GNU Linux-libre 4.9.290-gnu1
[releases.git] / drivers / net / wireless / intel / ipw2x00 / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   Intel Linux Wireless <ilw@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <net/cfg80211-wext.h>
36 #include "ipw2200.h"
37 #include "ipw.h"
38
39
40 #ifndef KBUILD_EXTMOD
41 #define VK "k"
42 #else
43 #define VK
44 #endif
45
46 #ifdef CONFIG_IPW2200_DEBUG
47 #define VD "d"
48 #else
49 #define VD
50 #endif
51
52 #ifdef CONFIG_IPW2200_MONITOR
53 #define VM "m"
54 #else
55 #define VM
56 #endif
57
58 #ifdef CONFIG_IPW2200_PROMISCUOUS
59 #define VP "p"
60 #else
61 #define VP
62 #endif
63
64 #ifdef CONFIG_IPW2200_RADIOTAP
65 #define VR "r"
66 #else
67 #define VR
68 #endif
69
70 #ifdef CONFIG_IPW2200_QOS
71 #define VQ "q"
72 #else
73 #define VQ
74 #endif
75
76 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
77 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
78 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
79 #define DRV_VERSION     IPW2200_VERSION
80
81 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
82
83 MODULE_DESCRIPTION(DRV_DESCRIPTION);
84 MODULE_VERSION(DRV_VERSION);
85 MODULE_AUTHOR(DRV_COPYRIGHT);
86 MODULE_LICENSE("GPL");
87 /*(DEBLOBBED)*/
88 #ifdef CONFIG_IPW2200_MONITOR
89 /*(DEBLOBBED)*/
90 #endif
91 /*(DEBLOBBED)*/
92
93 static int cmdlog = 0;
94 static int debug = 0;
95 static int default_channel = 0;
96 static int network_mode = 0;
97
98 static u32 ipw_debug_level;
99 static int associate;
100 static int auto_create = 1;
101 static int led_support = 1;
102 static int disable = 0;
103 static int bt_coexist = 0;
104 static int hwcrypto = 0;
105 static int roaming = 1;
106 static const char ipw_modes[] = {
107         'a', 'b', 'g', '?'
108 };
109 static int antenna = CFG_SYS_ANTENNA_BOTH;
110
111 #ifdef CONFIG_IPW2200_PROMISCUOUS
112 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
113 #endif
114
115 static struct ieee80211_rate ipw2200_rates[] = {
116         { .bitrate = 10 },
117         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
118         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
119         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
120         { .bitrate = 60 },
121         { .bitrate = 90 },
122         { .bitrate = 120 },
123         { .bitrate = 180 },
124         { .bitrate = 240 },
125         { .bitrate = 360 },
126         { .bitrate = 480 },
127         { .bitrate = 540 }
128 };
129
130 #define ipw2200_a_rates         (ipw2200_rates + 4)
131 #define ipw2200_num_a_rates     8
132 #define ipw2200_bg_rates        (ipw2200_rates + 0)
133 #define ipw2200_num_bg_rates    12
134
135 /* Ugly macro to convert literal channel numbers into their mhz equivalents
136  * There are certianly some conditions that will break this (like feeding it '30')
137  * but they shouldn't arise since nothing talks on channel 30. */
138 #define ieee80211chan2mhz(x) \
139         (((x) <= 14) ? \
140         (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
141         ((x) + 1000) * 5)
142
143 #ifdef CONFIG_IPW2200_QOS
144 static int qos_enable = 0;
145 static int qos_burst_enable = 0;
146 static int qos_no_ack_mask = 0;
147 static int burst_duration_CCK = 0;
148 static int burst_duration_OFDM = 0;
149
150 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
151         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
152          QOS_TX3_CW_MIN_OFDM},
153         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
154          QOS_TX3_CW_MAX_OFDM},
155         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
156         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
157         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
158          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
159 };
160
161 static struct libipw_qos_parameters def_qos_parameters_CCK = {
162         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
163          QOS_TX3_CW_MIN_CCK},
164         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
165          QOS_TX3_CW_MAX_CCK},
166         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
167         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
168         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
169          QOS_TX3_TXOP_LIMIT_CCK}
170 };
171
172 static struct libipw_qos_parameters def_parameters_OFDM = {
173         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
174          DEF_TX3_CW_MIN_OFDM},
175         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
176          DEF_TX3_CW_MAX_OFDM},
177         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
178         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
179         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
180          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
181 };
182
183 static struct libipw_qos_parameters def_parameters_CCK = {
184         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
185          DEF_TX3_CW_MIN_CCK},
186         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
187          DEF_TX3_CW_MAX_CCK},
188         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
189         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
190         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
191          DEF_TX3_TXOP_LIMIT_CCK}
192 };
193
194 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
195
196 static int from_priority_to_tx_queue[] = {
197         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
198         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
199 };
200
201 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
202
203 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
204                                        *qos_param);
205 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
206                                      *qos_param);
207 #endif                          /* CONFIG_IPW2200_QOS */
208
209 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
210 static void ipw_remove_current_network(struct ipw_priv *priv);
211 static void ipw_rx(struct ipw_priv *priv);
212 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
213                                 struct clx2_tx_queue *txq, int qindex);
214 static int ipw_queue_reset(struct ipw_priv *priv);
215
216 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
217                              int len, int sync);
218
219 static void ipw_tx_queue_free(struct ipw_priv *);
220
221 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
222 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
223 static void ipw_rx_queue_replenish(void *);
224 static int ipw_up(struct ipw_priv *);
225 static void ipw_bg_up(struct work_struct *work);
226 static void ipw_down(struct ipw_priv *);
227 static void ipw_bg_down(struct work_struct *work);
228 static int ipw_config(struct ipw_priv *);
229 static int init_supported_rates(struct ipw_priv *priv,
230                                 struct ipw_supported_rates *prates);
231 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
232 static void ipw_send_wep_keys(struct ipw_priv *, int);
233
234 static int snprint_line(char *buf, size_t count,
235                         const u8 * data, u32 len, u32 ofs)
236 {
237         int out, i, j, l;
238         char c;
239
240         out = snprintf(buf, count, "%08X", ofs);
241
242         for (l = 0, i = 0; i < 2; i++) {
243                 out += snprintf(buf + out, count - out, " ");
244                 for (j = 0; j < 8 && l < len; j++, l++)
245                         out += snprintf(buf + out, count - out, "%02X ",
246                                         data[(i * 8 + j)]);
247                 for (; j < 8; j++)
248                         out += snprintf(buf + out, count - out, "   ");
249         }
250
251         out += snprintf(buf + out, count - out, " ");
252         for (l = 0, i = 0; i < 2; i++) {
253                 out += snprintf(buf + out, count - out, " ");
254                 for (j = 0; j < 8 && l < len; j++, l++) {
255                         c = data[(i * 8 + j)];
256                         if (!isascii(c) || !isprint(c))
257                                 c = '.';
258
259                         out += snprintf(buf + out, count - out, "%c", c);
260                 }
261
262                 for (; j < 8; j++)
263                         out += snprintf(buf + out, count - out, " ");
264         }
265
266         return out;
267 }
268
269 static void printk_buf(int level, const u8 * data, u32 len)
270 {
271         char line[81];
272         u32 ofs = 0;
273         if (!(ipw_debug_level & level))
274                 return;
275
276         while (len) {
277                 snprint_line(line, sizeof(line), &data[ofs],
278                              min(len, 16U), ofs);
279                 printk(KERN_DEBUG "%s\n", line);
280                 ofs += 16;
281                 len -= min(len, 16U);
282         }
283 }
284
285 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
286 {
287         size_t out = size;
288         u32 ofs = 0;
289         int total = 0;
290
291         while (size && len) {
292                 out = snprint_line(output, size, &data[ofs],
293                                    min_t(size_t, len, 16U), ofs);
294
295                 ofs += 16;
296                 output += out;
297                 size -= out;
298                 len -= min_t(size_t, len, 16U);
299                 total += out;
300         }
301         return total;
302 }
303
304 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
305 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
306 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
307
308 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
309 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
310 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
311
312 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
313 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
314 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
315 {
316         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
317                      __LINE__, (u32) (b), (u32) (c));
318         _ipw_write_reg8(a, b, c);
319 }
320
321 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
322 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
323 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
324 {
325         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
326                      __LINE__, (u32) (b), (u32) (c));
327         _ipw_write_reg16(a, b, c);
328 }
329
330 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
331 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
332 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
333 {
334         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
335                      __LINE__, (u32) (b), (u32) (c));
336         _ipw_write_reg32(a, b, c);
337 }
338
339 /* 8-bit direct write (low 4K) */
340 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
341                 u8 val)
342 {
343         writeb(val, ipw->hw_base + ofs);
344 }
345
346 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347 #define ipw_write8(ipw, ofs, val) do { \
348         IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
349                         __LINE__, (u32)(ofs), (u32)(val)); \
350         _ipw_write8(ipw, ofs, val); \
351 } while (0)
352
353 /* 16-bit direct write (low 4K) */
354 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
355                 u16 val)
356 {
357         writew(val, ipw->hw_base + ofs);
358 }
359
360 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361 #define ipw_write16(ipw, ofs, val) do { \
362         IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
363                         __LINE__, (u32)(ofs), (u32)(val)); \
364         _ipw_write16(ipw, ofs, val); \
365 } while (0)
366
367 /* 32-bit direct write (low 4K) */
368 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
369                 u32 val)
370 {
371         writel(val, ipw->hw_base + ofs);
372 }
373
374 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
375 #define ipw_write32(ipw, ofs, val) do { \
376         IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
377                         __LINE__, (u32)(ofs), (u32)(val)); \
378         _ipw_write32(ipw, ofs, val); \
379 } while (0)
380
381 /* 8-bit direct read (low 4K) */
382 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
383 {
384         return readb(ipw->hw_base + ofs);
385 }
386
387 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
388 #define ipw_read8(ipw, ofs) ({ \
389         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
390                         (u32)(ofs)); \
391         _ipw_read8(ipw, ofs); \
392 })
393
394 /* 16-bit direct read (low 4K) */
395 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
396 {
397         return readw(ipw->hw_base + ofs);
398 }
399
400 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
401 #define ipw_read16(ipw, ofs) ({ \
402         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
403                         (u32)(ofs)); \
404         _ipw_read16(ipw, ofs); \
405 })
406
407 /* 32-bit direct read (low 4K) */
408 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
409 {
410         return readl(ipw->hw_base + ofs);
411 }
412
413 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
414 #define ipw_read32(ipw, ofs) ({ \
415         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
416                         (u32)(ofs)); \
417         _ipw_read32(ipw, ofs); \
418 })
419
420 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
421 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
422 #define ipw_read_indirect(a, b, c, d) ({ \
423         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
424                         __LINE__, (u32)(b), (u32)(d)); \
425         _ipw_read_indirect(a, b, c, d); \
426 })
427
428 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
429 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
430                                 int num);
431 #define ipw_write_indirect(a, b, c, d) do { \
432         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
433                         __LINE__, (u32)(b), (u32)(d)); \
434         _ipw_write_indirect(a, b, c, d); \
435 } while (0)
436
437 /* 32-bit indirect write (above 4K) */
438 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
439 {
440         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
441         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
442         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
443 }
444
445 /* 8-bit indirect write (above 4K) */
446 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
447 {
448         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
449         u32 dif_len = reg - aligned_addr;
450
451         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
452         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
453         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
454 }
455
456 /* 16-bit indirect write (above 4K) */
457 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
458 {
459         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
460         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
461
462         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
463         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
464         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
465 }
466
467 /* 8-bit indirect read (above 4K) */
468 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
469 {
470         u32 word;
471         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
472         IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
473         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
474         return (word >> ((reg & 0x3) * 8)) & 0xff;
475 }
476
477 /* 32-bit indirect read (above 4K) */
478 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
479 {
480         u32 value;
481
482         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
483
484         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
485         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
486         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
487         return value;
488 }
489
490 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
491 /*    for area above 1st 4K of SRAM/reg space */
492 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
493                                int num)
494 {
495         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
496         u32 dif_len = addr - aligned_addr;
497         u32 i;
498
499         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
500
501         if (num <= 0) {
502                 return;
503         }
504
505         /* Read the first dword (or portion) byte by byte */
506         if (unlikely(dif_len)) {
507                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
508                 /* Start reading at aligned_addr + dif_len */
509                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
510                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
511                 aligned_addr += 4;
512         }
513
514         /* Read all of the middle dwords as dwords, with auto-increment */
515         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
516         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
517                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
518
519         /* Read the last dword (or portion) byte by byte */
520         if (unlikely(num)) {
521                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
522                 for (i = 0; num > 0; i++, num--)
523                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
524         }
525 }
526
527 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
528 /*    for area above 1st 4K of SRAM/reg space */
529 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
530                                 int num)
531 {
532         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
533         u32 dif_len = addr - aligned_addr;
534         u32 i;
535
536         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
537
538         if (num <= 0) {
539                 return;
540         }
541
542         /* Write the first dword (or portion) byte by byte */
543         if (unlikely(dif_len)) {
544                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
545                 /* Start writing at aligned_addr + dif_len */
546                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
547                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
548                 aligned_addr += 4;
549         }
550
551         /* Write all of the middle dwords as dwords, with auto-increment */
552         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
553         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
554                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
555
556         /* Write the last dword (or portion) byte by byte */
557         if (unlikely(num)) {
558                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
559                 for (i = 0; num > 0; i++, num--, buf++)
560                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
561         }
562 }
563
564 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
565 /*    for 1st 4K of SRAM/regs space */
566 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
567                              int num)
568 {
569         memcpy_toio((priv->hw_base + addr), buf, num);
570 }
571
572 /* Set bit(s) in low 4K of SRAM/regs */
573 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
574 {
575         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
576 }
577
578 /* Clear bit(s) in low 4K of SRAM/regs */
579 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
580 {
581         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
582 }
583
584 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
585 {
586         if (priv->status & STATUS_INT_ENABLED)
587                 return;
588         priv->status |= STATUS_INT_ENABLED;
589         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
590 }
591
592 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
593 {
594         if (!(priv->status & STATUS_INT_ENABLED))
595                 return;
596         priv->status &= ~STATUS_INT_ENABLED;
597         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
598 }
599
600 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
601 {
602         unsigned long flags;
603
604         spin_lock_irqsave(&priv->irq_lock, flags);
605         __ipw_enable_interrupts(priv);
606         spin_unlock_irqrestore(&priv->irq_lock, flags);
607 }
608
609 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
610 {
611         unsigned long flags;
612
613         spin_lock_irqsave(&priv->irq_lock, flags);
614         __ipw_disable_interrupts(priv);
615         spin_unlock_irqrestore(&priv->irq_lock, flags);
616 }
617
618 static char *ipw_error_desc(u32 val)
619 {
620         switch (val) {
621         case IPW_FW_ERROR_OK:
622                 return "ERROR_OK";
623         case IPW_FW_ERROR_FAIL:
624                 return "ERROR_FAIL";
625         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
626                 return "MEMORY_UNDERFLOW";
627         case IPW_FW_ERROR_MEMORY_OVERFLOW:
628                 return "MEMORY_OVERFLOW";
629         case IPW_FW_ERROR_BAD_PARAM:
630                 return "BAD_PARAM";
631         case IPW_FW_ERROR_BAD_CHECKSUM:
632                 return "BAD_CHECKSUM";
633         case IPW_FW_ERROR_NMI_INTERRUPT:
634                 return "NMI_INTERRUPT";
635         case IPW_FW_ERROR_BAD_DATABASE:
636                 return "BAD_DATABASE";
637         case IPW_FW_ERROR_ALLOC_FAIL:
638                 return "ALLOC_FAIL";
639         case IPW_FW_ERROR_DMA_UNDERRUN:
640                 return "DMA_UNDERRUN";
641         case IPW_FW_ERROR_DMA_STATUS:
642                 return "DMA_STATUS";
643         case IPW_FW_ERROR_DINO_ERROR:
644                 return "DINO_ERROR";
645         case IPW_FW_ERROR_EEPROM_ERROR:
646                 return "EEPROM_ERROR";
647         case IPW_FW_ERROR_SYSASSERT:
648                 return "SYSASSERT";
649         case IPW_FW_ERROR_FATAL_ERROR:
650                 return "FATAL_ERROR";
651         default:
652                 return "UNKNOWN_ERROR";
653         }
654 }
655
656 static void ipw_dump_error_log(struct ipw_priv *priv,
657                                struct ipw_fw_error *error)
658 {
659         u32 i;
660
661         if (!error) {
662                 IPW_ERROR("Error allocating and capturing error log.  "
663                           "Nothing to dump.\n");
664                 return;
665         }
666
667         IPW_ERROR("Start IPW Error Log Dump:\n");
668         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
669                   error->status, error->config);
670
671         for (i = 0; i < error->elem_len; i++)
672                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
673                           ipw_error_desc(error->elem[i].desc),
674                           error->elem[i].time,
675                           error->elem[i].blink1,
676                           error->elem[i].blink2,
677                           error->elem[i].link1,
678                           error->elem[i].link2, error->elem[i].data);
679         for (i = 0; i < error->log_len; i++)
680                 IPW_ERROR("%i\t0x%08x\t%i\n",
681                           error->log[i].time,
682                           error->log[i].data, error->log[i].event);
683 }
684
685 static inline int ipw_is_init(struct ipw_priv *priv)
686 {
687         return (priv->status & STATUS_INIT) ? 1 : 0;
688 }
689
690 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
691 {
692         u32 addr, field_info, field_len, field_count, total_len;
693
694         IPW_DEBUG_ORD("ordinal = %i\n", ord);
695
696         if (!priv || !val || !len) {
697                 IPW_DEBUG_ORD("Invalid argument\n");
698                 return -EINVAL;
699         }
700
701         /* verify device ordinal tables have been initialized */
702         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
703                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
704                 return -EINVAL;
705         }
706
707         switch (IPW_ORD_TABLE_ID_MASK & ord) {
708         case IPW_ORD_TABLE_0_MASK:
709                 /*
710                  * TABLE 0: Direct access to a table of 32 bit values
711                  *
712                  * This is a very simple table with the data directly
713                  * read from the table
714                  */
715
716                 /* remove the table id from the ordinal */
717                 ord &= IPW_ORD_TABLE_VALUE_MASK;
718
719                 /* boundary check */
720                 if (ord > priv->table0_len) {
721                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
722                                       "max (%i)\n", ord, priv->table0_len);
723                         return -EINVAL;
724                 }
725
726                 /* verify we have enough room to store the value */
727                 if (*len < sizeof(u32)) {
728                         IPW_DEBUG_ORD("ordinal buffer length too small, "
729                                       "need %zd\n", sizeof(u32));
730                         return -EINVAL;
731                 }
732
733                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
734                               ord, priv->table0_addr + (ord << 2));
735
736                 *len = sizeof(u32);
737                 ord <<= 2;
738                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
739                 break;
740
741         case IPW_ORD_TABLE_1_MASK:
742                 /*
743                  * TABLE 1: Indirect access to a table of 32 bit values
744                  *
745                  * This is a fairly large table of u32 values each
746                  * representing starting addr for the data (which is
747                  * also a u32)
748                  */
749
750                 /* remove the table id from the ordinal */
751                 ord &= IPW_ORD_TABLE_VALUE_MASK;
752
753                 /* boundary check */
754                 if (ord > priv->table1_len) {
755                         IPW_DEBUG_ORD("ordinal value too long\n");
756                         return -EINVAL;
757                 }
758
759                 /* verify we have enough room to store the value */
760                 if (*len < sizeof(u32)) {
761                         IPW_DEBUG_ORD("ordinal buffer length too small, "
762                                       "need %zd\n", sizeof(u32));
763                         return -EINVAL;
764                 }
765
766                 *((u32 *) val) =
767                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
768                 *len = sizeof(u32);
769                 break;
770
771         case IPW_ORD_TABLE_2_MASK:
772                 /*
773                  * TABLE 2: Indirect access to a table of variable sized values
774                  *
775                  * This table consist of six values, each containing
776                  *     - dword containing the starting offset of the data
777                  *     - dword containing the lengh in the first 16bits
778                  *       and the count in the second 16bits
779                  */
780
781                 /* remove the table id from the ordinal */
782                 ord &= IPW_ORD_TABLE_VALUE_MASK;
783
784                 /* boundary check */
785                 if (ord > priv->table2_len) {
786                         IPW_DEBUG_ORD("ordinal value too long\n");
787                         return -EINVAL;
788                 }
789
790                 /* get the address of statistic */
791                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
792
793                 /* get the second DW of statistics ;
794                  * two 16-bit words - first is length, second is count */
795                 field_info =
796                     ipw_read_reg32(priv,
797                                    priv->table2_addr + (ord << 3) +
798                                    sizeof(u32));
799
800                 /* get each entry length */
801                 field_len = *((u16 *) & field_info);
802
803                 /* get number of entries */
804                 field_count = *(((u16 *) & field_info) + 1);
805
806                 /* abort if not enough memory */
807                 total_len = field_len * field_count;
808                 if (total_len > *len) {
809                         *len = total_len;
810                         return -EINVAL;
811                 }
812
813                 *len = total_len;
814                 if (!total_len)
815                         return 0;
816
817                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
818                               "field_info = 0x%08x\n",
819                               addr, total_len, field_info);
820                 ipw_read_indirect(priv, addr, val, total_len);
821                 break;
822
823         default:
824                 IPW_DEBUG_ORD("Invalid ordinal!\n");
825                 return -EINVAL;
826
827         }
828
829         return 0;
830 }
831
832 static void ipw_init_ordinals(struct ipw_priv *priv)
833 {
834         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
835         priv->table0_len = ipw_read32(priv, priv->table0_addr);
836
837         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
838                       priv->table0_addr, priv->table0_len);
839
840         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
841         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
842
843         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
844                       priv->table1_addr, priv->table1_len);
845
846         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
847         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
848         priv->table2_len &= 0x0000ffff; /* use first two bytes */
849
850         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
851                       priv->table2_addr, priv->table2_len);
852
853 }
854
855 static u32 ipw_register_toggle(u32 reg)
856 {
857         reg &= ~IPW_START_STANDBY;
858         if (reg & IPW_GATE_ODMA)
859                 reg &= ~IPW_GATE_ODMA;
860         if (reg & IPW_GATE_IDMA)
861                 reg &= ~IPW_GATE_IDMA;
862         if (reg & IPW_GATE_ADMA)
863                 reg &= ~IPW_GATE_ADMA;
864         return reg;
865 }
866
867 /*
868  * LED behavior:
869  * - On radio ON, turn on any LEDs that require to be on during start
870  * - On initialization, start unassociated blink
871  * - On association, disable unassociated blink
872  * - On disassociation, start unassociated blink
873  * - On radio OFF, turn off any LEDs started during radio on
874  *
875  */
876 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
877 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
878 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
879
880 static void ipw_led_link_on(struct ipw_priv *priv)
881 {
882         unsigned long flags;
883         u32 led;
884
885         /* If configured to not use LEDs, or nic_type is 1,
886          * then we don't toggle a LINK led */
887         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
888                 return;
889
890         spin_lock_irqsave(&priv->lock, flags);
891
892         if (!(priv->status & STATUS_RF_KILL_MASK) &&
893             !(priv->status & STATUS_LED_LINK_ON)) {
894                 IPW_DEBUG_LED("Link LED On\n");
895                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
896                 led |= priv->led_association_on;
897
898                 led = ipw_register_toggle(led);
899
900                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
901                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
902
903                 priv->status |= STATUS_LED_LINK_ON;
904
905                 /* If we aren't associated, schedule turning the LED off */
906                 if (!(priv->status & STATUS_ASSOCIATED))
907                         schedule_delayed_work(&priv->led_link_off,
908                                               LD_TIME_LINK_ON);
909         }
910
911         spin_unlock_irqrestore(&priv->lock, flags);
912 }
913
914 static void ipw_bg_led_link_on(struct work_struct *work)
915 {
916         struct ipw_priv *priv =
917                 container_of(work, struct ipw_priv, led_link_on.work);
918         mutex_lock(&priv->mutex);
919         ipw_led_link_on(priv);
920         mutex_unlock(&priv->mutex);
921 }
922
923 static void ipw_led_link_off(struct ipw_priv *priv)
924 {
925         unsigned long flags;
926         u32 led;
927
928         /* If configured not to use LEDs, or nic type is 1,
929          * then we don't goggle the LINK led. */
930         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
931                 return;
932
933         spin_lock_irqsave(&priv->lock, flags);
934
935         if (priv->status & STATUS_LED_LINK_ON) {
936                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
937                 led &= priv->led_association_off;
938                 led = ipw_register_toggle(led);
939
940                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
941                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
942
943                 IPW_DEBUG_LED("Link LED Off\n");
944
945                 priv->status &= ~STATUS_LED_LINK_ON;
946
947                 /* If we aren't associated and the radio is on, schedule
948                  * turning the LED on (blink while unassociated) */
949                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
950                     !(priv->status & STATUS_ASSOCIATED))
951                         schedule_delayed_work(&priv->led_link_on,
952                                               LD_TIME_LINK_OFF);
953
954         }
955
956         spin_unlock_irqrestore(&priv->lock, flags);
957 }
958
959 static void ipw_bg_led_link_off(struct work_struct *work)
960 {
961         struct ipw_priv *priv =
962                 container_of(work, struct ipw_priv, led_link_off.work);
963         mutex_lock(&priv->mutex);
964         ipw_led_link_off(priv);
965         mutex_unlock(&priv->mutex);
966 }
967
968 static void __ipw_led_activity_on(struct ipw_priv *priv)
969 {
970         u32 led;
971
972         if (priv->config & CFG_NO_LED)
973                 return;
974
975         if (priv->status & STATUS_RF_KILL_MASK)
976                 return;
977
978         if (!(priv->status & STATUS_LED_ACT_ON)) {
979                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
980                 led |= priv->led_activity_on;
981
982                 led = ipw_register_toggle(led);
983
984                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
985                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
986
987                 IPW_DEBUG_LED("Activity LED On\n");
988
989                 priv->status |= STATUS_LED_ACT_ON;
990
991                 cancel_delayed_work(&priv->led_act_off);
992                 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
993         } else {
994                 /* Reschedule LED off for full time period */
995                 cancel_delayed_work(&priv->led_act_off);
996                 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
997         }
998 }
999
1000 #if 0
1001 void ipw_led_activity_on(struct ipw_priv *priv)
1002 {
1003         unsigned long flags;
1004         spin_lock_irqsave(&priv->lock, flags);
1005         __ipw_led_activity_on(priv);
1006         spin_unlock_irqrestore(&priv->lock, flags);
1007 }
1008 #endif  /*  0  */
1009
1010 static void ipw_led_activity_off(struct ipw_priv *priv)
1011 {
1012         unsigned long flags;
1013         u32 led;
1014
1015         if (priv->config & CFG_NO_LED)
1016                 return;
1017
1018         spin_lock_irqsave(&priv->lock, flags);
1019
1020         if (priv->status & STATUS_LED_ACT_ON) {
1021                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1022                 led &= priv->led_activity_off;
1023
1024                 led = ipw_register_toggle(led);
1025
1026                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1027                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1028
1029                 IPW_DEBUG_LED("Activity LED Off\n");
1030
1031                 priv->status &= ~STATUS_LED_ACT_ON;
1032         }
1033
1034         spin_unlock_irqrestore(&priv->lock, flags);
1035 }
1036
1037 static void ipw_bg_led_activity_off(struct work_struct *work)
1038 {
1039         struct ipw_priv *priv =
1040                 container_of(work, struct ipw_priv, led_act_off.work);
1041         mutex_lock(&priv->mutex);
1042         ipw_led_activity_off(priv);
1043         mutex_unlock(&priv->mutex);
1044 }
1045
1046 static void ipw_led_band_on(struct ipw_priv *priv)
1047 {
1048         unsigned long flags;
1049         u32 led;
1050
1051         /* Only nic type 1 supports mode LEDs */
1052         if (priv->config & CFG_NO_LED ||
1053             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1054                 return;
1055
1056         spin_lock_irqsave(&priv->lock, flags);
1057
1058         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1059         if (priv->assoc_network->mode == IEEE_A) {
1060                 led |= priv->led_ofdm_on;
1061                 led &= priv->led_association_off;
1062                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1063         } else if (priv->assoc_network->mode == IEEE_G) {
1064                 led |= priv->led_ofdm_on;
1065                 led |= priv->led_association_on;
1066                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1067         } else {
1068                 led &= priv->led_ofdm_off;
1069                 led |= priv->led_association_on;
1070                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1071         }
1072
1073         led = ipw_register_toggle(led);
1074
1075         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1076         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1077
1078         spin_unlock_irqrestore(&priv->lock, flags);
1079 }
1080
1081 static void ipw_led_band_off(struct ipw_priv *priv)
1082 {
1083         unsigned long flags;
1084         u32 led;
1085
1086         /* Only nic type 1 supports mode LEDs */
1087         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1088                 return;
1089
1090         spin_lock_irqsave(&priv->lock, flags);
1091
1092         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1093         led &= priv->led_ofdm_off;
1094         led &= priv->led_association_off;
1095
1096         led = ipw_register_toggle(led);
1097
1098         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1099         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1100
1101         spin_unlock_irqrestore(&priv->lock, flags);
1102 }
1103
1104 static void ipw_led_radio_on(struct ipw_priv *priv)
1105 {
1106         ipw_led_link_on(priv);
1107 }
1108
1109 static void ipw_led_radio_off(struct ipw_priv *priv)
1110 {
1111         ipw_led_activity_off(priv);
1112         ipw_led_link_off(priv);
1113 }
1114
1115 static void ipw_led_link_up(struct ipw_priv *priv)
1116 {
1117         /* Set the Link Led on for all nic types */
1118         ipw_led_link_on(priv);
1119 }
1120
1121 static void ipw_led_link_down(struct ipw_priv *priv)
1122 {
1123         ipw_led_activity_off(priv);
1124         ipw_led_link_off(priv);
1125
1126         if (priv->status & STATUS_RF_KILL_MASK)
1127                 ipw_led_radio_off(priv);
1128 }
1129
1130 static void ipw_led_init(struct ipw_priv *priv)
1131 {
1132         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1133
1134         /* Set the default PINs for the link and activity leds */
1135         priv->led_activity_on = IPW_ACTIVITY_LED;
1136         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1137
1138         priv->led_association_on = IPW_ASSOCIATED_LED;
1139         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1140
1141         /* Set the default PINs for the OFDM leds */
1142         priv->led_ofdm_on = IPW_OFDM_LED;
1143         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1144
1145         switch (priv->nic_type) {
1146         case EEPROM_NIC_TYPE_1:
1147                 /* In this NIC type, the LEDs are reversed.... */
1148                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1149                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1150                 priv->led_association_on = IPW_ACTIVITY_LED;
1151                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1152
1153                 if (!(priv->config & CFG_NO_LED))
1154                         ipw_led_band_on(priv);
1155
1156                 /* And we don't blink link LEDs for this nic, so
1157                  * just return here */
1158                 return;
1159
1160         case EEPROM_NIC_TYPE_3:
1161         case EEPROM_NIC_TYPE_2:
1162         case EEPROM_NIC_TYPE_4:
1163         case EEPROM_NIC_TYPE_0:
1164                 break;
1165
1166         default:
1167                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1168                                priv->nic_type);
1169                 priv->nic_type = EEPROM_NIC_TYPE_0;
1170                 break;
1171         }
1172
1173         if (!(priv->config & CFG_NO_LED)) {
1174                 if (priv->status & STATUS_ASSOCIATED)
1175                         ipw_led_link_on(priv);
1176                 else
1177                         ipw_led_link_off(priv);
1178         }
1179 }
1180
1181 static void ipw_led_shutdown(struct ipw_priv *priv)
1182 {
1183         ipw_led_activity_off(priv);
1184         ipw_led_link_off(priv);
1185         ipw_led_band_off(priv);
1186         cancel_delayed_work(&priv->led_link_on);
1187         cancel_delayed_work(&priv->led_link_off);
1188         cancel_delayed_work(&priv->led_act_off);
1189 }
1190
1191 /*
1192  * The following adds a new attribute to the sysfs representation
1193  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1194  * used for controlling the debug level.
1195  *
1196  * See the level definitions in ipw for details.
1197  */
1198 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1199 {
1200         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1201 }
1202
1203 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1204                                  size_t count)
1205 {
1206         char *p = (char *)buf;
1207         u32 val;
1208
1209         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1210                 p++;
1211                 if (p[0] == 'x' || p[0] == 'X')
1212                         p++;
1213                 val = simple_strtoul(p, &p, 16);
1214         } else
1215                 val = simple_strtoul(p, &p, 10);
1216         if (p == buf)
1217                 printk(KERN_INFO DRV_NAME
1218                        ": %s is not in hex or decimal form.\n", buf);
1219         else
1220                 ipw_debug_level = val;
1221
1222         return strnlen(buf, count);
1223 }
1224
1225 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1226                    show_debug_level, store_debug_level);
1227
1228 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1229 {
1230         /* length = 1st dword in log */
1231         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1232 }
1233
1234 static void ipw_capture_event_log(struct ipw_priv *priv,
1235                                   u32 log_len, struct ipw_event *log)
1236 {
1237         u32 base;
1238
1239         if (log_len) {
1240                 base = ipw_read32(priv, IPW_EVENT_LOG);
1241                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1242                                   (u8 *) log, sizeof(*log) * log_len);
1243         }
1244 }
1245
1246 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1247 {
1248         struct ipw_fw_error *error;
1249         u32 log_len = ipw_get_event_log_len(priv);
1250         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1251         u32 elem_len = ipw_read_reg32(priv, base);
1252
1253         error = kmalloc(sizeof(*error) +
1254                         sizeof(*error->elem) * elem_len +
1255                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1256         if (!error) {
1257                 IPW_ERROR("Memory allocation for firmware error log "
1258                           "failed.\n");
1259                 return NULL;
1260         }
1261         error->jiffies = jiffies;
1262         error->status = priv->status;
1263         error->config = priv->config;
1264         error->elem_len = elem_len;
1265         error->log_len = log_len;
1266         error->elem = (struct ipw_error_elem *)error->payload;
1267         error->log = (struct ipw_event *)(error->elem + elem_len);
1268
1269         ipw_capture_event_log(priv, log_len, error->log);
1270
1271         if (elem_len)
1272                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1273                                   sizeof(*error->elem) * elem_len);
1274
1275         return error;
1276 }
1277
1278 static ssize_t show_event_log(struct device *d,
1279                               struct device_attribute *attr, char *buf)
1280 {
1281         struct ipw_priv *priv = dev_get_drvdata(d);
1282         u32 log_len = ipw_get_event_log_len(priv);
1283         u32 log_size;
1284         struct ipw_event *log;
1285         u32 len = 0, i;
1286
1287         /* not using min() because of its strict type checking */
1288         log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1289                         sizeof(*log) * log_len : PAGE_SIZE;
1290         log = kzalloc(log_size, GFP_KERNEL);
1291         if (!log) {
1292                 IPW_ERROR("Unable to allocate memory for log\n");
1293                 return 0;
1294         }
1295         log_len = log_size / sizeof(*log);
1296         ipw_capture_event_log(priv, log_len, log);
1297
1298         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1299         for (i = 0; i < log_len; i++)
1300                 len += snprintf(buf + len, PAGE_SIZE - len,
1301                                 "\n%08X%08X%08X",
1302                                 log[i].time, log[i].event, log[i].data);
1303         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1304         kfree(log);
1305         return len;
1306 }
1307
1308 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1309
1310 static ssize_t show_error(struct device *d,
1311                           struct device_attribute *attr, char *buf)
1312 {
1313         struct ipw_priv *priv = dev_get_drvdata(d);
1314         u32 len = 0, i;
1315         if (!priv->error)
1316                 return 0;
1317         len += snprintf(buf + len, PAGE_SIZE - len,
1318                         "%08lX%08X%08X%08X",
1319                         priv->error->jiffies,
1320                         priv->error->status,
1321                         priv->error->config, priv->error->elem_len);
1322         for (i = 0; i < priv->error->elem_len; i++)
1323                 len += snprintf(buf + len, PAGE_SIZE - len,
1324                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1325                                 priv->error->elem[i].time,
1326                                 priv->error->elem[i].desc,
1327                                 priv->error->elem[i].blink1,
1328                                 priv->error->elem[i].blink2,
1329                                 priv->error->elem[i].link1,
1330                                 priv->error->elem[i].link2,
1331                                 priv->error->elem[i].data);
1332
1333         len += snprintf(buf + len, PAGE_SIZE - len,
1334                         "\n%08X", priv->error->log_len);
1335         for (i = 0; i < priv->error->log_len; i++)
1336                 len += snprintf(buf + len, PAGE_SIZE - len,
1337                                 "\n%08X%08X%08X",
1338                                 priv->error->log[i].time,
1339                                 priv->error->log[i].event,
1340                                 priv->error->log[i].data);
1341         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1342         return len;
1343 }
1344
1345 static ssize_t clear_error(struct device *d,
1346                            struct device_attribute *attr,
1347                            const char *buf, size_t count)
1348 {
1349         struct ipw_priv *priv = dev_get_drvdata(d);
1350
1351         kfree(priv->error);
1352         priv->error = NULL;
1353         return count;
1354 }
1355
1356 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1357
1358 static ssize_t show_cmd_log(struct device *d,
1359                             struct device_attribute *attr, char *buf)
1360 {
1361         struct ipw_priv *priv = dev_get_drvdata(d);
1362         u32 len = 0, i;
1363         if (!priv->cmdlog)
1364                 return 0;
1365         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1366              (i != priv->cmdlog_pos) && (len < PAGE_SIZE);
1367              i = (i + 1) % priv->cmdlog_len) {
1368                 len +=
1369                     snprintf(buf + len, PAGE_SIZE - len,
1370                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1371                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1372                              priv->cmdlog[i].cmd.len);
1373                 len +=
1374                     snprintk_buf(buf + len, PAGE_SIZE - len,
1375                                  (u8 *) priv->cmdlog[i].cmd.param,
1376                                  priv->cmdlog[i].cmd.len);
1377                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1378         }
1379         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1380         return len;
1381 }
1382
1383 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1384
1385 #ifdef CONFIG_IPW2200_PROMISCUOUS
1386 static void ipw_prom_free(struct ipw_priv *priv);
1387 static int ipw_prom_alloc(struct ipw_priv *priv);
1388 static ssize_t store_rtap_iface(struct device *d,
1389                          struct device_attribute *attr,
1390                          const char *buf, size_t count)
1391 {
1392         struct ipw_priv *priv = dev_get_drvdata(d);
1393         int rc = 0;
1394
1395         if (count < 1)
1396                 return -EINVAL;
1397
1398         switch (buf[0]) {
1399         case '0':
1400                 if (!rtap_iface)
1401                         return count;
1402
1403                 if (netif_running(priv->prom_net_dev)) {
1404                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1405                         return count;
1406                 }
1407
1408                 ipw_prom_free(priv);
1409                 rtap_iface = 0;
1410                 break;
1411
1412         case '1':
1413                 if (rtap_iface)
1414                         return count;
1415
1416                 rc = ipw_prom_alloc(priv);
1417                 if (!rc)
1418                         rtap_iface = 1;
1419                 break;
1420
1421         default:
1422                 return -EINVAL;
1423         }
1424
1425         if (rc) {
1426                 IPW_ERROR("Failed to register promiscuous network "
1427                           "device (error %d).\n", rc);
1428         }
1429
1430         return count;
1431 }
1432
1433 static ssize_t show_rtap_iface(struct device *d,
1434                         struct device_attribute *attr,
1435                         char *buf)
1436 {
1437         struct ipw_priv *priv = dev_get_drvdata(d);
1438         if (rtap_iface)
1439                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1440         else {
1441                 buf[0] = '-';
1442                 buf[1] = '1';
1443                 buf[2] = '\0';
1444                 return 3;
1445         }
1446 }
1447
1448 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1449                    store_rtap_iface);
1450
1451 static ssize_t store_rtap_filter(struct device *d,
1452                          struct device_attribute *attr,
1453                          const char *buf, size_t count)
1454 {
1455         struct ipw_priv *priv = dev_get_drvdata(d);
1456
1457         if (!priv->prom_priv) {
1458                 IPW_ERROR("Attempting to set filter without "
1459                           "rtap_iface enabled.\n");
1460                 return -EPERM;
1461         }
1462
1463         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1464
1465         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1466                        BIT_ARG16(priv->prom_priv->filter));
1467
1468         return count;
1469 }
1470
1471 static ssize_t show_rtap_filter(struct device *d,
1472                         struct device_attribute *attr,
1473                         char *buf)
1474 {
1475         struct ipw_priv *priv = dev_get_drvdata(d);
1476         return sprintf(buf, "0x%04X",
1477                        priv->prom_priv ? priv->prom_priv->filter : 0);
1478 }
1479
1480 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1481                    store_rtap_filter);
1482 #endif
1483
1484 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1485                              char *buf)
1486 {
1487         struct ipw_priv *priv = dev_get_drvdata(d);
1488         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1489 }
1490
1491 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1492                               const char *buf, size_t count)
1493 {
1494         struct ipw_priv *priv = dev_get_drvdata(d);
1495         struct net_device *dev = priv->net_dev;
1496         char buffer[] = "00000000";
1497         unsigned long len =
1498             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1499         unsigned long val;
1500         char *p = buffer;
1501
1502         IPW_DEBUG_INFO("enter\n");
1503
1504         strncpy(buffer, buf, len);
1505         buffer[len] = 0;
1506
1507         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1508                 p++;
1509                 if (p[0] == 'x' || p[0] == 'X')
1510                         p++;
1511                 val = simple_strtoul(p, &p, 16);
1512         } else
1513                 val = simple_strtoul(p, &p, 10);
1514         if (p == buffer) {
1515                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1516         } else {
1517                 priv->ieee->scan_age = val;
1518                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1519         }
1520
1521         IPW_DEBUG_INFO("exit\n");
1522         return len;
1523 }
1524
1525 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1526
1527 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1528                         char *buf)
1529 {
1530         struct ipw_priv *priv = dev_get_drvdata(d);
1531         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1532 }
1533
1534 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1535                          const char *buf, size_t count)
1536 {
1537         struct ipw_priv *priv = dev_get_drvdata(d);
1538
1539         IPW_DEBUG_INFO("enter\n");
1540
1541         if (count == 0)
1542                 return 0;
1543
1544         if (*buf == 0) {
1545                 IPW_DEBUG_LED("Disabling LED control.\n");
1546                 priv->config |= CFG_NO_LED;
1547                 ipw_led_shutdown(priv);
1548         } else {
1549                 IPW_DEBUG_LED("Enabling LED control.\n");
1550                 priv->config &= ~CFG_NO_LED;
1551                 ipw_led_init(priv);
1552         }
1553
1554         IPW_DEBUG_INFO("exit\n");
1555         return count;
1556 }
1557
1558 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1559
1560 static ssize_t show_status(struct device *d,
1561                            struct device_attribute *attr, char *buf)
1562 {
1563         struct ipw_priv *p = dev_get_drvdata(d);
1564         return sprintf(buf, "0x%08x\n", (int)p->status);
1565 }
1566
1567 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1568
1569 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1570                         char *buf)
1571 {
1572         struct ipw_priv *p = dev_get_drvdata(d);
1573         return sprintf(buf, "0x%08x\n", (int)p->config);
1574 }
1575
1576 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1577
1578 static ssize_t show_nic_type(struct device *d,
1579                              struct device_attribute *attr, char *buf)
1580 {
1581         struct ipw_priv *priv = dev_get_drvdata(d);
1582         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1583 }
1584
1585 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1586
1587 static ssize_t show_ucode_version(struct device *d,
1588                                   struct device_attribute *attr, char *buf)
1589 {
1590         u32 len = sizeof(u32), tmp = 0;
1591         struct ipw_priv *p = dev_get_drvdata(d);
1592
1593         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1594                 return 0;
1595
1596         return sprintf(buf, "0x%08x\n", tmp);
1597 }
1598
1599 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1600
1601 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1602                         char *buf)
1603 {
1604         u32 len = sizeof(u32), tmp = 0;
1605         struct ipw_priv *p = dev_get_drvdata(d);
1606
1607         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1608                 return 0;
1609
1610         return sprintf(buf, "0x%08x\n", tmp);
1611 }
1612
1613 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1614
1615 /*
1616  * Add a device attribute to view/control the delay between eeprom
1617  * operations.
