GNU Linux-libre 4.14.254-gnu1
[releases.git] / drivers / net / wireless / intel / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <linux/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169 #include "ipw.h"
170
171 #define IPW2100_VERSION "git-1.2.2"
172
173 #define DRV_NAME        "ipw2100"
174 #define DRV_VERSION     IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
177
178 static struct pm_qos_request ipw2100_pm_qos_req;
179
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG        /* Reception debugging */
183 #endif
184
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217         if (ipw2100_debug_level & (level)) { \
218                 printk(KERN_DEBUG "ipw2100: %c %s ", \
219                        in_interrupt() ? 'I' : 'U',  __func__); \
220                 printk(message); \
221         } \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif                          /* CONFIG_IPW2100_DEBUG */
226
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229         "undefined",
230         "unused",               /* HOST_ATTENTION */
231         "HOST_COMPLETE",
232         "unused",               /* SLEEP */
233         "unused",               /* HOST_POWER_DOWN */
234         "unused",
235         "SYSTEM_CONFIG",
236         "unused",               /* SET_IMR */
237         "SSID",
238         "MANDATORY_BSSID",
239         "AUTHENTICATION_TYPE",
240         "ADAPTER_ADDRESS",
241         "PORT_TYPE",
242         "INTERNATIONAL_MODE",
243         "CHANNEL",
244         "RTS_THRESHOLD",
245         "FRAG_THRESHOLD",
246         "POWER_MODE",
247         "TX_RATES",
248         "BASIC_TX_RATES",
249         "WEP_KEY_INFO",
250         "unused",
251         "unused",
252         "unused",
253         "unused",
254         "WEP_KEY_INDEX",
255         "WEP_FLAGS",
256         "ADD_MULTICAST",
257         "CLEAR_ALL_MULTICAST",
258         "BEACON_INTERVAL",
259         "ATIM_WINDOW",
260         "CLEAR_STATISTICS",
261         "undefined",
262         "undefined",
263         "undefined",
264         "undefined",
265         "TX_POWER_INDEX",
266         "undefined",
267         "undefined",
268         "undefined",
269         "undefined",
270         "undefined",
271         "undefined",
272         "BROADCAST_SCAN",
273         "CARD_DISABLE",
274         "PREFERRED_BSSID",
275         "SET_SCAN_OPTIONS",
276         "SCAN_DWELL_TIME",
277         "SWEEP_TABLE",
278         "AP_OR_STATION_TABLE",
279         "GROUP_ORDINALS",
280         "SHORT_RETRY_LIMIT",
281         "LONG_RETRY_LIMIT",
282         "unused",               /* SAVE_CALIBRATION */
283         "unused",               /* RESTORE_CALIBRATION */
284         "undefined",
285         "undefined",
286         "undefined",
287         "HOST_PRE_POWER_DOWN",
288         "unused",               /* HOST_INTERRUPT_COALESCING */
289         "undefined",
290         "CARD_DISABLE_PHY_OFF",
291         "MSDU_TX_RATES",
292         "undefined",
293         "SET_STATION_STAT_BITS",
294         "CLEAR_STATIONS_STAT_BITS",
295         "LEAP_ROGUE_MODE",
296         "SET_SECURITY_INFORMATION",
297         "DISASSOCIATION_BSSID",
298         "SET_WPA_ASS_IE"
299 };
300 #endif
301
302 static const long ipw2100_frequencies[] = {
303         2412, 2417, 2422, 2427,
304         2432, 2437, 2442, 2447,
305         2452, 2457, 2462, 2467,
306         2472, 2484
307 };
308
309 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
310
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312         { .bitrate = 10 },
313         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330                                struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332                                 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334                                  size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336                                     size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338                                      struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340                                   struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static const struct iw_handler_def ipw2100_wx_handler_def;
344
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347         struct ipw2100_priv *priv = libipw_priv(dev);
348
349         *val = ioread32(priv->ioaddr + reg);
350         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355         struct ipw2100_priv *priv = libipw_priv(dev);
356
357         iowrite32(val, priv->ioaddr + reg);
358         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362                                       u16 * val)
363 {
364         struct ipw2100_priv *priv = libipw_priv(dev);
365
366         *val = ioread16(priv->ioaddr + reg);
367         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372         struct ipw2100_priv *priv = libipw_priv(dev);
373
374         *val = ioread8(priv->ioaddr + reg);
375         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380         struct ipw2100_priv *priv = libipw_priv(dev);
381
382         iowrite16(val, priv->ioaddr + reg);
383         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388         struct ipw2100_priv *priv = libipw_priv(dev);
389
390         iowrite8(val, priv->ioaddr + reg);
391         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397                        addr & IPW_REG_INDIRECT_ADDR_MASK);
398         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404                        addr & IPW_REG_INDIRECT_ADDR_MASK);
405         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411                        addr & IPW_REG_INDIRECT_ADDR_MASK);
412         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418                        addr & IPW_REG_INDIRECT_ADDR_MASK);
419         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425                        addr & IPW_REG_INDIRECT_ADDR_MASK);
426         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432                        addr & IPW_REG_INDIRECT_ADDR_MASK);
433         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439                        addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448                                     const u8 * buf)
449 {
450         u32 aligned_addr;
451         u32 aligned_len;
452         u32 dif_len;
453         u32 i;
454
455         /* read first nibble byte by byte */
456         aligned_addr = addr & (~0x3);
457         dif_len = addr - aligned_addr;
458         if (dif_len) {
459                 /* Start reading at aligned_addr + dif_len */
460                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461                                aligned_addr);
462                 for (i = dif_len; i < 4; i++, buf++)
463                         write_register_byte(dev,
464                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
465                                             *buf);
466
467                 len -= dif_len;
468                 aligned_addr += 4;
469         }
470
471         /* read DWs through autoincrement registers */
472         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473         aligned_len = len & (~0x3);
474         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476
477         /* copy the last nibble */
478         dif_len = len - aligned_len;
479         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480         for (i = 0; i < dif_len; i++, buf++)
481                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482                                     *buf);
483 }
484
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486                                    u8 * buf)
487 {
488         u32 aligned_addr;
489         u32 aligned_len;
490         u32 dif_len;
491         u32 i;
492
493         /* read first nibble byte by byte */
494         aligned_addr = addr & (~0x3);
495         dif_len = addr - aligned_addr;
496         if (dif_len) {
497                 /* Start reading at aligned_addr + dif_len */
498                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499                                aligned_addr);
500                 for (i = dif_len; i < 4; i++, buf++)
501                         read_register_byte(dev,
502                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
503                                            buf);
504
505                 len -= dif_len;
506                 aligned_addr += 4;
507         }
508
509         /* read DWs through autoincrement registers */
510         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511         aligned_len = len & (~0x3);
512         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514
515         /* copy the last nibble */
516         dif_len = len - aligned_len;
517         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518         for (i = 0; i < dif_len; i++, buf++)
519                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524         u32 dbg;
525
526         read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527
528         return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532                                void *val, u32 * len)
533 {
534         struct ipw2100_ordinals *ordinals = &priv->ordinals;
535         u32 addr;
536         u32 field_info;
537         u16 field_len;
538         u16 field_count;
539         u32 total_length;
540
541         if (ordinals->table1_addr == 0) {
542                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543                        "before they have been loaded.\n");
544                 return -EINVAL;
545         }
546
547         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
550
551                         printk(KERN_WARNING DRV_NAME
552                                ": ordinal buffer length too small, need %zd\n",
553                                IPW_ORD_TAB_1_ENTRY_SIZE);
554
555                         return -EINVAL;
556                 }
557
558                 read_nic_dword(priv->net_dev,
559                                ordinals->table1_addr + (ord << 2), &addr);
560                 read_nic_dword(priv->net_dev, addr, val);
561
562                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
563
564                 return 0;
565         }
566
567         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568
569                 ord -= IPW_START_ORD_TAB_2;
570
571                 /* get the address of statistic */
572                 read_nic_dword(priv->net_dev,
573                                ordinals->table2_addr + (ord << 3), &addr);
574
575                 /* get the second DW of statistics ;
576                  * two 16-bit words - first is length, second is count */
577                 read_nic_dword(priv->net_dev,
578                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
579                                &field_info);
580
581                 /* get each entry length */
582                 field_len = *((u16 *) & field_info);
583
584                 /* get number of entries */
585                 field_count = *(((u16 *) & field_info) + 1);
586
587                 /* abort if no enough memory */
588                 total_length = field_len * field_count;
589                 if (total_length > *len) {
590                         *len = total_length;
591                         return -EINVAL;
592                 }
593
594                 *len = total_length;
595                 if (!total_length)
596                         return 0;
597
598                 /* read the ordinal data from the SRAM */
599                 read_nic_memory(priv->net_dev, addr, total_length, val);
600
601                 return 0;
602         }
603
604         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605                "in table 2\n", ord);
606
607         return -EINVAL;
608 }
609
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611                                u32 * len)
612 {
613         struct ipw2100_ordinals *ordinals = &priv->ordinals;
614         u32 addr;
615
616         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619                         IPW_DEBUG_INFO("wrong size\n");
620                         return -EINVAL;
621                 }
622
623                 read_nic_dword(priv->net_dev,
624                                ordinals->table1_addr + (ord << 2), &addr);
625
626                 write_nic_dword(priv->net_dev, addr, *val);
627
628                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
629
630                 return 0;
631         }
632
633         IPW_DEBUG_INFO("wrong table\n");
634         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635                 return -EINVAL;
636
637         return -EINVAL;
638 }
639
640 static char *snprint_line(char *buf, size_t count,
641                           const u8 * data, u32 len, u32 ofs)
642 {
643         int out, i, j, l;
644         char c;
645
646         out = snprintf(buf, count, "%08X", ofs);
647
648         for (l = 0, i = 0; i < 2; i++) {
649                 out += snprintf(buf + out, count - out, " ");
650                 for (j = 0; j < 8 && l < len; j++, l++)
651                         out += snprintf(buf + out, count - out, "%02X ",
652                                         data[(i * 8 + j)]);
653                 for (; j < 8; j++)
654                         out += snprintf(buf + out, count - out, "   ");
655         }
656
657         out += snprintf(buf + out, count - out, " ");
658         for (l = 0, i = 0; i < 2; i++) {
659                 out += snprintf(buf + out, count - out, " ");
660                 for (j = 0; j < 8 && l < len; j++, l++) {
661                         c = data[(i * 8 + j)];
662                         if (!isascii(c) || !isprint(c))
663                                 c = '.';
664
665                         out += snprintf(buf + out, count - out, "%c", c);
666                 }
667
668                 for (; j < 8; j++)
669                         out += snprintf(buf + out, count - out, " ");
670         }
671
672         return buf;
673 }
674
675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677         char line[81];
678         u32 ofs = 0;
679         if (!(ipw2100_debug_level & level))
680                 return;
681
682         while (len) {
683                 printk(KERN_DEBUG "%s\n",
684                        snprint_line(line, sizeof(line), &data[ofs],
685                                     min(len, 16U), ofs));
686                 ofs += 16;
687                 len -= min(len, 16U);
688         }
689 }
690
691 #define MAX_RESET_BACKOFF 10
692
693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695         unsigned long now = get_seconds();
696
697         /* If we haven't received a reset request within the backoff period,
698          * then we can reset the backoff interval so this reset occurs
699          * immediately */
700         if (priv->reset_backoff &&
701             (now - priv->last_reset > priv->reset_backoff))
702                 priv->reset_backoff = 0;
703
704         priv->last_reset = get_seconds();
705
706         if (!(priv->status & STATUS_RESET_PENDING)) {
707                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708                                priv->net_dev->name, priv->reset_backoff);
709                 netif_carrier_off(priv->net_dev);
710                 netif_stop_queue(priv->net_dev);
711                 priv->status |= STATUS_RESET_PENDING;
712                 if (priv->reset_backoff)
713                         schedule_delayed_work(&priv->reset_work,
714                                               priv->reset_backoff * HZ);
715                 else
716                         schedule_delayed_work(&priv->reset_work, 0);
717
718                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719                         priv->reset_backoff++;
720
721                 wake_up_interruptible(&priv->wait_command_queue);
722         } else
723                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724                                priv->net_dev->name);
725
726 }
727
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730                                    struct host_command *cmd)
731 {
732         struct list_head *element;
733         struct ipw2100_tx_packet *packet;
734         unsigned long flags;
735         int err = 0;
736
737         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738                      command_types[cmd->host_command], cmd->host_command,
739                      cmd->host_command_length);
740         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741                    cmd->host_command_length);
742
743         spin_lock_irqsave(&priv->low_lock, flags);
744
745         if (priv->fatal_error) {
746                 IPW_DEBUG_INFO
747                     ("Attempt to send command while hardware in fatal error condition.\n");
748                 err = -EIO;
749                 goto fail_unlock;
750         }
751
752         if (!(priv->status & STATUS_RUNNING)) {
753                 IPW_DEBUG_INFO
754                     ("Attempt to send command while hardware is not running.\n");
755                 err = -EIO;
756                 goto fail_unlock;
757         }
758
759         if (priv->status & STATUS_CMD_ACTIVE) {
760                 IPW_DEBUG_INFO
761                     ("Attempt to send command while another command is pending.\n");
762                 err = -EBUSY;
763                 goto fail_unlock;
764         }
765
766         if (list_empty(&priv->msg_free_list)) {
767                 IPW_DEBUG_INFO("no available msg buffers\n");
768                 goto fail_unlock;
769         }
770
771         priv->status |= STATUS_CMD_ACTIVE;
772         priv->messages_sent++;
773
774         element = priv->msg_free_list.next;
775
776         packet = list_entry(element, struct ipw2100_tx_packet, list);
777         packet->jiffy_start = jiffies;
778
779         /* initialize the firmware command packet */
780         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782         packet->info.c_struct.cmd->host_command_len_reg =
783             cmd->host_command_length;
784         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785
786         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787                cmd->host_command_parameters,
788                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789
790         list_del(element);
791         DEC_STAT(&priv->msg_free_stat);
792
793         list_add_tail(element, &priv->msg_pend_list);
794         INC_STAT(&priv->msg_pend_stat);
795
796         ipw2100_tx_send_commands(priv);
797         ipw2100_tx_send_data(priv);
798
799         spin_unlock_irqrestore(&priv->low_lock, flags);
800
801         /*
802          * We must wait for this command to complete before another
803          * command can be sent...  but if we wait more than 3 seconds
804          * then there is a problem.
805          */
806
807         err =
808             wait_event_interruptible_timeout(priv->wait_command_queue,
809                                              !(priv->
810                                                status & STATUS_CMD_ACTIVE),
811                                              HOST_COMPLETE_TIMEOUT);
812
813         if (err == 0) {
814                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817                 priv->status &= ~STATUS_CMD_ACTIVE;
818                 schedule_reset(priv);
819                 return -EIO;
820         }
821
822         if (priv->fatal_error) {
823                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824                        priv->net_dev->name);
825                 return -EIO;
826         }
827
828         /* !!!!! HACK TEST !!!!!
829          * When lots of debug trace statements are enabled, the driver
830          * doesn't seem to have as many firmware restart cycles...
831          *
832          * As a test, we're sticking in a 1/100s delay here */
833         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834
835         return 0;
836
837       fail_unlock:
838         spin_unlock_irqrestore(&priv->low_lock, flags);
839
840         return err;
841 }
842
843 /*
844  * Verify the values and data access of the hardware
845  * No locks needed or used.  No functions called.
846  */
847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849         u32 data1, data2;
850         u32 address;
851
852         u32 val1 = 0x76543210;
853         u32 val2 = 0xFEDCBA98;
854
855         /* Domain 0 check - all values should be DOA_DEBUG */
856         for (address = IPW_REG_DOA_DEBUG_AREA_START;
857              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858                 read_register(priv->net_dev, address, &data1);
859                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860                         return -EIO;
861         }
862
863         /* Domain 1 check - use arbitrary read/write compare  */
864         for (address = 0; address < 5; address++) {
865                 /* The memory area is not used now */
866                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867                                val1);
868                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869                                val2);
870                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871                               &data1);
872                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873                               &data2);
874                 if (val1 == data1 && val2 == data2)
875                         return 0;
876         }
877
878         return -EIO;
879 }
880
881 /*
882  *
883  * Loop until the CARD_DISABLED bit is the same value as the
884  * supplied parameter
885  *
886  * TODO: See if it would be more efficient to do a wait/wake
887  *       cycle and have the completion event trigger the wakeup
888  *
889  */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893         int i;
894         u32 card_state;
895         u32 len = sizeof(card_state);
896         int err;
897
898         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900                                           &card_state, &len);
901                 if (err) {
902                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903                                        "failed.\n");
904                         return 0;
905                 }
906
907                 /* We'll break out if either the HW state says it is
908                  * in the state we want, or if HOST_COMPLETE command
909                  * finishes */
910                 if ((card_state == state) ||
911                     ((priv->status & STATUS_ENABLED) ?
912                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913                         if (state == IPW_HW_STATE_ENABLED)
914                                 priv->status |= STATUS_ENABLED;
915                         else
916                                 priv->status &= ~STATUS_ENABLED;
917
918                         return 0;
919                 }
920
921                 udelay(50);
922         }
923
924         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925                        state ? "DISABLED" : "ENABLED");
926         return -EIO;
927 }
928
929 /*********************************************************************
930     Procedure   :   sw_reset_and_clock
931     Purpose     :   Asserts s/w reset, asserts clock initialization
932                     and waits for clock stabilization
933  ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936         int i;
937         u32 r;
938
939         // assert s/w reset
940         write_register(priv->net_dev, IPW_REG_RESET_REG,
941                        IPW_AUX_HOST_RESET_REG_SW_RESET);
942
943         // wait for clock stabilization
944         for (i = 0; i < 1000; i++) {
945                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946
947                 // check clock ready bit
948                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950                         break;
951         }
952
953         if (i == 1000)
954                 return -EIO;    // TODO: better error value
955
956         /* set "initialization complete" bit to move adapter to
957          * D0 state */
958         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960
961         /* wait for clock stabilization */
962         for (i = 0; i < 10000; i++) {
963                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964
965                 /* check clock ready bit */
966                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968                         break;
969         }
970
971         if (i == 10000)
972                 return -EIO;    /* TODO: better error value */
973
974         /* set D0 standby bit */
975         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978
979         return 0;
980 }
981
982 /*********************************************************************
983     Procedure   :   ipw2100_download_firmware
984     Purpose     :   Initiaze adapter after power on.
985                     The sequence is:
986                     1. assert s/w reset first!
987                     2. awake clocks & wait for clock stabilization
988                     3. hold ARC (don't ask me why...)
989                     4. load Dino ucode and reset/clock init again
990                     5. zero-out shared mem
991                     6. download f/w
992  *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995         u32 address;
996         int err;
997
998 #ifndef CONFIG_PM
999         /* Fetch the firmware and microcode */
1000         struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002
1003         if (priv->fatal_error) {
1004                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005                                 "fatal error %d.  Interface must be brought down.\n",
1006                                 priv->net_dev->name, priv->fatal_error);
1007                 return -EINVAL;
1008         }
1009 #ifdef CONFIG_PM
1010         if (!ipw2100_firmware.version) {
1011                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012                 if (err) {
1013                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014                                         priv->net_dev->name, err);
1015                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016                         goto fail;
1017                 }
1018         }
1019 #else
1020         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021         if (err) {
1022                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023                                 priv->net_dev->name, err);
1024                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025                 goto fail;
1026         }
1027 #endif
1028         priv->firmware_version = ipw2100_firmware.version;
1029
1030         /* s/w reset and clock stabilization */
1031         err = sw_reset_and_clock(priv);
1032         if (err) {
1033                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034                                 priv->net_dev->name, err);
1035                 goto fail;
1036         }
1037
1038         err = ipw2100_verify(priv);
1039         if (err) {
1040                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041                                 priv->net_dev->name, err);
1042                 goto fail;
1043         }
1044
1045         /* Hold ARC */
1046         write_nic_dword(priv->net_dev,
1047                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048
1049         /* allow ARC to run */
1050         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051
1052         /* load microcode */
1053         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054         if (err) {
1055                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056                        priv->net_dev->name, err);
1057                 goto fail;
1058         }
1059
1060         /* release ARC */
1061         write_nic_dword(priv->net_dev,
1062                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063
1064         /* s/w reset and clock stabilization (again!!!) */
1065         err = sw_reset_and_clock(priv);
1066         if (err) {
1067                 printk(KERN_ERR DRV_NAME
1068                        ": %s: sw_reset_and_clock failed: %d\n",
1069                        priv->net_dev->name, err);
1070                 goto fail;
1071         }
1072
1073         /* load f/w */
1074         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075         if (err) {
1076                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077                                 priv->net_dev->name, err);
1078                 goto fail;
1079         }
1080 #ifndef CONFIG_PM
1081         /*
1082          * When the .resume method of the driver is called, the other
1083          * part of the system, i.e. the ide driver could still stay in
1084          * the suspend stage. This prevents us from loading the firmware
1085          * from the disk.  --YZ
1086          */
1087
1088         /* free any storage allocated for firmware image */
1089         ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091
1092         /* zero out Domain 1 area indirectly (Si requirement) */
1093         for (address = IPW_HOST_FW_SHARED_AREA0;
1094              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095                 write_nic_dword(priv->net_dev, address, 0);
1096         for (address = IPW_HOST_FW_SHARED_AREA1;
1097              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098                 write_nic_dword(priv->net_dev, address, 0);
1099         for (address = IPW_HOST_FW_SHARED_AREA2;
1100              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101                 write_nic_dword(priv->net_dev, address, 0);
1102         for (address = IPW_HOST_FW_SHARED_AREA3;
1103              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104                 write_nic_dword(priv->net_dev, address, 0);
1105         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107                 write_nic_dword(priv->net_dev, address, 0);
1108
1109         return 0;
1110
1111       fail:
1112         ipw2100_release_firmware(priv, &ipw2100_firmware);
1113         return err;
1114 }
1115
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118         if (priv->status & STATUS_INT_ENABLED)
1119                 return;
1120         priv->status |= STATUS_INT_ENABLED;
1121         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126         if (!(priv->status & STATUS_INT_ENABLED))
1127                 return;
1128         priv->status &= ~STATUS_INT_ENABLED;
1129         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134         struct ipw2100_ordinals *ord = &priv->ordinals;
1135
1136         IPW_DEBUG_INFO("enter\n");
1137
1138         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139                       &ord->table1_addr);
1140
1141         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142                       &ord->table2_addr);
1143
1144         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146
1147         ord->table2_size &= 0x0000FFFF;
1148
1149         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151         IPW_DEBUG_INFO("exit\n");
1152 }
1153
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156         u32 reg = 0;
1157         /*
1158          * Set GPIO 3 writable by FW; GPIO 1 writable
1159          * by driver and enable clock
1160          */
1161         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162                IPW_BIT_GPIO_LED_OFF);
1163         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170
1171         unsigned short value = 0;
1172         u32 reg = 0;
1173         int i;
1174
1175         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177                 priv->status &= ~STATUS_RF_KILL_HW;
1178                 return 0;
1179         }
1180
1181         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182                 udelay(RF_KILL_CHECK_DELAY);
1183                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185         }
1186
1187         if (value == 0) {
1188                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189                 priv->status |= STATUS_RF_KILL_HW;
1190         } else {
1191                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192                 priv->status &= ~STATUS_RF_KILL_HW;
1193         }
1194
1195         return (value == 0);
1196 }
1197
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200         u32 addr, len;
1201         u32 val;
1202
1203         /*
1204          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205          */
1206         len = sizeof(addr);
1207         if (ipw2100_get_ordinal
1208             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210                                __LINE__);
1211                 return -EIO;
1212         }
1213
1214         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215
1216         /*
1217          * EEPROM version is the byte at offset 0xfd in firmware
1218          * We read 4 bytes, then shift out the byte we actually want */
1219         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220         priv->eeprom_version = (val >> 24) & 0xFF;
1221         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222
1223         /*
1224          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225          *
1226          *  notice that the EEPROM bit is reverse polarity, i.e.
