GNU Linux-libre 4.14.254-gnu1
[releases.git] / drivers / net / wireless / intel / iwlwifi / iwl-nvm-parse.c
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of version 2 of the GNU General Public License as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24  * USA
25  *
26  * The full GNU General Public License is included in this distribution
27  * in the file called COPYING.
28  *
29  * Contact Information:
30  *  Intel Linux Wireless <linuxwifi@intel.com>
31  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32  *
33  * BSD LICENSE
34  *
35  * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
36  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
37  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
38  * All rights reserved.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  *
44  *  * Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  *  * Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in
48  *    the documentation and/or other materials provided with the
49  *    distribution.
50  *  * Neither the name Intel Corporation nor the names of its
51  *    contributors may be used to endorse or promote products derived
52  *    from this software without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
55  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
56  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
57  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
58  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
60  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
61  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
62  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
63  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
64  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *****************************************************************************/
66 #include <linux/types.h>
67 #include <linux/slab.h>
68 #include <linux/export.h>
69 #include <linux/etherdevice.h>
70 #include <linux/pci.h>
71 #include <linux/acpi.h>
72 #include "iwl-drv.h"
73 #include "iwl-modparams.h"
74 #include "iwl-nvm-parse.h"
75 #include "iwl-prph.h"
76 #include "iwl-io.h"
77 #include "iwl-csr.h"
78
79 /* NVM offsets (in words) definitions */
80 enum nvm_offsets {
81         /* NVM HW-Section offset (in words) definitions */
82         SUBSYSTEM_ID = 0x0A,
83         HW_ADDR = 0x15,
84
85         /* NVM SW-Section offset (in words) definitions */
86         NVM_SW_SECTION = 0x1C0,
87         NVM_VERSION = 0,
88         RADIO_CFG = 1,
89         SKU = 2,
90         N_HW_ADDRS = 3,
91         NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
92
93         /* NVM calibration section offset (in words) definitions */
94         NVM_CALIB_SECTION = 0x2B8,
95         XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
96
97         /* NVM REGULATORY -Section offset (in words) definitions */
98         NVM_CHANNELS_SDP = 0,
99 };
100
101 enum ext_nvm_offsets {
102         /* NVM HW-Section offset (in words) definitions */
103         MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
104
105         /* NVM SW-Section offset (in words) definitions */
106         NVM_VERSION_EXT_NVM = 0,
107         RADIO_CFG_FAMILY_EXT_NVM = 0,
108         SKU_FAMILY_8000 = 2,
109         N_HW_ADDRS_FAMILY_8000 = 3,
110
111         /* NVM REGULATORY -Section offset (in words) definitions */
112         NVM_CHANNELS_EXTENDED = 0,
113         NVM_LAR_OFFSET_OLD = 0x4C7,
114         NVM_LAR_OFFSET = 0x507,
115         NVM_LAR_ENABLED = 0x7,
116 };
117
118 /* SKU Capabilities (actual values from NVM definition) */
119 enum nvm_sku_bits {
120         NVM_SKU_CAP_BAND_24GHZ          = BIT(0),
121         NVM_SKU_CAP_BAND_52GHZ          = BIT(1),
122         NVM_SKU_CAP_11N_ENABLE          = BIT(2),
123         NVM_SKU_CAP_11AC_ENABLE         = BIT(3),
124         NVM_SKU_CAP_MIMO_DISABLE        = BIT(5),
125 };
126
127 /*
128  * These are the channel numbers in the order that they are stored in the NVM
129  */
130 static const u8 iwl_nvm_channels[] = {
131         /* 2.4 GHz */
132         1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
133         /* 5 GHz */
134         36, 40, 44 , 48, 52, 56, 60, 64,
135         100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
136         149, 153, 157, 161, 165
137 };
138
139 static const u8 iwl_ext_nvm_channels[] = {
140         /* 2.4 GHz */
141         1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
142         /* 5 GHz */
143         36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
144         96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
145         149, 153, 157, 161, 165, 169, 173, 177, 181
146 };
147
148 #define IWL_NUM_CHANNELS                ARRAY_SIZE(iwl_nvm_channels)
149 #define IWL_NUM_CHANNELS_EXT    ARRAY_SIZE(iwl_ext_nvm_channels)
150 #define NUM_2GHZ_CHANNELS               14
151 #define NUM_2GHZ_CHANNELS_EXT   14
152 #define FIRST_2GHZ_HT_MINUS             5
153 #define LAST_2GHZ_HT_PLUS               9
154 #define LAST_5GHZ_HT                    165
155 #define LAST_5GHZ_HT_FAMILY_8000        181
156 #define N_HW_ADDR_MASK                  0xF
157
158 /* rate data (static) */
159 static struct ieee80211_rate iwl_cfg80211_rates[] = {
160         { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
161         { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
162           .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
163         { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
164           .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