1618  */
1619 static ssize_t show_eeprom_delay(struct device *d,
1620                                  struct device_attribute *attr, char *buf)
1621 {
1622         struct ipw_priv *p = dev_get_drvdata(d);
1623         int n = p->eeprom_delay;
1624         return sprintf(buf, "%i\n", n);
1625 }
1626 static ssize_t store_eeprom_delay(struct device *d,
1627                                   struct device_attribute *attr,
1628                                   const char *buf, size_t count)
1629 {
1630         struct ipw_priv *p = dev_get_drvdata(d);
1631         sscanf(buf, "%i", &p->eeprom_delay);
1632         return strnlen(buf, count);
1633 }
1634
1635 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1636                    show_eeprom_delay, store_eeprom_delay);
1637
1638 static ssize_t show_command_event_reg(struct device *d,
1639                                       struct device_attribute *attr, char *buf)
1640 {
1641         u32 reg = 0;
1642         struct ipw_priv *p = dev_get_drvdata(d);
1643
1644         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1645         return sprintf(buf, "0x%08x\n", reg);
1646 }
1647 static ssize_t store_command_event_reg(struct device *d,
1648                                        struct device_attribute *attr,
1649                                        const char *buf, size_t count)
1650 {
1651         u32 reg;
1652         struct ipw_priv *p = dev_get_drvdata(d);
1653
1654         sscanf(buf, "%x", &reg);
1655         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1656         return strnlen(buf, count);
1657 }
1658
1659 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1660                    show_command_event_reg, store_command_event_reg);
1661
1662 static ssize_t show_mem_gpio_reg(struct device *d,
1663                                  struct device_attribute *attr, char *buf)
1664 {
1665         u32 reg = 0;
1666         struct ipw_priv *p = dev_get_drvdata(d);
1667
1668         reg = ipw_read_reg32(p, 0x301100);
1669         return sprintf(buf, "0x%08x\n", reg);
1670 }
1671 static ssize_t store_mem_gpio_reg(struct device *d,
1672                                   struct device_attribute *attr,
1673                                   const char *buf, size_t count)
1674 {
1675         u32 reg;
1676         struct ipw_priv *p = dev_get_drvdata(d);
1677
1678         sscanf(buf, "%x", &reg);
1679         ipw_write_reg32(p, 0x301100, reg);
1680         return strnlen(buf, count);
1681 }
1682
1683 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1684                    show_mem_gpio_reg, store_mem_gpio_reg);
1685
1686 static ssize_t show_indirect_dword(struct device *d,
1687                                    struct device_attribute *attr, char *buf)
1688 {
1689         u32 reg = 0;
1690         struct ipw_priv *priv = dev_get_drvdata(d);
1691
1692         if (priv->status & STATUS_INDIRECT_DWORD)
1693                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1694         else
1695                 reg = 0;
1696
1697         return sprintf(buf, "0x%08x\n", reg);
1698 }
1699 static ssize_t store_indirect_dword(struct device *d,
1700                                     struct device_attribute *attr,
1701                                     const char *buf, size_t count)
1702 {
1703         struct ipw_priv *priv = dev_get_drvdata(d);
1704
1705         sscanf(buf, "%x", &priv->indirect_dword);
1706         priv->status |= STATUS_INDIRECT_DWORD;
1707         return strnlen(buf, count);
1708 }
1709
1710 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1711                    show_indirect_dword, store_indirect_dword);
1712
1713 static ssize_t show_indirect_byte(struct device *d,
1714                                   struct device_attribute *attr, char *buf)
1715 {
1716         u8 reg = 0;
1717         struct ipw_priv *priv = dev_get_drvdata(d);
1718
1719         if (priv->status & STATUS_INDIRECT_BYTE)
1720                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1721         else
1722                 reg = 0;
1723
1724         return sprintf(buf, "0x%02x\n", reg);
1725 }
1726 static ssize_t store_indirect_byte(struct device *d,
1727                                    struct device_attribute *attr,
1728                                    const char *buf, size_t count)
1729 {
1730         struct ipw_priv *priv = dev_get_drvdata(d);
1731
1732         sscanf(buf, "%x", &priv->indirect_byte);
1733         priv->status |= STATUS_INDIRECT_BYTE;
1734         return strnlen(buf, count);
1735 }
1736
1737 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1738                    show_indirect_byte, store_indirect_byte);
1739
1740 static ssize_t show_direct_dword(struct device *d,
1741                                  struct device_attribute *attr, char *buf)
1742 {
1743         u32 reg = 0;
1744         struct ipw_priv *priv = dev_get_drvdata(d);
1745
1746         if (priv->status & STATUS_DIRECT_DWORD)
1747                 reg = ipw_read32(priv, priv->direct_dword);
1748         else
1749                 reg = 0;
1750
1751         return sprintf(buf, "0x%08x\n", reg);
1752 }
1753 static ssize_t store_direct_dword(struct device *d,
1754                                   struct device_attribute *attr,
1755                                   const char *buf, size_t count)
1756 {
1757         struct ipw_priv *priv = dev_get_drvdata(d);
1758
1759         sscanf(buf, "%x", &priv->direct_dword);
1760         priv->status |= STATUS_DIRECT_DWORD;
1761         return strnlen(buf, count);
1762 }
1763
1764 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1765                    show_direct_dword, store_direct_dword);
1766
1767 static int rf_kill_active(struct ipw_priv *priv)
1768 {
1769         if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1770                 priv->status |= STATUS_RF_KILL_HW;
1771                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1772         } else {
1773                 priv->status &= ~STATUS_RF_KILL_HW;
1774                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1775         }
1776
1777         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1778 }
1779
1780 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1781                             char *buf)
1782 {
1783         /* 0 - RF kill not enabled
1784            1 - SW based RF kill active (sysfs)
1785            2 - HW based RF kill active
1786            3 - Both HW and SW baed RF kill active */
1787         struct ipw_priv *priv = dev_get_drvdata(d);
1788         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1789             (rf_kill_active(priv) ? 0x2 : 0x0);
1790         return sprintf(buf, "%i\n", val);
1791 }
1792
1793 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1794 {
1795         if ((disable_radio ? 1 : 0) ==
1796             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1797                 return 0;
1798
1799         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1800                           disable_radio ? "OFF" : "ON");
1801
1802         if (disable_radio) {
1803                 priv->status |= STATUS_RF_KILL_SW;
1804
1805                 cancel_delayed_work(&priv->request_scan);
1806                 cancel_delayed_work(&priv->request_direct_scan);
1807                 cancel_delayed_work(&priv->request_passive_scan);
1808                 cancel_delayed_work(&priv->scan_event);
1809                 schedule_work(&priv->down);
1810         } else {
1811                 priv->status &= ~STATUS_RF_KILL_SW;
1812                 if (rf_kill_active(priv)) {
1813                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1814                                           "disabled by HW switch\n");
1815                         /* Make sure the RF_KILL check timer is running */
1816                         cancel_delayed_work(&priv->rf_kill);
1817                         schedule_delayed_work(&priv->rf_kill,
1818                                               round_jiffies_relative(2 * HZ));
1819                 } else
1820                         schedule_work(&priv->up);
1821         }
1822
1823         return 1;
1824 }
1825
1826 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1827                              const char *buf, size_t count)
1828 {
1829         struct ipw_priv *priv = dev_get_drvdata(d);
1830
1831         ipw_radio_kill_sw(priv, buf[0] == '1');
1832
1833         return count;
1834 }
1835
1836 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1837
1838 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1839                                char *buf)
1840 {
1841         struct ipw_priv *priv = dev_get_drvdata(d);
1842         int pos = 0, len = 0;
1843         if (priv->config & CFG_SPEED_SCAN) {
1844                 while (priv->speed_scan[pos] != 0)
1845                         len += sprintf(&buf[len], "%d ",
1846                                        priv->speed_scan[pos++]);
1847                 return len + sprintf(&buf[len], "\n");
1848         }
1849
1850         return sprintf(buf, "0\n");
1851 }
1852
1853 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1854                                 const char *buf, size_t count)
1855 {
1856         struct ipw_priv *priv = dev_get_drvdata(d);
1857         int channel, pos = 0;
1858         const char *p = buf;
1859
1860         /* list of space separated channels to scan, optionally ending with 0 */
1861         while ((channel = simple_strtol(p, NULL, 0))) {
1862                 if (pos == MAX_SPEED_SCAN - 1) {
1863                         priv->speed_scan[pos] = 0;
1864                         break;
1865                 }
1866
1867                 if (libipw_is_valid_channel(priv->ieee, channel))
1868                         priv->speed_scan[pos++] = channel;
1869                 else
1870                         IPW_WARNING("Skipping invalid channel request: %d\n",
1871                                     channel);
1872                 p = strchr(p, ' ');
1873                 if (!p)
1874                         break;
1875                 while (*p == ' ' || *p == '\t')
1876                         p++;
1877         }
1878
1879         if (pos == 0)
1880                 priv->config &= ~CFG_SPEED_SCAN;
1881         else {
1882                 priv->speed_scan_pos = 0;
1883                 priv->config |= CFG_SPEED_SCAN;
1884         }
1885
1886         return count;
1887 }
1888
1889 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1890                    store_speed_scan);
1891
1892 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1893                               char *buf)
1894 {
1895         struct ipw_priv *priv = dev_get_drvdata(d);
1896         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1897 }
1898
1899 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1900                                const char *buf, size_t count)
1901 {
1902         struct ipw_priv *priv = dev_get_drvdata(d);
1903         if (buf[0] == '1')
1904                 priv->config |= CFG_NET_STATS;
1905         else
1906                 priv->config &= ~CFG_NET_STATS;
1907
1908         return count;
1909 }
1910
1911 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1912                    show_net_stats, store_net_stats);
1913
1914 static ssize_t show_channels(struct device *d,
1915                              struct device_attribute *attr,
1916                              char *buf)
1917 {
1918         struct ipw_priv *priv = dev_get_drvdata(d);
1919         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1920         int len = 0, i;
1921
1922         len = sprintf(&buf[len],
1923                       "Displaying %d channels in 2.4Ghz band "
1924                       "(802.11bg):\n", geo->bg_channels);
1925
1926         for (i = 0; i < geo->bg_channels; i++) {
1927                 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1928                                geo->bg[i].channel,
1929                                geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1930                                " (radar spectrum)" : "",
1931                                ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1932                                 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1933                                ? "" : ", IBSS",
1934                                geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1935                                "passive only" : "active/passive",
1936                                geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1937                                "B" : "B/G");
1938         }
1939
1940         len += sprintf(&buf[len],
1941                        "Displaying %d channels in 5.2Ghz band "
1942                        "(802.11a):\n", geo->a_channels);
1943         for (i = 0; i < geo->a_channels; i++) {
1944                 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1945                                geo->a[i].channel,
1946                                geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1947                                " (radar spectrum)" : "",
1948                                ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1949                                 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1950                                ? "" : ", IBSS",
1951                                geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1952                                "passive only" : "active/passive");
1953         }
1954
1955         return len;
1956 }
1957
1958 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1959
1960 static void notify_wx_assoc_event(struct ipw_priv *priv)
1961 {
1962         union iwreq_data wrqu;
1963         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1964         if (priv->status & STATUS_ASSOCIATED)
1965                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1966         else
1967                 eth_zero_addr(wrqu.ap_addr.sa_data);
1968         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1969 }
1970
1971 static void ipw_irq_tasklet(unsigned long data)
1972 {
1973         struct ipw_priv *priv = (struct ipw_priv *)data;
1974         u32 inta, inta_mask, handled = 0;
1975         unsigned long flags;
1976         int rc = 0;
1977
1978         spin_lock_irqsave(&priv->irq_lock, flags);
1979
1980         inta = ipw_read32(priv, IPW_INTA_RW);
1981         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1982
1983         if (inta == 0xFFFFFFFF) {
1984                 /* Hardware disappeared */
1985                 IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1986                 /* Only handle the cached INTA values */
1987                 inta = 0;
1988         }
1989         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1990
1991         /* Add any cached INTA values that need to be handled */
1992         inta |= priv->isr_inta;
1993
1994         spin_unlock_irqrestore(&priv->irq_lock, flags);
1995
1996         spin_lock_irqsave(&priv->lock, flags);
1997
1998         /* handle all the justifications for the interrupt */
1999         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
2000                 ipw_rx(priv);
2001                 handled |= IPW_INTA_BIT_RX_TRANSFER;
2002         }
2003
2004         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
2005                 IPW_DEBUG_HC("Command completed.\n");
2006                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
2007                 priv->status &= ~STATUS_HCMD_ACTIVE;
2008                 wake_up_interruptible(&priv->wait_command_queue);
2009                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
2010         }
2011
2012         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
2013                 IPW_DEBUG_TX("TX_QUEUE_1\n");
2014                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
2015                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
2016         }
2017
2018         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
2019                 IPW_DEBUG_TX("TX_QUEUE_2\n");
2020                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
2021                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
2022         }
2023
2024         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2025                 IPW_DEBUG_TX("TX_QUEUE_3\n");
2026                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2027                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
2028         }
2029
2030         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2031                 IPW_DEBUG_TX("TX_QUEUE_4\n");
2032                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2033                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
2034         }
2035
2036         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2037                 IPW_WARNING("STATUS_CHANGE\n");
2038                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
2039         }
2040
2041         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2042                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2043                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2044         }
2045
2046         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2047                 IPW_WARNING("HOST_CMD_DONE\n");
2048                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2049         }
2050
2051         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2052                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2053                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2054         }
2055
2056         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2057                 IPW_WARNING("PHY_OFF_DONE\n");
2058                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2059         }
2060
2061         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2062                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2063                 priv->status |= STATUS_RF_KILL_HW;
2064                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2065                 wake_up_interruptible(&priv->wait_command_queue);
2066                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2067                 cancel_delayed_work(&priv->request_scan);
2068                 cancel_delayed_work(&priv->request_direct_scan);
2069                 cancel_delayed_work(&priv->request_passive_scan);
2070                 cancel_delayed_work(&priv->scan_event);
2071                 schedule_work(&priv->link_down);
2072                 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2073                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2074         }
2075
2076         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2077                 IPW_WARNING("Firmware error detected.  Restarting.\n");
2078                 if (priv->error) {
2079                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2080                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2081                                 struct ipw_fw_error *error =
2082                                     ipw_alloc_error_log(priv);
2083                                 ipw_dump_error_log(priv, error);
2084                                 kfree(error);
2085                         }
2086                 } else {
2087                         priv->error = ipw_alloc_error_log(priv);
2088                         if (priv->error)
2089                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2090                         else
2091                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2092                                              "log.\n");
2093                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
2094                                 ipw_dump_error_log(priv, priv->error);
2095                 }
2096
2097                 /* XXX: If hardware encryption is for WPA/WPA2,
2098                  * we have to notify the supplicant. */
2099                 if (priv->ieee->sec.encrypt) {
2100                         priv->status &= ~STATUS_ASSOCIATED;
2101                         notify_wx_assoc_event(priv);
2102                 }
2103
2104                 /* Keep the restart process from trying to send host
2105                  * commands by clearing the INIT status bit */
2106                 priv->status &= ~STATUS_INIT;
2107
2108                 /* Cancel currently queued command. */
2109                 priv->status &= ~STATUS_HCMD_ACTIVE;
2110                 wake_up_interruptible(&priv->wait_command_queue);
2111
2112                 schedule_work(&priv->adapter_restart);
2113                 handled |= IPW_INTA_BIT_FATAL_ERROR;
2114         }
2115
2116         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2117                 IPW_ERROR("Parity error\n");
2118                 handled |= IPW_INTA_BIT_PARITY_ERROR;
2119         }
2120
2121         if (handled != inta) {
2122                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2123         }
2124
2125         spin_unlock_irqrestore(&priv->lock, flags);
2126
2127         /* enable all interrupts */
2128         ipw_enable_interrupts(priv);
2129 }
2130
2131 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2132 static char *get_cmd_string(u8 cmd)
2133 {
2134         switch (cmd) {
2135                 IPW_CMD(HOST_COMPLETE);
2136                 IPW_CMD(POWER_DOWN);
2137                 IPW_CMD(SYSTEM_CONFIG);
2138                 IPW_CMD(MULTICAST_ADDRESS);
2139                 IPW_CMD(SSID);
2140                 IPW_CMD(ADAPTER_ADDRESS);
2141                 IPW_CMD(PORT_TYPE);
2142                 IPW_CMD(RTS_THRESHOLD);
2143                 IPW_CMD(FRAG_THRESHOLD);
2144                 IPW_CMD(POWER_MODE);
2145                 IPW_CMD(WEP_KEY);
2146                 IPW_CMD(TGI_TX_KEY);
2147                 IPW_CMD(SCAN_REQUEST);
2148                 IPW_CMD(SCAN_REQUEST_EXT);
2149                 IPW_CMD(ASSOCIATE);
2150                 IPW_CMD(SUPPORTED_RATES);
2151                 IPW_CMD(SCAN_ABORT);
2152                 IPW_CMD(TX_FLUSH);
2153                 IPW_CMD(QOS_PARAMETERS);
2154                 IPW_CMD(DINO_CONFIG);
2155                 IPW_CMD(RSN_CAPABILITIES);
2156                 IPW_CMD(RX_KEY);
2157                 IPW_CMD(CARD_DISABLE);
2158                 IPW_CMD(SEED_NUMBER);
2159                 IPW_CMD(TX_POWER);
2160                 IPW_CMD(COUNTRY_INFO);
2161                 IPW_CMD(AIRONET_INFO);
2162                 IPW_CMD(AP_TX_POWER);
2163                 IPW_CMD(CCKM_INFO);
2164                 IPW_CMD(CCX_VER_INFO);
2165                 IPW_CMD(SET_CALIBRATION);
2166                 IPW_CMD(SENSITIVITY_CALIB);
2167                 IPW_CMD(RETRY_LIMIT);
2168                 IPW_CMD(IPW_PRE_POWER_DOWN);
2169                 IPW_CMD(VAP_BEACON_TEMPLATE);
2170                 IPW_CMD(VAP_DTIM_PERIOD);
2171                 IPW_CMD(EXT_SUPPORTED_RATES);
2172                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2173                 IPW_CMD(VAP_QUIET_INTERVALS);
2174                 IPW_CMD(VAP_CHANNEL_SWITCH);
2175                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2176                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2177                 IPW_CMD(VAP_CF_PARAM_SET);
2178                 IPW_CMD(VAP_SET_BEACONING_STATE);
2179                 IPW_CMD(MEASUREMENT);
2180                 IPW_CMD(POWER_CAPABILITY);
2181                 IPW_CMD(SUPPORTED_CHANNELS);
2182                 IPW_CMD(TPC_REPORT);
2183                 IPW_CMD(WME_INFO);
2184                 IPW_CMD(PRODUCTION_COMMAND);
2185         default:
2186                 return "UNKNOWN";
2187         }
2188 }
2189
2190 #define HOST_COMPLETE_TIMEOUT HZ
2191
2192 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2193 {
2194         int rc = 0;
2195         unsigned long flags;
2196         unsigned long now, end;
2197
2198         spin_lock_irqsave(&priv->lock, flags);
2199         if (priv->status & STATUS_HCMD_ACTIVE) {
2200                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2201                           get_cmd_string(cmd->cmd));
2202                 spin_unlock_irqrestore(&priv->lock, flags);
2203                 return -EAGAIN;
2204         }
2205
2206         priv->status |= STATUS_HCMD_ACTIVE;
2207
2208         if (priv->cmdlog) {
2209                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2210                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2211                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2212                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2213                        cmd->len);
2214                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2215         }
2216
2217         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2218                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2219                      priv->status);
2220
2221 #ifndef DEBUG_CMD_WEP_KEY
2222         if (cmd->cmd == IPW_CMD_WEP_KEY)
2223                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2224         else
2225 #endif
2226                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2227
2228         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2229         if (rc) {
2230                 priv->status &= ~STATUS_HCMD_ACTIVE;
2231                 IPW_ERROR("Failed to send %s: Reason %d\n",
2232                           get_cmd_string(cmd->cmd), rc);
2233                 spin_unlock_irqrestore(&priv->lock, flags);
2234                 goto exit;
2235         }
2236         spin_unlock_irqrestore(&priv->lock, flags);
2237
2238         now = jiffies;
2239         end = now + HOST_COMPLETE_TIMEOUT;
2240 again:
2241         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2242                                               !(priv->
2243                                                 status & STATUS_HCMD_ACTIVE),
2244                                               end - now);
2245         if (rc < 0) {
2246                 now = jiffies;
2247                 if (time_before(now, end))
2248                         goto again;
2249                 rc = 0;
2250         }
2251
2252         if (rc == 0) {
2253                 spin_lock_irqsave(&priv->lock, flags);
2254                 if (priv->status & STATUS_HCMD_ACTIVE) {
2255                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2256                                   get_cmd_string(cmd->cmd));
2257                         priv->status &= ~STATUS_HCMD_ACTIVE;
2258                         spin_unlock_irqrestore(&priv->lock, flags);
2259                         rc = -EIO;
2260                         goto exit;
2261                 }
2262                 spin_unlock_irqrestore(&priv->lock, flags);
2263         } else
2264                 rc = 0;
2265
2266         if (priv->status & STATUS_RF_KILL_HW) {
2267                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2268                           get_cmd_string(cmd->cmd));
2269                 rc = -EIO;
2270                 goto exit;
2271         }
2272
2273       exit:
2274         if (priv->cmdlog) {
2275                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2276                 priv->cmdlog_pos %= priv->cmdlog_len;
2277         }
2278         return rc;
2279 }
2280
2281 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2282 {
2283         struct host_cmd cmd = {
2284                 .cmd = command,
2285         };
2286
2287         return __ipw_send_cmd(priv, &cmd);
2288 }
2289
2290 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2291                             void *data)
2292 {
2293         struct host_cmd cmd = {
2294                 .cmd = command,
2295                 .len = len,
2296                 .param = data,
2297         };
2298
2299         return __ipw_send_cmd(priv, &cmd);
2300 }
2301
2302 static int ipw_send_host_complete(struct ipw_priv *priv)
2303 {
2304         if (!priv) {
2305                 IPW_ERROR("Invalid args\n");
2306                 return -1;
2307         }
2308
2309         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2310 }
2311
2312 static int ipw_send_system_config(struct ipw_priv *priv)
2313 {
2314         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2315                                 sizeof(priv->sys_config),
2316                                 &priv->sys_config);
2317 }
2318
2319 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2320 {
2321         if (!priv || !ssid) {
2322                 IPW_ERROR("Invalid args\n");
2323                 return -1;
2324         }
2325
2326         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2327                                 ssid);
2328 }
2329
2330 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2331 {
2332         if (!priv || !mac) {
2333                 IPW_ERROR("Invalid args\n");
2334                 return -1;
2335         }
2336
2337         IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2338                        priv->net_dev->name, mac);
2339
2340         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2341 }
2342
2343 static void ipw_adapter_restart(void *adapter)
2344 {
2345         struct ipw_priv *priv = adapter;
2346
2347         if (priv->status & STATUS_RF_KILL_MASK)
2348                 return;
2349
2350         ipw_down(priv);
2351
2352         if (priv->assoc_network &&
2353             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2354                 ipw_remove_current_network(priv);
2355
2356         if (ipw_up(priv)) {
2357                 IPW_ERROR("Failed to up device\n");
2358                 return;
2359         }
2360 }
2361
2362 static void ipw_bg_adapter_restart(struct work_struct *work)
2363 {
2364         struct ipw_priv *priv =
2365                 container_of(work, struct ipw_priv, adapter_restart);
2366         mutex_lock(&priv->mutex);
2367         ipw_adapter_restart(priv);
2368         mutex_unlock(&priv->mutex);
2369 }
2370
2371 static void ipw_abort_scan(struct ipw_priv *priv);
2372
2373 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2374
2375 static void ipw_scan_check(void *data)
2376 {
2377         struct ipw_priv *priv = data;
2378
2379         if (priv->status & STATUS_SCAN_ABORTING) {
2380                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2381                                "adapter after (%dms).\n",
2382                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2383                 schedule_work(&priv->adapter_restart);
2384         } else if (priv->status & STATUS_SCANNING) {
2385                 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2386                                "after (%dms).\n",
2387                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2388                 ipw_abort_scan(priv);
2389                 schedule_delayed_work(&priv->scan_check, HZ);
2390         }
2391 }
2392
2393 static void ipw_bg_scan_check(struct work_struct *work)
2394 {
2395         struct ipw_priv *priv =
2396                 container_of(work, struct ipw_priv, scan_check.work);
2397         mutex_lock(&priv->mutex);
2398         ipw_scan_check(priv);
2399         mutex_unlock(&priv->mutex);
2400 }
2401
2402 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2403                                      struct ipw_scan_request_ext *request)
2404 {
2405         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2406                                 sizeof(*request), request);
2407 }
2408
2409 static int ipw_send_scan_abort(struct ipw_priv *priv)
2410 {
2411         if (!priv) {
2412                 IPW_ERROR("Invalid args\n");
2413                 return -1;
2414         }
2415
2416         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2417 }
2418
2419 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2420 {
2421         struct ipw_sensitivity_calib calib = {
2422                 .beacon_rssi_raw = cpu_to_le16(sens),
2423         };
2424
2425         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2426                                 &calib);
2427 }
2428
2429 static int ipw_send_associate(struct ipw_priv *priv,
2430                               struct ipw_associate *associate)
2431 {
2432         if (!priv || !associate) {
2433                 IPW_ERROR("Invalid args\n");
2434                 return -1;
2435         }
2436
2437         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2438                                 associate);
2439 }
2440
2441 static int ipw_send_supported_rates(struct ipw_priv *priv,
2442                                     struct ipw_supported_rates *rates)
2443 {
2444         if (!priv || !rates) {
2445                 IPW_ERROR("Invalid args\n");
2446                 return -1;
2447         }
2448
2449         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2450                                 rates);
2451 }
2452
2453 static int ipw_set_random_seed(struct ipw_priv *priv)
2454 {
2455         u32 val;
2456
2457         if (!priv) {
2458                 IPW_ERROR("Invalid args\n");
2459                 return -1;
2460         }
2461
2462         get_random_bytes(&val, sizeof(val));
2463
2464         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2465 }
2466
2467 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2468 {
2469         __le32 v = cpu_to_le32(phy_off);
2470         if (!priv) {
2471                 IPW_ERROR("Invalid args\n");
2472                 return -1;
2473         }
2474
2475         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2476 }
2477
2478 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2479 {
2480         if (!priv || !power) {
2481                 IPW_ERROR("Invalid args\n");
2482                 return -1;
2483         }
2484
2485         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2486 }
2487
2488 static int ipw_set_tx_power(struct ipw_priv *priv)
2489 {
2490         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2491         struct ipw_tx_power tx_power;
2492         s8 max_power;
2493         int i;
2494
2495         memset(&tx_power, 0, sizeof(tx_power));
2496
2497         /* configure device for 'G' band */
2498         tx_power.ieee_mode = IPW_G_MODE;
2499         tx_power.num_channels = geo->bg_channels;
2500         for (i = 0; i < geo->bg_channels; i++) {
2501                 max_power = geo->bg[i].max_power;
2502                 tx_power.channels_tx_power[i].channel_number =
2503                     geo->bg[i].channel;
2504                 tx_power.channels_tx_power[i].tx_power = max_power ?
2505                     min(max_power, priv->tx_power) : priv->tx_power;
2506         }
2507         if (ipw_send_tx_power(priv, &tx_power))
2508                 return -EIO;
2509
2510         /* configure device to also handle 'B' band */
2511         tx_power.ieee_mode = IPW_B_MODE;
2512         if (ipw_send_tx_power(priv, &tx_power))
2513                 return -EIO;
2514
2515         /* configure device to also handle 'A' band */
2516         if (priv->ieee->abg_true) {
2517                 tx_power.ieee_mode = IPW_A_MODE;
2518                 tx_power.num_channels = geo->a_channels;
2519                 for (i = 0; i < tx_power.num_channels; i++) {
2520                         max_power = geo->a[i].max_power;
2521                         tx_power.channels_tx_power[i].channel_number =
2522                             geo->a[i].channel;
2523                         tx_power.channels_tx_power[i].tx_power = max_power ?
2524                             min(max_power, priv->tx_power) : priv->tx_power;
2525                 }
2526                 if (ipw_send_tx_power(priv, &tx_power))
2527                         return -EIO;
2528         }
2529         return 0;
2530 }
2531
2532 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2533 {
2534         struct ipw_rts_threshold rts_threshold = {
2535                 .rts_threshold = cpu_to_le16(rts),
2536         };
2537
2538         if (!priv) {
2539                 IPW_ERROR("Invalid args\n");
2540                 return -1;
2541         }
2542
2543         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2544                                 sizeof(rts_threshold), &rts_threshold);
2545 }
2546
2547 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2548 {
2549         struct ipw_frag_threshold frag_threshold = {
2550                 .frag_threshold = cpu_to_le16(frag),
2551         };
2552
2553         if (!priv) {
2554                 IPW_ERROR("Invalid args\n");
2555                 return -1;
2556         }
2557
2558         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2559                                 sizeof(frag_threshold), &frag_threshold);
2560 }
2561
2562 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2563 {
2564         __le32 param;
2565
2566         if (!priv) {
2567                 IPW_ERROR("Invalid args\n");
2568                 return -1;
2569         }
2570
2571         /* If on battery, set to 3, if AC set to CAM, else user
2572          * level */
2573         switch (mode) {
2574         case IPW_POWER_BATTERY:
2575                 param = cpu_to_le32(IPW_POWER_INDEX_3);
2576                 break;
2577         case IPW_POWER_AC:
2578                 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2579                 break;
2580         default:
2581                 param = cpu_to_le32(mode);
2582                 break;
2583         }
2584
2585         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2586                                 &param);
2587 }
2588
2589 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2590 {
2591         struct ipw_retry_limit retry_limit = {
2592                 .short_retry_limit = slimit,
2593                 .long_retry_limit = llimit
2594         };
2595
2596         if (!priv) {
2597                 IPW_ERROR("Invalid args\n");
2598                 return -1;
2599         }
2600
2601         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2602                                 &retry_limit);
2603 }
2604
2605 /*
2606  * The IPW device contains a Microwire compatible EEPROM that stores
2607  * various data like the MAC address.  Usually the firmware has exclusive
2608  * access to the eeprom, but during device initialization (before the
2609  * device driver has sent the HostComplete command to the firmware) the
2610  * device driver has read access to the EEPROM by way of indirect addressing
2611  * through a couple of memory mapped registers.
2612  *
2613  * The following is a simplified implementation for pulling data out of the
2614  * the eeprom, along with some helper functions to find information in
2615  * the per device private data's copy of the eeprom.
2616  *
2617  * NOTE: To better understand how these functions work (i.e what is a chip
2618  *       select and why do have to keep driving the eeprom clock?), read
2619  *       just about any data sheet for a Microwire compatible EEPROM.
2620  */
2621
2622 /* write a 32 bit value into the indirect accessor register */
2623 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2624 {
2625         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2626
2627         /* the eeprom requires some time to complete the operation */
2628         udelay(p->eeprom_delay);
2629 }
2630
2631 /* perform a chip select operation */
2632 static void eeprom_cs(struct ipw_priv *priv)
2633 {
2634         eeprom_write_reg(priv, 0);
2635         eeprom_write_reg(priv, EEPROM_BIT_CS);
2636         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2637         eeprom_write_reg(priv, EEPROM_BIT_CS);
2638 }
2639
2640 /* perform a chip select operation */
2641 static void eeprom_disable_cs(struct ipw_priv *priv)
2642 {
2643         eeprom_write_reg(priv, EEPROM_BIT_CS);
2644         eeprom_write_reg(priv, 0);
2645         eeprom_write_reg(priv, EEPROM_BIT_SK);
2646 }
2647
2648 /* push a single bit down to the eeprom */
2649 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2650 {
2651         int d = (bit ? EEPROM_BIT_DI : 0);
2652         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2653         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2654 }
2655
2656 /* push an opcode followed by an address down to the eeprom */
2657 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2658 {
2659         int i;
2660
2661         eeprom_cs(priv);
2662         eeprom_write_bit(priv, 1);
2663         eeprom_write_bit(priv, op & 2);
2664         eeprom_write_bit(priv, op & 1);
2665         for (i = 7; i >= 0; i--) {
2666                 eeprom_write_bit(priv, addr & (1 << i));
2667         }
2668 }
2669
2670 /* pull 16 bits off the eeprom, one bit at a time */
2671 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2672 {
2673         int i;
2674         u16 r = 0;
2675
2676         /* Send READ Opcode */
2677         eeprom_op(priv, EEPROM_CMD_READ, addr);
2678
2679         /* Send dummy bit */
2680         eeprom_write_reg(priv, EEPROM_BIT_CS);
2681
2682         /* Read the byte off the eeprom one bit at a time */
2683         for (i = 0; i < 16; i++) {
2684                 u32 data = 0;
2685                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2686                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2687                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2688                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2689         }
2690
2691         /* Send another dummy bit */
2692         eeprom_write_reg(priv, 0);
2693         eeprom_disable_cs(priv);
2694
2695         return r;
2696 }
2697
2698 /* helper function for pulling the mac address out of the private */
2699 /* data's copy of the eeprom data                                 */
2700 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2701 {
2702         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN);
2703 }
2704
2705 static void ipw_read_eeprom(struct ipw_priv *priv)
2706 {
2707         int i;
2708         __le16 *eeprom = (__le16 *) priv->eeprom;
2709
2710         IPW_DEBUG_TRACE(">>\n");
2711
2712         /* read entire contents of eeprom into private buffer */
2713         for (i = 0; i < 128; i++)
2714                 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2715
2716         IPW_DEBUG_TRACE("<<\n");
2717 }
2718
2719 /*
2720  * Either the device driver (i.e. the host) or the firmware can
2721  * load eeprom data into the designated region in SRAM.  If neither
2722  * happens then the FW will shutdown with a fatal error.
2723  *
2724  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2725  * bit needs region of shared SRAM needs to be non-zero.
2726  */
2727 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2728 {
2729         int i;
2730
2731         IPW_DEBUG_TRACE(">>\n");
2732
2733         /*
2734            If the data looks correct, then copy it to our private
2735            copy.  Otherwise let the firmware know to perform the operation
2736            on its own.
2737          */
2738         if (priv->eeprom[EEPROM_VERSION] != 0) {
2739                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2740
2741                 /* write the eeprom data to sram */
2742                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2743                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2744
2745                 /* Do not load eeprom data on fatal error or suspend */
2746                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2747         } else {
2748                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2749
2750                 /* Load eeprom data on fatal error or suspend */
2751                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2752         }
2753
2754         IPW_DEBUG_TRACE("<<\n");
2755 }
2756
2757 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2758 {
2759         count >>= 2;
2760         if (!count)
2761                 return;
2762         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2763         while (count--)
2764                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2765 }
2766
2767 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2768 {
2769         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2770                         CB_NUMBER_OF_ELEMENTS_SMALL *
2771                         sizeof(struct command_block));
2772 }
2773
2774 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2775 {                               /* start dma engine but no transfers yet */
2776
2777         IPW_DEBUG_FW(">> :\n");
2778
2779         /* Start the dma */
2780         ipw_fw_dma_reset_command_blocks(priv);
2781
2782         /* Write CB base address */
2783         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2784
2785         IPW_DEBUG_FW("<< :\n");
2786         return 0;
2787 }
2788
2789 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2790 {
2791         u32 control = 0;
2792
2793         IPW_DEBUG_FW(">> :\n");
2794
2795         /* set the Stop and Abort bit */
2796         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2797         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2798         priv->sram_desc.last_cb_index = 0;
2799
2800         IPW_DEBUG_FW("<<\n");
2801 }
2802
2803 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2804                                           struct command_block *cb)
2805 {
2806         u32 address =
2807             IPW_SHARED_SRAM_DMA_CONTROL +
2808             (sizeof(struct command_block) * index);
2809         IPW_DEBUG_FW(">> :\n");
2810
2811         ipw_write_indirect(priv, address, (u8 *) cb,
2812                            (int)sizeof(struct command_block));
2813
2814         IPW_DEBUG_FW("<< :\n");
2815         return 0;
2816
2817 }
2818
2819 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2820 {
2821         u32 control = 0;
2822         u32 index = 0;
2823
2824         IPW_DEBUG_FW(">> :\n");
2825
2826         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2827                 ipw_fw_dma_write_command_block(priv, index,
2828                                                &priv->sram_desc.cb_list[index]);
2829
2830         /* Enable the DMA in the CSR register */
2831         ipw_clear_bit(priv, IPW_RESET_REG,
2832                       IPW_RESET_REG_MASTER_DISABLED |
2833                       IPW_RESET_REG_STOP_MASTER);
2834
2835         /* Set the Start bit. */
2836         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2837         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2838
2839         IPW_DEBUG_FW("<< :\n");
2840         return 0;
2841 }
2842
2843 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2844 {
2845         u32 address;
2846         u32 register_value = 0;
2847         u32 cb_fields_address = 0;
2848
2849         IPW_DEBUG_FW(">> :\n");
2850         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2851         IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2852
2853         /* Read the DMA Controlor register */
2854         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2855         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2856
2857         /* Print the CB values */
2858         cb_fields_address = address;
2859         register_value = ipw_read_reg32(priv, cb_fields_address);
2860         IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2861
2862         cb_fields_address += sizeof(u32);
2863         register_value = ipw_read_reg32(priv, cb_fields_address);
2864         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2865
2866         cb_fields_address += sizeof(u32);
2867         register_value = ipw_read_reg32(priv, cb_fields_address);
2868         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2869                           register_value);
2870
2871         cb_fields_address += sizeof(u32);
2872         register_value = ipw_read_reg32(priv, cb_fields_address);
2873         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2874
2875         IPW_DEBUG_FW(">> :\n");
2876 }
2877
2878 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2879 {
2880         u32 current_cb_address = 0;
2881         u32 current_cb_index = 0;
2882
2883         IPW_DEBUG_FW("<< :\n");
2884         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2885
2886         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2887             sizeof(struct command_block);
2888
2889         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2890                           current_cb_index, current_cb_address);
2891
2892         IPW_DEBUG_FW(">> :\n");
2893         return current_cb_index;
2894
2895 }
2896
2897 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2898                                         u32 src_address,
2899                                         u32 dest_address,
2900                                         u32 length,
2901                                         int interrupt_enabled, int is_last)
2902 {
2903
2904         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2905             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2906             CB_DEST_SIZE_LONG;
2907         struct command_block *cb;
2908         u32 last_cb_element = 0;
2909
2910         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2911                           src_address, dest_address, length);
2912
2913         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2914                 return -1;
2915
2916         last_cb_element = priv->sram_desc.last_cb_index;
2917         cb = &priv->sram_desc.cb_list[last_cb_element];
2918         priv->sram_desc.last_cb_index++;
2919
2920         /* Calculate the new CB control word */
2921         if (interrupt_enabled)
2922                 control |= CB_INT_ENABLED;
2923
2924         if (is_last)
2925                 control |= CB_LAST_VALID;
2926
2927         control |= length;
2928
2929         /* Calculate the CB Element's checksum value */
2930         cb->status = control ^ src_address ^ dest_address;
2931
2932         /* Copy the Source and Destination addresses */
2933         cb->dest_addr = dest_address;
2934         cb->source_addr = src_address;
2935
2936         /* Copy the Control Word last */
2937         cb->control = control;
2938
2939         return 0;
2940 }
2941
2942 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2943                                  int nr, u32 dest_address, u32 len)
2944 {
2945         int ret, i;
2946         u32 size;
2947
2948         IPW_DEBUG_FW(">>\n");
2949         IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2950                           nr, dest_address, len);
2951
2952         for (i = 0; i < nr; i++) {
2953                 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2954                 ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2955                                                    dest_address +
2956                                                    i * CB_MAX_LENGTH, size,
2957                                                    0, 0);
2958                 if (ret) {
2959                         IPW_DEBUG_FW_INFO(": Failed\n");
2960                         return -1;
2961                 } else
2962                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2963         }
2964
2965         IPW_DEBUG_FW("<<\n");
2966         return 0;
2967 }
2968
2969 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2970 {
2971         u32 current_index = 0, previous_index;
2972         u32 watchdog = 0;
2973
2974         IPW_DEBUG_FW(">> :\n");
2975
2976         current_index = ipw_fw_dma_command_block_index(priv);
2977         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2978                           (int)priv->sram_desc.last_cb_index);
2979
2980         while (current_index < priv->sram_desc.last_cb_index) {
2981                 udelay(50);
2982                 previous_index = current_index;
2983                 current_index = ipw_fw_dma_command_block_index(priv);
2984
2985                 if (previous_index < current_index) {
2986                         watchdog = 0;
2987                         continue;
2988                 }
2989                 if (++watchdog > 400) {
2990                         IPW_DEBUG_FW_INFO("Timeout\n");
2991                         ipw_fw_dma_dump_command_block(priv);
2992                         ipw_fw_dma_abort(priv);
2993                         return -1;
2994                 }
2995         }
2996
2997         ipw_fw_dma_abort(priv);
2998
2999         /*Disable the DMA in the CSR register */
3000         ipw_set_bit(priv, IPW_RESET_REG,
3001                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
3002
3003         IPW_DEBUG_FW("<< dmaWaitSync\n");
3004         return 0;
3005 }
3006
3007 static void ipw_remove_current_network(struct ipw_priv *priv)
3008 {
3009         struct list_head *element, *safe;
3010         struct libipw_network *network = NULL;
3011         unsigned long flags;
3012
3013         spin_lock_irqsave(&priv->ieee->lock, flags);
3014         list_for_each_safe(element, safe, &priv->ieee->network_list) {
3015                 network = list_entry(element, struct libipw_network, list);
3016                 if (ether_addr_equal(network->bssid, priv->bssid)) {
3017                         list_del(element);
3018                         list_add_tail(&network->list,
3019                                       &priv->ieee->network_free_list);
3020                 }
3021         }
3022         spin_unlock_irqrestore(&priv->ieee->lock, flags);
3023 }
3024
3025 /**
3026  * Check that card is still alive.
3027  * Reads debug register from domain0.
3028  * If card is present, pre-defined value should
3029  * be found there.
3030  *
3031  * @param priv
3032  * @return 1 if card is present, 0 otherwise
3033  */
3034 static inline int ipw_alive(struct ipw_priv *priv)
3035 {
3036         return ipw_read32(priv, 0x90) == 0xd55555d5;
3037 }
3038
3039 /* timeout in msec, attempted in 10-msec quanta */
3040 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3041                                int timeout)
3042 {
3043         int i = 0;
3044
3045         do {
3046                 if ((ipw_read32(priv, addr) & mask) == mask)
3047                         return i;
3048                 mdelay(10);
3049                 i += 10;
3050         } while (i < timeout);
3051
3052         return -ETIME;
3053 }
3054
3055 /* These functions load the firmware and micro code for the operation of
3056  * the ipw hardware.  It assumes the buffer has all the bits for the
3057  * image and the caller is handling the memory allocation and clean up.
3058  */
3059
3060 static int ipw_stop_master(struct ipw_priv *priv)
3061 {
3062         int rc;
3063
3064         IPW_DEBUG_TRACE(">>\n");
3065         /* stop master. typical delay - 0 */
3066         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3067
3068         /* timeout is in msec, polled in 10-msec quanta */
3069         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3070                           IPW_RESET_REG_MASTER_DISABLED, 100);
3071         if (rc < 0) {
3072                 IPW_ERROR("wait for stop master failed after 100ms\n");
3073                 return -1;
3074         }
3075
3076         IPW_DEBUG_INFO("stop master %dms\n", rc);
3077
3078         return rc;
3079 }
3080
3081 static void ipw_arc_release(struct ipw_priv *priv)
3082 {
3083         IPW_DEBUG_TRACE(">>\n");
3084         mdelay(5);
3085
3086         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3087
3088         /* no one knows timing, for safety add some delay */
3089         mdelay(5);
3090 }
3091
3092 struct fw_chunk {
3093         __le32 address;
3094         __le32 length;
3095 };
3096
3097 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3098 {
3099         int rc = 0, i, addr;
3100         u8 cr = 0;
3101         __le16 *image;
3102
3103         image = (__le16 *) data;
3104
3105         IPW_DEBUG_TRACE(">>\n");
3106
3107         rc = ipw_stop_master(priv);
3108
3109         if (rc < 0)
3110                 return rc;
3111
3112         for (addr = IPW_SHARED_LOWER_BOUND;
3113              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3114                 ipw_write32(priv, addr, 0);
3115         }
3116
3117         /* no ucode (yet) */
3118         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3119         /* destroy DMA queues */
3120         /* reset sequence */
3121
3122         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3123         ipw_arc_release(priv);
3124         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3125         mdelay(1);
3126
3127         /* reset PHY */
3128         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3129         mdelay(1);
3130
3131         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3132         mdelay(1);
3133
3134         /* enable ucode store */
3135         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3136         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3137         mdelay(1);
3138
3139         /* write ucode */
3140         /**
3141          * @bug
3142          * Do NOT set indirect address register once and then
3143          * store data to indirect data register in the loop.
3144          * It seems very reasonable, but in this case DINO do not
3145          * accept ucode. It is essential to set address each time.