1227          *     bit = 0  signifies HW RF kill switch is supported
1228          *     bit = 1  signifies HW RF kill switch is NOT supported
1229          */
1230         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231         if (!((val >> 24) & 0x01))
1232                 priv->hw_features |= HW_FEATURE_RFKILL;
1233
1234         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236
1237         return 0;
1238 }
1239
1240 /*
1241  * Start firmware execution after power on and initialization
1242  * The sequence is:
1243  *  1. Release ARC
1244  *  2. Wait for f/w initialization completes;
1245  */
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248         int i;
1249         u32 inta, inta_mask, gpio;
1250
1251         IPW_DEBUG_INFO("enter\n");
1252
1253         if (priv->status & STATUS_RUNNING)
1254                 return 0;
1255
1256         /*
1257          * Initialize the hw - drive adapter to DO state by setting
1258          * init_done bit. Wait for clk_ready bit and Download
1259          * fw & dino ucode
1260          */
1261         if (ipw2100_download_firmware(priv)) {
1262                 printk(KERN_ERR DRV_NAME
1263                        ": %s: Failed to power on the adapter.\n",
1264                        priv->net_dev->name);
1265                 return -EIO;
1266         }
1267
1268         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269          * in the firmware RBD and TBD ring queue */
1270         ipw2100_queues_initialize(priv);
1271
1272         ipw2100_hw_set_gpio(priv);
1273
1274         /* TODO -- Look at disabling interrupts here to make sure none
1275          * get fired during FW initialization */
1276
1277         /* Release ARC - clear reset bit */
1278         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279
1280         /* wait for f/w initialization complete */
1281         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282         i = 5000;
1283         do {
1284                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285                 /* Todo... wait for sync command ... */
1286
1287                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288
1289                 /* check "init done" bit */
1290                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291                         /* reset "init done" bit */
1292                         write_register(priv->net_dev, IPW_REG_INTA,
1293                                        IPW2100_INTA_FW_INIT_DONE);
1294                         break;
1295                 }
1296
1297                 /* check error conditions : we check these after the firmware
1298                  * check so that if there is an error, the interrupt handler
1299                  * will see it and the adapter will be reset */
1300                 if (inta &
1301                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302                         /* clear error conditions */
1303                         write_register(priv->net_dev, IPW_REG_INTA,
1304                                        IPW2100_INTA_FATAL_ERROR |
1305                                        IPW2100_INTA_PARITY_ERROR);
1306                 }
1307         } while (--i);
1308
1309         /* Clear out any pending INTAs since we aren't supposed to have
1310          * interrupts enabled at this point... */
1311         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313         inta &= IPW_INTERRUPT_MASK;
1314         /* Clear out any pending interrupts */
1315         if (inta & inta_mask)
1316                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1317
1318         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319                      i ? "SUCCESS" : "FAILED");
1320
1321         if (!i) {
1322                 printk(KERN_WARNING DRV_NAME
1323                        ": %s: Firmware did not initialize.\n",
1324                        priv->net_dev->name);
1325                 return -EIO;
1326         }
1327
1328         /* allow firmware to write to GPIO1 & GPIO3 */
1329         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330
1331         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332
1333         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334
1335         /* Ready to receive commands */
1336         priv->status |= STATUS_RUNNING;
1337
1338         /* The adapter has been reset; we are not associated */
1339         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340
1341         IPW_DEBUG_INFO("exit\n");
1342
1343         return 0;
1344 }
1345
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348         if (!priv->fatal_error)
1349                 return;
1350
1351         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353         priv->fatal_error = 0;
1354 }
1355
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359         u32 reg;
1360         int i;
1361
1362         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363
1364         ipw2100_hw_set_gpio(priv);
1365
1366         /* Step 1. Stop Master Assert */
1367         write_register(priv->net_dev, IPW_REG_RESET_REG,
1368                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369
1370         /* Step 2. Wait for stop Master Assert
1371          *         (not more than 50us, otherwise ret error */
1372         i = 5;
1373         do {
1374                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376
1377                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378                         break;
1379         } while (--i);
1380
1381         priv->status &= ~STATUS_RESET_PENDING;
1382
1383         if (!i) {
1384                 IPW_DEBUG_INFO
1385                     ("exit - waited too long for master assert stop\n");
1386                 return -EIO;
1387         }
1388
1389         write_register(priv->net_dev, IPW_REG_RESET_REG,
1390                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1391
1392         /* Reset any fatal_error conditions */
1393         ipw2100_reset_fatalerror(priv);
1394
1395         /* At this point, the adapter is now stopped and disabled */
1396         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397                           STATUS_ASSOCIATED | STATUS_ENABLED);
1398
1399         return 0;
1400 }
1401
1402 /*
1403  * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404  *
1405  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406  *
1407  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408  * if STATUS_ASSN_LOST is sent.
1409  */
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412
1413 #define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50))
1414
1415         struct host_command cmd = {
1416                 .host_command = CARD_DISABLE_PHY_OFF,
1417                 .host_command_sequence = 0,
1418                 .host_command_length = 0,
1419         };
1420         int err, i;
1421         u32 val1, val2;
1422
1423         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424
1425         /* Turn off the radio */
1426         err = ipw2100_hw_send_command(priv, &cmd);
1427         if (err)
1428                 return err;
1429
1430         for (i = 0; i < 2500; i++) {
1431                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433
1434                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435                     (val2 & IPW2100_COMMAND_PHY_OFF))
1436                         return 0;
1437
1438                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439         }
1440
1441         return -EIO;
1442 }
1443
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446         struct host_command cmd = {
1447                 .host_command = HOST_COMPLETE,
1448                 .host_command_sequence = 0,
1449                 .host_command_length = 0
1450         };
1451         int err = 0;
1452
1453         IPW_DEBUG_HC("HOST_COMPLETE\n");
1454
1455         if (priv->status & STATUS_ENABLED)
1456                 return 0;
1457
1458         mutex_lock(&priv->adapter_mutex);
1459
1460         if (rf_kill_active(priv)) {
1461                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462                 goto fail_up;
1463         }
1464
1465         err = ipw2100_hw_send_command(priv, &cmd);
1466         if (err) {
1467                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468                 goto fail_up;
1469         }
1470
1471         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472         if (err) {
1473                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474                                priv->net_dev->name);
1475                 goto fail_up;
1476         }
1477
1478         if (priv->stop_hang_check) {
1479                 priv->stop_hang_check = 0;
1480                 schedule_delayed_work(&priv->hang_check, HZ / 2);
1481         }
1482
1483       fail_up:
1484         mutex_unlock(&priv->adapter_mutex);
1485         return err;
1486 }
1487
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491
1492         struct host_command cmd = {
1493                 .host_command = HOST_PRE_POWER_DOWN,
1494                 .host_command_sequence = 0,
1495                 .host_command_length = 0,
1496         };
1497         int err, i;
1498         u32 reg;
1499
1500         if (!(priv->status & STATUS_RUNNING))
1501                 return 0;
1502
1503         priv->status |= STATUS_STOPPING;
1504
1505         /* We can only shut down the card if the firmware is operational.  So,
1506          * if we haven't reset since a fatal_error, then we can not send the
1507          * shutdown commands. */
1508         if (!priv->fatal_error) {
1509                 /* First, make sure the adapter is enabled so that the PHY_OFF
1510                  * command can shut it down */
1511                 ipw2100_enable_adapter(priv);
1512
1513                 err = ipw2100_hw_phy_off(priv);
1514                 if (err)
1515                         printk(KERN_WARNING DRV_NAME
1516                                ": Error disabling radio %d\n", err);
1517
1518                 /*
1519                  * If in D0-standby mode going directly to D3 may cause a
1520                  * PCI bus violation.  Therefore we must change out of the D0
1521                  * state.
1522                  *
1523                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524                  * hardware from going into standby mode and will transition
1525                  * out of D0-standby if it is already in that state.
1526                  *
1527                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528                  * driver upon completion.  Once received, the driver can
1529                  * proceed to the D3 state.
1530                  *
1531                  * Prepare for power down command to fw.  This command would
1532                  * take HW out of D0-standby and prepare it for D3 state.
1533                  *
1534                  * Currently FW does not support event notification for this
1535                  * event. Therefore, skip waiting for it.  Just wait a fixed
1536                  * 100ms
1537                  */
1538                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539
1540                 err = ipw2100_hw_send_command(priv, &cmd);
1541                 if (err)
1542                         printk(KERN_WARNING DRV_NAME ": "
1543                                "%s: Power down command failed: Error %d\n",
1544                                priv->net_dev->name, err);
1545                 else
1546                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547         }
1548
1549         priv->status &= ~STATUS_ENABLED;
1550
1551         /*
1552          * Set GPIO 3 writable by FW; GPIO 1 writable
1553          * by driver and enable clock
1554          */
1555         ipw2100_hw_set_gpio(priv);
1556
1557         /*
1558          * Power down adapter.  Sequence:
1559          * 1. Stop master assert (RESET_REG[9]=1)
1560          * 2. Wait for stop master (RESET_REG[8]==1)
1561          * 3. S/w reset assert (RESET_REG[7] = 1)
1562          */
1563
1564         /* Stop master assert */
1565         write_register(priv->net_dev, IPW_REG_RESET_REG,
1566                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567
1568         /* wait stop master not more than 50 usec.
1569          * Otherwise return error. */
1570         for (i = 5; i > 0; i--) {
1571                 udelay(10);
1572
1573                 /* Check master stop bit */
1574                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575
1576                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577                         break;
1578         }
1579
1580         if (i == 0)
1581                 printk(KERN_WARNING DRV_NAME
1582                        ": %s: Could now power down adapter.\n",
1583                        priv->net_dev->name);
1584
1585         /* assert s/w reset */
1586         write_register(priv->net_dev, IPW_REG_RESET_REG,
1587                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1588
1589         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590
1591         return 0;
1592 }
1593
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596         struct host_command cmd = {
1597                 .host_command = CARD_DISABLE,
1598                 .host_command_sequence = 0,
1599                 .host_command_length = 0
1600         };
1601         int err = 0;
1602
1603         IPW_DEBUG_HC("CARD_DISABLE\n");
1604
1605         if (!(priv->status & STATUS_ENABLED))
1606                 return 0;
1607
1608         /* Make sure we clear the associated state */
1609         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610
1611         if (!priv->stop_hang_check) {
1612                 priv->stop_hang_check = 1;
1613                 cancel_delayed_work(&priv->hang_check);
1614         }
1615
1616         mutex_lock(&priv->adapter_mutex);
1617
1618         err = ipw2100_hw_send_command(priv, &cmd);
1619         if (err) {
1620                 printk(KERN_WARNING DRV_NAME
1621                        ": exit - failed to send CARD_DISABLE command\n");
1622                 goto fail_up;
1623         }
1624
1625         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626         if (err) {
1627                 printk(KERN_WARNING DRV_NAME
1628                        ": exit - card failed to change to DISABLED\n");
1629                 goto fail_up;
1630         }
1631
1632         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633
1634       fail_up:
1635         mutex_unlock(&priv->adapter_mutex);
1636         return err;
1637 }
1638
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641         struct host_command cmd = {
1642                 .host_command = SET_SCAN_OPTIONS,
1643                 .host_command_sequence = 0,
1644                 .host_command_length = 8
1645         };
1646         int err;
1647
1648         IPW_DEBUG_INFO("enter\n");
1649
1650         IPW_DEBUG_SCAN("setting scan options\n");
1651
1652         cmd.host_command_parameters[0] = 0;
1653
1654         if (!(priv->config & CFG_ASSOCIATE))
1655                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658         if (priv->config & CFG_PASSIVE_SCAN)
1659                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660
1661         cmd.host_command_parameters[1] = priv->channel_mask;
1662
1663         err = ipw2100_hw_send_command(priv, &cmd);
1664
1665         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666                      cmd.host_command_parameters[0]);
1667
1668         return err;
1669 }
1670
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673         struct host_command cmd = {
1674                 .host_command = BROADCAST_SCAN,
1675                 .host_command_sequence = 0,
1676                 .host_command_length = 4
1677         };
1678         int err;
1679
1680         IPW_DEBUG_HC("START_SCAN\n");
1681
1682         cmd.host_command_parameters[0] = 0;
1683
1684         /* No scanning if in monitor mode */
1685         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686                 return 1;
1687
1688         if (priv->status & STATUS_SCANNING) {
1689                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690                 return 0;
1691         }
1692
1693         IPW_DEBUG_INFO("enter\n");
1694
1695         /* Not clearing here; doing so makes iwlist always return nothing...
1696          *
1697          * We should modify the table logic to use aging tables vs. clearing
1698          * the table on each scan start.
1699          */
1700         IPW_DEBUG_SCAN("starting scan\n");
1701
1702         priv->status |= STATUS_SCANNING;
1703         err = ipw2100_hw_send_command(priv, &cmd);
1704         if (err)
1705                 priv->status &= ~STATUS_SCANNING;
1706
1707         IPW_DEBUG_INFO("exit\n");
1708
1709         return err;
1710 }
1711
1712 static const struct libipw_geo ipw_geos[] = {
1713         {                       /* Restricted */
1714          "---",
1715          .bg_channels = 14,
1716          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717                 {2427, 4}, {2432, 5}, {2437, 6},
1718                 {2442, 7}, {2447, 8}, {2452, 9},
1719                 {2457, 10}, {2462, 11}, {2467, 12},
1720                 {2472, 13}, {2484, 14}},
1721          },
1722 };
1723
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726         unsigned long flags;
1727         int err = 0;
1728         u32 lock;
1729         u32 ord_len = sizeof(lock);
1730
1731         /* Age scan list entries found before suspend */
1732         if (priv->suspend_time) {
1733                 libipw_networks_age(priv->ieee, priv->suspend_time);
1734                 priv->suspend_time = 0;
1735         }
1736
1737         /* Quiet if manually disabled. */
1738         if (priv->status & STATUS_RF_KILL_SW) {
1739                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740                                "switch\n", priv->net_dev->name);
1741                 return 0;
1742         }
1743
1744         /* the ipw2100 hardware really doesn't want power management delays
1745          * longer than 175usec
1746          */
1747         pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748
1749         /* If the interrupt is enabled, turn it off... */
1750         spin_lock_irqsave(&priv->low_lock, flags);
1751         ipw2100_disable_interrupts(priv);
1752
1753         /* Reset any fatal_error conditions */
1754         ipw2100_reset_fatalerror(priv);
1755         spin_unlock_irqrestore(&priv->low_lock, flags);
1756
1757         if (priv->status & STATUS_POWERED ||
1758             (priv->status & STATUS_RESET_PENDING)) {
1759                 /* Power cycle the card ... */
1760                 err = ipw2100_power_cycle_adapter(priv);
1761                 if (err) {
1762                         printk(KERN_WARNING DRV_NAME
1763                                ": %s: Could not cycle adapter.\n",
1764                                priv->net_dev->name);
1765                         goto exit;
1766                 }
1767         } else
1768                 priv->status |= STATUS_POWERED;
1769
1770         /* Load the firmware, start the clocks, etc. */
1771         err = ipw2100_start_adapter(priv);
1772         if (err) {
1773                 printk(KERN_ERR DRV_NAME
1774                        ": %s: Failed to start the firmware.\n",
1775                        priv->net_dev->name);
1776                 goto exit;
1777         }
1778
1779         ipw2100_initialize_ordinals(priv);
1780
1781         /* Determine capabilities of this particular HW configuration */
1782         err = ipw2100_get_hw_features(priv);
1783         if (err) {
1784                 printk(KERN_ERR DRV_NAME
1785                        ": %s: Failed to determine HW features.\n",
1786                        priv->net_dev->name);
1787                 goto exit;
1788         }
1789
1790         /* Initialize the geo */
1791         libipw_set_geo(priv->ieee, &ipw_geos[0]);
1792         priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793
1794         lock = LOCK_NONE;
1795         err = ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len);
1796         if (err) {
1797                 printk(KERN_ERR DRV_NAME
1798                        ": %s: Failed to clear ordinal lock.\n",
1799                        priv->net_dev->name);
1800                 goto exit;
1801         }
1802
1803         priv->status &= ~STATUS_SCANNING;
1804
1805         if (rf_kill_active(priv)) {
1806                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807                        priv->net_dev->name);
1808
1809                 if (priv->stop_rf_kill) {
1810                         priv->stop_rf_kill = 0;
1811                         schedule_delayed_work(&priv->rf_kill,
1812                                               round_jiffies_relative(HZ));
1813                 }
1814
1815                 deferred = 1;
1816         }
1817
1818         /* Turn on the interrupt so that commands can be processed */
1819         ipw2100_enable_interrupts(priv);
1820
1821         /* Send all of the commands that must be sent prior to
1822          * HOST_COMPLETE */
1823         err = ipw2100_adapter_setup(priv);
1824         if (err) {
1825                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1826                        priv->net_dev->name);
1827                 goto exit;
1828         }
1829
1830         if (!deferred) {
1831                 /* Enable the adapter - sends HOST_COMPLETE */
1832                 err = ipw2100_enable_adapter(priv);
1833                 if (err) {
1834                         printk(KERN_ERR DRV_NAME ": "
1835                                "%s: failed in call to enable adapter.\n",
1836                                priv->net_dev->name);
1837                         ipw2100_hw_stop_adapter(priv);
1838                         goto exit;
1839                 }
1840
1841                 /* Start a scan . . . */
1842                 ipw2100_set_scan_options(priv);
1843                 ipw2100_start_scan(priv);
1844         }
1845
1846       exit:
1847         return err;
1848 }
1849
1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852         unsigned long flags;
1853         union iwreq_data wrqu = {
1854                 .ap_addr = {
1855                             .sa_family = ARPHRD_ETHER}
1856         };
1857         int associated = priv->status & STATUS_ASSOCIATED;
1858
1859         /* Kill the RF switch timer */
1860         if (!priv->stop_rf_kill) {
1861                 priv->stop_rf_kill = 1;
1862                 cancel_delayed_work(&priv->rf_kill);
1863         }
1864
1865         /* Kill the firmware hang check timer */
1866         if (!priv->stop_hang_check) {
1867                 priv->stop_hang_check = 1;
1868                 cancel_delayed_work(&priv->hang_check);
1869         }
1870
1871         /* Kill any pending resets */
1872         if (priv->status & STATUS_RESET_PENDING)
1873                 cancel_delayed_work(&priv->reset_work);
1874
1875         /* Make sure the interrupt is on so that FW commands will be
1876          * processed correctly */
1877         spin_lock_irqsave(&priv->low_lock, flags);
1878         ipw2100_enable_interrupts(priv);
1879         spin_unlock_irqrestore(&priv->low_lock, flags);
1880
1881         if (ipw2100_hw_stop_adapter(priv))
1882                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883                        priv->net_dev->name);
1884
1885         /* Do not disable the interrupt until _after_ we disable
1886          * the adaptor.  Otherwise the CARD_DISABLE command will never
1887          * be ack'd by the firmware */
1888         spin_lock_irqsave(&priv->low_lock, flags);
1889         ipw2100_disable_interrupts(priv);
1890         spin_unlock_irqrestore(&priv->low_lock, flags);
1891
1892         pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893
1894         /* We have to signal any supplicant if we are disassociating */
1895         if (associated)
1896                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897
1898         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899         netif_carrier_off(priv->net_dev);
1900         netif_stop_queue(priv->net_dev);
1901 }
1902
1903 static int ipw2100_wdev_init(struct net_device *dev)
1904 {
1905         struct ipw2100_priv *priv = libipw_priv(dev);
1906         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1907         struct wireless_dev *wdev = &priv->ieee->wdev;
1908         int i;
1909
1910         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1911
1912         /* fill-out priv->ieee->bg_band */
1913         if (geo->bg_channels) {
1914                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1915
1916                 bg_band->band = NL80211_BAND_2GHZ;
1917                 bg_band->n_channels = geo->bg_channels;
1918                 bg_band->channels = kcalloc(geo->bg_channels,
1919                                             sizeof(struct ieee80211_channel),
1920                                             GFP_KERNEL);
1921                 if (!bg_band->channels) {
1922                         ipw2100_down(priv);
1923                         return -ENOMEM;
1924                 }
1925                 /* translate geo->bg to bg_band.channels */
1926                 for (i = 0; i < geo->bg_channels; i++) {
1927                         bg_band->channels[i].band = NL80211_BAND_2GHZ;
1928                         bg_band->channels[i].center_freq = geo->bg[i].freq;
1929                         bg_band->channels[i].hw_value = geo->bg[i].channel;
1930                         bg_band->channels[i].max_power = geo->bg[i].max_power;
1931                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1932                                 bg_band->channels[i].flags |=
1933                                         IEEE80211_CHAN_NO_IR;
1934                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1935                                 bg_band->channels[i].flags |=
1936                                         IEEE80211_CHAN_NO_IR;
1937                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1938                                 bg_band->channels[i].flags |=
1939                                         IEEE80211_CHAN_RADAR;
1940                         /* No equivalent for LIBIPW_CH_80211H_RULES,
1941                            LIBIPW_CH_UNIFORM_SPREADING, or
1942                            LIBIPW_CH_B_ONLY... */
1943                 }
1944                 /* point at bitrate info */
1945                 bg_band->bitrates = ipw2100_bg_rates;
1946                 bg_band->n_bitrates = RATE_COUNT;
1947
1948                 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
1949         }
1950
1951         wdev->wiphy->cipher_suites = ipw_cipher_suites;
1952         wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1953
1954         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1955         if (wiphy_register(wdev->wiphy))
1956                 return -EIO;
1957         return 0;
1958 }
1959
1960 static void ipw2100_reset_adapter(struct work_struct *work)
1961 {
1962         struct ipw2100_priv *priv =
1963                 container_of(work, struct ipw2100_priv, reset_work.work);
1964         unsigned long flags;
1965         union iwreq_data wrqu = {
1966                 .ap_addr = {
1967                             .sa_family = ARPHRD_ETHER}
1968         };
1969         int associated = priv->status & STATUS_ASSOCIATED;
1970
1971         spin_lock_irqsave(&priv->low_lock, flags);
1972         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1973         priv->resets++;
1974         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1975         priv->status |= STATUS_SECURITY_UPDATED;
1976
1977         /* Force a power cycle even if interface hasn't been opened
1978          * yet */
1979         cancel_delayed_work(&priv->reset_work);
1980         priv->status |= STATUS_RESET_PENDING;
1981         spin_unlock_irqrestore(&priv->low_lock, flags);
1982
1983         mutex_lock(&priv->action_mutex);
1984         /* stop timed checks so that they don't interfere with reset */
1985         priv->stop_hang_check = 1;
1986         cancel_delayed_work(&priv->hang_check);
1987
1988         /* We have to signal any supplicant if we are disassociating */
1989         if (associated)
1990                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1991
1992         ipw2100_up(priv, 0);
1993         mutex_unlock(&priv->action_mutex);
1994
1995 }
1996
1997 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1998 {
1999
2000 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2001         int ret;
2002         unsigned int len, essid_len;
2003         char essid[IW_ESSID_MAX_SIZE];
2004         u32 txrate;
2005         u32 chan;
2006         char *txratename;
2007         u8 bssid[ETH_ALEN];
2008
2009         /*
2010          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2011          *      an actual MAC of the AP. Seems like FW sets this
2012          *      address too late. Read it later and expose through
2013          *      /proc or schedule a later task to query and update
2014          */
2015
2016         essid_len = IW_ESSID_MAX_SIZE;
2017         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2018                                   essid, &essid_len);
2019         if (ret) {
2020                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2021                                __LINE__);
2022                 return;
2023         }
2024
2025         len = sizeof(u32);
2026         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2027         if (ret) {
2028                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2029                                __LINE__);
2030                 return;
2031         }
2032
2033         len = sizeof(u32);
2034         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2035         if (ret) {
2036                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2037                                __LINE__);
2038                 return;
2039         }
2040         len = ETH_ALEN;
2041         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2042                                   &len);
2043         if (ret) {
2044                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2045                                __LINE__);
2046                 return;
2047         }
2048         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2049
2050         switch (txrate) {
2051         case TX_RATE_1_MBIT:
2052                 txratename = "1Mbps";
2053                 break;
2054         case TX_RATE_2_MBIT:
2055                 txratename = "2Mbsp";
2056                 break;
2057         case TX_RATE_5_5_MBIT:
2058                 txratename = "5.5Mbps";
2059                 break;
2060         case TX_RATE_11_MBIT:
2061                 txratename = "11Mbps";
2062                 break;
2063         default:
2064                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2065                 txratename = "unknown rate";
2066                 break;
2067         }
2068
2069         IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n",
2070                        priv->net_dev->name, essid_len, essid,
2071                        txratename, chan, bssid);
2072
2073         /* now we copy read ssid into dev */
2074         if (!(priv->config & CFG_STATIC_ESSID)) {
2075                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2076                 memcpy(priv->essid, essid, priv->essid_len);
2077         }
2078         priv->channel = chan;
2079         memcpy(priv->bssid, bssid, ETH_ALEN);
2080
2081         priv->status |= STATUS_ASSOCIATING;
2082         priv->connect_start = get_seconds();
2083
2084         schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2085 }
2086
2087 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2088                              int length, int batch_mode)
2089 {
2090         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2091         struct host_command cmd = {
2092                 .host_command = SSID,
2093                 .host_command_sequence = 0,
2094                 .host_command_length = ssid_len
2095         };
2096         int err;
2097
2098         IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid);
2099
2100         if (ssid_len)
2101                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2102
2103         if (!batch_mode) {
2104                 err = ipw2100_disable_adapter(priv);
2105                 if (err)
2106                         return err;
2107         }
2108
2109         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2110          * disable auto association -- so we cheat by setting a bogus SSID */
2111         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2112                 int i;
2113                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2114                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2115                         bogus[i] = 0x18 + i;
2116                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2117         }
2118
2119         /* NOTE:  We always send the SSID command even if the provided ESSID is
2120          * the same as what we currently think is set. */
2121
2122         err = ipw2100_hw_send_command(priv, &cmd);
2123         if (!err) {
2124                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2125                 memcpy(priv->essid, essid, ssid_len);
2126                 priv->essid_len = ssid_len;
2127         }
2128
2129         if (!batch_mode) {
2130                 if (ipw2100_enable_adapter(priv))
2131                         err = -EIO;
2132         }
2133
2134         return err;
2135 }
2136
2137 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2138 {
2139         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2140                   "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid,
2141                   priv->bssid);
2142
2143         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2144
2145         if (priv->status & STATUS_STOPPING) {
2146                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2147                 return;
2148         }
2149
2150         eth_zero_addr(priv->bssid);
2151         eth_zero_addr(priv->ieee->bssid);
2152
2153         netif_carrier_off(priv->net_dev);
2154         netif_stop_queue(priv->net_dev);
2155
2156         if (!(priv->status & STATUS_RUNNING))