165         { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
166           .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
167         { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
168         { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
169         { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
170         { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
171         { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
172         { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
173         { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
174         { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
175 };
176 #define RATES_24_OFFS   0
177 #define N_RATES_24      ARRAY_SIZE(iwl_cfg80211_rates)
178 #define RATES_52_OFFS   4
179 #define N_RATES_52      (N_RATES_24 - RATES_52_OFFS)
180
181 /**
182  * enum iwl_nvm_channel_flags - channel flags in NVM
183  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
184  * @NVM_CHANNEL_IBSS: usable as an IBSS channel
185  * @NVM_CHANNEL_ACTIVE: active scanning allowed
186  * @NVM_CHANNEL_RADAR: radar detection required
187  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
188  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
189  *      on same channel on 2.4 or same UNII band on 5.2
190  * @NVM_CHANNEL_UNIFORM: uniform spreading required
191  * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
192  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
193  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
194  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
195  * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
196  */
197 enum iwl_nvm_channel_flags {
198         NVM_CHANNEL_VALID               = BIT(0),
199         NVM_CHANNEL_IBSS                = BIT(1),
200         NVM_CHANNEL_ACTIVE              = BIT(3),
201         NVM_CHANNEL_RADAR               = BIT(4),
202         NVM_CHANNEL_INDOOR_ONLY         = BIT(5),
203         NVM_CHANNEL_GO_CONCURRENT       = BIT(6),
204         NVM_CHANNEL_UNIFORM             = BIT(7),
205         NVM_CHANNEL_20MHZ               = BIT(8),
206         NVM_CHANNEL_40MHZ               = BIT(9),
207         NVM_CHANNEL_80MHZ               = BIT(10),
208         NVM_CHANNEL_160MHZ              = BIT(11),
209         NVM_CHANNEL_DC_HIGH             = BIT(12),
210 };
211
212 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
213                                                int chan, u16 flags)
214 {
215 #define CHECK_AND_PRINT_I(x)    \
216         ((flags & NVM_CHANNEL_##x) ? " " #x : "")
217
218         if (!(flags & NVM_CHANNEL_VALID)) {
219                 IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
220                               chan, flags);
221                 return;
222         }
223
224         /* Note: already can print up to 101 characters, 110 is the limit! */
225         IWL_DEBUG_DEV(dev, level,
226                       "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
227                       chan, flags,
228                       CHECK_AND_PRINT_I(VALID),
229                       CHECK_AND_PRINT_I(IBSS),
230                       CHECK_AND_PRINT_I(ACTIVE),
231                       CHECK_AND_PRINT_I(RADAR),
232                       CHECK_AND_PRINT_I(INDOOR_ONLY),
233                       CHECK_AND_PRINT_I(GO_CONCURRENT),
234                       CHECK_AND_PRINT_I(UNIFORM),
235                       CHECK_AND_PRINT_I(20MHZ),
236                       CHECK_AND_PRINT_I(40MHZ),
237                       CHECK_AND_PRINT_I(80MHZ),
238                       CHECK_AND_PRINT_I(160MHZ),
239                       CHECK_AND_PRINT_I(DC_HIGH));
240 #undef CHECK_AND_PRINT_I
241 }
242
243 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
244                                  u16 nvm_flags, const struct iwl_cfg *cfg)
245 {
246         u32 flags = IEEE80211_CHAN_NO_HT40;
247         u32 last_5ghz_ht = LAST_5GHZ_HT;
248
249         if (cfg->nvm_type == IWL_NVM_EXT)
250                 last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
251
252         if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
253                 if (ch_num <= LAST_2GHZ_HT_PLUS)
254                         flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
255                 if (ch_num >= FIRST_2GHZ_HT_MINUS)
256                         flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
257         } else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) {
258                 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
259                         flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
260                 else
261                         flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
262         }
263         if (!(nvm_flags & NVM_CHANNEL_80MHZ))
264                 flags |= IEEE80211_CHAN_NO_80MHZ;
265         if (!(nvm_flags & NVM_CHANNEL_160MHZ))
266                 flags |= IEEE80211_CHAN_NO_160MHZ;
267
268         if (!(nvm_flags & NVM_CHANNEL_IBSS))
269                 flags |= IEEE80211_CHAN_NO_IR;
270
271         if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
272                 flags |= IEEE80211_CHAN_NO_IR;
273
274         if (nvm_flags & NVM_CHANNEL_RADAR)
275                 flags |= IEEE80211_CHAN_RADAR;
276
277         if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
278                 flags |= IEEE80211_CHAN_INDOOR_ONLY;
279
280         /* Set the GO concurrent flag only in case that NO_IR is set.