3146          */
3147         /* load new ipw uCode */
3148         for (i = 0; i < len / 2; i++)
3149                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3150                                 le16_to_cpu(image[i]));
3151
3152         /* enable DINO */
3153         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3154         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3155
3156         /* this is where the igx / win driver deveates from the VAP driver. */
3157
3158         /* wait for alive response */
3159         for (i = 0; i < 100; i++) {
3160                 /* poll for incoming data */
3161                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3162                 if (cr & DINO_RXFIFO_DATA)
3163                         break;
3164                 mdelay(1);
3165         }
3166
3167         if (cr & DINO_RXFIFO_DATA) {
3168                 /* alive_command_responce size is NOT multiple of 4 */
3169                 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3170
3171                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3172                         response_buffer[i] =
3173                             cpu_to_le32(ipw_read_reg32(priv,
3174                                                        IPW_BASEBAND_RX_FIFO_READ));
3175                 memcpy(&priv->dino_alive, response_buffer,
3176                        sizeof(priv->dino_alive));
3177                 if (priv->dino_alive.alive_command == 1
3178                     && priv->dino_alive.ucode_valid == 1) {
3179                         rc = 0;
3180                         IPW_DEBUG_INFO
3181                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3182                              "of %02d/%02d/%02d %02d:%02d\n",
3183                              priv->dino_alive.software_revision,
3184                              priv->dino_alive.software_revision,
3185                              priv->dino_alive.device_identifier,
3186                              priv->dino_alive.device_identifier,
3187                              priv->dino_alive.time_stamp[0],
3188                              priv->dino_alive.time_stamp[1],
3189                              priv->dino_alive.time_stamp[2],
3190                              priv->dino_alive.time_stamp[3],
3191                              priv->dino_alive.time_stamp[4]);
3192                 } else {
3193                         IPW_DEBUG_INFO("Microcode is not alive\n");
3194                         rc = -EINVAL;
3195                 }
3196         } else {
3197                 IPW_DEBUG_INFO("No alive response from DINO\n");
3198                 rc = -ETIME;
3199         }
3200
3201         /* disable DINO, otherwise for some reason
3202            firmware have problem getting alive resp. */
3203         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3204
3205         return rc;
3206 }
3207
3208 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3209 {
3210         int ret = -1;
3211         int offset = 0;
3212         struct fw_chunk *chunk;
3213         int total_nr = 0;
3214         int i;
3215         struct pci_pool *pool;
3216         void **virts;
3217         dma_addr_t *phys;
3218
3219         IPW_DEBUG_TRACE("<< :\n");
3220
3221         virts = kmalloc(sizeof(void *) * CB_NUMBER_OF_ELEMENTS_SMALL,
3222                         GFP_KERNEL);
3223         if (!virts)
3224                 return -ENOMEM;
3225
3226         phys = kmalloc(sizeof(dma_addr_t) * CB_NUMBER_OF_ELEMENTS_SMALL,
3227                         GFP_KERNEL);
3228         if (!phys) {
3229                 kfree(virts);
3230                 return -ENOMEM;
3231         }
3232         pool = pci_pool_create("ipw2200", priv->pci_dev, CB_MAX_LENGTH, 0, 0);
3233         if (!pool) {
3234                 IPW_ERROR("pci_pool_create failed\n");
3235                 kfree(phys);
3236                 kfree(virts);
3237                 return -ENOMEM;
3238         }
3239
3240         /* Start the Dma */
3241         ret = ipw_fw_dma_enable(priv);
3242
3243         /* the DMA is already ready this would be a bug. */
3244         BUG_ON(priv->sram_desc.last_cb_index > 0);
3245
3246         do {
3247                 u32 chunk_len;
3248                 u8 *start;
3249                 int size;
3250                 int nr = 0;
3251
3252                 chunk = (struct fw_chunk *)(data + offset);
3253                 offset += sizeof(struct fw_chunk);
3254                 chunk_len = le32_to_cpu(chunk->length);
3255                 start = data + offset;
3256
3257                 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3258                 for (i = 0; i < nr; i++) {
3259                         virts[total_nr] = pci_pool_alloc(pool, GFP_KERNEL,
3260                                                          &phys[total_nr]);
3261                         if (!virts[total_nr]) {
3262                                 ret = -ENOMEM;
3263                                 goto out;
3264                         }
3265                         size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3266                                      CB_MAX_LENGTH);
3267                         memcpy(virts[total_nr], start, size);
3268                         start += size;
3269                         total_nr++;
3270                         /* We don't support fw chunk larger than 64*8K */
3271                         BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3272                 }
3273
3274                 /* build DMA packet and queue up for sending */
3275                 /* dma to chunk->address, the chunk->length bytes from data +
3276                  * offeset*/
3277                 /* Dma loading */
3278                 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3279                                             nr, le32_to_cpu(chunk->address),
3280                                             chunk_len);
3281                 if (ret) {
3282                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3283                         goto out;
3284                 }
3285
3286                 offset += chunk_len;
3287         } while (offset < len);
3288
3289         /* Run the DMA and wait for the answer */
3290         ret = ipw_fw_dma_kick(priv);
3291         if (ret) {
3292                 IPW_ERROR("dmaKick Failed\n");
3293                 goto out;
3294         }
3295
3296         ret = ipw_fw_dma_wait(priv);
3297         if (ret) {
3298                 IPW_ERROR("dmaWaitSync Failed\n");
3299                 goto out;
3300         }
3301  out:
3302         for (i = 0; i < total_nr; i++)
3303                 pci_pool_free(pool, virts[i], phys[i]);
3304
3305         pci_pool_destroy(pool);
3306         kfree(phys);
3307         kfree(virts);
3308
3309         return ret;
3310 }
3311
3312 /* stop nic */
3313 static int ipw_stop_nic(struct ipw_priv *priv)
3314 {
3315         int rc = 0;
3316
3317         /* stop */
3318         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3319
3320         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3321                           IPW_RESET_REG_MASTER_DISABLED, 500);
3322         if (rc < 0) {
3323                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3324                 return rc;
3325         }
3326
3327         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3328
3329         return rc;
3330 }
3331
3332 static void ipw_start_nic(struct ipw_priv *priv)
3333 {
3334         IPW_DEBUG_TRACE(">>\n");
3335
3336         /* prvHwStartNic  release ARC */
3337         ipw_clear_bit(priv, IPW_RESET_REG,
3338                       IPW_RESET_REG_MASTER_DISABLED |
3339                       IPW_RESET_REG_STOP_MASTER |
3340                       CBD_RESET_REG_PRINCETON_RESET);
3341
3342         /* enable power management */
3343         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3344                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3345
3346         IPW_DEBUG_TRACE("<<\n");
3347 }
3348
3349 static int ipw_init_nic(struct ipw_priv *priv)
3350 {
3351         int rc;
3352
3353         IPW_DEBUG_TRACE(">>\n");
3354         /* reset */
3355         /*prvHwInitNic */
3356         /* set "initialization complete" bit to move adapter to D0 state */
3357         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3358
3359         /* low-level PLL activation */
3360         ipw_write32(priv, IPW_READ_INT_REGISTER,
3361                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3362
3363         /* wait for clock stabilization */
3364         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3365                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3366         if (rc < 0)
3367                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3368
3369         /* assert SW reset */
3370         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3371
3372         udelay(10);
3373
3374         /* set "initialization complete" bit to move adapter to D0 state */
3375         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3376
3377         IPW_DEBUG_TRACE(">>\n");
3378         return 0;
3379 }
3380
3381 /* Call this function from process context, it will sleep in request_firmware.
3382  * Probe is an ok place to call this from.
3383  */
3384 static int ipw_reset_nic(struct ipw_priv *priv)
3385 {
3386         int rc = 0;
3387         unsigned long flags;
3388
3389         IPW_DEBUG_TRACE(">>\n");
3390
3391         rc = ipw_init_nic(priv);
3392
3393         spin_lock_irqsave(&priv->lock, flags);
3394         /* Clear the 'host command active' bit... */
3395         priv->status &= ~STATUS_HCMD_ACTIVE;
3396         wake_up_interruptible(&priv->wait_command_queue);
3397         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3398         wake_up_interruptible(&priv->wait_state);
3399         spin_unlock_irqrestore(&priv->lock, flags);
3400
3401         IPW_DEBUG_TRACE("<<\n");
3402         return rc;
3403 }
3404
3405
3406 struct ipw_fw {
3407         __le32 ver;
3408         __le32 boot_size;
3409         __le32 ucode_size;
3410         __le32 fw_size;
3411         u8 data[0];
3412 };
3413
3414 static int ipw_get_fw(struct ipw_priv *priv,
3415                       const struct firmware **raw, const char *name)
3416 {
3417         struct ipw_fw *fw;
3418         int rc;
3419
3420         /* ask firmware_class module to get the boot firmware off disk */
3421         rc = reject_firmware(raw, name, &priv->pci_dev->dev);
3422         if (rc < 0) {
3423                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3424                 return rc;
3425         }
3426
3427         if ((*raw)->size < sizeof(*fw)) {
3428                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3429                 return -EINVAL;
3430         }
3431
3432         fw = (void *)(*raw)->data;
3433
3434         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3435             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3436                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3437                           name, (*raw)->size);
3438                 return -EINVAL;
3439         }
3440
3441         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3442                        name,
3443                        le32_to_cpu(fw->ver) >> 16,
3444                        le32_to_cpu(fw->ver) & 0xff,
3445                        (*raw)->size - sizeof(*fw));
3446         return 0;
3447 }
3448
3449 #define IPW_RX_BUF_SIZE (3000)
3450
3451 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3452                                       struct ipw_rx_queue *rxq)
3453 {
3454         unsigned long flags;
3455         int i;
3456
3457         spin_lock_irqsave(&rxq->lock, flags);
3458
3459         INIT_LIST_HEAD(&rxq->rx_free);
3460         INIT_LIST_HEAD(&rxq->rx_used);
3461
3462         /* Fill the rx_used queue with _all_ of the Rx buffers */
3463         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3464                 /* In the reset function, these buffers may have been allocated
3465                  * to an SKB, so we need to unmap and free potential storage */
3466                 if (rxq->pool[i].skb != NULL) {
3467                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3468                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3469                         dev_kfree_skb(rxq->pool[i].skb);
3470                         rxq->pool[i].skb = NULL;
3471                 }
3472                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3473         }
3474
3475         /* Set us so that we have processed and used all buffers, but have
3476          * not restocked the Rx queue with fresh buffers */
3477         rxq->read = rxq->write = 0;
3478         rxq->free_count = 0;
3479         spin_unlock_irqrestore(&rxq->lock, flags);
3480 }
3481
3482 #ifdef CONFIG_PM
3483 static int fw_loaded = 0;
3484 static const struct firmware *raw = NULL;
3485
3486 static void free_firmware(void)
3487 {
3488         if (fw_loaded) {
3489                 release_firmware(raw);
3490                 raw = NULL;
3491                 fw_loaded = 0;
3492         }
3493 }
3494 #else
3495 #define free_firmware() do {} while (0)
3496 #endif
3497
3498 static int ipw_load(struct ipw_priv *priv)
3499 {
3500 #ifndef CONFIG_PM
3501         const struct firmware *raw = NULL;
3502 #endif
3503         struct ipw_fw *fw;
3504         u8 *boot_img, *ucode_img, *fw_img;
3505         u8 *name = NULL;
3506         int rc = 0, retries = 3;
3507
3508         switch (priv->ieee->iw_mode) {
3509         case IW_MODE_ADHOC:
3510                 name = "/*(DEBLOBBED)*/";
3511                 break;
3512 #ifdef CONFIG_IPW2200_MONITOR
3513         case IW_MODE_MONITOR:
3514                 name = "/*(DEBLOBBED)*/";
3515                 break;
3516 #endif
3517         case IW_MODE_INFRA:
3518                 name = "/*(DEBLOBBED)*/";
3519                 break;
3520         }
3521
3522         if (!name) {
3523                 rc = -EINVAL;
3524                 goto error;
3525         }
3526
3527 #ifdef CONFIG_PM
3528         if (!fw_loaded) {
3529 #endif
3530                 rc = ipw_get_fw(priv, &raw, name);
3531                 if (rc < 0)
3532                         goto error;
3533 #ifdef CONFIG_PM
3534         }
3535 #endif
3536
3537         fw = (void *)raw->data;
3538         boot_img = &fw->data[0];
3539         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3540         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3541                            le32_to_cpu(fw->ucode_size)];
3542
3543         if (rc < 0)
3544                 goto error;
3545
3546         if (!priv->rxq)
3547                 priv->rxq = ipw_rx_queue_alloc(priv);
3548         else
3549                 ipw_rx_queue_reset(priv, priv->rxq);
3550         if (!priv->rxq) {
3551                 IPW_ERROR("Unable to initialize Rx queue\n");
3552                 rc = -ENOMEM;
3553                 goto error;
3554         }
3555
3556       retry:
3557         /* Ensure interrupts are disabled */
3558         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3559         priv->status &= ~STATUS_INT_ENABLED;
3560
3561         /* ack pending interrupts */
3562         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3563
3564         ipw_stop_nic(priv);
3565
3566         rc = ipw_reset_nic(priv);
3567         if (rc < 0) {
3568                 IPW_ERROR("Unable to reset NIC\n");
3569                 goto error;
3570         }
3571
3572         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3573                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3574
3575         /* DMA the initial boot firmware into the device */
3576         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3577         if (rc < 0) {
3578                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3579                 goto error;
3580         }
3581
3582         /* kick start the device */
3583         ipw_start_nic(priv);
3584
3585         /* wait for the device to finish its initial startup sequence */
3586         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3587                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3588         if (rc < 0) {
3589                 IPW_ERROR("device failed to boot initial fw image\n");
3590                 goto error;
3591         }
3592         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3593
3594         /* ack fw init done interrupt */
3595         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3596
3597         /* DMA the ucode into the device */
3598         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3599         if (rc < 0) {
3600                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3601                 goto error;
3602         }
3603
3604         /* stop nic */
3605         ipw_stop_nic(priv);
3606
3607         /* DMA bss firmware into the device */
3608         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3609         if (rc < 0) {
3610                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3611                 goto error;
3612         }
3613 #ifdef CONFIG_PM
3614         fw_loaded = 1;
3615 #endif
3616
3617         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3618
3619         rc = ipw_queue_reset(priv);
3620         if (rc < 0) {
3621                 IPW_ERROR("Unable to initialize queues\n");
3622                 goto error;
3623         }
3624
3625         /* Ensure interrupts are disabled */
3626         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3627         /* ack pending interrupts */
3628         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3629
3630         /* kick start the device */
3631         ipw_start_nic(priv);
3632
3633         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3634                 if (retries > 0) {
3635                         IPW_WARNING("Parity error.  Retrying init.\n");
3636                         retries--;
3637                         goto retry;
3638                 }
3639
3640                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3641                 rc = -EIO;
3642                 goto error;
3643         }
3644
3645         /* wait for the device */
3646         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3647                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3648         if (rc < 0) {
3649                 IPW_ERROR("device failed to start within 500ms\n");
3650                 goto error;
3651         }
3652         IPW_DEBUG_INFO("device response after %dms\n", rc);
3653
3654         /* ack fw init done interrupt */
3655         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3656
3657         /* read eeprom data */
3658         priv->eeprom_delay = 1;
3659         ipw_read_eeprom(priv);
3660         /* initialize the eeprom region of sram */
3661         ipw_eeprom_init_sram(priv);
3662
3663         /* enable interrupts */
3664         ipw_enable_interrupts(priv);
3665
3666         /* Ensure our queue has valid packets */
3667         ipw_rx_queue_replenish(priv);
3668
3669         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3670
3671         /* ack pending interrupts */
3672         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3673
3674 #ifndef CONFIG_PM
3675         release_firmware(raw);
3676 #endif
3677         return 0;
3678
3679       error:
3680         if (priv->rxq) {
3681                 ipw_rx_queue_free(priv, priv->rxq);
3682                 priv->rxq = NULL;
3683         }
3684         ipw_tx_queue_free(priv);
3685         release_firmware(raw);
3686 #ifdef CONFIG_PM
3687         fw_loaded = 0;
3688         raw = NULL;
3689 #endif
3690
3691         return rc;
3692 }
3693
3694 /**
3695  * DMA services
3696  *
3697  * Theory of operation
3698  *
3699  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3700  * 2 empty entries always kept in the buffer to protect from overflow.
3701  *
3702  * For Tx queue, there are low mark and high mark limits. If, after queuing
3703  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3704  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3705  * Tx queue resumed.
3706  *
3707  * The IPW operates with six queues, one receive queue in the device's
3708  * sram, one transmit queue for sending commands to the device firmware,
3709  * and four transmit queues for data.
3710  *
3711  * The four transmit queues allow for performing quality of service (qos)
3712  * transmissions as per the 802.11 protocol.  Currently Linux does not
3713  * provide a mechanism to the user for utilizing prioritized queues, so
3714  * we only utilize the first data transmit queue (queue1).
3715  */
3716
3717 /**
3718  * Driver allocates buffers of this size for Rx
3719  */
3720
3721 /**
3722  * ipw_rx_queue_space - Return number of free slots available in queue.
3723  */
3724 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3725 {
3726         int s = q->read - q->write;
3727         if (s <= 0)
3728                 s += RX_QUEUE_SIZE;
3729         /* keep some buffer to not confuse full and empty queue */
3730         s -= 2;
3731         if (s < 0)
3732                 s = 0;
3733         return s;
3734 }
3735
3736 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3737 {
3738         int s = q->last_used - q->first_empty;
3739         if (s <= 0)
3740                 s += q->n_bd;
3741         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3742         if (s < 0)
3743                 s = 0;
3744         return s;
3745 }
3746
3747 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3748 {
3749         return (++index == n_bd) ? 0 : index;
3750 }
3751
3752 /**
3753  * Initialize common DMA queue structure
3754  *
3755  * @param q                queue to init
3756  * @param count            Number of BD's to allocate. Should be power of 2
3757  * @param read_register    Address for 'read' register
3758  *                         (not offset within BAR, full address)
3759  * @param write_register   Address for 'write' register
3760  *                         (not offset within BAR, full address)
3761  * @param base_register    Address for 'base' register
3762  *                         (not offset within BAR, full address)
3763  * @param size             Address for 'size' register
3764  *                         (not offset within BAR, full address)
3765  */
3766 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3767                            int count, u32 read, u32 write, u32 base, u32 size)
3768 {
3769         q->n_bd = count;
3770
3771         q->low_mark = q->n_bd / 4;
3772         if (q->low_mark < 4)
3773                 q->low_mark = 4;
3774
3775         q->high_mark = q->n_bd / 8;
3776         if (q->high_mark < 2)
3777                 q->high_mark = 2;
3778
3779         q->first_empty = q->last_used = 0;
3780         q->reg_r = read;
3781         q->reg_w = write;
3782
3783         ipw_write32(priv, base, q->dma_addr);
3784         ipw_write32(priv, size, count);
3785         ipw_write32(priv, read, 0);
3786         ipw_write32(priv, write, 0);
3787
3788         _ipw_read32(priv, 0x90);
3789 }
3790
3791 static int ipw_queue_tx_init(struct ipw_priv *priv,
3792                              struct clx2_tx_queue *q,
3793                              int count, u32 read, u32 write, u32 base, u32 size)
3794 {
3795         struct pci_dev *dev = priv->pci_dev;
3796
3797         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3798         if (!q->txb) {
3799                 IPW_ERROR("vmalloc for auxiliary BD structures failed\n");
3800                 return -ENOMEM;
3801         }
3802
3803         q->bd =
3804             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3805         if (!q->bd) {
3806                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3807                           sizeof(q->bd[0]) * count);
3808                 kfree(q->txb);
3809                 q->txb = NULL;
3810                 return -ENOMEM;
3811         }
3812
3813         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3814         return 0;
3815 }
3816
3817 /**
3818  * Free one TFD, those at index [txq->q.last_used].
3819  * Do NOT advance any indexes
3820  *
3821  * @param dev
3822  * @param txq
3823  */
3824 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3825                                   struct clx2_tx_queue *txq)
3826 {
3827         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3828         struct pci_dev *dev = priv->pci_dev;
3829         int i;
3830
3831         /* classify bd */
3832         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3833                 /* nothing to cleanup after for host commands */
3834                 return;
3835
3836         /* sanity check */
3837         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3838                 IPW_ERROR("Too many chunks: %i\n",
3839                           le32_to_cpu(bd->u.data.num_chunks));
3840                 /** @todo issue fatal error, it is quite serious situation */
3841                 return;
3842         }
3843
3844         /* unmap chunks if any */
3845         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3846                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3847                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3848                                  PCI_DMA_TODEVICE);
3849                 if (txq->txb[txq->q.last_used]) {
3850                         libipw_txb_free(txq->txb[txq->q.last_used]);
3851                         txq->txb[txq->q.last_used] = NULL;
3852                 }
3853         }
3854 }
3855
3856 /**
3857  * Deallocate DMA queue.
3858  *
3859  * Empty queue by removing and destroying all BD's.
3860  * Free all buffers.
3861  *
3862  * @param dev
3863  * @param q
3864  */
3865 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3866 {
3867         struct clx2_queue *q = &txq->q;
3868         struct pci_dev *dev = priv->pci_dev;
3869
3870         if (q->n_bd == 0)
3871                 return;
3872
3873         /* first, empty all BD's */
3874         for (; q->first_empty != q->last_used;
3875              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3876                 ipw_queue_tx_free_tfd(priv, txq);
3877         }
3878
3879         /* free buffers belonging to queue itself */
3880         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3881                             q->dma_addr);
3882         kfree(txq->txb);
3883
3884         /* 0 fill whole structure */
3885         memset(txq, 0, sizeof(*txq));
3886 }
3887
3888 /**
3889  * Destroy all DMA queues and structures
3890  *
3891  * @param priv
3892  */
3893 static void ipw_tx_queue_free(struct ipw_priv *priv)
3894 {
3895         /* Tx CMD queue */
3896         ipw_queue_tx_free(priv, &priv->txq_cmd);
3897
3898         /* Tx queues */
3899         ipw_queue_tx_free(priv, &priv->txq[0]);
3900         ipw_queue_tx_free(priv, &priv->txq[1]);
3901         ipw_queue_tx_free(priv, &priv->txq[2]);
3902         ipw_queue_tx_free(priv, &priv->txq[3]);
3903 }
3904
3905 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3906 {
3907         /* First 3 bytes are manufacturer */
3908         bssid[0] = priv->mac_addr[0];
3909         bssid[1] = priv->mac_addr[1];
3910         bssid[2] = priv->mac_addr[2];
3911
3912         /* Last bytes are random */
3913         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3914
3915         bssid[0] &= 0xfe;       /* clear multicast bit */
3916         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3917 }
3918
3919 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3920 {
3921         struct ipw_station_entry entry;
3922         int i;
3923
3924         for (i = 0; i < priv->num_stations; i++) {
3925                 if (ether_addr_equal(priv->stations[i], bssid)) {
3926                         /* Another node is active in network */
3927                         priv->missed_adhoc_beacons = 0;
3928                         if (!(priv->config & CFG_STATIC_CHANNEL))
3929                                 /* when other nodes drop out, we drop out */
3930                                 priv->config &= ~CFG_ADHOC_PERSIST;
3931
3932                         return i;
3933                 }
3934         }
3935
3936         if (i == MAX_STATIONS)
3937                 return IPW_INVALID_STATION;
3938
3939         IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3940
3941         entry.reserved = 0;
3942         entry.support_mode = 0;
3943         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3944         memcpy(priv->stations[i], bssid, ETH_ALEN);
3945         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3946                          &entry, sizeof(entry));
3947         priv->num_stations++;
3948
3949         return i;
3950 }
3951
3952 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3953 {
3954         int i;
3955
3956         for (i = 0; i < priv->num_stations; i++)
3957                 if (ether_addr_equal(priv->stations[i], bssid))
3958                         return i;
3959
3960         return IPW_INVALID_STATION;
3961 }
3962
3963 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3964 {
3965         int err;
3966
3967         if (priv->status & STATUS_ASSOCIATING) {
3968                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3969                 schedule_work(&priv->disassociate);
3970                 return;
3971         }
3972
3973         if (!(priv->status & STATUS_ASSOCIATED)) {
3974                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3975                 return;
3976         }
3977
3978         IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3979                         "on channel %d.\n",
3980                         priv->assoc_request.bssid,
3981                         priv->assoc_request.channel);
3982
3983         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3984         priv->status |= STATUS_DISASSOCIATING;
3985
3986         if (quiet)
3987                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3988         else
3989                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3990
3991         err = ipw_send_associate(priv, &priv->assoc_request);
3992         if (err) {
3993                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3994                              "failed.\n");
3995                 return;
3996         }
3997
3998 }
3999
4000 static int ipw_disassociate(void *data)
4001 {
4002         struct ipw_priv *priv = data;
4003         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
4004                 return 0;
4005         ipw_send_disassociate(data, 0);
4006         netif_carrier_off(priv->net_dev);
4007         return 1;
4008 }
4009
4010 static void ipw_bg_disassociate(struct work_struct *work)
4011 {
4012         struct ipw_priv *priv =
4013                 container_of(work, struct ipw_priv, disassociate);
4014         mutex_lock(&priv->mutex);
4015         ipw_disassociate(priv);
4016         mutex_unlock(&priv->mutex);
4017 }
4018
4019 static void ipw_system_config(struct work_struct *work)
4020 {
4021         struct ipw_priv *priv =
4022                 container_of(work, struct ipw_priv, system_config);
4023
4024 #ifdef CONFIG_IPW2200_PROMISCUOUS
4025         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
4026                 priv->sys_config.accept_all_data_frames = 1;
4027                 priv->sys_config.accept_non_directed_frames = 1;
4028                 priv->sys_config.accept_all_mgmt_bcpr = 1;
4029                 priv->sys_config.accept_all_mgmt_frames = 1;
4030         }
4031 #endif
4032
4033         ipw_send_system_config(priv);
4034 }
4035
4036 struct ipw_status_code {
4037         u16 status;
4038         const char *reason;
4039 };
4040
4041 static const struct ipw_status_code ipw_status_codes[] = {
4042         {0x00, "Successful"},
4043         {0x01, "Unspecified failure"},
4044         {0x0A, "Cannot support all requested capabilities in the "
4045          "Capability information field"},
4046         {0x0B, "Reassociation denied due to inability to confirm that "
4047          "association exists"},
4048         {0x0C, "Association denied due to reason outside the scope of this "
4049          "standard"},
4050         {0x0D,
4051          "Responding station does not support the specified authentication "
4052          "algorithm"},
4053         {0x0E,
4054          "Received an Authentication frame with authentication sequence "
4055          "transaction sequence number out of expected sequence"},
4056         {0x0F, "Authentication rejected because of challenge failure"},
4057         {0x10, "Authentication rejected due to timeout waiting for next "
4058          "frame in sequence"},
4059         {0x11, "Association denied because AP is unable to handle additional "
4060          "associated stations"},
4061         {0x12,
4062          "Association denied due to requesting station not supporting all "
4063          "of the datarates in the BSSBasicServiceSet Parameter"},
4064         {0x13,
4065          "Association denied due to requesting station not supporting "
4066          "short preamble operation"},
4067         {0x14,
4068          "Association denied due to requesting station not supporting "
4069          "PBCC encoding"},
4070         {0x15,
4071          "Association denied due to requesting station not supporting "
4072          "channel agility"},
4073         {0x19,
4074          "Association denied due to requesting station not supporting "
4075          "short slot operation"},
4076         {0x1A,
4077          "Association denied due to requesting station not supporting "
4078          "DSSS-OFDM operation"},
4079         {0x28, "Invalid Information Element"},
4080         {0x29, "Group Cipher is not valid"},
4081         {0x2A, "Pairwise Cipher is not valid"},
4082         {0x2B, "AKMP is not valid"},
4083         {0x2C, "Unsupported RSN IE version"},
4084         {0x2D, "Invalid RSN IE Capabilities"},
4085         {0x2E, "Cipher suite is rejected per security policy"},
4086 };
4087
4088 static const char *ipw_get_status_code(u16 status)
4089 {
4090         int i;
4091         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4092                 if (ipw_status_codes[i].status == (status & 0xff))
4093                         return ipw_status_codes[i].reason;
4094         return "Unknown status value.";
4095 }
4096
4097 static inline void average_init(struct average *avg)
4098 {
4099         memset(avg, 0, sizeof(*avg));
4100 }
4101
4102 #define DEPTH_RSSI 8
4103 #define DEPTH_NOISE 16
4104 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4105 {
4106         return ((depth-1)*prev_avg +  val)/depth;
4107 }
4108
4109 static void average_add(struct average *avg, s16 val)
4110 {
4111         avg->sum -= avg->entries[avg->pos];
4112         avg->sum += val;
4113         avg->entries[avg->pos++] = val;
4114         if (unlikely(avg->pos == AVG_ENTRIES)) {
4115                 avg->init = 1;
4116                 avg->pos = 0;
4117         }
4118 }
4119
4120 static s16 average_value(struct average *avg)
4121 {
4122         if (!unlikely(avg->init)) {
4123                 if (avg->pos)
4124                         return avg->sum / avg->pos;
4125                 return 0;
4126         }
4127
4128         return avg->sum / AVG_ENTRIES;
4129 }
4130
4131 static void ipw_reset_stats(struct ipw_priv *priv)
4132 {
4133         u32 len = sizeof(u32);
4134
4135         priv->quality = 0;
4136
4137         average_init(&priv->average_missed_beacons);
4138         priv->exp_avg_rssi = -60;
4139         priv->exp_avg_noise = -85 + 0x100;
4140
4141         priv->last_rate = 0;
4142         priv->last_missed_beacons = 0;
4143         priv->last_rx_packets = 0;
4144         priv->last_tx_packets = 0;
4145         priv->last_tx_failures = 0;
4146
4147         /* Firmware managed, reset only when NIC is restarted, so we have to
4148          * normalize on the current value */
4149         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4150                         &priv->last_rx_err, &len);
4151         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4152                         &priv->last_tx_failures, &len);
4153
4154         /* Driver managed, reset with each association */
4155         priv->missed_adhoc_beacons = 0;
4156         priv->missed_beacons = 0;
4157         priv->tx_packets = 0;
4158         priv->rx_packets = 0;
4159
4160 }
4161
4162 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4163 {
4164         u32 i = 0x80000000;
4165         u32 mask = priv->rates_mask;
4166         /* If currently associated in B mode, restrict the maximum
4167          * rate match to B rates */
4168         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4169                 mask &= LIBIPW_CCK_RATES_MASK;
4170
4171         /* TODO: Verify that the rate is supported by the current rates
4172          * list. */
4173
4174         while (i && !(mask & i))
4175                 i >>= 1;
4176         switch (i) {
4177         case LIBIPW_CCK_RATE_1MB_MASK:
4178                 return 1000000;
4179         case LIBIPW_CCK_RATE_2MB_MASK:
4180                 return 2000000;
4181         case LIBIPW_CCK_RATE_5MB_MASK:
4182                 return 5500000;
4183         case LIBIPW_OFDM_RATE_6MB_MASK:
4184                 return 6000000;
4185         case LIBIPW_OFDM_RATE_9MB_MASK:
4186                 return 9000000;
4187         case LIBIPW_CCK_RATE_11MB_MASK:
4188                 return 11000000;
4189         case LIBIPW_OFDM_RATE_12MB_MASK:
4190                 return 12000000;
4191         case LIBIPW_OFDM_RATE_18MB_MASK:
4192                 return 18000000;
4193         case LIBIPW_OFDM_RATE_24MB_MASK:
4194                 return 24000000;
4195         case LIBIPW_OFDM_RATE_36MB_MASK:
4196                 return 36000000;
4197         case LIBIPW_OFDM_RATE_48MB_MASK:
4198                 return 48000000;
4199         case LIBIPW_OFDM_RATE_54MB_MASK:
4200                 return 54000000;
4201         }
4202
4203         if (priv->ieee->mode == IEEE_B)
4204                 return 11000000;
4205         else
4206                 return 54000000;
4207 }
4208
4209 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4210 {
4211         u32 rate, len = sizeof(rate);
4212         int err;
4213
4214         if (!(priv->status & STATUS_ASSOCIATED))
4215                 return 0;
4216
4217         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4218                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4219                                       &len);
4220                 if (err) {
4221                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4222                         return 0;
4223                 }
4224         } else
4225                 return ipw_get_max_rate(priv);
4226
4227         switch (rate) {
4228         case IPW_TX_RATE_1MB:
4229                 return 1000000;
4230         case IPW_TX_RATE_2MB:
4231                 return 2000000;
4232         case IPW_TX_RATE_5MB:
4233                 return 5500000;
4234         case IPW_TX_RATE_6MB:
4235                 return 6000000;
4236         case IPW_TX_RATE_9MB:
4237                 return 9000000;
4238         case IPW_TX_RATE_11MB:
4239                 return 11000000;
4240         case IPW_TX_RATE_12MB:
4241                 return 12000000;
4242         case IPW_TX_RATE_18MB:
4243                 return 18000000;
4244         case IPW_TX_RATE_24MB:
4245                 return 24000000;
4246         case IPW_TX_RATE_36MB:
4247                 return 36000000;
4248         case IPW_TX_RATE_48MB:
4249                 return 48000000;
4250         case IPW_TX_RATE_54MB:
4251                 return 54000000;
4252         }
4253
4254         return 0;
4255 }
4256
4257 #define IPW_STATS_INTERVAL (2 * HZ)
4258 static void ipw_gather_stats(struct ipw_priv *priv)
4259 {
4260         u32 rx_err, rx_err_delta, rx_packets_delta;
4261         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4262         u32 missed_beacons_percent, missed_beacons_delta;
4263         u32 quality = 0;
4264         u32 len = sizeof(u32);
4265         s16 rssi;
4266         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4267             rate_quality;
4268         u32 max_rate;
4269
4270         if (!(priv->status & STATUS_ASSOCIATED)) {
4271                 priv->quality = 0;
4272                 return;
4273         }
4274
4275         /* Update the statistics */
4276         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4277                         &priv->missed_beacons, &len);
4278         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4279         priv->last_missed_beacons = priv->missed_beacons;
4280         if (priv->assoc_request.beacon_interval) {
4281                 missed_beacons_percent = missed_beacons_delta *
4282                     (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4283                     (IPW_STATS_INTERVAL * 10);
4284         } else {
4285                 missed_beacons_percent = 0;
4286         }
4287         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4288
4289         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4290         rx_err_delta = rx_err - priv->last_rx_err;
4291         priv->last_rx_err = rx_err;
4292
4293         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4294         tx_failures_delta = tx_failures - priv->last_tx_failures;
4295         priv->last_tx_failures = tx_failures;
4296
4297         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4298         priv->last_rx_packets = priv->rx_packets;
4299
4300         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4301         priv->last_tx_packets = priv->tx_packets;
4302
4303         /* Calculate quality based on the following:
4304          *
4305          * Missed beacon: 100% = 0, 0% = 70% missed
4306          * Rate: 60% = 1Mbs, 100% = Max
4307          * Rx and Tx errors represent a straight % of total Rx/Tx
4308          * RSSI: 100% = > -50,  0% = < -80
4309          * Rx errors: 100% = 0, 0% = 50% missed
4310          *
4311          * The lowest computed quality is used.
4312          *
4313          */
4314 #define BEACON_THRESHOLD 5
4315         beacon_quality = 100 - missed_beacons_percent;
4316         if (beacon_quality < BEACON_THRESHOLD)
4317                 beacon_quality = 0;
4318         else
4319                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4320                     (100 - BEACON_THRESHOLD);
4321         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4322                         beacon_quality, missed_beacons_percent);
4323
4324         priv->last_rate = ipw_get_current_rate(priv);
4325         max_rate = ipw_get_max_rate(priv);
4326         rate_quality = priv->last_rate * 40 / max_rate + 60;
4327         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4328                         rate_quality, priv->last_rate / 1000000);
4329
4330         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4331                 rx_quality = 100 - (rx_err_delta * 100) /
4332                     (rx_packets_delta + rx_err_delta);
4333         else
4334                 rx_quality = 100;
4335         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4336                         rx_quality, rx_err_delta, rx_packets_delta);
4337
4338         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4339                 tx_quality = 100 - (tx_failures_delta * 100) /
4340                     (tx_packets_delta + tx_failures_delta);
4341         else
4342                 tx_quality = 100;
4343         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4344                         tx_quality, tx_failures_delta, tx_packets_delta);
4345
4346         rssi = priv->exp_avg_rssi;
4347         signal_quality =
4348             (100 *
4349              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4350              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4351              (priv->ieee->perfect_rssi - rssi) *
4352              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4353               62 * (priv->ieee->perfect_rssi - rssi))) /
4354             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4355              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4356         if (signal_quality > 100)
4357                 signal_quality = 100;
4358         else if (signal_quality < 1)
4359                 signal_quality = 0;
4360
4361         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4362                         signal_quality, rssi);
4363
4364         quality = min(rx_quality, signal_quality);
4365         quality = min(tx_quality, quality);
4366         quality = min(rate_quality, quality);
4367         quality = min(beacon_quality, quality);
4368         if (quality == beacon_quality)
4369                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4370                                 quality);
4371         if (quality == rate_quality)
4372                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4373                                 quality);
4374         if (quality == tx_quality)
4375                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4376                                 quality);
4377         if (quality == rx_quality)
4378                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4379                                 quality);
4380         if (quality == signal_quality)
4381                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4382                                 quality);
4383
4384         priv->quality = quality;
4385
4386         schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4387 }
4388
4389 static void ipw_bg_gather_stats(struct work_struct *work)
4390 {
4391         struct ipw_priv *priv =
4392                 container_of(work, struct ipw_priv, gather_stats.work);
4393         mutex_lock(&priv->mutex);
4394         ipw_gather_stats(priv);
4395         mutex_unlock(&priv->mutex);
4396 }
4397
4398 /* Missed beacon behavior:
4399  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4400  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4401  * Above disassociate threshold, give up and stop scanning.
4402  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4403 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4404                                             int missed_count)
4405 {
4406         priv->notif_missed_beacons = missed_count;
4407
4408         if (missed_count > priv->disassociate_threshold &&
4409             priv->status & STATUS_ASSOCIATED) {
4410                 /* If associated and we've hit the missed
4411                  * beacon threshold, disassociate, turn
4412                  * off roaming, and abort any active scans */
4413                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4414                           IPW_DL_STATE | IPW_DL_ASSOC,
4415                           "Missed beacon: %d - disassociate\n", missed_count);
4416                 priv->status &= ~STATUS_ROAMING;
4417                 if (priv->status & STATUS_SCANNING) {
4418                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4419                                   IPW_DL_STATE,
4420                                   "Aborting scan with missed beacon.\n");
4421                         schedule_work(&priv->abort_scan);
4422                 }
4423
4424                 schedule_work(&priv->disassociate);
4425                 return;
4426         }
4427
4428         if (priv->status & STATUS_ROAMING) {
4429                 /* If we are currently roaming, then just
4430                  * print a debug statement... */
4431                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4432                           "Missed beacon: %d - roam in progress\n",
4433                           missed_count);
4434                 return;
4435         }
4436
4437         if (roaming &&
4438             (missed_count > priv->roaming_threshold &&
4439              missed_count <= priv->disassociate_threshold)) {
4440                 /* If we are not already roaming, set the ROAM
4441                  * bit in the status and kick off a scan.
4442                  * This can happen several times before we reach
4443                  * disassociate_threshold. */
4444                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4445                           "Missed beacon: %d - initiate "
4446                           "roaming\n", missed_count);
4447                 if (!(priv->status & STATUS_ROAMING)) {
4448                         priv->status |= STATUS_ROAMING;
4449                         if (!(priv->status & STATUS_SCANNING))
4450                                 schedule_delayed_work(&priv->request_scan, 0);
4451                 }
4452                 return;
4453         }
4454
4455         if (priv->status & STATUS_SCANNING &&
4456             missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4457                 /* Stop scan to keep fw from getting
4458                  * stuck (only if we aren't roaming --
4459                  * otherwise we'll never scan more than 2 or 3
4460                  * channels..) */
4461                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4462                           "Aborting scan with missed beacon.\n");
4463                 schedule_work(&priv->abort_scan);
4464         }
4465
4466         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4467 }
4468
4469 static void ipw_scan_event(struct work_struct *work)
4470 {
4471         union iwreq_data wrqu;
4472
4473         struct ipw_priv *priv =
4474                 container_of(work, struct ipw_priv, scan_event.work);
4475
4476         wrqu.data.length = 0;
4477         wrqu.data.flags = 0;
4478         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4479 }
4480
4481 static void handle_scan_event(struct ipw_priv *priv)
4482 {
4483         /* Only userspace-requested scan completion events go out immediately */
4484         if (!priv->user_requested_scan) {
4485                 schedule_delayed_work(&priv->scan_event,
4486                                       round_jiffies_relative(msecs_to_jiffies(4000)));
4487         } else {
4488                 priv->user_requested_scan = 0;
4489                 mod_delayed_work(system_wq, &priv->scan_event, 0);
4490         }
4491 }
4492
4493 /**
4494  * Handle host notification packet.
4495  * Called from interrupt routine
4496  */
4497 static void ipw_rx_notification(struct ipw_priv *priv,
4498                                        struct ipw_rx_notification *notif)
4499 {
4500         u16 size = le16_to_cpu(notif->size);
4501
4502         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4503
4504         switch (notif->subtype) {
4505         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4506                         struct notif_association *assoc = &notif->u.assoc;
4507
4508                         switch (assoc->state) {
4509                         case CMAS_ASSOCIATED:{
4510                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4511                                                   IPW_DL_ASSOC,
4512                                                   "associated: '%*pE' %pM\n",
4513                                                   priv->essid_len, priv->essid,
4514                                                   priv->bssid);
4515
4516                                         switch (priv->ieee->iw_mode) {
4517                                         case IW_MODE_INFRA:
4518                                                 memcpy(priv->ieee->bssid,
4519                                                        priv->bssid, ETH_ALEN);
4520                                                 break;
4521
4522                                         case IW_MODE_ADHOC:
4523                                                 memcpy(priv->ieee->bssid,
4524                                                        priv->bssid, ETH_ALEN);
4525
4526                                                 /* clear out the station table */
4527                                                 priv->num_stations = 0;
4528
4529                                                 IPW_DEBUG_ASSOC
4530                                                     ("queueing adhoc check\n");
4531                                                 schedule_delayed_work(
4532                                                         &priv->adhoc_check,
4533                                                         le16_to_cpu(priv->
4534                                                         assoc_request.
4535                                                         beacon_interval));
4536                                                 break;
4537                                         }
4538
4539                                         priv->status &= ~STATUS_ASSOCIATING;
4540                                         priv->status |= STATUS_ASSOCIATED;
4541                                         schedule_work(&priv->system_config);
4542
4543 #ifdef CONFIG_IPW2200_QOS
4544 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4545                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4546                                         if ((priv->status & STATUS_AUTH) &&
4547                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4548                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4549                                                 if ((sizeof
4550                                                      (struct
4551                                                       libipw_assoc_response)
4552                                                      <= size)
4553                                                     && (size <= 2314)) {
4554                                                         struct
4555                                                         libipw_rx_stats
4556                                                             stats = {
4557                                                                 .len = size - 1,
4558                                                         };
4559
4560                                                         IPW_DEBUG_QOS
4561                                                             ("QoS Associate "
4562                                                              "size %d\n", size);
4563                                                         libipw_rx_mgt(priv->
4564                                                                          ieee,
4565                                                                          (struct
4566                                                                           libipw_hdr_4addr
4567                                                                           *)
4568                                                                          &notif->u.raw, &stats);
4569                                                 }
4570                                         }
4571 #endif
4572
4573                                         schedule_work(&priv->link_up);
4574
4575                                         break;
4576                                 }
4577
4578                         case CMAS_AUTHENTICATED:{
4579                                         if (priv->
4580                                             status & (STATUS_ASSOCIATED |
4581                                                       STATUS_AUTH)) {
4582                                                 struct notif_authenticate *auth
4583                                                     = &notif->u.auth;
4584                                                 IPW_DEBUG(IPW_DL_NOTIF |
4585                                                           IPW_DL_STATE |
4586                                                           IPW_DL_ASSOC,
4587                                                           "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n",
4588                                                           priv->essid_len,
4589                                                           priv->essid,
4590                                                           priv->bssid,
4591                                                           le16_to_cpu(auth->status),
4592                                                           ipw_get_status_code
4593                                                           (le16_to_cpu
4594                                                            (auth->status)));
4595
4596                                                 priv->status &=
4597                                                     ~(STATUS_ASSOCIATING |
4598                                                       STATUS_AUTH |
4599                                                       STATUS_ASSOCIATED);
4600
4601                                                 schedule_work(&priv->link_down);
4602                                                 break;
4603                                         }
4604
4605                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4606                                                   IPW_DL_ASSOC,
4607                                                   "authenticated: '%*pE' %pM\n",
4608                                                   priv->essid_len, priv->essid,
4609                                                   priv->bssid);
4610                                         break;
4611                                 }
4612
4613                         case CMAS_INIT:{
4614                                         if (priv->status & STATUS_AUTH) {
4615                                                 struct
4616                                                     libipw_assoc_response
4617                                                 *resp;
4618                                                 resp =
4619                                                     (struct
4620                                                      libipw_assoc_response
4621                                                      *)&notif->u.raw;
4622                                                 IPW_DEBUG(IPW_DL_NOTIF |
4623                                                           IPW_DL_STATE |
4624                                                           IPW_DL_ASSOC,
4625                                                           "association failed (0x%04X): %s\n",
4626                                                           le16_to_cpu(resp->status),
4627                                                           ipw_get_status_code
4628                                                           (le16_to_cpu
4629                                                            (resp->status)));
4630                                         }
4631
4632                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4633                                                   IPW_DL_ASSOC,
4634                                                   "disassociated: '%*pE' %pM\n",
4635                                                   priv->essid_len, priv->essid,
4636                                                   priv->bssid);
4637
4638                                         priv->status &=
4639                                             ~(STATUS_DISASSOCIATING |
4640                                               STATUS_ASSOCIATING |
4641                                               STATUS_ASSOCIATED | STATUS_AUTH);
4642                                         if (priv->assoc_network
4643                                             && (priv->assoc_network->
4644                                                 capability &
4645                                                 WLAN_CAPABILITY_IBSS))
4646                                                 ipw_remove_current_network
4647                                                     (priv);
4648
4649                                         schedule_work(&priv->link_down);
4650
4651                                         break;
4652                                 }
4653
4654                         case CMAS_RX_ASSOC_RESP:
4655                                 break;
4656
4657                         default:
4658                                 IPW_ERROR("assoc: unknown (%d)\n",
4659                                           assoc->state);
4660                                 break;
4661                         }
4662
4663                         break;
4664                 }
4665
4666         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4667                         struct notif_authenticate *auth = &notif->u.auth;
4668                         switch (auth->state) {
4669                         case CMAS_AUTHENTICATED:
4670                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4671                                           "authenticated: '%*pE' %pM\n",
4672                                           priv->essid_len, priv->essid,
4673                                           priv->bssid);
4674                                 priv->status |= STATUS_AUTH;
4675                                 break;
4676
4677                         case CMAS_INIT:
4678                                 if (priv->status & STATUS_AUTH) {
4679                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4680                                                   IPW_DL_ASSOC,
4681                                                   "authentication failed (0x%04X): %s\n",
4682                                                   le16_to_cpu(auth->status),
4683                                                   ipw_get_status_code(le16_to_cpu
4684                                                                       (auth->
4685                                                                        status)));
4686                                 }
4687                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4688                                           IPW_DL_ASSOC,
4689                                           "deauthenticated: '%*pE' %pM\n",
4690                                           priv->essid_len, priv->essid,
4691                                           priv->bssid);
4692
4693                                 priv->status &= ~(STATUS_ASSOCIATING |
4694                                                   STATUS_AUTH |
4695                                                   STATUS_ASSOCIATED);
4696
4697                                 schedule_work(&priv->link_down);
4698                                 break;
4699
4700                         case CMAS_TX_AUTH_SEQ_1:
4701                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4702                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4703                                 break;
4704                         case CMAS_RX_AUTH_SEQ_2:
4705                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4706                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4707                                 break;
4708                         case CMAS_AUTH_SEQ_1_PASS:
4709                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4710                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4711                                 break;
4712                         case CMAS_AUTH_SEQ_1_FAIL:
4713                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4714                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4715                                 break;
4716                         case CMAS_TX_AUTH_SEQ_3:
4717                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4718                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4719                                 break;
4720                         case CMAS_RX_AUTH_SEQ_4:
4721                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4722                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4723                                 break;
4724                         case CMAS_AUTH_SEQ_2_PASS:
4725                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4726                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4727                                 break;
4728                         case CMAS_AUTH_SEQ_2_FAIL:
4729                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4730                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4731                                 break;
4732                         case CMAS_TX_ASSOC:
4733                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4734                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4735                                 break;
4736                         case CMAS_RX_ASSOC_RESP:
4737                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4738                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4739
4740                                 break;
4741                         case CMAS_ASSOCIATED:
4742                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4743                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4744                                 break;
4745                         default:
4746                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4747                                                 auth->state);
4748                                 break;
4749                         }
4750                         break;
4751                 }
4752
4753         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4754                         struct notif_channel_result *x =
4755                             &notif->u.channel_result;
4756
4757                         if (size == sizeof(*x)) {
4758                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4759                                                x->channel_num);
4760                         } else {
4761                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4762                                                "(should be %zd)\n",
4763                                                size, sizeof(*x));
4764                         }
4765                         break;
4766                 }
4767
4768         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4769                         struct notif_scan_complete *x = &notif->u.scan_complete;
4770                         if (size == sizeof(*x)) {
4771                                 IPW_DEBUG_SCAN
4772                                     ("Scan completed: type %d, %d channels, "
4773                                      "%d status\n", x->scan_type,
4774                                      x->num_channels, x->status);
4775                         } else {
4776                                 IPW_ERROR("Scan completed of wrong size %d "
4777                                           "(should be %zd)\n",
4778                                           size, sizeof(*x));
4779                         }
4780
4781                         priv->status &=
4782                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4783
4784                         wake_up_interruptible(&priv->wait_state);
4785                         cancel_delayed_work(&priv->scan_check);
4786
4787                         if (priv->status & STATUS_EXIT_PENDING)
4788                                 break;
4789
4790                         priv->ieee->scans++;
4791
4792 #ifdef CONFIG_IPW2200_MONITOR
4793                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4794                                 priv->status |= STATUS_SCAN_FORCED;
4795                                 schedule_delayed_work(&priv->request_scan, 0);
4796                                 break;
4797                         }
4798                         priv->status &= ~STATUS_SCAN_FORCED;
4799 #endif                          /* CONFIG_IPW2200_MONITOR */
4800
4801                         /* Do queued direct scans first */
4802                         if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4803                                 schedule_delayed_work(&priv->request_direct_scan, 0);
4804
4805                         if (!(priv->status & (STATUS_ASSOCIATED |
4806                                               STATUS_ASSOCIATING |
4807                                               STATUS_ROAMING |
4808                                               STATUS_DISASSOCIATING)))
4809                                 schedule_work(&priv->associate);
4810                         else if (priv->status & STATUS_ROAMING) {
4811                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4812                                         /* If a scan completed and we are in roam mode, then
4813                                          * the scan that completed was the one requested as a
4814                                          * result of entering roam... so, schedule the
4815                                          * roam work */
4816                                         schedule_work(&priv->roam);
4817                                 else
4818                                         /* Don't schedule if we aborted the scan */
4819                                         priv->status &= ~STATUS_ROAMING;
4820                         } else if (priv->status & STATUS_SCAN_PENDING)
4821                                 schedule_delayed_work(&priv->request_scan, 0);
4822                         else if (priv->config & CFG_BACKGROUND_SCAN
4823                                  && priv->status & STATUS_ASSOCIATED)
4824                                 schedule_delayed_work(&priv->request_scan,
4825                                                       round_jiffies_relative(HZ));
4826
4827                         /* Send an empty event to user space.