2157                 return;
2158
2159         if (priv->status & STATUS_SECURITY_UPDATED)
2160                 schedule_delayed_work(&priv->security_work, 0);
2161
2162         schedule_delayed_work(&priv->wx_event_work, 0);
2163 }
2164
2165 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2166 {
2167         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2168                        priv->net_dev->name);
2169
2170         /* RF_KILL is now enabled (else we wouldn't be here) */
2171         wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2172         priv->status |= STATUS_RF_KILL_HW;
2173
2174         /* Make sure the RF Kill check timer is running */
2175         priv->stop_rf_kill = 0;
2176         mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2177 }
2178
2179 static void ipw2100_scan_event(struct work_struct *work)
2180 {
2181         struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2182                                                  scan_event.work);
2183         union iwreq_data wrqu;
2184
2185         wrqu.data.length = 0;
2186         wrqu.data.flags = 0;
2187         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2188 }
2189
2190 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2191 {
2192         IPW_DEBUG_SCAN("scan complete\n");
2193         /* Age the scan results... */
2194         priv->ieee->scans++;
2195         priv->status &= ~STATUS_SCANNING;
2196
2197         /* Only userspace-requested scan completion events go out immediately */
2198         if (!priv->user_requested_scan) {
2199                 schedule_delayed_work(&priv->scan_event,
2200                                       round_jiffies_relative(msecs_to_jiffies(4000)));
2201         } else {
2202                 priv->user_requested_scan = 0;
2203                 mod_delayed_work(system_wq, &priv->scan_event, 0);
2204         }
2205 }
2206
2207 #ifdef CONFIG_IPW2100_DEBUG
2208 #define IPW2100_HANDLER(v, f) { v, f, # v }
2209 struct ipw2100_status_indicator {
2210         int status;
2211         void (*cb) (struct ipw2100_priv * priv, u32 status);
2212         char *name;
2213 };
2214 #else
2215 #define IPW2100_HANDLER(v, f) { v, f }
2216 struct ipw2100_status_indicator {
2217         int status;
2218         void (*cb) (struct ipw2100_priv * priv, u32 status);
2219 };
2220 #endif                          /* CONFIG_IPW2100_DEBUG */
2221
2222 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2223 {
2224         IPW_DEBUG_SCAN("Scanning...\n");
2225         priv->status |= STATUS_SCANNING;
2226 }
2227
2228 static const struct ipw2100_status_indicator status_handlers[] = {
2229         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2230         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2231         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2232         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2233         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2234         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2235         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2236         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2237         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2238         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2239         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2240         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2241         IPW2100_HANDLER(-1, NULL)
2242 };
2243
2244 static void isr_status_change(struct ipw2100_priv *priv, int status)
2245 {
2246         int i;
2247
2248         if (status == IPW_STATE_SCANNING &&
2249             priv->status & STATUS_ASSOCIATED &&
2250             !(priv->status & STATUS_SCANNING)) {
2251                 IPW_DEBUG_INFO("Scan detected while associated, with "
2252                                "no scan request.  Restarting firmware.\n");
2253
2254                 /* Wake up any sleeping jobs */
2255                 schedule_reset(priv);
2256         }
2257
2258         for (i = 0; status_handlers[i].status != -1; i++) {
2259                 if (status == status_handlers[i].status) {
2260                         IPW_DEBUG_NOTIF("Status change: %s\n",
2261                                         status_handlers[i].name);
2262                         if (status_handlers[i].cb)
2263                                 status_handlers[i].cb(priv, status);
2264                         priv->wstats.status = status;
2265                         return;
2266                 }
2267         }
2268
2269         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2270 }
2271
2272 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2273                                     struct ipw2100_cmd_header *cmd)
2274 {
2275 #ifdef CONFIG_IPW2100_DEBUG
2276         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2277                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2278                              command_types[cmd->host_command_reg],
2279                              cmd->host_command_reg);
2280         }
2281 #endif
2282         if (cmd->host_command_reg == HOST_COMPLETE)
2283                 priv->status |= STATUS_ENABLED;
2284
2285         if (cmd->host_command_reg == CARD_DISABLE)
2286                 priv->status &= ~STATUS_ENABLED;
2287
2288         priv->status &= ~STATUS_CMD_ACTIVE;
2289
2290         wake_up_interruptible(&priv->wait_command_queue);
2291 }
2292
2293 #ifdef CONFIG_IPW2100_DEBUG
2294 static const char *frame_types[] = {
2295         "COMMAND_STATUS_VAL",
2296         "STATUS_CHANGE_VAL",
2297         "P80211_DATA_VAL",
2298         "P8023_DATA_VAL",
2299         "HOST_NOTIFICATION_VAL"
2300 };
2301 #endif
2302
2303 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2304                                     struct ipw2100_rx_packet *packet)
2305 {
2306         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2307         if (!packet->skb)
2308                 return -ENOMEM;
2309
2310         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2311         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2312                                           sizeof(struct ipw2100_rx),
2313                                           PCI_DMA_FROMDEVICE);
2314         if (pci_dma_mapping_error(priv->pci_dev, packet->dma_addr)) {
2315                 dev_kfree_skb(packet->skb);
2316                 return -ENOMEM;
2317         }
2318
2319         return 0;
2320 }
2321
2322 #define SEARCH_ERROR   0xffffffff
2323 #define SEARCH_FAIL    0xfffffffe
2324 #define SEARCH_SUCCESS 0xfffffff0
2325 #define SEARCH_DISCARD 0
2326 #define SEARCH_SNAPSHOT 1
2327
2328 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2329 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2330 {
2331         int i;
2332         if (!priv->snapshot[0])
2333                 return;
2334         for (i = 0; i < 0x30; i++)
2335                 kfree(priv->snapshot[i]);
2336         priv->snapshot[0] = NULL;
2337 }
2338
2339 #ifdef IPW2100_DEBUG_C3
2340 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2341 {
2342         int i;
2343         if (priv->snapshot[0])
2344                 return 1;
2345         for (i = 0; i < 0x30; i++) {
2346                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2347                 if (!priv->snapshot[i]) {
2348                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2349                                        "buffer %d\n", priv->net_dev->name, i);
2350                         while (i > 0)
2351                                 kfree(priv->snapshot[--i]);
2352                         priv->snapshot[0] = NULL;
2353                         return 0;
2354                 }
2355         }
2356
2357         return 1;
2358 }
2359
2360 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2361                                     size_t len, int mode)
2362 {
2363         u32 i, j;
2364         u32 tmp;
2365         u8 *s, *d;
2366         u32 ret;
2367
2368         s = in_buf;
2369         if (mode == SEARCH_SNAPSHOT) {
2370                 if (!ipw2100_snapshot_alloc(priv))
2371                         mode = SEARCH_DISCARD;
2372         }
2373
2374         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2375                 read_nic_dword(priv->net_dev, i, &tmp);
2376                 if (mode == SEARCH_SNAPSHOT)
2377                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2378                 if (ret == SEARCH_FAIL) {
2379                         d = (u8 *) & tmp;
2380                         for (j = 0; j < 4; j++) {
2381                                 if (*s != *d) {
2382                                         s = in_buf;
2383                                         continue;
2384                                 }
2385
2386                                 s++;
2387                                 d++;
2388
2389                                 if ((s - in_buf) == len)
2390                                         ret = (i + j) - len + 1;
2391                         }
2392                 } else if (mode == SEARCH_DISCARD)
2393                         return ret;
2394         }
2395
2396         return ret;
2397 }
2398 #endif
2399
2400 /*
2401  *
2402  * 0) Disconnect the SKB from the firmware (just unmap)
2403  * 1) Pack the ETH header into the SKB
2404  * 2) Pass the SKB to the network stack
2405  *
2406  * When packet is provided by the firmware, it contains the following:
2407  *
2408  * .  libipw_hdr
2409  * .  libipw_snap_hdr
2410  *
2411  * The size of the constructed ethernet
2412  *
2413  */
2414 #ifdef IPW2100_RX_DEBUG
2415 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2416 #endif
2417
2418 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2419 {
2420 #ifdef IPW2100_DEBUG_C3
2421         struct ipw2100_status *status = &priv->status_queue.drv[i];
2422         u32 match, reg;
2423         int j;
2424 #endif
2425
2426         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2427                        i * sizeof(struct ipw2100_status));
2428
2429 #ifdef IPW2100_DEBUG_C3
2430         /* Halt the firmware so we can get a good image */
2431         write_register(priv->net_dev, IPW_REG_RESET_REG,
2432                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2433         j = 5;
2434         do {
2435                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2436                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2437
2438                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2439                         break;
2440         } while (j--);
2441
2442         match = ipw2100_match_buf(priv, (u8 *) status,
2443                                   sizeof(struct ipw2100_status),
2444                                   SEARCH_SNAPSHOT);
2445         if (match < SEARCH_SUCCESS)
2446                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2447                                "offset 0x%06X, length %d:\n",
2448                                priv->net_dev->name, match,
2449                                sizeof(struct ipw2100_status));
2450         else
2451                 IPW_DEBUG_INFO("%s: No DMA status match in "
2452                                "Firmware.\n", priv->net_dev->name);
2453
2454         printk_buf((u8 *) priv->status_queue.drv,
2455                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2456 #endif
2457
2458         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2459         priv->net_dev->stats.rx_errors++;
2460         schedule_reset(priv);
2461 }
2462
2463 static void isr_rx(struct ipw2100_priv *priv, int i,
2464                           struct libipw_rx_stats *stats)
2465 {
2466         struct net_device *dev = priv->net_dev;
2467         struct ipw2100_status *status = &priv->status_queue.drv[i];
2468         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2469
2470         IPW_DEBUG_RX("Handler...\n");
2471
2472         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2473                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2474                                "  Dropping.\n",
2475                                dev->name,
2476                                status->frame_size, skb_tailroom(packet->skb));
2477                 dev->stats.rx_errors++;
2478                 return;
2479         }
2480
2481         if (unlikely(!netif_running(dev))) {
2482                 dev->stats.rx_errors++;
2483                 priv->wstats.discard.misc++;
2484                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2485                 return;
2486         }
2487
2488         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2489                      !(priv->status & STATUS_ASSOCIATED))) {
2490                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2491                 priv->wstats.discard.misc++;
2492                 return;
2493         }
2494
2495         pci_unmap_single(priv->pci_dev,
2496                          packet->dma_addr,
2497                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2498
2499         skb_put(packet->skb, status->frame_size);
2500
2501 #ifdef IPW2100_RX_DEBUG
2502         /* Make a copy of the frame so we can dump it to the logs if
2503          * libipw_rx fails */
2504         skb_copy_from_linear_data(packet->skb, packet_data,
2505                                   min_t(u32, status->frame_size,
2506                                              IPW_RX_NIC_BUFFER_LENGTH));
2507 #endif
2508
2509         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2510 #ifdef IPW2100_RX_DEBUG
2511                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2512                                dev->name);
2513                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2514 #endif
2515                 dev->stats.rx_errors++;
2516
2517                 /* libipw_rx failed, so it didn't free the SKB */
2518                 dev_kfree_skb_any(packet->skb);
2519                 packet->skb = NULL;
2520         }
2521
2522         /* We need to allocate a new SKB and attach it to the RDB. */
2523         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2524                 printk(KERN_WARNING DRV_NAME ": "
2525                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2526                        "adapter.\n", dev->name);
2527                 /* TODO: schedule adapter shutdown */
2528                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2529         }
2530
2531         /* Update the RDB entry */
2532         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2533 }
2534
2535 #ifdef CONFIG_IPW2100_MONITOR
2536
2537 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2538                    struct libipw_rx_stats *stats)
2539 {
2540         struct net_device *dev = priv->net_dev;
2541         struct ipw2100_status *status = &priv->status_queue.drv[i];
2542         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2543
2544         /* Magic struct that slots into the radiotap header -- no reason
2545          * to build this manually element by element, we can write it much
2546          * more efficiently than we can parse it. ORDER MATTERS HERE */
2547         struct ipw_rt_hdr {
2548                 struct ieee80211_radiotap_header rt_hdr;
2549                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2550         } *ipw_rt;
2551
2552         IPW_DEBUG_RX("Handler...\n");
2553
2554         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2555                                 sizeof(struct ipw_rt_hdr))) {
2556                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2557                                "  Dropping.\n",
2558                                dev->name,
2559                                status->frame_size,
2560                                skb_tailroom(packet->skb));
2561                 dev->stats.rx_errors++;
2562                 return;
2563         }
2564
2565         if (unlikely(!netif_running(dev))) {
2566                 dev->stats.rx_errors++;
2567                 priv->wstats.discard.misc++;
2568                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2569                 return;
2570         }
2571
2572         if (unlikely(priv->config & CFG_CRC_CHECK &&
2573                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2574                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2575                 dev->stats.rx_errors++;
2576                 return;
2577         }
2578
2579         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2580                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2581         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2582                 packet->skb->data, status->frame_size);
2583
2584         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2585
2586         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2587         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2588         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2589
2590         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2591
2592         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2593
2594         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2595
2596         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2597                 dev->stats.rx_errors++;
2598
2599                 /* libipw_rx failed, so it didn't free the SKB */
2600                 dev_kfree_skb_any(packet->skb);
2601                 packet->skb = NULL;
2602         }
2603
2604         /* We need to allocate a new SKB and attach it to the RDB. */
2605         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2606                 IPW_DEBUG_WARNING(
2607                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2608                         "adapter.\n", dev->name);
2609                 /* TODO: schedule adapter shutdown */
2610                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2611         }
2612
2613         /* Update the RDB entry */
2614         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2615 }
2616
2617 #endif
2618
2619 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2620 {
2621         struct ipw2100_status *status = &priv->status_queue.drv[i];
2622         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2623         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2624
2625         switch (frame_type) {
2626         case COMMAND_STATUS_VAL:
2627                 return (status->frame_size != sizeof(u->rx_data.command));
2628         case STATUS_CHANGE_VAL:
2629                 return (status->frame_size != sizeof(u->rx_data.status));
2630         case HOST_NOTIFICATION_VAL:
2631                 return (status->frame_size < sizeof(u->rx_data.notification));
2632         case P80211_DATA_VAL:
2633         case P8023_DATA_VAL:
2634 #ifdef CONFIG_IPW2100_MONITOR
2635                 return 0;
2636 #else
2637                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2638                 case IEEE80211_FTYPE_MGMT:
2639                 case IEEE80211_FTYPE_CTL:
2640                         return 0;
2641                 case IEEE80211_FTYPE_DATA:
2642                         return (status->frame_size >
2643                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2644                 }
2645 #endif
2646         }
2647
2648         return 1;
2649 }
2650
2651 /*
2652  * ipw2100 interrupts are disabled at this point, and the ISR
2653  * is the only code that calls this method.  So, we do not need
2654  * to play with any locks.
2655  *
2656  * RX Queue works as follows:
2657  *
2658  * Read index - firmware places packet in entry identified by the
2659  *              Read index and advances Read index.  In this manner,
2660  *              Read index will always point to the next packet to
2661  *              be filled--but not yet valid.
2662  *
2663  * Write index - driver fills this entry with an unused RBD entry.
2664  *               This entry has not filled by the firmware yet.
2665  *
2666  * In between the W and R indexes are the RBDs that have been received
2667  * but not yet processed.
2668  *
2669  * The process of handling packets will start at WRITE + 1 and advance
2670  * until it reaches the READ index.
2671  *
2672  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2673  *
2674  */
2675 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2676 {
2677         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2678         struct ipw2100_status_queue *sq = &priv->status_queue;
2679         struct ipw2100_rx_packet *packet;
2680         u16 frame_type;
2681         u32 r, w, i, s;
2682         struct ipw2100_rx *u;
2683         struct libipw_rx_stats stats = {
2684                 .mac_time = jiffies,
2685         };
2686
2687         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2688         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2689
2690         if (r >= rxq->entries) {
2691                 IPW_DEBUG_RX("exit - bad read index\n");
2692                 return;
2693         }
2694
2695         i = (rxq->next + 1) % rxq->entries;
2696         s = i;
2697         while (i != r) {
2698                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2699                    r, rxq->next, i); */
2700
2701                 packet = &priv->rx_buffers[i];
2702
2703                 /* Sync the DMA for the RX buffer so CPU is sure to get
2704                  * the correct values */
2705                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2706                                             sizeof(struct ipw2100_rx),
2707                                             PCI_DMA_FROMDEVICE);
2708
2709                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2710                         ipw2100_corruption_detected(priv, i);
2711                         goto increment;
2712                 }
2713
2714                 u = packet->rxp;
2715                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2716                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2717                 stats.len = sq->drv[i].frame_size;
2718
2719                 stats.mask = 0;
2720                 if (stats.rssi != 0)
2721                         stats.mask |= LIBIPW_STATMASK_RSSI;
2722                 stats.freq = LIBIPW_24GHZ_BAND;
2723
2724                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2725                              priv->net_dev->name, frame_types[frame_type],
2726                              stats.len);
2727
2728                 switch (frame_type) {
2729                 case COMMAND_STATUS_VAL:
2730                         /* Reset Rx watchdog */
2731                         isr_rx_complete_command(priv, &u->rx_data.command);
2732                         break;
2733
2734                 case STATUS_CHANGE_VAL:
2735                         isr_status_change(priv, u->rx_data.status);
2736                         break;
2737
2738                 case P80211_DATA_VAL:
2739                 case P8023_DATA_VAL:
2740 #ifdef CONFIG_IPW2100_MONITOR
2741                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2742                                 isr_rx_monitor(priv, i, &stats);
2743                                 break;
2744                         }
2745 #endif
2746                         if (stats.len < sizeof(struct libipw_hdr_3addr))
2747                                 break;
2748                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2749                         case IEEE80211_FTYPE_MGMT:
2750                                 libipw_rx_mgt(priv->ieee,
2751                                                  &u->rx_data.header, &stats);
2752                                 break;
2753
2754                         case IEEE80211_FTYPE_CTL:
2755                                 break;
2756
2757                         case IEEE80211_FTYPE_DATA:
2758                                 isr_rx(priv, i, &stats);
2759                                 break;
2760
2761                         }
2762                         break;
2763                 }
2764
2765               increment:
2766                 /* clear status field associated with this RBD */
2767                 rxq->drv[i].status.info.field = 0;
2768
2769                 i = (i + 1) % rxq->entries;
2770         }
2771
2772         if (i != s) {
2773                 /* backtrack one entry, wrapping to end if at 0 */
2774                 rxq->next = (i ? i : rxq->entries) - 1;
2775
2776                 write_register(priv->net_dev,
2777                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2778         }
2779 }
2780
2781 /*
2782  * __ipw2100_tx_process
2783  *
2784  * This routine will determine whether the next packet on
2785  * the fw_pend_list has been processed by the firmware yet.
2786  *
2787  * If not, then it does nothing and returns.
2788  *
2789  * If so, then it removes the item from the fw_pend_list, frees
2790  * any associated storage, and places the item back on the
2791  * free list of its source (either msg_free_list or tx_free_list)
2792  *
2793  * TX Queue works as follows:
2794  *
2795  * Read index - points to the next TBD that the firmware will
2796  *              process.  The firmware will read the data, and once
2797  *              done processing, it will advance the Read index.
2798  *
2799  * Write index - driver fills this entry with an constructed TBD
2800  *               entry.  The Write index is not advanced until the
2801  *               packet has been configured.
2802  *
2803  * In between the W and R indexes are the TBDs that have NOT been
2804  * processed.  Lagging behind the R index are packets that have
2805  * been processed but have not been freed by the driver.
2806  *
2807  * In order to free old storage, an internal index will be maintained
2808  * that points to the next packet to be freed.  When all used
2809  * packets have been freed, the oldest index will be the same as the
2810  * firmware's read index.
2811  *
2812  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2813  *
2814  * Because the TBD structure can not contain arbitrary data, the
2815  * driver must keep an internal queue of cached allocations such that
2816  * it can put that data back into the tx_free_list and msg_free_list
2817  * for use by future command and data packets.
2818  *
2819  */
2820 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2821 {
2822         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2823         struct ipw2100_bd *tbd;
2824         struct list_head *element;
2825         struct ipw2100_tx_packet *packet;
2826         int descriptors_used;
2827         int e, i;
2828         u32 r, w, frag_num = 0;
2829
2830         if (list_empty(&priv->fw_pend_list))
2831                 return 0;
2832
2833         element = priv->fw_pend_list.next;
2834
2835         packet = list_entry(element, struct ipw2100_tx_packet, list);
2836         tbd = &txq->drv[packet->index];
2837
2838         /* Determine how many TBD entries must be finished... */
2839         switch (packet->type) {
2840         case COMMAND:
2841                 /* COMMAND uses only one slot; don't advance */
2842                 descriptors_used = 1;
2843                 e = txq->oldest;
2844                 break;
2845
2846         case DATA:
2847                 /* DATA uses two slots; advance and loop position. */
2848                 descriptors_used = tbd->num_fragments;
2849                 frag_num = tbd->num_fragments - 1;
2850                 e = txq->oldest + frag_num;
2851                 e %= txq->entries;
2852                 break;
2853
2854         default:
2855                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2856                        priv->net_dev->name);
2857                 return 0;
2858         }
2859
2860         /* if the last TBD is not done by NIC yet, then packet is
2861          * not ready to be released.
2862          *
2863          */
2864         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2865                       &r);
2866         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2867                       &w);
2868         if (w != txq->next)
2869                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2870                        priv->net_dev->name);
2871
2872         /*
2873          * txq->next is the index of the last packet written txq->oldest is
2874          * the index of the r is the index of the next packet to be read by
2875          * firmware
2876          */
2877
2878         /*
2879          * Quick graphic to help you visualize the following
2880          * if / else statement
2881          *
2882          * ===>|                     s---->|===============
2883          *                               e>|
2884          * | a | b | c | d | e | f | g | h | i | j | k | l
2885          *       r---->|
2886          *               w
2887          *
2888          * w - updated by driver
2889          * r - updated by firmware
2890          * s - start of oldest BD entry (txq->oldest)
2891          * e - end of oldest BD entry
2892          *
2893          */
2894         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2895                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2896                 return 0;
2897         }
2898
2899         list_del(element);
2900         DEC_STAT(&priv->fw_pend_stat);
2901
2902 #ifdef CONFIG_IPW2100_DEBUG
2903         {
2904                 i = txq->oldest;
2905                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2906                              &txq->drv[i],
2907                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2908                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2909
2910                 if (packet->type == DATA) {
2911                         i = (i + 1) % txq->entries;
2912
2913                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2914                                      &txq->drv[i],
2915                                      (u32) (txq->nic + i *
2916                                             sizeof(struct ipw2100_bd)),
2917                                      (u32) txq->drv[i].host_addr,
2918                                      txq->drv[i].buf_length);
2919                 }
2920         }
2921 #endif
2922
2923         switch (packet->type) {
2924         case DATA:
2925                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2926                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2927                                "Expecting DATA TBD but pulled "
2928                                "something else: ids %d=%d.\n",
2929                                priv->net_dev->name, txq->oldest, packet->index);
2930
2931                 /* DATA packet; we have to unmap and free the SKB */
2932                 for (i = 0; i < frag_num; i++) {
2933                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2934
2935                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2936                                      (packet->index + 1 + i) % txq->entries,
2937                                      tbd->host_addr, tbd->buf_length);
2938
2939                         pci_unmap_single(priv->pci_dev,
2940                                          tbd->host_addr,
2941                                          tbd->buf_length, PCI_DMA_TODEVICE);
2942                 }
2943
2944                 libipw_txb_free(packet->info.d_struct.txb);
2945                 packet->info.d_struct.txb = NULL;
2946
2947                 list_add_tail(element, &priv->tx_free_list);
2948                 INC_STAT(&priv->tx_free_stat);
2949
2950                 /* We have a free slot in the Tx queue, so wake up the
2951                  * transmit layer if it is stopped. */
2952                 if (priv->status & STATUS_ASSOCIATED)
2953                         netif_wake_queue(priv->net_dev);
2954
2955                 /* A packet was processed by the hardware, so update the
2956                  * watchdog */
2957                 netif_trans_update(priv->net_dev);
2958
2959                 break;
2960
2961         case COMMAND:
2962                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2963                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2964                                "Expecting COMMAND TBD but pulled "
2965                                "something else: ids %d=%d.\n",
2966                                priv->net_dev->name, txq->oldest, packet->index);
2967
2968 #ifdef CONFIG_IPW2100_DEBUG
2969                 if (packet->info.c_struct.cmd->host_command_reg <
2970                     ARRAY_SIZE(command_types))
2971                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2972                                      command_types[packet->info.c_struct.cmd->
2973                                                    host_command_reg],
2974                                      packet->info.c_struct.cmd->
2975                                      host_command_reg,
2976                                      packet->info.c_struct.cmd->cmd_status_reg);
2977 #endif
2978
2979                 list_add_tail(element, &priv->msg_free_list);
2980                 INC_STAT(&priv->msg_free_stat);
2981                 break;
2982         }
2983
2984         /* advance oldest used TBD pointer to start of next entry */
2985         txq->oldest = (e + 1) % txq->entries;
2986         /* increase available TBDs number */
2987         txq->available += descriptors_used;
2988         SET_STAT(&priv->txq_stat, txq->available);
2989
2990         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2991                      jiffies - packet->jiffy_start);
2992
2993         return (!list_empty(&priv->fw_pend_list));
2994 }
2995
2996 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2997 {
2998         int i = 0;
2999
3000         while (__ipw2100_tx_process(priv) && i < 200)
3001                 i++;
3002
3003         if (i == 200) {
3004                 printk(KERN_WARNING DRV_NAME ": "
3005                        "%s: Driver is running slow (%d iters).\n",
3006                        priv->net_dev->name, i);
3007         }
3008 }
3009
3010 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3011 {
3012         struct list_head *element;
3013         struct ipw2100_tx_packet *packet;
3014         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3015         struct ipw2100_bd *tbd;
3016         int next = txq->next;
3017
3018         while (!list_empty(&priv->msg_pend_list)) {
3019                 /* if there isn't enough space in TBD queue, then
3020                  * don't stuff a new one in.
