GNU Linux-libre 4.14.251-gnu1
[releases.git] / drivers / net / wireless / intel / ipw2x00 / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   Intel Linux Wireless <ilw@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <net/cfg80211-wext.h>
36 #include "ipw2200.h"
37 #include "ipw.h"
38
39
40 #ifndef KBUILD_EXTMOD
41 #define VK "k"
42 #else
43 #define VK
44 #endif
45
46 #ifdef CONFIG_IPW2200_DEBUG
47 #define VD "d"
48 #else
49 #define VD
50 #endif
51
52 #ifdef CONFIG_IPW2200_MONITOR
53 #define VM "m"
54 #else
55 #define VM
56 #endif
57
58 #ifdef CONFIG_IPW2200_PROMISCUOUS
59 #define VP "p"
60 #else
61 #define VP
62 #endif
63
64 #ifdef CONFIG_IPW2200_RADIOTAP
65 #define VR "r"
66 #else
67 #define VR
68 #endif
69
70 #ifdef CONFIG_IPW2200_QOS
71 #define VQ "q"
72 #else
73 #define VQ
74 #endif
75
76 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
77 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
78 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
79 #define DRV_VERSION     IPW2200_VERSION
80
81 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
82
83 MODULE_DESCRIPTION(DRV_DESCRIPTION);
84 MODULE_VERSION(DRV_VERSION);
85 MODULE_AUTHOR(DRV_COPYRIGHT);
86 MODULE_LICENSE("GPL");
87 /*(DEBLOBBED)*/
88 #ifdef CONFIG_IPW2200_MONITOR
89 /*(DEBLOBBED)*/
90 #endif
91 /*(DEBLOBBED)*/
92
93 static int cmdlog = 0;
94 static int debug = 0;
95 static int default_channel = 0;
96 static int network_mode = 0;
97
98 static u32 ipw_debug_level;
99 static int associate;
100 static int auto_create = 1;
101 static int led_support = 1;
102 static int disable = 0;
103 static int bt_coexist = 0;
104 static int hwcrypto = 0;
105 static int roaming = 1;
106 static const char ipw_modes[] = {
107         'a', 'b', 'g', '?'
108 };
109 static int antenna = CFG_SYS_ANTENNA_BOTH;
110
111 #ifdef CONFIG_IPW2200_PROMISCUOUS
112 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
113 #endif
114
115 static struct ieee80211_rate ipw2200_rates[] = {
116         { .bitrate = 10 },
117         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
118         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
119         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
120         { .bitrate = 60 },
121         { .bitrate = 90 },
122         { .bitrate = 120 },
123         { .bitrate = 180 },
124         { .bitrate = 240 },
125         { .bitrate = 360 },
126         { .bitrate = 480 },
127         { .bitrate = 540 }
128 };
129
130 #define ipw2200_a_rates         (ipw2200_rates + 4)
131 #define ipw2200_num_a_rates     8
132 #define ipw2200_bg_rates        (ipw2200_rates + 0)
133 #define ipw2200_num_bg_rates    12
134
135 /* Ugly macro to convert literal channel numbers into their mhz equivalents
136  * There are certianly some conditions that will break this (like feeding it '30')
137  * but they shouldn't arise since nothing talks on channel 30. */
138 #define ieee80211chan2mhz(x) \
139         (((x) <= 14) ? \
140         (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
141         ((x) + 1000) * 5)
142
143 #ifdef CONFIG_IPW2200_QOS
144 static int qos_enable = 0;
145 static int qos_burst_enable = 0;
146 static int qos_no_ack_mask = 0;
147 static int burst_duration_CCK = 0;
148 static int burst_duration_OFDM = 0;
149
150 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
151         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
152          QOS_TX3_CW_MIN_OFDM},
153         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
154          QOS_TX3_CW_MAX_OFDM},
155         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
156         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
157         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
158          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
159 };
160
161 static struct libipw_qos_parameters def_qos_parameters_CCK = {
162         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
163          QOS_TX3_CW_MIN_CCK},
164         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
165          QOS_TX3_CW_MAX_CCK},
166         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
167         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
168         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
169          QOS_TX3_TXOP_LIMIT_CCK}
170 };
171
172 static struct libipw_qos_parameters def_parameters_OFDM = {
173         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
174          DEF_TX3_CW_MIN_OFDM},
175         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
176          DEF_TX3_CW_MAX_OFDM},
177         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
178         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
179         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
180          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
181 };
182
183 static struct libipw_qos_parameters def_parameters_CCK = {
184         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
185          DEF_TX3_CW_MIN_CCK},
186         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
187          DEF_TX3_CW_MAX_CCK},
188         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
189         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
190         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
191          DEF_TX3_TXOP_LIMIT_CCK}
192 };
193
194 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
195
196 static int from_priority_to_tx_queue[] = {
197         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
198         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
199 };
200
201 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
202
203 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
204                                        *qos_param);
205 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
206                                      *qos_param);
207 #endif                          /* CONFIG_IPW2200_QOS */
208
209 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
210 static void ipw_remove_current_network(struct ipw_priv *priv);
211 static void ipw_rx(struct ipw_priv *priv);
212 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
213                                 struct clx2_tx_queue *txq, int qindex);
214 static int ipw_queue_reset(struct ipw_priv *priv);
215
216 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
217                              int len, int sync);
218
219 static void ipw_tx_queue_free(struct ipw_priv *);
220
221 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
222 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
223 static void ipw_rx_queue_replenish(void *);
224 static int ipw_up(struct ipw_priv *);
225 static void ipw_bg_up(struct work_struct *work);
226 static void ipw_down(struct ipw_priv *);
227 static void ipw_bg_down(struct work_struct *work);
228 static int ipw_config(struct ipw_priv *);
229 static int init_supported_rates(struct ipw_priv *priv,
230                                 struct ipw_supported_rates *prates);
231 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
232 static void ipw_send_wep_keys(struct ipw_priv *, int);
233
234 static int snprint_line(char *buf, size_t count,
235                         const u8 * data, u32 len, u32 ofs)
236 {
237         int out, i, j, l;
238         char c;
239
240         out = snprintf(buf, count, "%08X", ofs);
241
242         for (l = 0, i = 0; i < 2; i++) {
243                 out += snprintf(buf + out, count - out, " ");
244                 for (j = 0; j < 8 && l < len; j++, l++)
245                         out += snprintf(buf + out, count - out, "%02X ",
246                                         data[(i * 8 + j)]);
247                 for (; j < 8; j++)
248                         out += snprintf(buf + out, count - out, "   ");
249         }
250
251         out += snprintf(buf + out, count - out, " ");
252         for (l = 0, i = 0; i < 2; i++) {
253                 out += snprintf(buf + out, count - out, " ");
254                 for (j = 0; j < 8 && l < len; j++, l++) {
255                         c = data[(i * 8 + j)];
256                         if (!isascii(c) || !isprint(c))
257                                 c = '.';
258
259                         out += snprintf(buf + out, count - out, "%c", c);
260                 }
261
262                 for (; j < 8; j++)
263                         out += snprintf(buf + out, count - out, " ");
264         }
265
266         return out;
267 }
268
269 static void printk_buf(int level, const u8 * data, u32 len)
270 {
271         char line[81];
272         u32 ofs = 0;
273         if (!(ipw_debug_level & level))
274                 return;
275
276         while (len) {
277                 snprint_line(line, sizeof(line), &data[ofs],
278                              min(len, 16U), ofs);
279                 printk(KERN_DEBUG "%s\n", line);
280                 ofs += 16;
281                 len -= min(len, 16U);
282         }
283 }
284
285 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
286 {
287         size_t out = size;
288         u32 ofs = 0;
289         int total = 0;
290
291         while (size && len) {
292                 out = snprint_line(output, size, &data[ofs],
293                                    min_t(size_t, len, 16U), ofs);
294
295                 ofs += 16;
296                 output += out;
297                 size -= out;
298                 len -= min_t(size_t, len, 16U);
299                 total += out;
300         }
301         return total;
302 }
303
304 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
305 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
306 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
307
308 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
309 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
310 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
311
312 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
313 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
314 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
315 {
316         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
317                      __LINE__, (u32) (b), (u32) (c));
318         _ipw_write_reg8(a, b, c);
319 }
320
321 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
322 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
323 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
324 {
325         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
326                      __LINE__, (u32) (b), (u32) (c));
327         _ipw_write_reg16(a, b, c);
328 }
329
330 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
331 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
332 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
333 {
334         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
335                      __LINE__, (u32) (b), (u32) (c));
336         _ipw_write_reg32(a, b, c);
337 }
338
339 /* 8-bit direct write (low 4K) */
340 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
341                 u8 val)
342 {
343         writeb(val, ipw->hw_base + ofs);
344 }
345
346 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347 #define ipw_write8(ipw, ofs, val) do { \
348         IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
349                         __LINE__, (u32)(ofs), (u32)(val)); \
350         _ipw_write8(ipw, ofs, val); \
351 } while (0)
352
353 /* 16-bit direct write (low 4K) */
354 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
355                 u16 val)
356 {
357         writew(val, ipw->hw_base + ofs);
358 }
359
360 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361 #define ipw_write16(ipw, ofs, val) do { \
362         IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
363                         __LINE__, (u32)(ofs), (u32)(val)); \
364         _ipw_write16(ipw, ofs, val); \
365 } while (0)
366
367 /* 32-bit direct write (low 4K) */
368 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
369                 u32 val)
370 {
371         writel(val, ipw->hw_base + ofs);
372 }
373
374 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
375 #define ipw_write32(ipw, ofs, val) do { \
376         IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
377                         __LINE__, (u32)(ofs), (u32)(val)); \
378         _ipw_write32(ipw, ofs, val); \
379 } while (0)
380
381 /* 8-bit direct read (low 4K) */
382 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
383 {
384         return readb(ipw->hw_base + ofs);
385 }
386
387 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
388 #define ipw_read8(ipw, ofs) ({ \
389         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
390                         (u32)(ofs)); \
391         _ipw_read8(ipw, ofs); \
392 })
393
394 /* 16-bit direct read (low 4K) */
395 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
396 {
397         return readw(ipw->hw_base + ofs);
398 }
399
400 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
401 #define ipw_read16(ipw, ofs) ({ \
402         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
403                         (u32)(ofs)); \
404         _ipw_read16(ipw, ofs); \
405 })
406
407 /* 32-bit direct read (low 4K) */
408 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
409 {
410         return readl(ipw->hw_base + ofs);
411 }
412
413 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
414 #define ipw_read32(ipw, ofs) ({ \
415         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
416                         (u32)(ofs)); \
417         _ipw_read32(ipw, ofs); \
418 })
419
420 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
421 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
422 #define ipw_read_indirect(a, b, c, d) ({ \
423         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
424                         __LINE__, (u32)(b), (u32)(d)); \
425         _ipw_read_indirect(a, b, c, d); \
426 })
427
428 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
429 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
430                                 int num);
431 #define ipw_write_indirect(a, b, c, d) do { \
432         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
433                         __LINE__, (u32)(b), (u32)(d)); \
434         _ipw_write_indirect(a, b, c, d); \
435 } while (0)
436
437 /* 32-bit indirect write (above 4K) */
438 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
439 {
440         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
441         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
442         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
443 }
444
445 /* 8-bit indirect write (above 4K) */
446 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
447 {
448         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
449         u32 dif_len = reg - aligned_addr;
450
451         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
452         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
453         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
454 }
455
456 /* 16-bit indirect write (above 4K) */
457 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
458 {
459         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
460         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
461
462         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
463         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
464         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
465 }
466
467 /* 8-bit indirect read (above 4K) */
468 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
469 {
470         u32 word;
471         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
472         IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
473         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
474         return (word >> ((reg & 0x3) * 8)) & 0xff;
475 }
476
477 /* 32-bit indirect read (above 4K) */
478 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
479 {
480         u32 value;
481
482         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
483
484         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
485         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
486         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
487         return value;
488 }
489
490 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
491 /*    for area above 1st 4K of SRAM/reg space */
492 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
493                                int num)
494 {
495         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
496         u32 dif_len = addr - aligned_addr;
497         u32 i;
498
499         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
500
501         if (num <= 0) {
502                 return;
503         }
504
505         /* Read the first dword (or portion) byte by byte */
506         if (unlikely(dif_len)) {
507                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
508                 /* Start reading at aligned_addr + dif_len */
509                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
510                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
511                 aligned_addr += 4;
512         }
513
514         /* Read all of the middle dwords as dwords, with auto-increment */
515         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
516         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
517                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
518
519         /* Read the last dword (or portion) byte by byte */
520         if (unlikely(num)) {
521                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
522                 for (i = 0; num > 0; i++, num--)
523                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
524         }
525 }
526
527 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
528 /*    for area above 1st 4K of SRAM/reg space */
529 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
530                                 int num)
531 {
532         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
533         u32 dif_len = addr - aligned_addr;
534         u32 i;
535
536         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
537
538         if (num <= 0) {
539                 return;
540         }
541
542         /* Write the first dword (or portion) byte by byte */
543         if (unlikely(dif_len)) {
544                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
545                 /* Start writing at aligned_addr + dif_len */
546                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
547                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
548                 aligned_addr += 4;
549         }
550
551         /* Write all of the middle dwords as dwords, with auto-increment */
552         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
553         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
554                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
555
556         /* Write the last dword (or portion) byte by byte */
557         if (unlikely(num)) {
558                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
559                 for (i = 0; num > 0; i++, num--, buf++)
560                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
561         }
562 }
563
564 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
565 /*    for 1st 4K of SRAM/regs space */
566 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
567                              int num)
568 {
569         memcpy_toio((priv->hw_base + addr), buf, num);
570 }
571
572 /* Set bit(s) in low 4K of SRAM/regs */
573 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
574 {
575         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
576 }
577
578 /* Clear bit(s) in low 4K of SRAM/regs */
579 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
580 {
581         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
582 }
583
584 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
585 {
586         if (priv->status & STATUS_INT_ENABLED)
587                 return;
588         priv->status |= STATUS_INT_ENABLED;
589         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
590 }
591
592 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
593 {
594         if (!(priv->status & STATUS_INT_ENABLED))
595                 return;
596         priv->status &= ~STATUS_INT_ENABLED;
597         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
598 }
599
600 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
601 {
602         unsigned long flags;
603
604         spin_lock_irqsave(&priv->irq_lock, flags);
605         __ipw_enable_interrupts(priv);
606         spin_unlock_irqrestore(&priv->irq_lock, flags);
607 }
608
609 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
610 {
611         unsigned long flags;
612
613         spin_lock_irqsave(&priv->irq_lock, flags);
614         __ipw_disable_interrupts(priv);
615         spin_unlock_irqrestore(&priv->irq_lock, flags);
616 }
617
618 static char *ipw_error_desc(u32 val)
619 {
620         switch (val) {
621         case IPW_FW_ERROR_OK:
622                 return "ERROR_OK";
623         case IPW_FW_ERROR_FAIL:
624                 return "ERROR_FAIL";
625         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
626                 return "MEMORY_UNDERFLOW";
627         case IPW_FW_ERROR_MEMORY_OVERFLOW:
628                 return "MEMORY_OVERFLOW";
629         case IPW_FW_ERROR_BAD_PARAM:
630                 return "BAD_PARAM";
631         case IPW_FW_ERROR_BAD_CHECKSUM:
632                 return "BAD_CHECKSUM";
633         case IPW_FW_ERROR_NMI_INTERRUPT:
634                 return "NMI_INTERRUPT";
635         case IPW_FW_ERROR_BAD_DATABASE:
636                 return "BAD_DATABASE";
637         case IPW_FW_ERROR_ALLOC_FAIL:
638                 return "ALLOC_FAIL";
639         case IPW_FW_ERROR_DMA_UNDERRUN:
640                 return "DMA_UNDERRUN";
641         case IPW_FW_ERROR_DMA_STATUS:
642                 return "DMA_STATUS";
643         case IPW_FW_ERROR_DINO_ERROR:
644                 return "DINO_ERROR";
645         case IPW_FW_ERROR_EEPROM_ERROR:
646                 return "EEPROM_ERROR";
647         case IPW_FW_ERROR_SYSASSERT:
648                 return "SYSASSERT";
649         case IPW_FW_ERROR_FATAL_ERROR:
650                 return "FATAL_ERROR";
651         default:
652                 return "UNKNOWN_ERROR";
653         }
654 }
655
656 static void ipw_dump_error_log(struct ipw_priv *priv,
657                                struct ipw_fw_error *error)
658 {
659         u32 i;
660
661         if (!error) {
662                 IPW_ERROR("Error allocating and capturing error log.  "
663                           "Nothing to dump.\n");
664                 return;
665         }
666
667         IPW_ERROR("Start IPW Error Log Dump:\n");
668         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
669                   error->status, error->config);
670
671         for (i = 0; i < error->elem_len; i++)
672                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
673                           ipw_error_desc(error->elem[i].desc),
674                           error->elem[i].time,
675                           error->elem[i].blink1,
676                           error->elem[i].blink2,
677                           error->elem[i].link1,
678                           error->elem[i].link2, error->elem[i].data);
679         for (i = 0; i < error->log_len; i++)
680                 IPW_ERROR("%i\t0x%08x\t%i\n",
681                           error->log[i].time,
682                           error->log[i].data, error->log[i].event);
683 }
684
685 static inline int ipw_is_init(struct ipw_priv *priv)
686 {
687         return (priv->status & STATUS_INIT) ? 1 : 0;
688 }
689
690 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
691 {
692         u32 addr, field_info, field_len, field_count, total_len;
693
694         IPW_DEBUG_ORD("ordinal = %i\n", ord);
695
696         if (!priv || !val || !len) {
697                 IPW_DEBUG_ORD("Invalid argument\n");
698                 return -EINVAL;
699         }
700
701         /* verify device ordinal tables have been initialized */
702         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
703                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
704                 return -EINVAL;
705         }
706
707         switch (IPW_ORD_TABLE_ID_MASK & ord) {
708         case IPW_ORD_TABLE_0_MASK:
709                 /*
710                  * TABLE 0: Direct access to a table of 32 bit values
711                  *
712                  * This is a very simple table with the data directly
713                  * read from the table
714                  */
715
716                 /* remove the table id from the ordinal */
717                 ord &= IPW_ORD_TABLE_VALUE_MASK;
718
719                 /* boundary check */
720                 if (ord > priv->table0_len) {
721                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
722                                       "max (%i)\n", ord, priv->table0_len);
723                         return -EINVAL;
724                 }
725
726                 /* verify we have enough room to store the value */
727                 if (*len < sizeof(u32)) {
728                         IPW_DEBUG_ORD("ordinal buffer length too small, "
729                                       "need %zd\n", sizeof(u32));
730                         return -EINVAL;
731                 }
732
733                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
734                               ord, priv->table0_addr + (ord << 2));
735
736                 *len = sizeof(u32);
737                 ord <<= 2;
738                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
739                 break;
740
741         case IPW_ORD_TABLE_1_MASK:
742                 /*
743                  * TABLE 1: Indirect access to a table of 32 bit values
744                  *
745                  * This is a fairly large table of u32 values each
746                  * representing starting addr for the data (which is
747                  * also a u32)
748                  */
749
750                 /* remove the table id from the ordinal */
751                 ord &= IPW_ORD_TABLE_VALUE_MASK;
752
753                 /* boundary check */
754                 if (ord > priv->table1_len) {
755                         IPW_DEBUG_ORD("ordinal value too long\n");
756                         return -EINVAL;
757                 }
758
759                 /* verify we have enough room to store the value */
760                 if (*len < sizeof(u32)) {
761                         IPW_DEBUG_ORD("ordinal buffer length too small, "
762                                       "need %zd\n", sizeof(u32));
763                         return -EINVAL;
764                 }
765
766                 *((u32 *) val) =
767                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
768                 *len = sizeof(u32);
769                 break;
770
771         case IPW_ORD_TABLE_2_MASK:
772                 /*
773                  * TABLE 2: Indirect access to a table of variable sized values
774                  *
775                  * This table consist of six values, each containing
776                  *     - dword containing the starting offset of the data
777                  *     - dword containing the lengh in the first 16bits
778                  *       and the count in the second 16bits
779                  */
780
781                 /* remove the table id from the ordinal */
782                 ord &= IPW_ORD_TABLE_VALUE_MASK;
783
784                 /* boundary check */
785                 if (ord > priv->table2_len) {
786                         IPW_DEBUG_ORD("ordinal value too long\n");
787                         return -EINVAL;
788                 }
789
790                 /* get the address of statistic */
791                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
792
793                 /* get the second DW of statistics ;
794                  * two 16-bit words - first is length, second is count */
795                 field_info =
796                     ipw_read_reg32(priv,
797                                    priv->table2_addr + (ord << 3) +
798                                    sizeof(u32));
799
800                 /* get each entry length */
801                 field_len = *((u16 *) & field_info);
802
803                 /* get number of entries */
804                 field_count = *(((u16 *) & field_info) + 1);
805
806                 /* abort if not enough memory */
807                 total_len = field_len * field_count;
808                 if (total_len > *len) {
809                         *len = total_len;
810                         return -EINVAL;
811                 }
812
813                 *len = total_len;
814                 if (!total_len)
815                         return 0;
816
817                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
818                               "field_info = 0x%08x\n",
819                               addr, total_len, field_info);
820                 ipw_read_indirect(priv, addr, val, total_len);
821                 break;
822
823         default:
824                 IPW_DEBUG_ORD("Invalid ordinal!\n");
825                 return -EINVAL;
826
827         }
828
829         return 0;
830 }
831
832 static void ipw_init_ordinals(struct ipw_priv *priv)
833 {
834         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
835         priv->table0_len = ipw_read32(priv, priv->table0_addr);
836
837         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
838                       priv->table0_addr, priv->table0_len);
839
840         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
841         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
842
843         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
844                       priv->table1_addr, priv->table1_len);
845
846         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
847         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
848         priv->table2_len &= 0x0000ffff; /* use first two bytes */
849
850         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
851                       priv->table2_addr, priv->table2_len);
852
853 }
854
855 static u32 ipw_register_toggle(u32 reg)
856 {
857         reg &= ~IPW_START_STANDBY;
858         if (reg & IPW_GATE_ODMA)
859                 reg &= ~IPW_GATE_ODMA;
860         if (reg & IPW_GATE_IDMA)
861                 reg &= ~IPW_GATE_IDMA;
862         if (reg & IPW_GATE_ADMA)
863                 reg &= ~IPW_GATE_ADMA;
864         return reg;
865 }
866
867 /*
868  * LED behavior:
869  * - On radio ON, turn on any LEDs that require to be on during start
870  * - On initialization, start unassociated blink
871  * - On association, disable unassociated blink
872  * - On disassociation, start unassociated blink
873  * - On radio OFF, turn off any LEDs started during radio on
874  *
875  */
876 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
877 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
878 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
879
880 static void ipw_led_link_on(struct ipw_priv *priv)
881 {
882         unsigned long flags;
883         u32 led;
884
885         /* If configured to not use LEDs, or nic_type is 1,
886          * then we don't toggle a LINK led */
887         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
888                 return;
889
890         spin_lock_irqsave(&priv->lock, flags);
891
892         if (!(priv->status & STATUS_RF_KILL_MASK) &&
893             !(priv->status & STATUS_LED_LINK_ON)) {
894                 IPW_DEBUG_LED("Link LED On\n");
895                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
896                 led |= priv->led_association_on;
897
898                 led = ipw_register_toggle(led);
899
900                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
901                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
902
903                 priv->status |= STATUS_LED_LINK_ON;
904
905                 /* If we aren't associated, schedule turning the LED off */
906                 if (!(priv->status & STATUS_ASSOCIATED))
907                         schedule_delayed_work(&priv->led_link_off,
908                                               LD_TIME_LINK_ON);
909         }
910
911         spin_unlock_irqrestore(&priv->lock, flags);
912 }
913
914 static void ipw_bg_led_link_on(struct work_struct *work)
915 {
916         struct ipw_priv *priv =
917                 container_of(work, struct ipw_priv, led_link_on.work);
918         mutex_lock(&priv->mutex);
919         ipw_led_link_on(priv);
920         mutex_unlock(&priv->mutex);
921 }
922
923 static void ipw_led_link_off(struct ipw_priv *priv)
924 {
925         unsigned long flags;
926         u32 led;
927
928         /* If configured not to use LEDs, or nic type is 1,
929          * then we don't goggle the LINK led. */
930         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
931                 return;
932
933         spin_lock_irqsave(&priv->lock, flags);
934
935         if (priv->status & STATUS_LED_LINK_ON) {
936                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
937                 led &= priv->led_association_off;
938                 led = ipw_register_toggle(led);
939
940                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
941                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
942
943                 IPW_DEBUG_LED("Link LED Off\n");
944
945                 priv->status &= ~STATUS_LED_LINK_ON;
946
947                 /* If we aren't associated and the radio is on, schedule
948                  * turning the LED on (blink while unassociated) */
949                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
950                     !(priv->status & STATUS_ASSOCIATED))
951                         schedule_delayed_work(&priv->led_link_on,
952                                               LD_TIME_LINK_OFF);
953
954         }
955
956         spin_unlock_irqrestore(&priv->lock, flags);
957 }
958
959 static void ipw_bg_led_link_off(struct work_struct *work)
960 {
961         struct ipw_priv *priv =
962                 container_of(work, struct ipw_priv, led_link_off.work);
963         mutex_lock(&priv->mutex);
964         ipw_led_link_off(priv);
965         mutex_unlock(&priv->mutex);
966 }
967
968 static void __ipw_led_activity_on(struct ipw_priv *priv)
969 {
970         u32 led;
971
972         if (priv->config & CFG_NO_LED)
973                 return;
974
975         if (priv->status & STATUS_RF_KILL_MASK)
976                 return;
977
978         if (!(priv->status & STATUS_LED_ACT_ON)) {
979                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
980                 led |= priv->led_activity_on;
981
982                 led = ipw_register_toggle(led);
983
984                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
985                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
986
987                 IPW_DEBUG_LED("Activity LED On\n");
988
989                 priv->status |= STATUS_LED_ACT_ON;
990
991                 cancel_delayed_work(&priv->led_act_off);
992                 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
993         } else {
994                 /* Reschedule LED off for full time period */
995                 cancel_delayed_work(&priv->led_act_off);
996                 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
997         }
998 }
999
1000 #if 0
1001 void ipw_led_activity_on(struct ipw_priv *priv)
1002 {
1003         unsigned long flags;
1004         spin_lock_irqsave(&priv->lock, flags);
1005         __ipw_led_activity_on(priv);
1006         spin_unlock_irqrestore(&priv->lock, flags);
1007 }
1008 #endif  /*  0  */
1009
1010 static void ipw_led_activity_off(struct ipw_priv *priv)
1011 {
1012         unsigned long flags;
1013         u32 led;
1014
1015         if (priv->config & CFG_NO_LED)
1016                 return;
1017
1018         spin_lock_irqsave(&priv->lock, flags);
1019
1020         if (priv->status & STATUS_LED_ACT_ON) {
1021                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1022                 led &= priv->led_activity_off;
1023
1024                 led = ipw_register_toggle(led);
1025
1026                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1027                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1028
1029                 IPW_DEBUG_LED("Activity LED Off\n");
1030
1031                 priv->status &= ~STATUS_LED_ACT_ON;
1032         }
1033
1034         spin_unlock_irqrestore(&priv->lock, flags);
1035 }
1036
1037 static void ipw_bg_led_activity_off(struct work_struct *work)
1038 {
1039         struct ipw_priv *priv =
1040                 container_of(work, struct ipw_priv, led_act_off.work);
1041         mutex_lock(&priv->mutex);
1042         ipw_led_activity_off(priv);
1043         mutex_unlock(&priv->mutex);
1044 }
1045
1046 static void ipw_led_band_on(struct ipw_priv *priv)
1047 {
1048         unsigned long flags;
1049         u32 led;
1050
1051         /* Only nic type 1 supports mode LEDs */
1052         if (priv->config & CFG_NO_LED ||
1053             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1054                 return;
1055
1056         spin_lock_irqsave(&priv->lock, flags);
1057
1058         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1059         if (priv->assoc_network->mode == IEEE_A) {
1060                 led |= priv->led_ofdm_on;
1061                 led &= priv->led_association_off;
1062                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1063         } else if (priv->assoc_network->mode == IEEE_G) {
1064                 led |= priv->led_ofdm_on;
1065                 led |= priv->led_association_on;
1066                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1067         } else {
1068                 led &= priv->led_ofdm_off;
1069                 led |= priv->led_association_on;
1070                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1071         }
1072
1073         led = ipw_register_toggle(led);
1074
1075         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1076         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1077
1078         spin_unlock_irqrestore(&priv->lock, flags);
1079 }
1080
1081 static void ipw_led_band_off(struct ipw_priv *priv)
1082 {
1083         unsigned long flags;
1084         u32 led;
1085
1086         /* Only nic type 1 supports mode LEDs */
1087         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1088                 return;
1089
1090         spin_lock_irqsave(&priv->lock, flags);
1091
1092         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1093         led &= priv->led_ofdm_off;
1094         led &= priv->led_association_off;
1095
1096         led = ipw_register_toggle(led);
1097
1098         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1099         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1100
1101         spin_unlock_irqrestore(&priv->lock, flags);
1102 }
1103
1104 static void ipw_led_radio_on(struct ipw_priv *priv)
1105 {
1106         ipw_led_link_on(priv);
1107 }
1108
1109 static void ipw_led_radio_off(struct ipw_priv *priv)
1110 {
1111         ipw_led_activity_off(priv);
1112         ipw_led_link_off(priv);
1113 }
1114
1115 static void ipw_led_link_up(struct ipw_priv *priv)
1116 {
1117         /* Set the Link Led on for all nic types */
1118         ipw_led_link_on(priv);
1119 }
1120
1121 static void ipw_led_link_down(struct ipw_priv *priv)
1122 {
1123         ipw_led_activity_off(priv);
1124         ipw_led_link_off(priv);
1125
1126         if (priv->status & STATUS_RF_KILL_MASK)
1127                 ipw_led_radio_off(priv);
1128 }
1129
1130 static void ipw_led_init(struct ipw_priv *priv)
1131 {
1132         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1133
1134         /* Set the default PINs for the link and activity leds */
1135         priv->led_activity_on = IPW_ACTIVITY_LED;
1136         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1137
1138         priv->led_association_on = IPW_ASSOCIATED_LED;
1139         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1140
1141         /* Set the default PINs for the OFDM leds */
1142         priv->led_ofdm_on = IPW_OFDM_LED;
1143         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1144
1145         switch (priv->nic_type) {
1146         case EEPROM_NIC_TYPE_1:
1147                 /* In this NIC type, the LEDs are reversed.... */
1148                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1149                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1150                 priv->led_association_on = IPW_ACTIVITY_LED;
1151                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1152
1153                 if (!(priv->config & CFG_NO_LED))
1154                         ipw_led_band_on(priv);
1155
1156                 /* And we don't blink link LEDs for this nic, so
1157                  * just return here */
1158                 return;
1159
1160         case EEPROM_NIC_TYPE_3:
1161         case EEPROM_NIC_TYPE_2:
1162         case EEPROM_NIC_TYPE_4:
1163         case EEPROM_NIC_TYPE_0:
1164                 break;
1165
1166         default:
1167                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1168                                priv->nic_type);
1169                 priv->nic_type = EEPROM_NIC_TYPE_0;
1170                 break;
1171         }
1172
1173         if (!(priv->config & CFG_NO_LED)) {
1174                 if (priv->status & STATUS_ASSOCIATED)
1175                         ipw_led_link_on(priv);
1176                 else
1177                         ipw_led_link_off(priv);
1178         }
1179 }
1180
1181 static void ipw_led_shutdown(struct ipw_priv *priv)
1182 {
1183         ipw_led_activity_off(priv);
1184         ipw_led_link_off(priv);
1185         ipw_led_band_off(priv);
1186         cancel_delayed_work(&priv->led_link_on);
1187         cancel_delayed_work(&priv->led_link_off);
1188         cancel_delayed_work(&priv->led_act_off);
1189 }
1190
1191 /*
1192  * The following adds a new attribute to the sysfs representation
1193  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1194  * used for controlling the debug level.
1195  *
1196  * See the level definitions in ipw for details.
1197  */
1198 static ssize_t debug_level_show(struct device_driver *d, char *buf)
1199 {
1200         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1201 }
1202
1203 static ssize_t debug_level_store(struct device_driver *d, const char *buf,
1204                                  size_t count)
1205 {
1206         char *p = (char *)buf;
1207         u32 val;
1208
1209         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1210                 p++;
1211                 if (p[0] == 'x' || p[0] == 'X')
1212                         p++;
1213                 val = simple_strtoul(p, &p, 16);
1214         } else
1215                 val = simple_strtoul(p, &p, 10);
1216         if (p == buf)
1217                 printk(KERN_INFO DRV_NAME
1218                        ": %s is not in hex or decimal form.\n", buf);
1219         else
1220                 ipw_debug_level = val;
1221
1222         return strnlen(buf, count);
1223 }
1224 static DRIVER_ATTR_RW(debug_level);
1225
1226 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1227 {
1228         /* length = 1st dword in log */
1229         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1230 }
1231
1232 static void ipw_capture_event_log(struct ipw_priv *priv,
1233                                   u32 log_len, struct ipw_event *log)
1234 {
1235         u32 base;
1236
1237         if (log_len) {
1238                 base = ipw_read32(priv, IPW_EVENT_LOG);
1239                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1240                                   (u8 *) log, sizeof(*log) * log_len);
1241         }
1242 }
1243
1244 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1245 {
1246         struct ipw_fw_error *error;
1247         u32 log_len = ipw_get_event_log_len(priv);
1248         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1249         u32 elem_len = ipw_read_reg32(priv, base);
1250
1251         error = kmalloc(sizeof(*error) +
1252                         sizeof(*error->elem) * elem_len +
1253                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1254         if (!error) {
1255                 IPW_ERROR("Memory allocation for firmware error log "
1256                           "failed.\n");
1257                 return NULL;
1258         }
1259         error->jiffies = jiffies;
1260         error->status = priv->status;
1261         error->config = priv->config;
1262         error->elem_len = elem_len;
1263         error->log_len = log_len;
1264         error->elem = (struct ipw_error_elem *)error->payload;
1265         error->log = (struct ipw_event *)(error->elem + elem_len);
1266
1267         ipw_capture_event_log(priv, log_len, error->log);
1268
1269         if (elem_len)
1270                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1271                                   sizeof(*error->elem) * elem_len);
1272
1273         return error;
1274 }
1275
1276 static ssize_t show_event_log(struct device *d,
1277                               struct device_attribute *attr, char *buf)
1278 {
1279         struct ipw_priv *priv = dev_get_drvdata(d);
1280         u32 log_len = ipw_get_event_log_len(priv);
1281         u32 log_size;
1282         struct ipw_event *log;
1283         u32 len = 0, i;
1284
1285         /* not using min() because of its strict type checking */
1286         log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1287                         sizeof(*log) * log_len : PAGE_SIZE;
1288         log = kzalloc(log_size, GFP_KERNEL);
1289         if (!log) {
1290                 IPW_ERROR("Unable to allocate memory for log\n");
1291                 return 0;
1292         }
1293         log_len = log_size / sizeof(*log);
1294         ipw_capture_event_log(priv, log_len, log);
1295
1296         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1297         for (i = 0; i < log_len; i++)
1298                 len += snprintf(buf + len, PAGE_SIZE - len,
1299                                 "\n%08X%08X%08X",
1300                                 log[i].time, log[i].event, log[i].data);
1301         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1302         kfree(log);
1303         return len;
1304 }
1305
1306 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1307
1308 static ssize_t show_error(struct device *d,
1309                           struct device_attribute *attr, char *buf)
1310 {
1311         struct ipw_priv *priv = dev_get_drvdata(d);
1312         u32 len = 0, i;
1313         if (!priv->error)
1314                 return 0;
1315         len += snprintf(buf + len, PAGE_SIZE - len,
1316                         "%08lX%08X%08X%08X",
1317                         priv->error->jiffies,
1318                         priv->error->status,
1319                         priv->error->config, priv->error->elem_len);
1320         for (i = 0; i < priv->error->elem_len; i++)
1321                 len += snprintf(buf + len, PAGE_SIZE - len,
1322                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1323                                 priv->error->elem[i].time,
1324                                 priv->error->elem[i].desc,
1325                                 priv->error->elem[i].blink1,
1326                                 priv->error->elem[i].blink2,
1327                                 priv->error->elem[i].link1,
1328                                 priv->error->elem[i].link2,
1329                                 priv->error->elem[i].data);
1330
1331         len += snprintf(buf + len, PAGE_SIZE - len,
1332                         "\n%08X", priv->error->log_len);
1333         for (i = 0; i < priv->error->log_len; i++)
1334                 len += snprintf(buf + len, PAGE_SIZE - len,
1335                                 "\n%08X%08X%08X",
1336                                 priv->error->log[i].time,
1337                                 priv->error->log[i].event,
1338                                 priv->error->log[i].data);
1339         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1340         return len;
1341 }
1342
1343 static ssize_t clear_error(struct device *d,
1344                            struct device_attribute *attr,
1345                            const char *buf, size_t count)
1346 {
1347         struct ipw_priv *priv = dev_get_drvdata(d);
1348
1349         kfree(priv->error);
1350         priv->error = NULL;
1351         return count;
1352 }
1353
1354 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1355
1356 static ssize_t show_cmd_log(struct device *d,
1357                             struct device_attribute *attr, char *buf)
1358 {
1359         struct ipw_priv *priv = dev_get_drvdata(d);
1360         u32 len = 0, i;
1361         if (!priv->cmdlog)
1362                 return 0;
1363         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1364              (i != priv->cmdlog_pos) && (len < PAGE_SIZE);
1365              i = (i + 1) % priv->cmdlog_len) {
1366                 len +=
1367                     snprintf(buf + len, PAGE_SIZE - len,
1368                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1369                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1370                              priv->cmdlog[i].cmd.len);
1371                 len +=
1372                     snprintk_buf(buf + len, PAGE_SIZE - len,
1373                                  (u8 *) priv->cmdlog[i].cmd.param,
1374                                  priv->cmdlog[i].cmd.len);
1375                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1376         }
1377         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1378         return len;
1379 }
1380
1381 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1382
1383 #ifdef CONFIG_IPW2200_PROMISCUOUS
1384 static void ipw_prom_free(struct ipw_priv *priv);
1385 static int ipw_prom_alloc(struct ipw_priv *priv);
1386 static ssize_t store_rtap_iface(struct device *d,
1387                          struct device_attribute *attr,
1388                          const char *buf, size_t count)
1389 {
1390         struct ipw_priv *priv = dev_get_drvdata(d);
1391         int rc = 0;
1392
1393         if (count < 1)
1394                 return -EINVAL;
1395
1396         switch (buf[0]) {
1397         case '0':
1398                 if (!rtap_iface)
1399                         return count;
1400
1401                 if (netif_running(priv->prom_net_dev)) {
1402                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1403                         return count;
1404                 }
1405
1406                 ipw_prom_free(priv);
1407                 rtap_iface = 0;
1408                 break;
1409
1410         case '1':
1411                 if (rtap_iface)
1412                         return count;
1413
1414                 rc = ipw_prom_alloc(priv);
1415                 if (!rc)
1416                         rtap_iface = 1;
1417                 break;
1418
1419         default:
1420                 return -EINVAL;
1421         }
1422
1423         if (rc) {
1424                 IPW_ERROR("Failed to register promiscuous network "
1425                           "device (error %d).\n", rc);
1426         }
1427
1428         return count;
1429 }
1430
1431 static ssize_t show_rtap_iface(struct device *d,
1432                         struct device_attribute *attr,
1433                         char *buf)
1434 {
1435         struct ipw_priv *priv = dev_get_drvdata(d);
1436         if (rtap_iface)
1437                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1438         else {
1439                 buf[0] = '-';
1440                 buf[1] = '1';
1441                 buf[2] = '\0';
1442                 return 3;
1443         }
1444 }
1445
1446 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1447                    store_rtap_iface);
1448
1449 static ssize_t store_rtap_filter(struct device *d,
1450                          struct device_attribute *attr,
1451                          const char *buf, size_t count)
1452 {
1453         struct ipw_priv *priv = dev_get_drvdata(d);
1454
1455         if (!priv->prom_priv) {
1456                 IPW_ERROR("Attempting to set filter without "
1457                           "rtap_iface enabled.\n");
1458                 return -EPERM;
1459         }
1460
1461         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1462
1463         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1464                        BIT_ARG16(priv->prom_priv->filter));
1465
1466         return count;
1467 }
1468
1469 static ssize_t show_rtap_filter(struct device *d,
1470                         struct device_attribute *attr,
1471                         char *buf)
1472 {
1473         struct ipw_priv *priv = dev_get_drvdata(d);
1474         return sprintf(buf, "0x%04X",
1475                        priv->prom_priv ? priv->prom_priv->filter : 0);
1476 }
1477
1478 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1479                    store_rtap_filter);
1480 #endif
1481
1482 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1483                              char *buf)
1484 {
1485         struct ipw_priv *priv = dev_get_drvdata(d);
1486         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1487 }
1488
1489 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1490                               const char *buf, size_t count)
1491 {
1492         struct ipw_priv *priv = dev_get_drvdata(d);
1493         struct net_device *dev = priv->net_dev;
1494         char buffer[] = "00000000";
1495         unsigned long len =
1496             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1497         unsigned long val;
1498         char *p = buffer;
1499
1500         IPW_DEBUG_INFO("enter\n");
1501
1502         strncpy(buffer, buf, len);
1503         buffer[len] = 0;
1504
1505         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1506                 p++;
1507                 if (p[0] == 'x' || p[0] == 'X')
1508                         p++;
1509                 val = simple_strtoul(p, &p, 16);
1510         } else
1511                 val = simple_strtoul(p, &p, 10);
1512         if (p == buffer) {
1513                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1514         } else {
1515                 priv->ieee->scan_age = val;
1516                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1517         }
1518
1519         IPW_DEBUG_INFO("exit\n");
1520         return len;
1521 }
1522
1523 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1524
1525 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1526                         char *buf)
1527 {
1528         struct ipw_priv *priv = dev_get_drvdata(d);
1529         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1530 }
1531
1532 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1533                          const char *buf, size_t count)
1534 {
1535         struct ipw_priv *priv = dev_get_drvdata(d);
1536
1537         IPW_DEBUG_INFO("enter\n");
1538
1539         if (count == 0)
1540                 return 0;
1541
1542         if (*buf == 0) {
1543                 IPW_DEBUG_LED("Disabling LED control.\n");
1544                 priv->config |= CFG_NO_LED;
1545                 ipw_led_shutdown(priv);
1546         } else {
1547                 IPW_DEBUG_LED("Enabling LED control.\n");
1548                 priv->config &= ~CFG_NO_LED;
1549                 ipw_led_init(priv);
1550         }
1551
1552         IPW_DEBUG_INFO("exit\n");
1553         return count;
1554 }
1555
1556 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1557
1558 static ssize_t show_status(struct device *d,
1559                            struct device_attribute *attr, char *buf)
1560 {
1561         struct ipw_priv *p = dev_get_drvdata(d);
1562         return sprintf(buf, "0x%08x\n", (int)p->status);
1563 }
1564
1565 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1566
1567 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1568                         char *buf)
1569 {
1570         struct ipw_priv *p = dev_get_drvdata(d);
1571         return sprintf(buf, "0x%08x\n", (int)p->config);
1572 }
1573
1574 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1575
1576 static ssize_t show_nic_type(struct device *d,
1577                              struct device_attribute *attr, char *buf)
1578 {
1579         struct ipw_priv *priv = dev_get_drvdata(d);
1580         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1581 }
1582
1583 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1584
1585 static ssize_t show_ucode_version(struct device *d,
1586                                   struct device_attribute *attr, char *buf)
1587 {
1588         u32 len = sizeof(u32), tmp = 0;
1589         struct ipw_priv *p = dev_get_drvdata(d);
1590
1591         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1592                 return 0;
1593
1594         return sprintf(buf, "0x%08x\n", tmp);
1595 }
1596
1597 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1598
1599 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1600                         char *buf)
1601 {
1602         u32 len = sizeof(u32), tmp = 0;
1603         struct ipw_priv *p = dev_get_drvdata(d);
1604
1605         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1606                 return 0;
1607
1608         return sprintf(buf, "0x%08x\n", tmp);
1609 }
1610
1611 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1612
1613 /*
1614  * Add a device attribute to view/control the delay between eeprom
1615  * operations.