4828                          * We don't send the received data on the event because
4829                          * it would require us to do complex transcoding, and
4830                          * we want to minimise the work done in the irq handler
4831                          * Use a request to extract the data.
4832                          * Also, we generate this even for any scan, regardless
4833                          * on how the scan was initiated. User space can just
4834                          * sync on periodic scan to get fresh data...
4835                          * Jean II */
4836                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4837                                 handle_scan_event(priv);
4838                         break;
4839                 }
4840
4841         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4842                         struct notif_frag_length *x = &notif->u.frag_len;
4843
4844                         if (size == sizeof(*x))
4845                                 IPW_ERROR("Frag length: %d\n",
4846                                           le16_to_cpu(x->frag_length));
4847                         else
4848                                 IPW_ERROR("Frag length of wrong size %d "
4849                                           "(should be %zd)\n",
4850                                           size, sizeof(*x));
4851                         break;
4852                 }
4853
4854         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4855                         struct notif_link_deterioration *x =
4856                             &notif->u.link_deterioration;
4857
4858                         if (size == sizeof(*x)) {
4859                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4860                                         "link deterioration: type %d, cnt %d\n",
4861                                         x->silence_notification_type,
4862                                         x->silence_count);
4863                                 memcpy(&priv->last_link_deterioration, x,
4864                                        sizeof(*x));
4865                         } else {
4866                                 IPW_ERROR("Link Deterioration of wrong size %d "
4867                                           "(should be %zd)\n",
4868                                           size, sizeof(*x));
4869                         }
4870                         break;
4871                 }
4872
4873         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4874                         IPW_ERROR("Dino config\n");
4875                         if (priv->hcmd
4876                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4877                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4878
4879                         break;
4880                 }
4881
4882         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4883                         struct notif_beacon_state *x = &notif->u.beacon_state;
4884                         if (size != sizeof(*x)) {
4885                                 IPW_ERROR
4886                                     ("Beacon state of wrong size %d (should "
4887                                      "be %zd)\n", size, sizeof(*x));
4888                                 break;
4889                         }
4890
4891                         if (le32_to_cpu(x->state) ==
4892                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4893                                 ipw_handle_missed_beacon(priv,
4894                                                          le32_to_cpu(x->
4895                                                                      number));
4896
4897                         break;
4898                 }
4899
4900         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4901                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4902                         if (size == sizeof(*x)) {
4903                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4904                                           "0x%02x station %d\n",
4905                                           x->key_state, x->security_type,
4906                                           x->station_index);
4907                                 break;
4908                         }
4909
4910                         IPW_ERROR
4911                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4912                              size, sizeof(*x));
4913                         break;
4914                 }
4915
4916         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4917                         struct notif_calibration *x = &notif->u.calibration;
4918
4919                         if (size == sizeof(*x)) {
4920                                 memcpy(&priv->calib, x, sizeof(*x));
4921                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4922                                 break;
4923                         }
4924
4925                         IPW_ERROR
4926                             ("Calibration of wrong size %d (should be %zd)\n",
4927                              size, sizeof(*x));
4928                         break;
4929                 }
4930
4931         case HOST_NOTIFICATION_NOISE_STATS:{
4932                         if (size == sizeof(u32)) {
4933                                 priv->exp_avg_noise =
4934                                     exponential_average(priv->exp_avg_noise,
4935                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4936                                     DEPTH_NOISE);
4937                                 break;
4938                         }
4939
4940                         IPW_ERROR
4941                             ("Noise stat is wrong size %d (should be %zd)\n",
4942                              size, sizeof(u32));
4943                         break;
4944                 }
4945
4946         default:
4947                 IPW_DEBUG_NOTIF("Unknown notification: "
4948                                 "subtype=%d,flags=0x%2x,size=%d\n",
4949                                 notif->subtype, notif->flags, size);
4950         }
4951 }
4952
4953 /**
4954  * Destroys all DMA structures and initialise them again
4955  *
4956  * @param priv
4957  * @return error code
4958  */
4959 static int ipw_queue_reset(struct ipw_priv *priv)
4960 {
4961         int rc = 0;
4962         /** @todo customize queue sizes */
4963         int nTx = 64, nTxCmd = 8;
4964         ipw_tx_queue_free(priv);
4965         /* Tx CMD queue */
4966         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4967                                IPW_TX_CMD_QUEUE_READ_INDEX,
4968                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4969                                IPW_TX_CMD_QUEUE_BD_BASE,
4970                                IPW_TX_CMD_QUEUE_BD_SIZE);
4971         if (rc) {
4972                 IPW_ERROR("Tx Cmd queue init failed\n");
4973                 goto error;
4974         }
4975         /* Tx queue(s) */
4976         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4977                                IPW_TX_QUEUE_0_READ_INDEX,
4978                                IPW_TX_QUEUE_0_WRITE_INDEX,
4979                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4980         if (rc) {
4981                 IPW_ERROR("Tx 0 queue init failed\n");
4982                 goto error;
4983         }
4984         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4985                                IPW_TX_QUEUE_1_READ_INDEX,
4986                                IPW_TX_QUEUE_1_WRITE_INDEX,
4987                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4988         if (rc) {
4989                 IPW_ERROR("Tx 1 queue init failed\n");
4990                 goto error;
4991         }
4992         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4993                                IPW_TX_QUEUE_2_READ_INDEX,
4994                                IPW_TX_QUEUE_2_WRITE_INDEX,
4995                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4996         if (rc) {
4997                 IPW_ERROR("Tx 2 queue init failed\n");
4998                 goto error;
4999         }
5000         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
5001                                IPW_TX_QUEUE_3_READ_INDEX,
5002                                IPW_TX_QUEUE_3_WRITE_INDEX,
5003                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
5004         if (rc) {
5005                 IPW_ERROR("Tx 3 queue init failed\n");
5006                 goto error;
5007         }
5008         /* statistics */
5009         priv->rx_bufs_min = 0;
5010         priv->rx_pend_max = 0;
5011         return rc;
5012
5013       error:
5014         ipw_tx_queue_free(priv);
5015         return rc;
5016 }
5017
5018 /**
5019  * Reclaim Tx queue entries no more used by NIC.
5020  *
5021  * When FW advances 'R' index, all entries between old and
5022  * new 'R' index need to be reclaimed. As result, some free space
5023  * forms. If there is enough free space (> low mark), wake Tx queue.
5024  *
5025  * @note Need to protect against garbage in 'R' index
5026  * @param priv
5027  * @param txq
5028  * @param qindex
5029  * @return Number of used entries remains in the queue
5030  */
5031 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5032                                 struct clx2_tx_queue *txq, int qindex)
5033 {
5034         u32 hw_tail;
5035         int used;
5036         struct clx2_queue *q = &txq->q;
5037
5038         hw_tail = ipw_read32(priv, q->reg_r);
5039         if (hw_tail >= q->n_bd) {
5040                 IPW_ERROR
5041                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5042                      hw_tail, q->n_bd);
5043                 goto done;
5044         }
5045         for (; q->last_used != hw_tail;
5046              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5047                 ipw_queue_tx_free_tfd(priv, txq);
5048                 priv->tx_packets++;
5049         }
5050       done:
5051         if ((ipw_tx_queue_space(q) > q->low_mark) &&
5052             (qindex >= 0))
5053                 netif_wake_queue(priv->net_dev);
5054         used = q->first_empty - q->last_used;
5055         if (used < 0)
5056                 used += q->n_bd;
5057
5058         return used;
5059 }
5060
5061 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5062                              int len, int sync)
5063 {
5064         struct clx2_tx_queue *txq = &priv->txq_cmd;
5065         struct clx2_queue *q = &txq->q;
5066         struct tfd_frame *tfd;
5067
5068         if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5069                 IPW_ERROR("No space for Tx\n");
5070                 return -EBUSY;
5071         }
5072
5073         tfd = &txq->bd[q->first_empty];
5074         txq->txb[q->first_empty] = NULL;
5075
5076         memset(tfd, 0, sizeof(*tfd));
5077         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5078         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5079         priv->hcmd_seq++;
5080         tfd->u.cmd.index = hcmd;
5081         tfd->u.cmd.length = len;
5082         memcpy(tfd->u.cmd.payload, buf, len);
5083         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5084         ipw_write32(priv, q->reg_w, q->first_empty);
5085         _ipw_read32(priv, 0x90);
5086
5087         return 0;
5088 }
5089
5090 /*
5091  * Rx theory of operation
5092  *
5093  * The host allocates 32 DMA target addresses and passes the host address
5094  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5095  * 0 to 31
5096  *
5097  * Rx Queue Indexes
5098  * The host/firmware share two index registers for managing the Rx buffers.
5099  *
5100  * The READ index maps to the first position that the firmware may be writing
5101  * to -- the driver can read up to (but not including) this position and get
5102  * good data.
5103  * The READ index is managed by the firmware once the card is enabled.
5104  *
5105  * The WRITE index maps to the last position the driver has read from -- the
5106  * position preceding WRITE is the last slot the firmware can place a packet.
5107  *
5108  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5109  * WRITE = READ.
5110  *
5111  * During initialization the host sets up the READ queue position to the first
5112  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5113  *
5114  * When the firmware places a packet in a buffer it will advance the READ index
5115  * and fire the RX interrupt.  The driver can then query the READ index and
5116  * process as many packets as possible, moving the WRITE index forward as it
5117  * resets the Rx queue buffers with new memory.
5118  *
5119  * The management in the driver is as follows:
5120  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5121  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5122  *   to replensish the ipw->rxq->rx_free.
5123  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5124  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5125  *   'processed' and 'read' driver indexes as well)
5126  * + A received packet is processed and handed to the kernel network stack,
5127  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5128  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5129  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5130  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5131  *   were enough free buffers and RX_STALLED is set it is cleared.
5132  *
5133  *
5134  * Driver sequence:
5135  *
5136  * ipw_rx_queue_alloc()       Allocates rx_free
5137  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5138  *                            ipw_rx_queue_restock
5139  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5140  *                            queue, updates firmware pointers, and updates
5141  *                            the WRITE index.  If insufficient rx_free buffers
5142  *                            are available, schedules ipw_rx_queue_replenish
5143  *
5144  * -- enable interrupts --
5145  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5146  *                            READ INDEX, detaching the SKB from the pool.
5147  *                            Moves the packet buffer from queue to rx_used.
5148  *                            Calls ipw_rx_queue_restock to refill any empty
5149  *                            slots.
5150  * ...
5151  *
5152  */
5153
5154 /*
5155  * If there are slots in the RX queue that  need to be restocked,
5156  * and we have free pre-allocated buffers, fill the ranks as much
5157  * as we can pulling from rx_free.
5158  *
5159  * This moves the 'write' index forward to catch up with 'processed', and
5160  * also updates the memory address in the firmware to reference the new
5161  * target buffer.
5162  */
5163 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5164 {
5165         struct ipw_rx_queue *rxq = priv->rxq;
5166         struct list_head *element;
5167         struct ipw_rx_mem_buffer *rxb;
5168         unsigned long flags;
5169         int write;
5170
5171         spin_lock_irqsave(&rxq->lock, flags);
5172         write = rxq->write;
5173         while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5174                 element = rxq->rx_free.next;
5175                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5176                 list_del(element);
5177
5178                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5179                             rxb->dma_addr);
5180                 rxq->queue[rxq->write] = rxb;
5181                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5182                 rxq->free_count--;
5183         }
5184         spin_unlock_irqrestore(&rxq->lock, flags);
5185
5186         /* If the pre-allocated buffer pool is dropping low, schedule to
5187          * refill it */
5188         if (rxq->free_count <= RX_LOW_WATERMARK)
5189                 schedule_work(&priv->rx_replenish);
5190
5191         /* If we've added more space for the firmware to place data, tell it */
5192         if (write != rxq->write)
5193                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5194 }
5195
5196 /*
5197  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5198  * Also restock the Rx queue via ipw_rx_queue_restock.
5199  *
5200  * This is called as a scheduled work item (except for during intialization)
5201  */
5202 static void ipw_rx_queue_replenish(void *data)
5203 {
5204         struct ipw_priv *priv = data;
5205         struct ipw_rx_queue *rxq = priv->rxq;
5206         struct list_head *element;
5207         struct ipw_rx_mem_buffer *rxb;
5208         unsigned long flags;
5209
5210         spin_lock_irqsave(&rxq->lock, flags);
5211         while (!list_empty(&rxq->rx_used)) {
5212                 element = rxq->rx_used.next;
5213                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5214                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5215                 if (!rxb->skb) {
5216                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5217                                priv->net_dev->name);
5218                         /* We don't reschedule replenish work here -- we will
5219                          * call the restock method and if it still needs
5220                          * more buffers it will schedule replenish */
5221                         break;
5222                 }
5223                 list_del(element);
5224
5225                 rxb->dma_addr =
5226                     pci_map_single(priv->pci_dev, rxb->skb->data,
5227                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5228
5229                 list_add_tail(&rxb->list, &rxq->rx_free);
5230                 rxq->free_count++;
5231         }
5232         spin_unlock_irqrestore(&rxq->lock, flags);
5233
5234         ipw_rx_queue_restock(priv);
5235 }
5236
5237 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5238 {
5239         struct ipw_priv *priv =
5240                 container_of(work, struct ipw_priv, rx_replenish);
5241         mutex_lock(&priv->mutex);
5242         ipw_rx_queue_replenish(priv);
5243         mutex_unlock(&priv->mutex);
5244 }
5245
5246 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5247  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5248  * This free routine walks the list of POOL entries and if SKB is set to
5249  * non NULL it is unmapped and freed
5250  */
5251 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5252 {
5253         int i;
5254
5255         if (!rxq)
5256                 return;
5257
5258         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5259                 if (rxq->pool[i].skb != NULL) {
5260                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5261                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5262                         dev_kfree_skb(rxq->pool[i].skb);
5263                 }
5264         }
5265
5266         kfree(rxq);
5267 }
5268
5269 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5270 {
5271         struct ipw_rx_queue *rxq;
5272         int i;
5273
5274         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5275         if (unlikely(!rxq)) {
5276                 IPW_ERROR("memory allocation failed\n");
5277                 return NULL;
5278         }
5279         spin_lock_init(&rxq->lock);
5280         INIT_LIST_HEAD(&rxq->rx_free);
5281         INIT_LIST_HEAD(&rxq->rx_used);
5282
5283         /* Fill the rx_used queue with _all_ of the Rx buffers */
5284         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5285                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5286
5287         /* Set us so that we have processed and used all buffers, but have
5288          * not restocked the Rx queue with fresh buffers */
5289         rxq->read = rxq->write = 0;
5290         rxq->free_count = 0;
5291
5292         return rxq;
5293 }
5294
5295 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5296 {
5297         rate &= ~LIBIPW_BASIC_RATE_MASK;
5298         if (ieee_mode == IEEE_A) {
5299                 switch (rate) {
5300                 case LIBIPW_OFDM_RATE_6MB:
5301                         return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5302                             1 : 0;
5303                 case LIBIPW_OFDM_RATE_9MB:
5304                         return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5305                             1 : 0;
5306                 case LIBIPW_OFDM_RATE_12MB:
5307                         return priv->
5308                             rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5309                 case LIBIPW_OFDM_RATE_18MB:
5310                         return priv->
5311                             rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5312                 case LIBIPW_OFDM_RATE_24MB:
5313                         return priv->
5314                             rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5315                 case LIBIPW_OFDM_RATE_36MB:
5316                         return priv->
5317                             rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5318                 case LIBIPW_OFDM_RATE_48MB:
5319                         return priv->
5320                             rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5321                 case LIBIPW_OFDM_RATE_54MB:
5322                         return priv->
5323                             rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5324                 default:
5325                         return 0;
5326                 }
5327         }
5328
5329         /* B and G mixed */
5330         switch (rate) {
5331         case LIBIPW_CCK_RATE_1MB:
5332                 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5333         case LIBIPW_CCK_RATE_2MB:
5334                 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5335         case LIBIPW_CCK_RATE_5MB:
5336                 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5337         case LIBIPW_CCK_RATE_11MB:
5338                 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5339         }
5340
5341         /* If we are limited to B modulations, bail at this point */
5342         if (ieee_mode == IEEE_B)
5343                 return 0;
5344
5345         /* G */
5346         switch (rate) {
5347         case LIBIPW_OFDM_RATE_6MB:
5348                 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5349         case LIBIPW_OFDM_RATE_9MB:
5350                 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5351         case LIBIPW_OFDM_RATE_12MB:
5352                 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5353         case LIBIPW_OFDM_RATE_18MB:
5354                 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5355         case LIBIPW_OFDM_RATE_24MB:
5356                 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5357         case LIBIPW_OFDM_RATE_36MB:
5358                 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5359         case LIBIPW_OFDM_RATE_48MB:
5360                 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5361         case LIBIPW_OFDM_RATE_54MB:
5362                 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5363         }
5364
5365         return 0;
5366 }
5367
5368 static int ipw_compatible_rates(struct ipw_priv *priv,
5369                                 const struct libipw_network *network,
5370                                 struct ipw_supported_rates *rates)
5371 {
5372         int num_rates, i;
5373
5374         memset(rates, 0, sizeof(*rates));
5375         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5376         rates->num_rates = 0;
5377         for (i = 0; i < num_rates; i++) {
5378                 if (!ipw_is_rate_in_mask(priv, network->mode,
5379                                          network->rates[i])) {
5380
5381                         if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5382                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5383                                                "rate %02X\n",
5384                                                network->rates[i]);
5385                                 rates->supported_rates[rates->num_rates++] =
5386                                     network->rates[i];
5387                                 continue;
5388                         }
5389
5390                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5391                                        network->rates[i], priv->rates_mask);
5392                         continue;
5393                 }
5394
5395                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5396         }
5397
5398         num_rates = min(network->rates_ex_len,
5399                         (u8) (IPW_MAX_RATES - num_rates));
5400         for (i = 0; i < num_rates; i++) {
5401                 if (!ipw_is_rate_in_mask(priv, network->mode,
5402                                          network->rates_ex[i])) {
5403                         if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5404                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5405                                                "rate %02X\n",
5406                                                network->rates_ex[i]);
5407                                 rates->supported_rates[rates->num_rates++] =
5408                                     network->rates[i];
5409                                 continue;
5410                         }
5411
5412                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5413                                        network->rates_ex[i], priv->rates_mask);
5414                         continue;
5415                 }
5416
5417                 rates->supported_rates[rates->num_rates++] =
5418                     network->rates_ex[i];
5419         }
5420
5421         return 1;
5422 }
5423
5424 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5425                                   const struct ipw_supported_rates *src)
5426 {
5427         u8 i;
5428         for (i = 0; i < src->num_rates; i++)
5429                 dest->supported_rates[i] = src->supported_rates[i];
5430         dest->num_rates = src->num_rates;
5431 }
5432
5433 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5434  * mask should ever be used -- right now all callers to add the scan rates are
5435  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5436 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5437                                    u8 modulation, u32 rate_mask)
5438 {
5439         u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5440             LIBIPW_BASIC_RATE_MASK : 0;
5441
5442         if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5443                 rates->supported_rates[rates->num_rates++] =
5444                     LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5445
5446         if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5447                 rates->supported_rates[rates->num_rates++] =
5448                     LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5449
5450         if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5451                 rates->supported_rates[rates->num_rates++] = basic_mask |
5452                     LIBIPW_CCK_RATE_5MB;
5453
5454         if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5455                 rates->supported_rates[rates->num_rates++] = basic_mask |
5456                     LIBIPW_CCK_RATE_11MB;
5457 }
5458
5459 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5460                                     u8 modulation, u32 rate_mask)
5461 {
5462         u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5463             LIBIPW_BASIC_RATE_MASK : 0;
5464
5465         if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5466                 rates->supported_rates[rates->num_rates++] = basic_mask |
5467                     LIBIPW_OFDM_RATE_6MB;
5468
5469         if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5470                 rates->supported_rates[rates->num_rates++] =
5471                     LIBIPW_OFDM_RATE_9MB;
5472
5473         if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5474                 rates->supported_rates[rates->num_rates++] = basic_mask |
5475                     LIBIPW_OFDM_RATE_12MB;
5476
5477         if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5478                 rates->supported_rates[rates->num_rates++] =
5479                     LIBIPW_OFDM_RATE_18MB;
5480
5481         if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5482                 rates->supported_rates[rates->num_rates++] = basic_mask |
5483                     LIBIPW_OFDM_RATE_24MB;
5484
5485         if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5486                 rates->supported_rates[rates->num_rates++] =
5487                     LIBIPW_OFDM_RATE_36MB;
5488
5489         if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5490                 rates->supported_rates[rates->num_rates++] =
5491                     LIBIPW_OFDM_RATE_48MB;
5492
5493         if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5494                 rates->supported_rates[rates->num_rates++] =
5495                     LIBIPW_OFDM_RATE_54MB;
5496 }
5497
5498 struct ipw_network_match {
5499         struct libipw_network *network;
5500         struct ipw_supported_rates rates;
5501 };
5502
5503 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5504                                   struct ipw_network_match *match,
5505                                   struct libipw_network *network,
5506                                   int roaming)
5507 {
5508         struct ipw_supported_rates rates;
5509
5510         /* Verify that this network's capability is compatible with the
5511          * current mode (AdHoc or Infrastructure) */
5512         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5513              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5514                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5515                                 network->ssid_len, network->ssid,
5516                                 network->bssid);
5517                 return 0;
5518         }
5519
5520         if (unlikely(roaming)) {
5521                 /* If we are roaming, then ensure check if this is a valid
5522                  * network to try and roam to */
5523                 if ((network->ssid_len != match->network->ssid_len) ||
5524                     memcmp(network->ssid, match->network->ssid,
5525                            network->ssid_len)) {
5526                         IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5527                                         network->ssid_len, network->ssid,
5528                                         network->bssid);
5529                         return 0;
5530                 }
5531         } else {
5532                 /* If an ESSID has been configured then compare the broadcast
5533                  * ESSID to ours */
5534                 if ((priv->config & CFG_STATIC_ESSID) &&
5535                     ((network->ssid_len != priv->essid_len) ||
5536                      memcmp(network->ssid, priv->essid,
5537                             min(network->ssid_len, priv->essid_len)))) {
5538                         IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5539                                         network->ssid_len, network->ssid,
5540                                         network->bssid, priv->essid_len,
5541                                         priv->essid);
5542                         return 0;
5543                 }
5544         }
5545
5546         /* If the old network rate is better than this one, don't bother
5547          * testing everything else. */
5548
5549         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5550                 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5551                                 match->network->ssid_len, match->network->ssid);
5552                 return 0;
5553         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5554                 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5555                                 match->network->ssid_len, match->network->ssid);
5556                 return 0;
5557         }
5558
5559         /* Now go through and see if the requested network is valid... */
5560         if (priv->ieee->scan_age != 0 &&
5561             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5562                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5563                                 network->ssid_len, network->ssid,
5564                                 network->bssid,
5565                                 jiffies_to_msecs(jiffies -
5566                                                  network->last_scanned));
5567                 return 0;
5568         }
5569
5570         if ((priv->config & CFG_STATIC_CHANNEL) &&
5571             (network->channel != priv->channel)) {
5572                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5573                                 network->ssid_len, network->ssid,
5574                                 network->bssid,
5575                                 network->channel, priv->channel);
5576                 return 0;
5577         }
5578
5579         /* Verify privacy compatibility */
5580         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5581             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5582                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5583                                 network->ssid_len, network->ssid,
5584                                 network->bssid,
5585                                 priv->
5586                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5587                                 network->
5588                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5589                                 "off");
5590                 return 0;
5591         }
5592
5593         if (ether_addr_equal(network->bssid, priv->bssid)) {
5594                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n",
5595                                 network->ssid_len, network->ssid,
5596                                 network->bssid, priv->bssid);
5597                 return 0;
5598         }
5599
5600         /* Filter out any incompatible freq / mode combinations */
5601         if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5602                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5603                                 network->ssid_len, network->ssid,
5604                                 network->bssid);
5605                 return 0;
5606         }
5607
5608         /* Ensure that the rates supported by the driver are compatible with
5609          * this AP, including verification of basic rates (mandatory) */
5610         if (!ipw_compatible_rates(priv, network, &rates)) {
5611                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5612                                 network->ssid_len, network->ssid,
5613                                 network->bssid);
5614                 return 0;
5615         }
5616
5617         if (rates.num_rates == 0) {
5618                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5619                                 network->ssid_len, network->ssid,
5620                                 network->bssid);
5621                 return 0;
5622         }
5623
5624         /* TODO: Perform any further minimal comparititive tests.  We do not
5625          * want to put too much policy logic here; intelligent scan selection
5626          * should occur within a generic IEEE 802.11 user space tool.  */
5627
5628         /* Set up 'new' AP to this network */
5629         ipw_copy_rates(&match->rates, &rates);
5630         match->network = network;
5631         IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n",
5632                         network->ssid_len, network->ssid, network->bssid);
5633
5634         return 1;
5635 }
5636
5637 static void ipw_merge_adhoc_network(struct work_struct *work)
5638 {
5639         struct ipw_priv *priv =
5640                 container_of(work, struct ipw_priv, merge_networks);
5641         struct libipw_network *network = NULL;
5642         struct ipw_network_match match = {
5643                 .network = priv->assoc_network
5644         };
5645
5646         if ((priv->status & STATUS_ASSOCIATED) &&
5647             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5648                 /* First pass through ROAM process -- look for a better
5649                  * network */
5650                 unsigned long flags;
5651
5652                 spin_lock_irqsave(&priv->ieee->lock, flags);
5653                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5654                         if (network != priv->assoc_network)
5655                                 ipw_find_adhoc_network(priv, &match, network,
5656                                                        1);
5657                 }
5658                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5659
5660                 if (match.network == priv->assoc_network) {
5661                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5662                                         "merge to.\n");
5663                         return;
5664                 }
5665
5666                 mutex_lock(&priv->mutex);
5667                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5668                         IPW_DEBUG_MERGE("remove network %*pE\n",
5669                                         priv->essid_len, priv->essid);
5670                         ipw_remove_current_network(priv);
5671                 }
5672
5673                 ipw_disassociate(priv);
5674                 priv->assoc_network = match.network;
5675                 mutex_unlock(&priv->mutex);
5676                 return;
5677         }
5678 }
5679
5680 static int ipw_best_network(struct ipw_priv *priv,
5681                             struct ipw_network_match *match,
5682                             struct libipw_network *network, int roaming)
5683 {
5684         struct ipw_supported_rates rates;
5685
5686         /* Verify that this network's capability is compatible with the
5687          * current mode (AdHoc or Infrastructure) */
5688         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5689              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5690             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5691              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5692                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5693                                 network->ssid_len, network->ssid,
5694                                 network->bssid);
5695                 return 0;
5696         }
5697
5698         if (unlikely(roaming)) {
5699                 /* If we are roaming, then ensure check if this is a valid
5700                  * network to try and roam to */
5701                 if ((network->ssid_len != match->network->ssid_len) ||
5702                     memcmp(network->ssid, match->network->ssid,
5703                            network->ssid_len)) {
5704                         IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5705                                         network->ssid_len, network->ssid,
5706                                         network->bssid);
5707                         return 0;
5708                 }
5709         } else {
5710                 /* If an ESSID has been configured then compare the broadcast
5711                  * ESSID to ours */
5712                 if ((priv->config & CFG_STATIC_ESSID) &&
5713                     ((network->ssid_len != priv->essid_len) ||
5714                      memcmp(network->ssid, priv->essid,
5715                             min(network->ssid_len, priv->essid_len)))) {
5716                         IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5717                                         network->ssid_len, network->ssid,
5718                                         network->bssid, priv->essid_len,
5719                                         priv->essid);
5720                         return 0;
5721                 }
5722         }
5723
5724         /* If the old network rate is better than this one, don't bother
5725          * testing everything else. */
5726         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5727                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n",
5728                                 network->ssid_len, network->ssid,
5729                                 network->bssid, match->network->ssid_len,
5730                                 match->network->ssid, match->network->bssid);
5731                 return 0;
5732         }
5733
5734         /* If this network has already had an association attempt within the
5735          * last 3 seconds, do not try and associate again... */
5736         if (network->last_associate &&
5737             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5738                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n",
5739                                 network->ssid_len, network->ssid,
5740                                 network->bssid,
5741                                 jiffies_to_msecs(jiffies -
5742                                                  network->last_associate));
5743                 return 0;
5744         }
5745
5746         /* Now go through and see if the requested network is valid... */
5747         if (priv->ieee->scan_age != 0 &&
5748             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5749                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5750                                 network->ssid_len, network->ssid,
5751                                 network->bssid,
5752                                 jiffies_to_msecs(jiffies -
5753                                                  network->last_scanned));
5754                 return 0;
5755         }
5756
5757         if ((priv->config & CFG_STATIC_CHANNEL) &&
5758             (network->channel != priv->channel)) {
5759                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5760                                 network->ssid_len, network->ssid,
5761                                 network->bssid,
5762                                 network->channel, priv->channel);
5763                 return 0;
5764         }
5765
5766         /* Verify privacy compatibility */
5767         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5768             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5769                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5770                                 network->ssid_len, network->ssid,
5771                                 network->bssid,
5772                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5773                                 "off",
5774                                 network->capability &
5775                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5776                 return 0;
5777         }
5778
5779         if ((priv->config & CFG_STATIC_BSSID) &&
5780             !ether_addr_equal(network->bssid, priv->bssid)) {
5781                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n",
5782                                 network->ssid_len, network->ssid,
5783                                 network->bssid, priv->bssid);
5784                 return 0;
5785         }
5786
5787         /* Filter out any incompatible freq / mode combinations */
5788         if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5789                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5790                                 network->ssid_len, network->ssid,
5791                                 network->bssid);
5792                 return 0;
5793         }
5794
5795         /* Filter out invalid channel in current GEO */
5796         if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5797                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n",
5798                                 network->ssid_len, network->ssid,
5799                                 network->bssid);
5800                 return 0;
5801         }
5802
5803         /* Ensure that the rates supported by the driver are compatible with
5804          * this AP, including verification of basic rates (mandatory) */
5805         if (!ipw_compatible_rates(priv, network, &rates)) {
5806                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5807                                 network->ssid_len, network->ssid,
5808                                 network->bssid);
5809                 return 0;
5810         }
5811
5812         if (rates.num_rates == 0) {
5813                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5814                                 network->ssid_len, network->ssid,
5815                                 network->bssid);
5816                 return 0;
5817         }
5818
5819         /* TODO: Perform any further minimal comparititive tests.  We do not
5820          * want to put too much policy logic here; intelligent scan selection
5821          * should occur within a generic IEEE 802.11 user space tool.  */
5822
5823         /* Set up 'new' AP to this network */
5824         ipw_copy_rates(&match->rates, &rates);
5825         match->network = network;
5826
5827         IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n",
5828                         network->ssid_len, network->ssid, network->bssid);
5829
5830         return 1;
5831 }
5832
5833 static void ipw_adhoc_create(struct ipw_priv *priv,
5834                              struct libipw_network *network)
5835 {
5836         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5837         int i;
5838
5839         /*
5840          * For the purposes of scanning, we can set our wireless mode
5841          * to trigger scans across combinations of bands, but when it
5842          * comes to creating a new ad-hoc network, we have tell the FW
5843          * exactly which band to use.
5844          *
5845          * We also have the possibility of an invalid channel for the
5846          * chossen band.  Attempting to create a new ad-hoc network
5847          * with an invalid channel for wireless mode will trigger a
5848          * FW fatal error.
5849          *
5850          */
5851         switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5852         case LIBIPW_52GHZ_BAND:
5853                 network->mode = IEEE_A;
5854                 i = libipw_channel_to_index(priv->ieee, priv->channel);
5855                 BUG_ON(i == -1);
5856                 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5857                         IPW_WARNING("Overriding invalid channel\n");
5858                         priv->channel = geo->a[0].channel;
5859                 }
5860                 break;
5861
5862         case LIBIPW_24GHZ_BAND:
5863                 if (priv->ieee->mode & IEEE_G)
5864                         network->mode = IEEE_G;
5865                 else
5866                         network->mode = IEEE_B;
5867                 i = libipw_channel_to_index(priv->ieee, priv->channel);
5868                 BUG_ON(i == -1);
5869                 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5870                         IPW_WARNING("Overriding invalid channel\n");
5871                         priv->channel = geo->bg[0].channel;
5872                 }
5873                 break;
5874
5875         default:
5876                 IPW_WARNING("Overriding invalid channel\n");
5877                 if (priv->ieee->mode & IEEE_A) {
5878                         network->mode = IEEE_A;
5879                         priv->channel = geo->a[0].channel;
5880                 } else if (priv->ieee->mode & IEEE_G) {
5881                         network->mode = IEEE_G;
5882                         priv->channel = geo->bg[0].channel;
5883                 } else {
5884                         network->mode = IEEE_B;
5885                         priv->channel = geo->bg[0].channel;
5886                 }
5887                 break;
5888         }
5889
5890         network->channel = priv->channel;
5891         priv->config |= CFG_ADHOC_PERSIST;
5892         ipw_create_bssid(priv, network->bssid);
5893         network->ssid_len = priv->essid_len;
5894         memcpy(network->ssid, priv->essid, priv->essid_len);
5895         memset(&network->stats, 0, sizeof(network->stats));
5896         network->capability = WLAN_CAPABILITY_IBSS;
5897         if (!(priv->config & CFG_PREAMBLE_LONG))
5898                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5899         if (priv->capability & CAP_PRIVACY_ON)
5900                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5901         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5902         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5903         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5904         memcpy(network->rates_ex,
5905                &priv->rates.supported_rates[network->rates_len],
5906                network->rates_ex_len);
5907         network->last_scanned = 0;
5908         network->flags = 0;
5909         network->last_associate = 0;
5910         network->time_stamp[0] = 0;
5911         network->time_stamp[1] = 0;
5912         network->beacon_interval = 100; /* Default */
5913         network->listen_interval = 10;  /* Default */
5914         network->atim_window = 0;       /* Default */
5915         network->wpa_ie_len = 0;
5916         network->rsn_ie_len = 0;
5917 }
5918
5919 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5920 {
5921         struct ipw_tgi_tx_key key;
5922
5923         if (!(priv->ieee->sec.flags & (1 << index)))
5924                 return;
5925
5926         key.key_id = index;
5927         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5928         key.security_type = type;
5929         key.station_index = 0;  /* always 0 for BSS */
5930         key.flags = 0;
5931         /* 0 for new key; previous value of counter (after fatal error) */
5932         key.tx_counter[0] = cpu_to_le32(0);
5933         key.tx_counter[1] = cpu_to_le32(0);
5934
5935         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5936 }
5937
5938 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5939 {
5940         struct ipw_wep_key key;
5941         int i;
5942
5943         key.cmd_id = DINO_CMD_WEP_KEY;
5944         key.seq_num = 0;
5945
5946         /* Note: AES keys cannot be set for multiple times.
5947          * Only set it at the first time. */
5948         for (i = 0; i < 4; i++) {
5949                 key.key_index = i | type;
5950                 if (!(priv->ieee->sec.flags & (1 << i))) {
5951                         key.key_size = 0;
5952                         continue;
5953                 }
5954
5955                 key.key_size = priv->ieee->sec.key_sizes[i];
5956                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5957
5958                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5959         }
5960 }
5961
5962 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5963 {
5964         if (priv->ieee->host_encrypt)
5965                 return;
5966
5967         switch (level) {
5968         case SEC_LEVEL_3:
5969                 priv->sys_config.disable_unicast_decryption = 0;
5970                 priv->ieee->host_decrypt = 0;
5971                 break;
5972         case SEC_LEVEL_2:
5973                 priv->sys_config.disable_unicast_decryption = 1;
5974                 priv->ieee->host_decrypt = 1;
5975                 break;
5976         case SEC_LEVEL_1:
5977                 priv->sys_config.disable_unicast_decryption = 0;
5978                 priv->ieee->host_decrypt = 0;
5979                 break;
5980         case SEC_LEVEL_0:
5981                 priv->sys_config.disable_unicast_decryption = 1;
5982                 break;
5983         default:
5984                 break;
5985         }
5986 }
5987
5988 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5989 {
5990         if (priv->ieee->host_encrypt)
5991                 return;
5992
5993         switch (level) {
5994         case SEC_LEVEL_3:
5995                 priv->sys_config.disable_multicast_decryption = 0;
5996                 break;
5997         case SEC_LEVEL_2:
5998                 priv->sys_config.disable_multicast_decryption = 1;
5999                 break;
6000         case SEC_LEVEL_1:
6001                 priv->sys_config.disable_multicast_decryption = 0;
6002                 break;
6003         case SEC_LEVEL_0:
6004                 priv->sys_config.disable_multicast_decryption = 1;
6005                 break;
6006         default:
6007                 break;
6008         }
6009 }
6010
6011 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6012 {
6013         switch (priv->ieee->sec.level) {
6014         case SEC_LEVEL_3:
6015                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6016                         ipw_send_tgi_tx_key(priv,
6017                                             DCT_FLAG_EXT_SECURITY_CCM,
6018                                             priv->ieee->sec.active_key);
6019
6020                 if (!priv->ieee->host_mc_decrypt)
6021                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6022                 break;
6023         case SEC_LEVEL_2:
6024                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6025                         ipw_send_tgi_tx_key(priv,
6026                                             DCT_FLAG_EXT_SECURITY_TKIP,
6027                                             priv->ieee->sec.active_key);
6028                 break;
6029         case SEC_LEVEL_1:
6030                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6031                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6032                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6033                 break;
6034         case SEC_LEVEL_0:
6035         default:
6036                 break;
6037         }
6038 }
6039
6040 static void ipw_adhoc_check(void *data)
6041 {
6042         struct ipw_priv *priv = data;
6043
6044         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6045             !(priv->config & CFG_ADHOC_PERSIST)) {
6046                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6047                           IPW_DL_STATE | IPW_DL_ASSOC,
6048                           "Missed beacon: %d - disassociate\n",
6049                           priv->missed_adhoc_beacons);
6050                 ipw_remove_current_network(priv);
6051                 ipw_disassociate(priv);
6052                 return;
6053         }
6054
6055         schedule_delayed_work(&priv->adhoc_check,
6056                               le16_to_cpu(priv->assoc_request.beacon_interval));
6057 }
6058
6059 static void ipw_bg_adhoc_check(struct work_struct *work)
6060 {
6061         struct ipw_priv *priv =
6062                 container_of(work, struct ipw_priv, adhoc_check.work);
6063         mutex_lock(&priv->mutex);
6064         ipw_adhoc_check(priv);
6065         mutex_unlock(&priv->mutex);
6066 }
6067
6068 static void ipw_debug_config(struct ipw_priv *priv)
6069 {
6070         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6071                        "[CFG 0x%08X]\n", priv->config);
6072         if (priv->config & CFG_STATIC_CHANNEL)
6073                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6074         else
6075                 IPW_DEBUG_INFO("Channel unlocked.\n");
6076         if (priv->config & CFG_STATIC_ESSID)
6077                 IPW_DEBUG_INFO("ESSID locked to '%*pE'\n",
6078                                priv->essid_len, priv->essid);
6079         else
6080                 IPW_DEBUG_INFO("ESSID unlocked.\n");
6081         if (priv->config & CFG_STATIC_BSSID)
6082                 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6083         else
6084                 IPW_DEBUG_INFO("BSSID unlocked.\n");
6085         if (priv->capability & CAP_PRIVACY_ON)
6086                 IPW_DEBUG_INFO("PRIVACY on\n");
6087         else
6088                 IPW_DEBUG_INFO("PRIVACY off\n");
6089         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6090 }
6091
6092 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6093 {
6094         /* TODO: Verify that this works... */
6095         struct ipw_fixed_rate fr;
6096         u32 reg;
6097         u16 mask = 0;
6098         u16 new_tx_rates = priv->rates_mask;
6099
6100         /* Identify 'current FW band' and match it with the fixed
6101          * Tx rates */
6102
6103         switch (priv->ieee->freq_band) {
6104         case LIBIPW_52GHZ_BAND: /* A only */
6105                 /* IEEE_A */
6106                 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6107                         /* Invalid fixed rate mask */
6108                         IPW_DEBUG_WX
6109                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6110                         new_tx_rates = 0;
6111                         break;
6112                 }
6113
6114                 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6115                 break;
6116
6117         default:                /* 2.4Ghz or Mixed */
6118                 /* IEEE_B */
6119                 if (mode == IEEE_B) {
6120                         if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6121                                 /* Invalid fixed rate mask */
6122                                 IPW_DEBUG_WX
6123                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6124                                 new_tx_rates = 0;
6125                         }
6126                         break;
6127                 }
6128
6129                 /* IEEE_G */
6130                 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6131                                     LIBIPW_OFDM_RATES_MASK)) {
6132                         /* Invalid fixed rate mask */
6133                         IPW_DEBUG_WX
6134                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6135                         new_tx_rates = 0;
6136                         break;
6137                 }
6138
6139                 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6140                         mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6141                         new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6142                 }
6143
6144                 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6145                         mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6146                         new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6147                 }
6148
6149                 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6150                         mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6151                         new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6152                 }
6153
6154                 new_tx_rates |= mask;
6155                 break;
6156         }
6157
6158         fr.tx_rates = cpu_to_le16(new_tx_rates);
6159
6160         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6161         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6162 }
6163
6164 static void ipw_abort_scan(struct ipw_priv *priv)
6165 {
6166         int err;
6167
6168         if (priv->status & STATUS_SCAN_ABORTING) {
6169                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6170                 return;
6171         }
6172         priv->status |= STATUS_SCAN_ABORTING;
6173
6174         err = ipw_send_scan_abort(priv);
6175         if (err)
6176                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6177 }
6178
6179 static void ipw_add_scan_channels(struct ipw_priv *priv,
6180                                   struct ipw_scan_request_ext *scan,
6181                                   int scan_type)
6182 {
6183         int channel_index = 0;
6184         const struct libipw_geo *geo;
6185         int i;
6186
6187         geo = libipw_get_geo(priv->ieee);
6188
6189         if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6190                 int start = channel_index;
6191                 for (i = 0; i < geo->a_channels; i++) {
6192                         if ((priv->status & STATUS_ASSOCIATED) &&
6193                             geo->a[i].channel == priv->channel)
6194                                 continue;
6195                         channel_index++;
6196                         scan->channels_list[channel_index] = geo->a[i].channel;
6197                         ipw_set_scan_type(scan, channel_index,
6198                                           geo->a[i].