3021                  * NOTE: 3 are needed as a command will take one,
3022                  *       and there is a minimum of 2 that must be
3023                  *       maintained between the r and w indexes
3024                  */
3025                 if (txq->available <= 3) {
3026                         IPW_DEBUG_TX("no room in tx_queue\n");
3027                         break;
3028                 }
3029
3030                 element = priv->msg_pend_list.next;
3031                 list_del(element);
3032                 DEC_STAT(&priv->msg_pend_stat);
3033
3034                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3035
3036                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3037                              &txq->drv[txq->next],
3038                              (u32) (txq->nic + txq->next *
3039                                       sizeof(struct ipw2100_bd)));
3040
3041                 packet->index = txq->next;
3042
3043                 tbd = &txq->drv[txq->next];
3044
3045                 /* initialize TBD */
3046                 tbd->host_addr = packet->info.c_struct.cmd_phys;
3047                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3048                 /* not marking number of fragments causes problems
3049                  * with f/w debug version */
3050                 tbd->num_fragments = 1;
3051                 tbd->status.info.field =
3052                     IPW_BD_STATUS_TX_FRAME_COMMAND |
3053                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3054
3055                 /* update TBD queue counters */
3056                 txq->next++;
3057                 txq->next %= txq->entries;
3058                 txq->available--;
3059                 DEC_STAT(&priv->txq_stat);
3060
3061                 list_add_tail(element, &priv->fw_pend_list);
3062                 INC_STAT(&priv->fw_pend_stat);
3063         }
3064
3065         if (txq->next != next) {
3066                 /* kick off the DMA by notifying firmware the
3067                  * write index has moved; make sure TBD stores are sync'd */
3068                 wmb();
3069                 write_register(priv->net_dev,
3070                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3071                                txq->next);
3072         }
3073 }
3074
3075 /*
3076  * ipw2100_tx_send_data
3077  *
3078  */
3079 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3080 {
3081         struct list_head *element;
3082         struct ipw2100_tx_packet *packet;
3083         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3084         struct ipw2100_bd *tbd;
3085         int next = txq->next;
3086         int i = 0;
3087         struct ipw2100_data_header *ipw_hdr;
3088         struct libipw_hdr_3addr *hdr;
3089
3090         while (!list_empty(&priv->tx_pend_list)) {
3091                 /* if there isn't enough space in TBD queue, then
3092                  * don't stuff a new one in.
3093                  * NOTE: 4 are needed as a data will take two,
3094                  *       and there is a minimum of 2 that must be
3095                  *       maintained between the r and w indexes
3096                  */
3097                 element = priv->tx_pend_list.next;
3098                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3099
3100                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3101                              IPW_MAX_BDS)) {
3102                         /* TODO: Support merging buffers if more than
3103                          * IPW_MAX_BDS are used */
3104                         IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3105                                        "Increase fragmentation level.\n",
3106                                        priv->net_dev->name);
3107                 }
3108
3109                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3110                         IPW_DEBUG_TX("no room in tx_queue\n");
3111                         break;
3112                 }
3113
3114                 list_del(element);
3115                 DEC_STAT(&priv->tx_pend_stat);
3116
3117                 tbd = &txq->drv[txq->next];
3118
3119                 packet->index = txq->next;
3120
3121                 ipw_hdr = packet->info.d_struct.data;
3122                 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3123                     fragments[0]->data;
3124
3125                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3126                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3127                            Addr3 = DA */
3128                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3129                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3130                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3131                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3132                            Addr3 = BSSID */
3133                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3134                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3135                 }
3136
3137                 ipw_hdr->host_command_reg = SEND;
3138                 ipw_hdr->host_command_reg1 = 0;
3139
3140                 /* For now we only support host based encryption */
3141                 ipw_hdr->needs_encryption = 0;
3142                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3143                 if (packet->info.d_struct.txb->nr_frags > 1)
3144                         ipw_hdr->fragment_size =
3145                             packet->info.d_struct.txb->frag_size -
3146                             LIBIPW_3ADDR_LEN;
3147                 else
3148                         ipw_hdr->fragment_size = 0;
3149
3150                 tbd->host_addr = packet->info.d_struct.data_phys;
3151                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3152                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3153                 tbd->status.info.field =
3154                     IPW_BD_STATUS_TX_FRAME_802_3 |
3155                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3156                 txq->next++;
3157                 txq->next %= txq->entries;
3158
3159                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3160                              packet->index, tbd->host_addr, tbd->buf_length);
3161 #ifdef CONFIG_IPW2100_DEBUG
3162                 if (packet->info.d_struct.txb->nr_frags > 1)
3163                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3164                                        packet->info.d_struct.txb->nr_frags);
3165 #endif
3166
3167                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3168                         tbd = &txq->drv[txq->next];
3169                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3170                                 tbd->status.info.field =
3171                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3172                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3173                         else
3174                                 tbd->status.info.field =
3175                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3176                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3177
3178                         tbd->buf_length = packet->info.d_struct.txb->
3179                             fragments[i]->len - LIBIPW_3ADDR_LEN;
3180
3181                         tbd->host_addr = pci_map_single(priv->pci_dev,
3182                                                         packet->info.d_struct.
3183                                                         txb->fragments[i]->
3184                                                         data +
3185                                                         LIBIPW_3ADDR_LEN,
3186                                                         tbd->buf_length,
3187                                                         PCI_DMA_TODEVICE);
3188                         if (pci_dma_mapping_error(priv->pci_dev,
3189                                                   tbd->host_addr)) {
3190                                 IPW_DEBUG_TX("dma mapping error\n");
3191                                 break;
3192                         }
3193
3194                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3195                                      txq->next, tbd->host_addr,
3196                                      tbd->buf_length);
3197
3198                         pci_dma_sync_single_for_device(priv->pci_dev,
3199                                                        tbd->host_addr,
3200                                                        tbd->buf_length,
3201                                                        PCI_DMA_TODEVICE);
3202
3203                         txq->next++;
3204                         txq->next %= txq->entries;
3205                 }
3206
3207                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3208                 SET_STAT(&priv->txq_stat, txq->available);
3209
3210                 list_add_tail(element, &priv->fw_pend_list);
3211                 INC_STAT(&priv->fw_pend_stat);
3212         }
3213
3214         if (txq->next != next) {
3215                 /* kick off the DMA by notifying firmware the
3216                  * write index has moved; make sure TBD stores are sync'd */
3217                 write_register(priv->net_dev,
3218                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3219                                txq->next);
3220         }
3221 }
3222
3223 static void ipw2100_irq_tasklet(unsigned long data)
3224 {
3225         struct ipw2100_priv *priv = (struct ipw2100_priv *)data;
3226         struct net_device *dev = priv->net_dev;
3227         unsigned long flags;
3228         u32 inta, tmp;
3229
3230         spin_lock_irqsave(&priv->low_lock, flags);
3231         ipw2100_disable_interrupts(priv);
3232
3233         read_register(dev, IPW_REG_INTA, &inta);
3234
3235         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3236                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3237
3238         priv->in_isr++;
3239         priv->interrupts++;
3240
3241         /* We do not loop and keep polling for more interrupts as this
3242          * is frowned upon and doesn't play nicely with other potentially
3243          * chained IRQs */
3244         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3245                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3246
3247         if (inta & IPW2100_INTA_FATAL_ERROR) {
3248                 printk(KERN_WARNING DRV_NAME
3249                        ": Fatal interrupt. Scheduling firmware restart.\n");
3250                 priv->inta_other++;
3251                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3252
3253                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3254                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3255                                priv->net_dev->name, priv->fatal_error);
3256
3257                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3258                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3259                                priv->net_dev->name, tmp);
3260
3261                 /* Wake up any sleeping jobs */
3262                 schedule_reset(priv);
3263         }
3264
3265         if (inta & IPW2100_INTA_PARITY_ERROR) {
3266                 printk(KERN_ERR DRV_NAME
3267                        ": ***** PARITY ERROR INTERRUPT !!!!\n");
3268                 priv->inta_other++;
3269                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3270         }
3271
3272         if (inta & IPW2100_INTA_RX_TRANSFER) {
3273                 IPW_DEBUG_ISR("RX interrupt\n");
3274
3275                 priv->rx_interrupts++;
3276
3277                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3278
3279                 __ipw2100_rx_process(priv);
3280                 __ipw2100_tx_complete(priv);
3281         }
3282
3283         if (inta & IPW2100_INTA_TX_TRANSFER) {
3284                 IPW_DEBUG_ISR("TX interrupt\n");
3285
3286                 priv->tx_interrupts++;
3287
3288                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3289
3290                 __ipw2100_tx_complete(priv);
3291                 ipw2100_tx_send_commands(priv);
3292                 ipw2100_tx_send_data(priv);
3293         }
3294
3295         if (inta & IPW2100_INTA_TX_COMPLETE) {
3296                 IPW_DEBUG_ISR("TX complete\n");
3297                 priv->inta_other++;
3298                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3299
3300                 __ipw2100_tx_complete(priv);
3301         }
3302
3303         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3304                 /* ipw2100_handle_event(dev); */
3305                 priv->inta_other++;
3306                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3307         }
3308
3309         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3310                 IPW_DEBUG_ISR("FW init done interrupt\n");
3311                 priv->inta_other++;
3312
3313                 read_register(dev, IPW_REG_INTA, &tmp);
3314                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3315                            IPW2100_INTA_PARITY_ERROR)) {
3316                         write_register(dev, IPW_REG_INTA,
3317                                        IPW2100_INTA_FATAL_ERROR |
3318                                        IPW2100_INTA_PARITY_ERROR);
3319                 }
3320
3321                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3322         }
3323
3324         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3325                 IPW_DEBUG_ISR("Status change interrupt\n");
3326                 priv->inta_other++;
3327                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3328         }
3329
3330         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3331                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3332                 priv->inta_other++;
3333                 write_register(dev, IPW_REG_INTA,
3334                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3335         }
3336
3337         priv->in_isr--;
3338         ipw2100_enable_interrupts(priv);
3339
3340         spin_unlock_irqrestore(&priv->low_lock, flags);
3341
3342         IPW_DEBUG_ISR("exit\n");
3343 }
3344
3345 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3346 {
3347         struct ipw2100_priv *priv = data;
3348         u32 inta, inta_mask;
3349
3350         if (!data)
3351                 return IRQ_NONE;
3352
3353         spin_lock(&priv->low_lock);
3354
3355         /* We check to see if we should be ignoring interrupts before
3356          * we touch the hardware.  During ucode load if we try and handle
3357          * an interrupt we can cause keyboard problems as well as cause
3358          * the ucode to fail to initialize */
3359         if (!(priv->status & STATUS_INT_ENABLED)) {
3360                 /* Shared IRQ */
3361                 goto none;
3362         }
3363
3364         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3365         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3366
3367         if (inta == 0xFFFFFFFF) {
3368                 /* Hardware disappeared */
3369                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3370                 goto none;
3371         }
3372
3373         inta &= IPW_INTERRUPT_MASK;
3374
3375         if (!(inta & inta_mask)) {
3376                 /* Shared interrupt */
3377                 goto none;
3378         }
3379
3380         /* We disable the hardware interrupt here just to prevent unneeded
3381          * calls to be made.  We disable this again within the actual
3382          * work tasklet, so if another part of the code re-enables the
3383          * interrupt, that is fine */
3384         ipw2100_disable_interrupts(priv);
3385
3386         tasklet_schedule(&priv->irq_tasklet);
3387         spin_unlock(&priv->low_lock);
3388
3389         return IRQ_HANDLED;
3390       none:
3391         spin_unlock(&priv->low_lock);
3392         return IRQ_NONE;
3393 }
3394
3395 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3396                               struct net_device *dev, int pri)
3397 {
3398         struct ipw2100_priv *priv = libipw_priv(dev);
3399         struct list_head *element;
3400         struct ipw2100_tx_packet *packet;
3401         unsigned long flags;
3402
3403         spin_lock_irqsave(&priv->low_lock, flags);
3404
3405         if (!(priv->status & STATUS_ASSOCIATED)) {
3406                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3407                 priv->net_dev->stats.tx_carrier_errors++;
3408                 netif_stop_queue(dev);
3409                 goto fail_unlock;
3410         }
3411
3412         if (list_empty(&priv->tx_free_list))
3413                 goto fail_unlock;
3414
3415         element = priv->tx_free_list.next;
3416         packet = list_entry(element, struct ipw2100_tx_packet, list);
3417
3418         packet->info.d_struct.txb = txb;
3419
3420         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3421         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3422
3423         packet->jiffy_start = jiffies;
3424
3425         list_del(element);
3426         DEC_STAT(&priv->tx_free_stat);
3427
3428         list_add_tail(element, &priv->tx_pend_list);
3429         INC_STAT(&priv->tx_pend_stat);
3430
3431         ipw2100_tx_send_data(priv);
3432
3433         spin_unlock_irqrestore(&priv->low_lock, flags);
3434         return NETDEV_TX_OK;
3435
3436 fail_unlock:
3437         netif_stop_queue(dev);
3438         spin_unlock_irqrestore(&priv->low_lock, flags);
3439         return NETDEV_TX_BUSY;
3440 }
3441
3442 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3443 {
3444         int i, j, err = -EINVAL;
3445         void *v;
3446         dma_addr_t p;
3447
3448         priv->msg_buffers =
3449             kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3450                     GFP_KERNEL);
3451         if (!priv->msg_buffers)
3452                 return -ENOMEM;
3453
3454         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3455                 v = pci_zalloc_consistent(priv->pci_dev,
3456                                           sizeof(struct ipw2100_cmd_header),
3457                                           &p);
3458                 if (!v) {
3459                         printk(KERN_ERR DRV_NAME ": "
3460                                "%s: PCI alloc failed for msg "
3461                                "buffers.\n", priv->net_dev->name);
3462                         err = -ENOMEM;
3463                         break;
3464                 }
3465
3466                 priv->msg_buffers[i].type = COMMAND;
3467                 priv->msg_buffers[i].info.c_struct.cmd =
3468                     (struct ipw2100_cmd_header *)v;
3469                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3470         }
3471
3472         if (i == IPW_COMMAND_POOL_SIZE)
3473                 return 0;
3474
3475         for (j = 0; j < i; j++) {
3476                 pci_free_consistent(priv->pci_dev,
3477                                     sizeof(struct ipw2100_cmd_header),
3478                                     priv->msg_buffers[j].info.c_struct.cmd,
3479                                     priv->msg_buffers[j].info.c_struct.
3480                                     cmd_phys);
3481         }
3482
3483         kfree(priv->msg_buffers);
3484         priv->msg_buffers = NULL;
3485
3486         return err;
3487 }
3488
3489 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3490 {
3491         int i;
3492
3493         INIT_LIST_HEAD(&priv->msg_free_list);
3494         INIT_LIST_HEAD(&priv->msg_pend_list);
3495
3496         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3497                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3498         SET_STAT(&priv->msg_free_stat, i);
3499
3500         return 0;
3501 }
3502
3503 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3504 {
3505         int i;
3506
3507         if (!priv->msg_buffers)
3508                 return;
3509
3510         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3511                 pci_free_consistent(priv->pci_dev,
3512                                     sizeof(struct ipw2100_cmd_header),
3513                                     priv->msg_buffers[i].info.c_struct.cmd,
3514                                     priv->msg_buffers[i].info.c_struct.
3515                                     cmd_phys);
3516         }
3517
3518         kfree(priv->msg_buffers);
3519         priv->msg_buffers = NULL;
3520 }
3521
3522 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3523                         char *buf)
3524 {
3525         struct pci_dev *pci_dev = to_pci_dev(d);
3526         char *out = buf;
3527         int i, j;
3528         u32 val;
3529
3530         for (i = 0; i < 16; i++) {
3531                 out += sprintf(out, "[%08X] ", i * 16);
3532                 for (j = 0; j < 16; j += 4) {
3533                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3534                         out += sprintf(out, "%08X ", val);
3535                 }
3536                 out += sprintf(out, "\n");
3537         }
3538
3539         return out - buf;
3540 }
3541
3542 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3543
3544 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3545                         char *buf)
3546 {
3547         struct ipw2100_priv *p = dev_get_drvdata(d);
3548         return sprintf(buf, "0x%08x\n", (int)p->config);
3549 }
3550
3551 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3552
3553 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3554                            char *buf)
3555 {
3556         struct ipw2100_priv *p = dev_get_drvdata(d);
3557         return sprintf(buf, "0x%08x\n", (int)p->status);
3558 }
3559
3560 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3561
3562 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3563                                char *buf)
3564 {
3565         struct ipw2100_priv *p = dev_get_drvdata(d);
3566         return sprintf(buf, "0x%08x\n", (int)p->capability);
3567 }
3568
3569 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3570
3571 #define IPW2100_REG(x) { IPW_ ##x, #x }
3572 static const struct {
3573         u32 addr;
3574         const char *name;
3575 } hw_data[] = {
3576 IPW2100_REG(REG_GP_CNTRL),
3577             IPW2100_REG(REG_GPIO),
3578             IPW2100_REG(REG_INTA),
3579             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3580 #define IPW2100_NIC(x, s) { x, #x, s }
3581 static const struct {
3582         u32 addr;
3583         const char *name;
3584         size_t size;
3585 } nic_data[] = {
3586 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3587             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3588 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3589 static const struct {
3590         u8 index;
3591         const char *name;
3592         const char *desc;
3593 } ord_data[] = {
3594 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3595             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3596                                 "successful Host Tx's (MSDU)"),
3597             IPW2100_ORD(STAT_TX_DIR_DATA,
3598                                 "successful Directed Tx's (MSDU)"),
3599             IPW2100_ORD(STAT_TX_DIR_DATA1,
3600                                 "successful Directed Tx's (MSDU) @ 1MB"),
3601             IPW2100_ORD(STAT_TX_DIR_DATA2,
3602                                 "successful Directed Tx's (MSDU) @ 2MB"),
3603             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3604                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3605             IPW2100_ORD(STAT_TX_DIR_DATA11,
3606                                 "successful Directed Tx's (MSDU) @ 11MB"),
3607             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3608                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3609             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3610                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3611             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3612                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3613             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3614                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3615             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3616             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3617             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3618             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3619             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3620             IPW2100_ORD(STAT_TX_ASSN_RESP,
3621                                 "successful Association response Tx's"),
3622             IPW2100_ORD(STAT_TX_REASSN,
3623                                 "successful Reassociation Tx's"),
3624             IPW2100_ORD(STAT_TX_REASSN_RESP,
3625                                 "successful Reassociation response Tx's"),
3626             IPW2100_ORD(STAT_TX_PROBE,
3627                                 "probes successfully transmitted"),
3628             IPW2100_ORD(STAT_TX_PROBE_RESP,
3629                                 "probe responses successfully transmitted"),
3630             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3631             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3632             IPW2100_ORD(STAT_TX_DISASSN,
3633                                 "successful Disassociation TX"),
3634             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3635             IPW2100_ORD(STAT_TX_DEAUTH,
3636                                 "successful Deauthentication TX"),
3637             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3638                                 "Total successful Tx data bytes"),
3639             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3640             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3641             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3642             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3643             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3644             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3645             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3646                                 "times max tries in a hop failed"),
3647             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3648                                 "times disassociation failed"),
3649             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3650             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3651             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3652             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3653             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3654             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3655             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3656                                 "directed packets at 5.5MB"),
3657             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3658             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3659             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3660                                 "nondirected packets at 1MB"),
3661             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3662                                 "nondirected packets at 2MB"),
3663             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3664                                 "nondirected packets at 5.5MB"),
3665             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3666                                 "nondirected packets at 11MB"),
3667             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3668             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3669                                                                     "Rx CTS"),
3670             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3671             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3672             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3673             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3674             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3675             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3676             IPW2100_ORD(STAT_RX_REASSN_RESP,
3677                                 "Reassociation response Rx's"),
3678             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3679             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3680             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3681             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3682             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3683             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3684             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3685             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3686                                 "Total rx data bytes received"),
3687             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3688             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3689             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3690             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3691             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3692             IPW2100_ORD(STAT_RX_DUPLICATE1,
3693                                 "duplicate rx packets at 1MB"),
3694             IPW2100_ORD(STAT_RX_DUPLICATE2,
3695                                 "duplicate rx packets at 2MB"),
3696             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3697                                 "duplicate rx packets at 5.5MB"),
3698             IPW2100_ORD(STAT_RX_DUPLICATE11,
3699                                 "duplicate rx packets at 11MB"),
3700             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3701             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3702             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3703             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3704             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3705                                 "rx frames with invalid protocol"),
3706             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3707             IPW2100_ORD(STAT_RX_NO_BUFFER,
3708                                 "rx frames rejected due to no buffer"),
3709             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3710                                 "rx frames dropped due to missing fragment"),
3711             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3712                                 "rx frames dropped due to non-sequential fragment"),
3713             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3714                                 "rx frames dropped due to unmatched 1st frame"),
3715             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3716                                 "rx frames dropped due to uncompleted frame"),
3717             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3718                                 "ICV errors during decryption"),
3719             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3720             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3721             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3722                                 "poll response timeouts"),
3723             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3724                                 "timeouts waiting for last {broad,multi}cast pkt"),
3725             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3726             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3727             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3728             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3729             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3730                                 "current calculation of % missed beacons"),
3731             IPW2100_ORD(STAT_PERCENT_RETRIES,
3732                                 "current calculation of % missed tx retries"),
3733             IPW2100_ORD(ASSOCIATED_AP_PTR,
3734                                 "0 if not associated, else pointer to AP table entry"),