1616  */
1617 static ssize_t show_eeprom_delay(struct device *d,
1618                                  struct device_attribute *attr, char *buf)
1619 {
1620         struct ipw_priv *p = dev_get_drvdata(d);
1621         int n = p->eeprom_delay;
1622         return sprintf(buf, "%i\n", n);
1623 }
1624 static ssize_t store_eeprom_delay(struct device *d,
1625                                   struct device_attribute *attr,
1626                                   const char *buf, size_t count)
1627 {
1628         struct ipw_priv *p = dev_get_drvdata(d);
1629         sscanf(buf, "%i", &p->eeprom_delay);
1630         return strnlen(buf, count);
1631 }
1632
1633 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1634                    show_eeprom_delay, store_eeprom_delay);
1635
1636 static ssize_t show_command_event_reg(struct device *d,
1637                                       struct device_attribute *attr, char *buf)
1638 {
1639         u32 reg = 0;
1640         struct ipw_priv *p = dev_get_drvdata(d);
1641
1642         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1643         return sprintf(buf, "0x%08x\n", reg);
1644 }
1645 static ssize_t store_command_event_reg(struct device *d,
1646                                        struct device_attribute *attr,
1647                                        const char *buf, size_t count)
1648 {
1649         u32 reg;
1650         struct ipw_priv *p = dev_get_drvdata(d);
1651
1652         sscanf(buf, "%x", &reg);
1653         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1654         return strnlen(buf, count);
1655 }
1656
1657 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1658                    show_command_event_reg, store_command_event_reg);
1659
1660 static ssize_t show_mem_gpio_reg(struct device *d,
1661                                  struct device_attribute *attr, char *buf)
1662 {
1663         u32 reg = 0;
1664         struct ipw_priv *p = dev_get_drvdata(d);
1665
1666         reg = ipw_read_reg32(p, 0x301100);
1667         return sprintf(buf, "0x%08x\n", reg);
1668 }
1669 static ssize_t store_mem_gpio_reg(struct device *d,
1670                                   struct device_attribute *attr,
1671                                   const char *buf, size_t count)
1672 {
1673         u32 reg;
1674         struct ipw_priv *p = dev_get_drvdata(d);
1675
1676         sscanf(buf, "%x", &reg);
1677         ipw_write_reg32(p, 0x301100, reg);
1678         return strnlen(buf, count);
1679 }
1680
1681 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1682                    show_mem_gpio_reg, store_mem_gpio_reg);
1683
1684 static ssize_t show_indirect_dword(struct device *d,
1685                                    struct device_attribute *attr, char *buf)
1686 {
1687         u32 reg = 0;
1688         struct ipw_priv *priv = dev_get_drvdata(d);
1689
1690         if (priv->status & STATUS_INDIRECT_DWORD)
1691                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1692         else
1693                 reg = 0;
1694
1695         return sprintf(buf, "0x%08x\n", reg);
1696 }
1697 static ssize_t store_indirect_dword(struct device *d,
1698                                     struct device_attribute *attr,
1699                                     const char *buf, size_t count)
1700 {
1701         struct ipw_priv *priv = dev_get_drvdata(d);
1702
1703         sscanf(buf, "%x", &priv->indirect_dword);
1704         priv->status |= STATUS_INDIRECT_DWORD;
1705         return strnlen(buf, count);
1706 }
1707
1708 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1709                    show_indirect_dword, store_indirect_dword);
1710
1711 static ssize_t show_indirect_byte(struct device *d,
1712                                   struct device_attribute *attr, char *buf)
1713 {
1714         u8 reg = 0;
1715         struct ipw_priv *priv = dev_get_drvdata(d);
1716
1717         if (priv->status & STATUS_INDIRECT_BYTE)
1718                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1719         else
1720                 reg = 0;
1721
1722         return sprintf(buf, "0x%02x\n", reg);
1723 }
1724 static ssize_t store_indirect_byte(struct device *d,
1725                                    struct device_attribute *attr,
1726                                    const char *buf, size_t count)
1727 {
1728         struct ipw_priv *priv = dev_get_drvdata(d);
1729
1730         sscanf(buf, "%x", &priv->indirect_byte);
1731         priv->status |= STATUS_INDIRECT_BYTE;
1732         return strnlen(buf, count);
1733 }
1734
1735 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1736                    show_indirect_byte, store_indirect_byte);
1737
1738 static ssize_t show_direct_dword(struct device *d,
1739                                  struct device_attribute *attr, char *buf)
1740 {
1741         u32 reg = 0;
1742         struct ipw_priv *priv = dev_get_drvdata(d);
1743
1744         if (priv->status & STATUS_DIRECT_DWORD)
1745                 reg = ipw_read32(priv, priv->direct_dword);
1746         else
1747                 reg = 0;
1748
1749         return sprintf(buf, "0x%08x\n", reg);
1750 }
1751 static ssize_t store_direct_dword(struct device *d,
1752                                   struct device_attribute *attr,
1753                                   const char *buf, size_t count)
1754 {
1755         struct ipw_priv *priv = dev_get_drvdata(d);
1756
1757         sscanf(buf, "%x", &priv->direct_dword);
1758         priv->status |= STATUS_DIRECT_DWORD;
1759         return strnlen(buf, count);
1760 }
1761
1762 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1763                    show_direct_dword, store_direct_dword);
1764
1765 static int rf_kill_active(struct ipw_priv *priv)
1766 {
1767         if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1768                 priv->status |= STATUS_RF_KILL_HW;
1769                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1770         } else {
1771                 priv->status &= ~STATUS_RF_KILL_HW;
1772                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1773         }
1774
1775         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1776 }
1777
1778 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1779                             char *buf)
1780 {
1781         /* 0 - RF kill not enabled
1782            1 - SW based RF kill active (sysfs)
1783            2 - HW based RF kill active
1784            3 - Both HW and SW baed RF kill active */
1785         struct ipw_priv *priv = dev_get_drvdata(d);
1786         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1787             (rf_kill_active(priv) ? 0x2 : 0x0);
1788         return sprintf(buf, "%i\n", val);
1789 }
1790
1791 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1792 {
1793         if ((disable_radio ? 1 : 0) ==
1794             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1795                 return 0;
1796
1797         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1798                           disable_radio ? "OFF" : "ON");
1799
1800         if (disable_radio) {
1801                 priv->status |= STATUS_RF_KILL_SW;
1802
1803                 cancel_delayed_work(&priv->request_scan);
1804                 cancel_delayed_work(&priv->request_direct_scan);
1805                 cancel_delayed_work(&priv->request_passive_scan);
1806                 cancel_delayed_work(&priv->scan_event);
1807                 schedule_work(&priv->down);
1808         } else {
1809                 priv->status &= ~STATUS_RF_KILL_SW;
1810                 if (rf_kill_active(priv)) {
1811                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1812                                           "disabled by HW switch\n");
1813                         /* Make sure the RF_KILL check timer is running */
1814                         cancel_delayed_work(&priv->rf_kill);
1815                         schedule_delayed_work(&priv->rf_kill,
1816                                               round_jiffies_relative(2 * HZ));
1817                 } else
1818                         schedule_work(&priv->up);
1819         }
1820
1821         return 1;
1822 }
1823
1824 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1825                              const char *buf, size_t count)
1826 {
1827         struct ipw_priv *priv = dev_get_drvdata(d);
1828
1829         ipw_radio_kill_sw(priv, buf[0] == '1');
1830
1831         return count;
1832 }
1833
1834 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1835
1836 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1837                                char *buf)
1838 {
1839         struct ipw_priv *priv = dev_get_drvdata(d);
1840         int pos = 0, len = 0;
1841         if (priv->config & CFG_SPEED_SCAN) {
1842                 while (priv->speed_scan[pos] != 0)
1843                         len += sprintf(&buf[len], "%d ",
1844                                        priv->speed_scan[pos++]);
1845                 return len + sprintf(&buf[len], "\n");
1846         }
1847
1848         return sprintf(buf, "0\n");
1849 }
1850
1851 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1852                                 const char *buf, size_t count)
1853 {
1854         struct ipw_priv *priv = dev_get_drvdata(d);
1855         int channel, pos = 0;
1856         const char *p = buf;
1857
1858         /* list of space separated channels to scan, optionally ending with 0 */
1859         while ((channel = simple_strtol(p, NULL, 0))) {
1860                 if (pos == MAX_SPEED_SCAN - 1) {
1861                         priv->speed_scan[pos] = 0;
1862                         break;
1863                 }
1864
1865                 if (libipw_is_valid_channel(priv->ieee, channel))
1866                         priv->speed_scan[pos++] = channel;
1867                 else
1868                         IPW_WARNING("Skipping invalid channel request: %d\n",
1869                                     channel);
1870                 p = strchr(p, ' ');
1871                 if (!p)
1872                         break;
1873                 while (*p == ' ' || *p == '\t')
1874                         p++;
1875         }
1876
1877         if (pos == 0)
1878                 priv->config &= ~CFG_SPEED_SCAN;
1879         else {
1880                 priv->speed_scan_pos = 0;
1881                 priv->config |= CFG_SPEED_SCAN;
1882         }
1883
1884         return count;
1885 }
1886
1887 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1888                    store_speed_scan);
1889
1890 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1891                               char *buf)
1892 {
1893         struct ipw_priv *priv = dev_get_drvdata(d);
1894         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1895 }
1896
1897 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1898                                const char *buf, size_t count)
1899 {
1900         struct ipw_priv *priv = dev_get_drvdata(d);
1901         if (buf[0] == '1')
1902                 priv->config |= CFG_NET_STATS;
1903         else
1904                 priv->config &= ~CFG_NET_STATS;
1905
1906         return count;
1907 }
1908
1909 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1910                    show_net_stats, store_net_stats);
1911
1912 static ssize_t show_channels(struct device *d,
1913                              struct device_attribute *attr,
1914                              char *buf)
1915 {
1916         struct ipw_priv *priv = dev_get_drvdata(d);
1917         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1918         int len = 0, i;
1919
1920         len = sprintf(&buf[len],
1921                       "Displaying %d channels in 2.4Ghz band "
1922                       "(802.11bg):\n", geo->bg_channels);
1923
1924         for (i = 0; i < geo->bg_channels; i++) {
1925                 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1926                                geo->bg[i].channel,
1927                                geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1928                                " (radar spectrum)" : "",
1929                                ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1930                                 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1931                                ? "" : ", IBSS",
1932                                geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1933                                "passive only" : "active/passive",
1934                                geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1935                                "B" : "B/G");
1936         }
1937
1938         len += sprintf(&buf[len],
1939                        "Displaying %d channels in 5.2Ghz band "
1940                        "(802.11a):\n", geo->a_channels);
1941         for (i = 0; i < geo->a_channels; i++) {
1942                 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1943                                geo->a[i].channel,
1944                                geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1945                                " (radar spectrum)" : "",
1946                                ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1947                                 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1948                                ? "" : ", IBSS",
1949                                geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1950                                "passive only" : "active/passive");
1951         }
1952
1953         return len;
1954 }
1955
1956 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1957
1958 static void notify_wx_assoc_event(struct ipw_priv *priv)
1959 {
1960         union iwreq_data wrqu;
1961         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1962         if (priv->status & STATUS_ASSOCIATED)
1963                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1964         else
1965                 eth_zero_addr(wrqu.ap_addr.sa_data);
1966         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1967 }
1968
1969 static void ipw_irq_tasklet(unsigned long data)
1970 {
1971         struct ipw_priv *priv = (struct ipw_priv *)data;
1972         u32 inta, inta_mask, handled = 0;
1973         unsigned long flags;
1974         int rc = 0;
1975
1976         spin_lock_irqsave(&priv->irq_lock, flags);
1977
1978         inta = ipw_read32(priv, IPW_INTA_RW);
1979         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1980
1981         if (inta == 0xFFFFFFFF) {
1982                 /* Hardware disappeared */
1983                 IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1984                 /* Only handle the cached INTA values */
1985                 inta = 0;
1986         }
1987         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1988
1989         /* Add any cached INTA values that need to be handled */
1990         inta |= priv->isr_inta;
1991
1992         spin_unlock_irqrestore(&priv->irq_lock, flags);
1993
1994         spin_lock_irqsave(&priv->lock, flags);
1995
1996         /* handle all the justifications for the interrupt */
1997         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1998                 ipw_rx(priv);
1999                 handled |= IPW_INTA_BIT_RX_TRANSFER;
2000         }
2001
2002         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
2003                 IPW_DEBUG_HC("Command completed.\n");
2004                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
2005                 priv->status &= ~STATUS_HCMD_ACTIVE;
2006                 wake_up_interruptible(&priv->wait_command_queue);
2007                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
2008         }
2009
2010         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
2011                 IPW_DEBUG_TX("TX_QUEUE_1\n");
2012                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
2013                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
2014         }
2015
2016         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
2017                 IPW_DEBUG_TX("TX_QUEUE_2\n");
2018                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
2019                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
2020         }
2021
2022         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2023                 IPW_DEBUG_TX("TX_QUEUE_3\n");
2024                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2025                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
2026         }
2027
2028         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2029                 IPW_DEBUG_TX("TX_QUEUE_4\n");
2030                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2031                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
2032         }
2033
2034         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2035                 IPW_WARNING("STATUS_CHANGE\n");
2036                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
2037         }
2038
2039         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2040                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2041                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2042         }
2043
2044         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2045                 IPW_WARNING("HOST_CMD_DONE\n");
2046                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2047         }
2048
2049         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2050                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2051                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2052         }
2053
2054         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2055                 IPW_WARNING("PHY_OFF_DONE\n");
2056                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2057         }
2058
2059         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2060                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2061                 priv->status |= STATUS_RF_KILL_HW;
2062                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2063                 wake_up_interruptible(&priv->wait_command_queue);
2064                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2065                 cancel_delayed_work(&priv->request_scan);
2066                 cancel_delayed_work(&priv->request_direct_scan);
2067                 cancel_delayed_work(&priv->request_passive_scan);
2068                 cancel_delayed_work(&priv->scan_event);
2069                 schedule_work(&priv->link_down);
2070                 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2071                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2072         }
2073
2074         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2075                 IPW_WARNING("Firmware error detected.  Restarting.\n");
2076                 if (priv->error) {
2077                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2078                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2079                                 struct ipw_fw_error *error =
2080                                     ipw_alloc_error_log(priv);
2081                                 ipw_dump_error_log(priv, error);
2082                                 kfree(error);
2083                         }
2084                 } else {
2085                         priv->error = ipw_alloc_error_log(priv);
2086                         if (priv->error)
2087                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2088                         else
2089                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2090                                              "log.\n");
2091                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
2092                                 ipw_dump_error_log(priv, priv->error);
2093                 }
2094
2095                 /* XXX: If hardware encryption is for WPA/WPA2,
2096                  * we have to notify the supplicant. */
2097                 if (priv->ieee->sec.encrypt) {
2098                         priv->status &= ~STATUS_ASSOCIATED;
2099                         notify_wx_assoc_event(priv);
2100                 }
2101
2102                 /* Keep the restart process from trying to send host
2103                  * commands by clearing the INIT status bit */
2104                 priv->status &= ~STATUS_INIT;
2105
2106                 /* Cancel currently queued command. */
2107                 priv->status &= ~STATUS_HCMD_ACTIVE;
2108                 wake_up_interruptible(&priv->wait_command_queue);
2109
2110                 schedule_work(&priv->adapter_restart);
2111                 handled |= IPW_INTA_BIT_FATAL_ERROR;
2112         }
2113
2114         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2115                 IPW_ERROR("Parity error\n");
2116                 handled |= IPW_INTA_BIT_PARITY_ERROR;
2117         }
2118
2119         if (handled != inta) {
2120                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2121         }
2122
2123         spin_unlock_irqrestore(&priv->lock, flags);
2124
2125         /* enable all interrupts */
2126         ipw_enable_interrupts(priv);
2127 }
2128
2129 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2130 static char *get_cmd_string(u8 cmd)
2131 {
2132         switch (cmd) {
2133                 IPW_CMD(HOST_COMPLETE);
2134                 IPW_CMD(POWER_DOWN);
2135                 IPW_CMD(SYSTEM_CONFIG);
2136                 IPW_CMD(MULTICAST_ADDRESS);
2137                 IPW_CMD(SSID);
2138                 IPW_CMD(ADAPTER_ADDRESS);
2139                 IPW_CMD(PORT_TYPE);
2140                 IPW_CMD(RTS_THRESHOLD);
2141                 IPW_CMD(FRAG_THRESHOLD);
2142                 IPW_CMD(POWER_MODE);
2143                 IPW_CMD(WEP_KEY);
2144                 IPW_CMD(TGI_TX_KEY);
2145                 IPW_CMD(SCAN_REQUEST);
2146                 IPW_CMD(SCAN_REQUEST_EXT);
2147                 IPW_CMD(ASSOCIATE);
2148                 IPW_CMD(SUPPORTED_RATES);
2149                 IPW_CMD(SCAN_ABORT);
2150                 IPW_CMD(TX_FLUSH);
2151                 IPW_CMD(QOS_PARAMETERS);
2152                 IPW_CMD(DINO_CONFIG);
2153                 IPW_CMD(RSN_CAPABILITIES);
2154                 IPW_CMD(RX_KEY);
2155                 IPW_CMD(CARD_DISABLE);
2156                 IPW_CMD(SEED_NUMBER);
2157                 IPW_CMD(TX_POWER);
2158                 IPW_CMD(COUNTRY_INFO);
2159                 IPW_CMD(AIRONET_INFO);
2160                 IPW_CMD(AP_TX_POWER);
2161                 IPW_CMD(CCKM_INFO);
2162                 IPW_CMD(CCX_VER_INFO);
2163                 IPW_CMD(SET_CALIBRATION);
2164                 IPW_CMD(SENSITIVITY_CALIB);
2165                 IPW_CMD(RETRY_LIMIT);
2166                 IPW_CMD(IPW_PRE_POWER_DOWN);
2167                 IPW_CMD(VAP_BEACON_TEMPLATE);
2168                 IPW_CMD(VAP_DTIM_PERIOD);
2169                 IPW_CMD(EXT_SUPPORTED_RATES);
2170                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2171                 IPW_CMD(VAP_QUIET_INTERVALS);
2172                 IPW_CMD(VAP_CHANNEL_SWITCH);
2173                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2174                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2175                 IPW_CMD(VAP_CF_PARAM_SET);
2176                 IPW_CMD(VAP_SET_BEACONING_STATE);
2177                 IPW_CMD(MEASUREMENT);
2178                 IPW_CMD(POWER_CAPABILITY);
2179                 IPW_CMD(SUPPORTED_CHANNELS);
2180                 IPW_CMD(TPC_REPORT);
2181                 IPW_CMD(WME_INFO);
2182                 IPW_CMD(PRODUCTION_COMMAND);
2183         default:
2184                 return "UNKNOWN";
2185         }
2186 }
2187
2188 #define HOST_COMPLETE_TIMEOUT HZ
2189
2190 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2191 {
2192         int rc = 0;
2193         unsigned long flags;
2194         unsigned long now, end;
2195
2196         spin_lock_irqsave(&priv->lock, flags);
2197         if (priv->status & STATUS_HCMD_ACTIVE) {
2198                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2199                           get_cmd_string(cmd->cmd));
2200                 spin_unlock_irqrestore(&priv->lock, flags);
2201                 return -EAGAIN;
2202         }
2203
2204         priv->status |= STATUS_HCMD_ACTIVE;
2205
2206         if (priv->cmdlog) {
2207                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2208                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2209                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2210                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2211                        cmd->len);
2212                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2213         }
2214
2215         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2216                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2217                      priv->status);
2218
2219 #ifndef DEBUG_CMD_WEP_KEY
2220         if (cmd->cmd == IPW_CMD_WEP_KEY)
2221                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2222         else
2223 #endif
2224                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2225
2226         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2227         if (rc) {
2228                 priv->status &= ~STATUS_HCMD_ACTIVE;
2229                 IPW_ERROR("Failed to send %s: Reason %d\n",
2230                           get_cmd_string(cmd->cmd), rc);
2231                 spin_unlock_irqrestore(&priv->lock, flags);
2232                 goto exit;
2233         }
2234         spin_unlock_irqrestore(&priv->lock, flags);
2235
2236         now = jiffies;
2237         end = now + HOST_COMPLETE_TIMEOUT;
2238 again:
2239         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2240                                               !(priv->
2241                                                 status & STATUS_HCMD_ACTIVE),
2242                                               end - now);
2243         if (rc < 0) {
2244                 now = jiffies;
2245                 if (time_before(now, end))
2246                         goto again;
2247                 rc = 0;
2248         }
2249
2250         if (rc == 0) {
2251                 spin_lock_irqsave(&priv->lock, flags);
2252                 if (priv->status & STATUS_HCMD_ACTIVE) {
2253                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2254                                   get_cmd_string(cmd->cmd));
2255                         priv->status &= ~STATUS_HCMD_ACTIVE;
2256                         spin_unlock_irqrestore(&priv->lock, flags);
2257                         rc = -EIO;
2258                         goto exit;
2259                 }
2260                 spin_unlock_irqrestore(&priv->lock, flags);
2261         } else
2262                 rc = 0;
2263
2264         if (priv->status & STATUS_RF_KILL_HW) {
2265                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2266                           get_cmd_string(cmd->cmd));
2267                 rc = -EIO;
2268                 goto exit;
2269         }
2270
2271       exit:
2272         if (priv->cmdlog) {
2273                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2274                 priv->cmdlog_pos %= priv->cmdlog_len;
2275         }
2276         return rc;
2277 }
2278
2279 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2280 {
2281         struct host_cmd cmd = {
2282                 .cmd = command,
2283         };
2284
2285         return __ipw_send_cmd(priv, &cmd);
2286 }
2287
2288 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2289                             void *data)
2290 {
2291         struct host_cmd cmd = {
2292                 .cmd = command,
2293                 .len = len,
2294                 .param = data,
2295         };
2296
2297         return __ipw_send_cmd(priv, &cmd);
2298 }
2299
2300 static int ipw_send_host_complete(struct ipw_priv *priv)
2301 {
2302         if (!priv) {
2303                 IPW_ERROR("Invalid args\n");
2304                 return -1;
2305         }
2306
2307         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2308 }
2309
2310 static int ipw_send_system_config(struct ipw_priv *priv)
2311 {
2312         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2313                                 sizeof(priv->sys_config),
2314                                 &priv->sys_config);
2315 }
2316
2317 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2318 {
2319         if (!priv || !ssid) {
2320                 IPW_ERROR("Invalid args\n");
2321                 return -1;
2322         }
2323
2324         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2325                                 ssid);
2326 }
2327
2328 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2329 {
2330         if (!priv || !mac) {
2331                 IPW_ERROR("Invalid args\n");
2332                 return -1;
2333         }
2334
2335         IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2336                        priv->net_dev->name, mac);
2337
2338         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2339 }
2340
2341 static void ipw_adapter_restart(void *adapter)
2342 {
2343         struct ipw_priv *priv = adapter;
2344
2345         if (priv->status & STATUS_RF_KILL_MASK)
2346                 return;
2347
2348         ipw_down(priv);
2349
2350         if (priv->assoc_network &&
2351             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2352                 ipw_remove_current_network(priv);
2353
2354         if (ipw_up(priv)) {
2355                 IPW_ERROR("Failed to up device\n");
2356                 return;
2357         }
2358 }
2359
2360 static void ipw_bg_adapter_restart(struct work_struct *work)
2361 {
2362         struct ipw_priv *priv =
2363                 container_of(work, struct ipw_priv, adapter_restart);
2364         mutex_lock(&priv->mutex);
2365         ipw_adapter_restart(priv);
2366         mutex_unlock(&priv->mutex);
2367 }
2368
2369 static void ipw_abort_scan(struct ipw_priv *priv);
2370
2371 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2372
2373 static void ipw_scan_check(void *data)
2374 {
2375         struct ipw_priv *priv = data;
2376
2377         if (priv->status & STATUS_SCAN_ABORTING) {
2378                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2379                                "adapter after (%dms).\n",
2380                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2381                 schedule_work(&priv->adapter_restart);
2382         } else if (priv->status & STATUS_SCANNING) {
2383                 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2384                                "after (%dms).\n",
2385                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2386                 ipw_abort_scan(priv);
2387                 schedule_delayed_work(&priv->scan_check, HZ);
2388         }
2389 }
2390
2391 static void ipw_bg_scan_check(struct work_struct *work)
2392 {
2393         struct ipw_priv *priv =
2394                 container_of(work, struct ipw_priv, scan_check.work);
2395         mutex_lock(&priv->mutex);
2396         ipw_scan_check(priv);
2397         mutex_unlock(&priv->mutex);
2398 }
2399
2400 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2401                                      struct ipw_scan_request_ext *request)
2402 {
2403         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2404                                 sizeof(*request), request);
2405 }
2406
2407 static int ipw_send_scan_abort(struct ipw_priv *priv)
2408 {
2409         if (!priv) {
2410                 IPW_ERROR("Invalid args\n");
2411                 return -1;
2412         }
2413
2414         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2415 }
2416
2417 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2418 {
2419         struct ipw_sensitivity_calib calib = {
2420                 .beacon_rssi_raw = cpu_to_le16(sens),
2421         };
2422
2423         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2424                                 &calib);
2425 }
2426
2427 static int ipw_send_associate(struct ipw_priv *priv,
2428                               struct ipw_associate *associate)
2429 {
2430         if (!priv || !associate) {
2431                 IPW_ERROR("Invalid args\n");
2432                 return -1;
2433         }
2434
2435         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2436                                 associate);
2437 }
2438
2439 static int ipw_send_supported_rates(struct ipw_priv *priv,
2440                                     struct ipw_supported_rates *rates)
2441 {
2442         if (!priv || !rates) {
2443                 IPW_ERROR("Invalid args\n");
2444                 return -1;
2445         }
2446
2447         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2448                                 rates);
2449 }
2450
2451 static int ipw_set_random_seed(struct ipw_priv *priv)
2452 {
2453         u32 val;
2454
2455         if (!priv) {
2456                 IPW_ERROR("Invalid args\n");
2457                 return -1;
2458         }
2459
2460         get_random_bytes(&val, sizeof(val));
2461
2462         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2463 }
2464
2465 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2466 {
2467         __le32 v = cpu_to_le32(phy_off);
2468         if (!priv) {
2469                 IPW_ERROR("Invalid args\n");
2470                 return -1;
2471         }
2472
2473         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2474 }
2475
2476 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2477 {
2478         if (!priv || !power) {
2479                 IPW_ERROR("Invalid args\n");
2480                 return -1;
2481         }
2482
2483         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2484 }
2485
2486 static int ipw_set_tx_power(struct ipw_priv *priv)
2487 {
2488         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2489         struct ipw_tx_power tx_power;
2490         s8 max_power;
2491         int i;
2492
2493         memset(&tx_power, 0, sizeof(tx_power));
2494
2495         /* configure device for 'G' band */
2496         tx_power.ieee_mode = IPW_G_MODE;
2497         tx_power.num_channels = geo->bg_channels;
2498         for (i = 0; i < geo->bg_channels; i++) {
2499                 max_power = geo->bg[i].max_power;
2500                 tx_power.channels_tx_power[i].channel_number =
2501                     geo->bg[i].channel;
2502                 tx_power.channels_tx_power[i].tx_power = max_power ?
2503                     min(max_power, priv->tx_power) : priv->tx_power;
2504         }
2505         if (ipw_send_tx_power(priv, &tx_power))
2506                 return -EIO;
2507
2508         /* configure device to also handle 'B' band */
2509         tx_power.ieee_mode = IPW_B_MODE;
2510         if (ipw_send_tx_power(priv, &tx_power))
2511                 return -EIO;
2512
2513         /* configure device to also handle 'A' band */
2514         if (priv->ieee->abg_true) {
2515                 tx_power.ieee_mode = IPW_A_MODE;
2516                 tx_power.num_channels = geo->a_channels;
2517                 for (i = 0; i < tx_power.num_channels; i++) {
2518                         max_power = geo->a[i].max_power;
2519                         tx_power.channels_tx_power[i].channel_number =
2520                             geo->a[i].channel;
2521                         tx_power.channels_tx_power[i].tx_power = max_power ?
2522                             min(max_power, priv->tx_power) : priv->tx_power;
2523                 }
2524                 if (ipw_send_tx_power(priv, &tx_power))
2525                         return -EIO;
2526         }
2527         return 0;
2528 }
2529
2530 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2531 {
2532         struct ipw_rts_threshold rts_threshold = {
2533                 .rts_threshold = cpu_to_le16(rts),
2534         };
2535
2536         if (!priv) {
2537                 IPW_ERROR("Invalid args\n");
2538                 return -1;
2539         }
2540
2541         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2542                                 sizeof(rts_threshold), &rts_threshold);
2543 }
2544
2545 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2546 {
2547         struct ipw_frag_threshold frag_threshold = {
2548                 .frag_threshold = cpu_to_le16(frag),
2549         };
2550
2551         if (!priv) {
2552                 IPW_ERROR("Invalid args\n");
2553                 return -1;
2554         }
2555
2556         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2557                                 sizeof(frag_threshold), &frag_threshold);
2558 }
2559
2560 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2561 {
2562         __le32 param;
2563
2564         if (!priv) {
2565                 IPW_ERROR("Invalid args\n");
2566                 return -1;
2567         }
2568
2569         /* If on battery, set to 3, if AC set to CAM, else user
2570          * level */
2571         switch (mode) {
2572         case IPW_POWER_BATTERY:
2573                 param = cpu_to_le32(IPW_POWER_INDEX_3);
2574                 break;
2575         case IPW_POWER_AC:
2576                 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2577                 break;
2578         default:
2579                 param = cpu_to_le32(mode);
2580                 break;
2581         }
2582
2583         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2584                                 &param);
2585 }
2586
2587 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2588 {
2589         struct ipw_retry_limit retry_limit = {
2590                 .short_retry_limit = slimit,
2591                 .long_retry_limit = llimit
2592         };
2593
2594         if (!priv) {
2595                 IPW_ERROR("Invalid args\n");
2596                 return -1;
2597         }
2598
2599         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2600                                 &retry_limit);
2601 }
2602
2603 /*
2604  * The IPW device contains a Microwire compatible EEPROM that stores
2605  * various data like the MAC address.  Usually the firmware has exclusive
2606  * access to the eeprom, but during device initialization (before the
2607  * device driver has sent the HostComplete command to the firmware) the
2608  * device driver has read access to the EEPROM by way of indirect addressing
2609  * through a couple of memory mapped registers.
2610  *
2611  * The following is a simplified implementation for pulling data out of the
2612  * the eeprom, along with some helper functions to find information in
2613  * the per device private data's copy of the eeprom.
2614  *
2615  * NOTE: To better understand how these functions work (i.e what is a chip
2616  *       select and why do have to keep driving the eeprom clock?), read
2617  *       just about any data sheet for a Microwire compatible EEPROM.
2618  */
2619
2620 /* write a 32 bit value into the indirect accessor register */
2621 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2622 {
2623         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2624
2625         /* the eeprom requires some time to complete the operation */
2626         udelay(p->eeprom_delay);
2627 }
2628
2629 /* perform a chip select operation */
2630 static void eeprom_cs(struct ipw_priv *priv)
2631 {
2632         eeprom_write_reg(priv, 0);
2633         eeprom_write_reg(priv, EEPROM_BIT_CS);
2634         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2635         eeprom_write_reg(priv, EEPROM_BIT_CS);
2636 }
2637
2638 /* perform a chip select operation */
2639 static void eeprom_disable_cs(struct ipw_priv *priv)
2640 {
2641         eeprom_write_reg(priv, EEPROM_BIT_CS);
2642         eeprom_write_reg(priv, 0);
2643         eeprom_write_reg(priv, EEPROM_BIT_SK);
2644 }
2645
2646 /* push a single bit down to the eeprom */
2647 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2648 {
2649         int d = (bit ? EEPROM_BIT_DI : 0);
2650         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2651         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2652 }
2653
2654 /* push an opcode followed by an address down to the eeprom */
2655 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2656 {
2657         int i;
2658
2659         eeprom_cs(priv);
2660         eeprom_write_bit(priv, 1);
2661         eeprom_write_bit(priv, op & 2);
2662         eeprom_write_bit(priv, op & 1);
2663         for (i = 7; i >= 0; i--) {
2664                 eeprom_write_bit(priv, addr & (1 << i));
2665         }
2666 }
2667
2668 /* pull 16 bits off the eeprom, one bit at a time */
2669 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2670 {
2671         int i;
2672         u16 r = 0;
2673
2674         /* Send READ Opcode */
2675         eeprom_op(priv, EEPROM_CMD_READ, addr);
2676
2677         /* Send dummy bit */
2678         eeprom_write_reg(priv, EEPROM_BIT_CS);
2679
2680         /* Read the byte off the eeprom one bit at a time */
2681         for (i = 0; i < 16; i++) {
2682                 u32 data = 0;
2683                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2684                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2685                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2686                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2687         }
2688
2689         /* Send another dummy bit */
2690         eeprom_write_reg(priv, 0);
2691         eeprom_disable_cs(priv);
2692
2693         return r;
2694 }
2695
2696 /* helper function for pulling the mac address out of the private */
2697 /* data's copy of the eeprom data                                 */
2698 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2699 {
2700         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN);
2701 }
2702
2703 static void ipw_read_eeprom(struct ipw_priv *priv)
2704 {
2705         int i;
2706         __le16 *eeprom = (__le16 *) priv->eeprom;
2707
2708         IPW_DEBUG_TRACE(">>\n");
2709
2710         /* read entire contents of eeprom into private buffer */
2711         for (i = 0; i < 128; i++)
2712                 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2713
2714         IPW_DEBUG_TRACE("<<\n");
2715 }
2716
2717 /*
2718  * Either the device driver (i.e. the host) or the firmware can
2719  * load eeprom data into the designated region in SRAM.  If neither
2720  * happens then the FW will shutdown with a fatal error.
2721  *
2722  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2723  * bit needs region of shared SRAM needs to be non-zero.
2724  */
2725 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2726 {
2727         int i;
2728
2729         IPW_DEBUG_TRACE(">>\n");
2730
2731         /*
2732            If the data looks correct, then copy it to our private
2733            copy.  Otherwise let the firmware know to perform the operation
2734            on its own.
2735          */
2736         if (priv->eeprom[EEPROM_VERSION] != 0) {
2737                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2738
2739                 /* write the eeprom data to sram */
2740                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2741                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2742
2743                 /* Do not load eeprom data on fatal error or suspend */
2744                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2745         } else {
2746                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2747
2748                 /* Load eeprom data on fatal error or suspend */
2749                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2750         }
2751
2752         IPW_DEBUG_TRACE("<<\n");
2753 }
2754
2755 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2756 {
2757         count >>= 2;
2758         if (!count)
2759                 return;
2760         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2761         while (count--)
2762                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2763 }
2764
2765 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2766 {
2767         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2768                         CB_NUMBER_OF_ELEMENTS_SMALL *
2769                         sizeof(struct command_block));
2770 }
2771
2772 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2773 {                               /* start dma engine but no transfers yet */
2774
2775         IPW_DEBUG_FW(">> :\n");
2776
2777         /* Start the dma */
2778         ipw_fw_dma_reset_command_blocks(priv);
2779
2780         /* Write CB base address */
2781         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2782
2783         IPW_DEBUG_FW("<< :\n");
2784         return 0;
2785 }
2786
2787 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2788 {
2789         u32 control = 0;
2790
2791         IPW_DEBUG_FW(">> :\n");
2792
2793         /* set the Stop and Abort bit */
2794         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2795         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2796         priv->sram_desc.last_cb_index = 0;
2797
2798         IPW_DEBUG_FW("<<\n");
2799 }
2800
2801 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2802                                           struct command_block *cb)
2803 {
2804         u32 address =
2805             IPW_SHARED_SRAM_DMA_CONTROL +
2806             (sizeof(struct command_block) * index);
2807         IPW_DEBUG_FW(">> :\n");
2808
2809         ipw_write_indirect(priv, address, (u8 *) cb,
2810                            (int)sizeof(struct command_block));
2811
2812         IPW_DEBUG_FW("<< :\n");
2813         return 0;
2814
2815 }
2816
2817 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2818 {
2819         u32 control = 0;
2820         u32 index = 0;
2821
2822         IPW_DEBUG_FW(">> :\n");
2823
2824         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2825                 ipw_fw_dma_write_command_block(priv, index,
2826                                                &priv->sram_desc.cb_list[index]);
2827
2828         /* Enable the DMA in the CSR register */
2829         ipw_clear_bit(priv, IPW_RESET_REG,
2830                       IPW_RESET_REG_MASTER_DISABLED |
2831                       IPW_RESET_REG_STOP_MASTER);
2832
2833         /* Set the Start bit. */
2834         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2835         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2836
2837         IPW_DEBUG_FW("<< :\n");
2838         return 0;
2839 }
2840
2841 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2842 {
2843         u32 address;
2844         u32 register_value = 0;
2845         u32 cb_fields_address = 0;
2846
2847         IPW_DEBUG_FW(">> :\n");
2848         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2849         IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2850
2851         /* Read the DMA Controlor register */
2852         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2853         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2854
2855         /* Print the CB values */
2856         cb_fields_address = address;
2857         register_value = ipw_read_reg32(priv, cb_fields_address);
2858         IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2859
2860         cb_fields_address += sizeof(u32);
2861         register_value = ipw_read_reg32(priv, cb_fields_address);
2862         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2863
2864         cb_fields_address += sizeof(u32);
2865         register_value = ipw_read_reg32(priv, cb_fields_address);
2866         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2867                           register_value);
2868
2869         cb_fields_address += sizeof(u32);
2870         register_value = ipw_read_reg32(priv, cb_fields_address);
2871         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2872
2873         IPW_DEBUG_FW(">> :\n");
2874 }
2875
2876 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2877 {
2878         u32 current_cb_address = 0;
2879         u32 current_cb_index = 0;
2880
2881         IPW_DEBUG_FW("<< :\n");
2882         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2883
2884         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2885             sizeof(struct command_block);
2886
2887         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2888                           current_cb_index, current_cb_address);
2889
2890         IPW_DEBUG_FW(">> :\n");
2891         return current_cb_index;
2892
2893 }
2894
2895 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2896                                         u32 src_address,
2897                                         u32 dest_address,
2898                                         u32 length,
2899                                         int interrupt_enabled, int is_last)
2900 {
2901
2902         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2903             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2904             CB_DEST_SIZE_LONG;
2905         struct command_block *cb;
2906         u32 last_cb_element = 0;
2907
2908         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2909                           src_address, dest_address, length);
2910
2911         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2912                 return -1;
2913
2914         last_cb_element = priv->sram_desc.last_cb_index;
2915         cb = &priv->sram_desc.cb_list[last_cb_element];
2916         priv->sram_desc.last_cb_index++;
2917
2918         /* Calculate the new CB control word */
2919         if (interrupt_enabled)
2920                 control |= CB_INT_ENABLED;
2921
2922         if (is_last)
2923                 control |= CB_LAST_VALID;
2924
2925         control |= length;
2926
2927         /* Calculate the CB Element's checksum value */
2928         cb->status = control ^ src_address ^ dest_address;
2929
2930         /* Copy the Source and Destination addresses */
2931         cb->dest_addr = dest_address;
2932         cb->source_addr = src_address;
2933
2934         /* Copy the Control Word last */
2935         cb->control = control;
2936
2937         return 0;
2938 }
2939
2940 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2941                                  int nr, u32 dest_address, u32 len)
2942 {
2943         int ret, i;
2944         u32 size;
2945
2946         IPW_DEBUG_FW(">>\n");
2947         IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2948                           nr, dest_address, len);
2949
2950         for (i = 0; i < nr; i++) {
2951                 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2952                 ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2953                                                    dest_address +
2954                                                    i * CB_MAX_LENGTH, size,
2955                                                    0, 0);
2956                 if (ret) {
2957                         IPW_DEBUG_FW_INFO(": Failed\n");
2958                         return -1;
2959                 } else
2960                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2961         }
2962
2963         IPW_DEBUG_FW("<<\n");
2964         return 0;
2965 }
2966
2967 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2968 {
2969         u32 current_index = 0, previous_index;
2970         u32 watchdog = 0;
2971
2972         IPW_DEBUG_FW(">> :\n");
2973
2974         current_index = ipw_fw_dma_command_block_index(priv);
2975         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2976                           (int)priv->sram_desc.last_cb_index);
2977
2978         while (current_index < priv->sram_desc.last_cb_index) {
2979                 udelay(50);
2980                 previous_index = current_index;
2981                 current_index = ipw_fw_dma_command_block_index(priv);
2982
2983                 if (previous_index < current_index) {
2984                         watchdog = 0;
2985                         continue;
2986                 }
2987                 if (++watchdog > 400) {
2988                         IPW_DEBUG_FW_INFO("Timeout\n");
2989                         ipw_fw_dma_dump_command_block(priv);
2990                         ipw_fw_dma_abort(priv);
2991                         return -1;
2992                 }
2993         }
2994
2995         ipw_fw_dma_abort(priv);
2996
2997         /*Disable the DMA in the CSR register */
2998         ipw_set_bit(priv, IPW_RESET_REG,
2999                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
3000
3001         IPW_DEBUG_FW("<< dmaWaitSync\n");
3002         return 0;
3003 }
3004
3005 static void ipw_remove_current_network(struct ipw_priv *priv)
3006 {
3007         struct list_head *element, *safe;
3008         struct libipw_network *network = NULL;
3009         unsigned long flags;
3010
3011         spin_lock_irqsave(&priv->ieee->lock, flags);
3012         list_for_each_safe(element, safe, &priv->ieee->network_list) {
3013                 network = list_entry(element, struct libipw_network, list);
3014                 if (ether_addr_equal(network->bssid, priv->bssid)) {
3015                         list_del(element);
3016                         list_add_tail(&network->list,
3017                                       &priv->ieee->network_free_list);
3018                 }
3019         }
3020         spin_unlock_irqrestore(&priv->ieee->lock, flags);
3021 }
3022
3023 /**
3024  * Check that card is still alive.
3025  * Reads debug register from domain0.
3026  * If card is present, pre-defined value should
3027  * be found there.
3028  *
3029  * @param priv
3030  * @return 1 if card is present, 0 otherwise
3031  */
3032 static inline int ipw_alive(struct ipw_priv *priv)
3033 {
3034         return ipw_read32(priv, 0x90) == 0xd55555d5;
3035 }
3036
3037 /* timeout in msec, attempted in 10-msec quanta */
3038 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3039                                int timeout)
3040 {
3041         int i = 0;
3042
3043         do {
3044                 if ((ipw_read32(priv, addr) & mask) == mask)
3045                         return i;
3046                 mdelay(10);
3047                 i += 10;
3048         } while (i < timeout);
3049
3050         return -ETIME;
3051 }
3052
3053 /* These functions load the firmware and micro code for the operation of
3054  * the ipw hardware.  It assumes the buffer has all the bits for the
3055  * image and the caller is handling the memory allocation and clean up.
3056  */
3057
3058 static int ipw_stop_master(struct ipw_priv *priv)
3059 {
3060         int rc;
3061
3062         IPW_DEBUG_TRACE(">>\n");
3063         /* stop master. typical delay - 0 */
3064         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3065
3066         /* timeout is in msec, polled in 10-msec quanta */
3067         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3068                           IPW_RESET_REG_MASTER_DISABLED, 100);
3069         if (rc < 0) {
3070                 IPW_ERROR("wait for stop master failed after 100ms\n");
3071                 return -1;
3072         }
3073
3074         IPW_DEBUG_INFO("stop master %dms\n", rc);
3075
3076         return rc;
3077 }
3078
3079 static void ipw_arc_release(struct ipw_priv *priv)
3080 {
3081         IPW_DEBUG_TRACE(">>\n");
3082         mdelay(5);
3083
3084         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3085
3086         /* no one knows timing, for safety add some delay */
3087         mdelay(5);
3088 }
3089
3090 struct fw_chunk {
3091         __le32 address;
3092         __le32 length;
3093 };
3094
3095 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3096 {
3097         int rc = 0, i, addr;
3098         u8 cr = 0;
3099         __le16 *image;
3100
3101         image = (__le16 *) data;
3102
3103         IPW_DEBUG_TRACE(">>\n");
3104
3105         rc = ipw_stop_master(priv);
3106
3107         if (rc < 0)
3108                 return rc;
3109
3110         for (addr = IPW_SHARED_LOWER_BOUND;
3111              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3112                 ipw_write32(priv, addr, 0);
3113         }
3114
3115         /* no ucode (yet) */
3116         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3117         /* destroy DMA queues */
3118         /* reset sequence */
3119
3120         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3121         ipw_arc_release(priv);
3122         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3123         mdelay(1);
3124
3125         /* reset PHY */
3126         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3127         mdelay(1);
3128
3129         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3130         mdelay(1);
3131
3132         /* enable ucode store */
3133         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3134         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3135         mdelay(1);
3136
3137         /* write ucode */
3138         /**
3139          * @bug
3140          * Do NOT set indirect address register once and then
3141          * store data to indirect data register in the loop.
3142          * It seems very reasonable, but in this case DINO do not
3143          * accept ucode. It is essential to set address each time.