281          * Otherwise it is meaningless
282          */
283         if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
284             (flags & IEEE80211_CHAN_NO_IR))
285                 flags |= IEEE80211_CHAN_IR_CONCURRENT;
286
287         return flags;
288 }
289
290 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
291                                 struct iwl_nvm_data *data,
292                                 const __le16 * const nvm_ch_flags,
293                                 bool lar_supported, bool no_wide_in_5ghz)
294 {
295         int ch_idx;
296         int n_channels = 0;
297         struct ieee80211_channel *channel;
298         u16 ch_flags;
299         int num_of_ch, num_2ghz_channels;
300         const u8 *nvm_chan;
301
302         if (cfg->nvm_type != IWL_NVM_EXT) {
303                 num_of_ch = IWL_NUM_CHANNELS;
304                 nvm_chan = &iwl_nvm_channels[0];
305                 num_2ghz_channels = NUM_2GHZ_CHANNELS;
306         } else {
307                 num_of_ch = IWL_NUM_CHANNELS_EXT;
308                 nvm_chan = &iwl_ext_nvm_channels[0];
309                 num_2ghz_channels = NUM_2GHZ_CHANNELS_EXT;
310         }
311
312         for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
313                 bool is_5ghz = (ch_idx >= num_2ghz_channels);
314
315                 ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
316
317                 if (is_5ghz && !data->sku_cap_band_52GHz_enable)
318                         continue;
319
320                 /* workaround to disable wide channels in 5GHz */
321                 if (no_wide_in_5ghz && is_5ghz) {
322                         ch_flags &= ~(NVM_CHANNEL_40MHZ |
323                                      NVM_CHANNEL_80MHZ |
324                                      NVM_CHANNEL_160MHZ);
325                 }
326
327                 if (ch_flags & NVM_CHANNEL_160MHZ)
328                         data->vht160_supported = true;
329
330                 if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) {
331                         /*
332                          * Channels might become valid later if lar is
333                          * supported, hence we still want to add them to
334                          * the list of supported channels to cfg80211.
335                          */
336                         iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
337                                                     nvm_chan[ch_idx], ch_flags);
338                         continue;
339                 }
340
341                 channel = &data->channels[n_channels];
342                 n_channels++;
343
344                 channel->hw_value = nvm_chan[ch_idx];
345                 channel->band = is_5ghz ?