3735             IPW2100_ORD(AVAILABLE_AP_CNT,
3736                                 "AP's decsribed in the AP table"),
3737             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3738             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3739             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3740             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3741                                 "failures due to response fail"),
3742             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3743             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3744             IPW2100_ORD(STAT_ROAM_INHIBIT,
3745                                 "times roaming was inhibited due to activity"),
3746             IPW2100_ORD(RSSI_AT_ASSN,
3747                                 "RSSI of associated AP at time of association"),
3748             IPW2100_ORD(STAT_ASSN_CAUSE1,
3749                                 "reassociation: no probe response or TX on hop"),
3750             IPW2100_ORD(STAT_ASSN_CAUSE2,
3751                                 "reassociation: poor tx/rx quality"),
3752             IPW2100_ORD(STAT_ASSN_CAUSE3,
3753                                 "reassociation: tx/rx quality (excessive AP load"),
3754             IPW2100_ORD(STAT_ASSN_CAUSE4,
3755                                 "reassociation: AP RSSI level"),
3756             IPW2100_ORD(STAT_ASSN_CAUSE5,
3757                                 "reassociations due to load leveling"),
3758             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3759             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3760                                 "times authentication response failed"),
3761             IPW2100_ORD(STATION_TABLE_CNT,
3762                                 "entries in association table"),
3763             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3764             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3765             IPW2100_ORD(COUNTRY_CODE,
3766                                 "IEEE country code as recv'd from beacon"),
3767             IPW2100_ORD(COUNTRY_CHANNELS,
3768                                 "channels supported by country"),
3769             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3770             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3771             IPW2100_ORD(ANTENNA_DIVERSITY,
3772                                 "TRUE if antenna diversity is disabled"),
3773             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3774             IPW2100_ORD(OUR_FREQ,
3775                                 "current radio freq lower digits - channel ID"),
3776             IPW2100_ORD(RTC_TIME, "current RTC time"),
3777             IPW2100_ORD(PORT_TYPE, "operating mode"),
3778             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3779             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3780             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3781             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3782             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3783             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3784             IPW2100_ORD(CAPABILITIES,
3785                                 "Management frame capability field"),
3786             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3787             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3788             IPW2100_ORD(RTS_THRESHOLD,
3789                                 "Min packet length for RTS handshaking"),
3790             IPW2100_ORD(INT_MODE, "International mode"),
3791             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3792                                 "protocol frag threshold"),
3793             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3794                                 "EEPROM offset in SRAM"),
3795             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3796                                 "EEPROM size in SRAM"),
3797             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3798             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3799                                 "EEPROM IBSS 11b channel set"),
3800             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3801             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3802             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3803             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3804             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3805
3806 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3807                               char *buf)
3808 {
3809         int i;
3810         struct ipw2100_priv *priv = dev_get_drvdata(d);
3811         struct net_device *dev = priv->net_dev;
3812         char *out = buf;
3813         u32 val = 0;
3814
3815         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3816
3817         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3818                 read_register(dev, hw_data[i].addr, &val);
3819                 out += sprintf(out, "%30s [%08X] : %08X\n",
3820                                hw_data[i].name, hw_data[i].addr, val);
3821         }
3822
3823         return out - buf;
3824 }
3825
3826 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3827
3828 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3829                              char *buf)
3830 {
3831         struct ipw2100_priv *priv = dev_get_drvdata(d);
3832         struct net_device *dev = priv->net_dev;
3833         char *out = buf;
3834         int i;
3835
3836         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3837
3838         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3839                 u8 tmp8;
3840                 u16 tmp16;
3841                 u32 tmp32;
3842
3843                 switch (nic_data[i].size) {
3844                 case 1:
3845                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3846                         out += sprintf(out, "%30s [%08X] : %02X\n",
3847                                        nic_data[i].name, nic_data[i].addr,
3848                                        tmp8);
3849                         break;
3850                 case 2:
3851                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3852                         out += sprintf(out, "%30s [%08X] : %04X\n",
3853                                        nic_data[i].name, nic_data[i].addr,
3854                                        tmp16);
3855                         break;
3856                 case 4:
3857                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3858                         out += sprintf(out, "%30s [%08X] : %08X\n",
3859                                        nic_data[i].name, nic_data[i].addr,
3860                                        tmp32);
3861                         break;
3862                 }
3863         }
3864         return out - buf;
3865 }
3866
3867 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3868
3869 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3870                            char *buf)
3871 {
3872         struct ipw2100_priv *priv = dev_get_drvdata(d);
3873         struct net_device *dev = priv->net_dev;
3874         static unsigned long loop = 0;
3875         int len = 0;
3876         u32 buffer[4];
3877         int i;
3878         char line[81];
3879
3880         if (loop >= 0x30000)
3881                 loop = 0;
3882
3883         /* sysfs provides us PAGE_SIZE buffer */
3884         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3885
3886                 if (priv->snapshot[0])
3887                         for (i = 0; i < 4; i++)
3888                                 buffer[i] =
3889                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3890                 else
3891                         for (i = 0; i < 4; i++)
3892                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3893
3894                 if (priv->dump_raw)
3895                         len += sprintf(buf + len,
3896                                        "%c%c%c%c"
3897                                        "%c%c%c%c"
3898                                        "%c%c%c%c"
3899                                        "%c%c%c%c",
3900                                        ((u8 *) buffer)[0x0],
3901                                        ((u8 *) buffer)[0x1],
3902                                        ((u8 *) buffer)[0x2],
3903                                        ((u8 *) buffer)[0x3],
3904                                        ((u8 *) buffer)[0x4],
3905                                        ((u8 *) buffer)[0x5],
3906                                        ((u8 *) buffer)[0x6],
3907                                        ((u8 *) buffer)[0x7],
3908                                        ((u8 *) buffer)[0x8],
3909                                        ((u8 *) buffer)[0x9],
3910                                        ((u8 *) buffer)[0xa],
3911                                        ((u8 *) buffer)[0xb],
3912                                        ((u8 *) buffer)[0xc],
3913                                        ((u8 *) buffer)[0xd],
3914                                        ((u8 *) buffer)[0xe],
3915                                        ((u8 *) buffer)[0xf]);
3916                 else
3917                         len += sprintf(buf + len, "%s\n",
3918                                        snprint_line(line, sizeof(line),
3919                                                     (u8 *) buffer, 16, loop));
3920                 loop += 16;
3921         }
3922
3923         return len;
3924 }
3925
3926 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3927                             const char *buf, size_t count)
3928 {
3929         struct ipw2100_priv *priv = dev_get_drvdata(d);
3930         struct net_device *dev = priv->net_dev;
3931         const char *p = buf;
3932
3933         (void)dev;              /* kill unused-var warning for debug-only code */
3934
3935         if (count < 1)
3936                 return count;
3937
3938         if (p[0] == '1' ||
3939             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3940                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3941                                dev->name);
3942                 priv->dump_raw = 1;
3943
3944         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3945                                    tolower(p[1]) == 'f')) {
3946                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3947                                dev->name);
3948                 priv->dump_raw = 0;
3949
3950         } else if (tolower(p[0]) == 'r') {
3951                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3952                 ipw2100_snapshot_free(priv);
3953
3954         } else
3955                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3956                                "reset = clear memory snapshot\n", dev->name);
3957
3958         return count;
3959 }
3960
3961 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3962
3963 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3964                              char *buf)
3965 {
3966         struct ipw2100_priv *priv = dev_get_drvdata(d);
3967         u32 val = 0;
3968         int len = 0;
3969         u32 val_len;
3970         static int loop = 0;
3971
3972         if (priv->status & STATUS_RF_KILL_MASK)
3973                 return 0;
3974
3975         if (loop >= ARRAY_SIZE(ord_data))
3976                 loop = 0;
3977
3978         /* sysfs provides us PAGE_SIZE buffer */
3979         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3980                 val_len = sizeof(u32);
3981
3982                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3983                                         &val_len))
3984                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3985                                        ord_data[loop].index,
3986                                        ord_data[loop].desc);
3987                 else
3988                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3989                                        ord_data[loop].index, val,
3990                                        ord_data[loop].desc);
3991                 loop++;
3992         }
3993
3994         return len;
3995 }
3996
3997 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3998
3999 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4000                           char *buf)
4001 {
4002         struct ipw2100_priv *priv = dev_get_drvdata(d);
4003         char *out = buf;
4004
4005         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4006                        priv->interrupts, priv->tx_interrupts,
4007                        priv->rx_interrupts, priv->inta_other);
4008         out += sprintf(out, "firmware resets: %d\n", priv->resets);
4009         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4010 #ifdef CONFIG_IPW2100_DEBUG
4011         out += sprintf(out, "packet mismatch image: %s\n",
4012                        priv->snapshot[0] ? "YES" : "NO");
4013 #endif
4014
4015         return out - buf;
4016 }
4017
4018 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4019
4020 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4021 {
4022         int err;
4023
4024         if (mode == priv->ieee->iw_mode)
4025                 return 0;
4026
4027         err = ipw2100_disable_adapter(priv);
4028         if (err) {
4029                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4030                        priv->net_dev->name, err);
4031                 return err;
4032         }
4033
4034         switch (mode) {
4035         case IW_MODE_INFRA:
4036                 priv->net_dev->type = ARPHRD_ETHER;
4037                 break;
4038         case IW_MODE_ADHOC:
4039                 priv->net_dev->type = ARPHRD_ETHER;
4040                 break;
4041 #ifdef CONFIG_IPW2100_MONITOR
4042         case IW_MODE_MONITOR:
4043                 priv->last_mode = priv->ieee->iw_mode;
4044                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4045                 break;
4046 #endif                          /* CONFIG_IPW2100_MONITOR */
4047         }
4048
4049         priv->ieee->iw_mode = mode;
4050
4051 #ifdef CONFIG_PM
4052         /* Indicate ipw2100_download_firmware download firmware
4053          * from disk instead of memory. */
4054         ipw2100_firmware.version = 0;
4055 #endif
4056
4057         printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4058         priv->reset_backoff = 0;
4059         schedule_reset(priv);
4060
4061         return 0;
4062 }
4063
4064 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4065                               char *buf)
4066 {
4067         struct ipw2100_priv *priv = dev_get_drvdata(d);
4068         int len = 0;
4069
4070 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4071
4072         if (priv->status & STATUS_ASSOCIATED)
4073                 len += sprintf(buf + len, "connected: %lu\n",
4074                                get_seconds() - priv->connect_start);
4075         else
4076                 len += sprintf(buf + len, "not connected\n");
4077
4078         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4079         DUMP_VAR(status, "08lx");
4080         DUMP_VAR(config, "08lx");
4081         DUMP_VAR(capability, "08lx");
4082
4083         len +=
4084             sprintf(buf + len, "last_rtc: %lu\n",
4085                     (unsigned long)priv->last_rtc);
4086
4087         DUMP_VAR(fatal_error, "d");
4088         DUMP_VAR(stop_hang_check, "d");
4089         DUMP_VAR(stop_rf_kill, "d");
4090         DUMP_VAR(messages_sent, "d");
4091
4092         DUMP_VAR(tx_pend_stat.value, "d");
4093         DUMP_VAR(tx_pend_stat.hi, "d");
4094
4095         DUMP_VAR(tx_free_stat.value, "d");
4096         DUMP_VAR(tx_free_stat.lo, "d");
4097
4098         DUMP_VAR(msg_free_stat.value, "d");
4099         DUMP_VAR(msg_free_stat.lo, "d");
4100
4101         DUMP_VAR(msg_pend_stat.value, "d");
4102         DUMP_VAR(msg_pend_stat.hi, "d");
4103
4104         DUMP_VAR(fw_pend_stat.value, "d");
4105         DUMP_VAR(fw_pend_stat.hi, "d");
4106
4107         DUMP_VAR(txq_stat.value, "d");
4108         DUMP_VAR(txq_stat.lo, "d");
4109
4110         DUMP_VAR(ieee->scans, "d");
4111         DUMP_VAR(reset_backoff, "d");
4112
4113         return len;
4114 }
4115
4116 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4117
4118 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4119                             char *buf)
4120 {
4121         struct ipw2100_priv *priv = dev_get_drvdata(d);
4122         char essid[IW_ESSID_MAX_SIZE + 1];
4123         u8 bssid[ETH_ALEN];
4124         u32 chan = 0;
4125         char *out = buf;
4126         unsigned int length;
4127         int ret;
4128
4129         if (priv->status & STATUS_RF_KILL_MASK)
4130                 return 0;
4131
4132         memset(essid, 0, sizeof(essid));
4133         memset(bssid, 0, sizeof(bssid));
4134
4135         length = IW_ESSID_MAX_SIZE;
4136         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4137         if (ret)
4138                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4139                                __LINE__);
4140
4141         length = sizeof(bssid);
4142         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4143                                   bssid, &length);
4144         if (ret)
4145                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4146                                __LINE__);
4147
4148         length = sizeof(u32);
4149         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4150         if (ret)
4151                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4152                                __LINE__);
4153
4154         out += sprintf(out, "ESSID: %s\n", essid);
4155         out += sprintf(out, "BSSID:   %pM\n", bssid);
4156         out += sprintf(out, "Channel: %d\n", chan);
4157
4158         return out - buf;
4159 }
4160
4161 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4162
4163 #ifdef CONFIG_IPW2100_DEBUG
4164 static ssize_t debug_level_show(struct device_driver *d, char *buf)
4165 {
4166         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4167 }
4168
4169 static ssize_t debug_level_store(struct device_driver *d,
4170                                  const char *buf, size_t count)
4171 {
4172         u32 val;
4173         int ret;
4174
4175         ret = kstrtou32(buf, 0, &val);
4176         if (ret)
4177                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4178         else
4179                 ipw2100_debug_level = val;
4180
4181         return strnlen(buf, count);
4182 }
4183 static DRIVER_ATTR_RW(debug_level);
4184 #endif                          /* CONFIG_IPW2100_DEBUG */
4185
4186 static ssize_t show_fatal_error(struct device *d,
4187                                 struct device_attribute *attr, char *buf)
4188 {
4189         struct ipw2100_priv *priv = dev_get_drvdata(d);
4190         char *out = buf;
4191         int i;
4192
4193         if (priv->fatal_error)
4194                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4195         else
4196                 out += sprintf(out, "0\n");
4197
4198         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4199                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4200                                         IPW2100_ERROR_QUEUE])
4201                         continue;
4202
4203                 out += sprintf(out, "%d. 0x%08X\n", i,
4204                                priv->fatal_errors[(priv->fatal_index - i) %
4205                                                   IPW2100_ERROR_QUEUE]);
4206         }
4207
4208         return out - buf;
4209 }
4210
4211 static ssize_t store_fatal_error(struct device *d,
4212                                  struct device_attribute *attr, const char *buf,
4213                                  size_t count)
4214 {
4215         struct ipw2100_priv *priv = dev_get_drvdata(d);
4216         schedule_reset(priv);
4217         return count;
4218 }
4219
4220 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4221                    store_fatal_error);
4222
4223 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4224                              char *buf)
4225 {
4226         struct ipw2100_priv *priv = dev_get_drvdata(d);
4227         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4228 }
4229
4230 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4231                               const char *buf, size_t count)
4232 {
4233         struct ipw2100_priv *priv = dev_get_drvdata(d);
4234         struct net_device *dev = priv->net_dev;
4235         unsigned long val;
4236         int ret;
4237
4238         (void)dev;              /* kill unused-var warning for debug-only code */
4239
4240         IPW_DEBUG_INFO("enter\n");
4241
4242         ret = kstrtoul(buf, 0, &val);
4243         if (ret) {
4244                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4245         } else {
4246                 priv->ieee->scan_age = val;
4247                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4248         }
4249
4250         IPW_DEBUG_INFO("exit\n");
4251         return strnlen(buf, count);
4252 }
4253
4254 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4255
4256 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4257                             char *buf)
4258 {
4259         /* 0 - RF kill not enabled
4260            1 - SW based RF kill active (sysfs)
4261            2 - HW based RF kill active
4262            3 - Both HW and SW baed RF kill active */
4263         struct ipw2100_priv *priv = dev_get_drvdata(d);
4264         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4265             (rf_kill_active(priv) ? 0x2 : 0x0);
4266         return sprintf(buf, "%i\n", val);
4267 }
4268
4269 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4270 {
4271         if ((disable_radio ? 1 : 0) ==
4272             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4273                 return 0;
4274
4275         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4276                           disable_radio ? "OFF" : "ON");
4277
4278         mutex_lock(&priv->action_mutex);
4279
4280         if (disable_radio) {
4281                 priv->status |= STATUS_RF_KILL_SW;
4282                 ipw2100_down(priv);
4283         } else {
4284                 priv->status &= ~STATUS_RF_KILL_SW;
4285                 if (rf_kill_active(priv)) {
4286                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4287                                           "disabled by HW switch\n");
4288                         /* Make sure the RF_KILL check timer is running */
4289                         priv->stop_rf_kill = 0;
4290                         mod_delayed_work(system_wq, &priv->rf_kill,
4291                                          round_jiffies_relative(HZ));
4292                 } else
4293                         schedule_reset(priv);
4294         }
4295
4296         mutex_unlock(&priv->action_mutex);
4297         return 1;
4298 }
4299
4300 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4301                              const char *buf, size_t count)
4302 {
4303         struct ipw2100_priv *priv = dev_get_drvdata(d);
4304         ipw_radio_kill_sw(priv, buf[0] == '1');
4305         return count;
4306 }
4307
4308 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4309
4310 static struct attribute *ipw2100_sysfs_entries[] = {
4311         &dev_attr_hardware.attr,
4312         &dev_attr_registers.attr,
4313         &dev_attr_ordinals.attr,
4314         &dev_attr_pci.attr,
4315         &dev_attr_stats.attr,
4316         &dev_attr_internals.attr,
4317         &dev_attr_bssinfo.attr,
4318         &dev_attr_memory.attr,
4319         &dev_attr_scan_age.attr,
4320         &dev_attr_fatal_error.attr,
4321         &dev_attr_rf_kill.attr,
4322         &dev_attr_cfg.attr,
4323         &dev_attr_status.attr,
4324         &dev_attr_capability.attr,
4325         NULL,
4326 };
4327
4328 static const struct attribute_group ipw2100_attribute_group = {
4329         .attrs = ipw2100_sysfs_entries,
4330 };
4331
4332 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4333 {
4334         struct ipw2100_status_queue *q = &priv->status_queue;
4335
4336         IPW_DEBUG_INFO("enter\n");
4337
4338         q->size = entries * sizeof(struct ipw2100_status);
4339         q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4340         if (!q->drv) {
4341                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4342                 return -ENOMEM;
4343         }
4344
4345         IPW_DEBUG_INFO("exit\n");
4346
4347         return 0;
4348 }
4349
4350 static void status_queue_free(struct ipw2100_priv *priv)
4351 {
4352         IPW_DEBUG_INFO("enter\n");
4353
4354         if (priv->status_queue.drv) {
4355                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4356                                     priv->status_queue.drv,
4357                                     priv->status_queue.nic);
4358                 priv->status_queue.drv = NULL;
4359         }
4360
4361         IPW_DEBUG_INFO("exit\n");
4362 }
4363
4364 static int bd_queue_allocate(struct ipw2100_priv *priv,
4365                              struct ipw2100_bd_queue *q, int entries)
4366 {
4367         IPW_DEBUG_INFO("enter\n");
4368
4369         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4370
4371         q->entries = entries;
4372         q->size = entries * sizeof(struct ipw2100_bd);
4373         q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4374         if (!q->drv) {
4375                 IPW_DEBUG_INFO
4376                     ("can't allocate shared memory for buffer descriptors\n");
4377                 return -ENOMEM;
4378         }
4379
4380         IPW_DEBUG_INFO("exit\n");
4381
4382         return 0;
4383 }
4384
4385 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4386 {
4387         IPW_DEBUG_INFO("enter\n");
4388
4389         if (!q)
4390                 return;
4391
4392         if (q->drv) {
4393                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4394                 q->drv = NULL;
4395         }
4396
4397         IPW_DEBUG_INFO("exit\n");
4398 }
4399
4400 static void bd_queue_initialize(struct ipw2100_priv *priv,
4401                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4402                                 u32 r, u32 w)
4403 {
4404         IPW_DEBUG_INFO("enter\n");
4405
4406         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4407                        (u32) q->nic);
4408
4409         write_register(priv->net_dev, base, q->nic);
4410         write_register(priv->net_dev, size, q->entries);
4411         write_register(priv->net_dev, r, q->oldest);
4412         write_register(priv->net_dev, w, q->next);
4413
4414         IPW_DEBUG_INFO("exit\n");
4415 }
4416
4417 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4418 {
4419         priv->stop_rf_kill = 1;
4420         priv->stop_hang_check = 1;
4421         cancel_delayed_work_sync(&priv->reset_work);
4422         cancel_delayed_work_sync(&priv->security_work);
4423         cancel_delayed_work_sync(&priv->wx_event_work);
4424         cancel_delayed_work_sync(&priv->hang_check);
4425         cancel_delayed_work_sync(&priv->rf_kill);
4426         cancel_delayed_work_sync(&priv->scan_event);
4427 }
4428
4429 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4430 {
4431         int i, j, err = -EINVAL;
4432         void *v;
4433         dma_addr_t p;
4434
4435         IPW_DEBUG_INFO("enter\n");
4436
4437         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4438         if (err) {
4439                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4440                                 priv->net_dev->name);
4441                 return err;
4442         }
4443
4444         priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4445                                          sizeof(struct ipw2100_tx_packet),
4446                                          GFP_ATOMIC);
4447         if (!priv->tx_buffers) {
4448                 bd_queue_free(priv, &priv->tx_queue);
4449                 return -ENOMEM;
4450         }
4451
4452         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4453                 v = pci_alloc_consistent(priv->pci_dev,
4454                                          sizeof(struct ipw2100_data_header),
4455                                          &p);
4456                 if (!v) {
4457                         printk(KERN_ERR DRV_NAME
4458                                ": %s: PCI alloc failed for tx " "buffers.\n",
4459                                priv->net_dev->name);
4460                         err = -ENOMEM;
4461                         break;
4462                 }
4463
4464                 priv->tx_buffers[i].type = DATA;
4465                 priv->tx_buffers[i].info.d_struct.data =
4466                     (struct ipw2100_data_header *)v;
4467                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4468                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4469         }
4470
4471         if (i == TX_PENDED_QUEUE_LENGTH)
4472                 return 0;
4473
4474         for (j = 0; j < i; j++) {
4475                 pci_free_consistent(priv->pci_dev,
4476                                     sizeof(struct ipw2100_data_header),
4477                                     priv->tx_buffers[j].info.d_struct.data,
4478                                     priv->tx_buffers[j].info.d_struct.
4479                                     data_phys);
4480         }
4481
4482         kfree(priv->tx_buffers);
4483         priv->tx_buffers = NULL;
4484
4485         return err;
4486 }
4487
4488 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4489 {
4490         int i;
4491
4492         IPW_DEBUG_INFO("enter\n");
4493
4494         /*
4495          * reinitialize packet info lists
4496          */
4497         INIT_LIST_HEAD(&priv->fw_pend_list);
4498         INIT_STAT(&priv->fw_pend_stat);
4499
4500         /*
4501          * reinitialize lists
4502          */
4503         INIT_LIST_HEAD(&priv->tx_pend_list);
4504         INIT_LIST_HEAD(&priv->tx_free_list);
4505         INIT_STAT(&priv->tx_pend_stat);
4506         INIT_STAT(&priv->tx_free_stat);
4507
4508         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4509                 /* We simply drop any SKBs that have been queued for
4510                  * transmit */
4511                 if (priv->tx_buffers[i].info.d_struct.txb) {
4512                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4513                                            txb);
4514                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4515                 }
4516
4517                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4518         }
4519
4520         SET_STAT(&priv->tx_free_stat, i);
4521
4522         priv->tx_queue.oldest = 0;
4523         priv->tx_queue.available = priv->tx_queue.entries;
4524         priv->tx_queue.next = 0;
4525         INIT_STAT(&priv->txq_stat);
4526         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4527
4528         bd_queue_initialize(priv, &priv->tx_queue,
4529                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4530                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4531                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4532                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4533
4534         IPW_DEBUG_INFO("exit\n");
4535
4536 }
4537
4538 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4539 {
4540         int i;
4541
4542         IPW_DEBUG_INFO("enter\n");
4543
4544         bd_queue_free(priv, &priv->tx_queue);
4545
4546         if (!priv->tx_buffers)
4547                 return;
4548
4549         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4550                 if (priv->tx_buffers[i].info.d_struct.txb) {
4551                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4552                                            txb);
4553                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4554                 }
4555                 if (priv->tx_buffers[i].info.d_struct.data)
4556                         pci_free_consistent(priv->pci_dev,
4557                                             sizeof(struct ipw2100_data_header),
4558                                             priv->tx_buffers[i].info.d_struct.
4559                                             data,
4560                                             priv->tx_buffers[i].info.d_struct.