3144          */
3145         /* load new ipw uCode */
3146         for (i = 0; i < len / 2; i++)
3147                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3148                                 le16_to_cpu(image[i]));
3149
3150         /* enable DINO */
3151         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3152         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3153
3154         /* this is where the igx / win driver deveates from the VAP driver. */
3155
3156         /* wait for alive response */
3157         for (i = 0; i < 100; i++) {
3158                 /* poll for incoming data */
3159                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3160                 if (cr & DINO_RXFIFO_DATA)
3161                         break;
3162                 mdelay(1);
3163         }
3164
3165         if (cr & DINO_RXFIFO_DATA) {
3166                 /* alive_command_responce size is NOT multiple of 4 */
3167                 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3168
3169                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3170                         response_buffer[i] =
3171                             cpu_to_le32(ipw_read_reg32(priv,
3172                                                        IPW_BASEBAND_RX_FIFO_READ));
3173                 memcpy(&priv->dino_alive, response_buffer,
3174                        sizeof(priv->dino_alive));
3175                 if (priv->dino_alive.alive_command == 1
3176                     && priv->dino_alive.ucode_valid == 1) {
3177                         rc = 0;
3178                         IPW_DEBUG_INFO
3179                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3180                              "of %02d/%02d/%02d %02d:%02d\n",
3181                              priv->dino_alive.software_revision,
3182                              priv->dino_alive.software_revision,
3183                              priv->dino_alive.device_identifier,
3184                              priv->dino_alive.device_identifier,
3185                              priv->dino_alive.time_stamp[0],
3186                              priv->dino_alive.time_stamp[1],
3187                              priv->dino_alive.time_stamp[2],
3188                              priv->dino_alive.time_stamp[3],
3189                              priv->dino_alive.time_stamp[4]);
3190                 } else {
3191                         IPW_DEBUG_INFO("Microcode is not alive\n");
3192                         rc = -EINVAL;
3193                 }
3194         } else {
3195                 IPW_DEBUG_INFO("No alive response from DINO\n");
3196                 rc = -ETIME;
3197         }
3198
3199         /* disable DINO, otherwise for some reason
3200            firmware have problem getting alive resp. */
3201         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3202
3203         return rc;
3204 }
3205
3206 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3207 {
3208         int ret = -1;
3209         int offset = 0;
3210         struct fw_chunk *chunk;
3211         int total_nr = 0;
3212         int i;
3213         struct dma_pool *pool;
3214         void **virts;
3215         dma_addr_t *phys;
3216
3217         IPW_DEBUG_TRACE("<< :\n");
3218
3219         virts = kmalloc(sizeof(void *) * CB_NUMBER_OF_ELEMENTS_SMALL,
3220                         GFP_KERNEL);
3221         if (!virts)
3222                 return -ENOMEM;
3223
3224         phys = kmalloc(sizeof(dma_addr_t) * CB_NUMBER_OF_ELEMENTS_SMALL,
3225                         GFP_KERNEL);
3226         if (!phys) {
3227                 kfree(virts);
3228                 return -ENOMEM;
3229         }
3230         pool = dma_pool_create("ipw2200", &priv->pci_dev->dev, CB_MAX_LENGTH, 0,
3231                                0);
3232         if (!pool) {
3233                 IPW_ERROR("dma_pool_create failed\n");
3234                 kfree(phys);
3235                 kfree(virts);
3236                 return -ENOMEM;
3237         }
3238
3239         /* Start the Dma */
3240         ret = ipw_fw_dma_enable(priv);
3241
3242         /* the DMA is already ready this would be a bug. */
3243         BUG_ON(priv->sram_desc.last_cb_index > 0);
3244
3245         do {
3246                 u32 chunk_len;
3247                 u8 *start;
3248                 int size;
3249                 int nr = 0;
3250
3251                 chunk = (struct fw_chunk *)(data + offset);
3252                 offset += sizeof(struct fw_chunk);
3253                 chunk_len = le32_to_cpu(chunk->length);
3254                 start = data + offset;
3255
3256                 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3257                 for (i = 0; i < nr; i++) {
3258                         virts[total_nr] = dma_pool_alloc(pool, GFP_KERNEL,
3259                                                          &phys[total_nr]);
3260                         if (!virts[total_nr]) {
3261                                 ret = -ENOMEM;
3262                                 goto out;
3263                         }
3264                         size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3265                                      CB_MAX_LENGTH);
3266                         memcpy(virts[total_nr], start, size);
3267                         start += size;
3268                         total_nr++;
3269                         /* We don't support fw chunk larger than 64*8K */
3270                         BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3271                 }
3272
3273                 /* build DMA packet and queue up for sending */
3274                 /* dma to chunk->address, the chunk->length bytes from data +
3275                  * offeset*/
3276                 /* Dma loading */
3277                 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3278                                             nr, le32_to_cpu(chunk->address),
3279                                             chunk_len);
3280                 if (ret) {
3281                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3282                         goto out;
3283                 }
3284
3285                 offset += chunk_len;
3286         } while (offset < len);
3287
3288         /* Run the DMA and wait for the answer */
3289         ret = ipw_fw_dma_kick(priv);
3290         if (ret) {
3291                 IPW_ERROR("dmaKick Failed\n");
3292                 goto out;
3293         }
3294
3295         ret = ipw_fw_dma_wait(priv);
3296         if (ret) {
3297                 IPW_ERROR("dmaWaitSync Failed\n");
3298                 goto out;
3299         }
3300  out:
3301         for (i = 0; i < total_nr; i++)
3302                 dma_pool_free(pool, virts[i], phys[i]);
3303
3304         dma_pool_destroy(pool);
3305         kfree(phys);
3306         kfree(virts);
3307
3308         return ret;
3309 }
3310
3311 /* stop nic */
3312 static int ipw_stop_nic(struct ipw_priv *priv)
3313 {
3314         int rc = 0;
3315
3316         /* stop */
3317         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3318
3319         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3320                           IPW_RESET_REG_MASTER_DISABLED, 500);
3321         if (rc < 0) {
3322                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3323                 return rc;
3324         }
3325
3326         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3327
3328         return rc;
3329 }
3330
3331 static void ipw_start_nic(struct ipw_priv *priv)
3332 {
3333         IPW_DEBUG_TRACE(">>\n");
3334
3335         /* prvHwStartNic  release ARC */
3336         ipw_clear_bit(priv, IPW_RESET_REG,
3337                       IPW_RESET_REG_MASTER_DISABLED |
3338                       IPW_RESET_REG_STOP_MASTER |
3339                       CBD_RESET_REG_PRINCETON_RESET);
3340
3341         /* enable power management */
3342         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3343                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3344
3345         IPW_DEBUG_TRACE("<<\n");
3346 }
3347
3348 static int ipw_init_nic(struct ipw_priv *priv)
3349 {
3350         int rc;
3351
3352         IPW_DEBUG_TRACE(">>\n");
3353         /* reset */
3354         /*prvHwInitNic */
3355         /* set "initialization complete" bit to move adapter to D0 state */
3356         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3357
3358         /* low-level PLL activation */
3359         ipw_write32(priv, IPW_READ_INT_REGISTER,
3360                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3361
3362         /* wait for clock stabilization */
3363         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3364                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3365         if (rc < 0)
3366                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3367
3368         /* assert SW reset */
3369         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3370
3371         udelay(10);
3372
3373         /* set "initialization complete" bit to move adapter to D0 state */
3374         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3375
3376         IPW_DEBUG_TRACE(">>\n");
3377         return 0;
3378 }
3379
3380 /* Call this function from process context, it will sleep in request_firmware.
3381  * Probe is an ok place to call this from.
3382  */
3383 static int ipw_reset_nic(struct ipw_priv *priv)
3384 {
3385         int rc = 0;
3386         unsigned long flags;
3387
3388         IPW_DEBUG_TRACE(">>\n");
3389
3390         rc = ipw_init_nic(priv);
3391
3392         spin_lock_irqsave(&priv->lock, flags);
3393         /* Clear the 'host command active' bit... */
3394         priv->status &= ~STATUS_HCMD_ACTIVE;
3395         wake_up_interruptible(&priv->wait_command_queue);
3396         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3397         wake_up_interruptible(&priv->wait_state);
3398         spin_unlock_irqrestore(&priv->lock, flags);
3399
3400         IPW_DEBUG_TRACE("<<\n");
3401         return rc;
3402 }
3403
3404
3405 struct ipw_fw {
3406         __le32 ver;
3407         __le32 boot_size;
3408         __le32 ucode_size;
3409         __le32 fw_size;
3410         u8 data[0];
3411 };
3412
3413 static int ipw_get_fw(struct ipw_priv *priv,
3414                       const struct firmware **raw, const char *name)
3415 {
3416         struct ipw_fw *fw;
3417         int rc;
3418
3419         /* ask firmware_class module to get the boot firmware off disk */
3420         rc = reject_firmware(raw, name, &priv->pci_dev->dev);
3421         if (rc < 0) {
3422                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3423                 return rc;
3424         }
3425
3426         if ((*raw)->size < sizeof(*fw)) {
3427                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3428                 return -EINVAL;
3429         }
3430
3431         fw = (void *)(*raw)->data;
3432
3433         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3434             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3435                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3436                           name, (*raw)->size);
3437                 return -EINVAL;
3438         }
3439
3440         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3441                        name,
3442                        le32_to_cpu(fw->ver) >> 16,
3443                        le32_to_cpu(fw->ver) & 0xff,
3444                        (*raw)->size - sizeof(*fw));
3445         return 0;
3446 }
3447
3448 #define IPW_RX_BUF_SIZE (3000)
3449
3450 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3451                                       struct ipw_rx_queue *rxq)
3452 {
3453         unsigned long flags;
3454         int i;
3455
3456         spin_lock_irqsave(&rxq->lock, flags);
3457
3458         INIT_LIST_HEAD(&rxq->rx_free);
3459         INIT_LIST_HEAD(&rxq->rx_used);
3460
3461         /* Fill the rx_used queue with _all_ of the Rx buffers */
3462         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3463                 /* In the reset function, these buffers may have been allocated
3464                  * to an SKB, so we need to unmap and free potential storage */
3465                 if (rxq->pool[i].skb != NULL) {
3466                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3467                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3468                         dev_kfree_skb(rxq->pool[i].skb);
3469                         rxq->pool[i].skb = NULL;
3470                 }
3471                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3472         }
3473
3474         /* Set us so that we have processed and used all buffers, but have
3475          * not restocked the Rx queue with fresh buffers */
3476         rxq->read = rxq->write = 0;
3477         rxq->free_count = 0;
3478         spin_unlock_irqrestore(&rxq->lock, flags);
3479 }
3480
3481 #ifdef CONFIG_PM
3482 static int fw_loaded = 0;
3483 static const struct firmware *raw = NULL;
3484
3485 static void free_firmware(void)
3486 {
3487         if (fw_loaded) {
3488                 release_firmware(raw);
3489                 raw = NULL;
3490                 fw_loaded = 0;
3491         }
3492 }
3493 #else
3494 #define free_firmware() do {} while (0)
3495 #endif
3496
3497 static int ipw_load(struct ipw_priv *priv)
3498 {
3499 #ifndef CONFIG_PM
3500         const struct firmware *raw = NULL;
3501 #endif
3502         struct ipw_fw *fw;
3503         u8 *boot_img, *ucode_img, *fw_img;
3504         u8 *name = NULL;
3505         int rc = 0, retries = 3;
3506
3507         switch (priv->ieee->iw_mode) {
3508         case IW_MODE_ADHOC:
3509                 name = "/*(DEBLOBBED)*/";
3510                 break;
3511 #ifdef CONFIG_IPW2200_MONITOR
3512         case IW_MODE_MONITOR:
3513                 name = "/*(DEBLOBBED)*/";
3514                 break;
3515 #endif
3516         case IW_MODE_INFRA:
3517                 name = "/*(DEBLOBBED)*/";
3518                 break;
3519         }
3520
3521         if (!name) {
3522                 rc = -EINVAL;
3523                 goto error;
3524         }
3525
3526 #ifdef CONFIG_PM
3527         if (!fw_loaded) {
3528 #endif
3529                 rc = ipw_get_fw(priv, &raw, name);
3530                 if (rc < 0)
3531                         goto error;
3532 #ifdef CONFIG_PM
3533         }
3534 #endif
3535
3536         fw = (void *)raw->data;
3537         boot_img = &fw->data[0];
3538         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3539         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3540                            le32_to_cpu(fw->ucode_size)];
3541
3542         if (!priv->rxq)
3543                 priv->rxq = ipw_rx_queue_alloc(priv);
3544         else
3545                 ipw_rx_queue_reset(priv, priv->rxq);
3546         if (!priv->rxq) {
3547                 IPW_ERROR("Unable to initialize Rx queue\n");
3548                 rc = -ENOMEM;
3549                 goto error;
3550         }
3551
3552       retry:
3553         /* Ensure interrupts are disabled */
3554         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3555         priv->status &= ~STATUS_INT_ENABLED;
3556
3557         /* ack pending interrupts */
3558         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3559
3560         ipw_stop_nic(priv);
3561
3562         rc = ipw_reset_nic(priv);
3563         if (rc < 0) {
3564                 IPW_ERROR("Unable to reset NIC\n");
3565                 goto error;
3566         }
3567
3568         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3569                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3570
3571         /* DMA the initial boot firmware into the device */
3572         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3573         if (rc < 0) {
3574                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3575                 goto error;
3576         }
3577
3578         /* kick start the device */
3579         ipw_start_nic(priv);
3580
3581         /* wait for the device to finish its initial startup sequence */
3582         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3583                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3584         if (rc < 0) {
3585                 IPW_ERROR("device failed to boot initial fw image\n");
3586                 goto error;
3587         }
3588         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3589
3590         /* ack fw init done interrupt */
3591         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3592
3593         /* DMA the ucode into the device */
3594         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3595         if (rc < 0) {
3596                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3597                 goto error;
3598         }
3599
3600         /* stop nic */
3601         ipw_stop_nic(priv);
3602
3603         /* DMA bss firmware into the device */
3604         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3605         if (rc < 0) {
3606                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3607                 goto error;
3608         }
3609 #ifdef CONFIG_PM
3610         fw_loaded = 1;
3611 #endif
3612
3613         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3614
3615         rc = ipw_queue_reset(priv);
3616         if (rc < 0) {
3617                 IPW_ERROR("Unable to initialize queues\n");
3618                 goto error;
3619         }
3620
3621         /* Ensure interrupts are disabled */
3622         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3623         /* ack pending interrupts */
3624         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3625
3626         /* kick start the device */
3627         ipw_start_nic(priv);
3628
3629         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3630                 if (retries > 0) {
3631                         IPW_WARNING("Parity error.  Retrying init.\n");
3632                         retries--;
3633                         goto retry;
3634                 }
3635
3636                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3637                 rc = -EIO;
3638                 goto error;
3639         }
3640
3641         /* wait for the device */
3642         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3643                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3644         if (rc < 0) {
3645                 IPW_ERROR("device failed to start within 500ms\n");
3646                 goto error;
3647         }
3648         IPW_DEBUG_INFO("device response after %dms\n", rc);
3649
3650         /* ack fw init done interrupt */
3651         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3652
3653         /* read eeprom data */
3654         priv->eeprom_delay = 1;
3655         ipw_read_eeprom(priv);
3656         /* initialize the eeprom region of sram */
3657         ipw_eeprom_init_sram(priv);
3658
3659         /* enable interrupts */
3660         ipw_enable_interrupts(priv);
3661
3662         /* Ensure our queue has valid packets */
3663         ipw_rx_queue_replenish(priv);
3664
3665         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3666
3667         /* ack pending interrupts */
3668         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3669
3670 #ifndef CONFIG_PM
3671         release_firmware(raw);
3672 #endif
3673         return 0;
3674
3675       error:
3676         if (priv->rxq) {
3677                 ipw_rx_queue_free(priv, priv->rxq);
3678                 priv->rxq = NULL;
3679         }
3680         ipw_tx_queue_free(priv);
3681         release_firmware(raw);
3682 #ifdef CONFIG_PM
3683         fw_loaded = 0;
3684         raw = NULL;
3685 #endif
3686
3687         return rc;
3688 }
3689
3690 /**
3691  * DMA services
3692  *
3693  * Theory of operation
3694  *
3695  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3696  * 2 empty entries always kept in the buffer to protect from overflow.
3697  *
3698  * For Tx queue, there are low mark and high mark limits. If, after queuing
3699  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3700  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3701  * Tx queue resumed.
3702  *
3703  * The IPW operates with six queues, one receive queue in the device's
3704  * sram, one transmit queue for sending commands to the device firmware,
3705  * and four transmit queues for data.
3706  *
3707  * The four transmit queues allow for performing quality of service (qos)
3708  * transmissions as per the 802.11 protocol.  Currently Linux does not
3709  * provide a mechanism to the user for utilizing prioritized queues, so
3710  * we only utilize the first data transmit queue (queue1).
3711  */
3712
3713 /**
3714  * Driver allocates buffers of this size for Rx
3715  */
3716
3717 /**
3718  * ipw_rx_queue_space - Return number of free slots available in queue.
3719  */
3720 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3721 {
3722         int s = q->read - q->write;
3723         if (s <= 0)
3724                 s += RX_QUEUE_SIZE;
3725         /* keep some buffer to not confuse full and empty queue */
3726         s -= 2;
3727         if (s < 0)
3728                 s = 0;
3729         return s;
3730 }
3731
3732 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3733 {
3734         int s = q->last_used - q->first_empty;
3735         if (s <= 0)
3736                 s += q->n_bd;
3737         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3738         if (s < 0)
3739                 s = 0;
3740         return s;
3741 }
3742
3743 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3744 {
3745         return (++index == n_bd) ? 0 : index;
3746 }
3747
3748 /**
3749  * Initialize common DMA queue structure
3750  *
3751  * @param q                queue to init
3752  * @param count            Number of BD's to allocate. Should be power of 2
3753  * @param read_register    Address for 'read' register
3754  *                         (not offset within BAR, full address)
3755  * @param write_register   Address for 'write' register
3756  *                         (not offset within BAR, full address)
3757  * @param base_register    Address for 'base' register
3758  *                         (not offset within BAR, full address)
3759  * @param size             Address for 'size' register
3760  *                         (not offset within BAR, full address)
3761  */
3762 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3763                            int count, u32 read, u32 write, u32 base, u32 size)
3764 {
3765         q->n_bd = count;
3766
3767         q->low_mark = q->n_bd / 4;
3768         if (q->low_mark < 4)
3769                 q->low_mark = 4;
3770
3771         q->high_mark = q->n_bd / 8;
3772         if (q->high_mark < 2)
3773                 q->high_mark = 2;
3774
3775         q->first_empty = q->last_used = 0;
3776         q->reg_r = read;
3777         q->reg_w = write;
3778
3779         ipw_write32(priv, base, q->dma_addr);
3780         ipw_write32(priv, size, count);
3781         ipw_write32(priv, read, 0);
3782         ipw_write32(priv, write, 0);
3783
3784         _ipw_read32(priv, 0x90);
3785 }
3786
3787 static int ipw_queue_tx_init(struct ipw_priv *priv,
3788                              struct clx2_tx_queue *q,
3789                              int count, u32 read, u32 write, u32 base, u32 size)
3790 {
3791         struct pci_dev *dev = priv->pci_dev;
3792
3793         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3794         if (!q->txb) {
3795                 IPW_ERROR("vmalloc for auxiliary BD structures failed\n");
3796                 return -ENOMEM;
3797         }
3798
3799         q->bd =
3800             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3801         if (!q->bd) {
3802                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3803                           sizeof(q->bd[0]) * count);
3804                 kfree(q->txb);
3805                 q->txb = NULL;
3806                 return -ENOMEM;
3807         }
3808
3809         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3810         return 0;
3811 }
3812
3813 /**
3814  * Free one TFD, those at index [txq->q.last_used].
3815  * Do NOT advance any indexes
3816  *
3817  * @param dev
3818  * @param txq
3819  */
3820 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3821                                   struct clx2_tx_queue *txq)
3822 {
3823         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3824         struct pci_dev *dev = priv->pci_dev;
3825         int i;
3826
3827         /* classify bd */
3828         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3829                 /* nothing to cleanup after for host commands */
3830                 return;
3831
3832         /* sanity check */
3833         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3834                 IPW_ERROR("Too many chunks: %i\n",
3835                           le32_to_cpu(bd->u.data.num_chunks));
3836                 /** @todo issue fatal error, it is quite serious situation */
3837                 return;
3838         }
3839
3840         /* unmap chunks if any */
3841         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3842                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3843                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3844                                  PCI_DMA_TODEVICE);
3845                 if (txq->txb[txq->q.last_used]) {
3846                         libipw_txb_free(txq->txb[txq->q.last_used]);
3847                         txq->txb[txq->q.last_used] = NULL;
3848                 }
3849         }
3850 }
3851
3852 /**
3853  * Deallocate DMA queue.
3854  *
3855  * Empty queue by removing and destroying all BD's.
3856  * Free all buffers.
3857  *
3858  * @param dev
3859  * @param q
3860  */
3861 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3862 {
3863         struct clx2_queue *q = &txq->q;
3864         struct pci_dev *dev = priv->pci_dev;
3865
3866         if (q->n_bd == 0)
3867                 return;
3868
3869         /* first, empty all BD's */
3870         for (; q->first_empty != q->last_used;
3871              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3872                 ipw_queue_tx_free_tfd(priv, txq);
3873         }
3874
3875         /* free buffers belonging to queue itself */
3876         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3877                             q->dma_addr);
3878         kfree(txq->txb);
3879
3880         /* 0 fill whole structure */
3881         memset(txq, 0, sizeof(*txq));
3882 }
3883
3884 /**
3885  * Destroy all DMA queues and structures
3886  *
3887  * @param priv
3888  */
3889 static void ipw_tx_queue_free(struct ipw_priv *priv)
3890 {
3891         /* Tx CMD queue */
3892         ipw_queue_tx_free(priv, &priv->txq_cmd);
3893
3894         /* Tx queues */
3895         ipw_queue_tx_free(priv, &priv->txq[0]);
3896         ipw_queue_tx_free(priv, &priv->txq[1]);
3897         ipw_queue_tx_free(priv, &priv->txq[2]);
3898         ipw_queue_tx_free(priv, &priv->txq[3]);
3899 }
3900
3901 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3902 {
3903         /* First 3 bytes are manufacturer */
3904         bssid[0] = priv->mac_addr[0];
3905         bssid[1] = priv->mac_addr[1];
3906         bssid[2] = priv->mac_addr[2];
3907
3908         /* Last bytes are random */
3909         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3910
3911         bssid[0] &= 0xfe;       /* clear multicast bit */
3912         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3913 }
3914
3915 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3916 {
3917         struct ipw_station_entry entry;
3918         int i;
3919
3920         for (i = 0; i < priv->num_stations; i++) {
3921                 if (ether_addr_equal(priv->stations[i], bssid)) {
3922                         /* Another node is active in network */
3923                         priv->missed_adhoc_beacons = 0;
3924                         if (!(priv->config & CFG_STATIC_CHANNEL))
3925                                 /* when other nodes drop out, we drop out */
3926                                 priv->config &= ~CFG_ADHOC_PERSIST;
3927
3928                         return i;
3929                 }
3930         }
3931
3932         if (i == MAX_STATIONS)
3933                 return IPW_INVALID_STATION;
3934
3935         IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3936
3937         entry.reserved = 0;
3938         entry.support_mode = 0;
3939         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3940         memcpy(priv->stations[i], bssid, ETH_ALEN);
3941         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3942                          &entry, sizeof(entry));
3943         priv->num_stations++;
3944
3945         return i;
3946 }
3947
3948 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3949 {
3950         int i;
3951
3952         for (i = 0; i < priv->num_stations; i++)
3953                 if (ether_addr_equal(priv->stations[i], bssid))
3954                         return i;
3955
3956         return IPW_INVALID_STATION;
3957 }
3958
3959 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3960 {
3961         int err;
3962
3963         if (priv->status & STATUS_ASSOCIATING) {
3964                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3965                 schedule_work(&priv->disassociate);
3966                 return;
3967         }
3968
3969         if (!(priv->status & STATUS_ASSOCIATED)) {
3970                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3971                 return;
3972         }
3973
3974         IPW_DEBUG_ASSOC("Disassociation attempt from %pM "
3975                         "on channel %d.\n",
3976                         priv->assoc_request.bssid,
3977                         priv->assoc_request.channel);
3978
3979         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3980         priv->status |= STATUS_DISASSOCIATING;
3981
3982         if (quiet)
3983                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3984         else
3985                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3986
3987         err = ipw_send_associate(priv, &priv->assoc_request);
3988         if (err) {
3989                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3990                              "failed.\n");
3991                 return;
3992         }
3993
3994 }
3995
3996 static int ipw_disassociate(void *data)
3997 {
3998         struct ipw_priv *priv = data;
3999         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
4000                 return 0;
4001         ipw_send_disassociate(data, 0);
4002         netif_carrier_off(priv->net_dev);
4003         return 1;
4004 }
4005
4006 static void ipw_bg_disassociate(struct work_struct *work)
4007 {
4008         struct ipw_priv *priv =
4009                 container_of(work, struct ipw_priv, disassociate);
4010         mutex_lock(&priv->mutex);
4011         ipw_disassociate(priv);
4012         mutex_unlock(&priv->mutex);
4013 }
4014
4015 static void ipw_system_config(struct work_struct *work)
4016 {
4017         struct ipw_priv *priv =
4018                 container_of(work, struct ipw_priv, system_config);
4019
4020 #ifdef CONFIG_IPW2200_PROMISCUOUS
4021         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
4022                 priv->sys_config.accept_all_data_frames = 1;
4023                 priv->sys_config.accept_non_directed_frames = 1;
4024                 priv->sys_config.accept_all_mgmt_bcpr = 1;
4025                 priv->sys_config.accept_all_mgmt_frames = 1;
4026         }
4027 #endif
4028
4029         ipw_send_system_config(priv);
4030 }
4031
4032 struct ipw_status_code {
4033         u16 status;
4034         const char *reason;
4035 };
4036
4037 static const struct ipw_status_code ipw_status_codes[] = {
4038         {0x00, "Successful"},
4039         {0x01, "Unspecified failure"},
4040         {0x0A, "Cannot support all requested capabilities in the "
4041          "Capability information field"},
4042         {0x0B, "Reassociation denied due to inability to confirm that "
4043          "association exists"},
4044         {0x0C, "Association denied due to reason outside the scope of this "
4045          "standard"},
4046         {0x0D,
4047          "Responding station does not support the specified authentication "
4048          "algorithm"},
4049         {0x0E,
4050          "Received an Authentication frame with authentication sequence "
4051          "transaction sequence number out of expected sequence"},
4052         {0x0F, "Authentication rejected because of challenge failure"},
4053         {0x10, "Authentication rejected due to timeout waiting for next "
4054          "frame in sequence"},
4055         {0x11, "Association denied because AP is unable to handle additional "
4056          "associated stations"},
4057         {0x12,
4058          "Association denied due to requesting station not supporting all "
4059          "of the datarates in the BSSBasicServiceSet Parameter"},
4060         {0x13,
4061          "Association denied due to requesting station not supporting "
4062          "short preamble operation"},
4063         {0x14,
4064          "Association denied due to requesting station not supporting "
4065          "PBCC encoding"},
4066         {0x15,
4067          "Association denied due to requesting station not supporting "
4068          "channel agility"},
4069         {0x19,
4070          "Association denied due to requesting station not supporting "
4071          "short slot operation"},
4072         {0x1A,
4073          "Association denied due to requesting station not supporting "
4074          "DSSS-OFDM operation"},
4075         {0x28, "Invalid Information Element"},
4076         {0x29, "Group Cipher is not valid"},
4077         {0x2A, "Pairwise Cipher is not valid"},
4078         {0x2B, "AKMP is not valid"},
4079         {0x2C, "Unsupported RSN IE version"},
4080         {0x2D, "Invalid RSN IE Capabilities"},
4081         {0x2E, "Cipher suite is rejected per security policy"},
4082 };
4083
4084 static const char *ipw_get_status_code(u16 status)
4085 {
4086         int i;
4087         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4088                 if (ipw_status_codes[i].status == (status & 0xff))
4089                         return ipw_status_codes[i].reason;
4090         return "Unknown status value.";
4091 }
4092
4093 static inline void average_init(struct average *avg)
4094 {
4095         memset(avg, 0, sizeof(*avg));
4096 }
4097
4098 #define DEPTH_RSSI 8
4099 #define DEPTH_NOISE 16
4100 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4101 {
4102         return ((depth-1)*prev_avg +  val)/depth;
4103 }
4104
4105 static void average_add(struct average *avg, s16 val)
4106 {
4107         avg->sum -= avg->entries[avg->pos];
4108         avg->sum += val;
4109         avg->entries[avg->pos++] = val;
4110         if (unlikely(avg->pos == AVG_ENTRIES)) {
4111                 avg->init = 1;
4112                 avg->pos = 0;
4113         }
4114 }
4115
4116 static s16 average_value(struct average *avg)
4117 {
4118         if (!unlikely(avg->init)) {
4119                 if (avg->pos)
4120                         return avg->sum / avg->pos;
4121                 return 0;
4122         }
4123
4124         return avg->sum / AVG_ENTRIES;
4125 }
4126
4127 static void ipw_reset_stats(struct ipw_priv *priv)
4128 {
4129         u32 len = sizeof(u32);
4130
4131         priv->quality = 0;
4132
4133         average_init(&priv->average_missed_beacons);
4134         priv->exp_avg_rssi = -60;
4135         priv->exp_avg_noise = -85 + 0x100;
4136
4137         priv->last_rate = 0;
4138         priv->last_missed_beacons = 0;
4139         priv->last_rx_packets = 0;
4140         priv->last_tx_packets = 0;
4141         priv->last_tx_failures = 0;
4142
4143         /* Firmware managed, reset only when NIC is restarted, so we have to
4144          * normalize on the current value */
4145         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4146                         &priv->last_rx_err, &len);
4147         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4148                         &priv->last_tx_failures, &len);
4149
4150         /* Driver managed, reset with each association */
4151         priv->missed_adhoc_beacons = 0;
4152         priv->missed_beacons = 0;
4153         priv->tx_packets = 0;
4154         priv->rx_packets = 0;
4155
4156 }
4157
4158 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4159 {
4160         u32 i = 0x80000000;
4161         u32 mask = priv->rates_mask;
4162         /* If currently associated in B mode, restrict the maximum
4163          * rate match to B rates */
4164         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4165                 mask &= LIBIPW_CCK_RATES_MASK;
4166
4167         /* TODO: Verify that the rate is supported by the current rates
4168          * list. */
4169
4170         while (i && !(mask & i))
4171                 i >>= 1;
4172         switch (i) {
4173         case LIBIPW_CCK_RATE_1MB_MASK:
4174                 return 1000000;
4175         case LIBIPW_CCK_RATE_2MB_MASK:
4176                 return 2000000;
4177         case LIBIPW_CCK_RATE_5MB_MASK:
4178                 return 5500000;
4179         case LIBIPW_OFDM_RATE_6MB_MASK:
4180                 return 6000000;
4181         case LIBIPW_OFDM_RATE_9MB_MASK:
4182                 return 9000000;
4183         case LIBIPW_CCK_RATE_11MB_MASK:
4184                 return 11000000;
4185         case LIBIPW_OFDM_RATE_12MB_MASK:
4186                 return 12000000;
4187         case LIBIPW_OFDM_RATE_18MB_MASK:
4188                 return 18000000;
4189         case LIBIPW_OFDM_RATE_24MB_MASK:
4190                 return 24000000;
4191         case LIBIPW_OFDM_RATE_36MB_MASK:
4192                 return 36000000;
4193         case LIBIPW_OFDM_RATE_48MB_MASK:
4194                 return 48000000;
4195         case LIBIPW_OFDM_RATE_54MB_MASK:
4196                 return 54000000;
4197         }
4198
4199         if (priv->ieee->mode == IEEE_B)
4200                 return 11000000;
4201         else
4202                 return 54000000;
4203 }
4204
4205 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4206 {
4207         u32 rate, len = sizeof(rate);
4208         int err;
4209
4210         if (!(priv->status & STATUS_ASSOCIATED))
4211                 return 0;
4212
4213         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4214                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4215                                       &len);
4216                 if (err) {
4217                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4218                         return 0;
4219                 }
4220         } else
4221                 return ipw_get_max_rate(priv);
4222
4223         switch (rate) {
4224         case IPW_TX_RATE_1MB:
4225                 return 1000000;
4226         case IPW_TX_RATE_2MB:
4227                 return 2000000;
4228         case IPW_TX_RATE_5MB:
4229                 return 5500000;
4230         case IPW_TX_RATE_6MB:
4231                 return 6000000;
4232         case IPW_TX_RATE_9MB:
4233                 return 9000000;
4234         case IPW_TX_RATE_11MB:
4235                 return 11000000;
4236         case IPW_TX_RATE_12MB:
4237                 return 12000000;
4238         case IPW_TX_RATE_18MB:
4239                 return 18000000;
4240         case IPW_TX_RATE_24MB:
4241                 return 24000000;
4242         case IPW_TX_RATE_36MB:
4243                 return 36000000;
4244         case IPW_TX_RATE_48MB:
4245                 return 48000000;
4246         case IPW_TX_RATE_54MB:
4247                 return 54000000;
4248         }
4249
4250         return 0;
4251 }
4252
4253 #define IPW_STATS_INTERVAL (2 * HZ)
4254 static void ipw_gather_stats(struct ipw_priv *priv)
4255 {
4256         u32 rx_err, rx_err_delta, rx_packets_delta;
4257         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4258         u32 missed_beacons_percent, missed_beacons_delta;
4259         u32 quality = 0;
4260         u32 len = sizeof(u32);
4261         s16 rssi;
4262         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4263             rate_quality;
4264         u32 max_rate;
4265
4266         if (!(priv->status & STATUS_ASSOCIATED)) {
4267                 priv->quality = 0;
4268                 return;
4269         }
4270
4271         /* Update the statistics */
4272         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4273                         &priv->missed_beacons, &len);
4274         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4275         priv->last_missed_beacons = priv->missed_beacons;
4276         if (priv->assoc_request.beacon_interval) {
4277                 missed_beacons_percent = missed_beacons_delta *
4278                     (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4279                     (IPW_STATS_INTERVAL * 10);
4280         } else {
4281                 missed_beacons_percent = 0;
4282         }
4283         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4284
4285         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4286         rx_err_delta = rx_err - priv->last_rx_err;
4287         priv->last_rx_err = rx_err;
4288
4289         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4290         tx_failures_delta = tx_failures - priv->last_tx_failures;
4291         priv->last_tx_failures = tx_failures;
4292
4293         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4294         priv->last_rx_packets = priv->rx_packets;
4295
4296         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4297         priv->last_tx_packets = priv->tx_packets;
4298
4299         /* Calculate quality based on the following:
4300          *
4301          * Missed beacon: 100% = 0, 0% = 70% missed
4302          * Rate: 60% = 1Mbs, 100% = Max
4303          * Rx and Tx errors represent a straight % of total Rx/Tx
4304          * RSSI: 100% = > -50,  0% = < -80
4305          * Rx errors: 100% = 0, 0% = 50% missed
4306          *
4307          * The lowest computed quality is used.
4308          *
4309          */
4310 #define BEACON_THRESHOLD 5
4311         beacon_quality = 100 - missed_beacons_percent;
4312         if (beacon_quality < BEACON_THRESHOLD)
4313                 beacon_quality = 0;
4314         else
4315                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4316                     (100 - BEACON_THRESHOLD);
4317         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4318                         beacon_quality, missed_beacons_percent);
4319
4320         priv->last_rate = ipw_get_current_rate(priv);
4321         max_rate = ipw_get_max_rate(priv);
4322         rate_quality = priv->last_rate * 40 / max_rate + 60;
4323         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4324                         rate_quality, priv->last_rate / 1000000);
4325
4326         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4327                 rx_quality = 100 - (rx_err_delta * 100) /
4328                     (rx_packets_delta + rx_err_delta);
4329         else
4330                 rx_quality = 100;
4331         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4332                         rx_quality, rx_err_delta, rx_packets_delta);
4333
4334         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4335                 tx_quality = 100 - (tx_failures_delta * 100) /
4336                     (tx_packets_delta + tx_failures_delta);
4337         else
4338                 tx_quality = 100;
4339         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4340                         tx_quality, tx_failures_delta, tx_packets_delta);
4341
4342         rssi = priv->exp_avg_rssi;
4343         signal_quality =
4344             (100 *
4345              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4346              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4347              (priv->ieee->perfect_rssi - rssi) *
4348              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4349               62 * (priv->ieee->perfect_rssi - rssi))) /
4350             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4351              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4352         if (signal_quality > 100)
4353                 signal_quality = 100;
4354         else if (signal_quality < 1)
4355                 signal_quality = 0;
4356
4357         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4358                         signal_quality, rssi);
4359
4360         quality = min(rx_quality, signal_quality);
4361         quality = min(tx_quality, quality);
4362         quality = min(rate_quality, quality);
4363         quality = min(beacon_quality, quality);
4364         if (quality == beacon_quality)
4365                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4366                                 quality);
4367         if (quality == rate_quality)
4368                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4369                                 quality);
4370         if (quality == tx_quality)
4371                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4372                                 quality);
4373         if (quality == rx_quality)
4374                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4375                                 quality);
4376         if (quality == signal_quality)
4377                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4378                                 quality);
4379
4380         priv->quality = quality;
4381
4382         schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4383 }
4384
4385 static void ipw_bg_gather_stats(struct work_struct *work)
4386 {
4387         struct ipw_priv *priv =
4388                 container_of(work, struct ipw_priv, gather_stats.work);
4389         mutex_lock(&priv->mutex);
4390         ipw_gather_stats(priv);
4391         mutex_unlock(&priv->mutex);
4392 }
4393
4394 /* Missed beacon behavior:
4395  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4396  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4397  * Above disassociate threshold, give up and stop scanning.
4398  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4399 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4400                                             int missed_count)
4401 {
4402         priv->notif_missed_beacons = missed_count;
4403
4404         if (missed_count > priv->disassociate_threshold &&
4405             priv->status & STATUS_ASSOCIATED) {
4406                 /* If associated and we've hit the missed
4407                  * beacon threshold, disassociate, turn
4408                  * off roaming, and abort any active scans */
4409                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4410                           IPW_DL_STATE | IPW_DL_ASSOC,
4411                           "Missed beacon: %d - disassociate\n", missed_count);
4412                 priv->status &= ~STATUS_ROAMING;
4413                 if (priv->status & STATUS_SCANNING) {
4414                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4415                                   IPW_DL_STATE,
4416                                   "Aborting scan with missed beacon.\n");
4417                         schedule_work(&priv->abort_scan);
4418                 }
4419
4420                 schedule_work(&priv->disassociate);
4421                 return;
4422         }
4423
4424         if (priv->status & STATUS_ROAMING) {
4425                 /* If we are currently roaming, then just
4426                  * print a debug statement... */
4427                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4428                           "Missed beacon: %d - roam in progress\n",
4429                           missed_count);
4430                 return;
4431         }
4432
4433         if (roaming &&
4434             (missed_count > priv->roaming_threshold &&
4435              missed_count <= priv->disassociate_threshold)) {
4436                 /* If we are not already roaming, set the ROAM
4437                  * bit in the status and kick off a scan.
4438                  * This can happen several times before we reach
4439                  * disassociate_threshold. */
4440                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4441                           "Missed beacon: %d - initiate "
4442                           "roaming\n", missed_count);
4443                 if (!(priv->status & STATUS_ROAMING)) {
4444                         priv->status |= STATUS_ROAMING;
4445                         if (!(priv->status & STATUS_SCANNING))
4446                                 schedule_delayed_work(&priv->request_scan, 0);
4447                 }
4448                 return;
4449         }
4450
4451         if (priv->status & STATUS_SCANNING &&
4452             missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4453                 /* Stop scan to keep fw from getting
4454                  * stuck (only if we aren't roaming --
4455                  * otherwise we'll never scan more than 2 or 3
4456                  * channels..) */
4457                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4458                           "Aborting scan with missed beacon.\n");
4459                 schedule_work(&priv->abort_scan);
4460         }
4461
4462         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4463 }
4464
4465 static void ipw_scan_event(struct work_struct *work)
4466 {
4467         union iwreq_data wrqu;
4468
4469         struct ipw_priv *priv =
4470                 container_of(work, struct ipw_priv, scan_event.work);
4471
4472         wrqu.data.length = 0;
4473         wrqu.data.flags = 0;
4474         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4475 }
4476
4477 static void handle_scan_event(struct ipw_priv *priv)
4478 {
4479         /* Only userspace-requested scan completion events go out immediately */
4480         if (!priv->user_requested_scan) {
4481                 schedule_delayed_work(&priv->scan_event,
4482                                       round_jiffies_relative(msecs_to_jiffies(4000)));
4483         } else {
4484                 priv->user_requested_scan = 0;
4485                 mod_delayed_work(system_wq, &priv->scan_event, 0);
4486         }
4487 }
4488
4489 /**
4490  * Handle host notification packet.
4491  * Called from interrupt routine
4492  */
4493 static void ipw_rx_notification(struct ipw_priv *priv,
4494                                        struct ipw_rx_notification *notif)
4495 {
4496         u16 size = le16_to_cpu(notif->size);
4497
4498         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4499
4500         switch (notif->subtype) {
4501         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4502                         struct notif_association *assoc = &notif->u.assoc;
4503
4504                         switch (assoc->state) {
4505                         case CMAS_ASSOCIATED:{
4506                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4507                                                   IPW_DL_ASSOC,
4508                                                   "associated: '%*pE' %pM\n",
4509                                                   priv->essid_len, priv->essid,
4510                                                   priv->bssid);
4511
4512                                         switch (priv->ieee->iw_mode) {
4513                                         case IW_MODE_INFRA:
4514                                                 memcpy(priv->ieee->bssid,
4515                                                        priv->bssid, ETH_ALEN);
4516                                                 break;
4517
4518                                         case IW_MODE_ADHOC:
4519                                                 memcpy(priv->ieee->bssid,
4520                                                        priv->bssid, ETH_ALEN);
4521
4522                                                 /* clear out the station table */
4523                                                 priv->num_stations = 0;
4524
4525                                                 IPW_DEBUG_ASSOC
4526                                                     ("queueing adhoc check\n");
4527                                                 schedule_delayed_work(
4528                                                         &priv->adhoc_check,
4529                                                         le16_to_cpu(priv->
4530                                                         assoc_request.
4531                                                         beacon_interval));
4532                                                 break;
4533                                         }
4534
4535                                         priv->status &= ~STATUS_ASSOCIATING;
4536                                         priv->status |= STATUS_ASSOCIATED;
4537                                         schedule_work(&priv->system_config);
4538
4539 #ifdef CONFIG_IPW2200_QOS
4540 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4541                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4542                                         if ((priv->status & STATUS_AUTH) &&
4543                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4544                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4545                                                 if ((sizeof
4546                                                      (struct
4547                                                       libipw_assoc_response)
4548                                                      <= size)
4549                                                     && (size <= 2314)) {
4550                                                         struct
4551                                                         libipw_rx_stats
4552                                                             stats = {
4553                                                                 .len = size - 1,
4554                                                         };
4555
4556                                                         IPW_DEBUG_QOS
4557                                                             ("QoS Associate "
4558                                                              "size %d\n", size);
4559                                                         libipw_rx_mgt(priv->
4560                                                                          ieee,
4561                                                                          (struct
4562                                                                           libipw_hdr_4addr
4563                                                                           *)
4564                                                                          &notif->u.raw, &stats);
4565                                                 }
4566                                         }
4567 #endif
4568
4569                                         schedule_work(&priv->link_up);
4570
4571                                         break;
4572                                 }
4573
4574                         case CMAS_AUTHENTICATED:{
4575                                         if (priv->
4576                                             status & (STATUS_ASSOCIATED |
4577                                                       STATUS_AUTH)) {
4578                                                 struct notif_authenticate *auth
4579                                                     = &notif->u.auth;
4580                                                 IPW_DEBUG(IPW_DL_NOTIF |
4581                                                           IPW_DL_STATE |
4582                                                           IPW_DL_ASSOC,
4583                                                           "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n",
4584                                                           priv->essid_len,
4585                                                           priv->essid,
4586                                                           priv->bssid,
4587                                                           le16_to_cpu(auth->status),
4588                                                           ipw_get_status_code
4589                                                           (le16_to_cpu
4590                                                            (auth->status)));
4591
4592                                                 priv->status &=
4593                                                     ~(STATUS_ASSOCIATING |
4594                                                       STATUS_AUTH |
4595                                                       STATUS_ASSOCIATED);
4596
4597                                                 schedule_work(&priv->link_down);
4598                                                 break;
4599                                         }
4600
4601                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4602                                                   IPW_DL_ASSOC,
4603                                                   "authenticated: '%*pE' %pM\n",
4604                                                   priv->essid_len, priv->essid,
4605                                                   priv->bssid);
4606                                         break;
4607                                 }
4608
4609                         case CMAS_INIT:{
4610                                         if (priv->status & STATUS_AUTH) {
4611                                                 struct
4612                                                     libipw_assoc_response
4613                                                 *resp;
4614                                                 resp =
4615                                                     (struct
4616                                                      libipw_assoc_response
4617                                                      *)&notif->u.raw;
4618                                                 IPW_DEBUG(IPW_DL_NOTIF |
4619                                                           IPW_DL_STATE |
4620                                                           IPW_DL_ASSOC,
4621                                                           "association failed (0x%04X): %s\n",
4622                                                           le16_to_cpu(resp->status),
4623                                                           ipw_get_status_code
4624                                                           (le16_to_cpu
4625                                                            (resp->status)));
4626                                         }
4627
4628                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4629                                                   IPW_DL_ASSOC,
4630                                                   "disassociated: '%*pE' %pM\n",
4631                                                   priv->essid_len, priv->essid,
4632                                                   priv->bssid);
4633
4634                                         priv->status &=
4635                                             ~(STATUS_DISASSOCIATING |
4636                                               STATUS_ASSOCIATING |
4637                                               STATUS_ASSOCIATED | STATUS_AUTH);
4638                                         if (priv->assoc_network
4639                                             && (priv->assoc_network->
4640                                                 capability &
4641                                                 WLAN_CAPABILITY_IBSS))
4642                                                 ipw_remove_current_network
4643                                                     (priv);
4644
4645                                         schedule_work(&priv->link_down);
4646
4647                                         break;
4648                                 }
4649
4650                         case CMAS_RX_ASSOC_RESP:
4651                                 break;
4652
4653                         default:
4654                                 IPW_ERROR("assoc: unknown (%d)\n",
4655                                           assoc->state);
4656                                 break;
4657                         }
4658
4659                         break;
4660                 }
4661
4662         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4663                         struct notif_authenticate *auth = &notif->u.auth;
4664                         switch (auth->state) {
4665                         case CMAS_AUTHENTICATED:
4666                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4667                                           "authenticated: '%*pE' %pM\n",
4668                                           priv->essid_len, priv->essid,
4669                                           priv->bssid);
4670                                 priv->status |= STATUS_AUTH;
4671                                 break;
4672
4673                         case CMAS_INIT:
4674                                 if (priv->status & STATUS_AUTH) {
4675                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4676                                                   IPW_DL_ASSOC,
4677                                                   "authentication failed (0x%04X): %s\n",
4678                                                   le16_to_cpu(auth->status),
4679                                                   ipw_get_status_code(le16_to_cpu
4680                                                                       (auth->
4681                                                                        status)));
4682                                 }
4683                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4684                                           IPW_DL_ASSOC,
4685                                           "deauthenticated: '%*pE' %pM\n",
4686                                           priv->essid_len, priv->essid,
4687                                           priv->bssid);
4688
4689                                 priv->status &= ~(STATUS_ASSOCIATING |
4690                                                   STATUS_AUTH |
4691                                                   STATUS_ASSOCIATED);
4692
4693                                 schedule_work(&priv->link_down);
4694                                 break;
4695
4696                         case CMAS_TX_AUTH_SEQ_1:
4697                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4698                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4699                                 break;
4700                         case CMAS_RX_AUTH_SEQ_2:
4701                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4702                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4703                                 break;
4704                         case CMAS_AUTH_SEQ_1_PASS:
4705                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4706                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4707                                 break;
4708                         case CMAS_AUTH_SEQ_1_FAIL:
4709                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4710                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4711                                 break;
4712                         case CMAS_TX_AUTH_SEQ_3:
4713                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4714                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4715                                 break;
4716                         case CMAS_RX_AUTH_SEQ_4:
4717                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4718                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4719                                 break;
4720                         case CMAS_AUTH_SEQ_2_PASS:
4721                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4722                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4723                                 break;
4724                         case CMAS_AUTH_SEQ_2_FAIL:
4725                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4726                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4727                                 break;
4728                         case CMAS_TX_ASSOC:
4729                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4730                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4731                                 break;
4732                         case CMAS_RX_ASSOC_RESP:
4733                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4734                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4735
4736                                 break;
4737                         case CMAS_ASSOCIATED:
4738                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4739                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4740                                 break;
4741                         default:
4742                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4743                                                 auth->state);
4744                                 break;
4745                         }
4746                         break;
4747                 }
4748
4749         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4750                         struct notif_channel_result *x =
4751                             &notif->u.channel_result;
4752
4753                         if (size == sizeof(*x)) {
4754                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4755                                                x->channel_num);
4756                         } else {
4757                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4758                                                "(should be %zd)\n",
4759                                                size, sizeof(*x));
4760                         }
4761                         break;
4762                 }
4763
4764         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4765                         struct notif_scan_complete *x = &notif->u.scan_complete;
4766                         if (size == sizeof(*x)) {
4767                                 IPW_DEBUG_SCAN
4768                                     ("Scan completed: type %d, %d channels, "
4769                                      "%d status\n", x->scan_type,
4770                                      x->num_channels, x->status);
4771                         } else {
4772                                 IPW_ERROR("Scan completed of wrong size %d "
4773                                           "(should be %zd)\n",
4774                                           size, sizeof(*x));
4775                         }
4776
4777                         priv->status &=
4778                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4779
4780                         wake_up_interruptible(&priv->wait_state);
4781                         cancel_delayed_work(&priv->scan_check);
4782
4783                         if (priv->status & STATUS_EXIT_PENDING)
4784                                 break;
4785
4786                         priv->ieee->scans++;
4787
4788 #ifdef CONFIG_IPW2200_MONITOR
4789                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4790                                 priv->status |= STATUS_SCAN_FORCED;
4791                                 schedule_delayed_work(&priv->request_scan, 0);
4792                                 break;
4793                         }
4794                         priv->status &= ~STATUS_SCAN_FORCED;
4795 #endif                          /* CONFIG_IPW2200_MONITOR */
4796
4797                         /* Do queued direct scans first */
4798                         if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4799                                 schedule_delayed_work(&priv->request_direct_scan, 0);
4800
4801                         if (!(priv->status & (STATUS_ASSOCIATED |
4802                                               STATUS_ASSOCIATING |
4803                                               STATUS_ROAMING |
4804                                               STATUS_DISASSOCIATING)))
4805                                 schedule_work(&priv->associate);
4806                         else if (priv->status & STATUS_ROAMING) {
4807                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4808                                         /* If a scan completed and we are in roam mode, then
4809                                          * the scan that completed was the one requested as a
4810                                          * result of entering roam... so, schedule the
4811                                          * roam work */
4812                                         schedule_work(&priv->roam);
4813                                 else
4814                                         /* Don't schedule if we aborted the scan */
4815                                         priv->status &= ~STATUS_ROAMING;
4816                         } else if (priv->status & STATUS_SCAN_PENDING)
4817                                 schedule_delayed_work(&priv->request_scan, 0);
4818                         else if (priv->config & CFG_BACKGROUND_SCAN
4819                                  && priv->status & STATUS_ASSOCIATED)
4820                                 schedule_delayed_work(&priv->request_scan,
4821                                                       round_jiffies_relative(HZ));
4822
4823                         /* Send an empty event to user space.