346                                 NL80211_BAND_5GHZ : NL80211_BAND_2GHZ;
347                 channel->center_freq =
348                         ieee80211_channel_to_frequency(
349                                 channel->hw_value, channel->band);
350
351                 /* Initialize regulatory-based run-time data */
352
353                 /*
354                  * Default value - highest tx power value.  max_power
355                  * is not used in mvm, and is used for backwards compatibility
356                  */
357                 channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
358
359                 /* don't put limitations in case we're using LAR */
360                 if (!lar_supported)
361                         channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
362                                                                ch_idx, is_5ghz,
363                                                                ch_flags, cfg);
364                 else
365                         channel->flags = 0;
366
367                 iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
368                                             channel->hw_value, ch_flags);
369                 IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
370                                  channel->hw_value, channel->max_power);
371         }
372
373         return n_channels;
374 }
375
376 static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
377                                   struct iwl_nvm_data *data,
378                                   struct ieee80211_sta_vht_cap *vht_cap,
379                                   u8 tx_chains, u8 rx_chains)
380 {
381         int num_rx_ants = num_of_ant(rx_chains);
382         int num_tx_ants = num_of_ant(tx_chains);
383         unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
384                                            IEEE80211_VHT_MAX_AMPDU_1024K);
385
386         vht_cap->vht_supported = true;
387
388         vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
389                        IEEE80211_VHT_CAP_RXSTBC_1 |
390                        IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
391                        3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
392                        max_ampdu_exponent <<
393                        IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
394
395         if (data->vht160_supported)
396                 vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
397                                 IEEE80211_VHT_CAP_SHORT_GI_160;
398
399         if (cfg->vht_mu_mimo_supported)
400                 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
401
402         if (cfg->ht_params->ldpc)
403                 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
404
405         if (data->sku_cap_mimo_disabled) {
406                 num_rx_ants = 1;
407                 num_tx_ants = 1;
408         }
409
410         if (num_tx_ants > 1)
411                 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
412         else
413                 vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
414
415         switch (iwlwifi_mod_params.amsdu_size) {
416         case IWL_AMSDU_DEF:
417                 if (cfg->mq_rx_supported)
418                         vht_cap->cap |=
419                                 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
420                 else
421                         vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
422                 break;
423         case IWL_AMSDU_4K:
424                 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
425                 break;
426         case IWL_AMSDU_8K:
427                 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
428                 break;
429         case IWL_AMSDU_12K:
430                 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
431                 break;
432         default:
433                 break;
434         }
435
436         vht_cap->vht_mcs.rx_mcs_map =
437                 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
438                             IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
439                             IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
440                             IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
441                             IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
442                             IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
443                             IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
444                             IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
445
446         if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
447                 vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
448                 /* this works because NOT_SUPPORTED == 3 */
449                 vht_cap->vht_mcs.rx_mcs_map |=
450                         cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
451         }
452
453         vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
454 }
455
456 void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
457                      struct iwl_nvm_data *data, const __le16 *nvm_ch_flags,
458                      u8 tx_chains, u8 rx_chains, bool lar_supported,
459                      bool no_wide_in_5ghz)
460 {
461         int n_channels;
462         int n_used = 0;
463         struct ieee80211_supported_band *sband;
464
465         n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
466                                           lar_supported, no_wide_in_5ghz);
467         sband = &data->bands[NL80211_BAND_2GHZ];
468         sband->band = NL80211_BAND_2GHZ;
469         sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
470         sband->n_bitrates = N_RATES_24;
471         n_used += iwl_init_sband_channels(data, sband, n_channels,
472                                           NL80211_BAND_2GHZ);
473         iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_2GHZ,
474                              tx_chains, rx_chains);
475
476         sband = &data->bands[NL80211_BAND_5GHZ];
477         sband->band = NL80211_BAND_5GHZ;
478         sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
479         sband->n_bitrates = N_RATES_52;
480         n_used += iwl_init_sband_channels(data, sband, n_channels,
481                                           NL80211_BAND_5GHZ);
482         iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_5GHZ,
483                              tx_chains, rx_chains);
484         if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
485                 iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
486                                       tx_chains, rx_chains);
487
488         if (n_channels != n_used)
489                 IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
490                             n_used, n_channels);
491 }
492 IWL_EXPORT_SYMBOL(iwl_init_sbands);
493
494 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
495                        const __le16 *phy_sku)
496 {
497         if (cfg->nvm_type != IWL_NVM_EXT)
498                 return le16_to_cpup(nvm_sw + SKU);
499
500         return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