4561                                             data_phys);
4562         }
4563
4564         kfree(priv->tx_buffers);
4565         priv->tx_buffers = NULL;
4566
4567         IPW_DEBUG_INFO("exit\n");
4568 }
4569
4570 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4571 {
4572         int i, j, err = -EINVAL;
4573
4574         IPW_DEBUG_INFO("enter\n");
4575
4576         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4577         if (err) {
4578                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4579                 return err;
4580         }
4581
4582         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4583         if (err) {
4584                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4585                 bd_queue_free(priv, &priv->rx_queue);
4586                 return err;
4587         }
4588
4589         /*
4590          * allocate packets
4591          */
4592         priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4593                                    sizeof(struct ipw2100_rx_packet),
4594                                    GFP_KERNEL);
4595         if (!priv->rx_buffers) {
4596                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4597
4598                 bd_queue_free(priv, &priv->rx_queue);
4599
4600                 status_queue_free(priv);
4601
4602                 return -ENOMEM;
4603         }
4604
4605         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4606                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4607
4608                 err = ipw2100_alloc_skb(priv, packet);
4609                 if (unlikely(err)) {
4610                         err = -ENOMEM;
4611                         break;
4612                 }
4613
4614                 /* The BD holds the cache aligned address */
4615                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4616                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4617                 priv->status_queue.drv[i].status_fields = 0;
4618         }
4619
4620         if (i == RX_QUEUE_LENGTH)
4621                 return 0;
4622
4623         for (j = 0; j < i; j++) {
4624                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4625                                  sizeof(struct ipw2100_rx_packet),
4626                                  PCI_DMA_FROMDEVICE);
4627                 dev_kfree_skb(priv->rx_buffers[j].skb);
4628         }
4629
4630         kfree(priv->rx_buffers);
4631         priv->rx_buffers = NULL;
4632
4633         bd_queue_free(priv, &priv->rx_queue);
4634
4635         status_queue_free(priv);
4636
4637         return err;
4638 }
4639
4640 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4641 {
4642         IPW_DEBUG_INFO("enter\n");
4643
4644         priv->rx_queue.oldest = 0;
4645         priv->rx_queue.available = priv->rx_queue.entries - 1;
4646         priv->rx_queue.next = priv->rx_queue.entries - 1;
4647
4648         INIT_STAT(&priv->rxq_stat);
4649         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4650
4651         bd_queue_initialize(priv, &priv->rx_queue,
4652                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4653                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4654                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4655                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4656
4657         /* set up the status queue */
4658         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4659                        priv->status_queue.nic);
4660
4661         IPW_DEBUG_INFO("exit\n");
4662 }
4663
4664 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4665 {
4666         int i;
4667
4668         IPW_DEBUG_INFO("enter\n");
4669
4670         bd_queue_free(priv, &priv->rx_queue);
4671         status_queue_free(priv);
4672
4673         if (!priv->rx_buffers)
4674                 return;
4675
4676         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4677                 if (priv->rx_buffers[i].rxp) {
4678                         pci_unmap_single(priv->pci_dev,
4679                                          priv->rx_buffers[i].dma_addr,
4680                                          sizeof(struct ipw2100_rx),
4681                                          PCI_DMA_FROMDEVICE);
4682                         dev_kfree_skb(priv->rx_buffers[i].skb);
4683                 }
4684         }
4685
4686         kfree(priv->rx_buffers);
4687         priv->rx_buffers = NULL;
4688
4689         IPW_DEBUG_INFO("exit\n");
4690 }
4691
4692 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4693 {
4694         u32 length = ETH_ALEN;
4695         u8 addr[ETH_ALEN];
4696
4697         int err;
4698
4699         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4700         if (err) {
4701                 IPW_DEBUG_INFO("MAC address read failed\n");
4702                 return -EIO;
4703         }
4704
4705         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4706         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4707
4708         return 0;
4709 }
4710
4711 /********************************************************************
4712  *
4713  * Firmware Commands
4714  *
4715  ********************************************************************/
4716
4717 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4718 {
4719         struct host_command cmd = {
4720                 .host_command = ADAPTER_ADDRESS,
4721                 .host_command_sequence = 0,
4722                 .host_command_length = ETH_ALEN
4723         };
4724         int err;
4725
4726         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4727
4728         IPW_DEBUG_INFO("enter\n");
4729
4730         if (priv->config & CFG_CUSTOM_MAC) {
4731                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4732                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4733         } else
4734                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4735                        ETH_ALEN);
4736
4737         err = ipw2100_hw_send_command(priv, &cmd);
4738
4739         IPW_DEBUG_INFO("exit\n");
4740         return err;
4741 }
4742
4743 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4744                                  int batch_mode)
4745 {
4746         struct host_command cmd = {
4747                 .host_command = PORT_TYPE,
4748                 .host_command_sequence = 0,
4749                 .host_command_length = sizeof(u32)
4750         };
4751         int err;
4752
4753         switch (port_type) {
4754         case IW_MODE_INFRA:
4755                 cmd.host_command_parameters[0] = IPW_BSS;
4756                 break;
4757         case IW_MODE_ADHOC:
4758                 cmd.host_command_parameters[0] = IPW_IBSS;
4759                 break;
4760         }
4761
4762         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4763                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4764
4765         if (!batch_mode) {
4766                 err = ipw2100_disable_adapter(priv);
4767                 if (err) {
4768                         printk(KERN_ERR DRV_NAME
4769                                ": %s: Could not disable adapter %d\n",
4770                                priv->net_dev->name, err);
4771                         return err;
4772                 }
4773         }
4774
4775         /* send cmd to firmware */
4776         err = ipw2100_hw_send_command(priv, &cmd);
4777
4778         if (!batch_mode)
4779                 ipw2100_enable_adapter(priv);
4780
4781         return err;
4782 }
4783
4784 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4785                                int batch_mode)
4786 {
4787         struct host_command cmd = {
4788                 .host_command = CHANNEL,
4789                 .host_command_sequence = 0,
4790                 .host_command_length = sizeof(u32)
4791         };
4792         int err;
4793
4794         cmd.host_command_parameters[0] = channel;
4795
4796         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4797
4798         /* If BSS then we don't support channel selection */
4799         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4800                 return 0;
4801
4802         if ((channel != 0) &&
4803             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4804                 return -EINVAL;
4805
4806         if (!batch_mode) {
4807                 err = ipw2100_disable_adapter(priv);
4808                 if (err)
4809                         return err;
4810         }
4811
4812         err = ipw2100_hw_send_command(priv, &cmd);
4813         if (err) {
4814                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4815                 return err;
4816         }
4817
4818         if (channel)
4819                 priv->config |= CFG_STATIC_CHANNEL;
4820         else
4821                 priv->config &= ~CFG_STATIC_CHANNEL;
4822
4823         priv->channel = channel;
4824
4825         if (!batch_mode) {
4826                 err = ipw2100_enable_adapter(priv);
4827                 if (err)
4828                         return err;
4829         }
4830
4831         return 0;
4832 }
4833
4834 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4835 {
4836         struct host_command cmd = {
4837                 .host_command = SYSTEM_CONFIG,
4838                 .host_command_sequence = 0,
4839                 .host_command_length = 12,
4840         };
4841         u32 ibss_mask, len = sizeof(u32);
4842         int err;
4843
4844         /* Set system configuration */
4845
4846         if (!batch_mode) {
4847                 err = ipw2100_disable_adapter(priv);
4848                 if (err)
4849                         return err;
4850         }
4851
4852         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4853                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4854
4855         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4856             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4857
4858         if (!(priv->config & CFG_LONG_PREAMBLE))
4859                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4860
4861         err = ipw2100_get_ordinal(priv,
4862                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4863                                   &ibss_mask, &len);
4864         if (err)
4865                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4866
4867         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4868         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4869
4870         /* 11b only */
4871         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4872
4873         err = ipw2100_hw_send_command(priv, &cmd);
4874         if (err)
4875                 return err;
4876
4877 /* If IPv6 is configured in the kernel then we don't want to filter out all
4878  * of the multicast packets as IPv6 needs some. */
4879 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4880         cmd.host_command = ADD_MULTICAST;
4881         cmd.host_command_sequence = 0;
4882         cmd.host_command_length = 0;
4883
4884         ipw2100_hw_send_command(priv, &cmd);
4885 #endif
4886         if (!batch_mode) {
4887                 err = ipw2100_enable_adapter(priv);
4888                 if (err)
4889                         return err;
4890         }
4891
4892         return 0;
4893 }
4894
4895 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4896                                 int batch_mode)
4897 {
4898         struct host_command cmd = {
4899                 .host_command = BASIC_TX_RATES,
4900                 .host_command_sequence = 0,
4901                 .host_command_length = 4
4902         };
4903         int err;
4904
4905         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4906
4907         if (!batch_mode) {
4908                 err = ipw2100_disable_adapter(priv);
4909                 if (err)
4910                         return err;
4911         }
4912
4913         /* Set BASIC TX Rate first */
4914         ipw2100_hw_send_command(priv, &cmd);
4915
4916         /* Set TX Rate */
4917         cmd.host_command = TX_RATES;
4918         ipw2100_hw_send_command(priv, &cmd);
4919
4920         /* Set MSDU TX Rate */
4921         cmd.host_command = MSDU_TX_RATES;
4922         ipw2100_hw_send_command(priv, &cmd);
4923
4924         if (!batch_mode) {
4925                 err = ipw2100_enable_adapter(priv);
4926                 if (err)
4927                         return err;
4928         }
4929
4930         priv->tx_rates = rate;
4931
4932         return 0;
4933 }
4934
4935 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4936 {
4937         struct host_command cmd = {
4938                 .host_command = POWER_MODE,
4939                 .host_command_sequence = 0,
4940                 .host_command_length = 4
4941         };
4942         int err;
4943
4944         cmd.host_command_parameters[0] = power_level;
4945
4946         err = ipw2100_hw_send_command(priv, &cmd);
4947         if (err)
4948                 return err;
4949
4950         if (power_level == IPW_POWER_MODE_CAM)
4951                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4952         else
4953                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4954
4955 #ifdef IPW2100_TX_POWER
4956         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4957                 /* Set beacon interval */
4958                 cmd.host_command = TX_POWER_INDEX;
4959                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4960
4961                 err = ipw2100_hw_send_command(priv, &cmd);
4962                 if (err)
4963                         return err;
4964         }
4965 #endif
4966
4967         return 0;
4968 }
4969
4970 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4971 {
4972         struct host_command cmd = {
4973                 .host_command = RTS_THRESHOLD,
4974                 .host_command_sequence = 0,
4975                 .host_command_length = 4
4976         };
4977         int err;
4978
4979         if (threshold & RTS_DISABLED)
4980                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4981         else
4982                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4983
4984         err = ipw2100_hw_send_command(priv, &cmd);
4985         if (err)
4986                 return err;
4987
4988         priv->rts_threshold = threshold;
4989
4990         return 0;
4991 }
4992
4993 #if 0
4994 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4995                                         u32 threshold, int batch_mode)
4996 {
4997         struct host_command cmd = {
4998                 .host_command = FRAG_THRESHOLD,
4999                 .host_command_sequence = 0,
5000                 .host_command_length = 4,
5001                 .host_command_parameters[0] = 0,
5002         };
5003         int err;
5004
5005         if (!batch_mode) {
5006                 err = ipw2100_disable_adapter(priv);
5007                 if (err)
5008                         return err;
5009         }
5010
5011         if (threshold == 0)
5012                 threshold = DEFAULT_FRAG_THRESHOLD;
5013         else {
5014                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5015                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5016         }
5017
5018         cmd.host_command_parameters[0] = threshold;
5019
5020         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5021
5022         err = ipw2100_hw_send_command(priv, &cmd);
5023
5024         if (!batch_mode)
5025                 ipw2100_enable_adapter(priv);
5026
5027         if (!err)
5028                 priv->frag_threshold = threshold;
5029
5030         return err;
5031 }
5032 #endif
5033
5034 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5035 {
5036         struct host_command cmd = {
5037                 .host_command = SHORT_RETRY_LIMIT,
5038                 .host_command_sequence = 0,
5039                 .host_command_length = 4
5040         };
5041         int err;
5042
5043         cmd.host_command_parameters[0] = retry;
5044
5045         err = ipw2100_hw_send_command(priv, &cmd);
5046         if (err)
5047                 return err;
5048
5049         priv->short_retry_limit = retry;
5050
5051         return 0;
5052 }
5053
5054 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5055 {
5056         struct host_command cmd = {
5057                 .host_command = LONG_RETRY_LIMIT,
5058                 .host_command_sequence = 0,
5059                 .host_command_length = 4
5060         };
5061         int err;
5062
5063         cmd.host_command_parameters[0] = retry;
5064
5065         err = ipw2100_hw_send_command(priv, &cmd);
5066         if (err)
5067                 return err;
5068
5069         priv->long_retry_limit = retry;
5070
5071         return 0;
5072 }
5073
5074 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5075                                        int batch_mode)
5076 {
5077         struct host_command cmd = {
5078                 .host_command = MANDATORY_BSSID,
5079                 .host_command_sequence = 0,
5080                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5081         };
5082         int err;
5083
5084 #ifdef CONFIG_IPW2100_DEBUG
5085         if (bssid != NULL)
5086                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5087         else
5088                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5089 #endif
5090         /* if BSSID is empty then we disable mandatory bssid mode */
5091         if (bssid != NULL)
5092                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5093
5094         if (!batch_mode) {
5095                 err = ipw2100_disable_adapter(priv);
5096                 if (err)
5097                         return err;
5098         }
5099
5100         err = ipw2100_hw_send_command(priv, &cmd);
5101
5102         if (!batch_mode)
5103                 ipw2100_enable_adapter(priv);
5104
5105         return err;
5106 }
5107
5108 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5109 {
5110         struct host_command cmd = {
5111                 .host_command = DISASSOCIATION_BSSID,
5112                 .host_command_sequence = 0,
5113                 .host_command_length = ETH_ALEN
5114         };
5115         int err;
5116         int len;
5117
5118         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5119
5120         len = ETH_ALEN;
5121         /* The Firmware currently ignores the BSSID and just disassociates from
5122          * the currently associated AP -- but in the off chance that a future
5123          * firmware does use the BSSID provided here, we go ahead and try and
5124          * set it to the currently associated AP's BSSID */
5125         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5126
5127         err = ipw2100_hw_send_command(priv, &cmd);
5128
5129         return err;
5130 }
5131
5132 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5133                               struct ipw2100_wpa_assoc_frame *, int)
5134     __attribute__ ((unused));
5135
5136 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5137                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5138                               int batch_mode)
5139 {
5140         struct host_command cmd = {
5141                 .host_command = SET_WPA_IE,
5142                 .host_command_sequence = 0,
5143                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5144         };
5145         int err;
5146
5147         IPW_DEBUG_HC("SET_WPA_IE\n");
5148
5149         if (!batch_mode) {
5150                 err = ipw2100_disable_adapter(priv);
5151                 if (err)
5152                         return err;
5153         }
5154
5155         memcpy(cmd.host_command_parameters, wpa_frame,
5156                sizeof(struct ipw2100_wpa_assoc_frame));
5157
5158         err = ipw2100_hw_send_command(priv, &cmd);
5159
5160         if (!batch_mode) {
5161                 if (ipw2100_enable_adapter(priv))
5162                         err = -EIO;
5163         }
5164
5165         return err;
5166 }
5167
5168 struct security_info_params {
5169         u32 allowed_ciphers;
5170         u16 version;
5171         u8 auth_mode;
5172         u8 replay_counters_number;
5173         u8 unicast_using_group;
5174 } __packed;
5175
5176 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5177                                             int auth_mode,
5178                                             int security_level,
5179                                             int unicast_using_group,
5180                                             int batch_mode)
5181 {
5182         struct host_command cmd = {
5183                 .host_command = SET_SECURITY_INFORMATION,
5184                 .host_command_sequence = 0,
5185                 .host_command_length = sizeof(struct security_info_params)
5186         };
5187         struct security_info_params *security =
5188             (struct security_info_params *)&cmd.host_command_parameters;
5189         int err;
5190         memset(security, 0, sizeof(*security));
5191
5192         /* If shared key AP authentication is turned on, then we need to
5193          * configure the firmware to try and use it.
5194          *
5195          * Actual data encryption/decryption is handled by the host. */
5196         security->auth_mode = auth_mode;
5197         security->unicast_using_group = unicast_using_group;
5198
5199         switch (security_level) {
5200         default:
5201         case SEC_LEVEL_0:
5202                 security->allowed_ciphers = IPW_NONE_CIPHER;
5203                 break;
5204         case SEC_LEVEL_1:
5205                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5206                     IPW_WEP104_CIPHER;
5207                 break;
5208         case SEC_LEVEL_2:
5209                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5210                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5211                 break;
5212         case SEC_LEVEL_2_CKIP:
5213                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5214                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5215                 break;
5216         case SEC_LEVEL_3:
5217                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5218                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5219                 break;
5220         }
5221
5222         IPW_DEBUG_HC
5223             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5224              security->auth_mode, security->allowed_ciphers, security_level);
5225
5226         security->replay_counters_number = 0;
5227
5228         if (!batch_mode) {
5229                 err = ipw2100_disable_adapter(priv);
5230                 if (err)
5231                         return err;
5232         }
5233
5234         err = ipw2100_hw_send_command(priv, &cmd);
5235
5236         if (!batch_mode)
5237                 ipw2100_enable_adapter(priv);
5238
5239         return err;
5240 }
5241
5242 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5243 {
5244         struct host_command cmd = {
5245                 .host_command = TX_POWER_INDEX,
5246                 .host_command_sequence = 0,
5247                 .host_command_length = 4
5248         };
5249         int err = 0;
5250         u32 tmp = tx_power;
5251
5252         if (tx_power != IPW_TX_POWER_DEFAULT)
5253                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5254                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5255
5256         cmd.host_command_parameters[0] = tmp;
5257
5258         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5259                 err = ipw2100_hw_send_command(priv, &cmd);
5260         if (!err)
5261                 priv->tx_power = tx_power;
5262
5263         return 0;
5264 }
5265
5266 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5267                                             u32 interval, int batch_mode)
5268 {
5269         struct host_command cmd = {
5270                 .host_command = BEACON_INTERVAL,
5271                 .host_command_sequence = 0,
5272                 .host_command_length = 4
5273         };
5274         int err;
5275
5276         cmd.host_command_parameters[0] = interval;
5277
5278         IPW_DEBUG_INFO("enter\n");
5279
5280         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5281                 if (!batch_mode) {
5282                         err = ipw2100_disable_adapter(priv);
5283                         if (err)
5284                                 return err;
5285                 }
5286
5287                 ipw2100_hw_send_command(priv, &cmd);
5288
5289                 if (!batch_mode) {
5290                         err = ipw2100_enable_adapter(priv);
5291                         if (err)
5292                                 return err;
5293                 }
5294         }
5295
5296         IPW_DEBUG_INFO("exit\n");
5297
5298         return 0;
5299 }
5300
5301 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5302 {
5303         ipw2100_tx_initialize(priv);
5304         ipw2100_rx_initialize(priv);
5305         ipw2100_msg_initialize(priv);
5306 }
5307
5308 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5309 {
5310         ipw2100_tx_free(priv);
5311         ipw2100_rx_free(priv);
5312         ipw2100_msg_free(priv);
5313 }
5314
5315 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5316 {
5317         if (ipw2100_tx_allocate(priv) ||
5318             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5319                 goto fail;
5320
5321         return 0;
5322
5323       fail:
5324         ipw2100_tx_free(priv);
5325         ipw2100_rx_free(priv);
5326         ipw2100_msg_free(priv);
5327         return -ENOMEM;
5328 }
5329
5330 #define IPW_PRIVACY_CAPABLE 0x0008
5331
5332 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5333                                  int batch_mode)
5334 {
5335         struct host_command cmd = {
5336                 .host_command = WEP_FLAGS,
5337                 .host_command_sequence = 0,
5338                 .host_command_length = 4
5339         };
5340         int err;
5341
5342         cmd.host_command_parameters[0] = flags;
5343
5344         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5345
5346         if (!batch_mode) {
5347                 err = ipw2100_disable_adapter(priv);
5348                 if (err) {
5349                         printk(KERN_ERR DRV_NAME
5350                                ": %s: Could not disable adapter %d\n",
5351                                priv->net_dev->name, err);
5352                         return err;
5353                 }
5354         }
5355
5356         /* send cmd to firmware */
5357         err = ipw2100_hw_send_command(priv, &cmd);
5358
5359         if (!batch_mode)
5360                 ipw2100_enable_adapter(priv);
5361
5362         return err;
5363 }
5364
5365 struct ipw2100_wep_key {
5366         u8 idx;
5367         u8 len;
5368         u8 key[13];
5369 };
5370
5371 /* Macros to ease up priting WEP keys */
5372 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5373 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5374 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5375 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5376
5377 /**
5378  * Set a the wep key
5379  *
5380  * @priv: struct to work on
5381  * @idx: index of the key we want to set
5382  * @key: ptr to the key data to set
5383  * @len: length of the buffer at @key
5384  * @batch_mode: FIXME perform the operation in batch mode, not
5385  *              disabling the device.
5386  *
5387  * @returns 0 if OK, < 0 errno code on error.
5388  *
5389  * Fill out a command structure with the new wep key, length an
5390  * index and send it down the wire.
5391  */
5392 static int ipw2100_set_key(struct ipw2100_priv *priv,
5393                            int idx, char *key, int len, int batch_mode)
5394 {
5395         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5396         struct host_command cmd = {
5397                 .host_command = WEP_KEY_INFO,
5398                 .host_command_sequence = 0,
5399                 .host_command_length = sizeof(struct ipw2100_wep_key),
5400         };
5401         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5402         int err;
5403
5404         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5405                      idx, keylen, len);
5406
5407         /* NOTE: We don't check cached values in case the firmware was reset
5408          * or some other problem is occurring.  If the user is setting the key,
5409          * then we push the change */
5410
5411         wep_key->idx = idx;
5412         wep_key->len = keylen;
5413
5414         if (keylen) {
5415                 memcpy(wep_key->key, key, len);
5416                 memset(wep_key->key + len, 0, keylen - len);
5417         }
5418
5419         /* Will be optimized out on debug not being configured in */
5420         if (keylen == 0)
5421                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5422                               priv->net_dev->name, wep_key->idx);
5423         else if (keylen == 5)
5424                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5425                               priv->net_dev->name, wep_key->idx, wep_key->len,
5426                               WEP_STR_64(wep_key->key));
5427         else
5428                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5429                               "\n",
5430                               priv->net_dev->name, wep_key->idx, wep_key->len,
5431                               WEP_STR_128(wep_key->key));
5432
5433         if (!batch_mode) {
5434                 err = ipw2100_disable_adapter(priv);
5435                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5436                 if (err) {
5437                         printk(KERN_ERR DRV_NAME
5438                                ": %s: Could not disable adapter %d\n",
5439                                priv->net_dev->name, err);
5440                         return err;
5441                 }
5442         }
5443
5444         /* send cmd to firmware */
5445         err = ipw2100_hw_send_command(priv, &cmd);
5446
5447         if (!batch_mode) {
5448                 int err2 = ipw2100_enable_adapter(priv);
5449                 if (err == 0)
5450                         err = err2;
5451         }
5452         return err;
5453 }
5454
5455 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5456                                  int idx, int batch_mode)
5457 {
5458         struct host_command cmd = {
5459                 .host_command = WEP_KEY_INDEX,
5460                 .host_command_sequence = 0,
5461                 .host_command_length = 4,
5462                 .host_command_parameters = {idx},
5463         };
5464         int err;
5465
5466         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5467
5468         if (idx < 0 || idx > 3)
5469                 return -EINVAL;
5470
5471         if (!batch_mode) {
5472                 err = ipw2100_disable_adapter(priv);
5473                 if (err) {
5474                         printk(KERN_ERR DRV_NAME
5475                                ": %s: Could not disable adapter %d\n",
5476                                priv->net_dev->name, err);
5477                         return err;
5478                 }
5479         }
5480
5481         /* send cmd to firmware */
5482         err = ipw2100_hw_send_command(priv, &cmd);
5483
5484         if (!batch_mode)
5485                 ipw2100_enable_adapter(priv);
5486
5487         return err;
5488 }
5489
5490 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5491 {
5492         int i, err, auth_mode, sec_level, use_group;
5493
5494         if (!(priv->status & STATUS_RUNNING))
5495                 return 0;
5496
5497         if (!batch_mode) {
5498                 err = ipw2100_disable_adapter(priv);
5499                 if (err)
5500                         return err;
5501         }
5502
5503         if (!priv->ieee->sec.enabled) {
5504                 err =
5505                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5506                                                      SEC_LEVEL_0, 0, 1);
5507         } else {
5508                 auth_mode = IPW_AUTH_OPEN;
5509                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5510                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5511                                 auth_mode = IPW_AUTH_SHARED;
5512                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5513                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5514                 }
5515
5516                 sec_level = SEC_LEVEL_0;
5517                 if (priv->ieee->sec.flags & SEC_LEVEL)
5518                         sec_level = priv->ieee->sec.level;
5519
5520                 use_group = 0;
5521                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5522                         use_group = priv->ieee->sec.unicast_uses_group;
5523
5524                 err =
5525                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5526                                                      use_group, 1);
5527         }
5528
5529         if (err)
5530                 goto exit;
5531
5532         if (priv->ieee->sec.enabled) {
5533                 for (i = 0; i < 4; i++) {
5534                         if (!(priv->ieee->sec.flags & (1 << i))) {
5535                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5536                                 priv->ieee->sec.key_sizes[i] = 0;
5537                         } else {
5538                                 err = ipw2100_set_key(priv, i,
5539                                                       priv->ieee->sec.keys[i],
5540                                                       priv->ieee->sec.
5541                                                       key_sizes[i], 1);
5542                                 if (err)
5543                                         goto exit;
5544                         }
5545                 }
5546
5547                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5548         }
5549
5550         /* Always enable privacy so the Host can filter WEP packets if
5551          * encrypted data is sent up */
5552         err =
5553             ipw2100_set_wep_flags(priv,
5554                                   priv->ieee->sec.
5555                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5556         if (err)
5557                 goto exit;
5558
5559         priv->status &= ~STATUS_SECURITY_UPDATED;
5560
5561       exit:
5562         if (!batch_mode)
5563                 ipw2100_enable_adapter(priv);
5564
5565         return err;
5566 }
5567
5568 static void ipw2100_security_work(struct work_struct *work)
5569 {
5570         struct ipw2100_priv *priv =
5571                 container_of(work, struct ipw2100_priv, security_work.work);
5572
5573         /* If we happen to have reconnected before we get a chance to
5574          * process this, then update the security settings--which causes
5575          * a disassociation to occur */
5576         if (!(priv->status & STATUS_ASSOCIATED) &&
5577             priv->status & STATUS_SECURITY_UPDATED)
5578                 ipw2100_configure_security(priv, 0);
5579 }
5580
5581 static void shim__set_security(struct net_device *dev,
5582                                struct libipw_security *sec)
5583 {
5584         struct ipw2100_priv *priv = libipw_priv(dev);
5585         int i, force_update = 0;
5586
5587         mutex_lock(&priv->action_mutex);
5588         if (!(priv->status & STATUS_INITIALIZED))
5589                 goto done;
5590
5591         for (i = 0; i < 4; i++) {
5592                 if (sec->flags & (1 << i)) {
5593                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5594                         if (sec->key_sizes[i] == 0)
5595                                 priv->ieee->sec.flags &= ~(1 << i);
5596                         else
5597                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5598                                        sec->key_sizes[i]);
5599                         if (sec->level == SEC_LEVEL_1) {
5600                                 priv->ieee->sec.flags |= (1 << i);
5601                                 priv->status |= STATUS_SECURITY_UPDATED;
5602                         } else
5603                                 priv->ieee->sec.flags &= ~(1 << i);
5604                 }
5605         }
5606
5607         if ((sec->flags & SEC_ACTIVE_KEY) &&
5608             priv->ieee->sec.active_key != sec->active_key) {
5609                 if (sec->active_key <= 3) {
5610                         priv->ieee->sec.active_key = sec->active_key;
5611                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5612                 } else
5613                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5614
5615                 priv->status |= STATUS_SECURITY_UPDATED;
5616         }
5617
5618         if ((sec->flags & SEC_AUTH_MODE) &&
5619             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5620                 priv->ieee->sec.auth_mode = sec->auth_mode;
5621                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5622                 priv->status |= STATUS_SECURITY_UPDATED;
5623         }
5624
5625         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5626                 priv->ieee->sec.flags |= SEC_ENABLED;
5627                 priv->ieee->sec.enabled = sec->enabled;
5628                 priv->status |= STATUS_SECURITY_UPDATED;
5629                 force_update = 1;
5630         }
5631
5632         if (sec->flags & SEC_ENCRYPT)
5633                 priv->ieee->sec.encrypt = sec->encrypt;
5634
5635         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5636                 priv->ieee->sec.level = sec->level;
5637                 priv->ieee->sec.flags |= SEC_LEVEL;
5638                 priv->status |= STATUS_SECURITY_UPDATED;
5639         }
5640
5641         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5642                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5643                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5644                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5645                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5646                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5647                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5648                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5649                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5650                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5651
5652 /* As a temporary work around to enable WPA until we figure out why
5653  * wpa_supplicant toggles the security capability of the driver, which
5654  * forces a disassociation with force_update...
