *rxb,
1201                                 bool emergency,
1202                                 int i)
1203 {
1204         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1205         struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue];
1206         bool page_stolen = false;
1207         int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
1208         u32 offset = 0;
1209
1210         if (WARN_ON(!rxb))
1211                 return;
1212
1213         dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1214
1215         while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1216                 struct iwl_rx_packet *pkt;
1217                 u16 sequence;
1218                 bool reclaim;
1219                 int index, cmd_index, len;
1220                 struct iwl_rx_cmd_buffer rxcb = {
1221                         ._offset = offset,
1222                         ._rx_page_order = trans_pcie->rx_page_order,
1223                         ._page = rxb->page,
1224                         ._page_stolen = false,
1225                         .truesize = max_len,
1226                 };
1227
1228                 if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1229                         rxcb.status = rxq->cd[i].status;
1230
1231                 pkt = rxb_addr(&rxcb);
1232
1233                 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1234                         IWL_DEBUG_RX(trans,
1235                                      "Q %d: RB end marker at offset %d\n",
1236                                      rxq->id, offset);
1237                         break;
1238                 }
1239
1240                 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1241                         FH_RSCSR_RXQ_POS != rxq->id,
1242                      "frame on invalid queue - is on %d and indicates %d\n",
1243                      rxq->id,
1244                      (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1245                         FH_RSCSR_RXQ_POS);
1246
1247                 IWL_DEBUG_RX(trans,
1248                              "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1249                              rxq->id, offset,
1250                              iwl_get_cmd_string(trans,
1251                                                 iwl_cmd_id(pkt->hdr.cmd,
1252                                                            pkt->hdr.group_id,
1253                                                            0)),
1254                              pkt->hdr.group_id, pkt->hdr.cmd,
1255                              le16_to_cpu(pkt->hdr.sequence));
1256
1257                 len = iwl_rx_packet_len(pkt);
1258                 len += sizeof(u32); /* account for status word */
1259                 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1260                 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1261
1262                 /* Reclaim a command buffer only if this packet is a response
1263                  *   to a (driver-originated) command.
1264                  * If the packet (e.g. Rx frame) originated from uCode,
1265                  *   there is no command buffer to reclaim.
1266                  * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1267                  *   but apparently a few don't get set; catch them here. */
1268                 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1269                 if (reclaim && !pkt->hdr.group_id) {
1270                         int i;
1271
1272                         for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1273                                 if (trans_pcie->no_reclaim_cmds[i] ==
1274                                                         pkt->hdr.cmd) {
1275                                         reclaim = false;
1276                                         break;
1277                                 }
1278                         }
1279                 }
1280
1281                 sequence = le16_to_cpu(pkt->hdr.sequence);
1282                 index = SEQ_TO_INDEX(sequence);
1283                 cmd_index = iwl_pcie_get_cmd_index(txq, index);
1284
1285                 if (rxq->id == 0)
1286                         iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1287                                        &rxcb);
1288                 else
1289                         iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1290                                            &rxcb, rxq->id);
1291
1292                 if (reclaim) {
1293                         kzfree(txq->entries[cmd_index].free_buf);
1294                         txq->entries[cmd_index].free_buf = NULL;
1295                 }
1296
1297                 /*
1298                  * After here, we should always check rxcb._page_stolen,
1299                  * if it is true then one of the handlers took the page.