4824                          * We don't send the received data on the event because
4825                          * it would require us to do complex transcoding, and
4826                          * we want to minimise the work done in the irq handler
4827                          * Use a request to extract the data.
4828                          * Also, we generate this even for any scan, regardless
4829                          * on how the scan was initiated. User space can just
4830                          * sync on periodic scan to get fresh data...
4831                          * Jean II */
4832                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4833                                 handle_scan_event(priv);
4834                         break;
4835                 }
4836
4837         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4838                         struct notif_frag_length *x = &notif->u.frag_len;
4839
4840                         if (size == sizeof(*x))
4841                                 IPW_ERROR("Frag length: %d\n",
4842                                           le16_to_cpu(x->frag_length));
4843                         else
4844                                 IPW_ERROR("Frag length of wrong size %d "
4845                                           "(should be %zd)\n",
4846                                           size, sizeof(*x));
4847                         break;
4848                 }
4849
4850         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4851                         struct notif_link_deterioration *x =
4852                             &notif->u.link_deterioration;
4853
4854                         if (size == sizeof(*x)) {
4855                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4856                                         "link deterioration: type %d, cnt %d\n",
4857                                         x->silence_notification_type,
4858                                         x->silence_count);
4859                                 memcpy(&priv->last_link_deterioration, x,
4860                                        sizeof(*x));
4861                         } else {
4862                                 IPW_ERROR("Link Deterioration of wrong size %d "
4863                                           "(should be %zd)\n",
4864                                           size, sizeof(*x));
4865                         }
4866                         break;
4867                 }
4868
4869         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4870                         IPW_ERROR("Dino config\n");
4871                         if (priv->hcmd
4872                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4873                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4874
4875                         break;
4876                 }
4877
4878         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4879                         struct notif_beacon_state *x = &notif->u.beacon_state;
4880                         if (size != sizeof(*x)) {
4881                                 IPW_ERROR
4882                                     ("Beacon state of wrong size %d (should "
4883                                      "be %zd)\n", size, sizeof(*x));
4884                                 break;
4885                         }
4886
4887                         if (le32_to_cpu(x->state) ==
4888                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4889                                 ipw_handle_missed_beacon(priv,
4890                                                          le32_to_cpu(x->
4891                                                                      number));
4892
4893                         break;
4894                 }
4895
4896         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4897                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4898                         if (size == sizeof(*x)) {
4899                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4900                                           "0x%02x station %d\n",
4901                                           x->key_state, x->security_type,
4902                                           x->station_index);
4903                                 break;
4904                         }
4905
4906                         IPW_ERROR
4907                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4908                              size, sizeof(*x));
4909                         break;
4910                 }
4911
4912         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4913                         struct notif_calibration *x = &notif->u.calibration;
4914
4915                         if (size == sizeof(*x)) {
4916                                 memcpy(&priv->calib, x, sizeof(*x));
4917                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4918                                 break;
4919                         }
4920
4921                         IPW_ERROR
4922                             ("Calibration of wrong size %d (should be %zd)\n",
4923                              size, sizeof(*x));
4924                         break;
4925                 }
4926
4927         case HOST_NOTIFICATION_NOISE_STATS:{
4928                         if (size == sizeof(u32)) {
4929                                 priv->exp_avg_noise =
4930                                     exponential_average(priv->exp_avg_noise,
4931                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4932                                     DEPTH_NOISE);
4933                                 break;
4934                         }
4935
4936                         IPW_ERROR
4937                             ("Noise stat is wrong size %d (should be %zd)\n",
4938                              size, sizeof(u32));
4939                         break;
4940                 }
4941
4942         default:
4943                 IPW_DEBUG_NOTIF("Unknown notification: "
4944                                 "subtype=%d,flags=0x%2x,size=%d\n",
4945                                 notif->subtype, notif->flags, size);
4946         }
4947 }
4948
4949 /**
4950  * Destroys all DMA structures and initialise them again
4951  *
4952  * @param priv
4953  * @return error code
4954  */
4955 static int ipw_queue_reset(struct ipw_priv *priv)
4956 {
4957         int rc = 0;
4958         /** @todo customize queue sizes */
4959         int nTx = 64, nTxCmd = 8;
4960         ipw_tx_queue_free(priv);
4961         /* Tx CMD queue */
4962         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4963                                IPW_TX_CMD_QUEUE_READ_INDEX,
4964                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4965                                IPW_TX_CMD_QUEUE_BD_BASE,
4966                                IPW_TX_CMD_QUEUE_BD_SIZE);
4967         if (rc) {
4968                 IPW_ERROR("Tx Cmd queue init failed\n");
4969                 goto error;
4970         }
4971         /* Tx queue(s) */
4972         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4973                                IPW_TX_QUEUE_0_READ_INDEX,
4974                                IPW_TX_QUEUE_0_WRITE_INDEX,
4975                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4976         if (rc) {
4977                 IPW_ERROR("Tx 0 queue init failed\n");
4978                 goto error;
4979         }
4980         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4981                                IPW_TX_QUEUE_1_READ_INDEX,
4982                                IPW_TX_QUEUE_1_WRITE_INDEX,
4983                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4984         if (rc) {
4985                 IPW_ERROR("Tx 1 queue init failed\n");
4986                 goto error;
4987         }
4988         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4989                                IPW_TX_QUEUE_2_READ_INDEX,
4990                                IPW_TX_QUEUE_2_WRITE_INDEX,
4991                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4992         if (rc) {
4993                 IPW_ERROR("Tx 2 queue init failed\n");
4994                 goto error;
4995         }
4996         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4997                                IPW_TX_QUEUE_3_READ_INDEX,
4998                                IPW_TX_QUEUE_3_WRITE_INDEX,
4999                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
5000         if (rc) {
5001                 IPW_ERROR("Tx 3 queue init failed\n");
5002                 goto error;
5003         }
5004         /* statistics */
5005         priv->rx_bufs_min = 0;
5006         priv->rx_pend_max = 0;
5007         return rc;
5008
5009       error:
5010         ipw_tx_queue_free(priv);
5011         return rc;
5012 }
5013
5014 /**
5015  * Reclaim Tx queue entries no more used by NIC.
5016  *
5017  * When FW advances 'R' index, all entries between old and
5018  * new 'R' index need to be reclaimed. As result, some free space
5019  * forms. If there is enough free space (> low mark), wake Tx queue.
5020  *
5021  * @note Need to protect against garbage in 'R' index
5022  * @param priv
5023  * @param txq
5024  * @param qindex
5025  * @return Number of used entries remains in the queue
5026  */
5027 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5028                                 struct clx2_tx_queue *txq, int qindex)
5029 {
5030         u32 hw_tail;
5031         int used;
5032         struct clx2_queue *q = &txq->q;
5033
5034         hw_tail = ipw_read32(priv, q->reg_r);
5035         if (hw_tail >= q->n_bd) {
5036                 IPW_ERROR
5037                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5038                      hw_tail, q->n_bd);
5039                 goto done;
5040         }
5041         for (; q->last_used != hw_tail;
5042              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5043                 ipw_queue_tx_free_tfd(priv, txq);
5044                 priv->tx_packets++;
5045         }
5046       done:
5047         if ((ipw_tx_queue_space(q) > q->low_mark) &&
5048             (qindex >= 0))
5049                 netif_wake_queue(priv->net_dev);
5050         used = q->first_empty - q->last_used;
5051         if (used < 0)
5052                 used += q->n_bd;
5053
5054         return used;
5055 }
5056
5057 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5058                              int len, int sync)
5059 {
5060         struct clx2_tx_queue *txq = &priv->txq_cmd;
5061         struct clx2_queue *q = &txq->q;
5062         struct tfd_frame *tfd;
5063
5064         if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5065                 IPW_ERROR("No space for Tx\n");
5066                 return -EBUSY;
5067         }
5068
5069         tfd = &txq->bd[q->first_empty];
5070         txq->txb[q->first_empty] = NULL;
5071
5072         memset(tfd, 0, sizeof(*tfd));
5073         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5074         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5075         priv->hcmd_seq++;
5076         tfd->u.cmd.index = hcmd;
5077         tfd->u.cmd.length = len;
5078         memcpy(tfd->u.cmd.payload, buf, len);
5079         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5080         ipw_write32(priv, q->reg_w, q->first_empty);
5081         _ipw_read32(priv, 0x90);
5082
5083         return 0;
5084 }
5085
5086 /*
5087  * Rx theory of operation
5088  *
5089  * The host allocates 32 DMA target addresses and passes the host address
5090  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5091  * 0 to 31
5092  *
5093  * Rx Queue Indexes
5094  * The host/firmware share two index registers for managing the Rx buffers.
5095  *
5096  * The READ index maps to the first position that the firmware may be writing
5097  * to -- the driver can read up to (but not including) this position and get
5098  * good data.
5099  * The READ index is managed by the firmware once the card is enabled.
5100  *
5101  * The WRITE index maps to the last position the driver has read from -- the
5102  * position preceding WRITE is the last slot the firmware can place a packet.
5103  *
5104  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5105  * WRITE = READ.
5106  *
5107  * During initialization the host sets up the READ queue position to the first
5108  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5109  *
5110  * When the firmware places a packet in a buffer it will advance the READ index
5111  * and fire the RX interrupt.  The driver can then query the READ index and
5112  * process as many packets as possible, moving the WRITE index forward as it
5113  * resets the Rx queue buffers with new memory.
5114  *
5115  * The management in the driver is as follows:
5116  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5117  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5118  *   to replensish the ipw->rxq->rx_free.
5119  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5120  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5121  *   'processed' and 'read' driver indexes as well)
5122  * + A received packet is processed and handed to the kernel network stack,
5123  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5124  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5125  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5126  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5127  *   were enough free buffers and RX_STALLED is set it is cleared.
5128  *
5129  *
5130  * Driver sequence:
5131  *
5132  * ipw_rx_queue_alloc()       Allocates rx_free
5133  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5134  *                            ipw_rx_queue_restock
5135  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5136  *                            queue, updates firmware pointers, and updates
5137  *                            the WRITE index.  If insufficient rx_free buffers
5138  *                            are available, schedules ipw_rx_queue_replenish
5139  *
5140  * -- enable interrupts --
5141  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5142  *                            READ INDEX, detaching the SKB from the pool.
5143  *                            Moves the packet buffer from queue to rx_used.
5144  *                            Calls ipw_rx_queue_restock to refill any empty
5145  *                            slots.
5146  * ...
5147  *
5148  */
5149
5150 /*
5151  * If there are slots in the RX queue that  need to be restocked,
5152  * and we have free pre-allocated buffers, fill the ranks as much
5153  * as we can pulling from rx_free.
5154  *
5155  * This moves the 'write' index forward to catch up with 'processed', and
5156  * also updates the memory address in the firmware to reference the new
5157  * target buffer.
5158  */
5159 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5160 {
5161         struct ipw_rx_queue *rxq = priv->rxq;
5162         struct list_head *element;
5163         struct ipw_rx_mem_buffer *rxb;
5164         unsigned long flags;
5165         int write;
5166
5167         spin_lock_irqsave(&rxq->lock, flags);
5168         write = rxq->write;
5169         while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5170                 element = rxq->rx_free.next;
5171                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5172                 list_del(element);
5173
5174                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5175                             rxb->dma_addr);
5176                 rxq->queue[rxq->write] = rxb;
5177                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5178                 rxq->free_count--;
5179         }
5180         spin_unlock_irqrestore(&rxq->lock, flags);
5181
5182         /* If the pre-allocated buffer pool is dropping low, schedule to
5183          * refill it */
5184         if (rxq->free_count <= RX_LOW_WATERMARK)
5185                 schedule_work(&priv->rx_replenish);
5186
5187         /* If we've added more space for the firmware to place data, tell it */
5188         if (write != rxq->write)
5189                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5190 }
5191
5192 /*
5193  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5194  * Also restock the Rx queue via ipw_rx_queue_restock.
5195  *
5196  * This is called as a scheduled work item (except for during initialization)
5197  */
5198 static void ipw_rx_queue_replenish(void *data)
5199 {
5200         struct ipw_priv *priv = data;
5201         struct ipw_rx_queue *rxq = priv->rxq;
5202         struct list_head *element;
5203         struct ipw_rx_mem_buffer *rxb;
5204         unsigned long flags;
5205
5206         spin_lock_irqsave(&rxq->lock, flags);
5207         while (!list_empty(&rxq->rx_used)) {
5208                 element = rxq->rx_used.next;
5209                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5210                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5211                 if (!rxb->skb) {
5212                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5213                                priv->net_dev->name);
5214                         /* We don't reschedule replenish work here -- we will
5215                          * call the restock method and if it still needs
5216                          * more buffers it will schedule replenish */
5217                         break;
5218                 }
5219                 list_del(element);
5220
5221                 rxb->dma_addr =
5222                     pci_map_single(priv->pci_dev, rxb->skb->data,
5223                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5224
5225                 list_add_tail(&rxb->list, &rxq->rx_free);
5226                 rxq->free_count++;
5227         }
5228         spin_unlock_irqrestore(&rxq->lock, flags);
5229
5230         ipw_rx_queue_restock(priv);
5231 }
5232
5233 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5234 {
5235         struct ipw_priv *priv =
5236                 container_of(work, struct ipw_priv, rx_replenish);
5237         mutex_lock(&priv->mutex);
5238         ipw_rx_queue_replenish(priv);
5239         mutex_unlock(&priv->mutex);
5240 }
5241
5242 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5243  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5244  * This free routine walks the list of POOL entries and if SKB is set to
5245  * non NULL it is unmapped and freed
5246  */
5247 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5248 {
5249         int i;
5250
5251         if (!rxq)
5252                 return;
5253
5254         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5255                 if (rxq->pool[i].skb != NULL) {
5256                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5257                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5258                         dev_kfree_skb(rxq->pool[i].skb);
5259                 }
5260         }
5261
5262         kfree(rxq);
5263 }
5264
5265 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5266 {
5267         struct ipw_rx_queue *rxq;
5268         int i;
5269
5270         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5271         if (unlikely(!rxq)) {
5272                 IPW_ERROR("memory allocation failed\n");
5273                 return NULL;
5274         }
5275         spin_lock_init(&rxq->lock);
5276         INIT_LIST_HEAD(&rxq->rx_free);
5277         INIT_LIST_HEAD(&rxq->rx_used);
5278
5279         /* Fill the rx_used queue with _all_ of the Rx buffers */
5280         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5281                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5282
5283         /* Set us so that we have processed and used all buffers, but have
5284          * not restocked the Rx queue with fresh buffers */
5285         rxq->read = rxq->write = 0;
5286         rxq->free_count = 0;
5287
5288         return rxq;
5289 }
5290
5291 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5292 {
5293         rate &= ~LIBIPW_BASIC_RATE_MASK;
5294         if (ieee_mode == IEEE_A) {
5295                 switch (rate) {
5296                 case LIBIPW_OFDM_RATE_6MB:
5297                         return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5298                             1 : 0;
5299                 case LIBIPW_OFDM_RATE_9MB:
5300                         return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5301                             1 : 0;
5302                 case LIBIPW_OFDM_RATE_12MB:
5303                         return priv->
5304                             rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5305                 case LIBIPW_OFDM_RATE_18MB:
5306                         return priv->
5307                             rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5308                 case LIBIPW_OFDM_RATE_24MB:
5309                         return priv->
5310                             rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5311                 case LIBIPW_OFDM_RATE_36MB:
5312                         return priv->
5313                             rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5314                 case LIBIPW_OFDM_RATE_48MB:
5315                         return priv->
5316                             rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5317                 case LIBIPW_OFDM_RATE_54MB:
5318                         return priv->
5319                             rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5320                 default:
5321                         return 0;
5322                 }
5323         }
5324
5325         /* B and G mixed */
5326         switch (rate) {
5327         case LIBIPW_CCK_RATE_1MB:
5328                 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5329         case LIBIPW_CCK_RATE_2MB:
5330                 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5331         case LIBIPW_CCK_RATE_5MB:
5332                 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5333         case LIBIPW_CCK_RATE_11MB:
5334                 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5335         }
5336
5337         /* If we are limited to B modulations, bail at this point */
5338         if (ieee_mode == IEEE_B)
5339                 return 0;
5340
5341         /* G */
5342         switch (rate) {
5343         case LIBIPW_OFDM_RATE_6MB:
5344                 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5345         case LIBIPW_OFDM_RATE_9MB:
5346                 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5347         case LIBIPW_OFDM_RATE_12MB:
5348                 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5349         case LIBIPW_OFDM_RATE_18MB:
5350                 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5351         case LIBIPW_OFDM_RATE_24MB:
5352                 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5353         case LIBIPW_OFDM_RATE_36MB:
5354                 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5355         case LIBIPW_OFDM_RATE_48MB:
5356                 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5357         case LIBIPW_OFDM_RATE_54MB:
5358                 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5359         }
5360
5361         return 0;
5362 }
5363
5364 static int ipw_compatible_rates(struct ipw_priv *priv,
5365                                 const struct libipw_network *network,
5366                                 struct ipw_supported_rates *rates)
5367 {
5368         int num_rates, i;
5369
5370         memset(rates, 0, sizeof(*rates));
5371         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5372         rates->num_rates = 0;
5373         for (i = 0; i < num_rates; i++) {
5374                 if (!ipw_is_rate_in_mask(priv, network->mode,
5375                                          network->rates[i])) {
5376
5377                         if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5378                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5379                                                "rate %02X\n",
5380                                                network->rates[i]);
5381                                 rates->supported_rates[rates->num_rates++] =
5382                                     network->rates[i];
5383                                 continue;
5384                         }
5385
5386                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5387                                        network->rates[i], priv->rates_mask);
5388                         continue;
5389                 }
5390
5391                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5392         }
5393
5394         num_rates = min(network->rates_ex_len,
5395                         (u8) (IPW_MAX_RATES - num_rates));
5396         for (i = 0; i < num_rates; i++) {
5397                 if (!ipw_is_rate_in_mask(priv, network->mode,
5398                                          network->rates_ex[i])) {
5399                         if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5400                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5401                                                "rate %02X\n",
5402                                                network->rates_ex[i]);
5403                                 rates->supported_rates[rates->num_rates++] =
5404                                     network->rates[i];
5405                                 continue;
5406                         }
5407
5408                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5409                                        network->rates_ex[i], priv->rates_mask);
5410                         continue;
5411                 }
5412
5413                 rates->supported_rates[rates->num_rates++] =
5414                     network->rates_ex[i];
5415         }
5416
5417         return 1;
5418 }
5419
5420 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5421                                   const struct ipw_supported_rates *src)
5422 {
5423         u8 i;
5424         for (i = 0; i < src->num_rates; i++)
5425                 dest->supported_rates[i] = src->supported_rates[i];
5426         dest->num_rates = src->num_rates;
5427 }
5428
5429 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5430  * mask should ever be used -- right now all callers to add the scan rates are
5431  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5432 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5433                                    u8 modulation, u32 rate_mask)
5434 {
5435         u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5436             LIBIPW_BASIC_RATE_MASK : 0;
5437
5438         if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5439                 rates->supported_rates[rates->num_rates++] =
5440                     LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5441
5442         if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5443                 rates->supported_rates[rates->num_rates++] =
5444                     LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5445
5446         if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5447                 rates->supported_rates[rates->num_rates++] = basic_mask |
5448                     LIBIPW_CCK_RATE_5MB;
5449
5450         if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5451                 rates->supported_rates[rates->num_rates++] = basic_mask |
5452                     LIBIPW_CCK_RATE_11MB;
5453 }
5454
5455 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5456                                     u8 modulation, u32 rate_mask)
5457 {
5458         u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5459             LIBIPW_BASIC_RATE_MASK : 0;
5460
5461         if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5462                 rates->supported_rates[rates->num_rates++] = basic_mask |
5463                     LIBIPW_OFDM_RATE_6MB;
5464
5465         if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5466                 rates->supported_rates[rates->num_rates++] =
5467                     LIBIPW_OFDM_RATE_9MB;
5468
5469         if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5470                 rates->supported_rates[rates->num_rates++] = basic_mask |
5471                     LIBIPW_OFDM_RATE_12MB;
5472
5473         if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5474                 rates->supported_rates[rates->num_rates++] =
5475                     LIBIPW_OFDM_RATE_18MB;
5476
5477         if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5478                 rates->supported_rates[rates->num_rates++] = basic_mask |
5479                     LIBIPW_OFDM_RATE_24MB;
5480
5481         if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5482                 rates->supported_rates[rates->num_rates++] =
5483                     LIBIPW_OFDM_RATE_36MB;
5484
5485         if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5486                 rates->supported_rates[rates->num_rates++] =
5487                     LIBIPW_OFDM_RATE_48MB;
5488
5489         if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5490                 rates->supported_rates[rates->num_rates++] =
5491                     LIBIPW_OFDM_RATE_54MB;
5492 }
5493
5494 struct ipw_network_match {
5495         struct libipw_network *network;
5496         struct ipw_supported_rates rates;
5497 };
5498
5499 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5500                                   struct ipw_network_match *match,
5501                                   struct libipw_network *network,
5502                                   int roaming)
5503 {
5504         struct ipw_supported_rates rates;
5505
5506         /* Verify that this network's capability is compatible with the
5507          * current mode (AdHoc or Infrastructure) */
5508         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5509              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5510                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5511                                 network->ssid_len, network->ssid,
5512                                 network->bssid);
5513                 return 0;
5514         }
5515
5516         if (unlikely(roaming)) {
5517                 /* If we are roaming, then ensure check if this is a valid
5518                  * network to try and roam to */
5519                 if ((network->ssid_len != match->network->ssid_len) ||
5520                     memcmp(network->ssid, match->network->ssid,
5521                            network->ssid_len)) {
5522                         IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5523                                         network->ssid_len, network->ssid,
5524                                         network->bssid);
5525                         return 0;
5526                 }
5527         } else {
5528                 /* If an ESSID has been configured then compare the broadcast
5529                  * ESSID to ours */
5530                 if ((priv->config & CFG_STATIC_ESSID) &&
5531                     ((network->ssid_len != priv->essid_len) ||
5532                      memcmp(network->ssid, priv->essid,
5533                             min(network->ssid_len, priv->essid_len)))) {
5534                         IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5535                                         network->ssid_len, network->ssid,
5536                                         network->bssid, priv->essid_len,
5537                                         priv->essid);
5538                         return 0;
5539                 }
5540         }
5541
5542         /* If the old network rate is better than this one, don't bother
5543          * testing everything else. */
5544
5545         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5546                 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5547                                 match->network->ssid_len, match->network->ssid);
5548                 return 0;
5549         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5550                 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5551                                 match->network->ssid_len, match->network->ssid);
5552                 return 0;
5553         }
5554
5555         /* Now go through and see if the requested network is valid... */
5556         if (priv->ieee->scan_age != 0 &&
5557             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5558                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5559                                 network->ssid_len, network->ssid,
5560                                 network->bssid,
5561                                 jiffies_to_msecs(jiffies -
5562                                                  network->last_scanned));
5563                 return 0;
5564         }
5565
5566         if ((priv->config & CFG_STATIC_CHANNEL) &&
5567             (network->channel != priv->channel)) {
5568                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5569                                 network->ssid_len, network->ssid,
5570                                 network->bssid,
5571                                 network->channel, priv->channel);
5572                 return 0;
5573         }
5574
5575         /* Verify privacy compatibility */
5576         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5577             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5578                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5579                                 network->ssid_len, network->ssid,
5580                                 network->bssid,
5581                                 priv->
5582                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5583                                 network->
5584                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5585                                 "off");
5586                 return 0;
5587         }
5588
5589         if (ether_addr_equal(network->bssid, priv->bssid)) {
5590                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n",
5591                                 network->ssid_len, network->ssid,
5592                                 network->bssid, priv->bssid);
5593                 return 0;
5594         }
5595
5596         /* Filter out any incompatible freq / mode combinations */
5597         if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5598                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5599                                 network->ssid_len, network->ssid,
5600                                 network->bssid);
5601                 return 0;
5602         }
5603
5604         /* Ensure that the rates supported by the driver are compatible with
5605          * this AP, including verification of basic rates (mandatory) */
5606         if (!ipw_compatible_rates(priv, network, &rates)) {
5607                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5608                                 network->ssid_len, network->ssid,
5609                                 network->bssid);
5610                 return 0;
5611         }
5612
5613         if (rates.num_rates == 0) {
5614                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5615                                 network->ssid_len, network->ssid,
5616                                 network->bssid);
5617                 return 0;
5618         }
5619
5620         /* TODO: Perform any further minimal comparititive tests.  We do not
5621          * want to put too much policy logic here; intelligent scan selection
5622          * should occur within a generic IEEE 802.11 user space tool.  */
5623
5624         /* Set up 'new' AP to this network */
5625         ipw_copy_rates(&match->rates, &rates);
5626         match->network = network;
5627         IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n",
5628                         network->ssid_len, network->ssid, network->bssid);
5629
5630         return 1;
5631 }
5632
5633 static void ipw_merge_adhoc_network(struct work_struct *work)
5634 {
5635         struct ipw_priv *priv =
5636                 container_of(work, struct ipw_priv, merge_networks);
5637         struct libipw_network *network = NULL;
5638         struct ipw_network_match match = {
5639                 .network = priv->assoc_network
5640         };
5641
5642         if ((priv->status & STATUS_ASSOCIATED) &&
5643             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5644                 /* First pass through ROAM process -- look for a better
5645                  * network */
5646                 unsigned long flags;
5647
5648                 spin_lock_irqsave(&priv->ieee->lock, flags);
5649                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5650                         if (network != priv->assoc_network)
5651                                 ipw_find_adhoc_network(priv, &match, network,
5652                                                        1);
5653                 }
5654                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5655
5656                 if (match.network == priv->assoc_network) {
5657                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5658                                         "merge to.\n");
5659                         return;
5660                 }
5661
5662                 mutex_lock(&priv->mutex);
5663                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5664                         IPW_DEBUG_MERGE("remove network %*pE\n",
5665                                         priv->essid_len, priv->essid);
5666                         ipw_remove_current_network(priv);
5667                 }
5668
5669                 ipw_disassociate(priv);
5670                 priv->assoc_network = match.network;
5671                 mutex_unlock(&priv->mutex);
5672                 return;
5673         }
5674 }
5675
5676 static int ipw_best_network(struct ipw_priv *priv,
5677                             struct ipw_network_match *match,
5678                             struct libipw_network *network, int roaming)
5679 {
5680         struct ipw_supported_rates rates;
5681
5682         /* Verify that this network's capability is compatible with the
5683          * current mode (AdHoc or Infrastructure) */
5684         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5685              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5686             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5687              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5688                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5689                                 network->ssid_len, network->ssid,
5690                                 network->bssid);
5691                 return 0;
5692         }
5693
5694         if (unlikely(roaming)) {
5695                 /* If we are roaming, then ensure check if this is a valid
5696                  * network to try and roam to */
5697                 if ((network->ssid_len != match->network->ssid_len) ||
5698                     memcmp(network->ssid, match->network->ssid,
5699                            network->ssid_len)) {
5700                         IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5701                                         network->ssid_len, network->ssid,
5702                                         network->bssid);
5703                         return 0;
5704                 }
5705         } else {
5706                 /* If an ESSID has been configured then compare the broadcast
5707                  * ESSID to ours */
5708                 if ((priv->config & CFG_STATIC_ESSID) &&
5709                     ((network->ssid_len != priv->essid_len) ||
5710                      memcmp(network->ssid, priv->essid,
5711                             min(network->ssid_len, priv->essid_len)))) {
5712                         IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5713                                         network->ssid_len, network->ssid,
5714                                         network->bssid, priv->essid_len,
5715                                         priv->essid);
5716                         return 0;
5717                 }
5718         }
5719
5720         /* If the old network rate is better than this one, don't bother
5721          * testing everything else. */
5722         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5723                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n",
5724                                 network->ssid_len, network->ssid,
5725                                 network->bssid, match->network->ssid_len,
5726                                 match->network->ssid, match->network->bssid);
5727                 return 0;
5728         }
5729
5730         /* If this network has already had an association attempt within the
5731          * last 3 seconds, do not try and associate again... */
5732         if (network->last_associate &&
5733             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5734                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n",
5735                                 network->ssid_len, network->ssid,
5736                                 network->bssid,
5737                                 jiffies_to_msecs(jiffies -
5738                                                  network->last_associate));
5739                 return 0;
5740         }
5741
5742         /* Now go through and see if the requested network is valid... */
5743         if (priv->ieee->scan_age != 0 &&
5744             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5745                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5746                                 network->ssid_len, network->ssid,
5747                                 network->bssid,
5748                                 jiffies_to_msecs(jiffies -
5749                                                  network->last_scanned));
5750                 return 0;
5751         }
5752
5753         if ((priv->config & CFG_STATIC_CHANNEL) &&
5754             (network->channel != priv->channel)) {
5755                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5756                                 network->ssid_len, network->ssid,
5757                                 network->bssid,
5758                                 network->channel, priv->channel);
5759                 return 0;
5760         }
5761
5762         /* Verify privacy compatibility */
5763         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5764             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5765                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5766                                 network->ssid_len, network->ssid,
5767                                 network->bssid,
5768                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5769                                 "off",
5770                                 network->capability &
5771                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5772                 return 0;
5773         }
5774
5775         if ((priv->config & CFG_STATIC_BSSID) &&
5776             !ether_addr_equal(network->bssid, priv->bssid)) {
5777                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n",
5778                                 network->ssid_len, network->ssid,
5779                                 network->bssid, priv->bssid);
5780                 return 0;
5781         }
5782
5783         /* Filter out any incompatible freq / mode combinations */
5784         if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5785                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5786                                 network->ssid_len, network->ssid,
5787                                 network->bssid);
5788                 return 0;
5789         }
5790
5791         /* Filter out invalid channel in current GEO */
5792         if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5793                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n",
5794                                 network->ssid_len, network->ssid,
5795                                 network->bssid);
5796                 return 0;
5797         }
5798
5799         /* Ensure that the rates supported by the driver are compatible with
5800          * this AP, including verification of basic rates (mandatory) */
5801         if (!ipw_compatible_rates(priv, network, &rates)) {
5802                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5803                                 network->ssid_len, network->ssid,
5804                                 network->bssid);
5805                 return 0;
5806         }
5807
5808         if (rates.num_rates == 0) {
5809                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5810                                 network->ssid_len, network->ssid,
5811                                 network->bssid);
5812                 return 0;
5813         }
5814
5815         /* TODO: Perform any further minimal comparititive tests.  We do not
5816          * want to put too much policy logic here; intelligent scan selection
5817          * should occur within a generic IEEE 802.11 user space tool.  */
5818
5819         /* Set up 'new' AP to this network */
5820         ipw_copy_rates(&match->rates, &rates);
5821         match->network = network;
5822
5823         IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n",
5824                         network->ssid_len, network->ssid, network->bssid);
5825
5826         return 1;
5827 }
5828
5829 static void ipw_adhoc_create(struct ipw_priv *priv,
5830                              struct libipw_network *network)
5831 {
5832         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5833         int i;
5834
5835         /*
5836          * For the purposes of scanning, we can set our wireless mode
5837          * to trigger scans across combinations of bands, but when it
5838          * comes to creating a new ad-hoc network, we have tell the FW
5839          * exactly which band to use.
5840          *
5841          * We also have the possibility of an invalid channel for the
5842          * chossen band.  Attempting to create a new ad-hoc network
5843          * with an invalid channel for wireless mode will trigger a
5844          * FW fatal error.
5845          *
5846          */
5847         switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5848         case LIBIPW_52GHZ_BAND:
5849                 network->mode = IEEE_A;
5850                 i = libipw_channel_to_index(priv->ieee, priv->channel);
5851                 BUG_ON(i == -1);
5852                 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5853                         IPW_WARNING("Overriding invalid channel\n");
5854                         priv->channel = geo->a[0].channel;
5855                 }
5856                 break;
5857
5858         case LIBIPW_24GHZ_BAND:
5859                 if (priv->ieee->mode & IEEE_G)
5860                         network->mode = IEEE_G;
5861                 else
5862                         network->mode = IEEE_B;
5863                 i = libipw_channel_to_index(priv->ieee, priv->channel);
5864                 BUG_ON(i == -1);
5865                 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5866                         IPW_WARNING("Overriding invalid channel\n");
5867                         priv->channel = geo->bg[0].channel;
5868                 }
5869                 break;
5870
5871         default:
5872                 IPW_WARNING("Overriding invalid channel\n");
5873                 if (priv->ieee->mode & IEEE_A) {
5874                         network->mode = IEEE_A;
5875                         priv->channel = geo->a[0].channel;
5876                 } else if (priv->ieee->mode & IEEE_G) {
5877                         network->mode = IEEE_G;
5878                         priv->channel = geo->bg[0].channel;
5879                 } else {
5880                         network->mode = IEEE_B;
5881                         priv->channel = geo->bg[0].channel;
5882                 }
5883                 break;
5884         }
5885
5886         network->channel = priv->channel;
5887         priv->config |= CFG_ADHOC_PERSIST;
5888         ipw_create_bssid(priv, network->bssid);
5889         network->ssid_len = priv->essid_len;
5890         memcpy(network->ssid, priv->essid, priv->essid_len);
5891         memset(&network->stats, 0, sizeof(network->stats));
5892         network->capability = WLAN_CAPABILITY_IBSS;
5893         if (!(priv->config & CFG_PREAMBLE_LONG))
5894                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5895         if (priv->capability & CAP_PRIVACY_ON)
5896                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5897         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5898         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5899         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5900         memcpy(network->rates_ex,
5901                &priv->rates.supported_rates[network->rates_len],
5902                network->rates_ex_len);
5903         network->last_scanned = 0;
5904         network->flags = 0;
5905         network->last_associate = 0;
5906         network->time_stamp[0] = 0;
5907         network->time_stamp[1] = 0;
5908         network->beacon_interval = 100; /* Default */
5909         network->listen_interval = 10;  /* Default */
5910         network->atim_window = 0;       /* Default */
5911         network->wpa_ie_len = 0;
5912         network->rsn_ie_len = 0;
5913 }
5914
5915 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5916 {
5917         struct ipw_tgi_tx_key key;
5918
5919         if (!(priv->ieee->sec.flags & (1 << index)))
5920                 return;
5921
5922         key.key_id = index;
5923         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5924         key.security_type = type;
5925         key.station_index = 0;  /* always 0 for BSS */
5926         key.flags = 0;
5927         /* 0 for new key; previous value of counter (after fatal error) */
5928         key.tx_counter[0] = cpu_to_le32(0);
5929         key.tx_counter[1] = cpu_to_le32(0);
5930
5931         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5932 }
5933
5934 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5935 {
5936         struct ipw_wep_key key;
5937         int i;
5938
5939         key.cmd_id = DINO_CMD_WEP_KEY;
5940         key.seq_num = 0;
5941
5942         /* Note: AES keys cannot be set for multiple times.
5943          * Only set it at the first time. */
5944         for (i = 0; i < 4; i++) {
5945                 key.key_index = i | type;
5946                 if (!(priv->ieee->sec.flags & (1 << i))) {
5947                         key.key_size = 0;
5948                         continue;
5949                 }
5950
5951                 key.key_size = priv->ieee->sec.key_sizes[i];
5952                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5953
5954                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5955         }
5956 }
5957
5958 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5959 {
5960         if (priv->ieee->host_encrypt)
5961                 return;
5962
5963         switch (level) {
5964         case SEC_LEVEL_3:
5965                 priv->sys_config.disable_unicast_decryption = 0;
5966                 priv->ieee->host_decrypt = 0;
5967                 break;
5968         case SEC_LEVEL_2:
5969                 priv->sys_config.disable_unicast_decryption = 1;
5970                 priv->ieee->host_decrypt = 1;
5971                 break;
5972         case SEC_LEVEL_1:
5973                 priv->sys_config.disable_unicast_decryption = 0;
5974                 priv->ieee->host_decrypt = 0;
5975                 break;
5976         case SEC_LEVEL_0:
5977                 priv->sys_config.disable_unicast_decryption = 1;
5978                 break;
5979         default:
5980                 break;
5981         }
5982 }
5983
5984 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5985 {
5986         if (priv->ieee->host_encrypt)
5987                 return;
5988
5989         switch (level) {
5990         case SEC_LEVEL_3:
5991                 priv->sys_config.disable_multicast_decryption = 0;
5992                 break;
5993         case SEC_LEVEL_2:
5994                 priv->sys_config.disable_multicast_decryption = 1;
5995                 break;
5996         case SEC_LEVEL_1:
5997                 priv->sys_config.disable_multicast_decryption = 0;
5998                 break;
5999         case SEC_LEVEL_0:
6000                 priv->sys_config.disable_multicast_decryption = 1;
6001                 break;
6002         default:
6003                 break;
6004         }
6005 }
6006
6007 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6008 {
6009         switch (priv->ieee->sec.level) {
6010         case SEC_LEVEL_3:
6011                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6012                         ipw_send_tgi_tx_key(priv,
6013                                             DCT_FLAG_EXT_SECURITY_CCM,
6014                                             priv->ieee->sec.active_key);
6015
6016                 if (!priv->ieee->host_mc_decrypt)
6017                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6018                 break;
6019         case SEC_LEVEL_2:
6020                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6021                         ipw_send_tgi_tx_key(priv,
6022                                             DCT_FLAG_EXT_SECURITY_TKIP,
6023                                             priv->ieee->sec.active_key);
6024                 break;
6025         case SEC_LEVEL_1:
6026                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6027                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6028                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6029                 break;
6030         case SEC_LEVEL_0:
6031         default:
6032                 break;
6033         }
6034 }
6035
6036 static void ipw_adhoc_check(void *data)
6037 {
6038         struct ipw_priv *priv = data;
6039
6040         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6041             !(priv->config & CFG_ADHOC_PERSIST)) {
6042                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6043                           IPW_DL_STATE | IPW_DL_ASSOC,
6044                           "Missed beacon: %d - disassociate\n",
6045                           priv->missed_adhoc_beacons);
6046                 ipw_remove_current_network(priv);
6047                 ipw_disassociate(priv);
6048                 return;
6049         }
6050
6051         schedule_delayed_work(&priv->adhoc_check,
6052                               le16_to_cpu(priv->assoc_request.beacon_interval));
6053 }
6054
6055 static void ipw_bg_adhoc_check(struct work_struct *work)
6056 {
6057         struct ipw_priv *priv =
6058                 container_of(work, struct ipw_priv, adhoc_check.work);
6059         mutex_lock(&priv->mutex);
6060         ipw_adhoc_check(priv);
6061         mutex_unlock(&priv->mutex);
6062 }
6063
6064 static void ipw_debug_config(struct ipw_priv *priv)
6065 {
6066         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6067                        "[CFG 0x%08X]\n", priv->config);
6068         if (priv->config & CFG_STATIC_CHANNEL)
6069                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6070         else
6071                 IPW_DEBUG_INFO("Channel unlocked.\n");
6072         if (priv->config & CFG_STATIC_ESSID)
6073                 IPW_DEBUG_INFO("ESSID locked to '%*pE'\n",
6074                                priv->essid_len, priv->essid);
6075         else
6076                 IPW_DEBUG_INFO("ESSID unlocked.\n");
6077         if (priv->config & CFG_STATIC_BSSID)
6078                 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6079         else
6080                 IPW_DEBUG_INFO("BSSID unlocked.\n");
6081         if (priv->capability & CAP_PRIVACY_ON)
6082                 IPW_DEBUG_INFO("PRIVACY on\n");
6083         else
6084                 IPW_DEBUG_INFO("PRIVACY off\n");
6085         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6086 }
6087
6088 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6089 {
6090         /* TODO: Verify that this works... */
6091         struct ipw_fixed_rate fr;
6092         u32 reg;
6093         u16 mask = 0;
6094         u16 new_tx_rates = priv->rates_mask;
6095
6096         /* Identify 'current FW band' and match it with the fixed
6097          * Tx rates */
6098
6099         switch (priv->ieee->freq_band) {
6100         case LIBIPW_52GHZ_BAND: /* A only */
6101                 /* IEEE_A */
6102                 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6103                         /* Invalid fixed rate mask */
6104                         IPW_DEBUG_WX
6105                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6106                         new_tx_rates = 0;
6107                         break;
6108                 }
6109
6110                 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6111                 break;
6112
6113         default:                /* 2.4Ghz or Mixed */
6114                 /* IEEE_B */
6115                 if (mode == IEEE_B) {
6116                         if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6117                                 /* Invalid fixed rate mask */
6118                                 IPW_DEBUG_WX
6119                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6120                                 new_tx_rates = 0;
6121                         }
6122                         break;
6123                 }
6124
6125                 /* IEEE_G */
6126                 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6127                                     LIBIPW_OFDM_RATES_MASK)) {
6128                         /* Invalid fixed rate mask */
6129                         IPW_DEBUG_WX
6130                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6131                         new_tx_rates = 0;
6132                         break;
6133                 }
6134
6135                 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6136                         mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6137                         new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6138                 }
6139
6140                 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6141                         mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6142                         new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6143                 }
6144
6145                 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6146                         mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6147                         new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6148                 }
6149
6150                 new_tx_rates |= mask;
6151                 break;
6152         }
6153
6154         fr.tx_rates = cpu_to_le16(new_tx_rates);
6155
6156         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6157         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6158 }
6159
6160 static void ipw_abort_scan(struct ipw_priv *priv)
6161 {
6162         int err;
6163
6164         if (priv->status & STATUS_SCAN_ABORTING) {
6165                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6166                 return;
6167         }
6168         priv->status |= STATUS_SCAN_ABORTING;
6169
6170         err = ipw_send_scan_abort(priv);
6171         if (err)
6172                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6173 }
6174
6175 static void ipw_add_scan_channels(struct ipw_priv *priv,
6176                                   struct ipw_scan_request_ext *scan,
6177                                   int scan_type)
6178 {
6179         int channel_index = 0;
6180         const struct libipw_geo *geo;
6181         int i;
6182
6183         geo = libipw_get_geo(priv->ieee);
6184
6185         if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6186                 int start = channel_index;
6187                 for (i = 0; i < geo->a_channels; i++) {
6188                         if ((priv->status & STATUS_ASSOCIATED) &&
6189                             geo->a[i].channel == priv->channel)
6190                                 continue;
6191                         channel_index++;
6192                         scan->channels_list[channel_index] = geo->a[i].channel;
6193                         ipw_set_scan_type(scan, channel_index,
6194                                           geo->a[i].