6199                                           flags & LIBIPW_CH_PASSIVE_ONLY ?
6200                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6201                                           scan_type);
6202                 }
6203
6204                 if (start != channel_index) {
6205                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6206                             (channel_index - start);
6207                         channel_index++;
6208                 }
6209         }
6210
6211         if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6212                 int start = channel_index;
6213                 if (priv->config & CFG_SPEED_SCAN) {
6214                         int index;
6215                         u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6216                                 /* nop out the list */
6217                                 [0] = 0
6218                         };
6219
6220                         u8 channel;
6221                         while (channel_index < IPW_SCAN_CHANNELS - 1) {
6222                                 channel =
6223                                     priv->speed_scan[priv->speed_scan_pos];
6224                                 if (channel == 0) {
6225                                         priv->speed_scan_pos = 0;
6226                                         channel = priv->speed_scan[0];
6227                                 }
6228                                 if ((priv->status & STATUS_ASSOCIATED) &&
6229                                     channel == priv->channel) {
6230                                         priv->speed_scan_pos++;
6231                                         continue;
6232                                 }
6233
6234                                 /* If this channel has already been
6235                                  * added in scan, break from loop
6236                                  * and this will be the first channel
6237                                  * in the next scan.
6238                                  */
6239                                 if (channels[channel - 1] != 0)
6240                                         break;
6241
6242                                 channels[channel - 1] = 1;
6243                                 priv->speed_scan_pos++;
6244                                 channel_index++;
6245                                 scan->channels_list[channel_index] = channel;
6246                                 index =
6247                                     libipw_channel_to_index(priv->ieee, channel);
6248                                 ipw_set_scan_type(scan, channel_index,
6249                                                   geo->bg[index].
6250                                                   flags &
6251                                                   LIBIPW_CH_PASSIVE_ONLY ?
6252                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6253                                                   : scan_type);
6254                         }
6255                 } else {
6256                         for (i = 0; i < geo->bg_channels; i++) {
6257                                 if ((priv->status & STATUS_ASSOCIATED) &&
6258                                     geo->bg[i].channel == priv->channel)
6259                                         continue;
6260                                 channel_index++;
6261                                 scan->channels_list[channel_index] =
6262                                     geo->bg[i].channel;
6263                                 ipw_set_scan_type(scan, channel_index,
6264                                                   geo->bg[i].
6265                                                   flags &
6266                                                   LIBIPW_CH_PASSIVE_ONLY ?
6267                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6268                                                   : scan_type);
6269                         }
6270                 }
6271
6272                 if (start != channel_index) {
6273                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6274                             (channel_index - start);
6275                 }
6276         }
6277 }
6278
6279 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6280 {
6281         /* staying on passive channels longer than the DTIM interval during a
6282          * scan, while associated, causes the firmware to cancel the scan
6283          * without notification. Hence, don't stay on passive channels longer
6284          * than the beacon interval.
6285          */
6286         if (priv->status & STATUS_ASSOCIATED
6287             && priv->assoc_network->beacon_interval > 10)
6288                 return priv->assoc_network->beacon_interval - 10;
6289         else
6290                 return 120;
6291 }
6292
6293 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6294 {
6295         struct ipw_scan_request_ext scan;
6296         int err = 0, scan_type;
6297
6298         if (!(priv->status & STATUS_INIT) ||
6299             (priv->status & STATUS_EXIT_PENDING))
6300                 return 0;
6301
6302         mutex_lock(&priv->mutex);
6303
6304         if (direct && (priv->direct_scan_ssid_len == 0)) {
6305                 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6306                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6307                 goto done;
6308         }
6309
6310         if (priv->status & STATUS_SCANNING) {
6311                 IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6312                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6313                                         STATUS_SCAN_PENDING;
6314                 goto done;
6315         }
6316
6317         if (!(priv->status & STATUS_SCAN_FORCED) &&
6318             priv->status & STATUS_SCAN_ABORTING) {
6319                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6320                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6321                                         STATUS_SCAN_PENDING;
6322                 goto done;
6323         }
6324
6325         if (priv->status & STATUS_RF_KILL_MASK) {
6326                 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6327                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6328                                         STATUS_SCAN_PENDING;
6329                 goto done;
6330         }
6331
6332         memset(&scan, 0, sizeof(scan));
6333         scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6334
6335         if (type == IW_SCAN_TYPE_PASSIVE) {
6336                 IPW_DEBUG_WX("use passive scanning\n");
6337                 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6338                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6339                         cpu_to_le16(ipw_passive_dwell_time(priv));
6340                 ipw_add_scan_channels(priv, &scan, scan_type);
6341                 goto send_request;
6342         }
6343
6344         /* Use active scan by default. */
6345         if (priv->config & CFG_SPEED_SCAN)
6346                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6347                         cpu_to_le16(30);
6348         else
6349                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6350                         cpu_to_le16(20);
6351
6352         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6353                 cpu_to_le16(20);
6354
6355         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6356                 cpu_to_le16(ipw_passive_dwell_time(priv));
6357         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6358
6359 #ifdef CONFIG_IPW2200_MONITOR
6360         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6361                 u8 channel;
6362                 u8 band = 0;
6363
6364                 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6365                 case LIBIPW_52GHZ_BAND:
6366                         band = (u8) (IPW_A_MODE << 6) | 1;
6367                         channel = priv->channel;
6368                         break;
6369
6370                 case LIBIPW_24GHZ_BAND:
6371                         band = (u8) (IPW_B_MODE << 6) | 1;
6372                         channel = priv->channel;
6373                         break;
6374
6375                 default:
6376                         band = (u8) (IPW_B_MODE << 6) | 1;
6377                         channel = 9;
6378                         break;
6379                 }
6380
6381                 scan.channels_list[0] = band;
6382                 scan.channels_list[1] = channel;
6383                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6384
6385                 /* NOTE:  The card will sit on this channel for this time
6386                  * period.  Scan aborts are timing sensitive and frequently
6387                  * result in firmware restarts.  As such, it is best to
6388                  * set a small dwell_time here and just keep re-issuing
6389                  * scans.  Otherwise fast channel hopping will not actually
6390                  * hop channels.
6391                  *
6392                  * TODO: Move SPEED SCAN support to all modes and bands */
6393                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6394                         cpu_to_le16(2000);
6395         } else {
6396 #endif                          /* CONFIG_IPW2200_MONITOR */
6397                 /* Honor direct scans first, otherwise if we are roaming make
6398                  * this a direct scan for the current network.  Finally,
6399                  * ensure that every other scan is a fast channel hop scan */
6400                 if (direct) {
6401                         err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6402                                             priv->direct_scan_ssid_len);
6403                         if (err) {
6404                                 IPW_DEBUG_HC("Attempt to send SSID command  "
6405                                              "failed\n");
6406                                 goto done;
6407                         }
6408
6409                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6410                 } else if ((priv->status & STATUS_ROAMING)
6411                            || (!(priv->status & STATUS_ASSOCIATED)
6412                                && (priv->config & CFG_STATIC_ESSID)
6413                                && (le32_to_cpu(scan.full_scan_index) % 2))) {
6414                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6415                         if (err) {
6416                                 IPW_DEBUG_HC("Attempt to send SSID command "
6417                                              "failed.\n");
6418                                 goto done;
6419                         }
6420
6421                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6422                 } else
6423                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6424
6425                 ipw_add_scan_channels(priv, &scan, scan_type);
6426 #ifdef CONFIG_IPW2200_MONITOR
6427         }
6428 #endif
6429
6430 send_request:
6431         err = ipw_send_scan_request_ext(priv, &scan);
6432         if (err) {
6433                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6434                 goto done;
6435         }
6436
6437         priv->status |= STATUS_SCANNING;
6438         if (direct) {
6439                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6440                 priv->direct_scan_ssid_len = 0;
6441         } else
6442                 priv->status &= ~STATUS_SCAN_PENDING;
6443
6444         schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6445 done:
6446         mutex_unlock(&priv->mutex);
6447         return err;
6448 }
6449
6450 static void ipw_request_passive_scan(struct work_struct *work)
6451 {
6452         struct ipw_priv *priv =
6453                 container_of(work, struct ipw_priv, request_passive_scan.work);
6454         ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6455 }
6456
6457 static void ipw_request_scan(struct work_struct *work)
6458 {
6459         struct ipw_priv *priv =
6460                 container_of(work, struct ipw_priv, request_scan.work);
6461         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6462 }
6463
6464 static void ipw_request_direct_scan(struct work_struct *work)
6465 {
6466         struct ipw_priv *priv =
6467                 container_of(work, struct ipw_priv, request_direct_scan.work);
6468         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6469 }
6470
6471 static void ipw_bg_abort_scan(struct work_struct *work)
6472 {
6473         struct ipw_priv *priv =
6474                 container_of(work, struct ipw_priv, abort_scan);
6475         mutex_lock(&priv->mutex);
6476         ipw_abort_scan(priv);
6477         mutex_unlock(&priv->mutex);
6478 }
6479
6480 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6481 {
6482         /* This is called when wpa_supplicant loads and closes the driver
6483          * interface. */
6484         priv->ieee->wpa_enabled = value;
6485         return 0;
6486 }
6487
6488 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6489 {
6490         struct libipw_device *ieee = priv->ieee;
6491         struct libipw_security sec = {
6492                 .flags = SEC_AUTH_MODE,
6493         };
6494         int ret = 0;
6495
6496         if (value & IW_AUTH_ALG_SHARED_KEY) {
6497                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6498                 ieee->open_wep = 0;
6499         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6500                 sec.auth_mode = WLAN_AUTH_OPEN;
6501                 ieee->open_wep = 1;
6502         } else if (value & IW_AUTH_ALG_LEAP) {
6503                 sec.auth_mode = WLAN_AUTH_LEAP;
6504                 ieee->open_wep = 1;
6505         } else
6506                 return -EINVAL;
6507
6508         if (ieee->set_security)
6509                 ieee->set_security(ieee->dev, &sec);
6510         else
6511                 ret = -EOPNOTSUPP;
6512
6513         return ret;
6514 }
6515
6516 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6517                                 int wpa_ie_len)
6518 {
6519         /* make sure WPA is enabled */
6520         ipw_wpa_enable(priv, 1);
6521 }
6522
6523 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6524                             char *capabilities, int length)
6525 {
6526         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6527
6528         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6529                                 capabilities);
6530 }
6531
6532 /*
6533  * WE-18 support
6534  */
6535
6536 /* SIOCSIWGENIE */
6537 static int ipw_wx_set_genie(struct net_device *dev,
6538                             struct iw_request_info *info,
6539                             union iwreq_data *wrqu, char *extra)
6540 {
6541         struct ipw_priv *priv = libipw_priv(dev);
6542         struct libipw_device *ieee = priv->ieee;
6543         u8 *buf;
6544         int err = 0;
6545
6546         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6547             (wrqu->data.length && extra == NULL))
6548                 return -EINVAL;
6549
6550         if (wrqu->data.length) {
6551                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6552                 if (buf == NULL) {
6553                         err = -ENOMEM;
6554                         goto out;
6555                 }
6556
6557                 kfree(ieee->wpa_ie);
6558                 ieee->wpa_ie = buf;
6559                 ieee->wpa_ie_len = wrqu->data.length;
6560         } else {
6561                 kfree(ieee->wpa_ie);
6562                 ieee->wpa_ie = NULL;
6563                 ieee->wpa_ie_len = 0;
6564         }
6565
6566         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6567       out:
6568         return err;
6569 }
6570
6571 /* SIOCGIWGENIE */
6572 static int ipw_wx_get_genie(struct net_device *dev,
6573                             struct iw_request_info *info,
6574                             union iwreq_data *wrqu, char *extra)
6575 {
6576         struct ipw_priv *priv = libipw_priv(dev);
6577         struct libipw_device *ieee = priv->ieee;
6578         int err = 0;
6579
6580         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6581                 wrqu->data.length = 0;
6582                 goto out;
6583         }
6584
6585         if (wrqu->data.length < ieee->wpa_ie_len) {
6586                 err = -E2BIG;
6587                 goto out;
6588         }
6589
6590         wrqu->data.length = ieee->wpa_ie_len;
6591         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6592
6593       out:
6594         return err;
6595 }
6596
6597 static int wext_cipher2level(int cipher)
6598 {
6599         switch (cipher) {
6600         case IW_AUTH_CIPHER_NONE:
6601                 return SEC_LEVEL_0;
6602         case IW_AUTH_CIPHER_WEP40:
6603         case IW_AUTH_CIPHER_WEP104:
6604                 return SEC_LEVEL_1;
6605         case IW_AUTH_CIPHER_TKIP:
6606                 return SEC_LEVEL_2;
6607         case IW_AUTH_CIPHER_CCMP:
6608                 return SEC_LEVEL_3;
6609         default:
6610                 return -1;
6611         }
6612 }
6613
6614 /* SIOCSIWAUTH */
6615 static int ipw_wx_set_auth(struct net_device *dev,
6616                            struct iw_request_info *info,
6617                            union iwreq_data *wrqu, char *extra)
6618 {
6619         struct ipw_priv *priv = libipw_priv(dev);
6620         struct libipw_device *ieee = priv->ieee;
6621         struct iw_param *param = &wrqu->param;
6622         struct lib80211_crypt_data *crypt;
6623         unsigned long flags;
6624         int ret = 0;
6625
6626         switch (param->flags & IW_AUTH_INDEX) {
6627         case IW_AUTH_WPA_VERSION:
6628                 break;
6629         case IW_AUTH_CIPHER_PAIRWISE:
6630                 ipw_set_hw_decrypt_unicast(priv,
6631                                            wext_cipher2level(param->value));
6632                 break;
6633         case IW_AUTH_CIPHER_GROUP:
6634                 ipw_set_hw_decrypt_multicast(priv,
6635                                              wext_cipher2level(param->value));
6636                 break;
6637         case IW_AUTH_KEY_MGMT:
6638                 /*
6639                  * ipw2200 does not use these parameters
6640                  */
6641                 break;
6642
6643         case IW_AUTH_TKIP_COUNTERMEASURES:
6644                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6645                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6646                         break;
6647
6648                 flags = crypt->ops->get_flags(crypt->priv);
6649
6650                 if (param->value)
6651                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6652                 else
6653                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6654
6655                 crypt->ops->set_flags(flags, crypt->priv);
6656
6657                 break;
6658
6659         case IW_AUTH_DROP_UNENCRYPTED:{
6660                         /* HACK:
6661                          *
6662                          * wpa_supplicant calls set_wpa_enabled when the driver
6663                          * is loaded and unloaded, regardless of if WPA is being
6664                          * used.  No other calls are made which can be used to
6665                          * determine if encryption will be used or not prior to
6666                          * association being expected.  If encryption is not being
6667                          * used, drop_unencrypted is set to false, else true -- we
6668                          * can use this to determine if the CAP_PRIVACY_ON bit should
6669                          * be set.
6670                          */
6671                         struct libipw_security sec = {
6672                                 .flags = SEC_ENABLED,
6673                                 .enabled = param->value,
6674                         };
6675                         priv->ieee->drop_unencrypted = param->value;
6676                         /* We only change SEC_LEVEL for open mode. Others
6677                          * are set by ipw_wpa_set_encryption.
6678                          */
6679                         if (!param->value) {
6680                                 sec.flags |= SEC_LEVEL;
6681                                 sec.level = SEC_LEVEL_0;
6682                         } else {
6683                                 sec.flags |= SEC_LEVEL;
6684                                 sec.level = SEC_LEVEL_1;
6685                         }
6686                         if (priv->ieee->set_security)
6687                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6688                         break;
6689                 }
6690
6691         case IW_AUTH_80211_AUTH_ALG:
6692                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6693                 break;
6694
6695         case IW_AUTH_WPA_ENABLED:
6696                 ret = ipw_wpa_enable(priv, param->value);
6697                 ipw_disassociate(priv);
6698                 break;
6699
6700         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6701                 ieee->ieee802_1x = param->value;
6702                 break;
6703
6704         case IW_AUTH_PRIVACY_INVOKED:
6705                 ieee->privacy_invoked = param->value;
6706                 break;
6707
6708         default:
6709                 return -EOPNOTSUPP;
6710         }
6711         return ret;
6712 }
6713
6714 /* SIOCGIWAUTH */
6715 static int ipw_wx_get_auth(struct net_device *dev,
6716                            struct iw_request_info *info,
6717                            union iwreq_data *wrqu, char *extra)
6718 {
6719         struct ipw_priv *priv = libipw_priv(dev);
6720         struct libipw_device *ieee = priv->ieee;
6721         struct lib80211_crypt_data *crypt;
6722         struct iw_param *param = &wrqu->param;
6723
6724         switch (param->flags & IW_AUTH_INDEX) {
6725         case IW_AUTH_WPA_VERSION:
6726         case IW_AUTH_CIPHER_PAIRWISE:
6727         case IW_AUTH_CIPHER_GROUP:
6728         case IW_AUTH_KEY_MGMT:
6729                 /*
6730                  * wpa_supplicant will control these internally
6731                  */
6732                 return -EOPNOTSUPP;
6733
6734         case IW_AUTH_TKIP_COUNTERMEASURES:
6735                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6736                 if (!crypt || !crypt->ops->get_flags)
6737                         break;
6738
6739                 param->value = (crypt->ops->get_flags(crypt->priv) &
6740                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6741
6742                 break;
6743
6744         case IW_AUTH_DROP_UNENCRYPTED:
6745                 param->value = ieee->drop_unencrypted;
6746                 break;
6747
6748         case IW_AUTH_80211_AUTH_ALG:
6749                 param->value = ieee->sec.auth_mode;
6750                 break;
6751
6752         case IW_AUTH_WPA_ENABLED:
6753                 param->value = ieee->wpa_enabled;
6754                 break;
6755
6756         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6757                 param->value = ieee->ieee802_1x;
6758                 break;
6759
6760         case IW_AUTH_ROAMING_CONTROL:
6761         case IW_AUTH_PRIVACY_INVOKED:
6762                 param->value = ieee->privacy_invoked;
6763                 break;
6764
6765         default:
6766                 return -EOPNOTSUPP;
6767         }
6768         return 0;
6769 }
6770
6771 /* SIOCSIWENCODEEXT */
6772 static int ipw_wx_set_encodeext(struct net_device *dev,
6773                                 struct iw_request_info *info,
6774                                 union iwreq_data *wrqu, char *extra)
6775 {
6776         struct ipw_priv *priv = libipw_priv(dev);
6777         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6778
6779         if (hwcrypto) {
6780                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6781                         /* IPW HW can't build TKIP MIC,
6782                            host decryption still needed */
6783                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6784                                 priv->ieee->host_mc_decrypt = 1;
6785                         else {
6786                                 priv->ieee->host_encrypt = 0;
6787                                 priv->ieee->host_encrypt_msdu = 1;
6788                                 priv->ieee->host_decrypt = 1;
6789                         }
6790                 } else {
6791                         priv->ieee->host_encrypt = 0;
6792                         priv->ieee->host_encrypt_msdu = 0;
6793                         priv->ieee->host_decrypt = 0;
6794                         priv->ieee->host_mc_decrypt = 0;
6795                 }
6796         }
6797
6798         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6799 }
6800
6801 /* SIOCGIWENCODEEXT */
6802 static int ipw_wx_get_encodeext(struct net_device *dev,
6803                                 struct iw_request_info *info,
6804                                 union iwreq_data *wrqu, char *extra)
6805 {
6806         struct ipw_priv *priv = libipw_priv(dev);
6807         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6808 }
6809
6810 /* SIOCSIWMLME */
6811 static int ipw_wx_set_mlme(struct net_device *dev,
6812                            struct iw_request_info *info,
6813                            union iwreq_data *wrqu, char *extra)
6814 {
6815         struct ipw_priv *priv = libipw_priv(dev);
6816         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6817         __le16 reason;
6818
6819         reason = cpu_to_le16(mlme->reason_code);
6820
6821         switch (mlme->cmd) {
6822         case IW_MLME_DEAUTH:
6823                 /* silently ignore */
6824                 break;
6825
6826         case IW_MLME_DISASSOC:
6827                 ipw_disassociate(priv);
6828                 break;
6829
6830         default:
6831                 return -EOPNOTSUPP;
6832         }
6833         return 0;
6834 }
6835
6836 #ifdef CONFIG_IPW2200_QOS
6837
6838 /* QoS */
6839 /*
6840 * get the modulation type of the current network or
6841 * the card current mode
6842 */
6843 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6844 {
6845         u8 mode = 0;
6846
6847         if (priv->status & STATUS_ASSOCIATED) {
6848                 unsigned long flags;
6849
6850                 spin_lock_irqsave(&priv->ieee->lock, flags);
6851                 mode = priv->assoc_network->mode;
6852                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6853         } else {
6854                 mode = priv->ieee->mode;
6855         }
6856         IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6857         return mode;
6858 }
6859
6860 /*
6861 * Handle management frame beacon and probe response
6862 */
6863 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6864                                          int active_network,
6865                                          struct libipw_network *network)
6866 {
6867         u32 size = sizeof(struct libipw_qos_parameters);
6868
6869         if (network->capability & WLAN_CAPABILITY_IBSS)
6870                 network->qos_data.active = network->qos_data.supported;
6871
6872         if (network->flags & NETWORK_HAS_QOS_MASK) {
6873                 if (active_network &&
6874                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6875                         network->qos_data.active = network->qos_data.supported;
6876
6877                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6878                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6879                     (network->qos_data.old_param_count !=
6880                      network->qos_data.param_count)) {
6881                         network->qos_data.old_param_count =
6882                             network->qos_data.param_count;
6883                         schedule_work(&priv->qos_activate);
6884                         IPW_DEBUG_QOS("QoS parameters change call "
6885                                       "qos_activate\n");
6886                 }
6887         } else {
6888                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6889                         memcpy(&network->qos_data.parameters,
6890                                &def_parameters_CCK, size);
6891                 else
6892                         memcpy(&network->qos_data.parameters,
6893                                &def_parameters_OFDM, size);
6894
6895                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6896                         IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6897                         schedule_work(&priv->qos_activate);
6898                 }
6899
6900                 network->qos_data.active = 0;
6901                 network->qos_data.supported = 0;
6902         }
6903         if ((priv->status & STATUS_ASSOCIATED) &&
6904             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6905                 if (!ether_addr_equal(network->bssid, priv->bssid))
6906                         if (network->capability & WLAN_CAPABILITY_IBSS)
6907                                 if ((network->ssid_len ==
6908                                      priv->assoc_network->ssid_len) &&
6909                                     !memcmp(network->ssid,
6910                                             priv->assoc_network->ssid,
6911                                             network->ssid_len)) {
6912                                         schedule_work(&priv->merge_networks);
6913                                 }
6914         }
6915
6916         return 0;
6917 }
6918
6919 /*
6920 * This function set up the firmware to support QoS. It sends
6921 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6922 */
6923 static int ipw_qos_activate(struct ipw_priv *priv,
6924                             struct libipw_qos_data *qos_network_data)
6925 {
6926         int err;
6927         struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
6928         struct libipw_qos_parameters *active_one = NULL;
6929         u32 size = sizeof(struct libipw_qos_parameters);
6930         u32 burst_duration;
6931         int i;
6932         u8 type;
6933
6934         type = ipw_qos_current_mode(priv);
6935
6936         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6937         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6938         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6939         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6940
6941         if (qos_network_data == NULL) {
6942                 if (type == IEEE_B) {
6943                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6944                         active_one = &def_parameters_CCK;
6945                 } else
6946                         active_one = &def_parameters_OFDM;
6947
6948                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6949                 burst_duration = ipw_qos_get_burst_duration(priv);
6950                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6951                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6952                             cpu_to_le16(burst_duration);
6953         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6954                 if (type == IEEE_B) {
6955                         IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
6956                                       type);
6957                         if (priv->qos_data.qos_enable == 0)
6958                                 active_one = &def_parameters_CCK;
6959                         else
6960                                 active_one = priv->qos_data.def_qos_parm_CCK;
6961                 } else {
6962                         if (priv->qos_data.qos_enable == 0)
6963                                 active_one = &def_parameters_OFDM;
6964                         else
6965                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6966                 }
6967                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6968         } else {
6969                 unsigned long flags;
6970                 int active;
6971
6972                 spin_lock_irqsave(&priv->ieee->lock, flags);
6973                 active_one = &(qos_network_data->parameters);
6974                 qos_network_data->old_param_count =
6975                     qos_network_data->param_count;
6976                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6977                 active = qos_network_data->supported;
6978                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6979
6980                 if (active == 0) {
6981                         burst_duration = ipw_qos_get_burst_duration(priv);
6982                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6983                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6984                                     tx_op_limit[i] = cpu_to_le16(burst_duration);
6985                 }
6986         }
6987
6988         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6989         err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
6990         if (err)
6991                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6992
6993         return err;
6994 }
6995
6996 /*
6997 * send IPW_CMD_WME_INFO to the firmware
6998 */
6999 static int ipw_qos_set_info_element(struct ipw_priv *priv)
7000 {
7001         int ret = 0;
7002         struct libipw_qos_information_element qos_info;
7003
7004         if (priv == NULL)
7005                 return -1;
7006
7007         qos_info.elementID = QOS_ELEMENT_ID;
7008         qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
7009
7010         qos_info.version = QOS_VERSION_1;
7011         qos_info.ac_info = 0;
7012
7013         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7014         qos_info.qui_type = QOS_OUI_TYPE;
7015         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7016
7017         ret = ipw_send_qos_info_command(priv, &qos_info);
7018         if (ret != 0) {
7019                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7020         }
7021         return ret;
7022 }
7023
7024 /*
7025 * Set the QoS parameter with the association request structure
7026 */
7027 static int ipw_qos_association(struct ipw_priv *priv,
7028                                struct libipw_network *network)
7029 {
7030         int err = 0;
7031         struct libipw_qos_data *qos_data = NULL;
7032         struct libipw_qos_data ibss_data = {
7033                 .supported = 1,
7034                 .active = 1,
7035         };
7036
7037         switch (priv->ieee->iw_mode) {
7038         case IW_MODE_ADHOC:
7039                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7040
7041                 qos_data = &ibss_data;
7042                 break;
7043
7044         case IW_MODE_INFRA:
7045                 qos_data = &network->qos_data;
7046                 break;
7047
7048         default:
7049                 BUG();
7050                 break;
7051         }
7052
7053         err = ipw_qos_activate(priv, qos_data);
7054         if (err) {
7055                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7056                 return err;
7057         }
7058
7059         if (priv->qos_data.qos_enable && qos_data->supported) {
7060                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7061                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7062                 return ipw_qos_set_info_element(priv);
7063         }
7064
7065         return 0;
7066 }
7067
7068 /*
7069 * handling the beaconing responses. if we get different QoS setting
7070 * off the network from the associated setting, adjust the QoS
7071 * setting
7072 */
7073 static int ipw_qos_association_resp(struct ipw_priv *priv,
7074                                     struct libipw_network *network)
7075 {
7076         int ret = 0;
7077         unsigned long flags;
7078         u32 size = sizeof(struct libipw_qos_parameters);
7079         int set_qos_param = 0;
7080
7081         if ((priv == NULL) || (network == NULL) ||
7082             (priv->assoc_network == NULL))
7083                 return ret;
7084
7085         if (!(priv->status & STATUS_ASSOCIATED))
7086                 return ret;
7087
7088         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7089                 return ret;
7090
7091         spin_lock_irqsave(&priv->ieee->lock, flags);
7092         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7093                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7094                        sizeof(struct libipw_qos_data));
7095                 priv->assoc_network->qos_data.active = 1;
7096                 if ((network->qos_data.old_param_count !=
7097                      network->qos_data.param_count)) {
7098                         set_qos_param = 1;
7099                         network->qos_data.old_param_count =
7100                             network->qos_data.param_count;
7101                 }
7102
7103         } else {
7104                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7105                         memcpy(&priv->assoc_network->qos_data.parameters,
7106                                &def_parameters_CCK, size);
7107                 else
7108                         memcpy(&priv->assoc_network->qos_data.parameters,
7109                                &def_parameters_OFDM, size);
7110                 priv->assoc_network->qos_data.active = 0;
7111                 priv->assoc_network->qos_data.supported = 0;
7112                 set_qos_param = 1;
7113         }
7114
7115         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7116
7117         if (set_qos_param == 1)
7118                 schedule_work(&priv->qos_activate);
7119
7120         return ret;
7121 }
7122
7123 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7124 {
7125         u32 ret = 0;
7126
7127         if ((priv == NULL))
7128                 return 0;
7129
7130         if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7131                 ret = priv->qos_data.burst_duration_CCK;
7132         else
7133                 ret = priv->qos_data.burst_duration_OFDM;
7134
7135         return ret;
7136 }
7137
7138 /*
7139 * Initialize the setting of QoS global
7140 */
7141 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7142                          int burst_enable, u32 burst_duration_CCK,
7143                          u32 burst_duration_OFDM)
7144 {
7145         priv->qos_data.qos_enable = enable;
7146
7147         if (priv->qos_data.qos_enable) {
7148                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7149                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7150                 IPW_DEBUG_QOS("QoS is enabled\n");
7151         } else {
7152                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7153                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7154                 IPW_DEBUG_QOS("QoS is not enabled\n");
7155         }
7156
7157         priv->qos_data.burst_enable = burst_enable;
7158
7159         if (burst_enable) {
7160                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7161                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7162         } else {
7163                 priv->qos_data.burst_duration_CCK = 0;
7164                 priv->qos_data.burst_duration_OFDM = 0;
7165         }
7166 }
7167
7168 /*
7169 * map the packet priority to the right TX Queue
7170 */
7171 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7172 {
7173         if (priority > 7 || !priv->qos_data.qos_enable)
7174                 priority = 0;
7175
7176         return from_priority_to_tx_queue[priority] - 1;
7177 }
7178
7179 static int ipw_is_qos_active(struct net_device *dev,
7180                              struct sk_buff *skb)
7181 {
7182         struct ipw_priv *priv = libipw_priv(dev);
7183         struct libipw_qos_data *qos_data = NULL;
7184         int active, supported;
7185         u8 *daddr = skb->data + ETH_ALEN;
7186         int unicast = !is_multicast_ether_addr(daddr);
7187
7188         if (!(priv->status & STATUS_ASSOCIATED))
7189                 return 0;
7190
7191         qos_data = &priv->assoc_network->qos_data;
7192
7193         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7194                 if (unicast == 0)
7195                         qos_data->active = 0;
7196                 else
7197                         qos_data->active = qos_data->supported;
7198         }
7199         active = qos_data->active;
7200         supported = qos_data->supported;
7201         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7202                       "unicast %d\n",
7203                       priv->qos_data.qos_enable, active, supported, unicast);
7204         if (active && priv->qos_data.qos_enable)
7205                 return 1;
7206
7207         return 0;
7208
7209 }
7210 /*
7211 * add QoS parameter to the TX command
7212 */
7213 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7214                                         u16 priority,
7215                                         struct tfd_data *tfd)
7216 {
7217         int tx_queue_id = 0;
7218
7219
7220         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7221         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7222
7223         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7224                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7225                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7226         }
7227         return 0;
7228 }
7229
7230 /*
7231 * background support to run QoS activate functionality
7232 */
7233 static void ipw_bg_qos_activate(struct work_struct *work)
7234 {
7235         struct ipw_priv *priv =
7236                 container_of(work, struct ipw_priv, qos_activate);
7237
7238         mutex_lock(&priv->mutex);
7239
7240         if (priv->status & STATUS_ASSOCIATED)
7241                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7242
7243         mutex_unlock(&priv->mutex);
7244 }
7245
7246 static int ipw_handle_probe_response(struct net_device *dev,
7247                                      struct libipw_probe_response *resp,
7248                                      struct libipw_network *network)
7249 {
7250         struct ipw_priv *priv = libipw_priv(dev);
7251         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7252                               (network == priv->assoc_network));
7253
7254         ipw_qos_handle_probe_response(priv, active_network, network);
7255
7256         return 0;
7257 }
7258
7259 static int ipw_handle_beacon(struct net_device *dev,
7260                              struct libipw_beacon *resp,
7261                              struct libipw_network *network)
7262 {
7263         struct ipw_priv *priv = libipw_priv(dev);
7264         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7265                               (network == priv->assoc_network));
7266
7267         ipw_qos_handle_probe_response(priv, active_network, network);
7268
7269         return 0;
7270 }
7271
7272 static int ipw_handle_assoc_response(struct net_device *dev,
7273                                      struct libipw_assoc_response *resp,
7274                                      struct libipw_network *network)
7275 {
7276         struct ipw_priv *priv = libipw_priv(dev);
7277         ipw_qos_association_resp(priv, network);
7278         return 0;
7279 }
7280
7281 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7282                                        *qos_param)
7283 {
7284         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7285                                 sizeof(*qos_param) * 3, qos_param);
7286 }
7287
7288 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7289                                      *qos_param)
7290 {
7291         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7292                                 qos_param);
7293 }
7294
7295 #endif                          /* CONFIG_IPW2200_QOS */
7296
7297 static int ipw_associate_network(struct ipw_priv *priv,
7298                                  struct libipw_network *network,
7299                                  struct ipw_supported_rates *rates, int roaming)
7300 {
7301         int err;
7302
7303         if (priv->config & CFG_FIXED_RATE)
7304                 ipw_set_fixed_rate(priv, network->mode);
7305
7306         if (!(priv->config & CFG_STATIC_ESSID)) {
7307                 priv->essid_len = min(network->ssid_len,
7308                                       (u8) IW_ESSID_MAX_SIZE);
7309                 memcpy(priv->essid, network->ssid, priv->essid_len);
7310         }
7311
7312         network->last_associate = jiffies;
7313
7314         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7315         priv->assoc_request.channel = network->channel;
7316         priv->assoc_request.auth_key = 0;
7317
7318         if ((priv->capability & CAP_PRIVACY_ON) &&
7319             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7320                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7321                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7322
7323                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7324                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7325
7326         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7327                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7328                 priv->assoc_request.auth_type = AUTH_LEAP;
7329         else
7330                 priv->assoc_request.auth_type = AUTH_OPEN;
7331
7332         if (priv->ieee->wpa_ie_len) {
7333                 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7334                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7335                                  priv->ieee->wpa_ie_len);
7336         }
7337
7338         /*
7339          * It is valid for our ieee device to support multiple modes, but
7340          * when it comes to associating to a given network we have to choose
7341          * just one mode.
7342          */
7343         if (network->mode & priv->ieee->mode & IEEE_A)
7344                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7345         else if (network->mode & priv->ieee->mode & IEEE_G)
7346                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7347         else if (network->mode & priv->ieee->mode & IEEE_B)
7348                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7349
7350         priv->assoc_request.capability = cpu_to_le16(network->capability);
7351         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7352             && !(priv->config & CFG_PREAMBLE_LONG)) {
7353                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7354         } else {
7355                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7356
7357                 /* Clear the short preamble if we won't be supporting it */
7358                 priv->assoc_request.capability &=
7359                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7360         }
7361
7362         /* Clear capability bits that aren't used in Ad Hoc */
7363         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7364                 priv->assoc_request.capability &=
7365                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7366
7367         IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7368                         roaming ? "Rea" : "A",
7369                         priv->essid_len, priv->essid,
7370                         network->channel,
7371                         ipw_modes[priv->assoc_request.ieee_mode],
7372                         rates->num_rates,
7373                         (priv->assoc_request.preamble_length ==
7374                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7375                         network->capability &
7376                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7377                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7378                         priv->capability & CAP_PRIVACY_ON ?
7379                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7380                          "(open)") : "",
7381                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7382                         priv->capability & CAP_PRIVACY_ON ?
7383                         '1' + priv->ieee->sec.active_key : '.',
7384                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7385
7386         priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7387         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7388             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7389                 priv->assoc_request.assoc_type = HC_IBSS_START;
7390                 priv->assoc_request.assoc_tsf_msw = 0;
7391                 priv->assoc_request.assoc_tsf_lsw = 0;
7392         } else {
7393                 if (unlikely(roaming))
7394                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7395                 else
7396                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7397                 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7398                 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7399         }
7400
7401         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7402
7403         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7404                 eth_broadcast_addr(priv->assoc_request.dest);
7405                 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7406         } else {
7407                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7408                 priv->assoc_request.atim_window = 0;
7409         }
7410
7411         priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7412
7413         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7414         if (err) {
7415                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7416                 return err;
7417         }
7418
7419         rates->ieee_mode = priv->assoc_request.ieee_mode;
7420         rates->purpose = IPW_RATE_CONNECT;
7421         ipw_send_supported_rates(priv, rates);
7422
7423         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7424                 priv->sys_config.dot11g_auto_detection = 1;
7425         else
7426                 priv->sys_config.dot11g_auto_detection = 0;
7427
7428         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7429                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7430         else
7431                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7432
7433         err = ipw_send_system_config(priv);
7434         if (err) {
7435                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7436                 return err;
7437         }
7438
7439         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7440         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7441         if (err) {
7442                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7443                 return err;
7444         }
7445
7446         /*
7447          * If preemption is enabled, it is possible for the association
7448          * to complete before we return from ipw_send_associate.  Therefore
7449          * we have to be sure and update our priviate data first.
7450          */
7451         priv->channel = network->channel;
7452         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7453         priv->status |= STATUS_ASSOCIATING;
7454         priv->status &= ~STATUS_SECURITY_UPDATED;
7455
7456         priv->assoc_network = network;
7457
7458 #ifdef CONFIG_IPW2200_QOS
7459         ipw_qos_association(priv, network);
7460 #endif
7461
7462         err = ipw_send_associate(priv, &priv->assoc_request);
7463         if (err) {
7464                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7465                 return err;
7466         }
7467
7468         IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n",
7469                   priv->essid_len, priv->essid, priv->bssid);
7470
7471         return 0;
7472 }
7473
7474 static void ipw_roam(void *data)
7475 {
7476         struct ipw_priv *priv = data;
7477         struct libipw_network *network = NULL;
7478         struct ipw_network_match match = {
7479                 .network = priv->assoc_network
7480         };
7481
7482         /* The roaming process is as follows:
7483          *
7484          * 1.  Missed beacon threshold triggers the roaming process by
7485          *     setting the status ROAM bit and requesting a scan.
7486          * 2.  When the scan completes, it schedules the ROAM work
7487          * 3.  The ROAM work looks at all of the known networks for one that
7488          *     is a better network than the currently associated.  If none
7489          *     found, the ROAM process is over (ROAM bit cleared)
7490          * 4.  If a better network is found, a disassociation request is
7491          *     sent.
7492          * 5.  When the disassociation completes, the roam work is again
7493          *     scheduled.  The second time through, the driver is no longer
7494          *     associated, and the newly selected network is sent an
7495          *     association request.
7496          * 6.  At this point ,the roaming process is complete and the ROAM
7497          *     status bit is cleared.
7498          */
7499
7500         /* If we are no longer associated, and the roaming bit is no longer
7501          * set, then we are not actively roaming, so just return */
7502         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7503                 return;
7504
7505         if (priv->status & STATUS_ASSOCIATED) {
7506                 /* First pass through ROAM process -- look for a better
7507                  * network */
7508                 unsigned long flags;
7509                 u8 rssi = priv->assoc_network->stats.rssi;
7510                 priv->assoc_network->stats.rssi = -128;
7511                 spin_lock_irqsave(&priv->ieee->lock, flags);
7512                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7513                         if (network != priv->assoc_network)
7514                                 ipw_best_network(priv, &match, network, 1);
7515                 }
7516                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7517                 priv->assoc_network->stats.rssi = rssi;
7518
7519                 if (match.network == priv->assoc_network) {
7520                         IPW_DEBUG_ASSOC("No better APs in this network to "
7521                                         "roam to.\n");
7522                         priv->status &= ~STATUS_ROAMING;
7523                         ipw_debug_config(priv);
7524                         return;
7525                 }
7526
7527                 ipw_send_disassociate(priv, 1);
7528                 priv->assoc_network = match.network;
7529
7530                 return;
7531         }
7532
7533         /* Second pass through ROAM process -- request association */
7534         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7535         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7536         priv->status &= ~STATUS_ROAMING;
7537 }
7538
7539 static void ipw_bg_roam(struct work_struct *work)
7540 {
7541         struct ipw_priv *priv =
7542                 container_of(work, struct ipw_priv, roam);
7543         mutex_lock(&priv->mutex);
7544         ipw_roam(priv);
7545         mutex_unlock(&priv->mutex);
7546 }
7547
7548 static int ipw_associate(void *data)
7549 {
7550         struct ipw_priv *priv = data;
7551
7552         struct libipw_network *network = NULL;
7553         struct ipw_network_match match = {
7554                 .network = NULL
7555         };
7556         struct ipw_supported_rates *rates;
7557         struct list_head *element;
7558         unsigned long flags;
7559
7560         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7561                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7562                 return 0;
7563         }
7564
7565         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7566                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7567                                 "progress)\n");
7568                 return 0;
7569         }
7570
7571         if (priv->status & STATUS_DISASSOCIATING) {
7572                 IPW_DEBUG_ASSOC("Not attempting association (in "
7573                                 "disassociating)\n ");
7574                 schedule_work(&priv->associate);
7575                 return 0;
7576         }
7577
7578         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7579                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7580                                 "initialized)\n");
7581                 return 0;
7582         }
7583
7584         if (!(priv->config & CFG_ASSOCIATE) &&
7585             !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7586                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7587                 return 0;
7588         }
7589
7590         /* Protect our use of the network_list */
7591         spin_lock_irqsave(&priv->ieee->lock, flags);
7592         list_for_each_entry(network, &priv->ieee->network_list, list)
7593             ipw_best_network(priv, &match, network, 0);
7594
7595         network = match.network;
7596         rates = &match.rates;
7597
7598         if (network == NULL &&
7599             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7600             priv->config & CFG_ADHOC_CREATE &&
7601             priv->config & CFG_STATIC_ESSID &&
7602             priv->config & CFG_STATIC_CHANNEL) {
7603                 /* Use oldest network if the free list is empty */
7604                 if (list_empty(&priv->ieee->network_free_list)) {
7605                         struct libipw_network *oldest = NULL;
7606                         struct libipw_network *target;
7607
7608                         list_for_each_entry(target, &priv->ieee->network_list, list) {
7609                                 if ((oldest == NULL) ||
7610                                     (target->last_scanned < oldest->last_scanned))
7611                                         oldest = target;
7612                         }
7613
7614                         /* If there are no more slots, expire the oldest */
7615                         list_del(&oldest->list);
7616                         target = oldest;
7617                         IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n",
7618                                         target->ssid_len, target->ssid,
7619                                         target->bssid);
7620                         list_add_tail(&target->list,
7621                                       &priv->ieee->network_free_list);
7622                 }
7623
7624                 element = priv->ieee->network_free_list.next;
7625                 network = list_entry(element, struct libipw_network, list);
7626                 ipw_adhoc_create(priv, network);
7627                 rates = &priv->rates;
7628                 list_del(element);
7629                 list_add_tail(&network->list, &priv->ieee->network_list);
7630         }
7631         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7632
7633         /* If we reached the end of the list, then we don't have any valid
7634          * matching APs */
7635         if (!network) {
7636                 ipw_debug_config(priv);
7637
7638                 if (!(priv->status & STATUS_SCANNING)) {
7639                         if (!(priv->config & CFG_SPEED_SCAN))
7640                                 schedule_delayed_work(&priv->request_scan,
7641                                                       SCAN_INTERVAL);
7642                         else
7643                                 schedule_delayed_work(&priv->request_scan, 0);
7644                 }
7645
7646                 return 0;
7647         }
7648
7649         ipw_associate_network(priv, network, rates, 0);
7650
7651         return 1;
7652 }
7653
7654 static void ipw_bg_associate(struct work_struct *work)
7655 {
7656         struct ipw_priv *priv =
7657                 container_of(work, struct ipw_priv, associate);
7658         mutex_lock(&priv->mutex);
7659         ipw_associate(priv);
7660         mutex_unlock(&priv->mutex);
7661 }
7662
7663 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7664                                       struct sk_buff *skb)
7665 {
7666         struct ieee80211_hdr *hdr;
7667         u16 fc;
7668
7669         hdr = (struct ieee80211_hdr *)skb->data;
7670         fc = le16_to_cpu(hdr->frame_control);
7671         if (!(fc & IEEE80211_FCTL_PROTECTED))
7672                 return;
7673
7674         fc &= ~IEEE80211_FCTL_PROTECTED;
7675         hdr->frame_control = cpu_to_le16(fc);
7676         switch (priv->ieee->sec.level) {
7677         case SEC_LEVEL_3:
7678                 /* Remove CCMP HDR */
7679                 memmove(skb->data + LIBIPW_3ADDR_LEN,
7680                         skb->data + LIBIPW_3ADDR_LEN + 8,
7681                         skb->len - LIBIPW_3ADDR_LEN - 8);
7682                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7683                 break;
7684         case SEC_LEVEL_2:
7685                 break;
7686         case SEC_LEVEL_1:
7687                 /* Remove IV */
7688                 memmove(skb->data + LIBIPW_3ADDR_LEN,
7689                         skb->data + LIBIPW_3ADDR_LEN + 4,
7690                         skb->len - LIBIPW_3ADDR_LEN - 4);
7691                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7692                 break;
7693         case SEC_LEVEL_0:
7694                 break;
7695         default:
7696                 printk(KERN_ERR "Unknown security level %d\n",
7697                        priv->ieee->sec.level);
7698                 break;
7699         }
7700 }
7701
7702 static void ipw_handle_data_packet(struct ipw_priv *priv,
7703                                    struct ipw_rx_mem_buffer *rxb,
7704                                    struct libipw_rx_stats *stats)
7705 {
7706         struct net_device *dev = priv->net_dev;
7707         struct libipw_hdr_4addr *hdr;
7708         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7709
7710         /* We received data from the HW, so stop the watchdog */
7711         netif_trans_update(dev);
7712
7713         /* We only process data packets if the
7714          * interface is open */
7715         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7716                      skb_tailroom(rxb->skb))) {
7717                 dev->stats.rx_errors++;
7718                 priv->wstats.discard.misc++;
7719                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7720                 return;
7721         } else if (unlikely(!netif_running(priv->net_dev))) {
7722                 dev->stats.rx_dropped++;
7723                 priv->wstats.discard.misc++;
7724                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7725                 return;
7726         }
7727
7728         /* Advance skb->data to the start of the actual payload */
7729         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7730
7731         /* Set the size of the skb to the size of the frame */
7732         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7733
7734         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7735
7736         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7737         hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7738         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7739             (is_multicast_ether_addr(hdr->addr1) ?