1300                  */
1301
1302                 if (reclaim) {
1303                         /* Invoke any callbacks, transfer the buffer to caller,
1304                          * and fire off the (possibly) blocking
1305                          * iwl_trans_send_cmd()
1306                          * as we reclaim the driver command queue */
1307                         if (!rxcb._page_stolen)
1308                                 iwl_pcie_hcmd_complete(trans, &rxcb);
1309                         else
1310                                 IWL_WARN(trans, "Claim null rxb?\n");
1311                 }
1312
1313                 page_stolen |= rxcb._page_stolen;
1314                 if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1315                         break;
1316                 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1317         }
1318
1319         /* page was stolen from us -- free our reference */
1320         if (page_stolen) {
1321                 __free_pages(rxb->page, trans_pcie->rx_page_order);
1322                 rxb->page = NULL;
1323         }
1324
1325         /* Reuse the page if possible. For notification packets and
1326          * SKBs that fail to Rx correctly, add them back into the
1327          * rx_free list for reuse later. */
1328         if (rxb->page != NULL) {
1329                 rxb->page_dma =
1330                         dma_map_page(trans->dev, rxb->page, 0,
1331                                      PAGE_SIZE << trans_pcie->rx_page_order,
1332                                      DMA_FROM_DEVICE);
1333                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1334                         /*
1335                          * free the page(s) as well to not break
1336                          * the invariant that the items on the used
1337                          * list have no page(s)
1338                          */
1339                         __free_pages(rxb->page, trans_pcie->rx_page_order);
1340                         rxb->page = NULL;
1341                         iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1342                 } else {
1343                         list_add_tail(&rxb->list, &rxq->rx_free);
1344                         rxq->free_count++;
1345                 }
1346         } else
1347                 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1348 }
1349
1350 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1351                                                   struct iwl_rxq *rxq, int i)
1352 {
1353         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1354         struct iwl_rx_mem_buffer *rxb;
1355         u16 vid;
1356
1357         if (!trans->cfg->mq_rx_supported) {
1358                 rxb = rxq->queue[i];
1359                 rxq->queue[i] = NULL;
1360                 return rxb;
1361         }
1362
1363         /* used_bd is a 32/16 bit but only 12 are used to retrieve the vid */
1364         if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1365                 vid = le16_to_cpu(rxq->cd[i].rbid) & 0x0FFF;
1366         else
1367                 vid = le32_to_cpu(rxq->bd_32[i]) & 0x0FFF;
1368
1369         if (!vid || vid > ARRAY_SIZE(trans_pcie->global_table))
1370                 goto out_err;
1371
1372         rxb = trans_pcie->global_table[vid - 1];
1373         if (rxb->invalid)
1374                 goto out_err;
1375
1376         if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1377                 rxb->size = le32_to_cpu(rxq->cd[i].size) & IWL_RX_CD_SIZE;
1378
1379         rxb->invalid = true;
1380
1381         return rxb;
1382
1383 out_err:
1384         WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1385         iwl_force_nmi(trans);
1386         return NULL;
1387 }
1388
1389 /*
1390  * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1391  */
1392 static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1393 {
1394         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1395         struct iwl_rxq *rxq;
1396         u32 r, i, count = 0;
1397         bool emergency = false;
1398
1399         if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
1400                 return;
1401
1402         rxq = &trans_pcie->rxq[queue];
1403
1404 restart:
1405         spin_lock(&rxq->lock);
1406         /* uCode's read index (stored in shared DRAM) indicates the last Rx
1407          * buffer that the driver may process (last buffer filled by ucode). */
1408         r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
1409         i = rxq->read;
1410
1411         /* W/A 9000 device step A0 wrap-around bug */
1412         r &= (rxq->queue_size - 1);
1413
1414         /* Rx interrupt, but nothing sent from uCode */
1415         if (i == r)
1416                 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1417
1418         while (i != r) {
1419                 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1420                 struct iwl_rx_mem_buffer *rxb;
1421                 /* number of RBDs still waiting for page allocation */
1422                 u32 rb_pending_alloc =
1423                         atomic_read(&trans_pcie->rba.req_pending) *
1424                         RX_CLAIM_REQ_ALLOC;
1425
1426                 if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1427                              !emergency)) {
1428                         iwl_pcie_rx_move_to_allocator(rxq, rba);
1429                         emergency = true;
1430                 }
1431
1432                 rxb = iwl_pcie_get_rxb(trans, rxq, i);
1433                 if (!rxb)
1434                         goto out;
1435
1436                 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1437                 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
1438
1439                 i = (i + 1) & (rxq->queue_size - 1);
1440
1441                 /*
1442                  * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1443                  * try to claim the pre-allocated buffers from the allocator.
1444                  * If not ready - will try to reclaim next time.