5655  *
5656  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5657         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5658                 ipw2100_configure_security(priv, 0);
5659       done:
5660         mutex_unlock(&priv->action_mutex);
5661 }
5662
5663 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5664 {
5665         int err;
5666         int batch_mode = 1;
5667         u8 *bssid;
5668
5669         IPW_DEBUG_INFO("enter\n");
5670
5671         err = ipw2100_disable_adapter(priv);
5672         if (err)
5673                 return err;
5674 #ifdef CONFIG_IPW2100_MONITOR
5675         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5676                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5677                 if (err)
5678                         return err;
5679
5680                 IPW_DEBUG_INFO("exit\n");
5681
5682                 return 0;
5683         }
5684 #endif                          /* CONFIG_IPW2100_MONITOR */
5685
5686         err = ipw2100_read_mac_address(priv);
5687         if (err)
5688                 return -EIO;
5689
5690         err = ipw2100_set_mac_address(priv, batch_mode);
5691         if (err)
5692                 return err;
5693
5694         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5695         if (err)
5696                 return err;
5697
5698         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5699                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5700                 if (err)
5701                         return err;
5702         }
5703
5704         err = ipw2100_system_config(priv, batch_mode);
5705         if (err)
5706                 return err;
5707
5708         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5709         if (err)
5710                 return err;
5711
5712         /* Default to power mode OFF */
5713         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5714         if (err)
5715                 return err;
5716
5717         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5718         if (err)
5719                 return err;
5720
5721         if (priv->config & CFG_STATIC_BSSID)
5722                 bssid = priv->bssid;
5723         else
5724                 bssid = NULL;
5725         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5726         if (err)
5727                 return err;
5728
5729         if (priv->config & CFG_STATIC_ESSID)
5730                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5731                                         batch_mode);
5732         else
5733                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5734         if (err)
5735                 return err;
5736
5737         err = ipw2100_configure_security(priv, batch_mode);
5738         if (err)
5739                 return err;
5740
5741         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5742                 err =
5743                     ipw2100_set_ibss_beacon_interval(priv,
5744                                                      priv->beacon_interval,
5745                                                      batch_mode);
5746                 if (err)
5747                         return err;
5748
5749                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5750                 if (err)
5751                         return err;
5752         }
5753
5754         /*
5755            err = ipw2100_set_fragmentation_threshold(
5756            priv, priv->frag_threshold, batch_mode);
5757            if (err)
5758            return err;
5759          */
5760
5761         IPW_DEBUG_INFO("exit\n");
5762
5763         return 0;
5764 }
5765
5766 /*************************************************************************
5767  *
5768  * EXTERNALLY CALLED METHODS
5769  *
5770  *************************************************************************/
5771
5772 /* This method is called by the network layer -- not to be confused with
5773  * ipw2100_set_mac_address() declared above called by this driver (and this
5774  * method as well) to talk to the firmware */
5775 static int ipw2100_set_address(struct net_device *dev, void *p)
5776 {
5777         struct ipw2100_priv *priv = libipw_priv(dev);
5778         struct sockaddr *addr = p;
5779         int err = 0;
5780
5781         if (!is_valid_ether_addr(addr->sa_data))
5782                 return -EADDRNOTAVAIL;
5783
5784         mutex_lock(&priv->action_mutex);
5785
5786         priv->config |= CFG_CUSTOM_MAC;
5787         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5788
5789         err = ipw2100_set_mac_address(priv, 0);
5790         if (err)
5791                 goto done;
5792
5793         priv->reset_backoff = 0;
5794         mutex_unlock(&priv->action_mutex);
5795         ipw2100_reset_adapter(&priv->reset_work.work);
5796         return 0;
5797
5798       done:
5799         mutex_unlock(&priv->action_mutex);
5800         return err;
5801 }
5802
5803 static int ipw2100_open(struct net_device *dev)
5804 {
5805         struct ipw2100_priv *priv = libipw_priv(dev);
5806         unsigned long flags;
5807         IPW_DEBUG_INFO("dev->open\n");
5808
5809         spin_lock_irqsave(&priv->low_lock, flags);
5810         if (priv->status & STATUS_ASSOCIATED) {
5811                 netif_carrier_on(dev);
5812                 netif_start_queue(dev);
5813         }
5814         spin_unlock_irqrestore(&priv->low_lock, flags);
5815
5816         return 0;
5817 }
5818
5819 static int ipw2100_close(struct net_device *dev)
5820 {
5821         struct ipw2100_priv *priv = libipw_priv(dev);
5822         unsigned long flags;
5823         struct list_head *element;
5824         struct ipw2100_tx_packet *packet;
5825
5826         IPW_DEBUG_INFO("enter\n");
5827
5828         spin_lock_irqsave(&priv->low_lock, flags);
5829
5830         if (priv->status & STATUS_ASSOCIATED)
5831                 netif_carrier_off(dev);
5832         netif_stop_queue(dev);
5833
5834         /* Flush the TX queue ... */
5835         while (!list_empty(&priv->tx_pend_list)) {
5836                 element = priv->tx_pend_list.next;
5837                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5838
5839                 list_del(element);
5840                 DEC_STAT(&priv->tx_pend_stat);
5841
5842                 libipw_txb_free(packet->info.d_struct.txb);
5843                 packet->info.d_struct.txb = NULL;
5844
5845                 list_add_tail(element, &priv->tx_free_list);
5846                 INC_STAT(&priv->tx_free_stat);
5847         }
5848         spin_unlock_irqrestore(&priv->low_lock, flags);
5849
5850         IPW_DEBUG_INFO("exit\n");
5851
5852         return 0;
5853 }
5854
5855 /*
5856  * TODO:  Fix this function... its just wrong
5857  */
5858 static void ipw2100_tx_timeout(struct net_device *dev)
5859 {
5860         struct ipw2100_priv *priv = libipw_priv(dev);
5861
5862         dev->stats.tx_errors++;
5863
5864 #ifdef CONFIG_IPW2100_MONITOR
5865         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5866                 return;
5867 #endif
5868
5869         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5870                        dev->name);
5871         schedule_reset(priv);
5872 }
5873
5874 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5875 {
5876         /* This is called when wpa_supplicant loads and closes the driver
5877          * interface. */
5878         priv->ieee->wpa_enabled = value;
5879         return 0;
5880 }
5881
5882 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5883 {
5884
5885         struct libipw_device *ieee = priv->ieee;
5886         struct libipw_security sec = {
5887                 .flags = SEC_AUTH_MODE,
5888         };
5889         int ret = 0;
5890
5891         if (value & IW_AUTH_ALG_SHARED_KEY) {
5892                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5893                 ieee->open_wep = 0;
5894         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5895                 sec.auth_mode = WLAN_AUTH_OPEN;
5896                 ieee->open_wep = 1;
5897         } else if (value & IW_AUTH_ALG_LEAP) {
5898                 sec.auth_mode = WLAN_AUTH_LEAP;
5899                 ieee->open_wep = 1;
5900         } else
5901                 return -EINVAL;
5902
5903         if (ieee->set_security)
5904                 ieee->set_security(ieee->dev, &sec);
5905         else
5906                 ret = -EOPNOTSUPP;
5907
5908         return ret;
5909 }
5910
5911 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5912                                     char *wpa_ie, int wpa_ie_len)
5913 {
5914
5915         struct ipw2100_wpa_assoc_frame frame;
5916
5917         frame.fixed_ie_mask = 0;
5918
5919         /* copy WPA IE */
5920         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5921         frame.var_ie_len = wpa_ie_len;
5922
5923         /* make sure WPA is enabled */
5924         ipw2100_wpa_enable(priv, 1);
5925         ipw2100_set_wpa_ie(priv, &frame, 0);
5926 }
5927
5928 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5929                                     struct ethtool_drvinfo *info)
5930 {
5931         struct ipw2100_priv *priv = libipw_priv(dev);
5932         char fw_ver[64], ucode_ver[64];
5933
5934         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5935         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5936
5937         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5938         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5939
5940         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5941                  fw_ver, priv->eeprom_version, ucode_ver);
5942
5943         strlcpy(info->bus_info, pci_name(priv->pci_dev),
5944                 sizeof(info->bus_info));
5945 }
5946
5947 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5948 {
5949         struct ipw2100_priv *priv = libipw_priv(dev);
5950         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5951 }
5952
5953 static const struct ethtool_ops ipw2100_ethtool_ops = {
5954         .get_link = ipw2100_ethtool_get_link,
5955         .get_drvinfo = ipw_ethtool_get_drvinfo,
5956 };
5957
5958 static void ipw2100_hang_check(struct work_struct *work)
5959 {
5960         struct ipw2100_priv *priv =
5961                 container_of(work, struct ipw2100_priv, hang_check.work);
5962         unsigned long flags;
5963         u32 rtc = 0xa5a5a5a5;
5964         u32 len = sizeof(rtc);
5965         int restart = 0;
5966
5967         spin_lock_irqsave(&priv->low_lock, flags);
5968
5969         if (priv->fatal_error != 0) {
5970                 /* If fatal_error is set then we need to restart */
5971                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5972                                priv->net_dev->name);
5973
5974                 restart = 1;
5975         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5976                    (rtc == priv->last_rtc)) {
5977                 /* Check if firmware is hung */
5978                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5979                                priv->net_dev->name);
5980
5981                 restart = 1;
5982         }
5983
5984         if (restart) {
5985                 /* Kill timer */
5986                 priv->stop_hang_check = 1;
5987                 priv->hangs++;
5988
5989                 /* Restart the NIC */
5990                 schedule_reset(priv);
5991         }
5992
5993         priv->last_rtc = rtc;
5994
5995         if (!priv->stop_hang_check)
5996                 schedule_delayed_work(&priv->hang_check, HZ / 2);
5997
5998         spin_unlock_irqrestore(&priv->low_lock, flags);
5999 }
6000
6001 static void ipw2100_rf_kill(struct work_struct *work)
6002 {
6003         struct ipw2100_priv *priv =
6004                 container_of(work, struct ipw2100_priv, rf_kill.work);
6005         unsigned long flags;
6006
6007         spin_lock_irqsave(&priv->low_lock, flags);
6008
6009         if (rf_kill_active(priv)) {
6010                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6011                 if (!priv->stop_rf_kill)
6012                         schedule_delayed_work(&priv->rf_kill,
6013                                               round_jiffies_relative(HZ));
6014                 goto exit_unlock;
6015         }
6016
6017         /* RF Kill is now disabled, so bring the device back up */
6018
6019         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6020                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6021                                   "device\n");
6022                 schedule_reset(priv);
6023         } else
6024                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6025                                   "enabled\n");
6026
6027       exit_unlock:
6028         spin_unlock_irqrestore(&priv->low_lock, flags);
6029 }
6030
6031 static void ipw2100_irq_tasklet(unsigned long data);
6032
6033 static const struct net_device_ops ipw2100_netdev_ops = {
6034         .ndo_open               = ipw2100_open,
6035         .ndo_stop               = ipw2100_close,
6036         .ndo_start_xmit         = libipw_xmit,
6037         .ndo_tx_timeout         = ipw2100_tx_timeout,
6038         .ndo_set_mac_address    = ipw2100_set_address,
6039         .ndo_validate_addr      = eth_validate_addr,
6040 };
6041
6042 /* Look into using netdev destructor to shutdown libipw? */
6043
6044 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6045                                                void __iomem * ioaddr)
6046 {
6047         struct ipw2100_priv *priv;
6048         struct net_device *dev;
6049
6050         dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6051         if (!dev)
6052                 return NULL;
6053         priv = libipw_priv(dev);
6054         priv->ieee = netdev_priv(dev);
6055         priv->pci_dev = pci_dev;
6056         priv->net_dev = dev;
6057         priv->ioaddr = ioaddr;
6058
6059         priv->ieee->hard_start_xmit = ipw2100_tx;
6060         priv->ieee->set_security = shim__set_security;
6061
6062         priv->ieee->perfect_rssi = -20;
6063         priv->ieee->worst_rssi = -85;
6064
6065         dev->netdev_ops = &ipw2100_netdev_ops;
6066         dev->ethtool_ops = &ipw2100_ethtool_ops;
6067         dev->wireless_handlers = &ipw2100_wx_handler_def;
6068         priv->wireless_data.libipw = priv->ieee;
6069         dev->wireless_data = &priv->wireless_data;
6070         dev->watchdog_timeo = 3 * HZ;
6071         dev->irq = 0;
6072         dev->min_mtu = 68;
6073         dev->max_mtu = LIBIPW_DATA_LEN;
6074
6075         /* NOTE: We don't use the wireless_handlers hook
6076          * in dev as the system will start throwing WX requests
6077          * to us before we're actually initialized and it just
6078          * ends up causing problems.  So, we just handle
6079          * the WX extensions through the ipw2100_ioctl interface */
6080
6081         /* memset() puts everything to 0, so we only have explicitly set
6082          * those values that need to be something else */
6083
6084         /* If power management is turned on, default to AUTO mode */
6085         priv->power_mode = IPW_POWER_AUTO;
6086
6087 #ifdef CONFIG_IPW2100_MONITOR
6088         priv->config |= CFG_CRC_CHECK;
6089 #endif
6090         priv->ieee->wpa_enabled = 0;
6091         priv->ieee->drop_unencrypted = 0;
6092         priv->ieee->privacy_invoked = 0;
6093         priv->ieee->ieee802_1x = 1;
6094
6095         /* Set module parameters */
6096         switch (network_mode) {
6097         case 1:
6098                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6099                 break;
6100 #ifdef CONFIG_IPW2100_MONITOR
6101         case 2:
6102                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6103                 break;
6104 #endif
6105         default:
6106         case 0:
6107                 priv->ieee->iw_mode = IW_MODE_INFRA;
6108                 break;
6109         }
6110
6111         if (disable == 1)
6112                 priv->status |= STATUS_RF_KILL_SW;
6113
6114         if (channel != 0 &&
6115             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6116                 priv->config |= CFG_STATIC_CHANNEL;
6117                 priv->channel = channel;
6118         }
6119
6120         if (associate)
6121                 priv->config |= CFG_ASSOCIATE;
6122
6123         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6124         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6125         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6126         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6127         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6128         priv->tx_power = IPW_TX_POWER_DEFAULT;
6129         priv->tx_rates = DEFAULT_TX_RATES;
6130
6131         strcpy(priv->nick, "ipw2100");
6132
6133         spin_lock_init(&priv->low_lock);
6134         mutex_init(&priv->action_mutex);
6135         mutex_init(&priv->adapter_mutex);
6136
6137         init_waitqueue_head(&priv->wait_command_queue);
6138
6139         netif_carrier_off(dev);
6140
6141         INIT_LIST_HEAD(&priv->msg_free_list);
6142         INIT_LIST_HEAD(&priv->msg_pend_list);
6143         INIT_STAT(&priv->msg_free_stat);
6144         INIT_STAT(&priv->msg_pend_stat);
6145
6146         INIT_LIST_HEAD(&priv->tx_free_list);
6147         INIT_LIST_HEAD(&priv->tx_pend_list);
6148         INIT_STAT(&priv->tx_free_stat);
6149         INIT_STAT(&priv->tx_pend_stat);
6150
6151         INIT_LIST_HEAD(&priv->fw_pend_list);
6152         INIT_STAT(&priv->fw_pend_stat);
6153
6154         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6155         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6156         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6157         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6158         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6159         INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6160
6161         tasklet_init(&priv->irq_tasklet,
6162                      ipw2100_irq_tasklet, (unsigned long)priv);
6163
6164         /* NOTE:  We do not start the deferred work for status checks yet */
6165         priv->stop_rf_kill = 1;
6166         priv->stop_hang_check = 1;
6167
6168         return dev;
6169 }
6170
6171 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6172                                 const struct pci_device_id *ent)
6173 {
6174         void __iomem *ioaddr;
6175         struct net_device *dev = NULL;
6176         struct ipw2100_priv *priv = NULL;
6177         int err = 0;
6178         int registered = 0;
6179         u32 val;
6180
6181         IPW_DEBUG_INFO("enter\n");
6182
6183         if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6184                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6185                 err = -ENODEV;
6186                 goto out;
6187         }
6188
6189         ioaddr = pci_iomap(pci_dev, 0, 0);
6190         if (!ioaddr) {
6191                 printk(KERN_WARNING DRV_NAME
6192                        "Error calling ioremap_nocache.\n");
6193                 err = -EIO;
6194                 goto fail;
6195         }
6196
6197         /* allocate and initialize our net_device */
6198         dev = ipw2100_alloc_device(pci_dev, ioaddr);
6199         if (!dev) {
6200                 printk(KERN_WARNING DRV_NAME
6201                        "Error calling ipw2100_alloc_device.\n");
6202                 err = -ENOMEM;
6203                 goto fail;
6204         }
6205
6206         /* set up PCI mappings for device */
6207         err = pci_enable_device(pci_dev);
6208         if (err) {
6209                 printk(KERN_WARNING DRV_NAME
6210                        "Error calling pci_enable_device.\n");
6211                 return err;
6212         }
6213
6214         priv = libipw_priv(dev);
6215
6216         pci_set_master(pci_dev);
6217         pci_set_drvdata(pci_dev, priv);
6218
6219         err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6220         if (err) {
6221                 printk(KERN_WARNING DRV_NAME
6222                        "Error calling pci_set_dma_mask.\n");
6223                 pci_disable_device(pci_dev);
6224                 return err;
6225         }
6226
6227         err = pci_request_regions(pci_dev, DRV_NAME);
6228         if (err) {
6229                 printk(KERN_WARNING DRV_NAME
6230                        "Error calling pci_request_regions.\n");
6231                 pci_disable_device(pci_dev);
6232                 return err;
6233         }
6234
6235         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6236          * PCI Tx retries from interfering with C3 CPU state */
6237         pci_read_config_dword(pci_dev, 0x40, &val);
6238         if ((val & 0x0000ff00) != 0)
6239                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6240
6241         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6242                 printk(KERN_WARNING DRV_NAME
6243                        "Device not found via register read.\n");
6244                 err = -ENODEV;
6245                 goto fail;
6246         }
6247
6248         SET_NETDEV_DEV(dev, &pci_dev->dev);
6249
6250         /* Force interrupts to be shut off on the device */
6251         priv->status |= STATUS_INT_ENABLED;
6252         ipw2100_disable_interrupts(priv);
6253
6254         /* Allocate and initialize the Tx/Rx queues and lists */
6255         if (ipw2100_queues_allocate(priv)) {
6256                 printk(KERN_WARNING DRV_NAME
6257                        "Error calling ipw2100_queues_allocate.\n");
6258                 err = -ENOMEM;
6259                 goto fail;
6260         }
6261         ipw2100_queues_initialize(priv);
6262
6263         err = request_irq(pci_dev->irq,
6264                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6265         if (err) {
6266                 printk(KERN_WARNING DRV_NAME
6267                        "Error calling request_irq: %d.\n", pci_dev->irq);
6268                 goto fail;
6269         }
6270         dev->irq = pci_dev->irq;
6271
6272         IPW_DEBUG_INFO("Attempting to register device...\n");
6273
6274         printk(KERN_INFO DRV_NAME
6275                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6276
6277         err = ipw2100_up(priv, 1);
6278         if (err)
6279                 goto fail;
6280
6281         err = ipw2100_wdev_init(dev);
6282         if (err)
6283                 goto fail;
6284         registered = 1;
6285
6286         /* Bring up the interface.  Pre 0.46, after we registered the
6287          * network device we would call ipw2100_up.  This introduced a race
6288          * condition with newer hotplug configurations (network was coming
6289          * up and making calls before the device was initialized).
6290          */
6291         err = register_netdev(dev);
6292         if (err) {
6293                 printk(KERN_WARNING DRV_NAME
6294                        "Error calling register_netdev.\n");
6295                 goto fail;
6296         }
6297         registered = 2;
6298
6299         mutex_lock(&priv->action_mutex);
6300
6301         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6302
6303         /* perform this after register_netdev so that dev->name is set */
6304         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6305         if (err)
6306                 goto fail_unlock;
6307
6308         /* If the RF Kill switch is disabled, go ahead and complete the
6309          * startup sequence */
6310         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6311                 /* Enable the adapter - sends HOST_COMPLETE */
6312                 if (ipw2100_enable_adapter(priv)) {
6313                         printk(KERN_WARNING DRV_NAME
6314                                ": %s: failed in call to enable adapter.\n",
6315                                priv->net_dev->name);
6316                         ipw2100_hw_stop_adapter(priv);
6317                         err = -EIO;
6318                         goto fail_unlock;
6319                 }
6320
6321                 /* Start a scan . . . */
6322                 ipw2100_set_scan_options(priv);
6323                 ipw2100_start_scan(priv);
6324         }
6325
6326         IPW_DEBUG_INFO("exit\n");
6327
6328         priv->status |= STATUS_INITIALIZED;
6329
6330         mutex_unlock(&priv->action_mutex);
6331 out:
6332         return err;
6333
6334       fail_unlock:
6335         mutex_unlock(&priv->action_mutex);
6336       fail:
6337         if (dev) {
6338                 if (registered >= 2)
6339                         unregister_netdev(dev);
6340
6341                 if (registered) {
6342                         wiphy_unregister(priv->ieee->wdev.wiphy);
6343                         kfree(priv->ieee->bg_band.channels);
6344                 }
6345
6346                 ipw2100_hw_stop_adapter(priv);
6347
6348                 ipw2100_disable_interrupts(priv);
6349
6350                 if (dev->irq)
6351                         free_irq(dev->irq, priv);
6352
6353                 ipw2100_kill_works(priv);
6354
6355                 /* These are safe to call even if they weren't allocated */
6356                 ipw2100_queues_free(priv);
6357                 sysfs_remove_group(&pci_dev->dev.kobj,
6358                                    &ipw2100_attribute_group);
6359
6360                 free_libipw(dev, 0);
6361         }
6362
6363         pci_iounmap(pci_dev, ioaddr);
6364
6365         pci_release_regions(pci_dev);
6366         pci_disable_device(pci_dev);
6367         goto out;
6368 }
6369
6370 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6371 {
6372         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6373         struct net_device *dev = priv->net_dev;
6374
6375         mutex_lock(&priv->action_mutex);
6376
6377         priv->status &= ~STATUS_INITIALIZED;
6378
6379         sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6380
6381 #ifdef CONFIG_PM
6382         if (ipw2100_firmware.version)
6383                 ipw2100_release_firmware(priv, &ipw2100_firmware);
6384 #endif
6385         /* Take down the hardware */
6386         ipw2100_down(priv);
6387
6388         /* Release the mutex so that the network subsystem can
6389          * complete any needed calls into the driver... */
6390         mutex_unlock(&priv->action_mutex);
6391
6392         /* Unregister the device first - this results in close()
6393          * being called if the device is open.  If we free storage
6394          * first, then close() will crash.
6395          * FIXME: remove the comment above. */
6396         unregister_netdev(dev);
6397
6398         ipw2100_kill_works(priv);
6399
6400         ipw2100_queues_free(priv);
6401
6402         /* Free potential debugging firmware snapshot */
6403         ipw2100_snapshot_free(priv);
6404
6405         free_irq(dev->irq, priv);
6406
6407         pci_iounmap(pci_dev, priv->ioaddr);
6408
6409         /* wiphy_unregister needs to be here, before free_libipw */
6410         wiphy_unregister(priv->ieee->wdev.wiphy);
6411         kfree(priv->ieee->bg_band.channels);
6412         free_libipw(dev, 0);
6413
6414         pci_release_regions(pci_dev);
6415         pci_disable_device(pci_dev);
6416
6417         IPW_DEBUG_INFO("exit\n");
6418 }
6419
6420 #ifdef CONFIG_PM
6421 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6422 {
6423         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6424         struct net_device *dev = priv->net_dev;
6425
6426         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6427
6428         mutex_lock(&priv->action_mutex);
6429         if (priv->status & STATUS_INITIALIZED) {
6430                 /* Take down the device; powers it off, etc. */
6431                 ipw2100_down(priv);
6432         }
6433
6434         /* Remove the PRESENT state of the device */
6435         netif_device_detach(dev);
6436
6437         pci_save_state(pci_dev);
6438         pci_disable_device(pci_dev);
6439         pci_set_power_state(pci_dev, PCI_D3hot);
6440
6441         priv->suspend_at = get_seconds();
6442
6443         mutex_unlock(&priv->action_mutex);
6444
6445         return 0;
6446 }
6447
6448 static int ipw2100_resume(struct pci_dev *pci_dev)
6449 {
6450         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6451         struct net_device *dev = priv->net_dev;
6452         int err;
6453         u32 val;
6454
6455         if (IPW2100_PM_DISABLED)
6456                 return 0;
6457
6458         mutex_lock(&priv->action_mutex);
6459
6460         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6461
6462         pci_set_power_state(pci_dev, PCI_D0);
6463         err = pci_enable_device(pci_dev);
6464         if (err) {
6465                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6466                        dev->name);
6467                 mutex_unlock(&priv->action_mutex);
6468                 return err;
6469         }
6470         pci_restore_state(pci_dev);
6471
6472         /*
6473          * Suspend/Resume resets the PCI configuration space, so we have to
6474          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6475          * from interfering with C3 CPU state. pci_restore_state won't help
6476          * here since it only restores the first 64 bytes pci config header.