501 }
502
503 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
504 {
505         if (cfg->nvm_type != IWL_NVM_EXT)
506                 return le16_to_cpup(nvm_sw + NVM_VERSION);
507         else
508                 return le32_to_cpup((__le32 *)(nvm_sw +
509                                                NVM_VERSION_EXT_NVM));
510 }
511
512 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
513                              const __le16 *phy_sku)
514 {
515         if (cfg->nvm_type != IWL_NVM_EXT)
516                 return le16_to_cpup(nvm_sw + RADIO_CFG);
517
518         return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
519
520 }
521
522 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
523 {
524         int n_hw_addr;
525
526         if (cfg->nvm_type != IWL_NVM_EXT)
527                 return le16_to_cpup(nvm_sw + N_HW_ADDRS);
528
529         n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
530
531         return n_hw_addr & N_HW_ADDR_MASK;
532 }
533
534 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
535                               struct iwl_nvm_data *data,
536                               u32 radio_cfg)
537 {
538         if (cfg->nvm_type != IWL_NVM_EXT) {
539                 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
540                 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
541                 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
542                 data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
543                 return;
544         }
545
546         /* set the radio configuration for family 8000 */
547         data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
548         data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
549         data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
550         data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
551         data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
552         data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
553 }
554
555 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
556 {
557         const u8 *hw_addr;
558
559         hw_addr = (const u8 *)&mac_addr0;
560         dest[0] = hw_addr[3];
561         dest[1] = hw_addr[2];
562         dest[2] = hw_addr[1];
563         dest[3] = hw_addr[0];
564
565         hw_addr = (const u8 *)&mac_addr1;
566         dest[4] = hw_addr[1];
567         dest[5] = hw_addr[0];
568 }
569
570 void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
571                                  struct iwl_nvm_data *data)
572 {
573         __le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP));
574         __le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP));
575
576         iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
577         /*
578          * If the OEM fused a valid address, use it instead of the one in the
579          * OTP
580          */
581         if (is_valid_ether_addr(data->hw_addr))
582                 return;
583
584         mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP));
585         mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP));
586
587         iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
588 }
589 IWL_EXPORT_SYMBOL(iwl_set_hw_address_from_csr);
590
591 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
592                                            const struct iwl_cfg *cfg,
593                                            struct iwl_nvm_data *data,
594                                            const __le16 *mac_override,
595                                            const __be16 *nvm_hw)
596 {
597         const u8 *hw_addr;
598
599         if (mac_override) {
600                 static const u8 reserved_mac[] = {
601                         0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
602                 };
603
604                 hw_addr = (const u8 *)(mac_override +
605                                  MAC_ADDRESS_OVERRIDE_EXT_NVM);
606
607                 /*
608                  * Store the MAC address from MAO section.
609                  * No byte swapping is required in MAO section
610                  */
611                 memcpy(data->hw_addr, hw_addr, ETH_ALEN);
612
613                 /*
614                  * Force the use of the OTP MAC address in case of reserved MAC
615                  * address in the NVM, or if address is given but invalid.
616                  */
617                 if (is_valid_ether_addr(data->hw_addr) &&
618                     memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
619                         return;
620
621                 IWL_ERR(trans,
622                         "mac address from nvm override section is not valid\n");
623         }
624
625         if (nvm_hw) {
626                 /* read the mac address from WFMP registers */
627                 __le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
628                                                 WFMP_MAC_ADDR_0));
629                 __le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
630                                                 WFMP_MAC_ADDR_1));
631
632                 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
633
634                 return;
635         }
636
637         IWL_ERR(trans, "mac address is not found\n");
638 }
639
640 static int iwl_set_hw_address(struct iwl_trans *trans,
641                               const struct iwl_cfg *cfg,
642                               struct iwl_nvm_data *data, const __be16 *nvm_hw,
643                               const __le16 *mac_override)
644 {
645         if (cfg->mac_addr_from_csr) {
646                 iwl_set_hw_address_from_csr(trans, data);
647         } else if (cfg->nvm_type != IWL_NVM_EXT) {
648                 const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
649
650                 /* The byte order is little endian 16 bit, meaning 214365 */
651                 data->hw_addr[0] = hw_addr[1];
652                 data->hw_addr[1] = hw_addr[0];
653                 data->hw_addr[2] = hw_addr[3];
654                 data->hw_addr[3] = hw_addr[2];
655                 data->hw_addr[4] = hw_addr[5];
656                 data->hw_addr[5] = hw_addr[4];
657         } else {
658                 iwl_set_hw_address_family_8000(trans, cfg, data,
659                                                mac_override, nvm_hw);
660         }
661
662         if (!is_valid_ether_addr(data->hw_addr)) {
663                 IWL_ERR(trans, "no valid mac address was found\n");
664                 return -EINVAL;
665         }
666
667         IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr);
668
669         return 0;
670 }
671
672 static bool
673 iwl_nvm_no_wide_in_5ghz(struct device *dev, const struct iwl_cfg *cfg,
674                         const __be16 *nvm_hw)
675 {
676         /*
677          * Workaround a bug in Indonesia SKUs where the regulatory in
678          * some 7000-family OTPs erroneously allow wide channels in
679          * 5GHz.  To check for Indonesia, we take the SKU value from
680          * bits 1-4 in the subsystem ID and check if it is either 5 or
681          * 9.  In those cases, we need to force-disable wide channels
682          * in 5GHz otherwise the FW will throw a sysassert when we try
683          * to use them.