1445                  * There is no need to reschedule work - allocator exits only
1446                  * on success
1447                  */
1448                 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1449                         iwl_pcie_rx_allocator_get(trans, rxq);
1450
1451                 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1452                         /* Add the remaining empty RBDs for allocator use */
1453                         iwl_pcie_rx_move_to_allocator(rxq, rba);
1454                 } else if (emergency) {
1455                         count++;
1456                         if (count == 8) {
1457                                 count = 0;
1458                                 if (rb_pending_alloc < rxq->queue_size / 3)
1459                                         emergency = false;
1460
1461                                 rxq->read = i;
1462                                 spin_unlock(&rxq->lock);
1463                                 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1464                                 iwl_pcie_rxq_restock(trans, rxq);
1465                                 goto restart;
1466                         }
1467                 }
1468         }
1469 out:
1470         /* Backtrack one entry */
1471         rxq->read = i;
1472         /* update cr tail with the rxq read pointer */
1473         if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1474                 *rxq->cr_tail = cpu_to_le16(r);
1475         spin_unlock(&rxq->lock);
1476
1477         /*
1478          * handle a case where in emergency there are some unallocated RBDs.
1479          * those RBDs are in the used list, but are not tracked by the queue's
1480          * used_count which counts allocator owned RBDs.
1481          * unallocated emergency RBDs must be allocated on exit, otherwise
1482          * when called again the function may not be in emergency mode and
1483          * they will be handed to the allocator with no tracking in the RBD
1484          * allocator counters, which will lead to them never being claimed back
1485          * by the queue.
1486          * by allocating them here, they are now in the queue free list, and
1487          * will be restocked by the next call of iwl_pcie_rxq_restock.
1488          */
1489         if (unlikely(emergency && count))
1490                 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1491
1492         if (rxq->napi.poll)
1493                 napi_gro_flush(&rxq->napi, false);
1494
1495         iwl_pcie_rxq_restock(trans, rxq);
1496 }
1497
1498 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1499 {
1500         u8 queue = entry->entry;
1501         struct msix_entry *entries = entry - queue;
1502
1503         return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1504 }
1505
1506 /*
1507  * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1508  * This interrupt handler should be used with RSS queue only.
1509  */
1510 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1511 {
1512         struct msix_entry *entry = dev_id;
1513         struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1514         struct iwl_trans *trans = trans_pcie->trans;
1515
1516         trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1517
1518         if (WARN_ON(entry->entry >= trans->num_rx_queues))
1519                 return IRQ_NONE;
1520
1521         lock_map_acquire(&trans->sync_cmd_lockdep_map);
1522
1523         local_bh_disable();
1524         iwl_pcie_rx_handle(trans, entry->entry);
1525         local_bh_enable();
1526
1527         iwl_pcie_clear_irq(trans, entry);
1528
1529         lock_map_release(&trans->sync_cmd_lockdep_map);
1530
1531         return IRQ_HANDLED;
1532 }
1533
1534 /*
1535  * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1536  */
1537 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1538 {
1539         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1540         int i;
1541
1542         /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1543         if (trans->cfg->internal_wimax_coex &&
1544             !trans->cfg->apmg_not_supported &&
1545             (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1546                              APMS_CLK_VAL_MRB_FUNC_MODE) ||
1547              (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1548                             APMG_PS_CTRL_VAL_RESET_REQ))) {
1549                 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1550                 iwl_op_mode_wimax_active(trans->op_mode);
1551                 wake_up(&trans_pcie->wait_command_queue);
1552                 return;
1553         }
1554
1555         for (i = 0; i < trans->cfg->base_params->num_of_queues; i++) {
1556                 if (!trans_pcie->txq[i])
1557                         continue;
1558                 del_timer(&trans_pcie->txq[i]->stuck_timer);
1559         }
1560
1561         /* The STATUS_FW_ERROR bit is set in this function. This must happen
1562          * before we wake up the command caller, to ensure a proper cleanup. */
1563         iwl_trans_fw_error(trans);
1564
1565         clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1566         wake_up(&trans_pcie->wait_command_queue);
1567 }
1568
1569 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1570 {
1571         u32 inta;
1572
1573         lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1574
1575         trace_iwlwifi_dev_irq(trans->dev);
1576
1577         /* Discover which interrupts are active/pending */
1578         inta = iwl_read32(trans, CSR_INT);
1579
1580         /* the thread will service interrupts and re-enable them */
1581         return inta;
1582 }
1583
1584 /* a device (PCI-E) page is 4096 bytes long */
1585 #define ICT_SHIFT       12
1586 #define ICT_SIZE        (1 << ICT_SHIFT)
1587 #define ICT_COUNT       (ICT_SIZE / sizeof(u32))
1588
1589 /* interrupt handler using ict table, with this interrupt driver will
1590  * stop using INTA register to get device's interrupt, reading this register
1591  * is expensive, device will write interrupts in ICT dram table, increment
1592  * index then will fire interrupt to driver, driver will OR all ICT table
1593  * entries from current index up to table entry with 0 value. the result is
1594  * the interrupt we need to service, driver will set the entries back to 0 and
1595  * set index.