7740              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7741                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7742
7743         if (!libipw_rx(priv->ieee, rxb->skb, stats))
7744                 dev->stats.rx_errors++;
7745         else {                  /* libipw_rx succeeded, so it now owns the SKB */
7746                 rxb->skb = NULL;
7747                 __ipw_led_activity_on(priv);
7748         }
7749 }
7750
7751 #ifdef CONFIG_IPW2200_RADIOTAP
7752 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7753                                            struct ipw_rx_mem_buffer *rxb,
7754                                            struct libipw_rx_stats *stats)
7755 {
7756         struct net_device *dev = priv->net_dev;
7757         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7758         struct ipw_rx_frame *frame = &pkt->u.frame;
7759
7760         /* initial pull of some data */
7761         u16 received_channel = frame->received_channel;
7762         u8 antennaAndPhy = frame->antennaAndPhy;
7763         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7764         u16 pktrate = frame->rate;
7765
7766         /* Magic struct that slots into the radiotap header -- no reason
7767          * to build this manually element by element, we can write it much
7768          * more efficiently than we can parse it. ORDER MATTERS HERE */
7769         struct ipw_rt_hdr *ipw_rt;
7770
7771         unsigned short len = le16_to_cpu(pkt->u.frame.length);
7772
7773         /* We received data from the HW, so stop the watchdog */
7774         netif_trans_update(dev);
7775
7776         /* We only process data packets if the
7777          * interface is open */
7778         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7779                      skb_tailroom(rxb->skb))) {
7780                 dev->stats.rx_errors++;
7781                 priv->wstats.discard.misc++;
7782                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7783                 return;
7784         } else if (unlikely(!netif_running(priv->net_dev))) {
7785                 dev->stats.rx_dropped++;
7786                 priv->wstats.discard.misc++;
7787                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7788                 return;
7789         }
7790
7791         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7792          * that now */
7793         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7794                 /* FIXME: Should alloc bigger skb instead */
7795                 dev->stats.rx_dropped++;
7796                 priv->wstats.discard.misc++;
7797                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7798                 return;
7799         }
7800
7801         /* copy the frame itself */
7802         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7803                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7804
7805         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7806
7807         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7808         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7809         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7810
7811         /* Big bitfield of all the fields we provide in radiotap */
7812         ipw_rt->rt_hdr.it_present = cpu_to_le32(
7813              (1 << IEEE80211_RADIOTAP_TSFT) |
7814              (1 << IEEE80211_RADIOTAP_FLAGS) |
7815              (1 << IEEE80211_RADIOTAP_RATE) |
7816              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7817              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7818              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7819              (1 << IEEE80211_RADIOTAP_ANTENNA));
7820
7821         /* Zero the flags, we'll add to them as we go */
7822         ipw_rt->rt_flags = 0;
7823         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7824                                frame->parent_tsf[2] << 16 |
7825                                frame->parent_tsf[1] << 8  |
7826                                frame->parent_tsf[0]);
7827
7828         /* Convert signal to DBM */
7829         ipw_rt->rt_dbmsignal = antsignal;
7830         ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7831
7832         /* Convert the channel data and set the flags */
7833         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7834         if (received_channel > 14) {    /* 802.11a */
7835                 ipw_rt->rt_chbitmask =
7836                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7837         } else if (antennaAndPhy & 32) {        /* 802.11b */
7838                 ipw_rt->rt_chbitmask =
7839                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7840         } else {                /* 802.11g */
7841                 ipw_rt->rt_chbitmask =
7842                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7843         }
7844
7845         /* set the rate in multiples of 500k/s */
7846         switch (pktrate) {
7847         case IPW_TX_RATE_1MB:
7848                 ipw_rt->rt_rate = 2;
7849                 break;
7850         case IPW_TX_RATE_2MB:
7851                 ipw_rt->rt_rate = 4;
7852                 break;
7853         case IPW_TX_RATE_5MB:
7854                 ipw_rt->rt_rate = 10;
7855                 break;
7856         case IPW_TX_RATE_6MB:
7857                 ipw_rt->rt_rate = 12;
7858                 break;
7859         case IPW_TX_RATE_9MB:
7860                 ipw_rt->rt_rate = 18;
7861                 break;
7862         case IPW_TX_RATE_11MB:
7863                 ipw_rt->rt_rate = 22;
7864                 break;
7865         case IPW_TX_RATE_12MB:
7866                 ipw_rt->rt_rate = 24;
7867                 break;
7868         case IPW_TX_RATE_18MB:
7869                 ipw_rt->rt_rate = 36;
7870                 break;
7871         case IPW_TX_RATE_24MB:
7872                 ipw_rt->rt_rate = 48;
7873                 break;
7874         case IPW_TX_RATE_36MB:
7875                 ipw_rt->rt_rate = 72;
7876                 break;
7877         case IPW_TX_RATE_48MB:
7878                 ipw_rt->rt_rate = 96;
7879                 break;
7880         case IPW_TX_RATE_54MB:
7881                 ipw_rt->rt_rate = 108;
7882                 break;
7883         default:
7884                 ipw_rt->rt_rate = 0;
7885                 break;
7886         }
7887
7888         /* antenna number */
7889         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7890
7891         /* set the preamble flag if we have it */
7892         if ((antennaAndPhy & 64))
7893                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7894
7895         /* Set the size of the skb to the size of the frame */
7896         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7897
7898         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7899
7900         if (!libipw_rx(priv->ieee, rxb->skb, stats))
7901                 dev->stats.rx_errors++;
7902         else {                  /* libipw_rx succeeded, so it now owns the SKB */
7903                 rxb->skb = NULL;
7904                 /* no LED during capture */
7905         }
7906 }
7907 #endif
7908
7909 #ifdef CONFIG_IPW2200_PROMISCUOUS
7910 #define libipw_is_probe_response(fc) \
7911    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7912     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7913
7914 #define libipw_is_management(fc) \
7915    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7916
7917 #define libipw_is_control(fc) \
7918    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7919
7920 #define libipw_is_data(fc) \
7921    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7922
7923 #define libipw_is_assoc_request(fc) \
7924    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7925
7926 #define libipw_is_reassoc_request(fc) \
7927    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7928
7929 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7930                                       struct ipw_rx_mem_buffer *rxb,
7931                                       struct libipw_rx_stats *stats)
7932 {
7933         struct net_device *dev = priv->prom_net_dev;
7934         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7935         struct ipw_rx_frame *frame = &pkt->u.frame;
7936         struct ipw_rt_hdr *ipw_rt;
7937
7938         /* First cache any information we need before we overwrite
7939          * the information provided in the skb from the hardware */
7940         struct ieee80211_hdr *hdr;
7941         u16 channel = frame->received_channel;
7942         u8 phy_flags = frame->antennaAndPhy;
7943         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7944         s8 noise = (s8) le16_to_cpu(frame->noise);
7945         u8 rate = frame->rate;
7946         unsigned short len = le16_to_cpu(pkt->u.frame.length);
7947         struct sk_buff *skb;
7948         int hdr_only = 0;
7949         u16 filter = priv->prom_priv->filter;
7950
7951         /* If the filter is set to not include Rx frames then return */
7952         if (filter & IPW_PROM_NO_RX)
7953                 return;
7954
7955         /* We received data from the HW, so stop the watchdog */
7956         netif_trans_update(dev);
7957
7958         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7959                 dev->stats.rx_errors++;
7960                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7961                 return;
7962         }
7963
7964         /* We only process data packets if the interface is open */
7965         if (unlikely(!netif_running(dev))) {
7966                 dev->stats.rx_dropped++;
7967                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7968                 return;
7969         }
7970
7971         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7972          * that now */
7973         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7974                 /* FIXME: Should alloc bigger skb instead */
7975                 dev->stats.rx_dropped++;
7976                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7977                 return;
7978         }
7979
7980         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7981         if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
7982                 if (filter & IPW_PROM_NO_MGMT)
7983                         return;
7984                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7985                         hdr_only = 1;
7986         } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
7987                 if (filter & IPW_PROM_NO_CTL)
7988                         return;
7989                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7990                         hdr_only = 1;
7991         } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
7992                 if (filter & IPW_PROM_NO_DATA)
7993                         return;
7994                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7995                         hdr_only = 1;
7996         }
7997
7998         /* Copy the SKB since this is for the promiscuous side */
7999         skb = skb_copy(rxb->skb, GFP_ATOMIC);
8000         if (skb == NULL) {
8001                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8002                 return;
8003         }
8004
8005         /* copy the frame data to write after where the radiotap header goes */
8006         ipw_rt = (void *)skb->data;
8007
8008         if (hdr_only)
8009                 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
8010
8011         memcpy(ipw_rt->payload, hdr, len);
8012
8013         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8014         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
8015         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));   /* total header+data */
8016
8017         /* Set the size of the skb to the size of the frame */
8018         skb_put(skb, sizeof(*ipw_rt) + len);
8019
8020         /* Big bitfield of all the fields we provide in radiotap */
8021         ipw_rt->rt_hdr.it_present = cpu_to_le32(
8022              (1 << IEEE80211_RADIOTAP_TSFT) |
8023              (1 << IEEE80211_RADIOTAP_FLAGS) |
8024              (1 << IEEE80211_RADIOTAP_RATE) |
8025              (1 << IEEE80211_RADIOTAP_CHANNEL) |
8026              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8027              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8028              (1 << IEEE80211_RADIOTAP_ANTENNA));
8029
8030         /* Zero the flags, we'll add to them as we go */
8031         ipw_rt->rt_flags = 0;
8032         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8033                                frame->parent_tsf[2] << 16 |
8034                                frame->parent_tsf[1] << 8  |
8035                                frame->parent_tsf[0]);
8036
8037         /* Convert to DBM */
8038         ipw_rt->rt_dbmsignal = signal;
8039         ipw_rt->rt_dbmnoise = noise;
8040
8041         /* Convert the channel data and set the flags */
8042         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8043         if (channel > 14) {     /* 802.11a */
8044                 ipw_rt->rt_chbitmask =
8045                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8046         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
8047                 ipw_rt->rt_chbitmask =
8048                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8049         } else {                /* 802.11g */
8050                 ipw_rt->rt_chbitmask =
8051                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8052         }
8053
8054         /* set the rate in multiples of 500k/s */
8055         switch (rate) {
8056         case IPW_TX_RATE_1MB:
8057                 ipw_rt->rt_rate = 2;
8058                 break;
8059         case IPW_TX_RATE_2MB:
8060                 ipw_rt->rt_rate = 4;
8061                 break;
8062         case IPW_TX_RATE_5MB:
8063                 ipw_rt->rt_rate = 10;
8064                 break;
8065         case IPW_TX_RATE_6MB:
8066                 ipw_rt->rt_rate = 12;
8067                 break;
8068         case IPW_TX_RATE_9MB:
8069                 ipw_rt->rt_rate = 18;
8070                 break;
8071         case IPW_TX_RATE_11MB:
8072                 ipw_rt->rt_rate = 22;
8073                 break;
8074         case IPW_TX_RATE_12MB:
8075                 ipw_rt->rt_rate = 24;
8076                 break;
8077         case IPW_TX_RATE_18MB:
8078                 ipw_rt->rt_rate = 36;
8079                 break;
8080         case IPW_TX_RATE_24MB:
8081                 ipw_rt->rt_rate = 48;
8082                 break;
8083         case IPW_TX_RATE_36MB:
8084                 ipw_rt->rt_rate = 72;
8085                 break;
8086         case IPW_TX_RATE_48MB:
8087                 ipw_rt->rt_rate = 96;
8088                 break;
8089         case IPW_TX_RATE_54MB:
8090                 ipw_rt->rt_rate = 108;
8091                 break;
8092         default:
8093                 ipw_rt->rt_rate = 0;
8094                 break;
8095         }
8096
8097         /* antenna number */
8098         ipw_rt->rt_antenna = (phy_flags & 3);
8099
8100         /* set the preamble flag if we have it */
8101         if (phy_flags & (1 << 6))
8102                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8103
8104         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8105
8106         if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8107                 dev->stats.rx_errors++;
8108                 dev_kfree_skb_any(skb);
8109         }
8110 }
8111 #endif
8112
8113 static int is_network_packet(struct ipw_priv *priv,
8114                                     struct libipw_hdr_4addr *header)
8115 {
8116         /* Filter incoming packets to determine if they are targeted toward
8117          * this network, discarding packets coming from ourselves */
8118         switch (priv->ieee->iw_mode) {
8119         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
8120                 /* packets from our adapter are dropped (echo) */
8121                 if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr))
8122                         return 0;
8123
8124                 /* {broad,multi}cast packets to our BSSID go through */
8125                 if (is_multicast_ether_addr(header->addr1))
8126                         return ether_addr_equal(header->addr3, priv->bssid);
8127
8128                 /* packets to our adapter go through */
8129                 return ether_addr_equal(header->addr1,
8130                                         priv->net_dev->dev_addr);
8131
8132         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8133                 /* packets from our adapter are dropped (echo) */
8134                 if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr))
8135                         return 0;
8136
8137                 /* {broad,multi}cast packets to our BSS go through */
8138                 if (is_multicast_ether_addr(header->addr1))
8139                         return ether_addr_equal(header->addr2, priv->bssid);
8140
8141                 /* packets to our adapter go through */
8142                 return ether_addr_equal(header->addr1,
8143                                         priv->net_dev->dev_addr);
8144         }
8145
8146         return 1;
8147 }
8148
8149 #define IPW_PACKET_RETRY_TIME HZ
8150
8151 static  int is_duplicate_packet(struct ipw_priv *priv,
8152                                       struct libipw_hdr_4addr *header)
8153 {
8154         u16 sc = le16_to_cpu(header->seq_ctl);
8155         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8156         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8157         u16 *last_seq, *last_frag;
8158         unsigned long *last_time;
8159
8160         switch (priv->ieee->iw_mode) {
8161         case IW_MODE_ADHOC:
8162                 {
8163                         struct list_head *p;
8164                         struct ipw_ibss_seq *entry = NULL;
8165                         u8 *mac = header->addr2;
8166                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8167
8168                         list_for_each(p, &priv->ibss_mac_hash[index]) {
8169                                 entry =
8170                                     list_entry(p, struct ipw_ibss_seq, list);
8171                                 if (ether_addr_equal(entry->mac, mac))
8172                                         break;
8173                         }
8174                         if (p == &priv->ibss_mac_hash[index]) {
8175                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8176                                 if (!entry) {
8177                                         IPW_ERROR
8178                                             ("Cannot malloc new mac entry\n");
8179                                         return 0;
8180                                 }
8181                                 memcpy(entry->mac, mac, ETH_ALEN);
8182                                 entry->seq_num = seq;
8183                                 entry->frag_num = frag;
8184                                 entry->packet_time = jiffies;
8185                                 list_add(&entry->list,
8186                                          &priv->ibss_mac_hash[index]);
8187                                 return 0;
8188                         }
8189                         last_seq = &entry->seq_num;
8190                         last_frag = &entry->frag_num;
8191                         last_time = &entry->packet_time;
8192                         break;
8193                 }
8194         case IW_MODE_INFRA:
8195                 last_seq = &priv->last_seq_num;
8196                 last_frag = &priv->last_frag_num;
8197                 last_time = &priv->last_packet_time;
8198                 break;
8199         default:
8200                 return 0;
8201         }
8202         if ((*last_seq == seq) &&
8203             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8204                 if (*last_frag == frag)
8205                         goto drop;
8206                 if (*last_frag + 1 != frag)
8207                         /* out-of-order fragment */
8208                         goto drop;
8209         } else
8210                 *last_seq = seq;
8211
8212         *last_frag = frag;
8213         *last_time = jiffies;
8214         return 0;
8215
8216       drop:
8217         /* Comment this line now since we observed the card receives
8218          * duplicate packets but the FCTL_RETRY bit is not set in the
8219          * IBSS mode with fragmentation enabled.
8220          BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8221         return 1;
8222 }
8223
8224 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8225                                    struct ipw_rx_mem_buffer *rxb,
8226                                    struct libipw_rx_stats *stats)
8227 {
8228         struct sk_buff *skb = rxb->skb;
8229         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8230         struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8231             (skb->data + IPW_RX_FRAME_SIZE);
8232
8233         libipw_rx_mgt(priv->ieee, header, stats);
8234
8235         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8236             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8237               IEEE80211_STYPE_PROBE_RESP) ||
8238              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8239               IEEE80211_STYPE_BEACON))) {
8240                 if (ether_addr_equal(header->addr3, priv->bssid))
8241                         ipw_add_station(priv, header->addr2);
8242         }
8243
8244         if (priv->config & CFG_NET_STATS) {
8245                 IPW_DEBUG_HC("sending stat packet\n");
8246
8247                 /* Set the size of the skb to the size of the full
8248                  * ipw header and 802.11 frame */
8249                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8250                         IPW_RX_FRAME_SIZE);
8251
8252                 /* Advance past the ipw packet header to the 802.11 frame */
8253                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8254
8255                 /* Push the libipw_rx_stats before the 802.11 frame */
8256                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8257
8258                 skb->dev = priv->ieee->dev;
8259
8260                 /* Point raw at the libipw_stats */
8261                 skb_reset_mac_header(skb);
8262
8263                 skb->pkt_type = PACKET_OTHERHOST;
8264                 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8265                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8266                 netif_rx(skb);
8267                 rxb->skb = NULL;
8268         }
8269 }
8270
8271 /*
8272  * Main entry function for receiving a packet with 80211 headers.  This
8273  * should be called when ever the FW has notified us that there is a new
8274  * skb in the receive queue.
8275  */
8276 static void ipw_rx(struct ipw_priv *priv)
8277 {
8278         struct ipw_rx_mem_buffer *rxb;
8279         struct ipw_rx_packet *pkt;
8280         struct libipw_hdr_4addr *header;
8281         u32 r, w, i;
8282         u8 network_packet;
8283         u8 fill_rx = 0;
8284
8285         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8286         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8287         i = priv->rxq->read;
8288
8289         if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8290                 fill_rx = 1;
8291
8292         while (i != r) {
8293                 rxb = priv->rxq->queue[i];
8294                 if (unlikely(rxb == NULL)) {
8295                         printk(KERN_CRIT "Queue not allocated!\n");
8296                         break;
8297                 }
8298                 priv->rxq->queue[i] = NULL;
8299
8300                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8301                                             IPW_RX_BUF_SIZE,
8302                                             PCI_DMA_FROMDEVICE);
8303
8304                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8305                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8306                              pkt->header.message_type,
8307                              pkt->header.rx_seq_num, pkt->header.control_bits);
8308
8309                 switch (pkt->header.message_type) {
8310                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8311                                 struct libipw_rx_stats stats = {
8312                                         .rssi = pkt->u.frame.rssi_dbm -
8313                                             IPW_RSSI_TO_DBM,
8314                                         .signal =
8315                                             pkt->u.frame.rssi_dbm -
8316                                             IPW_RSSI_TO_DBM + 0x100,
8317                                         .noise =
8318                                             le16_to_cpu(pkt->u.frame.noise),
8319                                         .rate = pkt->u.frame.rate,
8320                                         .mac_time = jiffies,
8321                                         .received_channel =
8322                                             pkt->u.frame.received_channel,
8323                                         .freq =
8324                                             (pkt->u.frame.
8325                                              control & (1 << 0)) ?
8326                                             LIBIPW_24GHZ_BAND :
8327                                             LIBIPW_52GHZ_BAND,
8328                                         .len = le16_to_cpu(pkt->u.frame.length),
8329                                 };
8330
8331                                 if (stats.rssi != 0)
8332                                         stats.mask |= LIBIPW_STATMASK_RSSI;
8333                                 if (stats.signal != 0)
8334                                         stats.mask |= LIBIPW_STATMASK_SIGNAL;
8335                                 if (stats.noise != 0)
8336                                         stats.mask |= LIBIPW_STATMASK_NOISE;
8337                                 if (stats.rate != 0)
8338                                         stats.mask |= LIBIPW_STATMASK_RATE;
8339
8340                                 priv->rx_packets++;
8341
8342 #ifdef CONFIG_IPW2200_PROMISCUOUS
8343         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8344                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8345 #endif
8346
8347 #ifdef CONFIG_IPW2200_MONITOR
8348                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8349 #ifdef CONFIG_IPW2200_RADIOTAP
8350
8351                 ipw_handle_data_packet_monitor(priv,
8352                                                rxb,
8353                                                &stats);
8354 #else
8355                 ipw_handle_data_packet(priv, rxb,
8356                                        &stats);
8357 #endif
8358                                         break;
8359                                 }
8360 #endif
8361
8362                                 header =
8363                                     (struct libipw_hdr_4addr *)(rxb->skb->
8364                                                                    data +
8365                                                                    IPW_RX_FRAME_SIZE);
8366                                 /* TODO: Check Ad-Hoc dest/source and make sure
8367                                  * that we are actually parsing these packets
8368                                  * correctly -- we should probably use the
8369                                  * frame control of the packet and disregard
8370                                  * the current iw_mode */
8371
8372                                 network_packet =
8373                                     is_network_packet(priv, header);
8374                                 if (network_packet && priv->assoc_network) {
8375                                         priv->assoc_network->stats.rssi =
8376                                             stats.rssi;
8377                                         priv->exp_avg_rssi =
8378                                             exponential_average(priv->exp_avg_rssi,
8379                                             stats.rssi, DEPTH_RSSI);
8380                                 }
8381
8382                                 IPW_DEBUG_RX("Frame: len=%u\n",
8383                                              le16_to_cpu(pkt->u.frame.length));
8384
8385                                 if (le16_to_cpu(pkt->u.frame.length) <
8386                                     libipw_get_hdrlen(le16_to_cpu(
8387                                                     header->frame_ctl))) {
8388                                         IPW_DEBUG_DROP
8389                                             ("Received packet is too small. "
8390                                              "Dropping.\n");
8391                                         priv->net_dev->stats.rx_errors++;
8392                                         priv->wstats.discard.misc++;
8393                                         break;
8394                                 }
8395
8396                                 switch (WLAN_FC_GET_TYPE
8397                                         (le16_to_cpu(header->frame_ctl))) {
8398
8399                                 case IEEE80211_FTYPE_MGMT:
8400                                         ipw_handle_mgmt_packet(priv, rxb,
8401                                                                &stats);
8402                                         break;
8403
8404                                 case IEEE80211_FTYPE_CTL:
8405                                         break;
8406
8407                                 case IEEE80211_FTYPE_DATA:
8408                                         if (unlikely(!network_packet ||
8409                                                      is_duplicate_packet(priv,
8410                                                                          header)))
8411                                         {
8412                                                 IPW_DEBUG_DROP("Dropping: "
8413                                                                "%pM, "
8414                                                                "%pM, "
8415                                                                "%pM\n",
8416                                                                header->addr1,
8417                                                                header->addr2,
8418                                                                header->addr3);
8419                                                 break;
8420                                         }
8421
8422                                         ipw_handle_data_packet(priv, rxb,
8423                                                                &stats);
8424
8425                                         break;
8426                                 }
8427                                 break;
8428                         }
8429
8430                 case RX_HOST_NOTIFICATION_TYPE:{
8431                                 IPW_DEBUG_RX
8432                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8433                                      pkt->u.notification.subtype,
8434                                      pkt->u.notification.flags,
8435                                      le16_to_cpu(pkt->u.notification.size));
8436                                 ipw_rx_notification(priv, &pkt->u.notification);
8437                                 break;
8438                         }
8439
8440                 default:
8441                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8442                                      pkt->header.message_type);
8443                         break;
8444                 }
8445
8446                 /* For now we just don't re-use anything.  We can tweak this
8447                  * later to try and re-use notification packets and SKBs that
8448                  * fail to Rx correctly */
8449                 if (rxb->skb != NULL) {
8450                         dev_kfree_skb_any(rxb->skb);
8451                         rxb->skb = NULL;
8452                 }
8453
8454                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8455                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8456                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8457
8458                 i = (i + 1) % RX_QUEUE_SIZE;
8459
8460                 /* If there are a lot of unsued frames, restock the Rx queue
8461                  * so the ucode won't assert */
8462                 if (fill_rx) {
8463                         priv->rxq->read = i;
8464                         ipw_rx_queue_replenish(priv);
8465                 }
8466         }
8467
8468         /* Backtrack one entry */
8469         priv->rxq->read = i;
8470         ipw_rx_queue_restock(priv);
8471 }
8472
8473 #define DEFAULT_RTS_THRESHOLD     2304U
8474 #define MIN_RTS_THRESHOLD         1U
8475 #define MAX_RTS_THRESHOLD         2304U
8476 #define DEFAULT_BEACON_INTERVAL   100U
8477 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8478 #define DEFAULT_LONG_RETRY_LIMIT  4U
8479
8480 /**
8481  * ipw_sw_reset
8482  * @option: options to control different reset behaviour
8483  *          0 = reset everything except the 'disable' module_param
8484  *          1 = reset everything and print out driver info (for probe only)
8485  *          2 = reset everything
8486  */
8487 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8488 {
8489         int band, modulation;
8490         int old_mode = priv->ieee->iw_mode;
8491
8492         /* Initialize module parameter values here */
8493         priv->config = 0;
8494
8495         /* We default to disabling the LED code as right now it causes
8496          * too many systems to lock up... */
8497         if (!led_support)
8498                 priv->config |= CFG_NO_LED;
8499
8500         if (associate)
8501                 priv->config |= CFG_ASSOCIATE;
8502         else
8503                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8504
8505         if (auto_create)
8506                 priv->config |= CFG_ADHOC_CREATE;
8507         else
8508                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8509
8510         priv->config &= ~CFG_STATIC_ESSID;
8511         priv->essid_len = 0;
8512         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8513
8514         if (disable && option) {
8515                 priv->status |= STATUS_RF_KILL_SW;
8516                 IPW_DEBUG_INFO("Radio disabled.\n");
8517         }
8518
8519         if (default_channel != 0) {
8520                 priv->config |= CFG_STATIC_CHANNEL;
8521                 priv->channel = default_channel;
8522                 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8523                 /* TODO: Validate that provided channel is in range */
8524         }
8525 #ifdef CONFIG_IPW2200_QOS
8526         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8527                      burst_duration_CCK, burst_duration_OFDM);
8528 #endif                          /* CONFIG_IPW2200_QOS */
8529
8530         switch (network_mode) {
8531         case 1:
8532                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8533                 priv->net_dev->type = ARPHRD_ETHER;
8534
8535                 break;
8536 #ifdef CONFIG_IPW2200_MONITOR
8537         case 2:
8538                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8539 #ifdef CONFIG_IPW2200_RADIOTAP
8540                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8541 #else
8542                 priv->net_dev->type = ARPHRD_IEEE80211;
8543 #endif
8544                 break;
8545 #endif
8546         default:
8547         case 0:
8548                 priv->net_dev->type = ARPHRD_ETHER;
8549                 priv->ieee->iw_mode = IW_MODE_INFRA;
8550                 break;
8551         }
8552
8553         if (hwcrypto) {
8554                 priv->ieee->host_encrypt = 0;
8555                 priv->ieee->host_encrypt_msdu = 0;
8556                 priv->ieee->host_decrypt = 0;
8557                 priv->ieee->host_mc_decrypt = 0;
8558         }
8559         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8560
8561         /* IPW2200/2915 is abled to do hardware fragmentation. */
8562         priv->ieee->host_open_frag = 0;
8563
8564         if ((priv->pci_dev->device == 0x4223) ||
8565             (priv->pci_dev->device == 0x4224)) {
8566                 if (option == 1)
8567                         printk(KERN_INFO DRV_NAME
8568                                ": Detected Intel PRO/Wireless 2915ABG Network "
8569                                "Connection\n");
8570                 priv->ieee->abg_true = 1;
8571                 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8572                 modulation = LIBIPW_OFDM_MODULATION |
8573                     LIBIPW_CCK_MODULATION;
8574                 priv->adapter = IPW_2915ABG;
8575                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8576         } else {
8577                 if (option == 1)
8578                         printk(KERN_INFO DRV_NAME
8579                                ": Detected Intel PRO/Wireless 2200BG Network "
8580                                "Connection\n");
8581
8582                 priv->ieee->abg_true = 0;
8583                 band = LIBIPW_24GHZ_BAND;
8584                 modulation = LIBIPW_OFDM_MODULATION |
8585                     LIBIPW_CCK_MODULATION;
8586                 priv->adapter = IPW_2200BG;
8587                 priv->ieee->mode = IEEE_G | IEEE_B;
8588         }
8589
8590         priv->ieee->freq_band = band;
8591         priv->ieee->modulation = modulation;
8592
8593         priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8594
8595         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8596         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8597
8598         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8599         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8600         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8601
8602         /* If power management is turned on, default to AC mode */
8603         priv->power_mode = IPW_POWER_AC;
8604         priv->tx_power = IPW_TX_POWER_DEFAULT;
8605
8606         return old_mode == priv->ieee->iw_mode;
8607 }
8608
8609 /*
8610  * This file defines the Wireless Extension handlers.  It does not
8611  * define any methods of hardware manipulation and relies on the
8612  * functions defined in ipw_main to provide the HW interaction.
8613  *
8614  * The exception to this is the use of the ipw_get_ordinal()
8615  * function used to poll the hardware vs. making unnecessary calls.
8616  *
8617  */
8618
8619 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8620 {
8621         if (channel == 0) {
8622                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8623                 priv->config &= ~CFG_STATIC_CHANNEL;
8624                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8625                                 "parameters.\n");
8626                 ipw_associate(priv);
8627                 return 0;
8628         }
8629
8630         priv->config |= CFG_STATIC_CHANNEL;
8631
8632         if (priv->channel == channel) {
8633                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8634                                channel);
8635                 return 0;
8636         }
8637
8638         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8639         priv->channel = channel;
8640
8641 #ifdef CONFIG_IPW2200_MONITOR
8642         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8643                 int i;
8644                 if (priv->status & STATUS_SCANNING) {
8645                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8646                                        "channel change.\n");
8647                         ipw_abort_scan(priv);
8648                 }
8649
8650                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8651                         udelay(10);
8652
8653                 if (priv->status & STATUS_SCANNING)
8654                         IPW_DEBUG_SCAN("Still scanning...\n");
8655                 else
8656                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8657                                        1000 - i);
8658
8659                 return 0;
8660         }
8661 #endif                          /* CONFIG_IPW2200_MONITOR */
8662
8663         /* Network configuration changed -- force [re]association */
8664         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8665         if (!ipw_disassociate(priv))
8666                 ipw_associate(priv);
8667
8668         return 0;
8669 }
8670
8671 static int ipw_wx_set_freq(struct net_device *dev,
8672                            struct iw_request_info *info,
8673                            union iwreq_data *wrqu, char *extra)
8674 {
8675         struct ipw_priv *priv = libipw_priv(dev);
8676         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8677         struct iw_freq *fwrq = &wrqu->freq;
8678         int ret = 0, i;
8679         u8 channel, flags;
8680         int band;
8681
8682         if (fwrq->m == 0) {
8683                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8684                 mutex_lock(&priv->mutex);
8685                 ret = ipw_set_channel(priv, 0);
8686                 mutex_unlock(&priv->mutex);
8687                 return ret;
8688         }
8689         /* if setting by freq convert to channel */
8690         if (fwrq->e == 1) {
8691                 channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8692                 if (channel == 0)
8693                         return -EINVAL;
8694         } else
8695                 channel = fwrq->m;
8696
8697         if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8698                 return -EINVAL;
8699
8700         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8701                 i = libipw_channel_to_index(priv->ieee, channel);
8702                 if (i == -1)
8703                         return -EINVAL;
8704
8705                 flags = (band == LIBIPW_24GHZ_BAND) ?