684          */
685         if (cfg->device_family == IWL_DEVICE_FAMILY_7000) {
686                 /*
687                  * Unlike the other sections in the NVM, the hw
688                  * section uses big-endian.
689                  */
690                 u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
691                 u8 sku = (subsystem_id & 0x1e) >> 1;
692
693                 if (sku == 5 || sku == 9) {
694                         IWL_DEBUG_EEPROM(dev,
695                                          "disabling wide channels in 5GHz (0x%0x %d)\n",
696                                          subsystem_id, sku);
697                         return true;
698                 }
699         }
700
701         return false;
702 }
703
704 struct iwl_nvm_data *
705 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
706                    const __be16 *nvm_hw, const __le16 *nvm_sw,
707                    const __le16 *nvm_calib, const __le16 *regulatory,
708                    const __le16 *mac_override, const __le16 *phy_sku,
709                    u8 tx_chains, u8 rx_chains, bool lar_fw_supported)
710 {
711         struct device *dev = trans->dev;
712         struct iwl_nvm_data *data;
713         bool lar_enabled;
714         bool no_wide_in_5ghz = iwl_nvm_no_wide_in_5ghz(dev, cfg, nvm_hw);
715         u32 sku, radio_cfg;
716         u16 lar_config;
717         const __le16 *ch_section;
718
719         if (cfg->nvm_type != IWL_NVM_EXT)
720                 data = kzalloc(sizeof(*data) +
721                                sizeof(struct ieee80211_channel) *
722                                IWL_NUM_CHANNELS,
723                                GFP_KERNEL);
724         else
725                 data = kzalloc(sizeof(*data) +
726                                sizeof(struct ieee80211_channel) *
727                                IWL_NUM_CHANNELS_EXT,
728                                GFP_KERNEL);
729         if (!data)
730                 return NULL;
731
732         data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
733
734         radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
735         iwl_set_radio_cfg(cfg, data, radio_cfg);
736         if (data->valid_tx_ant)
737                 tx_chains &= data->valid_tx_ant;
738         if (data->valid_rx_ant)
739                 rx_chains &= data->valid_rx_ant;
740
741         sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
742         data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
743         data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
744         data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
745         if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
746                 data->sku_cap_11n_enable = false;
747         data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
748                                     (sku & NVM_SKU_CAP_11AC_ENABLE);
749         data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
750
751         data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
752
753         if (cfg->nvm_type != IWL_NVM_EXT) {
754                 /* Checking for required sections */
755                 if (!nvm_calib) {
756                         IWL_ERR(trans,
757                                 "Can't parse empty Calib NVM sections\n");
758                         kfree(data);
759                         return NULL;
760                 }
761
762                 ch_section = cfg->nvm_type == IWL_NVM_SDP ?
763                              &regulatory[NVM_CHANNELS_SDP] :
764                              &nvm_sw[NVM_CHANNELS];
765
766                 /* in family 8000 Xtal calibration values moved to OTP */
767                 data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
768                 data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
769                 lar_enabled = true;
770         } else {
771                 u16 lar_offset = data->nvm_version < 0xE39 ?