1596  */
1597 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1598 {
1599         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1600         u32 inta;
1601         u32 val = 0;
1602         u32 read;
1603
1604         trace_iwlwifi_dev_irq(trans->dev);
1605
1606         /* Ignore interrupt if there's nothing in NIC to service.
1607          * This may be due to IRQ shared with another device,
1608          * or due to sporadic interrupts thrown from our NIC. */
1609         read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1610         trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1611         if (!read)
1612                 return 0;
1613
1614         /*
1615          * Collect all entries up to the first 0, starting from ict_index;
1616          * note we already read at ict_index.
1617          */
1618         do {
1619                 val |= read;
1620                 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1621                                 trans_pcie->ict_index, read);
1622                 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1623                 trans_pcie->ict_index =
1624                         ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1625
1626                 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1627                 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1628                                            read);
1629         } while (read);
1630
1631         /* We should not get this value, just ignore it. */
1632         if (val == 0xffffffff)
1633                 val = 0;
1634
1635         /*
1636          * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1637          * (bit 15 before shifting it to 31) to clear when using interrupt
1638          * coalescing. fortunately, bits 18 and 19 stay set when this happens
1639          * so we use them to decide on the real state of the Rx bit.
1640          * In order words, bit 15 is set if bit 18 or bit 19 are set.
1641          */
1642         if (val & 0xC0000)
1643                 val |= 0x8000;
1644
1645         inta = (0xff & val) | ((0xff00 & val) << 16);
1646         return inta;
1647 }
1648
1649 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
1650 {
1651         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1652         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1653         bool hw_rfkill, prev, report;
1654
1655         mutex_lock(&trans_pcie->mutex);
1656         prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1657         hw_rfkill = iwl_is_rfkill_set(trans);
1658         if (hw_rfkill) {
1659                 set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1660                 set_bit(STATUS_RFKILL_HW, &trans->status);
1661         }
1662         if (trans_pcie->opmode_down)
1663                 report = hw_rfkill;
1664         else
1665                 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1666
1667         IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1668                  hw_rfkill ? "disable radio" : "enable radio");
1669
1670         isr_stats->rfkill++;
1671
1672         if (prev != report)
1673                 iwl_trans_pcie_rf_kill(trans, report);
1674         mutex_unlock(&trans_pcie->mutex);
1675
1676         if (hw_rfkill) {
1677                 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1678                                        &trans->status))
1679                         IWL_DEBUG_RF_KILL(trans,
1680                                           "Rfkill while SYNC HCMD in flight\n");
1681                 wake_up(&trans_pcie->wait_command_queue);
1682         } else {
1683                 clear_bit(STATUS_RFKILL_HW, &trans->status);
1684                 if (trans_pcie->opmode_down)
1685                         clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1686         }
1687 }
1688
1689 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1690 {
1691         struct iwl_trans *trans = dev_id;
1692         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1693         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1694         u32 inta = 0;
1695         u32 handled = 0;
1696
1697         lock_map_acquire(&trans->sync_cmd_lockdep_map);
1698
1699         spin_lock(&trans_pcie->irq_lock);
1700
1701         /* dram interrupt table not set yet,
1702          * use legacy interrupt.