8706                     geo->bg[i].flags : geo->a[i].flags;
8707                 if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8708                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8709                         return -EINVAL;
8710                 }
8711         }
8712
8713         IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8714         mutex_lock(&priv->mutex);
8715         ret = ipw_set_channel(priv, channel);
8716         mutex_unlock(&priv->mutex);
8717         return ret;
8718 }
8719
8720 static int ipw_wx_get_freq(struct net_device *dev,
8721                            struct iw_request_info *info,
8722                            union iwreq_data *wrqu, char *extra)
8723 {
8724         struct ipw_priv *priv = libipw_priv(dev);
8725
8726         wrqu->freq.e = 0;
8727
8728         /* If we are associated, trying to associate, or have a statically
8729          * configured CHANNEL then return that; otherwise return ANY */
8730         mutex_lock(&priv->mutex);
8731         if (priv->config & CFG_STATIC_CHANNEL ||
8732             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8733                 int i;
8734
8735                 i = libipw_channel_to_index(priv->ieee, priv->channel);
8736                 BUG_ON(i == -1);
8737                 wrqu->freq.e = 1;
8738
8739                 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8740                 case LIBIPW_52GHZ_BAND:
8741                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8742                         break;
8743
8744                 case LIBIPW_24GHZ_BAND:
8745                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8746                         break;
8747
8748                 default:
8749                         BUG();
8750                 }
8751         } else
8752                 wrqu->freq.m = 0;
8753
8754         mutex_unlock(&priv->mutex);
8755         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8756         return 0;
8757 }
8758
8759 static int ipw_wx_set_mode(struct net_device *dev,
8760                            struct iw_request_info *info,
8761                            union iwreq_data *wrqu, char *extra)
8762 {
8763         struct ipw_priv *priv = libipw_priv(dev);
8764         int err = 0;
8765
8766         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8767
8768         switch (wrqu->mode) {
8769 #ifdef CONFIG_IPW2200_MONITOR
8770         case IW_MODE_MONITOR:
8771 #endif
8772         case IW_MODE_ADHOC:
8773         case IW_MODE_INFRA:
8774                 break;
8775         case IW_MODE_AUTO:
8776                 wrqu->mode = IW_MODE_INFRA;
8777                 break;
8778         default:
8779                 return -EINVAL;
8780         }
8781         if (wrqu->mode == priv->ieee->iw_mode)
8782                 return 0;
8783
8784         mutex_lock(&priv->mutex);
8785
8786         ipw_sw_reset(priv, 0);
8787
8788 #ifdef CONFIG_IPW2200_MONITOR
8789         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8790                 priv->net_dev->type = ARPHRD_ETHER;
8791
8792         if (wrqu->mode == IW_MODE_MONITOR)
8793 #ifdef CONFIG_IPW2200_RADIOTAP
8794                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8795 #else
8796                 priv->net_dev->type = ARPHRD_IEEE80211;
8797 #endif
8798 #endif                          /* CONFIG_IPW2200_MONITOR */
8799
8800         /* Free the existing firmware and reset the fw_loaded
8801          * flag so ipw_load() will bring in the new firmware */
8802         free_firmware();
8803
8804         priv->ieee->iw_mode = wrqu->mode;
8805
8806         schedule_work(&priv->adapter_restart);
8807         mutex_unlock(&priv->mutex);
8808         return err;
8809 }
8810
8811 static int ipw_wx_get_mode(struct net_device *dev,
8812                            struct iw_request_info *info,
8813                            union iwreq_data *wrqu, char *extra)
8814 {
8815         struct ipw_priv *priv = libipw_priv(dev);
8816         mutex_lock(&priv->mutex);
8817         wrqu->mode = priv->ieee->iw_mode;
8818         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8819         mutex_unlock(&priv->mutex);
8820         return 0;
8821 }
8822
8823 /* Values are in microsecond */
8824 static const s32 timeout_duration[] = {
8825         350000,
8826         250000,
8827         75000,
8828         37000,
8829         25000,
8830 };
8831
8832 static const s32 period_duration[] = {
8833         400000,
8834         700000,
8835         1000000,
8836         1000000,
8837         1000000
8838 };
8839
8840 static int ipw_wx_get_range(struct net_device *dev,
8841                             struct iw_request_info *info,
8842                             union iwreq_data *wrqu, char *extra)
8843 {
8844         struct ipw_priv *priv = libipw_priv(dev);
8845         struct iw_range *range = (struct iw_range *)extra;
8846         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8847         int i = 0, j;
8848
8849         wrqu->data.length = sizeof(*range);
8850         memset(range, 0, sizeof(*range));
8851
8852         /* 54Mbs == ~27 Mb/s real (802.11g) */
8853         range->throughput = 27 * 1000 * 1000;
8854
8855         range->max_qual.qual = 100;
8856         /* TODO: Find real max RSSI and stick here */
8857         range->max_qual.level = 0;
8858         range->max_qual.noise = 0;
8859         range->max_qual.updated = 7;    /* Updated all three */
8860
8861         range->avg_qual.qual = 70;
8862         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8863         range->avg_qual.level = 0;      /* FIXME to real average level */
8864         range->avg_qual.noise = 0;
8865         range->avg_qual.updated = 7;    /* Updated all three */
8866         mutex_lock(&priv->mutex);
8867         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8868
8869         for (i = 0; i < range->num_bitrates; i++)
8870                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8871                     500000;
8872
8873         range->max_rts = DEFAULT_RTS_THRESHOLD;
8874         range->min_frag = MIN_FRAG_THRESHOLD;
8875         range->max_frag = MAX_FRAG_THRESHOLD;
8876
8877         range->encoding_size[0] = 5;
8878         range->encoding_size[1] = 13;
8879         range->num_encoding_sizes = 2;
8880         range->max_encoding_tokens = WEP_KEYS;
8881
8882         /* Set the Wireless Extension versions */
8883         range->we_version_compiled = WIRELESS_EXT;
8884         range->we_version_source = 18;
8885
8886         i = 0;
8887         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8888                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8889                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8890                             (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8891                                 continue;
8892
8893                         range->freq[i].i = geo->bg[j].channel;
8894                         range->freq[i].m = geo->bg[j].freq * 100000;
8895                         range->freq[i].e = 1;
8896                         i++;
8897                 }
8898         }
8899
8900         if (priv->ieee->mode & IEEE_A) {
8901                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8902                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8903                             (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8904                                 continue;
8905
8906                         range->freq[i].i = geo->a[j].channel;
8907                         range->freq[i].m = geo->a[j].freq * 100000;
8908                         range->freq[i].e = 1;
8909                         i++;
8910                 }
8911         }
8912
8913         range->num_channels = i;
8914         range->num_frequency = i;
8915
8916         mutex_unlock(&priv->mutex);
8917
8918         /* Event capability (kernel + driver) */
8919         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8920                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8921                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8922                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8923         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8924
8925         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8926                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8927
8928         range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8929
8930         IPW_DEBUG_WX("GET Range\n");
8931         return 0;
8932 }
8933
8934 static int ipw_wx_set_wap(struct net_device *dev,
8935                           struct iw_request_info *info,
8936                           union iwreq_data *wrqu, char *extra)
8937 {
8938         struct ipw_priv *priv = libipw_priv(dev);
8939
8940         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8941                 return -EINVAL;
8942         mutex_lock(&priv->mutex);
8943         if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
8944             is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
8945                 /* we disable mandatory BSSID association */
8946                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8947                 priv->config &= ~CFG_STATIC_BSSID;
8948                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8949                                 "parameters.\n");
8950                 ipw_associate(priv);
8951                 mutex_unlock(&priv->mutex);
8952                 return 0;
8953         }
8954
8955         priv->config |= CFG_STATIC_BSSID;
8956         if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) {
8957                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8958                 mutex_unlock(&priv->mutex);
8959                 return 0;
8960         }
8961
8962         IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
8963                      wrqu->ap_addr.sa_data);
8964
8965         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8966
8967         /* Network configuration changed -- force [re]association */
8968         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8969         if (!ipw_disassociate(priv))
8970                 ipw_associate(priv);
8971
8972         mutex_unlock(&priv->mutex);
8973         return 0;
8974 }
8975
8976 static int ipw_wx_get_wap(struct net_device *dev,
8977                           struct iw_request_info *info,
8978                           union iwreq_data *wrqu, char *extra)
8979 {
8980         struct ipw_priv *priv = libipw_priv(dev);
8981
8982         /* If we are associated, trying to associate, or have a statically
8983          * configured BSSID then return that; otherwise return ANY */
8984         mutex_lock(&priv->mutex);
8985         if (priv->config & CFG_STATIC_BSSID ||
8986             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8987                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8988                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8989         } else
8990                 eth_zero_addr(wrqu->ap_addr.sa_data);
8991
8992         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
8993                      wrqu->ap_addr.sa_data);
8994         mutex_unlock(&priv->mutex);
8995         return 0;
8996 }
8997
8998 static int ipw_wx_set_essid(struct net_device *dev,
8999                             struct iw_request_info *info,
9000                             union iwreq_data *wrqu, char *extra)
9001 {
9002         struct ipw_priv *priv = libipw_priv(dev);
9003         int length;
9004
9005         mutex_lock(&priv->mutex);
9006
9007         if (!wrqu->essid.flags)
9008         {
9009                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9010                 ipw_disassociate(priv);
9011                 priv->config &= ~CFG_STATIC_ESSID;
9012                 ipw_associate(priv);
9013                 mutex_unlock(&priv->mutex);
9014                 return 0;
9015         }
9016
9017         length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9018
9019         priv->config |= CFG_STATIC_ESSID;
9020
9021         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9022             && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9023                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9024                 mutex_unlock(&priv->mutex);
9025                 return 0;
9026         }
9027
9028         IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length);
9029
9030         priv->essid_len = length;
9031         memcpy(priv->essid, extra, priv->essid_len);
9032
9033         /* Network configuration changed -- force [re]association */
9034         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9035         if (!ipw_disassociate(priv))
9036                 ipw_associate(priv);
9037
9038         mutex_unlock(&priv->mutex);
9039         return 0;
9040 }
9041
9042 static int ipw_wx_get_essid(struct net_device *dev,
9043                             struct iw_request_info *info,
9044                             union iwreq_data *wrqu, char *extra)
9045 {
9046         struct ipw_priv *priv = libipw_priv(dev);
9047
9048         /* If we are associated, trying to associate, or have a statically
9049          * configured ESSID then return that; otherwise return ANY */
9050         mutex_lock(&priv->mutex);
9051         if (priv->config & CFG_STATIC_ESSID ||
9052             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9053                 IPW_DEBUG_WX("Getting essid: '%*pE'\n",
9054                              priv->essid_len, priv->essid);
9055                 memcpy(extra, priv->essid, priv->essid_len);
9056                 wrqu->essid.length = priv->essid_len;
9057                 wrqu->essid.flags = 1;  /* active */
9058         } else {
9059                 IPW_DEBUG_WX("Getting essid: ANY\n");
9060                 wrqu->essid.length = 0;
9061                 wrqu->essid.flags = 0;  /* active */
9062         }
9063         mutex_unlock(&priv->mutex);
9064         return 0;
9065 }
9066
9067 static int ipw_wx_set_nick(struct net_device *dev,
9068                            struct iw_request_info *info,
9069                            union iwreq_data *wrqu, char *extra)
9070 {
9071         struct ipw_priv *priv = libipw_priv(dev);
9072
9073         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9074         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9075                 return -E2BIG;
9076         mutex_lock(&priv->mutex);
9077         wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
9078         memset(priv->nick, 0, sizeof(priv->nick));
9079         memcpy(priv->nick, extra, wrqu->data.length);
9080         IPW_DEBUG_TRACE("<<\n");
9081         mutex_unlock(&priv->mutex);
9082         return 0;
9083
9084 }
9085
9086 static int ipw_wx_get_nick(struct net_device *dev,
9087                            struct iw_request_info *info,
9088                            union iwreq_data *wrqu, char *extra)
9089 {
9090         struct ipw_priv *priv = libipw_priv(dev);
9091         IPW_DEBUG_WX("Getting nick\n");
9092         mutex_lock(&priv->mutex);
9093         wrqu->data.length = strlen(priv->nick);
9094         memcpy(extra, priv->nick, wrqu->data.length);
9095         wrqu->data.flags = 1;   /* active */
9096         mutex_unlock(&priv->mutex);
9097         return 0;
9098 }
9099
9100 static int ipw_wx_set_sens(struct net_device *dev,
9101                             struct iw_request_info *info,
9102                             union iwreq_data *wrqu, char *extra)
9103 {
9104         struct ipw_priv *priv = libipw_priv(dev);
9105         int err = 0;
9106
9107         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9108         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9109         mutex_lock(&priv->mutex);
9110
9111         if (wrqu->sens.fixed == 0)
9112         {
9113                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9114                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9115                 goto out;
9116         }
9117         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9118             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9119                 err = -EINVAL;
9120                 goto out;
9121         }
9122
9123         priv->roaming_threshold = wrqu->sens.value;
9124         priv->disassociate_threshold = 3*wrqu->sens.value;
9125       out:
9126         mutex_unlock(&priv->mutex);
9127         return err;
9128 }
9129
9130 static int ipw_wx_get_sens(struct net_device *dev,
9131                             struct iw_request_info *info,
9132                             union iwreq_data *wrqu, char *extra)
9133 {
9134         struct ipw_priv *priv = libipw_priv(dev);
9135         mutex_lock(&priv->mutex);
9136         wrqu->sens.fixed = 1;
9137         wrqu->sens.value = priv->roaming_threshold;
9138         mutex_unlock(&priv->mutex);
9139
9140         IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9141                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9142
9143         return 0;
9144 }
9145
9146 static int ipw_wx_set_rate(struct net_device *dev,
9147                            struct iw_request_info *info,
9148                            union iwreq_data *wrqu, char *extra)
9149 {
9150         /* TODO: We should use semaphores or locks for access to priv */
9151         struct ipw_priv *priv = libipw_priv(dev);
9152         u32 target_rate = wrqu->bitrate.value;
9153         u32 fixed, mask;
9154
9155         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9156         /* value = X, fixed = 1 means only rate X */
9157         /* value = X, fixed = 0 means all rates lower equal X */
9158
9159         if (target_rate == -1) {
9160                 fixed = 0;
9161                 mask = LIBIPW_DEFAULT_RATES_MASK;
9162                 /* Now we should reassociate */
9163                 goto apply;
9164         }
9165
9166         mask = 0;
9167         fixed = wrqu->bitrate.fixed;
9168
9169         if (target_rate == 1000000 || !fixed)
9170                 mask |= LIBIPW_CCK_RATE_1MB_MASK;
9171         if (target_rate == 1000000)
9172                 goto apply;
9173
9174         if (target_rate == 2000000 || !fixed)
9175                 mask |= LIBIPW_CCK_RATE_2MB_MASK;
9176         if (target_rate == 2000000)
9177                 goto apply;
9178
9179         if (target_rate == 5500000 || !fixed)
9180                 mask |= LIBIPW_CCK_RATE_5MB_MASK;
9181         if (target_rate == 5500000)
9182                 goto apply;
9183
9184         if (target_rate == 6000000 || !fixed)
9185                 mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9186         if (target_rate == 6000000)
9187                 goto apply;
9188
9189         if (target_rate == 9000000 || !fixed)
9190                 mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9191         if (target_rate == 9000000)
9192                 goto apply;
9193
9194         if (target_rate == 11000000 || !fixed)
9195                 mask |= LIBIPW_CCK_RATE_11MB_MASK;
9196         if (target_rate == 11000000)
9197                 goto apply;
9198
9199         if (target_rate == 12000000 || !fixed)
9200                 mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9201         if (target_rate == 12000000)
9202                 goto apply;
9203
9204         if (target_rate == 18000000 || !fixed)
9205                 mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9206         if (target_rate == 18000000)
9207                 goto apply;
9208
9209         if (target_rate == 24000000 || !fixed)
9210                 mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9211         if (target_rate == 24000000)
9212                 goto apply;
9213
9214         if (target_rate == 36000000 || !fixed)
9215                 mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9216         if (target_rate == 36000000)
9217                 goto apply;
9218
9219         if (target_rate == 48000000 || !fixed)
9220                 mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9221         if (target_rate == 48000000)
9222                 goto apply;
9223
9224         if (target_rate == 54000000 || !fixed)
9225                 mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9226         if (target_rate == 54000000)
9227                 goto apply;
9228
9229         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9230         return -EINVAL;
9231
9232       apply:
9233         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9234                      mask, fixed ? "fixed" : "sub-rates");
9235         mutex_lock(&priv->mutex);
9236         if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9237                 priv->config &= ~CFG_FIXED_RATE;
9238                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9239         } else
9240                 priv->config |= CFG_FIXED_RATE;
9241
9242         if (priv->rates_mask == mask) {
9243                 IPW_DEBUG_WX("Mask set to current mask.\n");
9244                 mutex_unlock(&priv->mutex);
9245                 return 0;
9246         }
9247
9248         priv->rates_mask = mask;
9249
9250         /* Network configuration changed -- force [re]association */
9251         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9252         if (!ipw_disassociate(priv))
9253                 ipw_associate(priv);
9254
9255         mutex_unlock(&priv->mutex);
9256         return 0;
9257 }
9258
9259 static int ipw_wx_get_rate(struct net_device *dev,
9260                            struct iw_request_info *info,
9261                            union iwreq_data *wrqu, char *extra)
9262 {
9263         struct ipw_priv *priv = libipw_priv(dev);
9264         mutex_lock(&priv->mutex);
9265         wrqu->bitrate.value = priv->last_rate;
9266         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9267         mutex_unlock(&priv->mutex);
9268         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9269         return 0;
9270 }
9271
9272 static int ipw_wx_set_rts(struct net_device *dev,
9273                           struct iw_request_info *info,
9274                           union iwreq_data *wrqu, char *extra)
9275 {
9276         struct ipw_priv *priv = libipw_priv(dev);
9277         mutex_lock(&priv->mutex);
9278         if (wrqu->rts.disabled || !wrqu->rts.fixed)
9279                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9280         else {
9281                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9282                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9283                         mutex_unlock(&priv->mutex);
9284                         return -EINVAL;
9285                 }
9286                 priv->rts_threshold = wrqu->rts.value;
9287         }
9288
9289         ipw_send_rts_threshold(priv, priv->rts_threshold);
9290         mutex_unlock(&priv->mutex);
9291         IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9292         return 0;
9293 }
9294
9295 static int ipw_wx_get_rts(struct net_device *dev,
9296                           struct iw_request_info *info,
9297                           union iwreq_data *wrqu, char *extra)
9298 {
9299         struct ipw_priv *priv = libipw_priv(dev);
9300         mutex_lock(&priv->mutex);
9301         wrqu->rts.value = priv->rts_threshold;
9302         wrqu->rts.fixed = 0;    /* no auto select */
9303         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9304         mutex_unlock(&priv->mutex);
9305         IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9306         return 0;
9307 }
9308
9309 static int ipw_wx_set_txpow(struct net_device *dev,
9310                             struct iw_request_info *info,
9311                             union iwreq_data *wrqu, char *extra)
9312 {
9313         struct ipw_priv *priv = libipw_priv(dev);
9314         int err = 0;
9315
9316         mutex_lock(&priv->mutex);
9317         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9318                 err = -EINPROGRESS;
9319                 goto out;
9320         }
9321
9322         if (!wrqu->power.fixed)
9323                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9324
9325         if (wrqu->power.flags != IW_TXPOW_DBM) {
9326                 err = -EINVAL;
9327                 goto out;
9328         }
9329
9330         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9331             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9332                 err = -EINVAL;
9333                 goto out;
9334         }
9335
9336         priv->tx_power = wrqu->power.value;
9337         err = ipw_set_tx_power(priv);
9338       out:
9339         mutex_unlock(&priv->mutex);
9340         return err;
9341 }
9342
9343 static int ipw_wx_get_txpow(struct net_device *dev,
9344                             struct iw_request_info *info,
9345                             union iwreq_data *wrqu, char *extra)
9346 {
9347         struct ipw_priv *priv = libipw_priv(dev);
9348         mutex_lock(&priv->mutex);
9349         wrqu->power.value = priv->tx_power;
9350         wrqu->power.fixed = 1;
9351         wrqu->power.flags = IW_TXPOW_DBM;
9352         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9353         mutex_unlock(&priv->mutex);
9354
9355         IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9356                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9357
9358         return 0;
9359 }
9360
9361 static int ipw_wx_set_frag(struct net_device *dev,
9362                            struct iw_request_info *info,
9363                            union iwreq_data *wrqu, char *extra)
9364 {
9365         struct ipw_priv *priv = libipw_priv(dev);
9366         mutex_lock(&priv->mutex);
9367         if (wrqu->frag.disabled || !wrqu->frag.fixed)
9368                 priv->ieee->fts = DEFAULT_FTS;
9369         else {
9370                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9371                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9372                         mutex_unlock(&priv->mutex);
9373                         return -EINVAL;
9374                 }
9375
9376                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9377         }
9378
9379         ipw_send_frag_threshold(priv, wrqu->frag.value);
9380         mutex_unlock(&priv->mutex);
9381         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9382         return 0;
9383 }
9384
9385 static int ipw_wx_get_frag(struct net_device *dev,
9386                            struct iw_request_info *info,
9387                            union iwreq_data *wrqu, char *extra)
9388 {
9389         struct ipw_priv *priv = libipw_priv(dev);
9390         mutex_lock(&priv->mutex);
9391         wrqu->frag.value = priv->ieee->fts;
9392         wrqu->frag.fixed = 0;   /* no auto select */
9393         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9394         mutex_unlock(&priv->mutex);
9395         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9396
9397         return 0;
9398 }
9399
9400 static int ipw_wx_set_retry(struct net_device *dev,
9401                             struct iw_request_info *info,
9402                             union iwreq_data *wrqu, char *extra)
9403 {
9404         struct ipw_priv *priv = libipw_priv(dev);
9405
9406         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9407                 return -EINVAL;
9408
9409         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9410                 return 0;
9411
9412         if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9413                 return -EINVAL;
9414
9415         mutex_lock(&priv->mutex);
9416         if (wrqu->retry.flags & IW_RETRY_SHORT)
9417                 priv->short_retry_limit = (u8) wrqu->retry.value;
9418         else if (wrqu->retry.flags & IW_RETRY_LONG)
9419                 priv->long_retry_limit = (u8) wrqu->retry.value;
9420         else {
9421                 priv->short_retry_limit = (u8) wrqu->retry.value;
9422                 priv->long_retry_limit = (u8) wrqu->retry.value;
9423         }
9424
9425         ipw_send_retry_limit(priv, priv->short_retry_limit,
9426                              priv->long_retry_limit);
9427         mutex_unlock(&priv->mutex);
9428         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9429                      priv->short_retry_limit, priv->long_retry_limit);
9430         return 0;
9431 }
9432
9433 static int ipw_wx_get_retry(struct net_device *dev,
9434                             struct iw_request_info *info,
9435                             union iwreq_data *wrqu, char *extra)
9436 {
9437         struct ipw_priv *priv = libipw_priv(dev);
9438
9439         mutex_lock(&priv->mutex);
9440         wrqu->retry.disabled = 0;
9441
9442         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9443                 mutex_unlock(&priv->mutex);
9444                 return -EINVAL;
9445         }
9446
9447         if (wrqu->retry.flags & IW_RETRY_LONG) {
9448                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9449                 wrqu->retry.value = priv->long_retry_limit;
9450         } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9451                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9452                 wrqu->retry.value = priv->short_retry_limit;
9453         } else {
9454                 wrqu->retry.flags = IW_RETRY_LIMIT;
9455                 wrqu->retry.value = priv->short_retry_limit;
9456         }
9457         mutex_unlock(&priv->mutex);
9458
9459         IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9460
9461         return 0;
9462 }
9463
9464 static int ipw_wx_set_scan(struct net_device *dev,
9465                            struct iw_request_info *info,
9466                            union iwreq_data *wrqu, char *extra)
9467 {
9468         struct ipw_priv *priv = libipw_priv(dev);
9469         struct iw_scan_req *req = (struct iw_scan_req *)extra;
9470         struct delayed_work *work = NULL;
9471
9472         mutex_lock(&priv->mutex);
9473
9474         priv->user_requested_scan = 1;
9475
9476         if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9477                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9478                         int len = min((int)req->essid_len,
9479                                       (int)sizeof(priv->direct_scan_ssid));
9480                         memcpy(priv->direct_scan_ssid, req->essid, len);
9481                         priv->direct_scan_ssid_len = len;
9482                         work = &priv->request_direct_scan;
9483                 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9484                         work = &priv->request_passive_scan;
9485                 }
9486         } else {
9487                 /* Normal active broadcast scan */
9488                 work = &priv->request_scan;
9489         }
9490
9491         mutex_unlock(&priv->mutex);
9492
9493         IPW_DEBUG_WX("Start scan\n");
9494
9495         schedule_delayed_work(work, 0);
9496
9497         return 0;
9498 }
9499
9500 static int ipw_wx_get_scan(struct net_device *dev,
9501                            struct iw_request_info *info,
9502                            union iwreq_data *wrqu, char *extra)
9503 {
9504         struct ipw_priv *priv = libipw_priv(dev);
9505         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9506 }
9507
9508 static int ipw_wx_set_encode(struct net_device *dev,
9509                              struct iw_request_info *info,
9510                              union iwreq_data *wrqu, char *key)
9511 {
9512         struct ipw_priv *priv = libipw_priv(dev);
9513         int ret;
9514         u32 cap = priv->capability;
9515
9516         mutex_lock(&priv->mutex);
9517         ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9518
9519         /* In IBSS mode, we need to notify the firmware to update
9520          * the beacon info after we changed the capability. */
9521         if (cap != priv->capability &&
9522             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9523             priv->status & STATUS_ASSOCIATED)
9524                 ipw_disassociate(priv);
9525
9526         mutex_unlock(&priv->mutex);
9527         return ret;
9528 }
9529
9530 static int ipw_wx_get_encode(struct net_device *dev,
9531                              struct iw_request_info *info,
9532                              union iwreq_data *wrqu, char *key)
9533 {
9534         struct ipw_priv *priv = libipw_priv(dev);
9535         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9536 }
9537
9538 static int ipw_wx_set_power(struct net_device *dev,
9539                             struct iw_request_info *info,
9540                             union iwreq_data *wrqu, char *extra)
9541 {
9542         struct ipw_priv *priv = libipw_priv(dev);
9543         int err;
9544         mutex_lock(&priv->mutex);
9545         if (wrqu->power.disabled) {
9546                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9547                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9548                 if (err) {
9549                         IPW_DEBUG_WX("failed setting power mode.\n");
9550                         mutex_unlock(&priv->mutex);
9551                         return err;
9552                 }
9553                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9554                 mutex_unlock(&priv->mutex);
9555                 return 0;
9556         }
9557
9558         switch (wrqu->power.flags & IW_POWER_MODE) {
9559         case IW_POWER_ON:       /* If not specified */
9560         case IW_POWER_MODE:     /* If set all mask */
9561         case IW_POWER_ALL_R:    /* If explicitly state all */
9562                 break;
9563         default:                /* Otherwise we don't support it */
9564                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9565                              wrqu->power.flags);
9566                 mutex_unlock(&priv->mutex);
9567                 return -EOPNOTSUPP;
9568         }
9569
9570         /* If the user hasn't specified a power management mode yet, default
9571          * to BATTERY */
9572         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9573                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9574         else
9575                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9576
9577         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9578         if (err) {
9579                 IPW_DEBUG_WX("failed setting power mode.\n");
9580                 mutex_unlock(&priv->mutex);
9581                 return err;
9582         }
9583
9584         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9585         mutex_unlock(&priv->mutex);
9586         return 0;
9587 }
9588
9589 static int ipw_wx_get_power(struct net_device *dev,
9590                             struct iw_request_info *info,
9591                             union iwreq_data *wrqu, char *extra)
9592 {
9593         struct ipw_priv *priv = libipw_priv(dev);
9594         mutex_lock(&priv->mutex);
9595         if (!(priv->power_mode & IPW_POWER_ENABLED))
9596                 wrqu->power.disabled = 1;
9597         else
9598                 wrqu->power.disabled = 0;
9599
9600         mutex_unlock(&priv->mutex);
9601         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9602
9603         return 0;
9604 }
9605
9606 static int ipw_wx_set_powermode(struct net_device *dev,
9607                                 struct iw_request_info *info,
9608                                 union iwreq_data *wrqu, char *extra)
9609 {
9610         struct ipw_priv *priv = libipw_priv(dev);
9611         int mode = *(int *)extra;
9612         int err;
9613
9614         mutex_lock(&priv->mutex);
9615         if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9616                 mode = IPW_POWER_AC;
9617
9618         if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9619                 err = ipw_send_power_mode(priv, mode);
9620                 if (err) {
9621                         IPW_DEBUG_WX("failed setting power mode.\n");
9622                         mutex_unlock(&priv->mutex);
9623                         return err;
9624                 }
9625                 priv->power_mode = IPW_POWER_ENABLED | mode;
9626         }
9627         mutex_unlock(&priv->mutex);
9628         return 0;
9629 }
9630
9631 #define MAX_WX_STRING 80
9632 static int ipw_wx_get_powermode(struct net_device *dev,
9633                                 struct iw_request_info *info,
9634                                 union iwreq_data *wrqu, char *extra)
9635 {
9636         struct ipw_priv *priv = libipw_priv(dev);
9637         int level = IPW_POWER_LEVEL(priv->power_mode);
9638         char *p = extra;
9639
9640         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9641
9642         switch (level) {
9643         case IPW_POWER_AC:
9644                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9645                 break;
9646         case IPW_POWER_BATTERY:
9647                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9648                 break;
9649         default:
9650                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9651                               "(Timeout %dms, Period %dms)",
9652                               timeout_duration[level - 1] / 1000,
9653                               period_duration[level - 1] / 1000);
9654         }
9655
9656         if (!(priv->power_mode & IPW_POWER_ENABLED))
9657                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9658
9659         wrqu->data.length = p - extra + 1;
9660
9661         return 0;
9662 }
9663
9664 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9665                                     struct iw_request_info *info,
9666                                     union iwreq_data *wrqu, char *extra)
9667 {
9668         struct ipw_priv *priv = libipw_priv(dev);
9669         int mode = *(int *)extra;
9670         u8 band = 0, modulation = 0;
9671
9672         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9673                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9674                 return -EINVAL;
9675         }
9676         mutex_lock(&priv->mutex);
9677         if (priv->adapter == IPW_2915ABG) {
9678                 priv->ieee->abg_true = 1;
9679                 if (mode & IEEE_A) {
9680                         band |= LIBIPW_52GHZ_BAND;
9681                         modulation |= LIBIPW_OFDM_MODULATION;
9682                 } else
9683                         priv->ieee->abg_true = 0;
9684         } else {
9685                 if (mode & IEEE_A) {
9686                         IPW_WARNING("Attempt to set 2200BG into "
9687                                     "802.11a mode\n");
9688                         mutex_unlock(&priv->mutex);
9689                         return -EINVAL;
9690                 }
9691
9692                 priv->ieee->abg_true = 0;
9693         }
9694
9695         if (mode & IEEE_B) {
9696                 band |= LIBIPW_24GHZ_BAND;
9697                 modulation |= LIBIPW_CCK_MODULATION;
9698         } else
9699                 priv->ieee->abg_true = 0;
9700
9701         if (mode & IEEE_G) {
9702                 band |= LIBIPW_24GHZ_BAND;
9703                 modulation |= LIBIPW_OFDM_MODULATION;
9704         } else
9705                 priv->ieee->abg_true = 0;
9706
9707         priv->ieee->mode = mode;
9708         priv->ieee->freq_band = band;
9709         priv->ieee->modulation = modulation;
9710         init_supported_rates(priv, &priv->rates);
9711
9712         /* Network configuration changed -- force [re]association */
9713         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9714         if (!ipw_disassociate(priv)) {
9715                 ipw_send_supported_rates(priv, &priv->rates);
9716                 ipw_associate(priv);
9717         }
9718
9719         /* Update the band LEDs */
9720         ipw_led_band_on(priv);
9721
9722         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9723                      mode & IEEE_A ? 'a' : '.',
9724                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9725         mutex_unlock(&priv->mutex);
9726         return 0;
9727 }
9728
9729 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9730                                     struct iw_request_info *info,
9731                                     union iwreq_data *wrqu, char *extra)
9732 {
9733         struct ipw_priv *priv = libipw_priv(dev);
9734         mutex_lock(&priv->mutex);
9735         switch (priv->ieee->mode) {
9736         case IEEE_A:
9737                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9738                 break;
9739         case IEEE_B:
9740                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9741                 break;
9742         case IEEE_A | IEEE_B:
9743                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9744                 break;
9745         case IEEE_G:
9746                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9747                 break;
9748         case IEEE_A | IEEE_G:
9749                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9750                 break;
9751         case IEEE_B | IEEE_G:
9752                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9753                 break;
9754         case IEEE_A | IEEE_B | IEEE_G:
9755                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9756                 break;
9757         default:
9758                 strncpy(extra, "unknown", MAX_WX_STRING);
9759                 break;
9760         }
9761         extra[MAX_WX_STRING - 1] = '\0';
9762
9763         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9764
9765         wrqu->data.length = strlen(extra) + 1;
9766         mutex_unlock(&priv->mutex);
9767
9768         return 0;
9769 }
9770
9771 static int ipw_wx_set_preamble(struct net_device *dev,
9772                                struct iw_request_info *info,
9773                                union iwreq_data *wrqu, char *extra)
9774 {
9775         struct ipw_priv *priv = libipw_priv(dev);
9776         int mode = *(int *)extra;
9777         mutex_lock(&priv->mutex);
9778         /* Switching from SHORT -> LONG requires a disassociation */
9779         if (mode == 1) {
9780                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9781                         priv->config |= CFG_PREAMBLE_LONG;
9782
9783                         /* Network configuration changed -- force [re]association */
9784                         IPW_DEBUG_ASSOC
9785                             ("[re]association triggered due to preamble change.\n");
9786                         if (!ipw_disassociate(priv))
9787                                 ipw_associate(priv);
9788                 }
9789                 goto done;
9790         }
9791
9792         if (mode == 0) {
9793                 priv->config &= ~CFG_PREAMBLE_LONG;
9794                 goto done;
9795         }
9796         mutex_unlock(&priv->mutex);
9797         return -EINVAL;
9798
9799       done:
9800         mutex_unlock(&priv->mutex);
9801         return 0;
9802 }
9803
9804 static int ipw_wx_get_preamble(struct net_device *dev,
9805                                struct iw_request_info *info,
9806                                union iwreq_data *wrqu, char *extra)
9807 {
9808         struct ipw_priv *priv = libipw_priv(dev);
9809         mutex_lock(&priv->mutex);
9810         if (priv->config & CFG_PREAMBLE_LONG)
9811                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9812         else
9813                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9814         mutex_unlock(&priv->mutex);
9815         return 0;
9816 }
9817
9818 #ifdef CONFIG_IPW2200_MONITOR
9819 static int ipw_wx_set_monitor(struct net_device *dev,
9820                               struct iw_request_info *info,
9821                               union iwreq_data *wrqu, char *extra)
9822 {
9823         struct ipw_priv *priv = libipw_priv(dev);
9824         int *parms = (int *)extra;
9825         int enable = (parms[0] > 0);
9826         mutex_lock(&priv->mutex);
9827         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9828         if (enable) {
9829                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9830 #ifdef CONFIG_IPW2200_RADIOTAP
9831                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9832 #else
9833                         priv->net_dev->type = ARPHRD_IEEE80211;
9834 #endif
9835                         schedule_work(&priv->adapter_restart);
9836                 }
9837
9838                 ipw_set_channel(priv, parms[1]);
9839         } else {
9840                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9841                         mutex_unlock(&priv->mutex);
9842                         return 0;
9843                 }
9844                 priv->net_dev->type = ARPHRD_ETHER;
9845                 schedule_work(&priv->adapter_restart);
9846         }
9847         mutex_unlock(&priv->mutex);
9848         return 0;
9849 }
9850
9851 #endif                          /* CONFIG_IPW2200_MONITOR */
9852
9853 static int ipw_wx_reset(struct net_device *dev,
9854                         struct iw_request_info *info,
9855                         union iwreq_data *wrqu, char *extra)
9856 {
9857         struct ipw_priv *priv = libipw_priv(dev);
9858         IPW_DEBUG_WX("RESET\n");
9859         schedule_work(&priv->adapter_restart);
9860         return 0;
9861 }
9862
9863 static int ipw_wx_sw_reset(struct net_device *dev,
9864                            struct iw_request_info *info,
9865                            union iwreq_data *wrqu, char *extra)
9866 {
9867         struct ipw_priv *priv = libipw_priv(dev);
9868         union iwreq_data wrqu_sec = {
9869                 .encoding = {
9870                              .flags = IW_ENCODE_DISABLED,
9871                              },
9872         };
9873         int ret;
9874
9875         IPW_DEBUG_WX("SW_RESET\n");
9876
9877         mutex_lock(&priv->mutex);
9878
9879         ret = ipw_sw_reset(priv, 2);
9880         if (!ret) {
9881                 free_firmware();
9882                 ipw_adapter_restart(priv);
9883         }
9884
9885         /* The SW reset bit might have been toggled on by the 'disable'
9886          * module parameter, so take appropriate action */
9887         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9888
9889         mutex_unlock(&priv->mutex);
9890         libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9891         mutex_lock(&priv->mutex);
9892
9893         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9894                 /* Configuration likely changed -- force [re]association */
9895                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9896                                 "reset.\n");
9897                 if (!ipw_disassociate(priv))
9898                         ipw_associate(priv);
9899         }
9900
9901         mutex_unlock(&priv->mutex);
9902
9903         return 0;
9904 }
9905
9906 /* Rebase the WE IOCTLs to zero for the handler array */
9907 static iw_handler ipw_wx_handlers[] = {
9908         IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
9909         IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
9910         IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
9911         IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
9912         IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
9913         IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
9914         IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
9915         IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
9916         IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
9917         IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
9918         IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
9919         IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
9920         IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
9921         IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
9922         IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
9923         IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
9924         IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
9925         IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
9926         IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
9927         IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
9928         IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
9929         IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
9930         IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
9931         IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
9932         IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
9933         IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
9934         IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
9935         IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
9936         IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
9937         IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
9938         IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
9939         IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
9940         IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
9941         IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
9942         IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
9943         IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
9944         IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
9945         IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
9946         IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
9947         IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
9948         IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
9949 };
9950
9951 enum {
9952         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9953         IPW_PRIV_GET_POWER,
9954         IPW_PRIV_SET_MODE,
9955         IPW_PRIV_GET_MODE,
9956         IPW_PRIV_SET_PREAMBLE,
9957         IPW_PRIV_GET_PREAMBLE,
9958         IPW_PRIV_RESET,
9959         IPW_PRIV_SW_RESET,
9960 #ifdef CONFIG_IPW2200_MONITOR
9961         IPW_PRIV_SET_MONITOR,
9962 #endif
9963 };
9964
9965 static struct iw_priv_args ipw_priv_args[] = {
9966         {
9967          .cmd = IPW_PRIV_SET_POWER,
9968          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9969          .name = "set_power"},
9970         {
9971          .cmd = IPW_PRIV_GET_POWER,
9972          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9973          .name = "get_power"},
9974         {
9975          .cmd = IPW_PRIV_SET_MODE,
9976          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9977          .name = "set_mode"},
9978         {
9979          .cmd = IPW_PRIV_GET_MODE,
9980          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9981          .name = "get_mode"},
9982         {
9983          .cmd = IPW_PRIV_SET_PREAMBLE,
9984          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9985          .name = "set_preamble"},
9986         {
9987          .cmd = IPW_PRIV_GET_PREAMBLE,
9988          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9989          .name = "get_preamble"},
9990         {
9991          IPW_PRIV_RESET,
9992          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9993         {
9994          IPW_PRIV_SW_RESET,
9995          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9996 #ifdef CONFIG_IPW2200_MONITOR
9997         {
9998          IPW_PRIV_SET_MONITOR,
9999          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10000 #endif                          /* CONFIG_IPW2200_MONITOR */
10001 };
10002
10003 static iw_handler ipw_priv_handler[] = {
10004         ipw_wx_set_powermode,
10005         ipw_wx_get_powermode,
10006         ipw_wx_set_wireless_mode,
10007         ipw_wx_get_wireless_mode,
10008         ipw_wx_set_preamble,
10009         ipw_wx_get_preamble,
10010         ipw_wx_reset,
10011         ipw_wx_sw_reset,
10012 #ifdef CONFIG_IPW2200_MONITOR
10013         ipw_wx_set_monitor,
10014 #endif
10015 };
10016
10017 static struct iw_handler_def ipw_wx_handler_def = {
10018         .standard = ipw_wx_handlers,
10019         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10020         .num_private = ARRAY_SIZE(ipw_priv_handler),
10021         .num_private_args = ARRAY_SIZE(ipw_priv_args),
10022         .private = ipw_priv_handler,
10023         .private_args = ipw_priv_args,
10024         .get_wireless_stats = ipw_get_wireless_stats,
10025 };
10026
10027 /*
10028  * Get wireless statistics.
10029  * Called by /proc/net/wireless
10030  * Also called by SIOCGIWSTATS
10031  */
10032 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10033 {
10034         struct ipw_priv *priv = libipw_priv(dev);
10035         struct iw_statistics *wstats;
10036
10037         wstats = &priv->wstats;
10038
10039         /* if hw is disabled, then ipw_get_ordinal() can't be called.
10040          * netdev->get_wireless_stats seems to be called before fw is
10041          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10042          * and associated; if not associcated, the values are all meaningless
10043          * anyway, so set them all to NULL and INVALID */
10044         if (!(priv->status & STATUS_ASSOCIATED)) {
10045                 wstats->miss.beacon = 0;
10046                 wstats->discard.retries = 0;
10047                 wstats->qual.qual = 0;
10048                 wstats->qual.level = 0;
10049                 wstats->qual.noise = 0;
10050                 wstats->qual.updated = 7;
10051                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10052                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10053                 return wstats;
10054         }
10055
10056         wstats->qual.qual = priv->quality;
10057         wstats->qual.level = priv->exp_avg_rssi;
10058         wstats->qual.noise = priv->exp_avg_noise;
10059         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10060             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10061
10062         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10063         wstats->discard.retries = priv->last_tx_failures;
10064         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10065
10066 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10067         goto fail_get_ordinal;
10068         wstats->discard.retries += tx_retry; */
10069
10070         return wstats;
10071 }
10072
10073 /* net device stuff */
10074
10075 static  void init_sys_config(struct ipw_sys_config *sys_config)
10076 {
10077         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10078         sys_config->bt_coexistence = 0;
10079         sys_config->answer_broadcast_ssid_probe = 0;
10080         sys_config->accept_all_data_frames = 0;
10081         sys_config->accept_non_directed_frames = 1;
10082         sys_config->exclude_unicast_unencrypted = 0;
10083         sys_config->disable_unicast_decryption = 1;
10084         sys_config->exclude_multicast_unencrypted = 0;
10085         sys_config->disable_multicast_decryption = 1;
10086         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10087                 antenna = CFG_SYS_ANTENNA_BOTH;
10088         sys_config->antenna_diversity = antenna;
10089         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10090         sys_config->dot11g_auto_detection = 0;
10091         sys_config->enable_cts_to_self = 0;
10092         sys_config->bt_coexist_collision_thr = 0;
10093         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
10094         sys_config->silence_threshold = 0x1e;
10095 }
10096
10097 static int ipw_net_open(struct net_device *dev)
10098 {
10099         IPW_DEBUG_INFO("dev->open\n");
10100         netif_start_queue(dev);
10101         return 0;
10102 }
10103
10104 static int ipw_net_stop(struct net_device *dev)
10105 {
10106         IPW_DEBUG_INFO("dev->close\n");
10107         netif_stop_queue(dev);
10108         return 0;
10109 }
10110
10111 /*
10112 todo:
10113
10114 modify to send one tfd per fragment instead of using chunking.  otherwise
10115 we need to heavily modify the libipw_skb_to_txb.
10116 */
10117
10118 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10119                              int pri)
10120 {
10121         struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10122             txb->fragments[0]->data;
10123         int i = 0;
10124         struct tfd_frame *tfd;
10125 #ifdef CONFIG_IPW2200_QOS
10126         int tx_id = ipw_get_tx_queue_number(priv, pri);
10127         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10128 #else
10129         struct clx2_tx_queue *txq = &priv->txq[0];
10130 #endif
10131         struct clx2_queue *q = &txq->q;
10132         u8 id, hdr_len, unicast;
10133         int fc;
10134
10135         if (!(priv->status & STATUS_ASSOCIATED))
10136                 goto drop;
10137
10138         hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10139         switch (priv->ieee->iw_mode) {
10140         case IW_MODE_ADHOC:
10141                 unicast = !is_multicast_ether_addr(hdr->addr1);
10142                 id = ipw_find_station(priv, hdr->addr1);
10143                 if (id == IPW_INVALID_STATION) {
10144                         id = ipw_add_station(priv, hdr->addr1);
10145                         if (id == IPW_INVALID_STATION) {
10146                                 IPW_WARNING("Attempt to send data to "
10147                                             "invalid cell: %pM\n",
10148                                             hdr->addr1);
10149                                 goto drop;
10150                         }
10151                 }
10152                 break;
10153
10154         case IW_MODE_INFRA:
10155         default:
10156                 unicast = !is_multicast_ether_addr(hdr->addr3);
10157                 id = 0;
10158                 break;
10159         }
10160
10161         tfd = &txq->bd[q->first_empty];
10162         txq->txb[q->first_empty] = txb;
10163         memset(tfd, 0, sizeof(*tfd));
10164         tfd->u.data.station_number = id;
10165
10166         tfd->control_flags.message_type = TX_FRAME_TYPE;
10167         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10168
10169         tfd->u.data.cmd_id = DINO_CMD_TX;
10170         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10171
10172         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10173                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10174         else
10175                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10176
10177         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10178                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10179
10180         fc = le16_to_cpu(hdr->frame_ctl);
10181         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10182
10183         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10184
10185         if (likely(unicast))
10186                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10187
10188         if (txb->encrypted && !priv->ieee->host_encrypt) {
10189                 switch (priv->ieee->sec.level) {
10190                 case SEC_LEVEL_3:
10191                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10192                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10193                         /* XXX: ACK flag must be set for CCMP even if it
10194                          * is a multicast/broadcast packet, because CCMP
10195                          * group communication encrypted by GTK is
10196                          * actually done by the AP. */
10197                         if (!unicast)
10198                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10199
10200                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10201                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10202                         tfd->u.data.key_index = 0;
10203                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10204                         break;
10205                 case SEC_LEVEL_2:
10206                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10207                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10208                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10209                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10210                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10211                         break;
10212                 case SEC_LEVEL_1:
10213                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10214                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10215                         tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10216                         if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10217                             40)
10218                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10219                         else
10220                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10221                         break;
10222                 case SEC_LEVEL_0:
10223                         break;
10224                 default:
10225                         printk(KERN_ERR "Unknown security level %d\n",
10226                                priv->ieee->sec.level);
10227                         break;
10228                 }
10229         } else
10230                 /* No hardware encryption */
10231                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10232
10233 #ifdef CONFIG_IPW2200_QOS
10234         if (fc & IEEE80211_STYPE_QOS_DATA)
10235                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10236 #endif                          /* CONFIG_IPW2200_QOS */
10237
10238         /* payload */
10239         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10240                                                  txb->nr_frags));
10241         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10242                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10243         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10244                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10245                                i, le32_to_cpu(tfd->u.data.num_chunks),
10246                                txb->fragments[i]->len - hdr_len);
10247                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10248                              i, tfd->u.data.num_chunks,
10249                              txb->fragments[i]->len - hdr_len);
10250                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10251                            txb->fragments[i]->len - hdr_len);
10252
10253                 tfd->u.data.chunk_ptr[i] =
10254                     cpu_to_le32(pci_map_single
10255                                 (priv->pci_dev,
10256                                  txb->fragments[i]->data + hdr_len,
10257                                  txb->fragments[i]->len - hdr_len,
10258                                  PCI_DMA_TODEVICE));
10259                 tfd->u.data.chunk_len[i] =
10260                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10261         }
10262
10263         if (i != txb->nr_frags) {
10264                 struct sk_buff *skb;
10265                 u16 remaining_bytes = 0;
10266                 int j;
10267
10268                 for (j = i; j < txb->nr_frags; j++)
10269                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10270
10271                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10272                        remaining_bytes);
10273                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10274                 if (skb != NULL) {
10275                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10276                         for (j = i; j < txb->nr_frags; j++) {
10277                                 int size = txb->fragments[j]->len - hdr_len;
10278
10279                                 printk(KERN_INFO "Adding frag %d %d...\n",
10280                                        j, size);
10281                                 memcpy(skb_put(skb, size),
10282                                        txb->fragments[j]->data + hdr_len, size);
10283                         }
10284                         dev_kfree_skb_any(txb->fragments[i]);
10285                         txb->fragments[i] = skb;
10286                         tfd->u.data.chunk_ptr[i] =
10287                             cpu_to_le32(pci_map_single
10288                                         (priv->pci_dev, skb->data,
10289                                          remaining_bytes,
10290                                          PCI_DMA_TODEVICE));
10291
10292                         le32_add_cpu(&tfd->u.data.num_chunks, 1);
10293                 }
10294         }
10295
10296         /* kick DMA */
10297         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10298         ipw_write32(priv, q->reg_w, q->first_empty);
10299
10300         if (ipw_tx_queue_space(q) < q->high_mark)
10301                 netif_stop_queue(priv->net_dev);
10302
10303         return NETDEV_TX_OK;
10304
10305       drop:
10306         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10307         libipw_txb_free(txb);
10308         return NETDEV_TX_OK;
10309 }
10310
10311 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10312 {
10313         struct ipw_priv *priv = libipw_priv(dev);
10314 #ifdef CONFIG_IPW2200_QOS
10315         int tx_id = ipw_get_tx_queue_number(priv, pri);
10316         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10317 #else
10318         struct clx2_tx_queue *txq = &priv->txq[0];
10319 #endif                          /* CONFIG_IPW2200_QOS */
10320
10321         if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10322                 return 1;
10323
10324         return 0;
10325 }
10326
10327 #ifdef CONFIG_IPW2200_PROMISCUOUS
10328 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10329                                       struct libipw_txb *txb)
10330 {
10331         struct libipw_rx_stats dummystats;
10332         struct ieee80211_hdr *hdr;
10333         u8 n;
10334         u16 filter = priv->prom_priv->filter;
10335         int hdr_only = 0;
10336
10337         if (filter & IPW_PROM_NO_TX)
10338                 return;
10339
10340         memset(&dummystats, 0, sizeof(dummystats));
10341
10342         /* Filtering of fragment chains is done against the first fragment */
10343         hdr = (void *)txb->fragments[0]->data;
10344         if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10345                 if (filter & IPW_PROM_NO_MGMT)
10346                         return;
10347                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10348                         hdr_only = 1;
10349         } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10350                 if (filter & IPW_PROM_NO_CTL)
10351                         return;
10352                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10353                         hdr_only = 1;
10354         } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10355                 if (filter & IPW_PROM_NO_DATA)
10356                         return;
10357                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10358                         hdr_only = 1;
10359         }
10360
10361         for(n=0; n<txb->nr_frags; ++n) {
10362                 struct sk_buff *src = txb->fragments[n];
10363                 struct sk_buff *dst;
10364                 struct ieee80211_radiotap_header *rt_hdr;
10365                 int len;
10366
10367                 if (hdr_only) {
10368                         hdr = (void *)src->data;
10369                         len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10370                 } else
10371                         len = src->len;
10372
10373                 dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
10374                 if (!dst)
10375                         continue;
10376
10377                 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10378
10379                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10380                 rt_hdr->it_pad = 0;
10381                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10382                 rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10383
10384                 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10385                         ieee80211chan2mhz(priv->channel));
10386                 if (priv->channel > 14)         /* 802.11a */
10387                         *(__le16*)skb_put(dst, sizeof(u16)) =
10388                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10389                                              IEEE80211_CHAN_5GHZ);
10390                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10391                         *(__le16*)skb_put(dst, sizeof(u16)) =
10392                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10393                                              IEEE80211_CHAN_2GHZ);
10394                 else            /* 802.11g */
10395                         *(__le16*)skb_put(dst, sizeof(u16)) =
10396                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10397                                  IEEE80211_CHAN_2GHZ);
10398
10399                 rt_hdr->it_len = cpu_to_le16(dst->len);
10400
10401                 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10402
10403                 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10404                         dev_kfree_skb_any(dst);
10405         }
10406 }
10407 #endif
10408
10409 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10410                                            struct net_device *dev, int pri)
10411 {
10412         struct ipw_priv *priv = libipw_priv(dev);
10413         unsigned long flags;
10414         netdev_tx_t ret;
10415
10416         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10417         spin_lock_irqsave(&priv->lock, flags);
10418
10419 #ifdef CONFIG_IPW2200_PROMISCUOUS
10420         if (rtap_iface && netif_running(priv->prom_net_dev))
10421                 ipw_handle_promiscuous_tx(priv, txb);
10422 #endif
10423
10424         ret = ipw_tx_skb(priv, txb, pri);
10425         if (ret == NETDEV_TX_OK)
10426                 __ipw_led_activity_on(priv);
10427         spin_unlock_irqrestore(&priv->lock, flags);
10428
10429         return ret;
10430 }
10431
10432 static void ipw_net_set_multicast_list(struct net_device *dev)
10433 {
10434
10435 }
10436
10437 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10438 {
10439         struct ipw_priv *priv = libipw_priv(dev);
10440         struct sockaddr *addr = p;
10441
10442         if (!is_valid_ether_addr(addr->sa_data))
10443                 return -EADDRNOTAVAIL;
10444         mutex_lock(&priv->mutex);
10445         priv->config |= CFG_CUSTOM_MAC;
10446         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10447         printk(KERN_INFO "%s: Setting MAC to %pM\n",
10448                priv->net_dev->name, priv->mac_addr);
10449         schedule_work(&priv->adapter_restart);
10450         mutex_unlock(&priv->mutex);
10451         return 0;
10452 }
10453
10454 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10455                                     struct ethtool_drvinfo *info)
10456 {
10457         struct ipw_priv *p = libipw_priv(dev);
10458         char vers[64];
10459         char date[32];
10460         u32 len;
10461
10462         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
10463         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
10464
10465         len = sizeof(vers);
10466         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10467         len = sizeof(date);
10468         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10469
10470         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10471                  vers, date);
10472         strlcpy(info->bus_info, pci_name(p->pci_dev),
10473                 sizeof(info->bus_info));
10474 }
10475
10476 static u32 ipw_ethtool_get_link(struct net_device *dev)
10477 {
10478         struct ipw_priv *priv = libipw_priv(dev);
10479         return (priv->status & STATUS_ASSOCIATED) != 0;
10480 }
10481
10482 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10483 {
10484         return IPW_EEPROM_IMAGE_SIZE;
10485 }
10486
10487 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10488                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10489 {
10490         struct ipw_priv *p = libipw_priv(dev);
10491
10492         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10493                 return -EINVAL;
10494         mutex_lock(&p->mutex);
10495         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10496         mutex_unlock(&p->mutex);
10497         return 0;
10498 }
10499
10500 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10501                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10502 {
10503         struct ipw_priv *p = libipw_priv(dev);
10504         int i;
10505
10506         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10507                 return -EINVAL;
10508         mutex_lock(&p->mutex);
10509         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10510         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10511                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10512         mutex_unlock(&p->mutex);
10513         return 0;
10514 }
10515
10516 static const struct ethtool_ops ipw_ethtool_ops = {
10517         .get_link = ipw_ethtool_get_link,
10518         .get_drvinfo = ipw_ethtool_get_drvinfo,
10519         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10520         .get_eeprom = ipw_ethtool_get_eeprom,
10521         .set_eeprom = ipw_ethtool_set_eeprom,
10522 };
10523
10524 static irqreturn_t ipw_isr(int irq, void *data)
10525 {
10526         struct ipw_priv *priv = data;
10527         u32 inta, inta_mask;
10528
10529         if (!priv)
10530                 return IRQ_NONE;
10531
10532         spin_lock(&priv->irq_lock);
10533
10534         if (!(priv->status & STATUS_INT_ENABLED)) {
10535                 /* IRQ is disabled */
10536                 goto none;
10537         }
10538
10539         inta = ipw_read32(priv, IPW_INTA_RW);
10540         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10541
10542         if (inta == 0xFFFFFFFF) {
10543                 /* Hardware disappeared */
10544                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10545                 goto none;
10546         }
10547
10548         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10549                 /* Shared interrupt */
10550                 goto none;
10551         }
10552
10553         /* tell the device to stop sending interrupts */
10554         __ipw_disable_interrupts(priv);
10555
10556         /* ack current interrupts */
10557         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10558         ipw_write32(priv, IPW_INTA_RW, inta);
10559
10560         /* Cache INTA value for our tasklet */
10561         priv->isr_inta = inta;
10562
10563         tasklet_schedule(&priv->irq_tasklet);
10564
10565         spin_unlock(&priv->irq_lock);
10566
10567         return IRQ_HANDLED;
10568       none:
10569         spin_unlock(&priv->irq_lock);
10570         return IRQ_NONE;
10571 }
10572
10573 static void ipw_rf_kill(void *adapter)
10574 {
10575         struct ipw_priv *priv = adapter;
10576         unsigned long flags;
10577
10578         spin_lock_irqsave(&priv->lock, flags);
10579
10580         if (rf_kill_active(priv)) {
10581                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10582                 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10583                 goto exit_unlock;
10584         }
10585
10586         /* RF Kill is now disabled, so bring the device back up */
10587
10588         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10589                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10590                                   "device\n");
10591
10592                 /* we can not do an adapter restart while inside an irq lock */
10593                 schedule_work(&priv->adapter_restart);
10594         } else
10595                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10596                                   "enabled\n");
10597
10598       exit_unlock:
10599         spin_unlock_irqrestore(&priv->lock, flags);
10600 }
10601
10602 static void ipw_bg_rf_kill(struct work_struct *work)
10603 {
10604         struct ipw_priv *priv =
10605                 container_of(work, struct ipw_priv, rf_kill.work);
10606         mutex_lock(&priv->mutex);
10607         ipw_rf_kill(priv);
10608         mutex_unlock(&priv->mutex);
10609 }
10610
10611 static void ipw_link_up(struct ipw_priv *priv)
10612 {
10613         priv->last_seq_num = -1;
10614         priv->last_frag_num = -1;
10615         priv->last_packet_time = 0;
10616
10617         netif_carrier_on(priv->net_dev);
10618
10619         cancel_delayed_work(&priv->request_scan);
10620         cancel_delayed_work(&priv->request_direct_scan);
10621         cancel_delayed_work(&priv->request_passive_scan);
10622         cancel_delayed_work(&priv->scan_event);
10623         ipw_reset_stats(priv);
10624         /* Ensure the rate is updated immediately */
10625         priv->last_rate = ipw_get_current_rate(priv);
10626         ipw_gather_stats(priv);
10627         ipw_led_link_up(priv);
10628         notify_wx_assoc_event(priv);
10629
10630         if (priv->config & CFG_BACKGROUND_SCAN)
10631                 schedule_delayed_work(&priv->request_scan, HZ);
10632 }
10633
10634 static void ipw_bg_link_up(struct work_struct *work)
10635 {
10636         struct ipw_priv *priv =
10637                 container_of(work, struct ipw_priv, link_up);
10638         mutex_lock(&priv->mutex);
10639         ipw_link_up(priv);
10640         mutex_unlock(&priv->mutex);
10641 }
10642
10643 static void ipw_link_down(struct ipw_priv *priv)
10644 {
10645         ipw_led_link_down(priv);
10646         netif_carrier_off(priv->net_dev);
10647         notify_wx_assoc_event(priv);
10648
10649         /* Cancel any queued work ... */
10650         cancel_delayed_work(&priv->request_scan);
10651         cancel_delayed_work(&priv->request_direct_scan);
10652         cancel_delayed_work(&priv->request_passive_scan);
10653         cancel_delayed_work(&priv->adhoc_check);
10654         cancel_delayed_work(&priv->gather_stats);
10655
10656         ipw_reset_stats(priv);
10657
10658         if (!(priv->status & STATUS_EXIT_PENDING)) {
10659                 /* Queue up another scan... */
10660                 schedule_delayed_work(&priv->request_scan, 0);
10661         } else
10662                 cancel_delayed_work(&priv->scan_event);
10663 }
10664
10665 static void ipw_bg_link_down(struct work_struct *work)
10666 {
10667         struct ipw_priv *priv =
10668                 container_of(work, struct ipw_priv, link_down);
10669         mutex_lock(&priv->mutex);
10670         ipw_link_down(priv);
10671         mutex_unlock(&priv->mutex);
10672 }
10673
10674 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10675 {
10676         int ret = 0;
10677
10678         init_waitqueue_head(&priv->wait_command_queue);
10679         init_waitqueue_head(&priv->wait_state);
10680
10681         INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10682         INIT_WORK(&priv->associate, ipw_bg_associate);
10683         INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10684         INIT_WORK(&priv->system_config, ipw_system_config);
10685         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10686         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10687         INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10688         INIT_WORK(&priv->up, ipw_bg_up);
10689         INIT_WORK(&priv->down, ipw_bg_down);
10690         INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10691         INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10692         INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10693         INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10694         INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10695         INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10696         INIT_WORK(&priv->roam, ipw_bg_roam);
10697         INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10698         INIT_WORK(&priv->link_up, ipw_bg_link_up);
10699         INIT_WORK(&priv->link_down, ipw_bg_link_down);
10700         INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10701         INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10702         INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10703         INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10704
10705 #ifdef CONFIG_IPW2200_QOS
10706         INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10707 #endif                          /* CONFIG_IPW2200_QOS */
10708
10709         tasklet_init(&priv->irq_tasklet,
10710                      ipw_irq_tasklet, (unsigned long)priv);
10711
10712         return ret;
10713 }
10714
10715 static void shim__set_security(struct net_device *dev,
10716                                struct libipw_security *sec)
10717 {
10718         struct ipw_priv *priv = libipw_priv(dev);
10719         int i;
10720         for (i = 0; i < 4; i++) {
10721                 if (sec->flags & (1 << i)) {
10722                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10723                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10724                         if (sec->key_sizes[i] == 0)
10725                                 priv->ieee->sec.flags &= ~(1 << i);
10726                         else {
10727                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10728                                        sec->key_sizes[i]);
10729                                 priv->ieee->sec.flags |= (1 << i);
10730                         }
10731                         priv->status |= STATUS_SECURITY_UPDATED;
10732                 } else if (sec->level != SEC_LEVEL_1)
10733                         priv->ieee->sec.flags &= ~(1 << i);
10734         }
10735
10736         if (sec->flags & SEC_ACTIVE_KEY) {
10737                 if (sec->active_key <= 3) {
10738                         priv->ieee->sec.active_key = sec->active_key;
10739                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10740                 } else
10741                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10742                 priv->status |= STATUS_SECURITY_UPDATED;
10743         } else
10744                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10745
10746         if ((sec->flags & SEC_AUTH_MODE) &&
10747             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10748                 priv->ieee->sec.auth_mode = sec->auth_mode;
10749                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10750                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10751                         priv->capability |= CAP_SHARED_KEY;
10752                 else
10753                         priv->capability &= ~CAP_SHARED_KEY;
10754                 priv->status |= STATUS_SECURITY_UPDATED;
10755         }
10756
10757         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10758                 priv->ieee->sec.flags |= SEC_ENABLED;
10759                 priv->ieee->sec.enabled = sec->enabled;
10760                 priv->status |= STATUS_SECURITY_UPDATED;
10761                 if (sec->enabled)
10762                         priv->capability |= CAP_PRIVACY_ON;
10763                 else
10764                         priv->capability &= ~CAP_PRIVACY_ON;
10765         }
10766
10767         if (sec->flags & SEC_ENCRYPT)
10768                 priv->ieee->sec.encrypt = sec->encrypt;
10769
10770         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10771                 priv->ieee->sec.level = sec->level;
10772                 priv->ieee->sec.flags |= SEC_LEVEL;
10773                 priv->status |= STATUS_SECURITY_UPDATED;
10774         }
10775
10776         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10777                 ipw_set_hwcrypto_keys(priv);
10778
10779         /* To match current functionality of ipw2100 (which works well w/
10780          * various supplicants, we don't force a disassociate if the
10781          * privacy capability changes ... */
10782 #if 0
10783         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10784             (((priv->assoc_request.capability &
10785                cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10786              (!(priv->assoc_request.capability &
10787                 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10788                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10789                                 "change.\n");
10790                 ipw_disassociate(priv);
10791         }
10792 #endif
10793 }
10794
10795 static int init_supported_rates(struct ipw_priv *priv,
10796                                 struct ipw_supported_rates *rates)
10797 {
10798         /* TODO: Mask out rates based on priv->rates_mask */
10799
10800         memset(rates, 0, sizeof(*rates));
10801         /* configure supported rates */
10802         switch (priv->ieee->freq_band) {
10803         case LIBIPW_52GHZ_BAND:
10804                 rates->ieee_mode = IPW_A_MODE;
10805                 rates->purpose = IPW_RATE_CAPABILITIES;
10806                 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10807                                         LIBIPW_OFDM_DEFAULT_RATES_MASK);
10808                 break;
10809
10810         default:                /* Mixed or 2.4Ghz */
10811                 rates->ieee_mode = IPW_G_MODE;
10812                 rates->purpose = IPW_RATE_CAPABILITIES;
10813                 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10814                                        LIBIPW_CCK_DEFAULT_RATES_MASK);
10815                 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10816                         ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10817                                                 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10818                 }
10819                 break;
10820         }
10821
10822         return 0;
10823 }
10824
10825 static int ipw_config(struct ipw_priv *priv)
10826 {
10827         /* This is only called from ipw_up, which resets/reloads the firmware
10828            so, we don't need to first disable the card before we configure
10829            it */
10830         if (ipw_set_tx_power(priv))
10831                 goto error;
10832
10833         /* initialize adapter address */
10834         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10835                 goto error;
10836
10837         /* set basic system config settings */
10838         init_sys_config(&priv->sys_config);
10839
10840         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10841          * Does not support BT priority yet (don't abort or defer our Tx) */
10842         if (bt_coexist) {
10843                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10844
10845                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10846                         priv->sys_config.bt_coexistence
10847                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10848                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10849                         priv->sys_config.bt_coexistence
10850                             |= CFG_BT_COEXISTENCE_OOB;
10851         }
10852
10853 #ifdef CONFIG_IPW2200_PROMISCUOUS
10854         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10855                 priv->sys_config.accept_all_data_frames = 1;
10856                 priv->sys_config.accept_non_directed_frames = 1;
10857                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10858                 priv->sys_config.accept_all_mgmt_frames = 1;
10859         }
10860 #endif
10861
10862         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10863                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10864         else
10865                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10866
10867         if (ipw_send_system_config(priv))
10868                 goto error;
10869
10870         init_supported_rates(priv, &priv->rates);
10871         if (ipw_send_supported_rates(priv, &priv->rates))
10872                 goto error;
10873
10874         /* Set request-to-send threshold */
10875         if (priv->rts_threshold) {
10876                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10877                         goto error;
10878         }
10879 #ifdef CONFIG_IPW2200_QOS
10880         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10881         ipw_qos_activate(priv, NULL);
10882 #endif                          /* CONFIG_IPW2200_QOS */
10883
10884         if (ipw_set_random_seed(priv))
10885                 goto error;
10886
10887         /* final state transition to the RUN state */
10888         if (ipw_send_host_complete(priv))
10889                 goto error;
10890
10891         priv->status |= STATUS_INIT;
10892
10893         ipw_led_init(priv);
10894         ipw_led_radio_on(priv);
10895         priv->notif_missed_beacons = 0;
10896
10897         /* Set hardware WEP key if it is configured. */
10898         if ((priv->capability & CAP_PRIVACY_ON) &&
10899             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10900             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10901                 ipw_set_hwcrypto_keys(priv);
10902
10903         return 0;
10904
10905       error:
10906         return -EIO;
10907 }
10908
10909 /*
10910  * NOTE:
10911  *
10912  * These tables have been tested in conjunction with the
10913  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10914  *
10915  * Altering this values, using it on other hardware, or in geographies
10916  * not intended for resale of the above mentioned Intel adapters has
10917  * not been tested.