772                                  NVM_LAR_OFFSET_OLD :
773                                  NVM_LAR_OFFSET;
774
775                 lar_config = le16_to_cpup(regulatory + lar_offset);
776                 data->lar_enabled = !!(lar_config &
777                                        NVM_LAR_ENABLED);
778                 lar_enabled = data->lar_enabled;
779                 ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
780         }
781
782         /* If no valid mac address was found - bail out */
783         if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
784                 kfree(data);
785                 return NULL;
786         }
787
788         iwl_init_sbands(dev, cfg, data, ch_section, tx_chains, rx_chains,
789                         lar_fw_supported && lar_enabled, no_wide_in_5ghz);
790         data->calib_version = 255;
791
792         return data;
793 }
794 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
795
796 static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan,
797                                        int ch_idx, u16 nvm_flags,
798                                        const struct iwl_cfg *cfg)
799 {
800         u32 flags = NL80211_RRF_NO_HT40;
801         u32 last_5ghz_ht = LAST_5GHZ_HT;
802
803         if (cfg->nvm_type == IWL_NVM_EXT)
804                 last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
805
806         if (ch_idx < NUM_2GHZ_CHANNELS &&
807             (nvm_flags & NVM_CHANNEL_40MHZ)) {
808                 if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
809                         flags &= ~NL80211_RRF_NO_HT40PLUS;
810                 if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
811                         flags &= ~NL80211_RRF_NO_HT40MINUS;
812         } else if (nvm_chan[ch_idx] <= last_5ghz_ht &&
813                    (nvm_flags & NVM_CHANNEL_40MHZ)) {
814                 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
815                         flags &= ~NL80211_RRF_NO_HT40PLUS;
816                 else
817                         flags &= ~NL80211_RRF_NO_HT40MINUS;
818         }
819
820         if (!(nvm_flags & NVM_CHANNEL_80MHZ))
821                 flags |= NL80211_RRF_NO_80MHZ;
822         if (!(nvm_flags & NVM_CHANNEL_160MHZ))
823                 flags |= NL80211_RRF_NO_160MHZ;
824
825         if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
826                 flags |= NL80211_RRF_NO_IR;
827
828         if (nvm_flags & NVM_CHANNEL_RADAR)
829                 flags |= NL80211_RRF_DFS;
830
831         if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
832                 flags |= NL80211_RRF_NO_OUTDOOR;
833
834         /* Set the GO concurrent flag only in case that NO_IR is set.
835          * Otherwise it is meaningless
836          */
837         if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
838             (flags & NL80211_RRF_NO_IR))
839                 flags |= NL80211_RRF_GO_CONCURRENT;
840
841         return flags;
842 }
843
844 struct ieee80211_regdomain *
845 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
846                        int num_of_ch, __le32 *channels, u16 fw_mcc)
847 {
848         int ch_idx;
849         u16 ch_flags;
850         u32 reg_rule_flags, prev_reg_rule_flags = 0;
851         const u8 *nvm_chan = cfg->nvm_type == IWL_NVM_EXT ?
852                              iwl_ext_nvm_channels : iwl_nvm_channels;
853         struct ieee80211_regdomain *regd;
854         int size_of_regd;
855         struct ieee80211_reg_rule *rule;
856         enum nl80211_band band;
857         int center_freq, prev_center_freq = 0;
858         int valid_rules = 0;
859         bool new_rule;
860         int max_num_ch = cfg->nvm_type == IWL_NVM_EXT ?
861                          IWL_NUM_CHANNELS_EXT : IWL_NUM_CHANNELS;
862
863         if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
864                 return ERR_PTR(-EINVAL);
865
866         if (WARN_ON(num_of_ch > max_num_ch))
867                 num_of_ch = max_num_ch;
868
869         IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
870                       num_of_ch);
871
872         /* build a regdomain rule for every valid channel */
873         size_of_regd =
874                 sizeof(struct ieee80211_regdomain) +
875                 num_of_ch * sizeof(struct ieee80211_reg_rule);
876
877         regd = kzalloc(size_of_regd, GFP_KERNEL);
878         if (!regd)
879                 return ERR_PTR(-ENOMEM);
880
881         for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
882                 ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
883                 band = (ch_idx < NUM_2GHZ_CHANNELS) ?