1703          */
1704         if (likely(trans_pcie->use_ict))
1705                 inta = iwl_pcie_int_cause_ict(trans);
1706         else
1707                 inta = iwl_pcie_int_cause_non_ict(trans);
1708
1709         if (iwl_have_debug_level(IWL_DL_ISR)) {
1710                 IWL_DEBUG_ISR(trans,
1711                               "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1712                               inta, trans_pcie->inta_mask,
1713                               iwl_read32(trans, CSR_INT_MASK),
1714                               iwl_read32(trans, CSR_FH_INT_STATUS));
1715                 if (inta & (~trans_pcie->inta_mask))
1716                         IWL_DEBUG_ISR(trans,
1717                                       "We got a masked interrupt (0x%08x)\n",
1718                                       inta & (~trans_pcie->inta_mask));
1719         }
1720
1721         inta &= trans_pcie->inta_mask;
1722
1723         /*
1724          * Ignore interrupt if there's nothing in NIC to service.
1725          * This may be due to IRQ shared with another device,
1726          * or due to sporadic interrupts thrown from our NIC.
1727          */
1728         if (unlikely(!inta)) {
1729                 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1730                 /*
1731                  * Re-enable interrupts here since we don't
1732                  * have anything to service
1733                  */
1734                 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1735                         _iwl_enable_interrupts(trans);
1736                 spin_unlock(&trans_pcie->irq_lock);
1737                 lock_map_release(&trans->sync_cmd_lockdep_map);
1738                 return IRQ_NONE;
1739         }
1740
1741         if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1742                 /*
1743                  * Hardware disappeared. It might have
1744                  * already raised an interrupt.
1745                  */
1746                 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1747                 spin_unlock(&trans_pcie->irq_lock);
1748                 goto out;
1749         }
1750
1751         /* Ack/clear/reset pending uCode interrupts.
1752          * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1753          */
1754         /* There is a hardware bug in the interrupt mask function that some
1755          * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1756          * they are disabled in the CSR_INT_MASK register. Furthermore the
1757          * ICT interrupt handling mechanism has another bug that might cause
1758          * these unmasked interrupts fail to be detected. We workaround the
1759          * hardware bugs here by ACKing all the possible interrupts so that
1760          * interrupt coalescing can still be achieved.
1761          */
1762         iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1763
1764         if (iwl_have_debug_level(IWL_DL_ISR))
1765                 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1766                               inta, iwl_read32(trans, CSR_INT_MASK));
1767
1768         spin_unlock(&trans_pcie->irq_lock);
1769
1770         /* Now service all interrupt bits discovered above. */
1771         if (inta & CSR_INT_BIT_HW_ERR) {
1772                 IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1773
1774                 /* Tell the device to stop sending interrupts */
1775                 iwl_disable_interrupts(trans);
1776
1777                 isr_stats->hw++;
1778                 iwl_pcie_irq_handle_error(trans);
1779
1780                 handled |= CSR_INT_BIT_HW_ERR;
1781
1782                 goto out;
1783         }
1784
1785         /* NIC fires this, but we don't use it, redundant with WAKEUP */
1786         if (inta & CSR_INT_BIT_SCD) {
1787                 IWL_DEBUG_ISR(trans,
1788                               "Scheduler finished to transmit the frame/frames.\n");
1789                 isr_stats->sch++;
1790         }
1791
1792         /* Alive notification via Rx interrupt will do the real work */
1793         if (inta & CSR_INT_BIT_ALIVE) {
1794                 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1795                 isr_stats->alive++;
1796                 if (trans->cfg->gen2) {
1797                         /*
1798                          * We can restock, since firmware configured
1799                          * the RFH
1800                          */
1801                         iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1802                 }
1803
1804                 handled |= CSR_INT_BIT_ALIVE;
1805         }
1806
1807         /* Safely ignore these bits for debug checks below */
1808         inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1809
1810         /* HW RF KILL switch toggled */
1811         if (inta & CSR_INT_BIT_RF_KILL) {
1812                 iwl_pcie_handle_rfkill_irq(trans);
1813                 handled |= CSR_INT_BIT_RF_KILL;
1814         }
1815
1816         /* Chip got too hot and stopped itself */
1817         if (inta & CSR_INT_BIT_CT_KILL) {
1818                 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1819                 isr_stats->ctkill++;
1820                 handled |= CSR_INT_BIT_CT_KILL;
1821         }
1822
1823         /* Error detected by uCode */
1824         if (inta & CSR_INT_BIT_SW_ERR) {
1825                 IWL_ERR(trans, "Microcode SW error detected. "
1826                         " Restarting 0x%X.\n", inta);
1827                 isr_stats->sw++;
1828                 iwl_pcie_irq_handle_error(trans);
1829                 handled |= CSR_INT_BIT_SW_ERR;
1830         }
1831
1832         /* uCode wakes up after power-down sleep */
1833         if (inta & CSR_INT_BIT_WAKEUP) {
1834                 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1835                 iwl_pcie_rxq_check_wrptr(trans);
1836                 iwl_pcie_txq_check_wrptrs(trans);
1837
1838                 isr_stats->wakeup++;
1839
1840                 handled |= CSR_INT_BIT_WAKEUP;
1841         }
1842
1843         /* All uCode command responses, including Tx command responses,
1844          * Rx "responses" (frame-received notification), and other
1845          * notifications from uCode come through here*/
1846         if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1847                     CSR_INT_BIT_RX_PERIODIC)) {
1848                 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1849                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1850                         handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1851                         iwl_write32(trans, CSR_FH_INT_STATUS,
1852                                         CSR_FH_INT_RX_MASK);
1853                 }
1854                 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1855                         handled |= CSR_INT_BIT_RX_PERIODIC;
1856                         iwl_write32(trans,
1857                                 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1858                 }
1859                 /* Sending RX interrupt require many steps to be done in the
1860                  * the device:
1861                  * 1- write interrupt to current index in ICT table.