6195                                           flags & LIBIPW_CH_PASSIVE_ONLY ?
6196                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6197                                           scan_type);
6198                 }
6199
6200                 if (start != channel_index) {
6201                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6202                             (channel_index - start);
6203                         channel_index++;
6204                 }
6205         }
6206
6207         if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6208                 int start = channel_index;
6209                 if (priv->config & CFG_SPEED_SCAN) {
6210                         int index;
6211                         u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6212                                 /* nop out the list */
6213                                 [0] = 0
6214                         };
6215
6216                         u8 channel;
6217                         while (channel_index < IPW_SCAN_CHANNELS - 1) {
6218                                 channel =
6219                                     priv->speed_scan[priv->speed_scan_pos];
6220                                 if (channel == 0) {
6221                                         priv->speed_scan_pos = 0;
6222                                         channel = priv->speed_scan[0];
6223                                 }
6224                                 if ((priv->status & STATUS_ASSOCIATED) &&
6225                                     channel == priv->channel) {
6226                                         priv->speed_scan_pos++;
6227                                         continue;
6228                                 }
6229
6230                                 /* If this channel has already been
6231                                  * added in scan, break from loop
6232                                  * and this will be the first channel
6233                                  * in the next scan.
6234                                  */
6235                                 if (channels[channel - 1] != 0)
6236                                         break;
6237
6238                                 channels[channel - 1] = 1;
6239                                 priv->speed_scan_pos++;
6240                                 channel_index++;
6241                                 scan->channels_list[channel_index] = channel;
6242                                 index =
6243                                     libipw_channel_to_index(priv->ieee, channel);
6244                                 ipw_set_scan_type(scan, channel_index,
6245                                                   geo->bg[index].
6246                                                   flags &
6247                                                   LIBIPW_CH_PASSIVE_ONLY ?
6248                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6249                                                   : scan_type);
6250                         }
6251                 } else {
6252                         for (i = 0; i < geo->bg_channels; i++) {
6253                                 if ((priv->status & STATUS_ASSOCIATED) &&
6254                                     geo->bg[i].channel == priv->channel)
6255                                         continue;
6256                                 channel_index++;
6257                                 scan->channels_list[channel_index] =
6258                                     geo->bg[i].channel;
6259                                 ipw_set_scan_type(scan, channel_index,
6260                                                   geo->bg[i].
6261                                                   flags &
6262                                                   LIBIPW_CH_PASSIVE_ONLY ?
6263                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6264                                                   : scan_type);
6265                         }
6266                 }
6267
6268                 if (start != channel_index) {
6269                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6270                             (channel_index - start);
6271                 }
6272         }
6273 }
6274
6275 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6276 {
6277         /* staying on passive channels longer than the DTIM interval during a
6278          * scan, while associated, causes the firmware to cancel the scan
6279          * without notification. Hence, don't stay on passive channels longer
6280          * than the beacon interval.
6281          */
6282         if (priv->status & STATUS_ASSOCIATED
6283             && priv->assoc_network->beacon_interval > 10)
6284                 return priv->assoc_network->beacon_interval - 10;
6285         else
6286                 return 120;
6287 }
6288
6289 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6290 {
6291         struct ipw_scan_request_ext scan;
6292         int err = 0, scan_type;
6293
6294         if (!(priv->status & STATUS_INIT) ||
6295             (priv->status & STATUS_EXIT_PENDING))
6296                 return 0;
6297
6298         mutex_lock(&priv->mutex);
6299
6300         if (direct && (priv->direct_scan_ssid_len == 0)) {
6301                 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6302                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6303                 goto done;
6304         }
6305
6306         if (priv->status & STATUS_SCANNING) {
6307                 IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6308                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6309                                         STATUS_SCAN_PENDING;
6310                 goto done;
6311         }
6312
6313         if (!(priv->status & STATUS_SCAN_FORCED) &&
6314             priv->status & STATUS_SCAN_ABORTING) {
6315                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6316                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6317                                         STATUS_SCAN_PENDING;
6318                 goto done;
6319         }
6320
6321         if (priv->status & STATUS_RF_KILL_MASK) {
6322                 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6323                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6324                                         STATUS_SCAN_PENDING;
6325                 goto done;
6326         }
6327
6328         memset(&scan, 0, sizeof(scan));
6329         scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6330
6331         if (type == IW_SCAN_TYPE_PASSIVE) {
6332                 IPW_DEBUG_WX("use passive scanning\n");
6333                 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6334                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6335                         cpu_to_le16(ipw_passive_dwell_time(priv));
6336                 ipw_add_scan_channels(priv, &scan, scan_type);
6337                 goto send_request;
6338         }
6339
6340         /* Use active scan by default. */
6341         if (priv->config & CFG_SPEED_SCAN)
6342                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6343                         cpu_to_le16(30);
6344         else
6345                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6346                         cpu_to_le16(20);
6347
6348         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6349                 cpu_to_le16(20);
6350
6351         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6352                 cpu_to_le16(ipw_passive_dwell_time(priv));
6353         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6354
6355 #ifdef CONFIG_IPW2200_MONITOR
6356         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6357                 u8 channel;
6358                 u8 band = 0;
6359
6360                 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6361                 case LIBIPW_52GHZ_BAND:
6362                         band = (u8) (IPW_A_MODE << 6) | 1;
6363                         channel = priv->channel;
6364                         break;
6365
6366                 case LIBIPW_24GHZ_BAND:
6367                         band = (u8) (IPW_B_MODE << 6) | 1;
6368                         channel = priv->channel;
6369                         break;
6370
6371                 default:
6372                         band = (u8) (IPW_B_MODE << 6) | 1;
6373                         channel = 9;
6374                         break;
6375                 }
6376
6377                 scan.channels_list[0] = band;
6378                 scan.channels_list[1] = channel;
6379                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6380
6381                 /* NOTE:  The card will sit on this channel for this time
6382                  * period.  Scan aborts are timing sensitive and frequently
6383                  * result in firmware restarts.  As such, it is best to
6384                  * set a small dwell_time here and just keep re-issuing
6385                  * scans.  Otherwise fast channel hopping will not actually
6386                  * hop channels.
6387                  *
6388                  * TODO: Move SPEED SCAN support to all modes and bands */
6389                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6390                         cpu_to_le16(2000);
6391         } else {
6392 #endif                          /* CONFIG_IPW2200_MONITOR */
6393                 /* Honor direct scans first, otherwise if we are roaming make
6394                  * this a direct scan for the current network.  Finally,
6395                  * ensure that every other scan is a fast channel hop scan */
6396                 if (direct) {
6397                         err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6398                                             priv->direct_scan_ssid_len);
6399                         if (err) {
6400                                 IPW_DEBUG_HC("Attempt to send SSID command  "
6401                                              "failed\n");
6402                                 goto done;
6403                         }
6404
6405                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6406                 } else if ((priv->status & STATUS_ROAMING)
6407                            || (!(priv->status & STATUS_ASSOCIATED)
6408                                && (priv->config & CFG_STATIC_ESSID)
6409                                && (le32_to_cpu(scan.full_scan_index) % 2))) {
6410                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6411                         if (err) {
6412                                 IPW_DEBUG_HC("Attempt to send SSID command "
6413                                              "failed.\n");
6414                                 goto done;
6415                         }
6416
6417                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6418                 } else
6419                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6420
6421                 ipw_add_scan_channels(priv, &scan, scan_type);
6422 #ifdef CONFIG_IPW2200_MONITOR
6423         }
6424 #endif
6425
6426 send_request:
6427         err = ipw_send_scan_request_ext(priv, &scan);
6428         if (err) {
6429                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6430                 goto done;
6431         }
6432
6433         priv->status |= STATUS_SCANNING;
6434         if (direct) {
6435                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6436                 priv->direct_scan_ssid_len = 0;
6437         } else
6438                 priv->status &= ~STATUS_SCAN_PENDING;
6439
6440         schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6441 done:
6442         mutex_unlock(&priv->mutex);
6443         return err;
6444 }
6445
6446 static void ipw_request_passive_scan(struct work_struct *work)
6447 {
6448         struct ipw_priv *priv =
6449                 container_of(work, struct ipw_priv, request_passive_scan.work);
6450         ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6451 }
6452
6453 static void ipw_request_scan(struct work_struct *work)
6454 {
6455         struct ipw_priv *priv =
6456                 container_of(work, struct ipw_priv, request_scan.work);
6457         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6458 }
6459
6460 static void ipw_request_direct_scan(struct work_struct *work)
6461 {
6462         struct ipw_priv *priv =
6463                 container_of(work, struct ipw_priv, request_direct_scan.work);
6464         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6465 }
6466
6467 static void ipw_bg_abort_scan(struct work_struct *work)
6468 {
6469         struct ipw_priv *priv =
6470                 container_of(work, struct ipw_priv, abort_scan);
6471         mutex_lock(&priv->mutex);
6472         ipw_abort_scan(priv);
6473         mutex_unlock(&priv->mutex);
6474 }
6475
6476 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6477 {
6478         /* This is called when wpa_supplicant loads and closes the driver
6479          * interface. */
6480         priv->ieee->wpa_enabled = value;
6481         return 0;
6482 }
6483
6484 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6485 {
6486         struct libipw_device *ieee = priv->ieee;
6487         struct libipw_security sec = {
6488                 .flags = SEC_AUTH_MODE,
6489         };
6490         int ret = 0;
6491
6492         if (value & IW_AUTH_ALG_SHARED_KEY) {
6493                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6494                 ieee->open_wep = 0;
6495         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6496                 sec.auth_mode = WLAN_AUTH_OPEN;
6497                 ieee->open_wep = 1;
6498         } else if (value & IW_AUTH_ALG_LEAP) {
6499                 sec.auth_mode = WLAN_AUTH_LEAP;
6500                 ieee->open_wep = 1;
6501         } else
6502                 return -EINVAL;
6503
6504         if (ieee->set_security)
6505                 ieee->set_security(ieee->dev, &sec);
6506         else
6507                 ret = -EOPNOTSUPP;
6508
6509         return ret;
6510 }
6511
6512 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6513                                 int wpa_ie_len)
6514 {
6515         /* make sure WPA is enabled */
6516         ipw_wpa_enable(priv, 1);
6517 }
6518
6519 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6520                             char *capabilities, int length)
6521 {
6522         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6523
6524         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6525                                 capabilities);
6526 }
6527
6528 /*
6529  * WE-18 support
6530  */
6531
6532 /* SIOCSIWGENIE */
6533 static int ipw_wx_set_genie(struct net_device *dev,
6534                             struct iw_request_info *info,
6535                             union iwreq_data *wrqu, char *extra)
6536 {
6537         struct ipw_priv *priv = libipw_priv(dev);
6538         struct libipw_device *ieee = priv->ieee;
6539         u8 *buf;
6540         int err = 0;
6541
6542         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6543             (wrqu->data.length && extra == NULL))
6544                 return -EINVAL;
6545
6546         if (wrqu->data.length) {
6547                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6548                 if (buf == NULL) {
6549                         err = -ENOMEM;
6550                         goto out;
6551                 }
6552
6553                 kfree(ieee->wpa_ie);
6554                 ieee->wpa_ie = buf;
6555                 ieee->wpa_ie_len = wrqu->data.length;
6556         } else {
6557                 kfree(ieee->wpa_ie);
6558                 ieee->wpa_ie = NULL;
6559                 ieee->wpa_ie_len = 0;
6560         }
6561
6562         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6563       out:
6564         return err;
6565 }
6566
6567 /* SIOCGIWGENIE */
6568 static int ipw_wx_get_genie(struct net_device *dev,
6569                             struct iw_request_info *info,
6570                             union iwreq_data *wrqu, char *extra)
6571 {
6572         struct ipw_priv *priv = libipw_priv(dev);
6573         struct libipw_device *ieee = priv->ieee;
6574         int err = 0;
6575
6576         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6577                 wrqu->data.length = 0;
6578                 goto out;
6579         }
6580
6581         if (wrqu->data.length < ieee->wpa_ie_len) {
6582                 err = -E2BIG;
6583                 goto out;
6584         }
6585
6586         wrqu->data.length = ieee->wpa_ie_len;
6587         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6588
6589       out:
6590         return err;
6591 }
6592
6593 static int wext_cipher2level(int cipher)
6594 {
6595         switch (cipher) {
6596         case IW_AUTH_CIPHER_NONE:
6597                 return SEC_LEVEL_0;
6598         case IW_AUTH_CIPHER_WEP40:
6599         case IW_AUTH_CIPHER_WEP104:
6600                 return SEC_LEVEL_1;
6601         case IW_AUTH_CIPHER_TKIP:
6602                 return SEC_LEVEL_2;
6603         case IW_AUTH_CIPHER_CCMP:
6604                 return SEC_LEVEL_3;
6605         default:
6606                 return -1;
6607         }
6608 }
6609
6610 /* SIOCSIWAUTH */
6611 static int ipw_wx_set_auth(struct net_device *dev,
6612                            struct iw_request_info *info,
6613                            union iwreq_data *wrqu, char *extra)
6614 {
6615         struct ipw_priv *priv = libipw_priv(dev);
6616         struct libipw_device *ieee = priv->ieee;
6617         struct iw_param *param = &wrqu->param;
6618         struct lib80211_crypt_data *crypt;
6619         unsigned long flags;
6620         int ret = 0;
6621
6622         switch (param->flags & IW_AUTH_INDEX) {
6623         case IW_AUTH_WPA_VERSION:
6624                 break;
6625         case IW_AUTH_CIPHER_PAIRWISE:
6626                 ipw_set_hw_decrypt_unicast(priv,
6627                                            wext_cipher2level(param->value));
6628                 break;
6629         case IW_AUTH_CIPHER_GROUP:
6630                 ipw_set_hw_decrypt_multicast(priv,
6631                                              wext_cipher2level(param->value));
6632                 break;
6633         case IW_AUTH_KEY_MGMT:
6634                 /*
6635                  * ipw2200 does not use these parameters
6636                  */
6637                 break;
6638
6639         case IW_AUTH_TKIP_COUNTERMEASURES:
6640                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6641                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6642                         break;
6643
6644                 flags = crypt->ops->get_flags(crypt->priv);
6645
6646                 if (param->value)
6647                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6648                 else
6649                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6650
6651                 crypt->ops->set_flags(flags, crypt->priv);
6652
6653                 break;
6654
6655         case IW_AUTH_DROP_UNENCRYPTED:{
6656                         /* HACK:
6657                          *
6658                          * wpa_supplicant calls set_wpa_enabled when the driver
6659                          * is loaded and unloaded, regardless of if WPA is being
6660                          * used.  No other calls are made which can be used to
6661                          * determine if encryption will be used or not prior to
6662                          * association being expected.  If encryption is not being
6663                          * used, drop_unencrypted is set to false, else true -- we
6664                          * can use this to determine if the CAP_PRIVACY_ON bit should
6665                          * be set.
6666                          */
6667                         struct libipw_security sec = {
6668                                 .flags = SEC_ENABLED,
6669                                 .enabled = param->value,
6670                         };
6671                         priv->ieee->drop_unencrypted = param->value;
6672                         /* We only change SEC_LEVEL for open mode. Others
6673                          * are set by ipw_wpa_set_encryption.
6674                          */
6675                         if (!param->value) {
6676                                 sec.flags |= SEC_LEVEL;
6677                                 sec.level = SEC_LEVEL_0;
6678                         } else {
6679                                 sec.flags |= SEC_LEVEL;
6680                                 sec.level = SEC_LEVEL_1;
6681                         }
6682                         if (priv->ieee->set_security)
6683                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6684                         break;
6685                 }
6686
6687         case IW_AUTH_80211_AUTH_ALG:
6688                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6689                 break;
6690
6691         case IW_AUTH_WPA_ENABLED:
6692                 ret = ipw_wpa_enable(priv, param->value);
6693                 ipw_disassociate(priv);
6694                 break;
6695
6696         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6697                 ieee->ieee802_1x = param->value;
6698                 break;
6699
6700         case IW_AUTH_PRIVACY_INVOKED:
6701                 ieee->privacy_invoked = param->value;
6702                 break;
6703
6704         default:
6705                 return -EOPNOTSUPP;
6706         }
6707         return ret;
6708 }
6709
6710 /* SIOCGIWAUTH */
6711 static int ipw_wx_get_auth(struct net_device *dev,
6712                            struct iw_request_info *info,
6713                            union iwreq_data *wrqu, char *extra)
6714 {
6715         struct ipw_priv *priv = libipw_priv(dev);
6716         struct libipw_device *ieee = priv->ieee;
6717         struct lib80211_crypt_data *crypt;
6718         struct iw_param *param = &wrqu->param;
6719
6720         switch (param->flags & IW_AUTH_INDEX) {
6721         case IW_AUTH_WPA_VERSION:
6722         case IW_AUTH_CIPHER_PAIRWISE:
6723         case IW_AUTH_CIPHER_GROUP:
6724         case IW_AUTH_KEY_MGMT:
6725                 /*
6726                  * wpa_supplicant will control these internally
6727                  */
6728                 return -EOPNOTSUPP;
6729
6730         case IW_AUTH_TKIP_COUNTERMEASURES:
6731                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6732                 if (!crypt || !crypt->ops->get_flags)
6733                         break;
6734
6735                 param->value = (crypt->ops->get_flags(crypt->priv) &
6736                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6737
6738                 break;
6739
6740         case IW_AUTH_DROP_UNENCRYPTED:
6741                 param->value = ieee->drop_unencrypted;
6742                 break;
6743
6744         case IW_AUTH_80211_AUTH_ALG:
6745                 param->value = ieee->sec.auth_mode;
6746                 break;
6747
6748         case IW_AUTH_WPA_ENABLED:
6749                 param->value = ieee->wpa_enabled;
6750                 break;
6751
6752         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6753                 param->value = ieee->ieee802_1x;
6754                 break;
6755
6756         case IW_AUTH_ROAMING_CONTROL:
6757         case IW_AUTH_PRIVACY_INVOKED:
6758                 param->value = ieee->privacy_invoked;
6759                 break;
6760
6761         default:
6762                 return -EOPNOTSUPP;
6763         }
6764         return 0;
6765 }
6766
6767 /* SIOCSIWENCODEEXT */
6768 static int ipw_wx_set_encodeext(struct net_device *dev,
6769                                 struct iw_request_info *info,
6770                                 union iwreq_data *wrqu, char *extra)
6771 {
6772         struct ipw_priv *priv = libipw_priv(dev);
6773         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6774
6775         if (hwcrypto) {
6776                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6777                         /* IPW HW can't build TKIP MIC,
6778                            host decryption still needed */
6779                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6780                                 priv->ieee->host_mc_decrypt = 1;
6781                         else {
6782                                 priv->ieee->host_encrypt = 0;
6783                                 priv->ieee->host_encrypt_msdu = 1;
6784                                 priv->ieee->host_decrypt = 1;
6785                         }
6786                 } else {
6787                         priv->ieee->host_encrypt = 0;
6788                         priv->ieee->host_encrypt_msdu = 0;
6789                         priv->ieee->host_decrypt = 0;
6790                         priv->ieee->host_mc_decrypt = 0;
6791                 }
6792         }
6793
6794         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6795 }
6796
6797 /* SIOCGIWENCODEEXT */
6798 static int ipw_wx_get_encodeext(struct net_device *dev,
6799                                 struct iw_request_info *info,
6800                                 union iwreq_data *wrqu, char *extra)
6801 {
6802         struct ipw_priv *priv = libipw_priv(dev);
6803         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6804 }
6805
6806 /* SIOCSIWMLME */
6807 static int ipw_wx_set_mlme(struct net_device *dev,
6808                            struct iw_request_info *info,
6809                            union iwreq_data *wrqu, char *extra)
6810 {
6811         struct ipw_priv *priv = libipw_priv(dev);
6812         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6813         __le16 reason;
6814
6815         reason = cpu_to_le16(mlme->reason_code);
6816
6817         switch (mlme->cmd) {
6818         case IW_MLME_DEAUTH:
6819                 /* silently ignore */
6820                 break;
6821
6822         case IW_MLME_DISASSOC:
6823                 ipw_disassociate(priv);
6824                 break;
6825
6826         default:
6827                 return -EOPNOTSUPP;
6828         }
6829         return 0;
6830 }
6831
6832 #ifdef CONFIG_IPW2200_QOS
6833
6834 /* QoS */
6835 /*
6836 * get the modulation type of the current network or
6837 * the card current mode
6838 */
6839 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6840 {
6841         u8 mode = 0;
6842
6843         if (priv->status & STATUS_ASSOCIATED) {
6844                 unsigned long flags;
6845
6846                 spin_lock_irqsave(&priv->ieee->lock, flags);
6847                 mode = priv->assoc_network->mode;
6848                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6849         } else {
6850                 mode = priv->ieee->mode;
6851         }
6852         IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6853         return mode;
6854 }
6855
6856 /*
6857 * Handle management frame beacon and probe response
6858 */
6859 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6860                                          int active_network,
6861                                          struct libipw_network *network)
6862 {
6863         u32 size = sizeof(struct libipw_qos_parameters);
6864
6865         if (network->capability & WLAN_CAPABILITY_IBSS)
6866                 network->qos_data.active = network->qos_data.supported;
6867
6868         if (network->flags & NETWORK_HAS_QOS_MASK) {
6869                 if (active_network &&
6870                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6871                         network->qos_data.active = network->qos_data.supported;
6872
6873                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6874                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6875                     (network->qos_data.old_param_count !=
6876                      network->qos_data.param_count)) {
6877                         network->qos_data.old_param_count =
6878                             network->qos_data.param_count;
6879                         schedule_work(&priv->qos_activate);
6880                         IPW_DEBUG_QOS("QoS parameters change call "
6881                                       "qos_activate\n");
6882                 }
6883         } else {
6884                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6885                         memcpy(&network->qos_data.parameters,
6886                                &def_parameters_CCK, size);
6887                 else
6888                         memcpy(&network->qos_data.parameters,
6889                                &def_parameters_OFDM, size);
6890
6891                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6892                         IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6893                         schedule_work(&priv->qos_activate);
6894                 }
6895
6896                 network->qos_data.active = 0;
6897                 network->qos_data.supported = 0;
6898         }
6899         if ((priv->status & STATUS_ASSOCIATED) &&
6900             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6901                 if (!ether_addr_equal(network->bssid, priv->bssid))
6902                         if (network->capability & WLAN_CAPABILITY_IBSS)
6903                                 if ((network->ssid_len ==
6904                                      priv->assoc_network->ssid_len) &&
6905                                     !memcmp(network->ssid,
6906                                             priv->assoc_network->ssid,
6907                                             network->ssid_len)) {
6908                                         schedule_work(&priv->merge_networks);
6909                                 }
6910         }
6911
6912         return 0;
6913 }
6914
6915 /*
6916 * This function set up the firmware to support QoS. It sends
6917 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6918 */
6919 static int ipw_qos_activate(struct ipw_priv *priv,
6920                             struct libipw_qos_data *qos_network_data)
6921 {
6922         int err;
6923         struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
6924         struct libipw_qos_parameters *active_one = NULL;
6925         u32 size = sizeof(struct libipw_qos_parameters);
6926         u32 burst_duration;
6927         int i;
6928         u8 type;
6929
6930         type = ipw_qos_current_mode(priv);
6931
6932         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6933         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6934         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6935         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6936
6937         if (qos_network_data == NULL) {
6938                 if (type == IEEE_B) {
6939                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6940                         active_one = &def_parameters_CCK;
6941                 } else
6942                         active_one = &def_parameters_OFDM;
6943
6944                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6945                 burst_duration = ipw_qos_get_burst_duration(priv);
6946                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6947                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6948                             cpu_to_le16(burst_duration);
6949         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6950                 if (type == IEEE_B) {
6951                         IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
6952                                       type);
6953                         if (priv->qos_data.qos_enable == 0)
6954                                 active_one = &def_parameters_CCK;
6955                         else
6956                                 active_one = priv->qos_data.def_qos_parm_CCK;
6957                 } else {
6958                         if (priv->qos_data.qos_enable == 0)
6959                                 active_one = &def_parameters_OFDM;
6960                         else
6961                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6962                 }
6963                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6964         } else {
6965                 unsigned long flags;
6966                 int active;
6967
6968                 spin_lock_irqsave(&priv->ieee->lock, flags);
6969                 active_one = &(qos_network_data->parameters);
6970                 qos_network_data->old_param_count =
6971                     qos_network_data->param_count;
6972                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6973                 active = qos_network_data->supported;
6974                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6975
6976                 if (active == 0) {
6977                         burst_duration = ipw_qos_get_burst_duration(priv);
6978                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6979                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6980                                     tx_op_limit[i] = cpu_to_le16(burst_duration);
6981                 }
6982         }
6983
6984         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6985         err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
6986         if (err)
6987                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6988
6989         return err;
6990 }
6991
6992 /*
6993 * send IPW_CMD_WME_INFO to the firmware
6994 */
6995 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6996 {
6997         int ret = 0;
6998         struct libipw_qos_information_element qos_info;
6999
7000         if (priv == NULL)
7001                 return -1;
7002
7003         qos_info.elementID = QOS_ELEMENT_ID;
7004         qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
7005
7006         qos_info.version = QOS_VERSION_1;
7007         qos_info.ac_info = 0;
7008
7009         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7010         qos_info.qui_type = QOS_OUI_TYPE;
7011         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7012
7013         ret = ipw_send_qos_info_command(priv, &qos_info);
7014         if (ret != 0) {
7015                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7016         }
7017         return ret;
7018 }
7019
7020 /*
7021 * Set the QoS parameter with the association request structure
7022 */
7023 static int ipw_qos_association(struct ipw_priv *priv,
7024                                struct libipw_network *network)
7025 {
7026         int err = 0;
7027         struct libipw_qos_data *qos_data = NULL;
7028         struct libipw_qos_data ibss_data = {
7029                 .supported = 1,
7030                 .active = 1,
7031         };
7032
7033         switch (priv->ieee->iw_mode) {
7034         case IW_MODE_ADHOC:
7035                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7036
7037                 qos_data = &ibss_data;
7038                 break;
7039
7040         case IW_MODE_INFRA:
7041                 qos_data = &network->qos_data;
7042                 break;
7043
7044         default:
7045                 BUG();
7046                 break;
7047         }
7048
7049         err = ipw_qos_activate(priv, qos_data);
7050         if (err) {
7051                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7052                 return err;
7053         }
7054
7055         if (priv->qos_data.qos_enable && qos_data->supported) {
7056                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7057                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7058                 return ipw_qos_set_info_element(priv);
7059         }
7060
7061         return 0;
7062 }
7063
7064 /*
7065 * handling the beaconing responses. if we get different QoS setting
7066 * off the network from the associated setting, adjust the QoS
7067 * setting
7068 */
7069 static int ipw_qos_association_resp(struct ipw_priv *priv,
7070                                     struct libipw_network *network)
7071 {
7072         int ret = 0;
7073         unsigned long flags;
7074         u32 size = sizeof(struct libipw_qos_parameters);
7075         int set_qos_param = 0;
7076
7077         if ((priv == NULL) || (network == NULL) ||
7078             (priv->assoc_network == NULL))
7079                 return ret;
7080
7081         if (!(priv->status & STATUS_ASSOCIATED))
7082                 return ret;
7083
7084         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7085                 return ret;
7086
7087         spin_lock_irqsave(&priv->ieee->lock, flags);
7088         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7089                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7090                        sizeof(struct libipw_qos_data));
7091                 priv->assoc_network->qos_data.active = 1;
7092                 if ((network->qos_data.old_param_count !=
7093                      network->qos_data.param_count)) {
7094                         set_qos_param = 1;
7095                         network->qos_data.old_param_count =
7096                             network->qos_data.param_count;
7097                 }
7098
7099         } else {
7100                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7101                         memcpy(&priv->assoc_network->qos_data.parameters,
7102                                &def_parameters_CCK, size);
7103                 else
7104                         memcpy(&priv->assoc_network->qos_data.parameters,
7105                                &def_parameters_OFDM, size);
7106                 priv->assoc_network->qos_data.active = 0;
7107                 priv->assoc_network->qos_data.supported = 0;
7108                 set_qos_param = 1;
7109         }
7110
7111         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7112
7113         if (set_qos_param == 1)
7114                 schedule_work(&priv->qos_activate);
7115
7116         return ret;
7117 }
7118
7119 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7120 {
7121         u32 ret = 0;
7122
7123         if ((priv == NULL))
7124                 return 0;
7125
7126         if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7127                 ret = priv->qos_data.burst_duration_CCK;
7128         else
7129                 ret = priv->qos_data.burst_duration_OFDM;
7130
7131         return ret;
7132 }
7133
7134 /*
7135 * Initialize the setting of QoS global
7136 */
7137 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7138                          int burst_enable, u32 burst_duration_CCK,
7139                          u32 burst_duration_OFDM)
7140 {
7141         priv->qos_data.qos_enable = enable;
7142
7143         if (priv->qos_data.qos_enable) {
7144                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7145                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7146                 IPW_DEBUG_QOS("QoS is enabled\n");
7147         } else {
7148                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7149                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7150                 IPW_DEBUG_QOS("QoS is not enabled\n");
7151         }
7152
7153         priv->qos_data.burst_enable = burst_enable;
7154
7155         if (burst_enable) {
7156                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7157                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7158         } else {
7159                 priv->qos_data.burst_duration_CCK = 0;
7160                 priv->qos_data.burst_duration_OFDM = 0;
7161         }
7162 }
7163
7164 /*
7165 * map the packet priority to the right TX Queue
7166 */
7167 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7168 {
7169         if (priority > 7 || !priv->qos_data.qos_enable)
7170                 priority = 0;
7171
7172         return from_priority_to_tx_queue[priority] - 1;
7173 }
7174
7175 static int ipw_is_qos_active(struct net_device *dev,
7176                              struct sk_buff *skb)
7177 {
7178         struct ipw_priv *priv = libipw_priv(dev);
7179         struct libipw_qos_data *qos_data = NULL;
7180         int active, supported;
7181         u8 *daddr = skb->data + ETH_ALEN;
7182         int unicast = !is_multicast_ether_addr(daddr);
7183
7184         if (!(priv->status & STATUS_ASSOCIATED))
7185                 return 0;
7186
7187         qos_data = &priv->assoc_network->qos_data;
7188
7189         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7190                 if (unicast == 0)
7191                         qos_data->active = 0;
7192                 else
7193                         qos_data->active = qos_data->supported;
7194         }
7195         active = qos_data->active;
7196         supported = qos_data->supported;
7197         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7198                       "unicast %d\n",
7199                       priv->qos_data.qos_enable, active, supported, unicast);
7200         if (active && priv->qos_data.qos_enable)
7201                 return 1;
7202
7203         return 0;
7204
7205 }
7206 /*
7207 * add QoS parameter to the TX command
7208 */
7209 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7210                                         u16 priority,
7211                                         struct tfd_data *tfd)
7212 {
7213         int tx_queue_id = 0;
7214
7215
7216         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7217         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7218
7219         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7220                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7221                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7222         }
7223         return 0;
7224 }
7225
7226 /*
7227 * background support to run QoS activate functionality
7228 */
7229 static void ipw_bg_qos_activate(struct work_struct *work)
7230 {
7231         struct ipw_priv *priv =
7232                 container_of(work, struct ipw_priv, qos_activate);
7233
7234         mutex_lock(&priv->mutex);
7235
7236         if (priv->status & STATUS_ASSOCIATED)
7237                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7238
7239         mutex_unlock(&priv->mutex);
7240 }
7241
7242 static int ipw_handle_probe_response(struct net_device *dev,
7243                                      struct libipw_probe_response *resp,
7244                                      struct libipw_network *network)
7245 {
7246         struct ipw_priv *priv = libipw_priv(dev);
7247         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7248                               (network == priv->assoc_network));
7249
7250         ipw_qos_handle_probe_response(priv, active_network, network);
7251
7252         return 0;
7253 }
7254
7255 static int ipw_handle_beacon(struct net_device *dev,
7256                              struct libipw_beacon *resp,
7257                              struct libipw_network *network)
7258 {
7259         struct ipw_priv *priv = libipw_priv(dev);
7260         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7261                               (network == priv->assoc_network));
7262
7263         ipw_qos_handle_probe_response(priv, active_network, network);
7264
7265         return 0;
7266 }
7267
7268 static int ipw_handle_assoc_response(struct net_device *dev,
7269                                      struct libipw_assoc_response *resp,
7270                                      struct libipw_network *network)
7271 {
7272         struct ipw_priv *priv = libipw_priv(dev);
7273         ipw_qos_association_resp(priv, network);
7274         return 0;
7275 }
7276
7277 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7278                                        *qos_param)
7279 {
7280         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7281                                 sizeof(*qos_param) * 3, qos_param);
7282 }
7283
7284 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7285                                      *qos_param)
7286 {
7287         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7288                                 qos_param);
7289 }
7290
7291 #endif                          /* CONFIG_IPW2200_QOS */
7292
7293 static int ipw_associate_network(struct ipw_priv *priv,
7294                                  struct libipw_network *network,
7295                                  struct ipw_supported_rates *rates, int roaming)
7296 {
7297         int err;
7298
7299         if (priv->config & CFG_FIXED_RATE)
7300                 ipw_set_fixed_rate(priv, network->mode);
7301
7302         if (!(priv->config & CFG_STATIC_ESSID)) {
7303                 priv->essid_len = min(network->ssid_len,
7304                                       (u8) IW_ESSID_MAX_SIZE);
7305                 memcpy(priv->essid, network->ssid, priv->essid_len);
7306         }
7307
7308         network->last_associate = jiffies;
7309
7310         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7311         priv->assoc_request.channel = network->channel;
7312         priv->assoc_request.auth_key = 0;
7313
7314         if ((priv->capability & CAP_PRIVACY_ON) &&
7315             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7316                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7317                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7318
7319                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7320                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7321
7322         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7323                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7324                 priv->assoc_request.auth_type = AUTH_LEAP;
7325         else
7326                 priv->assoc_request.auth_type = AUTH_OPEN;
7327
7328         if (priv->ieee->wpa_ie_len) {
7329                 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7330                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7331                                  priv->ieee->wpa_ie_len);
7332         }
7333
7334         /*
7335          * It is valid for our ieee device to support multiple modes, but
7336          * when it comes to associating to a given network we have to choose
7337          * just one mode.
7338          */
7339         if (network->mode & priv->ieee->mode & IEEE_A)
7340                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7341         else if (network->mode & priv->ieee->mode & IEEE_G)
7342                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7343         else if (network->mode & priv->ieee->mode & IEEE_B)
7344                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7345
7346         priv->assoc_request.capability = cpu_to_le16(network->capability);
7347         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7348             && !(priv->config & CFG_PREAMBLE_LONG)) {
7349                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7350         } else {
7351                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7352
7353                 /* Clear the short preamble if we won't be supporting it */
7354                 priv->assoc_request.capability &=
7355                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7356         }
7357
7358         /* Clear capability bits that aren't used in Ad Hoc */
7359         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7360                 priv->assoc_request.capability &=
7361                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7362
7363         IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7364                         roaming ? "Rea" : "A",
7365                         priv->essid_len, priv->essid,
7366                         network->channel,
7367                         ipw_modes[priv->assoc_request.ieee_mode],
7368                         rates->num_rates,
7369                         (priv->assoc_request.preamble_length ==
7370                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7371                         network->capability &
7372                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7373                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7374                         priv->capability & CAP_PRIVACY_ON ?
7375                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7376                          "(open)") : "",
7377                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7378                         priv->capability & CAP_PRIVACY_ON ?
7379                         '1' + priv->ieee->sec.active_key : '.',
7380                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7381
7382         priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7383         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7384             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7385                 priv->assoc_request.assoc_type = HC_IBSS_START;
7386                 priv->assoc_request.assoc_tsf_msw = 0;
7387                 priv->assoc_request.assoc_tsf_lsw = 0;
7388         } else {
7389                 if (unlikely(roaming))
7390                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7391                 else
7392                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7393                 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7394                 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7395         }
7396
7397         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7398
7399         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7400                 eth_broadcast_addr(priv->assoc_request.dest);
7401                 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7402         } else {
7403                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7404                 priv->assoc_request.atim_window = 0;
7405         }
7406
7407         priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7408
7409         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7410         if (err) {
7411                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7412                 return err;
7413         }
7414
7415         rates->ieee_mode = priv->assoc_request.ieee_mode;
7416         rates->purpose = IPW_RATE_CONNECT;
7417         ipw_send_supported_rates(priv, rates);
7418
7419         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7420                 priv->sys_config.dot11g_auto_detection = 1;
7421         else
7422                 priv->sys_config.dot11g_auto_detection = 0;
7423
7424         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7425                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7426         else
7427                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7428
7429         err = ipw_send_system_config(priv);
7430         if (err) {
7431                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7432                 return err;
7433         }
7434
7435         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7436         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7437         if (err) {
7438                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7439                 return err;
7440         }
7441
7442         /*
7443          * If preemption is enabled, it is possible for the association
7444          * to complete before we return from ipw_send_associate.  Therefore
7445          * we have to be sure and update our priviate data first.
7446          */
7447         priv->channel = network->channel;
7448         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7449         priv->status |= STATUS_ASSOCIATING;
7450         priv->status &= ~STATUS_SECURITY_UPDATED;
7451
7452         priv->assoc_network = network;
7453
7454 #ifdef CONFIG_IPW2200_QOS
7455         ipw_qos_association(priv, network);
7456 #endif
7457
7458         err = ipw_send_associate(priv, &priv->assoc_request);
7459         if (err) {
7460                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7461                 return err;
7462         }
7463
7464         IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n",
7465                   priv->essid_len, priv->essid, priv->bssid);
7466
7467         return 0;
7468 }
7469
7470 static void ipw_roam(void *data)
7471 {
7472         struct ipw_priv *priv = data;
7473         struct libipw_network *network = NULL;
7474         struct ipw_network_match match = {
7475                 .network = priv->assoc_network
7476         };
7477
7478         /* The roaming process is as follows:
7479          *
7480          * 1.  Missed beacon threshold triggers the roaming process by
7481          *     setting the status ROAM bit and requesting a scan.
7482          * 2.  When the scan completes, it schedules the ROAM work
7483          * 3.  The ROAM work looks at all of the known networks for one that
7484          *     is a better network than the currently associated.  If none
7485          *     found, the ROAM process is over (ROAM bit cleared)
7486          * 4.  If a better network is found, a disassociation request is
7487          *     sent.
7488          * 5.  When the disassociation completes, the roam work is again
7489          *     scheduled.  The second time through, the driver is no longer
7490          *     associated, and the newly selected network is sent an
7491          *     association request.
7492          * 6.  At this point ,the roaming process is complete and the ROAM
7493          *     status bit is cleared.
7494          */
7495
7496         /* If we are no longer associated, and the roaming bit is no longer
7497          * set, then we are not actively roaming, so just return */
7498         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7499                 return;
7500
7501         if (priv->status & STATUS_ASSOCIATED) {
7502                 /* First pass through ROAM process -- look for a better
7503                  * network */
7504                 unsigned long flags;
7505                 u8 rssi = priv->assoc_network->stats.rssi;
7506                 priv->assoc_network->stats.rssi = -128;
7507                 spin_lock_irqsave(&priv->ieee->lock, flags);
7508                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7509                         if (network != priv->assoc_network)
7510                                 ipw_best_network(priv, &match, network, 1);
7511                 }
7512                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7513                 priv->assoc_network->stats.rssi = rssi;
7514
7515                 if (match.network == priv->assoc_network) {
7516                         IPW_DEBUG_ASSOC("No better APs in this network to "
7517                                         "roam to.\n");
7518                         priv->status &= ~STATUS_ROAMING;
7519                         ipw_debug_config(priv);
7520                         return;
7521                 }
7522
7523                 ipw_send_disassociate(priv, 1);
7524                 priv->assoc_network = match.network;
7525
7526                 return;
7527         }
7528
7529         /* Second pass through ROAM process -- request association */
7530         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7531         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7532         priv->status &= ~STATUS_ROAMING;
7533 }
7534
7535 static void ipw_bg_roam(struct work_struct *work)
7536 {
7537         struct ipw_priv *priv =
7538                 container_of(work, struct ipw_priv, roam);
7539         mutex_lock(&priv->mutex);
7540         ipw_roam(priv);
7541         mutex_unlock(&priv->mutex);
7542 }
7543
7544 static int ipw_associate(void *data)
7545 {
7546         struct ipw_priv *priv = data;
7547
7548         struct libipw_network *network = NULL;
7549         struct ipw_network_match match = {
7550                 .network = NULL
7551         };
7552         struct ipw_supported_rates *rates;
7553         struct list_head *element;
7554         unsigned long flags;
7555
7556         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7557                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7558                 return 0;
7559         }
7560
7561         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7562                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7563                                 "progress)\n");
7564                 return 0;
7565         }
7566
7567         if (priv->status & STATUS_DISASSOCIATING) {
7568                 IPW_DEBUG_ASSOC("Not attempting association (in "
7569                                 "disassociating)\n ");
7570                 schedule_work(&priv->associate);
7571                 return 0;
7572         }
7573
7574         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7575                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7576                                 "initialized)\n");
7577                 return 0;
7578         }
7579
7580         if (!(priv->config & CFG_ASSOCIATE) &&
7581             !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7582                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7583                 return 0;
7584         }
7585
7586         /* Protect our use of the network_list */
7587         spin_lock_irqsave(&priv->ieee->lock, flags);
7588         list_for_each_entry(network, &priv->ieee->network_list, list)
7589             ipw_best_network(priv, &match, network, 0);
7590
7591         network = match.network;
7592         rates = &match.rates;
7593
7594         if (network == NULL &&
7595             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7596             priv->config & CFG_ADHOC_CREATE &&
7597             priv->config & CFG_STATIC_ESSID &&
7598             priv->config & CFG_STATIC_CHANNEL) {
7599                 /* Use oldest network if the free list is empty */
7600                 if (list_empty(&priv->ieee->network_free_list)) {
7601                         struct libipw_network *oldest = NULL;
7602                         struct libipw_network *target;
7603
7604                         list_for_each_entry(target, &priv->ieee->network_list, list) {
7605                                 if ((oldest == NULL) ||
7606                                     (target->last_scanned < oldest->last_scanned))
7607                                         oldest = target;
7608                         }
7609
7610                         /* If there are no more slots, expire the oldest */
7611                         list_del(&oldest->list);
7612                         target = oldest;
7613                         IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n",
7614                                         target->ssid_len, target->ssid,
7615                                         target->bssid);
7616                         list_add_tail(&target->list,
7617                                       &priv->ieee->network_free_list);
7618                 }
7619
7620                 element = priv->ieee->network_free_list.next;
7621                 network = list_entry(element, struct libipw_network, list);
7622                 ipw_adhoc_create(priv, network);
7623                 rates = &priv->rates;
7624                 list_del(element);
7625                 list_add_tail(&network->list, &priv->ieee->network_list);
7626         }
7627         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7628
7629         /* If we reached the end of the list, then we don't have any valid
7630          * matching APs */
7631         if (!network) {
7632                 ipw_debug_config(priv);
7633
7634                 if (!(priv->status & STATUS_SCANNING)) {
7635                         if (!(priv->config & CFG_SPEED_SCAN))
7636                                 schedule_delayed_work(&priv->request_scan,
7637                                                       SCAN_INTERVAL);
7638                         else
7639                                 schedule_delayed_work(&priv->request_scan, 0);
7640                 }
7641
7642                 return 0;
7643         }
7644
7645         ipw_associate_network(priv, network, rates, 0);
7646
7647         return 1;
7648 }
7649
7650 static void ipw_bg_associate(struct work_struct *work)
7651 {
7652         struct ipw_priv *priv =
7653                 container_of(work, struct ipw_priv, associate);
7654         mutex_lock(&priv->mutex);
7655         ipw_associate(priv);
7656         mutex_unlock(&priv->mutex);
7657 }
7658
7659 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7660                                       struct sk_buff *skb)
7661 {
7662         struct ieee80211_hdr *hdr;
7663         u16 fc;
7664
7665         hdr = (struct ieee80211_hdr *)skb->data;
7666         fc = le16_to_cpu(hdr->frame_control);
7667         if (!(fc & IEEE80211_FCTL_PROTECTED))
7668                 return;
7669
7670         fc &= ~IEEE80211_FCTL_PROTECTED;
7671         hdr->frame_control = cpu_to_le16(fc);
7672         switch (priv->ieee->sec.level) {
7673         case SEC_LEVEL_3:
7674                 /* Remove CCMP HDR */
7675                 memmove(skb->data + LIBIPW_3ADDR_LEN,
7676                         skb->data + LIBIPW_3ADDR_LEN + 8,
7677                         skb->len - LIBIPW_3ADDR_LEN - 8);
7678                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7679                 break;
7680         case SEC_LEVEL_2:
7681                 break;
7682         case SEC_LEVEL_1:
7683                 /* Remove IV */
7684                 memmove(skb->data + LIBIPW_3ADDR_LEN,
7685                         skb->data + LIBIPW_3ADDR_LEN + 4,
7686                         skb->len - LIBIPW_3ADDR_LEN - 4);
7687                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7688                 break;
7689         case SEC_LEVEL_0:
7690                 break;
7691         default:
7692                 printk(KERN_ERR "Unknown security level %d\n",
7693                        priv->ieee->sec.level);
7694                 break;
7695         }
7696 }
7697
7698 static void ipw_handle_data_packet(struct ipw_priv *priv,
7699                                    struct ipw_rx_mem_buffer *rxb,
7700                                    struct libipw_rx_stats *stats)
7701 {
7702         struct net_device *dev = priv->net_dev;
7703         struct libipw_hdr_4addr *hdr;
7704         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7705
7706         /* We received data from the HW, so stop the watchdog */
7707         netif_trans_update(dev);
7708
7709         /* We only process data packets if the
7710          * interface is open */
7711         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7712                      skb_tailroom(rxb->skb))) {
7713                 dev->stats.rx_errors++;
7714                 priv->wstats.discard.misc++;
7715                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7716                 return;
7717         } else if (unlikely(!netif_running(priv->net_dev))) {
7718                 dev->stats.rx_dropped++;
7719                 priv->wstats.discard.misc++;
7720                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7721                 return;
7722         }
7723
7724         /* Advance skb->data to the start of the actual payload */
7725         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7726
7727         /* Set the size of the skb to the size of the frame */
7728         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7729
7730         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7731
7732         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7733         hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7734         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7735             (is_multicast_ether_addr(hdr->addr1) ?