10918  *
10919  * Remember to update the table in README.ipw2200 when changing this
10920  * table.
10921  *
10922  */
10923 static const struct libipw_geo ipw_geos[] = {
10924         {                       /* Restricted */
10925          "---",
10926          .bg_channels = 11,
10927          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10928                 {2427, 4}, {2432, 5}, {2437, 6},
10929                 {2442, 7}, {2447, 8}, {2452, 9},
10930                 {2457, 10}, {2462, 11}},
10931          },
10932
10933         {                       /* Custom US/Canada */
10934          "ZZF",
10935          .bg_channels = 11,
10936          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10937                 {2427, 4}, {2432, 5}, {2437, 6},
10938                 {2442, 7}, {2447, 8}, {2452, 9},
10939                 {2457, 10}, {2462, 11}},
10940          .a_channels = 8,
10941          .a = {{5180, 36},
10942                {5200, 40},
10943                {5220, 44},
10944                {5240, 48},
10945                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10946                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10947                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10948                {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
10949          },
10950
10951         {                       /* Rest of World */
10952          "ZZD",
10953          .bg_channels = 13,
10954          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10955                 {2427, 4}, {2432, 5}, {2437, 6},
10956                 {2442, 7}, {2447, 8}, {2452, 9},
10957                 {2457, 10}, {2462, 11}, {2467, 12},
10958                 {2472, 13}},
10959          },
10960
10961         {                       /* Custom USA & Europe & High */
10962          "ZZA",
10963          .bg_channels = 11,
10964          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10965                 {2427, 4}, {2432, 5}, {2437, 6},
10966                 {2442, 7}, {2447, 8}, {2452, 9},
10967                 {2457, 10}, {2462, 11}},
10968          .a_channels = 13,
10969          .a = {{5180, 36},
10970                {5200, 40},
10971                {5220, 44},
10972                {5240, 48},
10973                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10974                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10975                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10976                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10977                {5745, 149},
10978                {5765, 153},
10979                {5785, 157},
10980                {5805, 161},
10981                {5825, 165}},
10982          },
10983
10984         {                       /* Custom NA & Europe */
10985          "ZZB",
10986          .bg_channels = 11,
10987          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10988                 {2427, 4}, {2432, 5}, {2437, 6},
10989                 {2442, 7}, {2447, 8}, {2452, 9},
10990                 {2457, 10}, {2462, 11}},
10991          .a_channels = 13,
10992          .a = {{5180, 36},
10993                {5200, 40},
10994                {5220, 44},
10995                {5240, 48},
10996                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10997                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10998                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10999                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11000                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11001                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11002                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11003                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11004                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11005          },
11006
11007         {                       /* Custom Japan */
11008          "ZZC",
11009          .bg_channels = 11,
11010          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11011                 {2427, 4}, {2432, 5}, {2437, 6},
11012                 {2442, 7}, {2447, 8}, {2452, 9},
11013                 {2457, 10}, {2462, 11}},
11014          .a_channels = 4,
11015          .a = {{5170, 34}, {5190, 38},
11016                {5210, 42}, {5230, 46}},
11017          },
11018
11019         {                       /* Custom */
11020          "ZZM",
11021          .bg_channels = 11,
11022          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11023                 {2427, 4}, {2432, 5}, {2437, 6},
11024                 {2442, 7}, {2447, 8}, {2452, 9},
11025                 {2457, 10}, {2462, 11}},
11026          },
11027
11028         {                       /* Europe */
11029          "ZZE",
11030          .bg_channels = 13,
11031          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11032                 {2427, 4}, {2432, 5}, {2437, 6},
11033                 {2442, 7}, {2447, 8}, {2452, 9},
11034                 {2457, 10}, {2462, 11}, {2467, 12},
11035                 {2472, 13}},
11036          .a_channels = 19,
11037          .a = {{5180, 36},
11038                {5200, 40},
11039                {5220, 44},
11040                {5240, 48},
11041                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11042                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11043                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11044                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11045                {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11046                {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11047                {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11048                {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11049                {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11050                {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11051                {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11052                {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11053                {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11054                {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11055                {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11056          },
11057
11058         {                       /* Custom Japan */
11059          "ZZJ",
11060          .bg_channels = 14,
11061          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11062                 {2427, 4}, {2432, 5}, {2437, 6},
11063                 {2442, 7}, {2447, 8}, {2452, 9},
11064                 {2457, 10}, {2462, 11}, {2467, 12},
11065                 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11066          .a_channels = 4,
11067          .a = {{5170, 34}, {5190, 38},
11068                {5210, 42}, {5230, 46}},
11069          },
11070
11071         {                       /* Rest of World */
11072          "ZZR",
11073          .bg_channels = 14,
11074          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11075                 {2427, 4}, {2432, 5}, {2437, 6},
11076                 {2442, 7}, {2447, 8}, {2452, 9},
11077                 {2457, 10}, {2462, 11}, {2467, 12},
11078                 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11079                              LIBIPW_CH_PASSIVE_ONLY}},
11080          },
11081
11082         {                       /* High Band */
11083          "ZZH",
11084          .bg_channels = 13,
11085          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11086                 {2427, 4}, {2432, 5}, {2437, 6},
11087                 {2442, 7}, {2447, 8}, {2452, 9},
11088                 {2457, 10}, {2462, 11},
11089                 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11090                 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11091          .a_channels = 4,
11092          .a = {{5745, 149}, {5765, 153},
11093                {5785, 157}, {5805, 161}},
11094          },
11095
11096         {                       /* Custom Europe */
11097          "ZZG",
11098          .bg_channels = 13,
11099          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11100                 {2427, 4}, {2432, 5}, {2437, 6},
11101                 {2442, 7}, {2447, 8}, {2452, 9},
11102                 {2457, 10}, {2462, 11},
11103                 {2467, 12}, {2472, 13}},
11104          .a_channels = 4,
11105          .a = {{5180, 36}, {5200, 40},
11106                {5220, 44}, {5240, 48}},
11107          },
11108
11109         {                       /* Europe */
11110          "ZZK",
11111          .bg_channels = 13,
11112          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11113                 {2427, 4}, {2432, 5}, {2437, 6},
11114                 {2442, 7}, {2447, 8}, {2452, 9},
11115                 {2457, 10}, {2462, 11},
11116                 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11117                 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11118          .a_channels = 24,
11119          .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11120                {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11121                {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11122                {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11123                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11124                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11125                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11126                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11127                {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11128                {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11129                {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11130                {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11131                {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11132                {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11133                {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11134                {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11135                {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11136                {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11137                {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11138                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11139                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11140                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11141                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11142                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11143          },
11144
11145         {                       /* Europe */
11146          "ZZL",
11147          .bg_channels = 11,
11148          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11149                 {2427, 4}, {2432, 5}, {2437, 6},
11150                 {2442, 7}, {2447, 8}, {2452, 9},
11151                 {2457, 10}, {2462, 11}},
11152          .a_channels = 13,
11153          .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11154                {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11155                {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11156                {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11157                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11158                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11159                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11160                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11161                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11162                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11163                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11164                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11165                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11166          }
11167 };
11168
11169 static void ipw_set_geo(struct ipw_priv *priv)
11170 {
11171         int j;
11172
11173         for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11174                 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11175                             ipw_geos[j].name, 3))
11176                         break;
11177         }
11178
11179         if (j == ARRAY_SIZE(ipw_geos)) {
11180                 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11181                             priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11182                             priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11183                             priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11184                 j = 0;
11185         }
11186
11187         libipw_set_geo(priv->ieee, &ipw_geos[j]);
11188 }
11189
11190 #define MAX_HW_RESTARTS 5
11191 static int ipw_up(struct ipw_priv *priv)
11192 {
11193         int rc, i;
11194
11195         /* Age scan list entries found before suspend */
11196         if (priv->suspend_time) {
11197                 libipw_networks_age(priv->ieee, priv->suspend_time);
11198                 priv->suspend_time = 0;
11199         }
11200
11201         if (priv->status & STATUS_EXIT_PENDING)
11202                 return -EIO;
11203
11204         if (cmdlog && !priv->cmdlog) {
11205                 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11206                                        GFP_KERNEL);
11207                 if (priv->cmdlog == NULL) {
11208                         IPW_ERROR("Error allocating %d command log entries.\n",
11209                                   cmdlog);
11210                         return -ENOMEM;
11211                 } else {
11212                         priv->cmdlog_len = cmdlog;
11213                 }
11214         }
11215
11216         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11217                 /* Load the microcode, firmware, and eeprom.
11218                  * Also start the clocks. */
11219                 rc = ipw_load(priv);
11220                 if (rc) {
11221                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11222                         return rc;
11223                 }
11224
11225                 ipw_init_ordinals(priv);
11226                 if (!(priv->config & CFG_CUSTOM_MAC))
11227                         eeprom_parse_mac(priv, priv->mac_addr);
11228                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11229
11230                 ipw_set_geo(priv);
11231
11232                 if (priv->status & STATUS_RF_KILL_SW) {
11233                         IPW_WARNING("Radio disabled by module parameter.\n");
11234                         return 0;
11235                 } else if (rf_kill_active(priv)) {
11236                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11237                                     "Kill switch must be turned off for "
11238                                     "wireless networking to work.\n");
11239                         schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11240                         return 0;
11241                 }
11242
11243                 rc = ipw_config(priv);
11244                 if (!rc) {
11245                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11246
11247                         /* If configure to try and auto-associate, kick
11248                          * off a scan. */
11249                         schedule_delayed_work(&priv->request_scan, 0);
11250
11251                         return 0;
11252                 }
11253
11254                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11255                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11256                                i, MAX_HW_RESTARTS);
11257
11258                 /* We had an error bringing up the hardware, so take it
11259                  * all the way back down so we can try again */
11260                 ipw_down(priv);
11261         }
11262
11263         /* tried to restart and config the device for as long as our
11264          * patience could withstand */
11265         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11266
11267         return -EIO;
11268 }
11269
11270 static void ipw_bg_up(struct work_struct *work)
11271 {
11272         struct ipw_priv *priv =
11273                 container_of(work, struct ipw_priv, up);
11274         mutex_lock(&priv->mutex);
11275         ipw_up(priv);
11276         mutex_unlock(&priv->mutex);
11277 }
11278
11279 static void ipw_deinit(struct ipw_priv *priv)
11280 {
11281         int i;
11282
11283         if (priv->status & STATUS_SCANNING) {
11284                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11285                 ipw_abort_scan(priv);
11286         }
11287
11288         if (priv->status & STATUS_ASSOCIATED) {
11289                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11290                 ipw_disassociate(priv);
11291         }
11292
11293         ipw_led_shutdown(priv);
11294
11295         /* Wait up to 1s for status to change to not scanning and not
11296          * associated (disassociation can take a while for a ful 802.11
11297          * exchange */
11298         for (i = 1000; i && (priv->status &
11299                              (STATUS_DISASSOCIATING |
11300                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11301                 udelay(10);
11302
11303         if (priv->status & (STATUS_DISASSOCIATING |
11304                             STATUS_ASSOCIATED | STATUS_SCANNING))
11305                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11306         else
11307                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11308
11309         /* Attempt to disable the card */
11310         ipw_send_card_disable(priv, 0);
11311
11312         priv->status &= ~STATUS_INIT;
11313 }
11314
11315 static void ipw_down(struct ipw_priv *priv)
11316 {
11317         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11318
11319         priv->status |= STATUS_EXIT_PENDING;
11320
11321         if (ipw_is_init(priv))
11322                 ipw_deinit(priv);
11323
11324         /* Wipe out the EXIT_PENDING status bit if we are not actually
11325          * exiting the module */
11326         if (!exit_pending)
11327                 priv->status &= ~STATUS_EXIT_PENDING;
11328
11329         /* tell the device to stop sending interrupts */
11330         ipw_disable_interrupts(priv);
11331
11332         /* Clear all bits but the RF Kill */
11333         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11334         netif_carrier_off(priv->net_dev);
11335
11336         ipw_stop_nic(priv);
11337
11338         ipw_led_radio_off(priv);
11339 }
11340
11341 static void ipw_bg_down(struct work_struct *work)
11342 {
11343         struct ipw_priv *priv =
11344                 container_of(work, struct ipw_priv, down);
11345         mutex_lock(&priv->mutex);
11346         ipw_down(priv);
11347         mutex_unlock(&priv->mutex);
11348 }
11349
11350 static int ipw_wdev_init(struct net_device *dev)
11351 {
11352         int i, rc = 0;
11353         struct ipw_priv *priv = libipw_priv(dev);
11354         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11355         struct wireless_dev *wdev = &priv->ieee->wdev;
11356
11357         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11358
11359         /* fill-out priv->ieee->bg_band */
11360         if (geo->bg_channels) {
11361                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11362
11363                 bg_band->band = NL80211_BAND_2GHZ;
11364                 bg_band->n_channels = geo->bg_channels;
11365                 bg_band->channels = kcalloc(geo->bg_channels,
11366                                             sizeof(struct ieee80211_channel),
11367                                             GFP_KERNEL);
11368                 if (!bg_band->channels) {
11369                         rc = -ENOMEM;
11370                         goto out;
11371                 }
11372                 /* translate geo->bg to bg_band.channels */
11373                 for (i = 0; i < geo->bg_channels; i++) {
11374                         bg_band->channels[i].band = NL80211_BAND_2GHZ;
11375                         bg_band->channels[i].center_freq = geo->bg[i].freq;
11376                         bg_band->channels[i].hw_value = geo->bg[i].channel;
11377                         bg_band->channels[i].max_power = geo->bg[i].max_power;
11378                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11379                                 bg_band->channels[i].flags |=
11380                                         IEEE80211_CHAN_NO_IR;
11381                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11382                                 bg_band->channels[i].flags |=
11383                                         IEEE80211_CHAN_NO_IR;
11384                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11385                                 bg_band->channels[i].flags |=
11386                                         IEEE80211_CHAN_RADAR;
11387                         /* No equivalent for LIBIPW_CH_80211H_RULES,
11388                            LIBIPW_CH_UNIFORM_SPREADING, or
11389                            LIBIPW_CH_B_ONLY... */
11390                 }
11391                 /* point at bitrate info */
11392                 bg_band->bitrates = ipw2200_bg_rates;
11393                 bg_band->n_bitrates = ipw2200_num_bg_rates;
11394
11395                 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
11396         }
11397
11398         /* fill-out priv->ieee->a_band */
11399         if (geo->a_channels) {
11400                 struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11401
11402                 a_band->band = NL80211_BAND_5GHZ;
11403                 a_band->n_channels = geo->a_channels;
11404                 a_band->channels = kcalloc(geo->a_channels,
11405                                            sizeof(struct ieee80211_channel),
11406                                            GFP_KERNEL);
11407                 if (!a_band->channels) {
11408                         rc = -ENOMEM;
11409                         goto out;
11410                 }
11411                 /* translate geo->a to a_band.channels */
11412                 for (i = 0; i < geo->a_channels; i++) {
11413                         a_band->channels[i].band = NL80211_BAND_5GHZ;
11414                         a_band->channels[i].center_freq = geo->a[i].freq;
11415                         a_band->channels[i].hw_value = geo->a[i].channel;
11416                         a_band->channels[i].max_power = geo->a[i].max_power;
11417                         if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11418                                 a_band->channels[i].flags |=
11419                                         IEEE80211_CHAN_NO_IR;
11420                         if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11421                                 a_band->channels[i].flags |=
11422                                         IEEE80211_CHAN_NO_IR;
11423                         if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11424                                 a_band->channels[i].flags |=
11425                                         IEEE80211_CHAN_RADAR;
11426                         /* No equivalent for LIBIPW_CH_80211H_RULES,
11427                            LIBIPW_CH_UNIFORM_SPREADING, or
11428                            LIBIPW_CH_B_ONLY... */
11429                 }
11430                 /* point at bitrate info */
11431                 a_band->bitrates = ipw2200_a_rates;
11432                 a_band->n_bitrates = ipw2200_num_a_rates;
11433
11434                 wdev->wiphy->bands[NL80211_BAND_5GHZ] = a_band;
11435         }
11436
11437         wdev->wiphy->cipher_suites = ipw_cipher_suites;
11438         wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11439
11440         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11441
11442         /* With that information in place, we can now register the wiphy... */
11443         if (wiphy_register(wdev->wiphy))
11444                 rc = -EIO;
11445 out:
11446         return rc;
11447 }
11448
11449 /* PCI driver stuff */
11450 static const struct pci_device_id card_ids[] = {
11451         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11452         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11453         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11454         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11455         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11456         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11457         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11458         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11459         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11460         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11461         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11462         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11463         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11464         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11465         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11466         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11467         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11468         {PCI_VDEVICE(INTEL, 0x104f), 0},
11469         {PCI_VDEVICE(INTEL, 0x4220), 0},        /* BG */
11470         {PCI_VDEVICE(INTEL, 0x4221), 0},        /* BG */
11471         {PCI_VDEVICE(INTEL, 0x4223), 0},        /* ABG */
11472         {PCI_VDEVICE(INTEL, 0x4224), 0},        /* ABG */
11473
11474         /* required last entry */
11475         {0,}
11476 };
11477
11478 MODULE_DEVICE_TABLE(pci, card_ids);
11479
11480 static struct attribute *ipw_sysfs_entries[] = {
11481         &dev_attr_rf_kill.attr,
11482         &dev_attr_direct_dword.attr,
11483         &dev_attr_indirect_byte.attr,
11484         &dev_attr_indirect_dword.attr,
11485         &dev_attr_mem_gpio_reg.attr,
11486         &dev_attr_command_event_reg.attr,
11487         &dev_attr_nic_type.attr,
11488         &dev_attr_status.attr,
11489         &dev_attr_cfg.attr,
11490         &dev_attr_error.attr,
11491         &dev_attr_event_log.attr,
11492         &dev_attr_cmd_log.attr,
11493         &dev_attr_eeprom_delay.attr,
11494         &dev_attr_ucode_version.attr,
11495         &dev_attr_rtc.attr,
11496         &dev_attr_scan_age.attr,
11497         &dev_attr_led.attr,
11498         &dev_attr_speed_scan.attr,
11499         &dev_attr_net_stats.attr,
11500         &dev_attr_channels.attr,
11501 #ifdef CONFIG_IPW2200_PROMISCUOUS
11502         &dev_attr_rtap_iface.attr,
11503         &dev_attr_rtap_filter.attr,
11504 #endif
11505         NULL
11506 };
11507
11508 static struct attribute_group ipw_attribute_group = {
11509         .name = NULL,           /* put in device directory */
11510         .attrs = ipw_sysfs_entries,
11511 };
11512
11513 #ifdef CONFIG_IPW2200_PROMISCUOUS
11514 static int ipw_prom_open(struct net_device *dev)
11515 {
11516         struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11517         struct ipw_priv *priv = prom_priv->priv;
11518
11519         IPW_DEBUG_INFO("prom dev->open\n");
11520         netif_carrier_off(dev);
11521
11522         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11523                 priv->sys_config.accept_all_data_frames = 1;
11524                 priv->sys_config.accept_non_directed_frames = 1;
11525                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11526                 priv->sys_config.accept_all_mgmt_frames = 1;
11527
11528                 ipw_send_system_config(priv);
11529         }
11530
11531         return 0;
11532 }
11533
11534 static int ipw_prom_stop(struct net_device *dev)
11535 {
11536         struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11537         struct ipw_priv *priv = prom_priv->priv;
11538
11539         IPW_DEBUG_INFO("prom dev->stop\n");
11540
11541         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11542                 priv->sys_config.accept_all_data_frames = 0;
11543                 priv->sys_config.accept_non_directed_frames = 0;
11544                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11545                 priv->sys_config.accept_all_mgmt_frames = 0;
11546
11547                 ipw_send_system_config(priv);
11548         }
11549
11550         return 0;
11551 }
11552
11553 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11554                                             struct net_device *dev)
11555 {
11556         IPW_DEBUG_INFO("prom dev->xmit\n");
11557         dev_kfree_skb(skb);
11558         return NETDEV_TX_OK;
11559 }
11560
11561 static const struct net_device_ops ipw_prom_netdev_ops = {
11562         .ndo_open               = ipw_prom_open,
11563         .ndo_stop               = ipw_prom_stop,
11564         .ndo_start_xmit         = ipw_prom_hard_start_xmit,
11565         .ndo_change_mtu         = libipw_change_mtu,
11566         .ndo_set_mac_address    = eth_mac_addr,
11567         .ndo_validate_addr      = eth_validate_addr,
11568 };
11569
11570 static int ipw_prom_alloc(struct ipw_priv *priv)
11571 {
11572         int rc = 0;
11573
11574         if (priv->prom_net_dev)
11575                 return -EPERM;
11576
11577         priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11578         if (priv->prom_net_dev == NULL)
11579                 return -ENOMEM;
11580
11581         priv->prom_priv = libipw_priv(priv->prom_net_dev);
11582         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11583         priv->prom_priv->priv = priv;
11584
11585         strcpy(priv->prom_net_dev->name, "rtap%d");
11586         memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11587
11588         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11589         priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11590
11591         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11592         SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11593
11594         rc = register_netdev(priv->prom_net_dev);
11595         if (rc) {
11596                 free_libipw(priv->prom_net_dev, 1);
11597                 priv->prom_net_dev = NULL;
11598                 return rc;
11599         }
11600
11601         return 0;
11602 }
11603
11604 static void ipw_prom_free(struct ipw_priv *priv)
11605 {
11606         if (!priv->prom_net_dev)
11607                 return;
11608
11609         unregister_netdev(priv->prom_net_dev);
11610         free_libipw(priv->prom_net_dev, 1);
11611
11612         priv->prom_net_dev = NULL;
11613 }
11614
11615 #endif
11616
11617 static const struct net_device_ops ipw_netdev_ops = {
11618         .ndo_open               = ipw_net_open,
11619         .ndo_stop               = ipw_net_stop,
11620         .ndo_set_rx_mode        = ipw_net_set_multicast_list,
11621         .ndo_set_mac_address    = ipw_net_set_mac_address,
11622         .ndo_start_xmit         = libipw_xmit,
11623         .ndo_change_mtu         = libipw_change_mtu,
11624         .ndo_validate_addr      = eth_validate_addr,
11625 };
11626
11627 static int ipw_pci_probe(struct pci_dev *pdev,
11628                                    const struct pci_device_id *ent)
11629 {
11630         int err = 0;
11631         struct net_device *net_dev;
11632         void __iomem *base;
11633         u32 length, val;
11634         struct ipw_priv *priv;
11635         int i;
11636
11637         net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11638         if (net_dev == NULL) {
11639                 err = -ENOMEM;
11640                 goto out;
11641         }
11642
11643         priv = libipw_priv(net_dev);
11644         priv->ieee = netdev_priv(net_dev);
11645
11646         priv->net_dev = net_dev;
11647         priv->pci_dev = pdev;
11648         ipw_debug_level = debug;
11649         spin_lock_init(&priv->irq_lock);
11650         spin_lock_init(&priv->lock);
11651         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11652                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11653
11654         mutex_init(&priv->mutex);
11655         if (pci_enable_device(pdev)) {
11656                 err = -ENODEV;
11657                 goto out_free_libipw;
11658         }
11659
11660         pci_set_master(pdev);
11661
11662         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11663         if (!err)
11664                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11665         if (err) {
11666                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11667                 goto out_pci_disable_device;
11668         }
11669
11670         pci_set_drvdata(pdev, priv);
11671
11672         err = pci_request_regions(pdev, DRV_NAME);
11673         if (err)
11674                 goto out_pci_disable_device;
11675
11676         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11677          * PCI Tx retries from interfering with C3 CPU state */
11678         pci_read_config_dword(pdev, 0x40, &val);
11679         if ((val & 0x0000ff00) != 0)
11680                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11681
11682         length = pci_resource_len(pdev, 0);
11683         priv->hw_len = length;
11684
11685         base = pci_ioremap_bar(pdev, 0);
11686         if (!base) {
11687                 err = -ENODEV;
11688                 goto out_pci_release_regions;
11689         }
11690
11691         priv->hw_base = base;
11692         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11693         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11694
11695         err = ipw_setup_deferred_work(priv);
11696         if (err) {
11697                 IPW_ERROR("Unable to setup deferred work\n");
11698                 goto out_iounmap;
11699         }
11700
11701         ipw_sw_reset(priv, 1);
11702
11703         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11704         if (err) {
11705                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11706                 goto out_iounmap;
11707         }
11708
11709         SET_NETDEV_DEV(net_dev, &pdev->dev);
11710
11711         mutex_lock(&priv->mutex);
11712
11713         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11714         priv->ieee->set_security = shim__set_security;
11715         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11716
11717 #ifdef CONFIG_IPW2200_QOS
11718         priv->ieee->is_qos_active = ipw_is_qos_active;
11719         priv->ieee->handle_probe_response = ipw_handle_beacon;
11720         priv->ieee->handle_beacon = ipw_handle_probe_response;
11721         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11722 #endif                          /* CONFIG_IPW2200_QOS */
11723
11724         priv->ieee->perfect_rssi = -20;
11725         priv->ieee->worst_rssi = -85;
11726
11727         net_dev->netdev_ops = &ipw_netdev_ops;
11728         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11729         net_dev->wireless_data = &priv->wireless_data;
11730         net_dev->wireless_handlers = &ipw_wx_handler_def;
11731         net_dev->ethtool_ops = &ipw_ethtool_ops;
11732
11733         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11734         if (err) {
11735                 IPW_ERROR("failed to create sysfs device attributes\n");
11736                 mutex_unlock(&priv->mutex);
11737                 goto out_release_irq;
11738         }
11739
11740         if (ipw_up(priv)) {
11741                 mutex_unlock(&priv->mutex);
11742                 err = -EIO;
11743                 goto out_remove_sysfs;
11744         }
11745
11746         mutex_unlock(&priv->mutex);
11747
11748         err = ipw_wdev_init(net_dev);
11749         if (err) {
11750                 IPW_ERROR("failed to register wireless device\n");
11751                 goto out_remove_sysfs;
11752         }
11753
11754         err = register_netdev(net_dev);
11755         if (err) {
11756                 IPW_ERROR("failed to register network device\n");
11757                 goto out_unregister_wiphy;
11758         }
11759
11760 #ifdef CONFIG_IPW2200_PROMISCUOUS
11761         if (rtap_iface) {
11762                 err = ipw_prom_alloc(priv);
11763                 if (err) {
11764                         IPW_ERROR("Failed to register promiscuous network "
11765                                   "device (error %d).\n", err);
11766                         unregister_netdev(priv->net_dev);
11767                         goto out_unregister_wiphy;
11768                 }
11769         }
11770 #endif
11771
11772         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11773                "channels, %d 802.11a channels)\n",
11774                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11775                priv->ieee->geo.a_channels);
11776
11777         return 0;
11778
11779       out_unregister_wiphy:
11780         wiphy_unregister(priv->ieee->wdev.wiphy);
11781         kfree(priv->ieee->a_band.channels);
11782         kfree(priv->ieee->bg_band.channels);
11783       out_remove_sysfs:
11784         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11785       out_release_irq:
11786         free_irq(pdev->irq, priv);
11787       out_iounmap:
11788         iounmap(priv->hw_base);
11789       out_pci_release_regions:
11790         pci_release_regions(pdev);
11791       out_pci_disable_device:
11792         pci_disable_device(pdev);
11793       out_free_libipw:
11794         free_libipw(priv->net_dev, 0);
11795       out:
11796         return err;
11797 }
11798
11799 static void ipw_pci_remove(struct pci_dev *pdev)
11800 {
11801         struct ipw_priv *priv = pci_get_drvdata(pdev);
11802         struct list_head *p, *q;
11803         int i;
11804
11805         if (!priv)
11806                 return;
11807
11808         mutex_lock(&priv->mutex);
11809
11810         priv->status |= STATUS_EXIT_PENDING;
11811         ipw_down(priv);
11812         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11813
11814         mutex_unlock(&priv->mutex);
11815
11816         unregister_netdev(priv->net_dev);
11817
11818         if (priv->rxq) {
11819                 ipw_rx_queue_free(priv, priv->rxq);
11820                 priv->rxq = NULL;
11821         }
11822         ipw_tx_queue_free(priv);
11823
11824         if (priv->cmdlog) {
11825                 kfree(priv->cmdlog);
11826                 priv->cmdlog = NULL;
11827         }
11828
11829         /* make sure all works are inactive */
11830         cancel_delayed_work_sync(&priv->adhoc_check);
11831         cancel_work_sync(&priv->associate);
11832         cancel_work_sync(&priv->disassociate);
11833         cancel_work_sync(&priv->system_config);
11834         cancel_work_sync(&priv->rx_replenish);
11835         cancel_work_sync(&priv->adapter_restart);
11836         cancel_delayed_work_sync(&priv->rf_kill);
11837         cancel_work_sync(&priv->up);
11838         cancel_work_sync(&priv->down);
11839         cancel_delayed_work_sync(&priv->request_scan);
11840         cancel_delayed_work_sync(&priv->request_direct_scan);
11841         cancel_delayed_work_sync(&priv->request_passive_scan);
11842         cancel_delayed_work_sync(&priv->scan_event);
11843         cancel_delayed_work_sync(&priv->gather_stats);
11844         cancel_work_sync(&priv->abort_scan);
11845         cancel_work_sync(&priv->roam);
11846         cancel_delayed_work_sync(&priv->scan_check);
11847         cancel_work_sync(&priv->link_up);
11848         cancel_work_sync(&priv->link_down);
11849         cancel_delayed_work_sync(&priv->led_link_on);
11850         cancel_delayed_work_sync(&priv->led_link_off);
11851         cancel_delayed_work_sync(&priv->led_act_off);
11852         cancel_work_sync(&priv->merge_networks);
11853
11854         /* Free MAC hash list for ADHOC */
11855         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11856                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11857                         list_del(p);
11858                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11859                 }
11860         }
11861
11862         kfree(priv->error);
11863         priv->error = NULL;
11864
11865 #ifdef CONFIG_IPW2200_PROMISCUOUS
11866         ipw_prom_free(priv);
11867 #endif
11868
11869         free_irq(pdev->irq, priv);
11870         iounmap(priv->hw_base);
11871         pci_release_regions(pdev);
11872         pci_disable_device(pdev);
11873         /* wiphy_unregister needs to be here, before free_libipw */
11874         wiphy_unregister(priv->ieee->wdev.wiphy);
11875         kfree(priv->ieee->a_band.channels);
11876         kfree(priv->ieee->bg_band.channels);
11877         free_libipw(priv->net_dev, 0);
11878         free_firmware();
11879 }
11880
11881 #ifdef CONFIG_PM
11882 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11883 {
11884         struct ipw_priv *priv = pci_get_drvdata(pdev);
11885         struct net_device *dev = priv->net_dev;
11886
11887         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11888
11889         /* Take down the device; powers it off, etc. */
11890         ipw_down(priv);
11891
11892         /* Remove the PRESENT state of the device */
11893         netif_device_detach(dev);
11894
11895         pci_save_state(pdev);
11896         pci_disable_device(pdev);
11897         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11898
11899         priv->suspend_at = get_seconds();
11900
11901         return 0;
11902 }
11903
11904 static int ipw_pci_resume(struct pci_dev *pdev)
11905 {
11906         struct ipw_priv *priv = pci_get_drvdata(pdev);
11907         struct net_device *dev = priv->net_dev;
11908         int err;
11909         u32 val;
11910
11911         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11912
11913         pci_set_power_state(pdev, PCI_D0);
11914         err = pci_enable_device(pdev);
11915         if (err) {
11916                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11917                        dev->name);
11918                 return err;
11919         }
11920         pci_restore_state(pdev);
11921
11922         /*
11923          * Suspend/Resume resets the PCI configuration space, so we have to
11924          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11925          * from interfering with C3 CPU state. pci_restore_state won't help
11926          * here since it only restores the first 64 bytes pci config header.
11927          */
11928         pci_read_config_dword(pdev, 0x40, &val);
11929         if ((val & 0x0000ff00) != 0)
11930                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11931
11932         /* Set the device back into the PRESENT state; this will also wake
11933          * the queue of needed */
11934         netif_device_attach(dev);
11935
11936         priv->suspend_time = get_seconds() - priv->suspend_at;
11937
11938         /* Bring the device back up */
11939         schedule_work(&priv->up);
11940
11941         return 0;
11942 }
11943 #endif
11944
11945 static void ipw_pci_shutdown(struct pci_dev *pdev)
11946 {
11947         struct ipw_priv *priv = pci_get_drvdata(pdev);
11948
11949         /* Take down the device; powers it off, etc. */
11950         ipw_down(priv);
11951
11952         pci_disable_device(pdev);
11953 }
11954
11955 /* driver initialization stuff */
11956 static struct pci_driver ipw_driver = {
11957         .name = DRV_NAME,
11958         .id_table = card_ids,
11959         .probe = ipw_pci_probe,
11960         .remove = ipw_pci_remove,
11961 #ifdef CONFIG_PM
11962         .suspend = ipw_pci_suspend,
11963         .resume = ipw_pci_resume,
11964 #endif
11965         .shutdown = ipw_pci_shutdown,
11966 };
11967
11968 static int __init ipw_init(void)
11969 {
11970         int ret;
11971
11972         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11973         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11974
11975         ret = pci_register_driver(&ipw_driver);
11976         if (ret) {
11977                 IPW_ERROR("Unable to initialize PCI module\n");
11978                 return ret;
11979         }
11980
11981         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11982         if (ret) {
11983                 IPW_ERROR("Unable to create driver sysfs file\n");
11984                 pci_unregister_driver(&ipw_driver);
11985                 return ret;
11986         }
11987
11988         return ret;
11989 }
11990
11991 static void __exit ipw_exit(void)
11992 {
11993         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11994         pci_unregister_driver(&ipw_driver);
11995 }
11996
11997 module_param(disable, int, 0444);
11998 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11999
12000 module_param(associate, int, 0444);
12001 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
12002
12003 module_param(auto_create, int, 0444);
12004 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
12005
12006 module_param_named(led, led_support, int, 0444);
12007 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
12008
12009 module_param(debug, int, 0444);
12010 MODULE_PARM_DESC(debug, "debug output mask");
12011
12012 module_param_named(channel, default_channel, int, 0444);
12013 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
12014
12015 #ifdef CONFIG_IPW2200_PROMISCUOUS
12016 module_param(rtap_iface, int, 0444);
12017 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
12018 #endif
12019
12020 #ifdef CONFIG_IPW2200_QOS
12021 module_param(qos_enable, int, 0444);
12022 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
12023
12024 module_param(qos_burst_enable, int, 0444);
12025 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
12026
12027 module_param(qos_no_ack_mask, int, 0444);
12028 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12029
12030 module_param(burst_duration_CCK, int, 0444);
12031 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12032
12033 module_param(burst_duration_OFDM, int, 0444);
12034 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12035 #endif                          /* CONFIG_IPW2200_QOS */
12036
12037 #ifdef CONFIG_IPW2200_MONITOR
12038 module_param_named(mode, network_mode, int, 0444);
12039 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12040 #else
12041 module_param_named(mode, network_mode, int, 0444);
12042 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12043 #endif
12044
12045 module_param(bt_coexist, int, 0444);
12046 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12047
12048 module_param(hwcrypto, int, 0444);
12049 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12050
12051 module_param(cmdlog, int, 0444);
12052 MODULE_PARM_DESC(cmdlog,
12053                  "allocate a ring buffer for logging firmware commands");
12054
12055 module_param(roaming, int, 0444);
12056 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12057
12058 module_param(antenna, int, 0444);
12059 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12060
12061 module_exit(ipw_exit);
12062 module_init(ipw_init);