1862                  * 2- dma RX frame.
1863                  * 3- update RX shared data to indicate last write index.
1864                  * 4- send interrupt.
1865                  * This could lead to RX race, driver could receive RX interrupt
1866                  * but the shared data changes does not reflect this;
1867                  * periodic interrupt will detect any dangling Rx activity.
1868                  */
1869
1870                 /* Disable periodic interrupt; we use it as just a one-shot. */
1871                 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1872                             CSR_INT_PERIODIC_DIS);
1873
1874                 /*
1875                  * Enable periodic interrupt in 8 msec only if we received
1876                  * real RX interrupt (instead of just periodic int), to catch
1877                  * any dangling Rx interrupt.  If it was just the periodic
1878                  * interrupt, there was no dangling Rx activity, and no need
1879                  * to extend the periodic interrupt; one-shot is enough.
1880                  */
1881                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1882                         iwl_write8(trans, CSR_INT_PERIODIC_REG,
1883                                    CSR_INT_PERIODIC_ENA);
1884
1885                 isr_stats->rx++;
1886
1887                 local_bh_disable();
1888                 iwl_pcie_rx_handle(trans, 0);
1889                 local_bh_enable();
1890         }
1891
1892         /* This "Tx" DMA channel is used only for loading uCode */
1893         if (inta & CSR_INT_BIT_FH_TX) {
1894                 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1895                 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1896                 isr_stats->tx++;
1897                 handled |= CSR_INT_BIT_FH_TX;
1898                 /* Wake up uCode load routine, now that load is complete */
1899                 trans_pcie->ucode_write_complete = true;
1900                 wake_up(&trans_pcie->ucode_write_waitq);
1901         }
1902
1903         if (inta & ~handled) {
1904                 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1905                 isr_stats->unhandled++;
1906         }
1907
1908         if (inta & ~(trans_pcie->inta_mask)) {
1909                 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1910                          inta & ~trans_pcie->inta_mask);
1911         }
1912
1913         spin_lock(&trans_pcie->irq_lock);
1914         /* only Re-enable all interrupt if disabled by irq */
1915         if (test_bit(STATUS_INT_ENABLED, &trans->status))
1916                 _iwl_enable_interrupts(trans);
1917         /* we are loading the firmware, enable FH_TX interrupt only */
1918         else if (handled & CSR_INT_BIT_FH_TX)
1919                 iwl_enable_fw_load_int(trans);
1920         /* Re-enable RF_KILL if it occurred */
1921         else if (handled & CSR_INT_BIT_RF_KILL)
1922                 iwl_enable_rfkill_int(trans);
1923         /* Re-enable the ALIVE / Rx interrupt if it occurred */
1924         else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX))
1925                 iwl_enable_fw_load_int_ctx_info(trans);
1926         spin_unlock(&trans_pcie->irq_lock);
1927
1928 out:
1929         lock_map_release(&trans->sync_cmd_lockdep_map);
1930         return IRQ_HANDLED;
1931 }
1932
1933 /******************************************************************************
1934  *
1935  * ICT functions
1936  *
1937  ******************************************************************************/
1938
1939 /* Free dram table */
1940 void iwl_pcie_free_ict(struct iwl_trans *trans)
1941 {
1942         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1943
1944         if (trans_pcie->ict_tbl) {
1945                 dma_free_coherent(trans->dev, ICT_SIZE,
1946                                   trans_pcie->ict_tbl,
1947                                   trans_pcie->ict_tbl_dma);
1948                 trans_pcie->ict_tbl = NULL;
1949                 trans_pcie->ict_tbl_dma = 0;
1950         }
1951 }
1952
1953 /*
1954  * allocate dram shared table, it is an aligned memory
1955  * block of ICT_SIZE.