7736              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7737                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7738
7739         if (!libipw_rx(priv->ieee, rxb->skb, stats))
7740                 dev->stats.rx_errors++;
7741         else {                  /* libipw_rx succeeded, so it now owns the SKB */
7742                 rxb->skb = NULL;
7743                 __ipw_led_activity_on(priv);
7744         }
7745 }
7746
7747 #ifdef CONFIG_IPW2200_RADIOTAP
7748 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7749                                            struct ipw_rx_mem_buffer *rxb,
7750                                            struct libipw_rx_stats *stats)
7751 {
7752         struct net_device *dev = priv->net_dev;
7753         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7754         struct ipw_rx_frame *frame = &pkt->u.frame;
7755
7756         /* initial pull of some data */
7757         u16 received_channel = frame->received_channel;
7758         u8 antennaAndPhy = frame->antennaAndPhy;
7759         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7760         u16 pktrate = frame->rate;
7761
7762         /* Magic struct that slots into the radiotap header -- no reason
7763          * to build this manually element by element, we can write it much
7764          * more efficiently than we can parse it. ORDER MATTERS HERE */
7765         struct ipw_rt_hdr *ipw_rt;
7766
7767         unsigned short len = le16_to_cpu(pkt->u.frame.length);
7768
7769         /* We received data from the HW, so stop the watchdog */
7770         netif_trans_update(dev);
7771
7772         /* We only process data packets if the
7773          * interface is open */
7774         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7775                      skb_tailroom(rxb->skb))) {
7776                 dev->stats.rx_errors++;
7777                 priv->wstats.discard.misc++;
7778                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7779                 return;
7780         } else if (unlikely(!netif_running(priv->net_dev))) {
7781                 dev->stats.rx_dropped++;
7782                 priv->wstats.discard.misc++;
7783                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7784                 return;
7785         }
7786
7787         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7788          * that now */
7789         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7790                 /* FIXME: Should alloc bigger skb instead */
7791                 dev->stats.rx_dropped++;
7792                 priv->wstats.discard.misc++;
7793                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7794                 return;
7795         }
7796
7797         /* copy the frame itself */
7798         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7799                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7800
7801         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7802
7803         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7804         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7805         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7806
7807         /* Big bitfield of all the fields we provide in radiotap */
7808         ipw_rt->rt_hdr.it_present = cpu_to_le32(
7809              (1 << IEEE80211_RADIOTAP_TSFT) |
7810              (1 << IEEE80211_RADIOTAP_FLAGS) |
7811              (1 << IEEE80211_RADIOTAP_RATE) |
7812              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7813              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7814              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7815              (1 << IEEE80211_RADIOTAP_ANTENNA));
7816
7817         /* Zero the flags, we'll add to them as we go */
7818         ipw_rt->rt_flags = 0;
7819         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7820                                frame->parent_tsf[2] << 16 |
7821                                frame->parent_tsf[1] << 8  |
7822                                frame->parent_tsf[0]);
7823
7824         /* Convert signal to DBM */
7825         ipw_rt->rt_dbmsignal = antsignal;
7826         ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7827
7828         /* Convert the channel data and set the flags */
7829         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7830         if (received_channel > 14) {    /* 802.11a */
7831                 ipw_rt->rt_chbitmask =
7832                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7833         } else if (antennaAndPhy & 32) {        /* 802.11b */
7834                 ipw_rt->rt_chbitmask =
7835                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7836         } else {                /* 802.11g */
7837                 ipw_rt->rt_chbitmask =
7838                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7839         }
7840
7841         /* set the rate in multiples of 500k/s */
7842         switch (pktrate) {
7843         case IPW_TX_RATE_1MB:
7844                 ipw_rt->rt_rate = 2;
7845                 break;
7846         case IPW_TX_RATE_2MB:
7847                 ipw_rt->rt_rate = 4;
7848                 break;
7849         case IPW_TX_RATE_5MB:
7850                 ipw_rt->rt_rate = 10;
7851                 break;
7852         case IPW_TX_RATE_6MB:
7853                 ipw_rt->rt_rate = 12;
7854                 break;
7855         case IPW_TX_RATE_9MB:
7856                 ipw_rt->rt_rate = 18;
7857                 break;
7858         case IPW_TX_RATE_11MB:
7859                 ipw_rt->rt_rate = 22;
7860                 break;
7861         case IPW_TX_RATE_12MB:
7862                 ipw_rt->rt_rate = 24;
7863                 break;
7864         case IPW_TX_RATE_18MB:
7865                 ipw_rt->rt_rate = 36;
7866                 break;
7867         case IPW_TX_RATE_24MB:
7868                 ipw_rt->rt_rate = 48;
7869                 break;
7870         case IPW_TX_RATE_36MB:
7871                 ipw_rt->rt_rate = 72;
7872                 break;
7873         case IPW_TX_RATE_48MB:
7874                 ipw_rt->rt_rate = 96;
7875                 break;
7876         case IPW_TX_RATE_54MB:
7877                 ipw_rt->rt_rate = 108;
7878                 break;
7879         default:
7880                 ipw_rt->rt_rate = 0;
7881                 break;
7882         }
7883
7884         /* antenna number */
7885         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7886
7887         /* set the preamble flag if we have it */
7888         if ((antennaAndPhy & 64))
7889                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7890
7891         /* Set the size of the skb to the size of the frame */
7892         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7893
7894         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7895
7896         if (!libipw_rx(priv->ieee, rxb->skb, stats))
7897                 dev->stats.rx_errors++;
7898         else {                  /* libipw_rx succeeded, so it now owns the SKB */
7899                 rxb->skb = NULL;
7900                 /* no LED during capture */
7901         }
7902 }
7903 #endif
7904
7905 #ifdef CONFIG_IPW2200_PROMISCUOUS
7906 #define libipw_is_probe_response(fc) \
7907    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7908     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7909
7910 #define libipw_is_management(fc) \
7911    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7912
7913 #define libipw_is_control(fc) \
7914    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7915
7916 #define libipw_is_data(fc) \
7917    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7918
7919 #define libipw_is_assoc_request(fc) \
7920    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7921
7922 #define libipw_is_reassoc_request(fc) \
7923    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7924
7925 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7926                                       struct ipw_rx_mem_buffer *rxb,
7927                                       struct libipw_rx_stats *stats)
7928 {
7929         struct net_device *dev = priv->prom_net_dev;
7930         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7931         struct ipw_rx_frame *frame = &pkt->u.frame;
7932         struct ipw_rt_hdr *ipw_rt;
7933
7934         /* First cache any information we need before we overwrite
7935          * the information provided in the skb from the hardware */
7936         struct ieee80211_hdr *hdr;
7937         u16 channel = frame->received_channel;
7938         u8 phy_flags = frame->antennaAndPhy;
7939         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7940         s8 noise = (s8) le16_to_cpu(frame->noise);
7941         u8 rate = frame->rate;
7942         unsigned short len = le16_to_cpu(pkt->u.frame.length);
7943         struct sk_buff *skb;
7944         int hdr_only = 0;
7945         u16 filter = priv->prom_priv->filter;
7946
7947         /* If the filter is set to not include Rx frames then return */
7948         if (filter & IPW_PROM_NO_RX)
7949                 return;
7950
7951         /* We received data from the HW, so stop the watchdog */
7952         netif_trans_update(dev);
7953
7954         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7955                 dev->stats.rx_errors++;
7956                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7957                 return;
7958         }
7959
7960         /* We only process data packets if the interface is open */
7961         if (unlikely(!netif_running(dev))) {
7962                 dev->stats.rx_dropped++;
7963                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7964                 return;
7965         }
7966
7967         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7968          * that now */
7969         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7970                 /* FIXME: Should alloc bigger skb instead */
7971                 dev->stats.rx_dropped++;
7972                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7973                 return;
7974         }
7975
7976         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7977         if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
7978                 if (filter & IPW_PROM_NO_MGMT)
7979                         return;
7980                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7981                         hdr_only = 1;
7982         } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
7983                 if (filter & IPW_PROM_NO_CTL)
7984                         return;
7985                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7986                         hdr_only = 1;
7987         } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
7988                 if (filter & IPW_PROM_NO_DATA)
7989                         return;
7990                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7991                         hdr_only = 1;
7992         }
7993
7994         /* Copy the SKB since this is for the promiscuous side */
7995         skb = skb_copy(rxb->skb, GFP_ATOMIC);
7996         if (skb == NULL) {
7997                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7998                 return;
7999         }
8000
8001         /* copy the frame data to write after where the radiotap header goes */
8002         ipw_rt = (void *)skb->data;
8003
8004         if (hdr_only)
8005                 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
8006
8007         memcpy(ipw_rt->payload, hdr, len);
8008
8009         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8010         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
8011         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));   /* total header+data */
8012
8013         /* Set the size of the skb to the size of the frame */
8014         skb_put(skb, sizeof(*ipw_rt) + len);
8015
8016         /* Big bitfield of all the fields we provide in radiotap */
8017         ipw_rt->rt_hdr.it_present = cpu_to_le32(
8018              (1 << IEEE80211_RADIOTAP_TSFT) |
8019              (1 << IEEE80211_RADIOTAP_FLAGS) |
8020              (1 << IEEE80211_RADIOTAP_RATE) |
8021              (1 << IEEE80211_RADIOTAP_CHANNEL) |
8022              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8023              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8024              (1 << IEEE80211_RADIOTAP_ANTENNA));
8025
8026         /* Zero the flags, we'll add to them as we go */
8027         ipw_rt->rt_flags = 0;
8028         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8029                                frame->parent_tsf[2] << 16 |
8030                                frame->parent_tsf[1] << 8  |
8031                                frame->parent_tsf[0]);
8032
8033         /* Convert to DBM */
8034         ipw_rt->rt_dbmsignal = signal;
8035         ipw_rt->rt_dbmnoise = noise;
8036
8037         /* Convert the channel data and set the flags */
8038         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8039         if (channel > 14) {     /* 802.11a */
8040                 ipw_rt->rt_chbitmask =
8041                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8042         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
8043                 ipw_rt->rt_chbitmask =
8044                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8045         } else {                /* 802.11g */
8046                 ipw_rt->rt_chbitmask =
8047                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8048         }
8049
8050         /* set the rate in multiples of 500k/s */
8051         switch (rate) {
8052         case IPW_TX_RATE_1MB:
8053                 ipw_rt->rt_rate = 2;
8054                 break;
8055         case IPW_TX_RATE_2MB:
8056                 ipw_rt->rt_rate = 4;
8057                 break;
8058         case IPW_TX_RATE_5MB:
8059                 ipw_rt->rt_rate = 10;
8060                 break;
8061         case IPW_TX_RATE_6MB:
8062                 ipw_rt->rt_rate = 12;
8063                 break;
8064         case IPW_TX_RATE_9MB:
8065                 ipw_rt->rt_rate = 18;
8066                 break;
8067         case IPW_TX_RATE_11MB:
8068                 ipw_rt->rt_rate = 22;
8069                 break;
8070         case IPW_TX_RATE_12MB:
8071                 ipw_rt->rt_rate = 24;
8072                 break;
8073         case IPW_TX_RATE_18MB:
8074                 ipw_rt->rt_rate = 36;
8075                 break;
8076         case IPW_TX_RATE_24MB:
8077                 ipw_rt->rt_rate = 48;
8078                 break;
8079         case IPW_TX_RATE_36MB:
8080                 ipw_rt->rt_rate = 72;
8081                 break;
8082         case IPW_TX_RATE_48MB:
8083                 ipw_rt->rt_rate = 96;
8084                 break;
8085         case IPW_TX_RATE_54MB:
8086                 ipw_rt->rt_rate = 108;
8087                 break;
8088         default:
8089                 ipw_rt->rt_rate = 0;
8090                 break;
8091         }
8092
8093         /* antenna number */
8094         ipw_rt->rt_antenna = (phy_flags & 3);
8095
8096         /* set the preamble flag if we have it */
8097         if (phy_flags & (1 << 6))
8098                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8099
8100         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8101
8102         if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8103                 dev->stats.rx_errors++;
8104                 dev_kfree_skb_any(skb);
8105         }
8106 }
8107 #endif
8108
8109 static int is_network_packet(struct ipw_priv *priv,
8110                                     struct libipw_hdr_4addr *header)
8111 {
8112         /* Filter incoming packets to determine if they are targeted toward
8113          * this network, discarding packets coming from ourselves */
8114         switch (priv->ieee->iw_mode) {
8115         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
8116                 /* packets from our adapter are dropped (echo) */
8117                 if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr))
8118                         return 0;
8119
8120                 /* {broad,multi}cast packets to our BSSID go through */
8121                 if (is_multicast_ether_addr(header->addr1))
8122                         return ether_addr_equal(header->addr3, priv->bssid);
8123
8124                 /* packets to our adapter go through */
8125                 return ether_addr_equal(header->addr1,
8126                                         priv->net_dev->dev_addr);
8127
8128         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8129                 /* packets from our adapter are dropped (echo) */
8130                 if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr))
8131                         return 0;
8132
8133                 /* {broad,multi}cast packets to our BSS go through */
8134                 if (is_multicast_ether_addr(header->addr1))
8135                         return ether_addr_equal(header->addr2, priv->bssid);
8136
8137                 /* packets to our adapter go through */
8138                 return ether_addr_equal(header->addr1,
8139                                         priv->net_dev->dev_addr);
8140         }
8141
8142         return 1;
8143 }
8144
8145 #define IPW_PACKET_RETRY_TIME HZ
8146
8147 static  int is_duplicate_packet(struct ipw_priv *priv,
8148                                       struct libipw_hdr_4addr *header)
8149 {
8150         u16 sc = le16_to_cpu(header->seq_ctl);
8151         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8152         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8153         u16 *last_seq, *last_frag;
8154         unsigned long *last_time;
8155
8156         switch (priv->ieee->iw_mode) {
8157         case IW_MODE_ADHOC:
8158                 {
8159                         struct list_head *p;
8160                         struct ipw_ibss_seq *entry = NULL;
8161                         u8 *mac = header->addr2;
8162                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8163
8164                         list_for_each(p, &priv->ibss_mac_hash[index]) {
8165                                 entry =
8166                                     list_entry(p, struct ipw_ibss_seq, list);
8167                                 if (ether_addr_equal(entry->mac, mac))
8168                                         break;
8169                         }
8170                         if (p == &priv->ibss_mac_hash[index]) {
8171                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8172                                 if (!entry) {
8173                                         IPW_ERROR
8174                                             ("Cannot malloc new mac entry\n");
8175                                         return 0;
8176                                 }
8177                                 memcpy(entry->mac, mac, ETH_ALEN);
8178                                 entry->seq_num = seq;
8179                                 entry->frag_num = frag;
8180                                 entry->packet_time = jiffies;
8181                                 list_add(&entry->list,
8182                                          &priv->ibss_mac_hash[index]);
8183                                 return 0;
8184                         }
8185                         last_seq = &entry->seq_num;
8186                         last_frag = &entry->frag_num;
8187                         last_time = &entry->packet_time;
8188                         break;
8189                 }
8190         case IW_MODE_INFRA:
8191                 last_seq = &priv->last_seq_num;
8192                 last_frag = &priv->last_frag_num;
8193                 last_time = &priv->last_packet_time;
8194                 break;
8195         default:
8196                 return 0;
8197         }
8198         if ((*last_seq == seq) &&
8199             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8200                 if (*last_frag == frag)
8201                         goto drop;
8202                 if (*last_frag + 1 != frag)
8203                         /* out-of-order fragment */
8204                         goto drop;
8205         } else
8206                 *last_seq = seq;
8207
8208         *last_frag = frag;
8209         *last_time = jiffies;
8210         return 0;
8211
8212       drop:
8213         /* Comment this line now since we observed the card receives
8214          * duplicate packets but the FCTL_RETRY bit is not set in the
8215          * IBSS mode with fragmentation enabled.
8216          BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8217         return 1;
8218 }
8219
8220 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8221                                    struct ipw_rx_mem_buffer *rxb,
8222                                    struct libipw_rx_stats *stats)
8223 {
8224         struct sk_buff *skb = rxb->skb;
8225         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8226         struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8227             (skb->data + IPW_RX_FRAME_SIZE);
8228
8229         libipw_rx_mgt(priv->ieee, header, stats);
8230
8231         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8232             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8233               IEEE80211_STYPE_PROBE_RESP) ||
8234              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8235               IEEE80211_STYPE_BEACON))) {
8236                 if (ether_addr_equal(header->addr3, priv->bssid))
8237                         ipw_add_station(priv, header->addr2);
8238         }
8239
8240         if (priv->config & CFG_NET_STATS) {
8241                 IPW_DEBUG_HC("sending stat packet\n");
8242
8243                 /* Set the size of the skb to the size of the full
8244                  * ipw header and 802.11 frame */
8245                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8246                         IPW_RX_FRAME_SIZE);
8247
8248                 /* Advance past the ipw packet header to the 802.11 frame */
8249                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8250
8251                 /* Push the libipw_rx_stats before the 802.11 frame */
8252                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8253
8254                 skb->dev = priv->ieee->dev;
8255
8256                 /* Point raw at the libipw_stats */
8257                 skb_reset_mac_header(skb);
8258
8259                 skb->pkt_type = PACKET_OTHERHOST;
8260                 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8261                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8262                 netif_rx(skb);
8263                 rxb->skb = NULL;
8264         }
8265 }
8266
8267 /*
8268  * Main entry function for receiving a packet with 80211 headers.  This
8269  * should be called when ever the FW has notified us that there is a new
8270  * skb in the receive queue.
8271  */
8272 static void ipw_rx(struct ipw_priv *priv)
8273 {
8274         struct ipw_rx_mem_buffer *rxb;
8275         struct ipw_rx_packet *pkt;
8276         struct libipw_hdr_4addr *header;
8277         u32 r, w, i;
8278         u8 network_packet;
8279         u8 fill_rx = 0;
8280
8281         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8282         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8283         i = priv->rxq->read;
8284
8285         if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8286                 fill_rx = 1;
8287
8288         while (i != r) {
8289                 rxb = priv->rxq->queue[i];
8290                 if (unlikely(rxb == NULL)) {
8291                         printk(KERN_CRIT "Queue not allocated!\n");
8292                         break;
8293                 }
8294                 priv->rxq->queue[i] = NULL;
8295
8296                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8297                                             IPW_RX_BUF_SIZE,
8298                                             PCI_DMA_FROMDEVICE);
8299
8300                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8301                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8302                              pkt->header.message_type,
8303                              pkt->header.rx_seq_num, pkt->header.control_bits);
8304
8305                 switch (pkt->header.message_type) {
8306                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8307                                 struct libipw_rx_stats stats = {
8308                                         .rssi = pkt->u.frame.rssi_dbm -
8309                                             IPW_RSSI_TO_DBM,
8310                                         .signal =
8311                                             pkt->u.frame.rssi_dbm -
8312                                             IPW_RSSI_TO_DBM + 0x100,
8313                                         .noise =
8314                                             le16_to_cpu(pkt->u.frame.noise),
8315                                         .rate = pkt->u.frame.rate,
8316                                         .mac_time = jiffies,
8317                                         .received_channel =
8318                                             pkt->u.frame.received_channel,
8319                                         .freq =
8320                                             (pkt->u.frame.
8321                                              control & (1 << 0)) ?
8322                                             LIBIPW_24GHZ_BAND :
8323                                             LIBIPW_52GHZ_BAND,
8324                                         .len = le16_to_cpu(pkt->u.frame.length),
8325                                 };
8326
8327                                 if (stats.rssi != 0)
8328                                         stats.mask |= LIBIPW_STATMASK_RSSI;
8329                                 if (stats.signal != 0)
8330                                         stats.mask |= LIBIPW_STATMASK_SIGNAL;
8331                                 if (stats.noise != 0)
8332                                         stats.mask |= LIBIPW_STATMASK_NOISE;
8333                                 if (stats.rate != 0)
8334                                         stats.mask |= LIBIPW_STATMASK_RATE;
8335
8336                                 priv->rx_packets++;
8337
8338 #ifdef CONFIG_IPW2200_PROMISCUOUS
8339         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8340                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8341 #endif
8342
8343 #ifdef CONFIG_IPW2200_MONITOR
8344                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8345 #ifdef CONFIG_IPW2200_RADIOTAP
8346
8347                 ipw_handle_data_packet_monitor(priv,
8348                                                rxb,
8349                                                &stats);
8350 #else
8351                 ipw_handle_data_packet(priv, rxb,
8352                                        &stats);
8353 #endif
8354                                         break;
8355                                 }
8356 #endif
8357
8358                                 header =
8359                                     (struct libipw_hdr_4addr *)(rxb->skb->
8360                                                                    data +
8361                                                                    IPW_RX_FRAME_SIZE);
8362                                 /* TODO: Check Ad-Hoc dest/source and make sure
8363                                  * that we are actually parsing these packets
8364                                  * correctly -- we should probably use the
8365                                  * frame control of the packet and disregard
8366                                  * the current iw_mode */
8367
8368                                 network_packet =
8369                                     is_network_packet(priv, header);
8370                                 if (network_packet && priv->assoc_network) {
8371                                         priv->assoc_network->stats.rssi =
8372                                             stats.rssi;
8373                                         priv->exp_avg_rssi =
8374                                             exponential_average(priv->exp_avg_rssi,
8375                                             stats.rssi, DEPTH_RSSI);
8376                                 }
8377
8378                                 IPW_DEBUG_RX("Frame: len=%u\n",
8379                                              le16_to_cpu(pkt->u.frame.length));
8380
8381                                 if (le16_to_cpu(pkt->u.frame.length) <
8382                                     libipw_get_hdrlen(le16_to_cpu(
8383                                                     header->frame_ctl))) {
8384                                         IPW_DEBUG_DROP
8385                                             ("Received packet is too small. "
8386                                              "Dropping.\n");
8387                                         priv->net_dev->stats.rx_errors++;
8388                                         priv->wstats.discard.misc++;
8389                                         break;
8390                                 }
8391
8392                                 switch (WLAN_FC_GET_TYPE
8393                                         (le16_to_cpu(header->frame_ctl))) {
8394
8395                                 case IEEE80211_FTYPE_MGMT:
8396                                         ipw_handle_mgmt_packet(priv, rxb,
8397                                                                &stats);
8398                                         break;
8399
8400                                 case IEEE80211_FTYPE_CTL:
8401                                         break;
8402
8403                                 case IEEE80211_FTYPE_DATA:
8404                                         if (unlikely(!network_packet ||
8405                                                      is_duplicate_packet(priv,
8406                                                                          header)))
8407                                         {
8408                                                 IPW_DEBUG_DROP("Dropping: "
8409                                                                "%pM, "
8410                                                                "%pM, "
8411                                                                "%pM\n",
8412                                                                header->addr1,
8413                                                                header->addr2,
8414                                                                header->addr3);
8415                                                 break;
8416                                         }
8417
8418                                         ipw_handle_data_packet(priv, rxb,
8419                                                                &stats);
8420
8421                                         break;
8422                                 }
8423                                 break;
8424                         }
8425
8426                 case RX_HOST_NOTIFICATION_TYPE:{
8427                                 IPW_DEBUG_RX
8428                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8429                                      pkt->u.notification.subtype,
8430                                      pkt->u.notification.flags,
8431                                      le16_to_cpu(pkt->u.notification.size));
8432                                 ipw_rx_notification(priv, &pkt->u.notification);
8433                                 break;
8434                         }
8435
8436                 default:
8437                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8438                                      pkt->header.message_type);
8439                         break;
8440                 }
8441
8442                 /* For now we just don't re-use anything.  We can tweak this
8443                  * later to try and re-use notification packets and SKBs that
8444                  * fail to Rx correctly */
8445                 if (rxb->skb != NULL) {
8446                         dev_kfree_skb_any(rxb->skb);
8447                         rxb->skb = NULL;
8448                 }
8449
8450                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8451                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8452                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8453
8454                 i = (i + 1) % RX_QUEUE_SIZE;
8455
8456                 /* If there are a lot of unsued frames, restock the Rx queue
8457                  * so the ucode won't assert */
8458                 if (fill_rx) {
8459                         priv->rxq->read = i;
8460                         ipw_rx_queue_replenish(priv);
8461                 }
8462         }
8463
8464         /* Backtrack one entry */
8465         priv->rxq->read = i;
8466         ipw_rx_queue_restock(priv);
8467 }
8468
8469 #define DEFAULT_RTS_THRESHOLD     2304U
8470 #define MIN_RTS_THRESHOLD         1U
8471 #define MAX_RTS_THRESHOLD         2304U
8472 #define DEFAULT_BEACON_INTERVAL   100U
8473 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8474 #define DEFAULT_LONG_RETRY_LIMIT  4U
8475
8476 /**
8477  * ipw_sw_reset
8478  * @option: options to control different reset behaviour
8479  *          0 = reset everything except the 'disable' module_param
8480  *          1 = reset everything and print out driver info (for probe only)
8481  *          2 = reset everything
8482  */
8483 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8484 {
8485         int band, modulation;
8486         int old_mode = priv->ieee->iw_mode;
8487
8488         /* Initialize module parameter values here */
8489         priv->config = 0;
8490
8491         /* We default to disabling the LED code as right now it causes
8492          * too many systems to lock up... */
8493         if (!led_support)
8494                 priv->config |= CFG_NO_LED;
8495
8496         if (associate)
8497                 priv->config |= CFG_ASSOCIATE;
8498         else
8499                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8500
8501         if (auto_create)
8502                 priv->config |= CFG_ADHOC_CREATE;
8503         else
8504                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8505
8506         priv->config &= ~CFG_STATIC_ESSID;
8507         priv->essid_len = 0;
8508         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8509
8510         if (disable && option) {
8511                 priv->status |= STATUS_RF_KILL_SW;
8512                 IPW_DEBUG_INFO("Radio disabled.\n");
8513         }
8514
8515         if (default_channel != 0) {
8516                 priv->config |= CFG_STATIC_CHANNEL;
8517                 priv->channel = default_channel;
8518                 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8519                 /* TODO: Validate that provided channel is in range */
8520         }
8521 #ifdef CONFIG_IPW2200_QOS
8522         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8523                      burst_duration_CCK, burst_duration_OFDM);
8524 #endif                          /* CONFIG_IPW2200_QOS */
8525
8526         switch (network_mode) {
8527         case 1:
8528                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8529                 priv->net_dev->type = ARPHRD_ETHER;
8530
8531                 break;
8532 #ifdef CONFIG_IPW2200_MONITOR
8533         case 2:
8534                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8535 #ifdef CONFIG_IPW2200_RADIOTAP
8536                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8537 #else
8538                 priv->net_dev->type = ARPHRD_IEEE80211;
8539 #endif
8540                 break;
8541 #endif
8542         default:
8543         case 0:
8544                 priv->net_dev->type = ARPHRD_ETHER;
8545                 priv->ieee->iw_mode = IW_MODE_INFRA;
8546                 break;
8547         }
8548
8549         if (hwcrypto) {
8550                 priv->ieee->host_encrypt = 0;
8551                 priv->ieee->host_encrypt_msdu = 0;
8552                 priv->ieee->host_decrypt = 0;
8553                 priv->ieee->host_mc_decrypt = 0;
8554         }
8555         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8556
8557         /* IPW2200/2915 is abled to do hardware fragmentation. */
8558         priv->ieee->host_open_frag = 0;
8559
8560         if ((priv->pci_dev->device == 0x4223) ||
8561             (priv->pci_dev->device == 0x4224)) {
8562                 if (option == 1)
8563                         printk(KERN_INFO DRV_NAME
8564                                ": Detected Intel PRO/Wireless 2915ABG Network "
8565                                "Connection\n");
8566                 priv->ieee->abg_true = 1;
8567                 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8568                 modulation = LIBIPW_OFDM_MODULATION |
8569                     LIBIPW_CCK_MODULATION;
8570                 priv->adapter = IPW_2915ABG;
8571                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8572         } else {
8573                 if (option == 1)
8574                         printk(KERN_INFO DRV_NAME
8575                                ": Detected Intel PRO/Wireless 2200BG Network "
8576                                "Connection\n");
8577
8578                 priv->ieee->abg_true = 0;
8579                 band = LIBIPW_24GHZ_BAND;
8580                 modulation = LIBIPW_OFDM_MODULATION |
8581                     LIBIPW_CCK_MODULATION;
8582                 priv->adapter = IPW_2200BG;
8583                 priv->ieee->mode = IEEE_G | IEEE_B;
8584         }
8585
8586         priv->ieee->freq_band = band;
8587         priv->ieee->modulation = modulation;
8588
8589         priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8590
8591         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8592         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8593
8594         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8595         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8596         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8597
8598         /* If power management is turned on, default to AC mode */
8599         priv->power_mode = IPW_POWER_AC;
8600         priv->tx_power = IPW_TX_POWER_DEFAULT;
8601
8602         return old_mode == priv->ieee->iw_mode;
8603 }
8604
8605 /*
8606  * This file defines the Wireless Extension handlers.  It does not
8607  * define any methods of hardware manipulation and relies on the
8608  * functions defined in ipw_main to provide the HW interaction.
8609  *
8610  * The exception to this is the use of the ipw_get_ordinal()
8611  * function used to poll the hardware vs. making unnecessary calls.
8612  *
8613  */
8614
8615 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8616 {
8617         if (channel == 0) {
8618                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8619                 priv->config &= ~CFG_STATIC_CHANNEL;
8620                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8621                                 "parameters.\n");
8622                 ipw_associate(priv);
8623                 return 0;
8624         }
8625
8626         priv->config |= CFG_STATIC_CHANNEL;
8627
8628         if (priv->channel == channel) {
8629                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8630                                channel);
8631                 return 0;
8632         }
8633
8634         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8635         priv->channel = channel;
8636
8637 #ifdef CONFIG_IPW2200_MONITOR
8638         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8639                 int i;
8640                 if (priv->status & STATUS_SCANNING) {
8641                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8642                                        "channel change.\n");
8643                         ipw_abort_scan(priv);
8644                 }
8645
8646                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8647                         udelay(10);
8648
8649                 if (priv->status & STATUS_SCANNING)
8650                         IPW_DEBUG_SCAN("Still scanning...\n");
8651                 else
8652                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8653                                        1000 - i);
8654
8655                 return 0;
8656         }
8657 #endif                          /* CONFIG_IPW2200_MONITOR */
8658
8659         /* Network configuration changed -- force [re]association */
8660         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8661         if (!ipw_disassociate(priv))
8662                 ipw_associate(priv);
8663
8664         return 0;
8665 }
8666
8667 static int ipw_wx_set_freq(struct net_device *dev,
8668                            struct iw_request_info *info,
8669                            union iwreq_data *wrqu, char *extra)
8670 {
8671         struct ipw_priv *priv = libipw_priv(dev);
8672         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8673         struct iw_freq *fwrq = &wrqu->freq;
8674         int ret = 0, i;
8675         u8 channel, flags;
8676         int band;
8677
8678         if (fwrq->m == 0) {
8679                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8680                 mutex_lock(&priv->mutex);
8681                 ret = ipw_set_channel(priv, 0);
8682                 mutex_unlock(&priv->mutex);
8683                 return ret;
8684         }
8685         /* if setting by freq convert to channel */
8686         if (fwrq->e == 1) {
8687                 channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8688                 if (channel == 0)
8689                         return -EINVAL;
8690         } else
8691                 channel = fwrq->m;
8692
8693         if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8694                 return -EINVAL;
8695
8696         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8697                 i = libipw_channel_to_index(priv->ieee, channel);
8698                 if (i == -1)
8699                         return -EINVAL;
8700
8701                 flags = (band == LIBIPW_24GHZ_BAND) ?