884                        NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
885                 center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
886                                                              band);
887                 new_rule = false;
888
889                 if (!(ch_flags & NVM_CHANNEL_VALID)) {
890                         iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
891                                                     nvm_chan[ch_idx], ch_flags);
892                         continue;
893                 }
894
895                 reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
896                                                              ch_flags, cfg);
897
898                 /* we can't continue the same rule */
899                 if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
900                     center_freq - prev_center_freq > 20) {
901                         valid_rules++;
902                         new_rule = true;
903                 }
904
905                 rule = &regd->reg_rules[valid_rules - 1];
906
907                 if (new_rule)
908                         rule->freq_range.start_freq_khz =
909                                                 MHZ_TO_KHZ(center_freq - 10);
910
911                 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
912
913                 /* this doesn't matter - not used by FW */
914                 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
915                 rule->power_rule.max_eirp =
916                         DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
917
918                 rule->flags = reg_rule_flags;
919
920                 /* rely on auto-calculation to merge BW of contiguous chans */
921                 rule->flags |= NL80211_RRF_AUTO_BW;
922                 rule->freq_range.max_bandwidth_khz = 0;
923
924                 prev_center_freq = center_freq;
925                 prev_reg_rule_flags = reg_rule_flags;
926
927                 iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
928                                             nvm_chan[ch_idx], ch_flags);
929         }
930
931         regd->n_reg_rules = valid_rules;
932
933         /* set alpha2 from FW. */
934         regd->alpha2[0] = fw_mcc >> 8;
935         regd->alpha2[1] = fw_mcc & 0xff;
936
937         return regd;
938 }
939 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
940
941 #ifdef CONFIG_ACPI
942 #define WRDD_METHOD             "WRDD"
943 #define WRDD_WIFI               (0x07)
944 #define WRDD_WIGIG              (0x10)
945
946 static u32 iwl_wrdd_get_mcc(struct device *dev, union acpi_object *wrdd)
947 {
948         union acpi_object *mcc_pkg, *domain_type, *mcc_value;
949         u32 i;
950
951         if (wrdd->type != ACPI_TYPE_PACKAGE ||
952             wrdd->package.count < 2 ||
953             wrdd->package.elements[0].type != ACPI_TYPE_INTEGER ||
954             wrdd->package.elements[0].integer.value != 0) {
955                 IWL_DEBUG_EEPROM(dev, "Unsupported wrdd structure\n");
956                 return 0;
957         }
958
959         for (i = 1 ; i < wrdd->package.count ; ++i) {
960                 mcc_pkg = &wrdd->package.elements[i];
961
962                 if (mcc_pkg->type != ACPI_TYPE_PACKAGE ||
963                     mcc_pkg->package.count < 2 ||
964                     mcc_pkg->package.elements[0].type != ACPI_TYPE_INTEGER ||
965                     mcc_pkg->package.elements[1].type != ACPI_TYPE_INTEGER) {
966                         mcc_pkg = NULL;
967                         continue;
968                 }
969
970                 domain_type = &mcc_pkg->package.elements[0];
971                 if (domain_type->integer.value == WRDD_WIFI)
972                         break;
973
974                 mcc_pkg = NULL;
975         }
976
977         if (mcc_pkg) {
978                 mcc_value = &mcc_pkg->package.elements[1];
979                 return mcc_value->integer.value;
980         }
981
982         return 0;
983 }
984
985 int iwl_get_bios_mcc(struct device *dev, char *mcc)
986 {
987         acpi_handle root_handle;
988         acpi_handle handle;
989         struct acpi_buffer wrdd = {ACPI_ALLOCATE_BUFFER, NULL};
990         acpi_status status;
991         u32 mcc_val;
992
993         root_handle = ACPI_HANDLE(dev);
994         if (!root_handle) {
995                 IWL_DEBUG_EEPROM(dev,
996                                  "Could not retrieve root port ACPI handle\n");
997                 return -ENOENT;
998         }
999
1000         /* Get the method's handle */
1001         status = acpi_get_handle(root_handle, (acpi_string)WRDD_METHOD,
1002                                  &handle);
1003         if (ACPI_FAILURE(status)) {
1004                 IWL_DEBUG_EEPROM(dev, "WRD method not found\n");
1005                 return -ENOENT;
1006         }
1007
1008         /* Call WRDD with no arguments */
1009         status = acpi_evaluate_object(handle, NULL, NULL, &wrdd);
1010         if (ACPI_FAILURE(status)) {
1011                 IWL_DEBUG_EEPROM(dev, "WRDC invocation failed (0x%x)\n",
1012                                  status);
1013                 return -ENOENT;
1014         }
1015
1016         mcc_val = iwl_wrdd_get_mcc(dev, wrdd.pointer);
1017         kfree(wrdd.pointer);
1018         if (!mcc_val)
1019                 return -ENOENT;
1020
1021         mcc[0] = (mcc_val >> 8) & 0xff;
1022         mcc[1] = mcc_val & 0xff;
1023         mcc[2] = '\0';
1024         return 0;
1025 }
1026 IWL_EXPORT_SYMBOL(iwl_get_bios_mcc);
1027 #endif