1956  * also reset all data related to ICT table interrupt.
1957  */
1958 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1959 {
1960         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1961
1962         trans_pcie->ict_tbl =
1963                 dma_zalloc_coherent(trans->dev, ICT_SIZE,
1964                                    &trans_pcie->ict_tbl_dma,
1965                                    GFP_KERNEL);
1966         if (!trans_pcie->ict_tbl)
1967                 return -ENOMEM;
1968
1969         /* just an API sanity check ... it is guaranteed to be aligned */
1970         if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1971                 iwl_pcie_free_ict(trans);
1972                 return -EINVAL;
1973         }
1974
1975         return 0;
1976 }
1977
1978 /* Device is going up inform it about using ICT interrupt table,
1979  * also we need to tell the driver to start using ICT interrupt.
1980  */
1981 void iwl_pcie_reset_ict(struct iwl_trans *trans)
1982 {
1983         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1984         u32 val;
1985
1986         if (!trans_pcie->ict_tbl)
1987                 return;
1988
1989         spin_lock(&trans_pcie->irq_lock);
1990         _iwl_disable_interrupts(trans);
1991
1992         memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1993
1994         val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1995
1996         val |= CSR_DRAM_INT_TBL_ENABLE |
1997                CSR_DRAM_INIT_TBL_WRAP_CHECK |
1998                CSR_DRAM_INIT_TBL_WRITE_POINTER;
1999
2000         IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
2001
2002         iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
2003         trans_pcie->use_ict = true;
2004         trans_pcie->ict_index = 0;
2005         iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
2006         _iwl_enable_interrupts(trans);
2007         spin_unlock(&trans_pcie->irq_lock);
2008 }
2009
2010 /* Device is going down disable ict interrupt usage */
2011 void iwl_pcie_disable_ict(struct iwl_trans *trans)
2012 {
2013         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2014
2015         spin_lock(&trans_pcie->irq_lock);
2016         trans_pcie->use_ict = false;
2017         spin_unlock(&trans_pcie->irq_lock);
2018 }
2019
2020 irqreturn_t iwl_pcie_isr(int irq, void *data)
2021 {
2022         struct iwl_trans *trans = data;
2023
2024         if (!trans)
2025                 return IRQ_NONE;
2026
2027         /* Disable (but don't clear!) interrupts here to avoid
2028          * back-to-back ISRs and sporadic interrupts from our NIC.
2029          * If we have something to service, the tasklet will re-enable ints.
2030          * If we *don't* have something, we'll re-enable before leaving here.
2031          */
2032         iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2033
2034         return IRQ_WAKE_THREAD;
2035 }
2036
2037 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2038 {
2039         return IRQ_WAKE_THREAD;
2040 }
2041
2042 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2043 {
2044         struct msix_entry *entry = dev_id;
2045         struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2046         struct iwl_trans *trans = trans_pcie->trans;
2047         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2048         u32 inta_fh, inta_hw;
2049
2050         lock_map_acquire(&trans->sync_cmd_lockdep_map);
2051
2052         spin_lock(&trans_pcie->irq_lock);
2053         inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2054         inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2055         /*
2056          * Clear causes registers to avoid being handling the same cause.