8702                     geo->bg[i].flags : geo->a[i].flags;
8703                 if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8704                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8705                         return -EINVAL;
8706                 }
8707         }
8708
8709         IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8710         mutex_lock(&priv->mutex);
8711         ret = ipw_set_channel(priv, channel);
8712         mutex_unlock(&priv->mutex);
8713         return ret;
8714 }
8715
8716 static int ipw_wx_get_freq(struct net_device *dev,
8717                            struct iw_request_info *info,
8718                            union iwreq_data *wrqu, char *extra)
8719 {
8720         struct ipw_priv *priv = libipw_priv(dev);
8721
8722         wrqu->freq.e = 0;
8723
8724         /* If we are associated, trying to associate, or have a statically
8725          * configured CHANNEL then return that; otherwise return ANY */
8726         mutex_lock(&priv->mutex);
8727         if (priv->config & CFG_STATIC_CHANNEL ||
8728             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8729                 int i;
8730
8731                 i = libipw_channel_to_index(priv->ieee, priv->channel);
8732                 BUG_ON(i == -1);
8733                 wrqu->freq.e = 1;
8734
8735                 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8736                 case LIBIPW_52GHZ_BAND:
8737                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8738                         break;
8739
8740                 case LIBIPW_24GHZ_BAND:
8741                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8742                         break;
8743
8744                 default:
8745                         BUG();
8746                 }
8747         } else
8748                 wrqu->freq.m = 0;
8749
8750         mutex_unlock(&priv->mutex);
8751         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8752         return 0;
8753 }
8754
8755 static int ipw_wx_set_mode(struct net_device *dev,
8756                            struct iw_request_info *info,
8757                            union iwreq_data *wrqu, char *extra)
8758 {
8759         struct ipw_priv *priv = libipw_priv(dev);
8760         int err = 0;
8761
8762         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8763
8764         switch (wrqu->mode) {
8765 #ifdef CONFIG_IPW2200_MONITOR
8766         case IW_MODE_MONITOR:
8767 #endif
8768         case IW_MODE_ADHOC:
8769         case IW_MODE_INFRA:
8770                 break;
8771         case IW_MODE_AUTO:
8772                 wrqu->mode = IW_MODE_INFRA;
8773                 break;
8774         default:
8775                 return -EINVAL;
8776         }
8777         if (wrqu->mode == priv->ieee->iw_mode)
8778                 return 0;
8779
8780         mutex_lock(&priv->mutex);
8781
8782         ipw_sw_reset(priv, 0);
8783
8784 #ifdef CONFIG_IPW2200_MONITOR
8785         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8786                 priv->net_dev->type = ARPHRD_ETHER;
8787
8788         if (wrqu->mode == IW_MODE_MONITOR)
8789 #ifdef CONFIG_IPW2200_RADIOTAP
8790                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8791 #else
8792                 priv->net_dev->type = ARPHRD_IEEE80211;
8793 #endif
8794 #endif                          /* CONFIG_IPW2200_MONITOR */
8795
8796         /* Free the existing firmware and reset the fw_loaded
8797          * flag so ipw_load() will bring in the new firmware */
8798         free_firmware();
8799
8800         priv->ieee->iw_mode = wrqu->mode;
8801
8802         schedule_work(&priv->adapter_restart);
8803         mutex_unlock(&priv->mutex);
8804         return err;
8805 }
8806
8807 static int ipw_wx_get_mode(struct net_device *dev,
8808                            struct iw_request_info *info,
8809                            union iwreq_data *wrqu, char *extra)
8810 {
8811         struct ipw_priv *priv = libipw_priv(dev);
8812         mutex_lock(&priv->mutex);
8813         wrqu->mode = priv->ieee->iw_mode;
8814         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8815         mutex_unlock(&priv->mutex);
8816         return 0;
8817 }
8818
8819 /* Values are in microsecond */
8820 static const s32 timeout_duration[] = {
8821         350000,
8822         250000,
8823         75000,
8824         37000,
8825         25000,
8826 };
8827
8828 static const s32 period_duration[] = {
8829         400000,
8830         700000,
8831         1000000,
8832         1000000,
8833         1000000
8834 };
8835
8836 static int ipw_wx_get_range(struct net_device *dev,
8837                             struct iw_request_info *info,
8838                             union iwreq_data *wrqu, char *extra)
8839 {
8840         struct ipw_priv *priv = libipw_priv(dev);
8841         struct iw_range *range = (struct iw_range *)extra;
8842         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8843         int i = 0, j;
8844
8845         wrqu->data.length = sizeof(*range);
8846         memset(range, 0, sizeof(*range));
8847
8848         /* 54Mbs == ~27 Mb/s real (802.11g) */
8849         range->throughput = 27 * 1000 * 1000;
8850
8851         range->max_qual.qual = 100;
8852         /* TODO: Find real max RSSI and stick here */
8853         range->max_qual.level = 0;
8854         range->max_qual.noise = 0;
8855         range->max_qual.updated = 7;    /* Updated all three */
8856
8857         range->avg_qual.qual = 70;
8858         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8859         range->avg_qual.level = 0;      /* FIXME to real average level */
8860         range->avg_qual.noise = 0;
8861         range->avg_qual.updated = 7;    /* Updated all three */
8862         mutex_lock(&priv->mutex);
8863         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8864
8865         for (i = 0; i < range->num_bitrates; i++)
8866                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8867                     500000;
8868
8869         range->max_rts = DEFAULT_RTS_THRESHOLD;
8870         range->min_frag = MIN_FRAG_THRESHOLD;
8871         range->max_frag = MAX_FRAG_THRESHOLD;
8872
8873         range->encoding_size[0] = 5;
8874         range->encoding_size[1] = 13;
8875         range->num_encoding_sizes = 2;
8876         range->max_encoding_tokens = WEP_KEYS;
8877
8878         /* Set the Wireless Extension versions */
8879         range->we_version_compiled = WIRELESS_EXT;
8880         range->we_version_source = 18;
8881
8882         i = 0;
8883         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8884                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8885                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8886                             (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8887                                 continue;
8888
8889                         range->freq[i].i = geo->bg[j].channel;
8890                         range->freq[i].m = geo->bg[j].freq * 100000;
8891                         range->freq[i].e = 1;
8892                         i++;
8893                 }
8894         }
8895
8896         if (priv->ieee->mode & IEEE_A) {
8897                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8898                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8899                             (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8900                                 continue;
8901
8902                         range->freq[i].i = geo->a[j].channel;
8903                         range->freq[i].m = geo->a[j].freq * 100000;
8904                         range->freq[i].e = 1;
8905                         i++;
8906                 }
8907         }
8908
8909         range->num_channels = i;
8910         range->num_frequency = i;
8911
8912         mutex_unlock(&priv->mutex);
8913
8914         /* Event capability (kernel + driver) */
8915         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8916                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8917                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8918                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8919         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8920
8921         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8922                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8923
8924         range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8925
8926         IPW_DEBUG_WX("GET Range\n");
8927         return 0;
8928 }
8929
8930 static int ipw_wx_set_wap(struct net_device *dev,
8931                           struct iw_request_info *info,
8932                           union iwreq_data *wrqu, char *extra)
8933 {
8934         struct ipw_priv *priv = libipw_priv(dev);
8935
8936         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8937                 return -EINVAL;
8938         mutex_lock(&priv->mutex);
8939         if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
8940             is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
8941                 /* we disable mandatory BSSID association */
8942                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8943                 priv->config &= ~CFG_STATIC_BSSID;
8944                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8945                                 "parameters.\n");
8946                 ipw_associate(priv);
8947                 mutex_unlock(&priv->mutex);
8948                 return 0;
8949         }
8950
8951         priv->config |= CFG_STATIC_BSSID;
8952         if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) {
8953                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8954                 mutex_unlock(&priv->mutex);
8955                 return 0;
8956         }
8957
8958         IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
8959                      wrqu->ap_addr.sa_data);
8960
8961         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8962
8963         /* Network configuration changed -- force [re]association */
8964         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8965         if (!ipw_disassociate(priv))
8966                 ipw_associate(priv);
8967
8968         mutex_unlock(&priv->mutex);
8969         return 0;
8970 }
8971
8972 static int ipw_wx_get_wap(struct net_device *dev,
8973                           struct iw_request_info *info,
8974                           union iwreq_data *wrqu, char *extra)
8975 {
8976         struct ipw_priv *priv = libipw_priv(dev);
8977
8978         /* If we are associated, trying to associate, or have a statically
8979          * configured BSSID then return that; otherwise return ANY */
8980         mutex_lock(&priv->mutex);
8981         if (priv->config & CFG_STATIC_BSSID ||
8982             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8983                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8984                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8985         } else
8986                 eth_zero_addr(wrqu->ap_addr.sa_data);
8987
8988         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
8989                      wrqu->ap_addr.sa_data);
8990         mutex_unlock(&priv->mutex);
8991         return 0;
8992 }
8993
8994 static int ipw_wx_set_essid(struct net_device *dev,
8995                             struct iw_request_info *info,
8996                             union iwreq_data *wrqu, char *extra)
8997 {
8998         struct ipw_priv *priv = libipw_priv(dev);
8999         int length;
9000
9001         mutex_lock(&priv->mutex);
9002
9003         if (!wrqu->essid.flags)
9004         {
9005                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9006                 ipw_disassociate(priv);
9007                 priv->config &= ~CFG_STATIC_ESSID;
9008                 ipw_associate(priv);
9009                 mutex_unlock(&priv->mutex);
9010                 return 0;
9011         }
9012
9013         length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9014
9015         priv->config |= CFG_STATIC_ESSID;
9016
9017         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9018             && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9019                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9020                 mutex_unlock(&priv->mutex);
9021                 return 0;
9022         }
9023
9024         IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length);
9025
9026         priv->essid_len = length;
9027         memcpy(priv->essid, extra, priv->essid_len);
9028
9029         /* Network configuration changed -- force [re]association */
9030         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9031         if (!ipw_disassociate(priv))
9032                 ipw_associate(priv);
9033
9034         mutex_unlock(&priv->mutex);
9035         return 0;
9036 }
9037
9038 static int ipw_wx_get_essid(struct net_device *dev,
9039                             struct iw_request_info *info,
9040                             union iwreq_data *wrqu, char *extra)
9041 {
9042         struct ipw_priv *priv = libipw_priv(dev);
9043
9044         /* If we are associated, trying to associate, or have a statically
9045          * configured ESSID then return that; otherwise return ANY */
9046         mutex_lock(&priv->mutex);
9047         if (priv->config & CFG_STATIC_ESSID ||
9048             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9049                 IPW_DEBUG_WX("Getting essid: '%*pE'\n",
9050                              priv->essid_len, priv->essid);
9051                 memcpy(extra, priv->essid, priv->essid_len);
9052                 wrqu->essid.length = priv->essid_len;
9053                 wrqu->essid.flags = 1;  /* active */
9054         } else {
9055                 IPW_DEBUG_WX("Getting essid: ANY\n");
9056                 wrqu->essid.length = 0;
9057                 wrqu->essid.flags = 0;  /* active */
9058         }
9059         mutex_unlock(&priv->mutex);
9060         return 0;
9061 }
9062
9063 static int ipw_wx_set_nick(struct net_device *dev,
9064                            struct iw_request_info *info,
9065                            union iwreq_data *wrqu, char *extra)
9066 {
9067         struct ipw_priv *priv = libipw_priv(dev);
9068
9069         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9070         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9071                 return -E2BIG;
9072         mutex_lock(&priv->mutex);
9073         wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
9074         memset(priv->nick, 0, sizeof(priv->nick));
9075         memcpy(priv->nick, extra, wrqu->data.length);
9076         IPW_DEBUG_TRACE("<<\n");
9077         mutex_unlock(&priv->mutex);
9078         return 0;
9079
9080 }
9081
9082 static int ipw_wx_get_nick(struct net_device *dev,
9083                            struct iw_request_info *info,
9084                            union iwreq_data *wrqu, char *extra)
9085 {
9086         struct ipw_priv *priv = libipw_priv(dev);
9087         IPW_DEBUG_WX("Getting nick\n");
9088         mutex_lock(&priv->mutex);
9089         wrqu->data.length = strlen(priv->nick);
9090         memcpy(extra, priv->nick, wrqu->data.length);
9091         wrqu->data.flags = 1;   /* active */
9092         mutex_unlock(&priv->mutex);
9093         return 0;
9094 }
9095
9096 static int ipw_wx_set_sens(struct net_device *dev,
9097                             struct iw_request_info *info,
9098                             union iwreq_data *wrqu, char *extra)
9099 {
9100         struct ipw_priv *priv = libipw_priv(dev);
9101         int err = 0;
9102
9103         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9104         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9105         mutex_lock(&priv->mutex);
9106
9107         if (wrqu->sens.fixed == 0)
9108         {
9109                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9110                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9111                 goto out;
9112         }
9113         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9114             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9115                 err = -EINVAL;
9116                 goto out;
9117         }
9118
9119         priv->roaming_threshold = wrqu->sens.value;
9120         priv->disassociate_threshold = 3*wrqu->sens.value;
9121       out:
9122         mutex_unlock(&priv->mutex);
9123         return err;
9124 }
9125
9126 static int ipw_wx_get_sens(struct net_device *dev,
9127                             struct iw_request_info *info,
9128                             union iwreq_data *wrqu, char *extra)
9129 {
9130         struct ipw_priv *priv = libipw_priv(dev);
9131         mutex_lock(&priv->mutex);
9132         wrqu->sens.fixed = 1;
9133         wrqu->sens.value = priv->roaming_threshold;
9134         mutex_unlock(&priv->mutex);
9135
9136         IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9137                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9138
9139         return 0;
9140 }
9141
9142 static int ipw_wx_set_rate(struct net_device *dev,
9143                            struct iw_request_info *info,
9144                            union iwreq_data *wrqu, char *extra)
9145 {
9146         /* TODO: We should use semaphores or locks for access to priv */
9147         struct ipw_priv *priv = libipw_priv(dev);
9148         u32 target_rate = wrqu->bitrate.value;
9149         u32 fixed, mask;
9150
9151         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9152         /* value = X, fixed = 1 means only rate X */
9153         /* value = X, fixed = 0 means all rates lower equal X */
9154
9155         if (target_rate == -1) {
9156                 fixed = 0;
9157                 mask = LIBIPW_DEFAULT_RATES_MASK;
9158                 /* Now we should reassociate */
9159                 goto apply;
9160         }
9161
9162         mask = 0;
9163         fixed = wrqu->bitrate.fixed;
9164
9165         if (target_rate == 1000000 || !fixed)
9166                 mask |= LIBIPW_CCK_RATE_1MB_MASK;
9167         if (target_rate == 1000000)
9168                 goto apply;
9169
9170         if (target_rate == 2000000 || !fixed)
9171                 mask |= LIBIPW_CCK_RATE_2MB_MASK;
9172         if (target_rate == 2000000)
9173                 goto apply;
9174
9175         if (target_rate == 5500000 || !fixed)
9176                 mask |= LIBIPW_CCK_RATE_5MB_MASK;
9177         if (target_rate == 5500000)
9178                 goto apply;
9179
9180         if (target_rate == 6000000 || !fixed)
9181                 mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9182         if (target_rate == 6000000)
9183                 goto apply;
9184
9185         if (target_rate == 9000000 || !fixed)
9186                 mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9187         if (target_rate == 9000000)
9188                 goto apply;
9189
9190         if (target_rate == 11000000 || !fixed)
9191                 mask |= LIBIPW_CCK_RATE_11MB_MASK;
9192         if (target_rate == 11000000)
9193                 goto apply;
9194
9195         if (target_rate == 12000000 || !fixed)
9196                 mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9197         if (target_rate == 12000000)
9198                 goto apply;
9199
9200         if (target_rate == 18000000 || !fixed)
9201                 mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9202         if (target_rate == 18000000)
9203                 goto apply;
9204
9205         if (target_rate == 24000000 || !fixed)
9206                 mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9207         if (target_rate == 24000000)
9208                 goto apply;
9209
9210         if (target_rate == 36000000 || !fixed)
9211                 mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9212         if (target_rate == 36000000)
9213                 goto apply;
9214
9215         if (target_rate == 48000000 || !fixed)
9216                 mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9217         if (target_rate == 48000000)
9218                 goto apply;
9219
9220         if (target_rate == 54000000 || !fixed)
9221                 mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9222         if (target_rate == 54000000)
9223                 goto apply;
9224
9225         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9226         return -EINVAL;
9227
9228       apply:
9229         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9230                      mask, fixed ? "fixed" : "sub-rates");
9231         mutex_lock(&priv->mutex);
9232         if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9233                 priv->config &= ~CFG_FIXED_RATE;
9234                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9235         } else
9236                 priv->config |= CFG_FIXED_RATE;
9237
9238         if (priv->rates_mask == mask) {
9239                 IPW_DEBUG_WX("Mask set to current mask.\n");
9240                 mutex_unlock(&priv->mutex);
9241                 return 0;
9242         }
9243
9244         priv->rates_mask = mask;
9245
9246         /* Network configuration changed -- force [re]association */
9247         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9248         if (!ipw_disassociate(priv))
9249                 ipw_associate(priv);
9250
9251         mutex_unlock(&priv->mutex);
9252         return 0;
9253 }
9254
9255 static int ipw_wx_get_rate(struct net_device *dev,
9256                            struct iw_request_info *info,
9257                            union iwreq_data *wrqu, char *extra)
9258 {
9259         struct ipw_priv *priv = libipw_priv(dev);
9260         mutex_lock(&priv->mutex);
9261         wrqu->bitrate.value = priv->last_rate;
9262         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9263         mutex_unlock(&priv->mutex);
9264         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9265         return 0;
9266 }
9267
9268 static int ipw_wx_set_rts(struct net_device *dev,
9269                           struct iw_request_info *info,
9270                           union iwreq_data *wrqu, char *extra)
9271 {
9272         struct ipw_priv *priv = libipw_priv(dev);
9273         mutex_lock(&priv->mutex);
9274         if (wrqu->rts.disabled || !wrqu->rts.fixed)
9275                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9276         else {
9277                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9278                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9279                         mutex_unlock(&priv->mutex);
9280                         return -EINVAL;
9281                 }
9282                 priv->rts_threshold = wrqu->rts.value;
9283         }
9284
9285         ipw_send_rts_threshold(priv, priv->rts_threshold);
9286         mutex_unlock(&priv->mutex);
9287         IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9288         return 0;
9289 }
9290
9291 static int ipw_wx_get_rts(struct net_device *dev,
9292                           struct iw_request_info *info,
9293                           union iwreq_data *wrqu, char *extra)
9294 {
9295         struct ipw_priv *priv = libipw_priv(dev);
9296         mutex_lock(&priv->mutex);
9297         wrqu->rts.value = priv->rts_threshold;
9298         wrqu->rts.fixed = 0;    /* no auto select */
9299         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9300         mutex_unlock(&priv->mutex);
9301         IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9302         return 0;
9303 }
9304
9305 static int ipw_wx_set_txpow(struct net_device *dev,
9306                             struct iw_request_info *info,
9307                             union iwreq_data *wrqu, char *extra)
9308 {
9309         struct ipw_priv *priv = libipw_priv(dev);
9310         int err = 0;
9311
9312         mutex_lock(&priv->mutex);
9313         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9314                 err = -EINPROGRESS;
9315                 goto out;
9316         }
9317
9318         if (!wrqu->power.fixed)
9319                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9320
9321         if (wrqu->power.flags != IW_TXPOW_DBM) {
9322                 err = -EINVAL;
9323                 goto out;
9324         }
9325
9326         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9327             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9328                 err = -EINVAL;
9329                 goto out;
9330         }
9331
9332         priv->tx_power = wrqu->power.value;
9333         err = ipw_set_tx_power(priv);
9334       out:
9335         mutex_unlock(&priv->mutex);
9336         return err;
9337 }
9338
9339 static int ipw_wx_get_txpow(struct net_device *dev,
9340                             struct iw_request_info *info,
9341                             union iwreq_data *wrqu, char *extra)
9342 {
9343         struct ipw_priv *priv = libipw_priv(dev);
9344         mutex_lock(&priv->mutex);
9345         wrqu->power.value = priv->tx_power;
9346         wrqu->power.fixed = 1;
9347         wrqu->power.flags = IW_TXPOW_DBM;
9348         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9349         mutex_unlock(&priv->mutex);
9350
9351         IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9352                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9353
9354         return 0;
9355 }
9356
9357 static int ipw_wx_set_frag(struct net_device *dev,
9358                            struct iw_request_info *info,
9359                            union iwreq_data *wrqu, char *extra)
9360 {
9361         struct ipw_priv *priv = libipw_priv(dev);
9362         mutex_lock(&priv->mutex);
9363         if (wrqu->frag.disabled || !wrqu->frag.fixed)
9364                 priv->ieee->fts = DEFAULT_FTS;
9365         else {
9366                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9367                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9368                         mutex_unlock(&priv->mutex);
9369                         return -EINVAL;
9370                 }
9371
9372                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9373         }
9374
9375         ipw_send_frag_threshold(priv, wrqu->frag.value);
9376         mutex_unlock(&priv->mutex);
9377         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9378         return 0;
9379 }
9380
9381 static int ipw_wx_get_frag(struct net_device *dev,
9382                            struct iw_request_info *info,
9383                            union iwreq_data *wrqu, char *extra)
9384 {
9385         struct ipw_priv *priv = libipw_priv(dev);
9386         mutex_lock(&priv->mutex);
9387         wrqu->frag.value = priv->ieee->fts;
9388         wrqu->frag.fixed = 0;   /* no auto select */
9389         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9390         mutex_unlock(&priv->mutex);
9391         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9392
9393         return 0;
9394 }
9395
9396 static int ipw_wx_set_retry(struct net_device *dev,
9397                             struct iw_request_info *info,
9398                             union iwreq_data *wrqu, char *extra)
9399 {
9400         struct ipw_priv *priv = libipw_priv(dev);
9401
9402         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9403                 return -EINVAL;
9404
9405         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9406                 return 0;
9407
9408         if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9409                 return -EINVAL;
9410
9411         mutex_lock(&priv->mutex);
9412         if (wrqu->retry.flags & IW_RETRY_SHORT)
9413                 priv->short_retry_limit = (u8) wrqu->retry.value;
9414         else if (wrqu->retry.flags & IW_RETRY_LONG)
9415                 priv->long_retry_limit = (u8) wrqu->retry.value;
9416         else {
9417                 priv->short_retry_limit = (u8) wrqu->retry.value;
9418                 priv->long_retry_limit = (u8) wrqu->retry.value;
9419         }
9420
9421         ipw_send_retry_limit(priv, priv->short_retry_limit,
9422                              priv->long_retry_limit);
9423         mutex_unlock(&priv->mutex);
9424         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9425                      priv->short_retry_limit, priv->long_retry_limit);
9426         return 0;
9427 }
9428
9429 static int ipw_wx_get_retry(struct net_device *dev,
9430                             struct iw_request_info *info,
9431                             union iwreq_data *wrqu, char *extra)
9432 {
9433         struct ipw_priv *priv = libipw_priv(dev);
9434
9435         mutex_lock(&priv->mutex);
9436         wrqu->retry.disabled = 0;
9437
9438         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9439                 mutex_unlock(&priv->mutex);
9440                 return -EINVAL;
9441         }
9442
9443         if (wrqu->retry.flags & IW_RETRY_LONG) {
9444                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9445                 wrqu->retry.value = priv->long_retry_limit;
9446         } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9447                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9448                 wrqu->retry.value = priv->short_retry_limit;
9449         } else {
9450                 wrqu->retry.flags = IW_RETRY_LIMIT;
9451                 wrqu->retry.value = priv->short_retry_limit;
9452         }
9453         mutex_unlock(&priv->mutex);
9454
9455         IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9456
9457         return 0;
9458 }
9459
9460 static int ipw_wx_set_scan(struct net_device *dev,
9461                            struct iw_request_info *info,
9462                            union iwreq_data *wrqu, char *extra)
9463 {
9464         struct ipw_priv *priv = libipw_priv(dev);
9465         struct iw_scan_req *req = (struct iw_scan_req *)extra;
9466         struct delayed_work *work = NULL;
9467
9468         mutex_lock(&priv->mutex);
9469
9470         priv->user_requested_scan = 1;
9471
9472         if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9473                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9474                         int len = min((int)req->essid_len,
9475                                       (int)sizeof(priv->direct_scan_ssid));
9476                         memcpy(priv->direct_scan_ssid, req->essid, len);
9477                         priv->direct_scan_ssid_len = len;
9478                         work = &priv->request_direct_scan;
9479                 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9480                         work = &priv->request_passive_scan;
9481                 }
9482         } else {
9483                 /* Normal active broadcast scan */
9484                 work = &priv->request_scan;
9485         }
9486
9487         mutex_unlock(&priv->mutex);
9488
9489         IPW_DEBUG_WX("Start scan\n");
9490
9491         schedule_delayed_work(work, 0);
9492
9493         return 0;
9494 }
9495
9496 static int ipw_wx_get_scan(struct net_device *dev,
9497                            struct iw_request_info *info,
9498                            union iwreq_data *wrqu, char *extra)
9499 {
9500         struct ipw_priv *priv = libipw_priv(dev);
9501         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9502 }
9503
9504 static int ipw_wx_set_encode(struct net_device *dev,
9505                              struct iw_request_info *info,
9506                              union iwreq_data *wrqu, char *key)
9507 {
9508         struct ipw_priv *priv = libipw_priv(dev);
9509         int ret;
9510         u32 cap = priv->capability;
9511
9512         mutex_lock(&priv->mutex);
9513         ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9514
9515         /* In IBSS mode, we need to notify the firmware to update
9516          * the beacon info after we changed the capability. */
9517         if (cap != priv->capability &&
9518             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9519             priv->status & STATUS_ASSOCIATED)
9520                 ipw_disassociate(priv);
9521
9522         mutex_unlock(&priv->mutex);
9523         return ret;
9524 }
9525
9526 static int ipw_wx_get_encode(struct net_device *dev,
9527                              struct iw_request_info *info,
9528                              union iwreq_data *wrqu, char *key)
9529 {
9530         struct ipw_priv *priv = libipw_priv(dev);
9531         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9532 }
9533
9534 static int ipw_wx_set_power(struct net_device *dev,
9535                             struct iw_request_info *info,
9536                             union iwreq_data *wrqu, char *extra)
9537 {
9538         struct ipw_priv *priv = libipw_priv(dev);
9539         int err;
9540         mutex_lock(&priv->mutex);
9541         if (wrqu->power.disabled) {
9542                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9543                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9544                 if (err) {
9545                         IPW_DEBUG_WX("failed setting power mode.\n");
9546                         mutex_unlock(&priv->mutex);
9547                         return err;
9548                 }
9549                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9550                 mutex_unlock(&priv->mutex);
9551                 return 0;
9552         }
9553
9554         switch (wrqu->power.flags & IW_POWER_MODE) {
9555         case IW_POWER_ON:       /* If not specified */
9556         case IW_POWER_MODE:     /* If set all mask */
9557         case IW_POWER_ALL_R:    /* If explicitly state all */
9558                 break;
9559         default:                /* Otherwise we don't support it */
9560                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9561                              wrqu->power.flags);
9562                 mutex_unlock(&priv->mutex);
9563                 return -EOPNOTSUPP;
9564         }
9565
9566         /* If the user hasn't specified a power management mode yet, default
9567          * to BATTERY */
9568         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9569                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9570         else
9571                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9572
9573         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9574         if (err) {
9575                 IPW_DEBUG_WX("failed setting power mode.\n");
9576                 mutex_unlock(&priv->mutex);
9577                 return err;
9578         }
9579
9580         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9581         mutex_unlock(&priv->mutex);
9582         return 0;
9583 }
9584
9585 static int ipw_wx_get_power(struct net_device *dev,
9586                             struct iw_request_info *info,
9587                             union iwreq_data *wrqu, char *extra)
9588 {
9589         struct ipw_priv *priv = libipw_priv(dev);
9590         mutex_lock(&priv->mutex);
9591         if (!(priv->power_mode & IPW_POWER_ENABLED))
9592                 wrqu->power.disabled = 1;
9593         else
9594                 wrqu->power.disabled = 0;
9595
9596         mutex_unlock(&priv->mutex);
9597         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9598
9599         return 0;
9600 }
9601
9602 static int ipw_wx_set_powermode(struct net_device *dev,
9603                                 struct iw_request_info *info,
9604                                 union iwreq_data *wrqu, char *extra)
9605 {
9606         struct ipw_priv *priv = libipw_priv(dev);
9607         int mode = *(int *)extra;
9608         int err;
9609
9610         mutex_lock(&priv->mutex);
9611         if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9612                 mode = IPW_POWER_AC;
9613
9614         if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9615                 err = ipw_send_power_mode(priv, mode);
9616                 if (err) {
9617                         IPW_DEBUG_WX("failed setting power mode.\n");
9618                         mutex_unlock(&priv->mutex);
9619                         return err;
9620                 }
9621                 priv->power_mode = IPW_POWER_ENABLED | mode;
9622         }
9623         mutex_unlock(&priv->mutex);
9624         return 0;
9625 }
9626
9627 #define MAX_WX_STRING 80
9628 static int ipw_wx_get_powermode(struct net_device *dev,
9629                                 struct iw_request_info *info,
9630                                 union iwreq_data *wrqu, char *extra)
9631 {
9632         struct ipw_priv *priv = libipw_priv(dev);
9633         int level = IPW_POWER_LEVEL(priv->power_mode);
9634         char *p = extra;
9635
9636         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9637
9638         switch (level) {
9639         case IPW_POWER_AC:
9640                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9641                 break;
9642         case IPW_POWER_BATTERY:
9643                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9644                 break;
9645         default:
9646                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9647                               "(Timeout %dms, Period %dms)",
9648                               timeout_duration[level - 1] / 1000,
9649                               period_duration[level - 1] / 1000);
9650         }
9651
9652         if (!(priv->power_mode & IPW_POWER_ENABLED))
9653                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9654
9655         wrqu->data.length = p - extra + 1;
9656
9657         return 0;
9658 }
9659
9660 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9661                                     struct iw_request_info *info,
9662                                     union iwreq_data *wrqu, char *extra)
9663 {
9664         struct ipw_priv *priv = libipw_priv(dev);
9665         int mode = *(int *)extra;
9666         u8 band = 0, modulation = 0;
9667
9668         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9669                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9670                 return -EINVAL;
9671         }
9672         mutex_lock(&priv->mutex);
9673         if (priv->adapter == IPW_2915ABG) {
9674                 priv->ieee->abg_true = 1;
9675                 if (mode & IEEE_A) {
9676                         band |= LIBIPW_52GHZ_BAND;
9677                         modulation |= LIBIPW_OFDM_MODULATION;
9678                 } else
9679                         priv->ieee->abg_true = 0;
9680         } else {
9681                 if (mode & IEEE_A) {
9682                         IPW_WARNING("Attempt to set 2200BG into "
9683                                     "802.11a mode\n");
9684                         mutex_unlock(&priv->mutex);
9685                         return -EINVAL;
9686                 }
9687
9688                 priv->ieee->abg_true = 0;
9689         }
9690
9691         if (mode & IEEE_B) {
9692                 band |= LIBIPW_24GHZ_BAND;
9693                 modulation |= LIBIPW_CCK_MODULATION;
9694         } else
9695                 priv->ieee->abg_true = 0;
9696
9697         if (mode & IEEE_G) {
9698                 band |= LIBIPW_24GHZ_BAND;
9699                 modulation |= LIBIPW_OFDM_MODULATION;
9700         } else
9701                 priv->ieee->abg_true = 0;
9702
9703         priv->ieee->mode = mode;
9704         priv->ieee->freq_band = band;
9705         priv->ieee->modulation = modulation;
9706         init_supported_rates(priv, &priv->rates);
9707
9708         /* Network configuration changed -- force [re]association */
9709         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9710         if (!ipw_disassociate(priv)) {
9711                 ipw_send_supported_rates(priv, &priv->rates);
9712                 ipw_associate(priv);
9713         }
9714
9715         /* Update the band LEDs */
9716         ipw_led_band_on(priv);
9717
9718         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9719                      mode & IEEE_A ? 'a' : '.',
9720                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9721         mutex_unlock(&priv->mutex);
9722         return 0;
9723 }
9724
9725 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9726                                     struct iw_request_info *info,
9727                                     union iwreq_data *wrqu, char *extra)
9728 {
9729         struct ipw_priv *priv = libipw_priv(dev);
9730         mutex_lock(&priv->mutex);
9731         switch (priv->ieee->mode) {
9732         case IEEE_A:
9733                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9734                 break;
9735         case IEEE_B:
9736                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9737                 break;
9738         case IEEE_A | IEEE_B:
9739                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9740                 break;
9741         case IEEE_G:
9742                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9743                 break;
9744         case IEEE_A | IEEE_G:
9745                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9746                 break;
9747         case IEEE_B | IEEE_G:
9748                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9749                 break;
9750         case IEEE_A | IEEE_B | IEEE_G:
9751                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9752                 break;
9753         default:
9754                 strncpy(extra, "unknown", MAX_WX_STRING);
9755                 break;
9756         }
9757         extra[MAX_WX_STRING - 1] = '\0';
9758
9759         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9760
9761         wrqu->data.length = strlen(extra) + 1;
9762         mutex_unlock(&priv->mutex);
9763
9764         return 0;
9765 }
9766
9767 static int ipw_wx_set_preamble(struct net_device *dev,
9768                                struct iw_request_info *info,
9769                                union iwreq_data *wrqu, char *extra)
9770 {
9771         struct ipw_priv *priv = libipw_priv(dev);
9772         int mode = *(int *)extra;
9773         mutex_lock(&priv->mutex);
9774         /* Switching from SHORT -> LONG requires a disassociation */
9775         if (mode == 1) {
9776                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9777                         priv->config |= CFG_PREAMBLE_LONG;
9778
9779                         /* Network configuration changed -- force [re]association */
9780                         IPW_DEBUG_ASSOC
9781                             ("[re]association triggered due to preamble change.\n");
9782                         if (!ipw_disassociate(priv))
9783                                 ipw_associate(priv);
9784                 }
9785                 goto done;
9786         }
9787
9788         if (mode == 0) {
9789                 priv->config &= ~CFG_PREAMBLE_LONG;
9790                 goto done;
9791         }
9792         mutex_unlock(&priv->mutex);
9793         return -EINVAL;
9794
9795       done:
9796         mutex_unlock(&priv->mutex);
9797         return 0;
9798 }
9799
9800 static int ipw_wx_get_preamble(struct net_device *dev,
9801                                struct iw_request_info *info,
9802                                union iwreq_data *wrqu, char *extra)
9803 {
9804         struct ipw_priv *priv = libipw_priv(dev);
9805         mutex_lock(&priv->mutex);
9806         if (priv->config & CFG_PREAMBLE_LONG)
9807                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9808         else
9809                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9810         mutex_unlock(&priv->mutex);
9811         return 0;
9812 }
9813
9814 #ifdef CONFIG_IPW2200_MONITOR
9815 static int ipw_wx_set_monitor(struct net_device *dev,
9816                               struct iw_request_info *info,
9817                               union iwreq_data *wrqu, char *extra)
9818 {
9819         struct ipw_priv *priv = libipw_priv(dev);
9820         int *parms = (int *)extra;
9821         int enable = (parms[0] > 0);
9822         mutex_lock(&priv->mutex);
9823         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9824         if (enable) {
9825                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9826 #ifdef CONFIG_IPW2200_RADIOTAP
9827                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9828 #else
9829                         priv->net_dev->type = ARPHRD_IEEE80211;
9830 #endif
9831                         schedule_work(&priv->adapter_restart);
9832                 }
9833
9834                 ipw_set_channel(priv, parms[1]);
9835         } else {
9836                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9837                         mutex_unlock(&priv->mutex);
9838                         return 0;
9839                 }
9840                 priv->net_dev->type = ARPHRD_ETHER;
9841                 schedule_work(&priv->adapter_restart);
9842         }
9843         mutex_unlock(&priv->mutex);
9844         return 0;
9845 }
9846
9847 #endif                          /* CONFIG_IPW2200_MONITOR */
9848
9849 static int ipw_wx_reset(struct net_device *dev,
9850                         struct iw_request_info *info,
9851                         union iwreq_data *wrqu, char *extra)
9852 {
9853         struct ipw_priv *priv = libipw_priv(dev);
9854         IPW_DEBUG_WX("RESET\n");
9855         schedule_work(&priv->adapter_restart);
9856         return 0;
9857 }
9858
9859 static int ipw_wx_sw_reset(struct net_device *dev,
9860                            struct iw_request_info *info,
9861                            union iwreq_data *wrqu, char *extra)
9862 {
9863         struct ipw_priv *priv = libipw_priv(dev);
9864         union iwreq_data wrqu_sec = {
9865                 .encoding = {
9866                              .flags = IW_ENCODE_DISABLED,
9867                              },
9868         };
9869         int ret;
9870
9871         IPW_DEBUG_WX("SW_RESET\n");
9872
9873         mutex_lock(&priv->mutex);
9874
9875         ret = ipw_sw_reset(priv, 2);
9876         if (!ret) {
9877                 free_firmware();
9878                 ipw_adapter_restart(priv);
9879         }
9880
9881         /* The SW reset bit might have been toggled on by the 'disable'
9882          * module parameter, so take appropriate action */
9883         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9884
9885         mutex_unlock(&priv->mutex);
9886         libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9887         mutex_lock(&priv->mutex);
9888
9889         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9890                 /* Configuration likely changed -- force [re]association */
9891                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9892                                 "reset.\n");
9893                 if (!ipw_disassociate(priv))
9894                         ipw_associate(priv);
9895         }
9896
9897         mutex_unlock(&priv->mutex);
9898
9899         return 0;
9900 }
9901
9902 /* Rebase the WE IOCTLs to zero for the handler array */
9903 static iw_handler ipw_wx_handlers[] = {
9904         IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
9905         IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
9906         IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
9907         IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
9908         IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
9909         IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
9910         IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
9911         IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
9912         IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
9913         IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
9914         IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
9915         IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
9916         IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
9917         IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
9918         IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
9919         IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
9920         IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
9921         IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
9922         IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
9923         IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
9924         IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
9925         IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
9926         IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
9927         IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
9928         IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
9929         IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
9930         IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
9931         IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
9932         IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
9933         IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
9934         IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
9935         IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
9936         IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
9937         IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
9938         IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
9939         IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
9940         IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
9941         IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
9942         IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
9943         IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
9944         IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
9945 };
9946
9947 enum {
9948         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9949         IPW_PRIV_GET_POWER,
9950         IPW_PRIV_SET_MODE,
9951         IPW_PRIV_GET_MODE,
9952         IPW_PRIV_SET_PREAMBLE,
9953         IPW_PRIV_GET_PREAMBLE,
9954         IPW_PRIV_RESET,
9955         IPW_PRIV_SW_RESET,
9956 #ifdef CONFIG_IPW2200_MONITOR
9957         IPW_PRIV_SET_MONITOR,
9958 #endif
9959 };
9960
9961 static struct iw_priv_args ipw_priv_args[] = {
9962         {
9963          .cmd = IPW_PRIV_SET_POWER,
9964          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9965          .name = "set_power"},
9966         {
9967          .cmd = IPW_PRIV_GET_POWER,
9968          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9969          .name = "get_power"},
9970         {
9971          .cmd = IPW_PRIV_SET_MODE,
9972          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9973          .name = "set_mode"},
9974         {
9975          .cmd = IPW_PRIV_GET_MODE,
9976          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9977          .name = "get_mode"},
9978         {
9979          .cmd = IPW_PRIV_SET_PREAMBLE,
9980          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9981          .name = "set_preamble"},
9982         {
9983          .cmd = IPW_PRIV_GET_PREAMBLE,
9984          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9985          .name = "get_preamble"},
9986         {
9987          IPW_PRIV_RESET,
9988          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9989         {
9990          IPW_PRIV_SW_RESET,
9991          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9992 #ifdef CONFIG_IPW2200_MONITOR
9993         {
9994          IPW_PRIV_SET_MONITOR,
9995          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9996 #endif                          /* CONFIG_IPW2200_MONITOR */
9997 };
9998
9999 static iw_handler ipw_priv_handler[] = {
10000         ipw_wx_set_powermode,
10001         ipw_wx_get_powermode,
10002         ipw_wx_set_wireless_mode,
10003         ipw_wx_get_wireless_mode,
10004         ipw_wx_set_preamble,
10005         ipw_wx_get_preamble,
10006         ipw_wx_reset,
10007         ipw_wx_sw_reset,
10008 #ifdef CONFIG_IPW2200_MONITOR
10009         ipw_wx_set_monitor,
10010 #endif
10011 };
10012
10013 static const struct iw_handler_def ipw_wx_handler_def = {
10014         .standard = ipw_wx_handlers,
10015         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10016         .num_private = ARRAY_SIZE(ipw_priv_handler),
10017         .num_private_args = ARRAY_SIZE(ipw_priv_args),
10018         .private = ipw_priv_handler,
10019         .private_args = ipw_priv_args,
10020         .get_wireless_stats = ipw_get_wireless_stats,
10021 };
10022
10023 /*
10024  * Get wireless statistics.
10025  * Called by /proc/net/wireless
10026  * Also called by SIOCGIWSTATS
10027  */
10028 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10029 {
10030         struct ipw_priv *priv = libipw_priv(dev);
10031         struct iw_statistics *wstats;
10032
10033         wstats = &priv->wstats;
10034
10035         /* if hw is disabled, then ipw_get_ordinal() can't be called.
10036          * netdev->get_wireless_stats seems to be called before fw is
10037          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10038          * and associated; if not associcated, the values are all meaningless
10039          * anyway, so set them all to NULL and INVALID */
10040         if (!(priv->status & STATUS_ASSOCIATED)) {
10041                 wstats->miss.beacon = 0;
10042                 wstats->discard.retries = 0;
10043                 wstats->qual.qual = 0;
10044                 wstats->qual.level = 0;
10045                 wstats->qual.noise = 0;
10046                 wstats->qual.updated = 7;
10047                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10048                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10049                 return wstats;
10050         }
10051
10052         wstats->qual.qual = priv->quality;
10053         wstats->qual.level = priv->exp_avg_rssi;
10054         wstats->qual.noise = priv->exp_avg_noise;
10055         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10056             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10057
10058         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10059         wstats->discard.retries = priv->last_tx_failures;
10060         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10061
10062 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10063         goto fail_get_ordinal;
10064         wstats->discard.retries += tx_retry; */
10065
10066         return wstats;
10067 }
10068
10069 /* net device stuff */
10070
10071 static  void init_sys_config(struct ipw_sys_config *sys_config)
10072 {
10073         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10074         sys_config->bt_coexistence = 0;
10075         sys_config->answer_broadcast_ssid_probe = 0;
10076         sys_config->accept_all_data_frames = 0;
10077         sys_config->accept_non_directed_frames = 1;
10078         sys_config->exclude_unicast_unencrypted = 0;
10079         sys_config->disable_unicast_decryption = 1;
10080         sys_config->exclude_multicast_unencrypted = 0;
10081         sys_config->disable_multicast_decryption = 1;
10082         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10083                 antenna = CFG_SYS_ANTENNA_BOTH;
10084         sys_config->antenna_diversity = antenna;
10085         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10086         sys_config->dot11g_auto_detection = 0;
10087         sys_config->enable_cts_to_self = 0;
10088         sys_config->bt_coexist_collision_thr = 0;
10089         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
10090         sys_config->silence_threshold = 0x1e;
10091 }
10092
10093 static int ipw_net_open(struct net_device *dev)
10094 {
10095         IPW_DEBUG_INFO("dev->open\n");
10096         netif_start_queue(dev);
10097         return 0;
10098 }
10099
10100 static int ipw_net_stop(struct net_device *dev)
10101 {
10102         IPW_DEBUG_INFO("dev->close\n");
10103         netif_stop_queue(dev);
10104         return 0;
10105 }
10106
10107 /*
10108 todo:
10109
10110 modify to send one tfd per fragment instead of using chunking.  otherwise
10111 we need to heavily modify the libipw_skb_to_txb.
10112 */
10113
10114 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10115                              int pri)
10116 {
10117         struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10118             txb->fragments[0]->data;
10119         int i = 0;
10120         struct tfd_frame *tfd;
10121 #ifdef CONFIG_IPW2200_QOS
10122         int tx_id = ipw_get_tx_queue_number(priv, pri);
10123         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10124 #else
10125         struct clx2_tx_queue *txq = &priv->txq[0];
10126 #endif
10127         struct clx2_queue *q = &txq->q;
10128         u8 id, hdr_len, unicast;
10129         int fc;
10130
10131         if (!(priv->status & STATUS_ASSOCIATED))
10132                 goto drop;
10133
10134         hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10135         switch (priv->ieee->iw_mode) {
10136         case IW_MODE_ADHOC:
10137                 unicast = !is_multicast_ether_addr(hdr->addr1);
10138                 id = ipw_find_station(priv, hdr->addr1);
10139                 if (id == IPW_INVALID_STATION) {
10140                         id = ipw_add_station(priv, hdr->addr1);
10141                         if (id == IPW_INVALID_STATION) {
10142                                 IPW_WARNING("Attempt to send data to "
10143                                             "invalid cell: %pM\n",
10144                                             hdr->addr1);
10145                                 goto drop;
10146                         }
10147                 }
10148                 break;
10149
10150         case IW_MODE_INFRA:
10151         default:
10152                 unicast = !is_multicast_ether_addr(hdr->addr3);
10153                 id = 0;
10154                 break;
10155         }
10156
10157         tfd = &txq->bd[q->first_empty];
10158         txq->txb[q->first_empty] = txb;
10159         memset(tfd, 0, sizeof(*tfd));
10160         tfd->u.data.station_number = id;
10161
10162         tfd->control_flags.message_type = TX_FRAME_TYPE;
10163         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10164
10165         tfd->u.data.cmd_id = DINO_CMD_TX;
10166         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10167
10168         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10169                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10170         else
10171                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10172
10173         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10174                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10175
10176         fc = le16_to_cpu(hdr->frame_ctl);
10177         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10178
10179         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10180
10181         if (likely(unicast))
10182                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10183
10184         if (txb->encrypted && !priv->ieee->host_encrypt) {
10185                 switch (priv->ieee->sec.level) {
10186                 case SEC_LEVEL_3:
10187                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10188                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10189                         /* XXX: ACK flag must be set for CCMP even if it
10190                          * is a multicast/broadcast packet, because CCMP
10191                          * group communication encrypted by GTK is
10192                          * actually done by the AP. */
10193                         if (!unicast)
10194                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10195
10196                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10197                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10198                         tfd->u.data.key_index = 0;
10199                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10200                         break;
10201                 case SEC_LEVEL_2:
10202                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10203                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10204                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10205                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10206                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10207                         break;
10208                 case SEC_LEVEL_1:
10209                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10210                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10211                         tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10212                         if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10213                             40)
10214                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10215                         else
10216                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10217                         break;
10218                 case SEC_LEVEL_0:
10219                         break;
10220                 default:
10221                         printk(KERN_ERR "Unknown security level %d\n",
10222                                priv->ieee->sec.level);
10223                         break;
10224                 }
10225         } else
10226                 /* No hardware encryption */
10227                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10228
10229 #ifdef CONFIG_IPW2200_QOS
10230         if (fc & IEEE80211_STYPE_QOS_DATA)
10231                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10232 #endif                          /* CONFIG_IPW2200_QOS */
10233
10234         /* payload */
10235         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10236                                                  txb->nr_frags));
10237         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10238                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10239         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10240                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10241                                i, le32_to_cpu(tfd->u.data.num_chunks),
10242                                txb->fragments[i]->len - hdr_len);
10243                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10244                              i, tfd->u.data.num_chunks,
10245                              txb->fragments[i]->len - hdr_len);
10246                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10247                            txb->fragments[i]->len - hdr_len);
10248
10249                 tfd->u.data.chunk_ptr[i] =
10250                     cpu_to_le32(pci_map_single
10251                                 (priv->pci_dev,
10252                                  txb->fragments[i]->data + hdr_len,
10253                                  txb->fragments[i]->len - hdr_len,
10254                                  PCI_DMA_TODEVICE));
10255                 tfd->u.data.chunk_len[i] =
10256                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10257         }
10258
10259         if (i != txb->nr_frags) {
10260                 struct sk_buff *skb;
10261                 u16 remaining_bytes = 0;
10262                 int j;
10263
10264                 for (j = i; j < txb->nr_frags; j++)
10265                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10266
10267                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10268                        remaining_bytes);
10269                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10270                 if (skb != NULL) {
10271                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10272                         for (j = i; j < txb->nr_frags; j++) {
10273                                 int size = txb->fragments[j]->len - hdr_len;
10274
10275                                 printk(KERN_INFO "Adding frag %d %d...\n",
10276                                        j, size);
10277                                 skb_put_data(skb,
10278                                              txb->fragments[j]->data + hdr_len,
10279                                              size);
10280                         }
10281                         dev_kfree_skb_any(txb->fragments[i]);
10282                         txb->fragments[i] = skb;
10283                         tfd->u.data.chunk_ptr[i] =
10284                             cpu_to_le32(pci_map_single
10285                                         (priv->pci_dev, skb->data,
10286                                          remaining_bytes,
10287                                          PCI_DMA_TODEVICE));
10288
10289                         le32_add_cpu(&tfd->u.data.num_chunks, 1);
10290                 }
10291         }
10292
10293         /* kick DMA */
10294         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10295         ipw_write32(priv, q->reg_w, q->first_empty);
10296
10297         if (ipw_tx_queue_space(q) < q->high_mark)
10298                 netif_stop_queue(priv->net_dev);
10299
10300         return NETDEV_TX_OK;
10301
10302       drop:
10303         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10304         libipw_txb_free(txb);
10305         return NETDEV_TX_OK;
10306 }
10307
10308 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10309 {
10310         struct ipw_priv *priv = libipw_priv(dev);
10311 #ifdef CONFIG_IPW2200_QOS
10312         int tx_id = ipw_get_tx_queue_number(priv, pri);
10313         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10314 #else
10315         struct clx2_tx_queue *txq = &priv->txq[0];
10316 #endif                          /* CONFIG_IPW2200_QOS */
10317
10318         if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10319                 return 1;
10320
10321         return 0;
10322 }
10323
10324 #ifdef CONFIG_IPW2200_PROMISCUOUS
10325 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10326                                       struct libipw_txb *txb)
10327 {
10328         struct libipw_rx_stats dummystats;
10329         struct ieee80211_hdr *hdr;
10330         u8 n;
10331         u16 filter = priv->prom_priv->filter;
10332         int hdr_only = 0;
10333
10334         if (filter & IPW_PROM_NO_TX)
10335                 return;
10336
10337         memset(&dummystats, 0, sizeof(dummystats));
10338
10339         /* Filtering of fragment chains is done against the first fragment */
10340         hdr = (void *)txb->fragments[0]->data;
10341         if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10342                 if (filter & IPW_PROM_NO_MGMT)
10343                         return;
10344                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10345                         hdr_only = 1;
10346         } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10347                 if (filter & IPW_PROM_NO_CTL)
10348                         return;
10349                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10350                         hdr_only = 1;
10351         } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10352                 if (filter & IPW_PROM_NO_DATA)
10353                         return;
10354                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10355                         hdr_only = 1;
10356         }
10357
10358         for(n=0; n<txb->nr_frags; ++n) {
10359                 struct sk_buff *src = txb->fragments[n];
10360                 struct sk_buff *dst;
10361                 struct ieee80211_radiotap_header *rt_hdr;
10362                 int len;
10363
10364                 if (hdr_only) {
10365                         hdr = (void *)src->data;
10366                         len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10367                 } else
10368                         len = src->len;
10369
10370                 dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
10371                 if (!dst)
10372                         continue;
10373
10374                 rt_hdr = skb_put(dst, sizeof(*rt_hdr));
10375
10376                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10377                 rt_hdr->it_pad = 0;
10378                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10379                 rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10380
10381                 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10382                         ieee80211chan2mhz(priv->channel));
10383                 if (priv->channel > 14)         /* 802.11a */
10384                         *(__le16*)skb_put(dst, sizeof(u16)) =
10385                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10386                                              IEEE80211_CHAN_5GHZ);
10387                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10388                         *(__le16*)skb_put(dst, sizeof(u16)) =
10389                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10390                                              IEEE80211_CHAN_2GHZ);
10391                 else            /* 802.11g */
10392                         *(__le16*)skb_put(dst, sizeof(u16)) =
10393                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10394                                  IEEE80211_CHAN_2GHZ);
10395
10396                 rt_hdr->it_len = cpu_to_le16(dst->len);
10397
10398                 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10399
10400                 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10401                         dev_kfree_skb_any(dst);
10402         }
10403 }
10404 #endif
10405
10406 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10407                                            struct net_device *dev, int pri)
10408 {
10409         struct ipw_priv *priv = libipw_priv(dev);
10410         unsigned long flags;
10411         netdev_tx_t ret;
10412
10413         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10414         spin_lock_irqsave(&priv->lock, flags);
10415
10416 #ifdef CONFIG_IPW2200_PROMISCUOUS
10417         if (rtap_iface && netif_running(priv->prom_net_dev))
10418                 ipw_handle_promiscuous_tx(priv, txb);
10419 #endif
10420
10421         ret = ipw_tx_skb(priv, txb, pri);
10422         if (ret == NETDEV_TX_OK)
10423                 __ipw_led_activity_on(priv);
10424         spin_unlock_irqrestore(&priv->lock, flags);
10425
10426         return ret;
10427 }
10428
10429 static void ipw_net_set_multicast_list(struct net_device *dev)
10430 {
10431
10432 }
10433
10434 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10435 {
10436         struct ipw_priv *priv = libipw_priv(dev);
10437         struct sockaddr *addr = p;
10438
10439         if (!is_valid_ether_addr(addr->sa_data))
10440                 return -EADDRNOTAVAIL;
10441         mutex_lock(&priv->mutex);
10442         priv->config |= CFG_CUSTOM_MAC;
10443         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10444         printk(KERN_INFO "%s: Setting MAC to %pM\n",
10445                priv->net_dev->name, priv->mac_addr);
10446         schedule_work(&priv->adapter_restart);
10447         mutex_unlock(&priv->mutex);
10448         return 0;
10449 }
10450
10451 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10452                                     struct ethtool_drvinfo *info)
10453 {
10454         struct ipw_priv *p = libipw_priv(dev);
10455         char vers[64];
10456         char date[32];
10457         u32 len;
10458
10459         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
10460         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
10461
10462         len = sizeof(vers);
10463         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10464         len = sizeof(date);
10465         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10466
10467         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10468                  vers, date);
10469         strlcpy(info->bus_info, pci_name(p->pci_dev),
10470                 sizeof(info->bus_info));
10471 }
10472
10473 static u32 ipw_ethtool_get_link(struct net_device *dev)
10474 {
10475         struct ipw_priv *priv = libipw_priv(dev);
10476         return (priv->status & STATUS_ASSOCIATED) != 0;
10477 }
10478
10479 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10480 {
10481         return IPW_EEPROM_IMAGE_SIZE;
10482 }
10483
10484 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10485                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10486 {
10487         struct ipw_priv *p = libipw_priv(dev);
10488
10489         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10490                 return -EINVAL;
10491         mutex_lock(&p->mutex);
10492         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10493         mutex_unlock(&p->mutex);
10494         return 0;
10495 }
10496
10497 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10498                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10499 {
10500         struct ipw_priv *p = libipw_priv(dev);
10501         int i;
10502
10503         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10504                 return -EINVAL;
10505         mutex_lock(&p->mutex);
10506         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10507         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10508                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10509         mutex_unlock(&p->mutex);
10510         return 0;
10511 }
10512
10513 static const struct ethtool_ops ipw_ethtool_ops = {
10514         .get_link = ipw_ethtool_get_link,
10515         .get_drvinfo = ipw_ethtool_get_drvinfo,
10516         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10517         .get_eeprom = ipw_ethtool_get_eeprom,
10518         .set_eeprom = ipw_ethtool_set_eeprom,
10519 };
10520
10521 static irqreturn_t ipw_isr(int irq, void *data)
10522 {
10523         struct ipw_priv *priv = data;
10524         u32 inta, inta_mask;
10525
10526         if (!priv)
10527                 return IRQ_NONE;
10528
10529         spin_lock(&priv->irq_lock);
10530
10531         if (!(priv->status & STATUS_INT_ENABLED)) {
10532                 /* IRQ is disabled */
10533                 goto none;
10534         }
10535
10536         inta = ipw_read32(priv, IPW_INTA_RW);
10537         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10538
10539         if (inta == 0xFFFFFFFF) {
10540                 /* Hardware disappeared */
10541                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10542                 goto none;
10543         }
10544
10545         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10546                 /* Shared interrupt */
10547                 goto none;
10548         }
10549
10550         /* tell the device to stop sending interrupts */
10551         __ipw_disable_interrupts(priv);
10552
10553         /* ack current interrupts */
10554         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10555         ipw_write32(priv, IPW_INTA_RW, inta);
10556
10557         /* Cache INTA value for our tasklet */
10558         priv->isr_inta = inta;
10559
10560         tasklet_schedule(&priv->irq_tasklet);
10561
10562         spin_unlock(&priv->irq_lock);
10563
10564         return IRQ_HANDLED;
10565       none:
10566         spin_unlock(&priv->irq_lock);
10567         return IRQ_NONE;
10568 }
10569
10570 static void ipw_rf_kill(void *adapter)
10571 {
10572         struct ipw_priv *priv = adapter;
10573         unsigned long flags;
10574
10575         spin_lock_irqsave(&priv->lock, flags);
10576
10577         if (rf_kill_active(priv)) {
10578                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10579                 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10580                 goto exit_unlock;
10581         }
10582
10583         /* RF Kill is now disabled, so bring the device back up */
10584
10585         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10586                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10587                                   "device\n");
10588
10589                 /* we can not do an adapter restart while inside an irq lock */
10590                 schedule_work(&priv->adapter_restart);
10591         } else
10592                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10593                                   "enabled\n");
10594
10595       exit_unlock:
10596         spin_unlock_irqrestore(&priv->lock, flags);
10597 }
10598
10599 static void ipw_bg_rf_kill(struct work_struct *work)
10600 {
10601         struct ipw_priv *priv =
10602                 container_of(work, struct ipw_priv, rf_kill.work);
10603         mutex_lock(&priv->mutex);
10604         ipw_rf_kill(priv);
10605         mutex_unlock(&priv->mutex);
10606 }
10607
10608 static void ipw_link_up(struct ipw_priv *priv)
10609 {
10610         priv->last_seq_num = -1;
10611         priv->last_frag_num = -1;
10612         priv->last_packet_time = 0;
10613
10614         netif_carrier_on(priv->net_dev);
10615
10616         cancel_delayed_work(&priv->request_scan);
10617         cancel_delayed_work(&priv->request_direct_scan);
10618         cancel_delayed_work(&priv->request_passive_scan);
10619         cancel_delayed_work(&priv->scan_event);
10620         ipw_reset_stats(priv);
10621         /* Ensure the rate is updated immediately */
10622         priv->last_rate = ipw_get_current_rate(priv);
10623         ipw_gather_stats(priv);
10624         ipw_led_link_up(priv);
10625         notify_wx_assoc_event(priv);
10626
10627         if (priv->config & CFG_BACKGROUND_SCAN)
10628                 schedule_delayed_work(&priv->request_scan, HZ);
10629 }
10630
10631 static void ipw_bg_link_up(struct work_struct *work)
10632 {
10633         struct ipw_priv *priv =
10634                 container_of(work, struct ipw_priv, link_up);
10635         mutex_lock(&priv->mutex);
10636         ipw_link_up(priv);
10637         mutex_unlock(&priv->mutex);
10638 }
10639
10640 static void ipw_link_down(struct ipw_priv *priv)
10641 {
10642         ipw_led_link_down(priv);
10643         netif_carrier_off(priv->net_dev);
10644         notify_wx_assoc_event(priv);
10645
10646         /* Cancel any queued work ... */
10647         cancel_delayed_work(&priv->request_scan);
10648         cancel_delayed_work(&priv->request_direct_scan);
10649         cancel_delayed_work(&priv->request_passive_scan);
10650         cancel_delayed_work(&priv->adhoc_check);
10651         cancel_delayed_work(&priv->gather_stats);
10652
10653         ipw_reset_stats(priv);
10654
10655         if (!(priv->status & STATUS_EXIT_PENDING)) {
10656                 /* Queue up another scan... */
10657                 schedule_delayed_work(&priv->request_scan, 0);
10658         } else
10659                 cancel_delayed_work(&priv->scan_event);
10660 }
10661
10662 static void ipw_bg_link_down(struct work_struct *work)
10663 {
10664         struct ipw_priv *priv =
10665                 container_of(work, struct ipw_priv, link_down);
10666         mutex_lock(&priv->mutex);
10667         ipw_link_down(priv);
10668         mutex_unlock(&priv->mutex);
10669 }
10670
10671 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10672 {
10673         int ret = 0;
10674
10675         init_waitqueue_head(&priv->wait_command_queue);
10676         init_waitqueue_head(&priv->wait_state);
10677
10678         INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10679         INIT_WORK(&priv->associate, ipw_bg_associate);
10680         INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10681         INIT_WORK(&priv->system_config, ipw_system_config);
10682         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10683         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10684         INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10685         INIT_WORK(&priv->up, ipw_bg_up);
10686         INIT_WORK(&priv->down, ipw_bg_down);
10687         INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10688         INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10689         INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10690         INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10691         INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10692         INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10693         INIT_WORK(&priv->roam, ipw_bg_roam);
10694         INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10695         INIT_WORK(&priv->link_up, ipw_bg_link_up);
10696         INIT_WORK(&priv->link_down, ipw_bg_link_down);
10697         INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10698         INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10699         INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10700         INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10701
10702 #ifdef CONFIG_IPW2200_QOS
10703         INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10704 #endif                          /* CONFIG_IPW2200_QOS */
10705
10706         tasklet_init(&priv->irq_tasklet,
10707                      ipw_irq_tasklet, (unsigned long)priv);
10708
10709         return ret;
10710 }
10711
10712 static void shim__set_security(struct net_device *dev,
10713                                struct libipw_security *sec)
10714 {
10715         struct ipw_priv *priv = libipw_priv(dev);
10716         int i;
10717         for (i = 0; i < 4; i++) {
10718                 if (sec->flags & (1 << i)) {
10719                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10720                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10721                         if (sec->key_sizes[i] == 0)
10722                                 priv->ieee->sec.flags &= ~(1 << i);
10723                         else {
10724                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10725                                        sec->key_sizes[i]);
10726                                 priv->ieee->sec.flags |= (1 << i);
10727                         }
10728                         priv->status |= STATUS_SECURITY_UPDATED;
10729                 } else if (sec->level != SEC_LEVEL_1)
10730                         priv->ieee->sec.flags &= ~(1 << i);
10731         }
10732
10733         if (sec->flags & SEC_ACTIVE_KEY) {
10734                 if (sec->active_key <= 3) {
10735                         priv->ieee->sec.active_key = sec->active_key;
10736                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10737                 } else
10738                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10739                 priv->status |= STATUS_SECURITY_UPDATED;
10740         } else
10741                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10742
10743         if ((sec->flags & SEC_AUTH_MODE) &&
10744             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10745                 priv->ieee->sec.auth_mode = sec->auth_mode;
10746                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10747                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10748                         priv->capability |= CAP_SHARED_KEY;
10749                 else
10750                         priv->capability &= ~CAP_SHARED_KEY;
10751                 priv->status |= STATUS_SECURITY_UPDATED;
10752         }
10753
10754         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10755                 priv->ieee->sec.flags |= SEC_ENABLED;
10756                 priv->ieee->sec.enabled = sec->enabled;
10757                 priv->status |= STATUS_SECURITY_UPDATED;
10758                 if (sec->enabled)
10759                         priv->capability |= CAP_PRIVACY_ON;
10760                 else
10761                         priv->capability &= ~CAP_PRIVACY_ON;
10762         }
10763
10764         if (sec->flags & SEC_ENCRYPT)
10765                 priv->ieee->sec.encrypt = sec->encrypt;
10766
10767         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10768                 priv->ieee->sec.level = sec->level;
10769                 priv->ieee->sec.flags |= SEC_LEVEL;
10770                 priv->status |= STATUS_SECURITY_UPDATED;
10771         }
10772
10773         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10774                 ipw_set_hwcrypto_keys(priv);
10775
10776         /* To match current functionality of ipw2100 (which works well w/
10777          * various supplicants, we don't force a disassociate if the
10778          * privacy capability changes ... */
10779 #if 0
10780         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10781             (((priv->assoc_request.capability &
10782                cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10783              (!(priv->assoc_request.capability &
10784                 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10785                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10786                                 "change.\n");
10787                 ipw_disassociate(priv);
10788         }
10789 #endif
10790 }
10791
10792 static int init_supported_rates(struct ipw_priv *priv,
10793                                 struct ipw_supported_rates *rates)
10794 {
10795         /* TODO: Mask out rates based on priv->rates_mask */
10796
10797         memset(rates, 0, sizeof(*rates));
10798         /* configure supported rates */
10799         switch (priv->ieee->freq_band) {
10800         case LIBIPW_52GHZ_BAND:
10801                 rates->ieee_mode = IPW_A_MODE;
10802                 rates->purpose = IPW_RATE_CAPABILITIES;
10803                 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10804                                         LIBIPW_OFDM_DEFAULT_RATES_MASK);
10805                 break;
10806
10807         default:                /* Mixed or 2.4Ghz */
10808                 rates->ieee_mode = IPW_G_MODE;
10809                 rates->purpose = IPW_RATE_CAPABILITIES;
10810                 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10811                                        LIBIPW_CCK_DEFAULT_RATES_MASK);
10812                 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10813                         ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10814                                                 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10815                 }
10816                 break;
10817         }
10818
10819         return 0;
10820 }
10821
10822 static int ipw_config(struct ipw_priv *priv)
10823 {
10824         /* This is only called from ipw_up, which resets/reloads the firmware
10825            so, we don't need to first disable the card before we configure
10826            it */
10827         if (ipw_set_tx_power(priv))
10828                 goto error;
10829
10830         /* initialize adapter address */
10831         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10832                 goto error;
10833
10834         /* set basic system config settings */
10835         init_sys_config(&priv->sys_config);
10836
10837         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10838          * Does not support BT priority yet (don't abort or defer our Tx) */
10839         if (bt_coexist) {
10840                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10841
10842                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10843                         priv->sys_config.bt_coexistence
10844                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10845                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10846                         priv->sys_config.bt_coexistence
10847                             |= CFG_BT_COEXISTENCE_OOB;
10848         }
10849
10850 #ifdef CONFIG_IPW2200_PROMISCUOUS
10851         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10852                 priv->sys_config.accept_all_data_frames = 1;
10853                 priv->sys_config.accept_non_directed_frames = 1;
10854                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10855                 priv->sys_config.accept_all_mgmt_frames = 1;
10856         }
10857 #endif
10858
10859         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10860                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10861         else
10862                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10863
10864         if (ipw_send_system_config(priv))
10865                 goto error;
10866
10867         init_supported_rates(priv, &priv->rates);
10868         if (ipw_send_supported_rates(priv, &priv->rates))
10869                 goto error;
10870
10871         /* Set request-to-send threshold */
10872         if (priv->rts_threshold) {
10873                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10874                         goto error;
10875         }
10876 #ifdef CONFIG_IPW2200_QOS
10877         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10878         ipw_qos_activate(priv, NULL);
10879 #endif                          /* CONFIG_IPW2200_QOS */
10880
10881         if (ipw_set_random_seed(priv))
10882                 goto error;
10883
10884         /* final state transition to the RUN state */
10885         if (ipw_send_host_complete(priv))
10886                 goto error;
10887
10888         priv->status |= STATUS_INIT;
10889
10890         ipw_led_init(priv);
10891         ipw_led_radio_on(priv);
10892         priv->notif_missed_beacons = 0;
10893
10894         /* Set hardware WEP key if it is configured. */
10895         if ((priv->capability & CAP_PRIVACY_ON) &&
10896             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10897             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10898                 ipw_set_hwcrypto_keys(priv);
10899
10900         return 0;
10901
10902       error:
10903         return -EIO;
10904 }
10905
10906 /*
10907  * NOTE:
10908  *
10909  * These tables have been tested in conjunction with the
10910  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10911  *
10912  * Altering this values, using it on other hardware, or in geographies
10913  * not intended for resale of the above mentioned Intel adapters has
10914  * not been tested.