2057          */
2058         iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
2059         iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2060         spin_unlock(&trans_pcie->irq_lock);
2061
2062         trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2063
2064         if (unlikely(!(inta_fh | inta_hw))) {
2065                 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2066                 lock_map_release(&trans->sync_cmd_lockdep_map);
2067                 return IRQ_NONE;
2068         }
2069
2070         if (iwl_have_debug_level(IWL_DL_ISR)) {
2071                 IWL_DEBUG_ISR(trans,
2072                               "ISR inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2073                               inta_fh, trans_pcie->fh_mask,
2074                               iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2075                 if (inta_fh & ~trans_pcie->fh_mask)
2076                         IWL_DEBUG_ISR(trans,
2077                                       "We got a masked interrupt (0x%08x)\n",
2078                                       inta_fh & ~trans_pcie->fh_mask);
2079         }
2080
2081         inta_fh &= trans_pcie->fh_mask;
2082
2083         if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2084             inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2085                 local_bh_disable();
2086                 iwl_pcie_rx_handle(trans, 0);
2087                 local_bh_enable();
2088         }
2089
2090         if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2091             inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2092                 local_bh_disable();
2093                 iwl_pcie_rx_handle(trans, 1);
2094                 local_bh_enable();
2095         }
2096
2097         /* This "Tx" DMA channel is used only for loading uCode */
2098         if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
2099                 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2100                 isr_stats->tx++;
2101                 /*
2102                  * Wake up uCode load routine,
2103                  * now that load is complete
2104                  */
2105                 trans_pcie->ucode_write_complete = true;
2106                 wake_up(&trans_pcie->ucode_write_waitq);
2107         }
2108
2109         /* Error detected by uCode */
2110         if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
2111             (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR) ||
2112             (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_V2)) {
2113                 IWL_ERR(trans,
2114                         "Microcode SW error detected. Restarting 0x%X.\n",
2115                         inta_fh);
2116                 isr_stats->sw++;
2117                 iwl_pcie_irq_handle_error(trans);
2118         }
2119
2120         /* After checking FH register check HW register */
2121         if (iwl_have_debug_level(IWL_DL_ISR)) {
2122                 IWL_DEBUG_ISR(trans,
2123                               "ISR inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2124                               inta_hw, trans_pcie->hw_mask,
2125                               iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2126                 if (inta_hw & ~trans_pcie->hw_mask)
2127                         IWL_DEBUG_ISR(trans,
2128                                       "We got a masked interrupt 0x%08x\n",
2129                                       inta_hw & ~trans_pcie->hw_mask);
2130         }
2131
2132         inta_hw &= trans_pcie->hw_mask;
2133
2134         /* Alive notification via Rx interrupt will do the real work */
2135         if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2136                 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2137                 isr_stats->alive++;
2138                 if (trans->cfg->gen2) {
2139                         /* We can restock, since firmware configured the RFH */
2140                         iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2141                 }
2142         }
2143
2144         if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560 &&
2145             inta_hw & MSIX_HW_INT_CAUSES_REG_IPC) {
2146                 /* Reflect IML transfer status */
2147                 int res = iwl_read32(trans, CSR_IML_RESP_ADDR);
2148
2149                 IWL_DEBUG_ISR(trans, "IML transfer status: %d\n", res);
2150                 if (res == IWL_IMAGE_RESP_FAIL) {
2151                         isr_stats->sw++;
2152                         iwl_pcie_irq_handle_error(trans);
2153                 }
2154         } else if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
2155                 /* uCode wakes up after power-down sleep */
2156                 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2157                 iwl_pcie_rxq_check_wrptr(trans);
2158                 iwl_pcie_txq_check_wrptrs(trans);
2159
2160                 isr_stats->wakeup++;
2161         }
2162
2163         /* Chip got too hot and stopped itself */
2164         if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2165                 IWL_ERR(trans, "Microcode CT kill error detected.\n");
2166                 isr_stats->ctkill++;
2167         }
2168
2169         /* HW RF KILL switch toggled */
2170         if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2171                 iwl_pcie_handle_rfkill_irq(trans);
2172
2173         if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2174                 IWL_ERR(trans,
2175                         "Hardware error detected. Restarting.\n");
2176
2177                 isr_stats->hw++;
2178                 iwl_pcie_irq_handle_error(trans);
2179         }
2180
2181         iwl_pcie_clear_irq(trans, entry);
2182
2183         lock_map_release(&trans->sync_cmd_lockdep_map);
2184
2185         return IRQ_HANDLED;
2186 }