10915  *
10916  * Remember to update the table in README.ipw2200 when changing this
10917  * table.
10918  *
10919  */
10920 static const struct libipw_geo ipw_geos[] = {
10921         {                       /* Restricted */
10922          "---",
10923          .bg_channels = 11,
10924          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10925                 {2427, 4}, {2432, 5}, {2437, 6},
10926                 {2442, 7}, {2447, 8}, {2452, 9},
10927                 {2457, 10}, {2462, 11}},
10928          },
10929
10930         {                       /* Custom US/Canada */
10931          "ZZF",
10932          .bg_channels = 11,
10933          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10934                 {2427, 4}, {2432, 5}, {2437, 6},
10935                 {2442, 7}, {2447, 8}, {2452, 9},
10936                 {2457, 10}, {2462, 11}},
10937          .a_channels = 8,
10938          .a = {{5180, 36},
10939                {5200, 40},
10940                {5220, 44},
10941                {5240, 48},
10942                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10943                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10944                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10945                {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
10946          },
10947
10948         {                       /* Rest of World */
10949          "ZZD",
10950          .bg_channels = 13,
10951          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10952                 {2427, 4}, {2432, 5}, {2437, 6},
10953                 {2442, 7}, {2447, 8}, {2452, 9},
10954                 {2457, 10}, {2462, 11}, {2467, 12},
10955                 {2472, 13}},
10956          },
10957
10958         {                       /* Custom USA & Europe & High */
10959          "ZZA",
10960          .bg_channels = 11,
10961          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10962                 {2427, 4}, {2432, 5}, {2437, 6},
10963                 {2442, 7}, {2447, 8}, {2452, 9},
10964                 {2457, 10}, {2462, 11}},
10965          .a_channels = 13,
10966          .a = {{5180, 36},
10967                {5200, 40},
10968                {5220, 44},
10969                {5240, 48},
10970                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10971                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10972                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10973                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10974                {5745, 149},
10975                {5765, 153},
10976                {5785, 157},
10977                {5805, 161},
10978                {5825, 165}},
10979          },
10980
10981         {                       /* Custom NA & Europe */
10982          "ZZB",
10983          .bg_channels = 11,
10984          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10985                 {2427, 4}, {2432, 5}, {2437, 6},
10986                 {2442, 7}, {2447, 8}, {2452, 9},
10987                 {2457, 10}, {2462, 11}},
10988          .a_channels = 13,
10989          .a = {{5180, 36},
10990                {5200, 40},
10991                {5220, 44},
10992                {5240, 48},
10993                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10994                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10995                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10996                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10997                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
10998                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
10999                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11000                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11001                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11002          },
11003
11004         {                       /* Custom Japan */
11005          "ZZC",
11006          .bg_channels = 11,
11007          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11008                 {2427, 4}, {2432, 5}, {2437, 6},
11009                 {2442, 7}, {2447, 8}, {2452, 9},
11010                 {2457, 10}, {2462, 11}},
11011          .a_channels = 4,
11012          .a = {{5170, 34}, {5190, 38},
11013                {5210, 42}, {5230, 46}},
11014          },
11015
11016         {                       /* Custom */
11017          "ZZM",
11018          .bg_channels = 11,
11019          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11020                 {2427, 4}, {2432, 5}, {2437, 6},
11021                 {2442, 7}, {2447, 8}, {2452, 9},
11022                 {2457, 10}, {2462, 11}},
11023          },
11024
11025         {                       /* Europe */
11026          "ZZE",
11027          .bg_channels = 13,
11028          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11029                 {2427, 4}, {2432, 5}, {2437, 6},
11030                 {2442, 7}, {2447, 8}, {2452, 9},
11031                 {2457, 10}, {2462, 11}, {2467, 12},
11032                 {2472, 13}},
11033          .a_channels = 19,
11034          .a = {{5180, 36},
11035                {5200, 40},
11036                {5220, 44},
11037                {5240, 48},
11038                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11039                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11040                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11041                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11042                {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11043                {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11044                {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11045                {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11046                {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11047                {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11048                {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11049                {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11050                {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11051                {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11052                {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11053          },
11054
11055         {                       /* Custom Japan */
11056          "ZZJ",
11057          .bg_channels = 14,
11058          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11059                 {2427, 4}, {2432, 5}, {2437, 6},
11060                 {2442, 7}, {2447, 8}, {2452, 9},
11061                 {2457, 10}, {2462, 11}, {2467, 12},
11062                 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11063          .a_channels = 4,
11064          .a = {{5170, 34}, {5190, 38},
11065                {5210, 42}, {5230, 46}},
11066          },
11067
11068         {                       /* Rest of World */
11069          "ZZR",
11070          .bg_channels = 14,
11071          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11072                 {2427, 4}, {2432, 5}, {2437, 6},
11073                 {2442, 7}, {2447, 8}, {2452, 9},
11074                 {2457, 10}, {2462, 11}, {2467, 12},
11075                 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11076                              LIBIPW_CH_PASSIVE_ONLY}},
11077          },
11078
11079         {                       /* High Band */
11080          "ZZH",
11081          .bg_channels = 13,
11082          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11083                 {2427, 4}, {2432, 5}, {2437, 6},
11084                 {2442, 7}, {2447, 8}, {2452, 9},
11085                 {2457, 10}, {2462, 11},
11086                 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11087                 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11088          .a_channels = 4,
11089          .a = {{5745, 149}, {5765, 153},
11090                {5785, 157}, {5805, 161}},
11091          },
11092
11093         {                       /* Custom Europe */
11094          "ZZG",
11095          .bg_channels = 13,
11096          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11097                 {2427, 4}, {2432, 5}, {2437, 6},
11098                 {2442, 7}, {2447, 8}, {2452, 9},
11099                 {2457, 10}, {2462, 11},
11100                 {2467, 12}, {2472, 13}},
11101          .a_channels = 4,
11102          .a = {{5180, 36}, {5200, 40},
11103                {5220, 44}, {5240, 48}},
11104          },
11105
11106         {                       /* Europe */
11107          "ZZK",
11108          .bg_channels = 13,
11109          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11110                 {2427, 4}, {2432, 5}, {2437, 6},
11111                 {2442, 7}, {2447, 8}, {2452, 9},
11112                 {2457, 10}, {2462, 11},
11113                 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11114                 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11115          .a_channels = 24,
11116          .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11117                {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11118                {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11119                {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11120                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11121                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11122                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11123                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11124                {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11125                {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11126                {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11127                {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11128                {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11129                {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11130                {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11131                {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11132                {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11133                {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11134                {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11135                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11136                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11137                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11138                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11139                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11140          },
11141
11142         {                       /* Europe */
11143          "ZZL",
11144          .bg_channels = 11,
11145          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11146                 {2427, 4}, {2432, 5}, {2437, 6},
11147                 {2442, 7}, {2447, 8}, {2452, 9},
11148                 {2457, 10}, {2462, 11}},
11149          .a_channels = 13,
11150          .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11151                {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11152                {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11153                {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11154                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11155                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11156                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11157                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11158                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11159                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11160                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11161                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11162                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11163          }
11164 };
11165
11166 static void ipw_set_geo(struct ipw_priv *priv)
11167 {
11168         int j;
11169
11170         for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11171                 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11172                             ipw_geos[j].name, 3))
11173                         break;
11174         }
11175
11176         if (j == ARRAY_SIZE(ipw_geos)) {
11177                 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11178                             priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11179                             priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11180                             priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11181                 j = 0;
11182         }
11183
11184         libipw_set_geo(priv->ieee, &ipw_geos[j]);
11185 }
11186
11187 #define MAX_HW_RESTARTS 5
11188 static int ipw_up(struct ipw_priv *priv)
11189 {
11190         int rc, i;
11191
11192         /* Age scan list entries found before suspend */
11193         if (priv->suspend_time) {
11194                 libipw_networks_age(priv->ieee, priv->suspend_time);
11195                 priv->suspend_time = 0;
11196         }
11197
11198         if (priv->status & STATUS_EXIT_PENDING)
11199                 return -EIO;
11200
11201         if (cmdlog && !priv->cmdlog) {
11202                 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11203                                        GFP_KERNEL);
11204                 if (priv->cmdlog == NULL) {
11205                         IPW_ERROR("Error allocating %d command log entries.\n",
11206                                   cmdlog);
11207                         return -ENOMEM;
11208                 } else {
11209                         priv->cmdlog_len = cmdlog;
11210                 }
11211         }
11212
11213         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11214                 /* Load the microcode, firmware, and eeprom.
11215                  * Also start the clocks. */
11216                 rc = ipw_load(priv);
11217                 if (rc) {
11218                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11219                         return rc;
11220                 }
11221
11222                 ipw_init_ordinals(priv);
11223                 if (!(priv->config & CFG_CUSTOM_MAC))
11224                         eeprom_parse_mac(priv, priv->mac_addr);
11225                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11226
11227                 ipw_set_geo(priv);
11228
11229                 if (priv->status & STATUS_RF_KILL_SW) {
11230                         IPW_WARNING("Radio disabled by module parameter.\n");
11231                         return 0;
11232                 } else if (rf_kill_active(priv)) {
11233                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11234                                     "Kill switch must be turned off for "
11235                                     "wireless networking to work.\n");
11236                         schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11237                         return 0;
11238                 }
11239
11240                 rc = ipw_config(priv);
11241                 if (!rc) {
11242                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11243
11244                         /* If configure to try and auto-associate, kick
11245                          * off a scan. */
11246                         schedule_delayed_work(&priv->request_scan, 0);
11247
11248                         return 0;
11249                 }
11250
11251                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11252                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11253                                i, MAX_HW_RESTARTS);
11254
11255                 /* We had an error bringing up the hardware, so take it
11256                  * all the way back down so we can try again */
11257                 ipw_down(priv);
11258         }
11259
11260         /* tried to restart and config the device for as long as our
11261          * patience could withstand */
11262         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11263
11264         return -EIO;
11265 }
11266
11267 static void ipw_bg_up(struct work_struct *work)
11268 {
11269         struct ipw_priv *priv =
11270                 container_of(work, struct ipw_priv, up);
11271         mutex_lock(&priv->mutex);
11272         ipw_up(priv);
11273         mutex_unlock(&priv->mutex);
11274 }
11275
11276 static void ipw_deinit(struct ipw_priv *priv)
11277 {
11278         int i;
11279
11280         if (priv->status & STATUS_SCANNING) {
11281                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11282                 ipw_abort_scan(priv);
11283         }
11284
11285         if (priv->status & STATUS_ASSOCIATED) {
11286                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11287                 ipw_disassociate(priv);
11288         }
11289
11290         ipw_led_shutdown(priv);
11291
11292         /* Wait up to 1s for status to change to not scanning and not
11293          * associated (disassociation can take a while for a ful 802.11
11294          * exchange */
11295         for (i = 1000; i && (priv->status &
11296                              (STATUS_DISASSOCIATING |
11297                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11298                 udelay(10);
11299
11300         if (priv->status & (STATUS_DISASSOCIATING |
11301                             STATUS_ASSOCIATED | STATUS_SCANNING))
11302                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11303         else
11304                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11305
11306         /* Attempt to disable the card */
11307         ipw_send_card_disable(priv, 0);
11308
11309         priv->status &= ~STATUS_INIT;
11310 }
11311
11312 static void ipw_down(struct ipw_priv *priv)
11313 {
11314         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11315
11316         priv->status |= STATUS_EXIT_PENDING;
11317
11318         if (ipw_is_init(priv))
11319                 ipw_deinit(priv);
11320
11321         /* Wipe out the EXIT_PENDING status bit if we are not actually
11322          * exiting the module */
11323         if (!exit_pending)
11324                 priv->status &= ~STATUS_EXIT_PENDING;
11325
11326         /* tell the device to stop sending interrupts */
11327         ipw_disable_interrupts(priv);
11328
11329         /* Clear all bits but the RF Kill */
11330         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11331         netif_carrier_off(priv->net_dev);
11332
11333         ipw_stop_nic(priv);
11334
11335         ipw_led_radio_off(priv);
11336 }
11337
11338 static void ipw_bg_down(struct work_struct *work)
11339 {
11340         struct ipw_priv *priv =
11341                 container_of(work, struct ipw_priv, down);
11342         mutex_lock(&priv->mutex);
11343         ipw_down(priv);
11344         mutex_unlock(&priv->mutex);
11345 }
11346
11347 static int ipw_wdev_init(struct net_device *dev)
11348 {
11349         int i, rc = 0;
11350         struct ipw_priv *priv = libipw_priv(dev);
11351         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11352         struct wireless_dev *wdev = &priv->ieee->wdev;
11353
11354         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11355
11356         /* fill-out priv->ieee->bg_band */
11357         if (geo->bg_channels) {
11358                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11359
11360                 bg_band->band = NL80211_BAND_2GHZ;
11361                 bg_band->n_channels = geo->bg_channels;
11362                 bg_band->channels = kcalloc(geo->bg_channels,
11363                                             sizeof(struct ieee80211_channel),
11364                                             GFP_KERNEL);
11365                 if (!bg_band->channels) {
11366                         rc = -ENOMEM;
11367                         goto out;
11368                 }
11369                 /* translate geo->bg to bg_band.channels */
11370                 for (i = 0; i < geo->bg_channels; i++) {
11371                         bg_band->channels[i].band = NL80211_BAND_2GHZ;
11372                         bg_band->channels[i].center_freq = geo->bg[i].freq;
11373                         bg_band->channels[i].hw_value = geo->bg[i].channel;
11374                         bg_band->channels[i].max_power = geo->bg[i].max_power;
11375                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11376                                 bg_band->channels[i].flags |=
11377                                         IEEE80211_CHAN_NO_IR;
11378                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11379                                 bg_band->channels[i].flags |=
11380                                         IEEE80211_CHAN_NO_IR;
11381                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11382                                 bg_band->channels[i].flags |=
11383                                         IEEE80211_CHAN_RADAR;
11384                         /* No equivalent for LIBIPW_CH_80211H_RULES,
11385                            LIBIPW_CH_UNIFORM_SPREADING, or
11386                            LIBIPW_CH_B_ONLY... */
11387                 }
11388                 /* point at bitrate info */
11389                 bg_band->bitrates = ipw2200_bg_rates;
11390                 bg_band->n_bitrates = ipw2200_num_bg_rates;
11391
11392                 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
11393         }
11394
11395         /* fill-out priv->ieee->a_band */
11396         if (geo->a_channels) {
11397                 struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11398
11399                 a_band->band = NL80211_BAND_5GHZ;
11400                 a_band->n_channels = geo->a_channels;
11401                 a_band->channels = kcalloc(geo->a_channels,
11402                                            sizeof(struct ieee80211_channel),
11403                                            GFP_KERNEL);
11404                 if (!a_band->channels) {
11405                         rc = -ENOMEM;
11406                         goto out;
11407                 }
11408                 /* translate geo->a to a_band.channels */
11409                 for (i = 0; i < geo->a_channels; i++) {
11410                         a_band->channels[i].band = NL80211_BAND_5GHZ;
11411                         a_band->channels[i].center_freq = geo->a[i].freq;
11412                         a_band->channels[i].hw_value = geo->a[i].channel;
11413                         a_band->channels[i].max_power = geo->a[i].max_power;
11414                         if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11415                                 a_band->channels[i].flags |=
11416                                         IEEE80211_CHAN_NO_IR;
11417                         if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11418                                 a_band->channels[i].flags |=
11419                                         IEEE80211_CHAN_NO_IR;
11420                         if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11421                                 a_band->channels[i].flags |=
11422                                         IEEE80211_CHAN_RADAR;
11423                         /* No equivalent for LIBIPW_CH_80211H_RULES,
11424                            LIBIPW_CH_UNIFORM_SPREADING, or
11425                            LIBIPW_CH_B_ONLY... */
11426                 }
11427                 /* point at bitrate info */
11428                 a_band->bitrates = ipw2200_a_rates;
11429                 a_band->n_bitrates = ipw2200_num_a_rates;
11430
11431                 wdev->wiphy->bands[NL80211_BAND_5GHZ] = a_band;
11432         }
11433
11434         wdev->wiphy->cipher_suites = ipw_cipher_suites;
11435         wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11436
11437         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11438
11439         /* With that information in place, we can now register the wiphy... */
11440         if (wiphy_register(wdev->wiphy))
11441                 rc = -EIO;
11442 out:
11443         return rc;
11444 }
11445
11446 /* PCI driver stuff */
11447 static const struct pci_device_id card_ids[] = {
11448         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11449         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11450         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11451         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11452         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11453         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11454         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11455         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11456         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11457         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11458         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11459         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11460         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11461         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11462         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11463         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11464         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11465         {PCI_VDEVICE(INTEL, 0x104f), 0},
11466         {PCI_VDEVICE(INTEL, 0x4220), 0},        /* BG */
11467         {PCI_VDEVICE(INTEL, 0x4221), 0},        /* BG */
11468         {PCI_VDEVICE(INTEL, 0x4223), 0},        /* ABG */
11469         {PCI_VDEVICE(INTEL, 0x4224), 0},        /* ABG */
11470
11471         /* required last entry */
11472         {0,}
11473 };
11474
11475 MODULE_DEVICE_TABLE(pci, card_ids);
11476
11477 static struct attribute *ipw_sysfs_entries[] = {
11478         &dev_attr_rf_kill.attr,
11479         &dev_attr_direct_dword.attr,
11480         &dev_attr_indirect_byte.attr,
11481         &dev_attr_indirect_dword.attr,
11482         &dev_attr_mem_gpio_reg.attr,
11483         &dev_attr_command_event_reg.attr,
11484         &dev_attr_nic_type.attr,
11485         &dev_attr_status.attr,
11486         &dev_attr_cfg.attr,
11487         &dev_attr_error.attr,
11488         &dev_attr_event_log.attr,
11489         &dev_attr_cmd_log.attr,
11490         &dev_attr_eeprom_delay.attr,
11491         &dev_attr_ucode_version.attr,
11492         &dev_attr_rtc.attr,
11493         &dev_attr_scan_age.attr,
11494         &dev_attr_led.attr,
11495         &dev_attr_speed_scan.attr,
11496         &dev_attr_net_stats.attr,
11497         &dev_attr_channels.attr,
11498 #ifdef CONFIG_IPW2200_PROMISCUOUS
11499         &dev_attr_rtap_iface.attr,
11500         &dev_attr_rtap_filter.attr,
11501 #endif
11502         NULL
11503 };
11504
11505 static const struct attribute_group ipw_attribute_group = {
11506         .name = NULL,           /* put in device directory */
11507         .attrs = ipw_sysfs_entries,
11508 };
11509
11510 #ifdef CONFIG_IPW2200_PROMISCUOUS
11511 static int ipw_prom_open(struct net_device *dev)
11512 {
11513         struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11514         struct ipw_priv *priv = prom_priv->priv;
11515
11516         IPW_DEBUG_INFO("prom dev->open\n");
11517         netif_carrier_off(dev);
11518
11519         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11520                 priv->sys_config.accept_all_data_frames = 1;
11521                 priv->sys_config.accept_non_directed_frames = 1;
11522                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11523                 priv->sys_config.accept_all_mgmt_frames = 1;
11524
11525                 ipw_send_system_config(priv);
11526         }
11527
11528         return 0;
11529 }
11530
11531 static int ipw_prom_stop(struct net_device *dev)
11532 {
11533         struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11534         struct ipw_priv *priv = prom_priv->priv;
11535
11536         IPW_DEBUG_INFO("prom dev->stop\n");
11537
11538         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11539                 priv->sys_config.accept_all_data_frames = 0;
11540                 priv->sys_config.accept_non_directed_frames = 0;
11541                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11542                 priv->sys_config.accept_all_mgmt_frames = 0;
11543
11544                 ipw_send_system_config(priv);
11545         }
11546
11547         return 0;
11548 }
11549
11550 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11551                                             struct net_device *dev)
11552 {
11553         IPW_DEBUG_INFO("prom dev->xmit\n");
11554         dev_kfree_skb(skb);
11555         return NETDEV_TX_OK;
11556 }
11557
11558 static const struct net_device_ops ipw_prom_netdev_ops = {
11559         .ndo_open               = ipw_prom_open,
11560         .ndo_stop               = ipw_prom_stop,
11561         .ndo_start_xmit         = ipw_prom_hard_start_xmit,
11562         .ndo_set_mac_address    = eth_mac_addr,
11563         .ndo_validate_addr      = eth_validate_addr,
11564 };
11565
11566 static int ipw_prom_alloc(struct ipw_priv *priv)
11567 {
11568         int rc = 0;
11569
11570         if (priv->prom_net_dev)
11571                 return -EPERM;
11572
11573         priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11574         if (priv->prom_net_dev == NULL)
11575                 return -ENOMEM;
11576
11577         priv->prom_priv = libipw_priv(priv->prom_net_dev);
11578         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11579         priv->prom_priv->priv = priv;
11580
11581         strcpy(priv->prom_net_dev->name, "rtap%d");
11582         memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11583
11584         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11585         priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11586
11587         priv->prom_net_dev->min_mtu = 68;
11588         priv->prom_net_dev->max_mtu = LIBIPW_DATA_LEN;
11589
11590         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11591         SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11592
11593         rc = register_netdev(priv->prom_net_dev);
11594         if (rc) {
11595                 free_libipw(priv->prom_net_dev, 1);
11596                 priv->prom_net_dev = NULL;
11597                 return rc;
11598         }
11599
11600         return 0;
11601 }
11602
11603 static void ipw_prom_free(struct ipw_priv *priv)
11604 {
11605         if (!priv->prom_net_dev)
11606                 return;
11607
11608         unregister_netdev(priv->prom_net_dev);
11609         free_libipw(priv->prom_net_dev, 1);
11610
11611         priv->prom_net_dev = NULL;
11612 }
11613
11614 #endif
11615
11616 static const struct net_device_ops ipw_netdev_ops = {
11617         .ndo_open               = ipw_net_open,
11618         .ndo_stop               = ipw_net_stop,
11619         .ndo_set_rx_mode        = ipw_net_set_multicast_list,
11620         .ndo_set_mac_address    = ipw_net_set_mac_address,
11621         .ndo_start_xmit         = libipw_xmit,
11622         .ndo_validate_addr      = eth_validate_addr,
11623 };
11624
11625 static int ipw_pci_probe(struct pci_dev *pdev,
11626                                    const struct pci_device_id *ent)
11627 {
11628         int err = 0;
11629         struct net_device *net_dev;
11630         void __iomem *base;
11631         u32 length, val;
11632         struct ipw_priv *priv;
11633         int i;
11634
11635         net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11636         if (net_dev == NULL) {
11637                 err = -ENOMEM;
11638                 goto out;
11639         }
11640
11641         priv = libipw_priv(net_dev);
11642         priv->ieee = netdev_priv(net_dev);
11643
11644         priv->net_dev = net_dev;
11645         priv->pci_dev = pdev;
11646         ipw_debug_level = debug;
11647         spin_lock_init(&priv->irq_lock);
11648         spin_lock_init(&priv->lock);
11649         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11650                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11651
11652         mutex_init(&priv->mutex);
11653         if (pci_enable_device(pdev)) {
11654                 err = -ENODEV;
11655                 goto out_free_libipw;
11656         }
11657
11658         pci_set_master(pdev);
11659
11660         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11661         if (!err)
11662                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11663         if (err) {
11664                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11665                 goto out_pci_disable_device;
11666         }
11667
11668         pci_set_drvdata(pdev, priv);
11669
11670         err = pci_request_regions(pdev, DRV_NAME);
11671         if (err)
11672                 goto out_pci_disable_device;
11673
11674         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11675          * PCI Tx retries from interfering with C3 CPU state */
11676         pci_read_config_dword(pdev, 0x40, &val);
11677         if ((val & 0x0000ff00) != 0)
11678                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11679
11680         length = pci_resource_len(pdev, 0);
11681         priv->hw_len = length;
11682
11683         base = pci_ioremap_bar(pdev, 0);
11684         if (!base) {
11685                 err = -ENODEV;
11686                 goto out_pci_release_regions;
11687         }
11688
11689         priv->hw_base = base;
11690         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11691         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11692
11693         err = ipw_setup_deferred_work(priv);
11694         if (err) {
11695                 IPW_ERROR("Unable to setup deferred work\n");
11696                 goto out_iounmap;
11697         }
11698
11699         ipw_sw_reset(priv, 1);
11700
11701         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11702         if (err) {
11703                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11704                 goto out_iounmap;
11705         }
11706
11707         SET_NETDEV_DEV(net_dev, &pdev->dev);
11708
11709         mutex_lock(&priv->mutex);
11710
11711         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11712         priv->ieee->set_security = shim__set_security;
11713         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11714
11715 #ifdef CONFIG_IPW2200_QOS
11716         priv->ieee->is_qos_active = ipw_is_qos_active;
11717         priv->ieee->handle_probe_response = ipw_handle_beacon;
11718         priv->ieee->handle_beacon = ipw_handle_probe_response;
11719         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11720 #endif                          /* CONFIG_IPW2200_QOS */
11721
11722         priv->ieee->perfect_rssi = -20;
11723         priv->ieee->worst_rssi = -85;
11724
11725         net_dev->netdev_ops = &ipw_netdev_ops;
11726         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11727         net_dev->wireless_data = &priv->wireless_data;
11728         net_dev->wireless_handlers = &ipw_wx_handler_def;
11729         net_dev->ethtool_ops = &ipw_ethtool_ops;
11730
11731         net_dev->min_mtu = 68;
11732         net_dev->max_mtu = LIBIPW_DATA_LEN;
11733
11734         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11735         if (err) {
11736                 IPW_ERROR("failed to create sysfs device attributes\n");
11737                 mutex_unlock(&priv->mutex);
11738                 goto out_release_irq;
11739         }
11740
11741         if (ipw_up(priv)) {
11742                 mutex_unlock(&priv->mutex);
11743                 err = -EIO;
11744                 goto out_remove_sysfs;
11745         }
11746
11747         mutex_unlock(&priv->mutex);
11748
11749         err = ipw_wdev_init(net_dev);
11750         if (err) {
11751                 IPW_ERROR("failed to register wireless device\n");
11752                 goto out_remove_sysfs;
11753         }
11754
11755         err = register_netdev(net_dev);
11756         if (err) {
11757                 IPW_ERROR("failed to register network device\n");
11758                 goto out_unregister_wiphy;
11759         }
11760
11761 #ifdef CONFIG_IPW2200_PROMISCUOUS
11762         if (rtap_iface) {
11763                 err = ipw_prom_alloc(priv);
11764                 if (err) {
11765                         IPW_ERROR("Failed to register promiscuous network "
11766                                   "device (error %d).\n", err);
11767                         unregister_netdev(priv->net_dev);
11768                         goto out_unregister_wiphy;
11769                 }
11770         }
11771 #endif
11772
11773         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11774                "channels, %d 802.11a channels)\n",
11775                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11776                priv->ieee->geo.a_channels);
11777
11778         return 0;
11779
11780       out_unregister_wiphy:
11781         wiphy_unregister(priv->ieee->wdev.wiphy);
11782         kfree(priv->ieee->a_band.channels);
11783         kfree(priv->ieee->bg_band.channels);
11784       out_remove_sysfs:
11785         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11786       out_release_irq:
11787         free_irq(pdev->irq, priv);
11788       out_iounmap:
11789         iounmap(priv->hw_base);
11790       out_pci_release_regions:
11791         pci_release_regions(pdev);
11792       out_pci_disable_device:
11793         pci_disable_device(pdev);
11794       out_free_libipw:
11795         free_libipw(priv->net_dev, 0);
11796       out:
11797         return err;
11798 }
11799
11800 static void ipw_pci_remove(struct pci_dev *pdev)
11801 {
11802         struct ipw_priv *priv = pci_get_drvdata(pdev);
11803         struct list_head *p, *q;
11804         int i;
11805
11806         if (!priv)
11807                 return;
11808
11809         mutex_lock(&priv->mutex);
11810
11811         priv->status |= STATUS_EXIT_PENDING;
11812         ipw_down(priv);
11813         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11814
11815         mutex_unlock(&priv->mutex);
11816
11817         unregister_netdev(priv->net_dev);
11818
11819         if (priv->rxq) {
11820                 ipw_rx_queue_free(priv, priv->rxq);
11821                 priv->rxq = NULL;
11822         }
11823         ipw_tx_queue_free(priv);
11824
11825         if (priv->cmdlog) {
11826                 kfree(priv->cmdlog);
11827                 priv->cmdlog = NULL;
11828         }
11829
11830         /* make sure all works are inactive */
11831         cancel_delayed_work_sync(&priv->adhoc_check);
11832         cancel_work_sync(&priv->associate);
11833         cancel_work_sync(&priv->disassociate);
11834         cancel_work_sync(&priv->system_config);
11835         cancel_work_sync(&priv->rx_replenish);
11836         cancel_work_sync(&priv->adapter_restart);
11837         cancel_delayed_work_sync(&priv->rf_kill);
11838         cancel_work_sync(&priv->up);
11839         cancel_work_sync(&priv->down);
11840         cancel_delayed_work_sync(&priv->request_scan);
11841         cancel_delayed_work_sync(&priv->request_direct_scan);
11842         cancel_delayed_work_sync(&priv->request_passive_scan);
11843         cancel_delayed_work_sync(&priv->scan_event);
11844         cancel_delayed_work_sync(&priv->gather_stats);
11845         cancel_work_sync(&priv->abort_scan);
11846         cancel_work_sync(&priv->roam);
11847         cancel_delayed_work_sync(&priv->scan_check);
11848         cancel_work_sync(&priv->link_up);
11849         cancel_work_sync(&priv->link_down);
11850         cancel_delayed_work_sync(&priv->led_link_on);
11851         cancel_delayed_work_sync(&priv->led_link_off);
11852         cancel_delayed_work_sync(&priv->led_act_off);
11853         cancel_work_sync(&priv->merge_networks);
11854
11855         /* Free MAC hash list for ADHOC */
11856         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11857                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11858                         list_del(p);
11859                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11860                 }
11861         }
11862
11863         kfree(priv->error);
11864         priv->error = NULL;
11865
11866 #ifdef CONFIG_IPW2200_PROMISCUOUS
11867         ipw_prom_free(priv);
11868 #endif
11869
11870         free_irq(pdev->irq, priv);
11871         iounmap(priv->hw_base);
11872         pci_release_regions(pdev);
11873         pci_disable_device(pdev);
11874         /* wiphy_unregister needs to be here, before free_libipw */
11875         wiphy_unregister(priv->ieee->wdev.wiphy);
11876         kfree(priv->ieee->a_band.channels);
11877         kfree(priv->ieee->bg_band.channels);
11878         free_libipw(priv->net_dev, 0);
11879         free_firmware();
11880 }
11881
11882 #ifdef CONFIG_PM
11883 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11884 {
11885         struct ipw_priv *priv = pci_get_drvdata(pdev);
11886         struct net_device *dev = priv->net_dev;
11887
11888         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11889
11890         /* Take down the device; powers it off, etc. */
11891         ipw_down(priv);
11892
11893         /* Remove the PRESENT state of the device */
11894         netif_device_detach(dev);
11895
11896         pci_save_state(pdev);
11897         pci_disable_device(pdev);
11898         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11899
11900         priv->suspend_at = get_seconds();
11901
11902         return 0;
11903 }
11904
11905 static int ipw_pci_resume(struct pci_dev *pdev)
11906 {
11907         struct ipw_priv *priv = pci_get_drvdata(pdev);
11908         struct net_device *dev = priv->net_dev;
11909         int err;
11910         u32 val;
11911
11912         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11913
11914         pci_set_power_state(pdev, PCI_D0);
11915         err = pci_enable_device(pdev);
11916         if (err) {
11917                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11918                        dev->name);
11919                 return err;
11920         }
11921         pci_restore_state(pdev);
11922
11923         /*
11924          * Suspend/Resume resets the PCI configuration space, so we have to
11925          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11926          * from interfering with C3 CPU state. pci_restore_state won't help
11927          * here since it only restores the first 64 bytes pci config header.
11928          */
11929         pci_read_config_dword(pdev, 0x40, &val);
11930         if ((val & 0x0000ff00) != 0)
11931                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11932
11933         /* Set the device back into the PRESENT state; this will also wake
11934          * the queue of needed */
11935         netif_device_attach(dev);
11936
11937         priv->suspend_time = get_seconds() - priv->suspend_at;
11938
11939         /* Bring the device back up */
11940         schedule_work(&priv->up);
11941
11942         return 0;
11943 }
11944 #endif
11945
11946 static void ipw_pci_shutdown(struct pci_dev *pdev)
11947 {
11948         struct ipw_priv *priv = pci_get_drvdata(pdev);
11949
11950         /* Take down the device; powers it off, etc. */
11951         ipw_down(priv);
11952
11953         pci_disable_device(pdev);
11954 }
11955
11956 /* driver initialization stuff */
11957 static struct pci_driver ipw_driver = {
11958         .name = DRV_NAME,
11959         .id_table = card_ids,
11960         .probe = ipw_pci_probe,
11961         .remove = ipw_pci_remove,
11962 #ifdef CONFIG_PM
11963         .suspend = ipw_pci_suspend,
11964         .resume = ipw_pci_resume,
11965 #endif
11966         .shutdown = ipw_pci_shutdown,
11967 };
11968
11969 static int __init ipw_init(void)
11970 {
11971         int ret;
11972
11973         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11974         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11975
11976         ret = pci_register_driver(&ipw_driver);
11977         if (ret) {
11978                 IPW_ERROR("Unable to initialize PCI module\n");
11979                 return ret;
11980         }
11981
11982         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11983         if (ret) {
11984                 IPW_ERROR("Unable to create driver sysfs file\n");
11985                 pci_unregister_driver(&ipw_driver);
11986                 return ret;
11987         }
11988
11989         return ret;
11990 }
11991
11992 static void __exit ipw_exit(void)
11993 {
11994         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11995         pci_unregister_driver(&ipw_driver);
11996 }
11997
11998 module_param(disable, int, 0444);
11999 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
12000
12001 module_param(associate, int, 0444);
12002 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
12003
12004 module_param(auto_create, int, 0444);
12005 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
12006
12007 module_param_named(led, led_support, int, 0444);
12008 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
12009
12010 module_param(debug, int, 0444);
12011 MODULE_PARM_DESC(debug, "debug output mask");
12012
12013 module_param_named(channel, default_channel, int, 0444);
12014 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
12015
12016 #ifdef CONFIG_IPW2200_PROMISCUOUS
12017 module_param(rtap_iface, int, 0444);
12018 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
12019 #endif
12020
12021 #ifdef CONFIG_IPW2200_QOS
12022 module_param(qos_enable, int, 0444);
12023 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
12024
12025 module_param(qos_burst_enable, int, 0444);
12026 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
12027
12028 module_param(qos_no_ack_mask, int, 0444);
12029 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12030
12031 module_param(burst_duration_CCK, int, 0444);
12032 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12033
12034 module_param(burst_duration_OFDM, int, 0444);
12035 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12036 #endif                          /* CONFIG_IPW2200_QOS */
12037
12038 #ifdef CONFIG_IPW2200_MONITOR
12039 module_param_named(mode, network_mode, int, 0444);
12040 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12041 #else
12042 module_param_named(mode, network_mode, int, 0444);
12043 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12044 #endif
12045
12046 module_param(bt_coexist, int, 0444);
12047 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12048
12049 module_param(hwcrypto, int, 0444);
12050 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12051
12052 module_param(cmdlog, int, 0444);
12053 MODULE_PARM_DESC(cmdlog,
12054                  "allocate a ring buffer for logging firmware commands");
12055
12056 module_param(roaming, int, 0444);
12057 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12058
12059 module_param(antenna, int, 0444);
12060 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12061
12062 module_exit(ipw_exit);
12063 module_init(ipw_init);