6477          */
6478         pci_read_config_dword(pci_dev, 0x40, &val);
6479         if ((val & 0x0000ff00) != 0)
6480                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6481
6482         /* Set the device back into the PRESENT state; this will also wake
6483          * the queue of needed */
6484         netif_device_attach(dev);
6485
6486         priv->suspend_time = get_seconds() - priv->suspend_at;
6487
6488         /* Bring the device back up */
6489         if (!(priv->status & STATUS_RF_KILL_SW))
6490                 ipw2100_up(priv, 0);
6491
6492         mutex_unlock(&priv->action_mutex);
6493
6494         return 0;
6495 }
6496 #endif
6497
6498 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6499 {
6500         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6501
6502         /* Take down the device; powers it off, etc. */
6503         ipw2100_down(priv);
6504
6505         pci_disable_device(pci_dev);
6506 }
6507
6508 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6509
6510 static const struct pci_device_id ipw2100_pci_id_table[] = {
6511         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6512         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6513         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6514         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6515         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6516         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6517         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6518         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6519         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6520         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6521         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6522         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6523         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6524
6525         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6526         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6527         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6528         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6529         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6530
6531         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6532         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6533         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6534         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6535         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6536         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6537         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6538
6539         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6540
6541         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6542         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6543         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6544         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6545         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6546         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6547         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6548
6549         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6550         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6551         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6552         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6553         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6554         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6555
6556         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6557         {0,},
6558 };
6559
6560 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6561
6562 static struct pci_driver ipw2100_pci_driver = {
6563         .name = DRV_NAME,
6564         .id_table = ipw2100_pci_id_table,
6565         .probe = ipw2100_pci_init_one,
6566         .remove = ipw2100_pci_remove_one,
6567 #ifdef CONFIG_PM
6568         .suspend = ipw2100_suspend,
6569         .resume = ipw2100_resume,
6570 #endif
6571         .shutdown = ipw2100_shutdown,
6572 };
6573
6574 /**
6575  * Initialize the ipw2100 driver/module
6576  *
6577  * @returns 0 if ok, < 0 errno node con error.
6578  *
6579  * Note: we cannot init the /proc stuff until the PCI driver is there,
6580  * or we risk an unlikely race condition on someone accessing
6581  * uninitialized data in the PCI dev struct through /proc.
6582  */
6583 static int __init ipw2100_init(void)
6584 {
6585         int ret;
6586
6587         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6588         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6589
6590         pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6591                            PM_QOS_DEFAULT_VALUE);
6592
6593         ret = pci_register_driver(&ipw2100_pci_driver);
6594         if (ret)
6595                 goto out;
6596
6597 #ifdef CONFIG_IPW2100_DEBUG
6598         ipw2100_debug_level = debug;
6599         ret = driver_create_file(&ipw2100_pci_driver.driver,
6600                                  &driver_attr_debug_level);
6601 #endif
6602
6603 out:
6604         return ret;
6605 }
6606
6607 /**
6608  * Cleanup ipw2100 driver registration
6609  */
6610 static void __exit ipw2100_exit(void)
6611 {
6612         /* FIXME: IPG: check that we have no instances of the devices open */
6613 #ifdef CONFIG_IPW2100_DEBUG
6614         driver_remove_file(&ipw2100_pci_driver.driver,
6615                            &driver_attr_debug_level);
6616 #endif
6617         pci_unregister_driver(&ipw2100_pci_driver);
6618         pm_qos_remove_request(&ipw2100_pm_qos_req);
6619 }
6620
6621 module_init(ipw2100_init);
6622 module_exit(ipw2100_exit);
6623
6624 static int ipw2100_wx_get_name(struct net_device *dev,
6625                                struct iw_request_info *info,
6626                                union iwreq_data *wrqu, char *extra)
6627 {
6628         /*
6629          * This can be called at any time.  No action lock required
6630          */
6631
6632         struct ipw2100_priv *priv = libipw_priv(dev);
6633         if (!(priv->status & STATUS_ASSOCIATED))
6634                 strcpy(wrqu->name, "unassociated");
6635         else
6636                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6637
6638         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6639         return 0;
6640 }
6641
6642 static int ipw2100_wx_set_freq(struct net_device *dev,
6643                                struct iw_request_info *info,
6644                                union iwreq_data *wrqu, char *extra)
6645 {
6646         struct ipw2100_priv *priv = libipw_priv(dev);
6647         struct iw_freq *fwrq = &wrqu->freq;
6648         int err = 0;
6649
6650         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6651                 return -EOPNOTSUPP;
6652
6653         mutex_lock(&priv->action_mutex);
6654         if (!(priv->status & STATUS_INITIALIZED)) {
6655                 err = -EIO;
6656                 goto done;
6657         }
6658
6659         /* if setting by freq convert to channel */
6660         if (fwrq->e == 1) {
6661                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6662                         int f = fwrq->m / 100000;
6663                         int c = 0;
6664
6665                         while ((c < REG_MAX_CHANNEL) &&
6666                                (f != ipw2100_frequencies[c]))
6667                                 c++;
6668
6669                         /* hack to fall through */
6670                         fwrq->e = 0;
6671                         fwrq->m = c + 1;
6672                 }
6673         }
6674
6675         if (fwrq->e > 0 || fwrq->m > 1000) {
6676                 err = -EOPNOTSUPP;
6677                 goto done;
6678         } else {                /* Set the channel */
6679                 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6680                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6681         }
6682
6683       done:
6684         mutex_unlock(&priv->action_mutex);
6685         return err;
6686 }
6687
6688 static int ipw2100_wx_get_freq(struct net_device *dev,
6689                                struct iw_request_info *info,
6690                                union iwreq_data *wrqu, char *extra)
6691 {
6692         /*
6693          * This can be called at any time.  No action lock required
6694          */
6695
6696         struct ipw2100_priv *priv = libipw_priv(dev);
6697
6698         wrqu->freq.e = 0;
6699
6700         /* If we are associated, trying to associate, or have a statically
6701          * configured CHANNEL then return that; otherwise return ANY */
6702         if (priv->config & CFG_STATIC_CHANNEL ||
6703             priv->status & STATUS_ASSOCIATED)
6704                 wrqu->freq.m = priv->channel;
6705         else
6706                 wrqu->freq.m = 0;
6707
6708         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6709         return 0;
6710
6711 }
6712
6713 static int ipw2100_wx_set_mode(struct net_device *dev,
6714                                struct iw_request_info *info,
6715                                union iwreq_data *wrqu, char *extra)
6716 {
6717         struct ipw2100_priv *priv = libipw_priv(dev);
6718         int err = 0;
6719
6720         IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6721
6722         if (wrqu->mode == priv->ieee->iw_mode)
6723                 return 0;
6724
6725         mutex_lock(&priv->action_mutex);
6726         if (!(priv->status & STATUS_INITIALIZED)) {
6727                 err = -EIO;
6728                 goto done;
6729         }
6730
6731         switch (wrqu->mode) {
6732 #ifdef CONFIG_IPW2100_MONITOR
6733         case IW_MODE_MONITOR:
6734                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6735                 break;
6736 #endif                          /* CONFIG_IPW2100_MONITOR */
6737         case IW_MODE_ADHOC:
6738                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6739                 break;
6740         case IW_MODE_INFRA:
6741         case IW_MODE_AUTO:
6742         default:
6743                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6744                 break;
6745         }
6746
6747       done:
6748         mutex_unlock(&priv->action_mutex);
6749         return err;
6750 }
6751
6752 static int ipw2100_wx_get_mode(struct net_device *dev,
6753                                struct iw_request_info *info,
6754                                union iwreq_data *wrqu, char *extra)
6755 {
6756         /*
6757          * This can be called at any time.  No action lock required
6758          */
6759
6760         struct ipw2100_priv *priv = libipw_priv(dev);
6761
6762         wrqu->mode = priv->ieee->iw_mode;
6763         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6764
6765         return 0;
6766 }
6767
6768 #define POWER_MODES 5
6769
6770 /* Values are in microsecond */
6771 static const s32 timeout_duration[POWER_MODES] = {
6772         350000,
6773         250000,
6774         75000,
6775         37000,
6776         25000,
6777 };
6778
6779 static const s32 period_duration[POWER_MODES] = {
6780         400000,
6781         700000,
6782         1000000,
6783         1000000,
6784         1000000
6785 };
6786
6787 static int ipw2100_wx_get_range(struct net_device *dev,
6788                                 struct iw_request_info *info,
6789                                 union iwreq_data *wrqu, char *extra)
6790 {
6791         /*
6792          * This can be called at any time.  No action lock required
6793          */
6794
6795         struct ipw2100_priv *priv = libipw_priv(dev);
6796         struct iw_range *range = (struct iw_range *)extra;
6797         u16 val;
6798         int i, level;
6799
6800         wrqu->data.length = sizeof(*range);
6801         memset(range, 0, sizeof(*range));
6802
6803         /* Let's try to keep this struct in the same order as in
6804          * linux/include/wireless.h
6805          */
6806
6807         /* TODO: See what values we can set, and remove the ones we can't
6808          * set, or fill them with some default data.
6809          */
6810
6811         /* ~5 Mb/s real (802.11b) */
6812         range->throughput = 5 * 1000 * 1000;
6813
6814 //      range->sensitivity;     /* signal level threshold range */
6815
6816         range->max_qual.qual = 100;
6817         /* TODO: Find real max RSSI and stick here */
6818         range->max_qual.level = 0;
6819         range->max_qual.noise = 0;
6820         range->max_qual.updated = 7;    /* Updated all three */
6821
6822         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6823         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6824         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6825         range->avg_qual.noise = 0;
6826         range->avg_qual.updated = 7;    /* Updated all three */
6827
6828         range->num_bitrates = RATE_COUNT;
6829
6830         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6831                 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6832         }
6833
6834         range->min_rts = MIN_RTS_THRESHOLD;
6835         range->max_rts = MAX_RTS_THRESHOLD;
6836         range->min_frag = MIN_FRAG_THRESHOLD;
6837         range->max_frag = MAX_FRAG_THRESHOLD;
6838
6839         range->min_pmp = period_duration[0];    /* Minimal PM period */
6840         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6841         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6842         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6843
6844         /* How to decode max/min PM period */
6845         range->pmp_flags = IW_POWER_PERIOD;
6846         /* How to decode max/min PM period */
6847         range->pmt_flags = IW_POWER_TIMEOUT;
6848         /* What PM options are supported */
6849         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6850
6851         range->encoding_size[0] = 5;
6852         range->encoding_size[1] = 13;   /* Different token sizes */
6853         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6854         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6855 //      range->encoding_login_index;            /* token index for login token */
6856
6857         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6858                 range->txpower_capa = IW_TXPOW_DBM;
6859                 range->num_txpower = IW_MAX_TXPOWER;
6860                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6861                      i < IW_MAX_TXPOWER;
6862                      i++, level -=
6863                      ((IPW_TX_POWER_MAX_DBM -
6864                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6865                         range->txpower[i] = level / 16;
6866         } else {
6867                 range->txpower_capa = 0;
6868                 range->num_txpower = 0;
6869         }
6870
6871         /* Set the Wireless Extension versions */
6872         range->we_version_compiled = WIRELESS_EXT;
6873         range->we_version_source = 18;
6874
6875 //      range->retry_capa;      /* What retry options are supported */
6876 //      range->retry_flags;     /* How to decode max/min retry limit */
6877 //      range->r_time_flags;    /* How to decode max/min retry life */
6878 //      range->min_retry;       /* Minimal number of retries */
6879 //      range->max_retry;       /* Maximal number of retries */
6880 //      range->min_r_time;      /* Minimal retry lifetime */
6881 //      range->max_r_time;      /* Maximal retry lifetime */
6882
6883         range->num_channels = FREQ_COUNT;
6884
6885         val = 0;
6886         for (i = 0; i < FREQ_COUNT; i++) {
6887                 // TODO: Include only legal frequencies for some countries
6888 //              if (local->channel_mask & (1 << i)) {
6889                 range->freq[val].i = i + 1;
6890                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6891                 range->freq[val].e = 1;
6892                 val++;
6893 //              }
6894                 if (val == IW_MAX_FREQUENCIES)
6895                         break;
6896         }
6897         range->num_frequency = val;
6898
6899         /* Event capability (kernel + driver) */
6900         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6901                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6902         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6903
6904         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6905                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6906
6907         IPW_DEBUG_WX("GET Range\n");
6908
6909         return 0;
6910 }
6911
6912 static int ipw2100_wx_set_wap(struct net_device *dev,
6913                               struct iw_request_info *info,
6914                               union iwreq_data *wrqu, char *extra)
6915 {
6916         struct ipw2100_priv *priv = libipw_priv(dev);
6917         int err = 0;
6918
6919         // sanity checks
6920         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6921                 return -EINVAL;
6922
6923         mutex_lock(&priv->action_mutex);
6924         if (!(priv->status & STATUS_INITIALIZED)) {
6925                 err = -EIO;
6926                 goto done;
6927         }
6928
6929         if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6930             is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6931                 /* we disable mandatory BSSID association */
6932                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6933                 priv->config &= ~CFG_STATIC_BSSID;
6934                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6935                 goto done;
6936         }
6937
6938         priv->config |= CFG_STATIC_BSSID;
6939         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6940
6941         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6942
6943         IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6944
6945       done:
6946         mutex_unlock(&priv->action_mutex);
6947         return err;
6948 }
6949
6950 static int ipw2100_wx_get_wap(struct net_device *dev,
6951                               struct iw_request_info *info,
6952                               union iwreq_data *wrqu, char *extra)
6953 {
6954         /*
6955          * This can be called at any time.  No action lock required
6956          */
6957
6958         struct ipw2100_priv *priv = libipw_priv(dev);
6959
6960         /* If we are associated, trying to associate, or have a statically
6961          * configured BSSID then return that; otherwise return ANY */
6962         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6963                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6964                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6965         } else
6966                 eth_zero_addr(wrqu->ap_addr.sa_data);
6967
6968         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6969         return 0;
6970 }
6971
6972 static int ipw2100_wx_set_essid(struct net_device *dev,
6973                                 struct iw_request_info *info,
6974                                 union iwreq_data *wrqu, char *extra)
6975 {
6976         struct ipw2100_priv *priv = libipw_priv(dev);
6977         char *essid = "";       /* ANY */
6978         int length = 0;
6979         int err = 0;
6980
6981         mutex_lock(&priv->action_mutex);
6982         if (!(priv->status & STATUS_INITIALIZED)) {
6983                 err = -EIO;
6984                 goto done;
6985         }
6986
6987         if (wrqu->essid.flags && wrqu->essid.length) {
6988                 length = wrqu->essid.length;
6989                 essid = extra;
6990         }
6991
6992         if (length == 0) {
6993                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6994                 priv->config &= ~CFG_STATIC_ESSID;
6995                 err = ipw2100_set_essid(priv, NULL, 0, 0);
6996                 goto done;
6997         }
6998
6999         length = min(length, IW_ESSID_MAX_SIZE);
7000
7001         priv->config |= CFG_STATIC_ESSID;
7002
7003         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7004                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7005                 err = 0;
7006                 goto done;
7007         }
7008
7009         IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length);
7010
7011         priv->essid_len = length;
7012         memcpy(priv->essid, essid, priv->essid_len);
7013
7014         err = ipw2100_set_essid(priv, essid, length, 0);
7015
7016       done:
7017         mutex_unlock(&priv->action_mutex);
7018         return err;
7019 }
7020
7021 static int ipw2100_wx_get_essid(struct net_device *dev,
7022                                 struct iw_request_info *info,
7023                                 union iwreq_data *wrqu, char *extra)
7024 {
7025         /*
7026          * This can be called at any time.  No action lock required
7027          */
7028
7029         struct ipw2100_priv *priv = libipw_priv(dev);
7030
7031         /* If we are associated, trying to associate, or have a statically
7032          * configured ESSID then return that; otherwise return ANY */
7033         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7034                 IPW_DEBUG_WX("Getting essid: '%*pE'\n",
7035                              priv->essid_len, priv->essid);
7036                 memcpy(extra, priv->essid, priv->essid_len);
7037                 wrqu->essid.length = priv->essid_len;
7038                 wrqu->essid.flags = 1;  /* active */
7039         } else {
7040                 IPW_DEBUG_WX("Getting essid: ANY\n");
7041                 wrqu->essid.length = 0;
7042                 wrqu->essid.flags = 0;  /* active */
7043         }
7044
7045         return 0;
7046 }
7047
7048 static int ipw2100_wx_set_nick(struct net_device *dev,
7049                                struct iw_request_info *info,
7050                                union iwreq_data *wrqu, char *extra)
7051 {
7052         /*
7053          * This can be called at any time.  No action lock required
7054          */
7055
7056         struct ipw2100_priv *priv = libipw_priv(dev);
7057
7058         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7059                 return -E2BIG;
7060
7061         wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
7062         memset(priv->nick, 0, sizeof(priv->nick));
7063         memcpy(priv->nick, extra, wrqu->data.length);
7064
7065         IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7066
7067         return 0;
7068 }
7069
7070 static int ipw2100_wx_get_nick(struct net_device *dev,
7071                                struct iw_request_info *info,
7072                                union iwreq_data *wrqu, char *extra)
7073 {
7074         /*
7075          * This can be called at any time.  No action lock required
7076          */
7077
7078         struct ipw2100_priv *priv = libipw_priv(dev);
7079
7080         wrqu->data.length = strlen(priv->nick);
7081         memcpy(extra, priv->nick, wrqu->data.length);
7082         wrqu->data.flags = 1;   /* active */
7083
7084         IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7085
7086         return 0;
7087 }
7088
7089 static int ipw2100_wx_set_rate(struct net_device *dev,
7090                                struct iw_request_info *info,
7091                                union iwreq_data *wrqu, char *extra)
7092 {
7093         struct ipw2100_priv *priv = libipw_priv(dev);
7094         u32 target_rate = wrqu->bitrate.value;
7095         u32 rate;
7096         int err = 0;
7097
7098         mutex_lock(&priv->action_mutex);
7099         if (!(priv->status & STATUS_INITIALIZED)) {
7100                 err = -EIO;
7101                 goto done;
7102         }
7103
7104         rate = 0;
7105
7106         if (target_rate == 1000000 ||
7107             (!wrqu->bitrate.fixed && target_rate > 1000000))
7108                 rate |= TX_RATE_1_MBIT;
7109         if (target_rate == 2000000 ||
7110             (!wrqu->bitrate.fixed && target_rate > 2000000))
7111                 rate |= TX_RATE_2_MBIT;
7112         if (target_rate == 5500000 ||
7113             (!wrqu->bitrate.fixed && target_rate > 5500000))
7114                 rate |= TX_RATE_5_5_MBIT;
7115         if (target_rate == 11000000 ||
7116             (!wrqu->bitrate.fixed && target_rate > 11000000))
7117                 rate |= TX_RATE_11_MBIT;
7118         if (rate == 0)
7119                 rate = DEFAULT_TX_RATES;
7120
7121         err = ipw2100_set_tx_rates(priv, rate, 0);
7122
7123         IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7124       done:
7125         mutex_unlock(&priv->action_mutex);
7126         return err;
7127 }
7128
7129 static int ipw2100_wx_get_rate(struct net_device *dev,
7130                                struct iw_request_info *info,
7131                                union iwreq_data *wrqu, char *extra)
7132 {
7133         struct ipw2100_priv *priv = libipw_priv(dev);
7134         int val;
7135         unsigned int len = sizeof(val);
7136         int err = 0;
7137
7138         if (!(priv->status & STATUS_ENABLED) ||
7139             priv->status & STATUS_RF_KILL_MASK ||
7140             !(priv->status & STATUS_ASSOCIATED)) {
7141                 wrqu->bitrate.value = 0;
7142                 return 0;
7143         }
7144
7145         mutex_lock(&priv->action_mutex);
7146         if (!(priv->status & STATUS_INITIALIZED)) {
7147                 err = -EIO;
7148                 goto done;
7149         }
7150
7151         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7152         if (err) {
7153                 IPW_DEBUG_WX("failed querying ordinals.\n");
7154                 goto done;
7155         }
7156
7157         switch (val & TX_RATE_MASK) {
7158         case TX_RATE_1_MBIT:
7159                 wrqu->bitrate.value = 1000000;
7160                 break;
7161         case TX_RATE_2_MBIT:
7162                 wrqu->bitrate.value = 2000000;
7163                 break;
7164         case TX_RATE_5_5_MBIT:
7165                 wrqu->bitrate.value = 5500000;
7166                 break;
7167         case TX_RATE_11_MBIT:
7168                 wrqu->bitrate.value = 11000000;
7169                 break;
7170         default:
7171                 wrqu->bitrate.value = 0;
7172         }
7173
7174         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7175
7176       done:
7177         mutex_unlock(&priv->action_mutex);
7178         return err;
7179 }
7180
7181 static int ipw2100_wx_set_rts(struct net_device *dev,
7182                               struct iw_request_info *info,
7183                               union iwreq_data *wrqu, char *extra)
7184 {
7185         struct ipw2100_priv *priv = libipw_priv(dev);
7186         int value, err;
7187
7188         /* Auto RTS not yet supported */
7189         if (wrqu->rts.fixed == 0)
7190                 return -EINVAL;
7191
7192         mutex_lock(&priv->action_mutex);
7193         if (!(priv->status & STATUS_INITIALIZED)) {
7194                 err = -EIO;
7195                 goto done;
7196         }
7197
7198         if (wrqu->rts.disabled)
7199                 value = priv->rts_threshold | RTS_DISABLED;
7200         else {
7201                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7202                         err = -EINVAL;
7203                         goto done;
7204                 }
7205                 value = wrqu->rts.value;
7206         }
7207
7208         err = ipw2100_set_rts_threshold(priv, value);
7209
7210         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7211       done:
7212         mutex_unlock(&priv->action_mutex);
7213         return err;
7214 }
7215
7216 static int ipw2100_wx_get_rts(struct net_device *dev,
7217                               struct iw_request_info *info,
7218                               union iwreq_data *wrqu, char *extra)
7219 {
7220         /*
7221          * This can be called at any time.  No action lock required
7222          */
7223
7224         struct ipw2100_priv *priv = libipw_priv(dev);
7225
7226         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7227         wrqu->rts.fixed = 1;    /* no auto select */
7228
7229         /* If RTS is set to the default value, then it is disabled */
7230         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7231
7232         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7233
7234         return 0;
7235 }
7236
7237 static int ipw2100_wx_set_txpow(struct net_device *dev,
7238                                 struct iw_request_info *info,
7239                                 union iwreq_data *wrqu, char *extra)
7240 {
7241         struct ipw2100_priv *priv = libipw_priv(dev);
7242         int err = 0, value;
7243         
7244         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7245                 return -EINPROGRESS;
7246
7247         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7248                 return 0;
7249
7250         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7251                 return -EINVAL;
7252
7253         if (wrqu->txpower.fixed == 0)
7254                 value = IPW_TX_POWER_DEFAULT;
7255         else {
7256                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7257                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7258                         return -EINVAL;
7259
7260                 value = wrqu->txpower.value;
7261         }
7262
7263         mutex_lock(&priv->action_mutex);
7264         if (!(priv->status & STATUS_INITIALIZED)) {
7265                 err = -EIO;
7266                 goto done;
7267         }
7268
7269         err = ipw2100_set_tx_power(priv, value);
7270
7271         IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7272
7273       done:
7274         mutex_unlock(&priv->action_mutex);
7275         return err;
7276 }
7277
7278 static int ipw2100_wx_get_txpow(struct net_device *dev,
7279                                 struct iw_request_info *info,
7280                                 union iwreq_data *wrqu, char *extra)
7281 {
7282         /*
7283          * This can be called at any time.  No action lock required
7284          */
7285
7286         struct ipw2100_priv *priv = libipw_priv(dev);
7287
7288         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7289
7290         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7291                 wrqu->txpower.fixed = 0;
7292                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7293         } else {
7294                 wrqu->txpower.fixed = 1;
7295                 wrqu->txpower.value = priv->tx_power;
7296         }
7297
7298         wrqu->txpower.flags = IW_TXPOW_DBM;
7299
7300         IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7301
7302         return 0;
7303 }
7304
7305 static int ipw2100_wx_set_frag(struct net_device *dev,
7306                                struct iw_request_info *info,
7307                                union iwreq_data *wrqu, char *extra)
7308 {
7309         /*
7310          * This can be called at any time.  No action lock required
7311          */
7312
7313         struct ipw2100_priv *priv = libipw_priv(dev);
7314
7315         if (!wrqu->frag.fixed)
7316                 return -EINVAL;
7317
7318         if (wrqu->frag.disabled) {
7319                 priv->frag_threshold |= FRAG_DISABLED;
7320                 priv->ieee->fts = DEFAULT_FTS;
7321         } else {
7322                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7323                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7324                         return -EINVAL;
7325
7326                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7327                 priv->frag_threshold = priv->ieee->fts;
7328         }
7329
7330         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7331
7332         return 0;
7333 }
7334
7335 static int ipw2100_wx_get_frag(struct net_device *dev,
7336                                struct iw_request_info *info,
7337                                union iwreq_data *wrqu, char *extra)
7338 {
7339         /*
7340          * This can be called at any time.  No action lock required
7341          */
7342
7343         struct ipw2100_priv *priv = libipw_priv(dev);
7344         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7345         wrqu->frag.fixed = 0;   /* no auto select */
7346         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7347
7348         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7349
7350         return 0;
7351 }
7352
7353 static int ipw2100_wx_set_retry(struct net_device *dev,
7354                                 struct iw_request_info *info,
7355                                 union iwreq_data *wrqu, char *extra)
7356 {
7357         struct ipw2100_priv *priv = libipw_priv(dev);
7358         int err = 0;
7359
7360         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7361                 return -EINVAL;
7362
7363         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7364                 return 0;
7365
7366         mutex_lock(&priv->action_mutex);
7367         if (!(priv->status & STATUS_INITIALIZED)) {
7368                 err = -EIO;
7369                 goto done;
7370         }
7371
7372         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7373                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7374                 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7375                              wrqu->retry.value);
7376                 goto done;
7377         }
7378
7379         if (wrqu->retry.flags & IW_RETRY_LONG) {
7380                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7381                 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7382                              wrqu->retry.value);
7383                 goto done;
7384         }
7385
7386         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7387         if (!err)
7388                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7389
7390         IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7391
7392       done:
7393         mutex_unlock(&priv->action_mutex);
7394         return err;
7395 }
7396
7397 static int ipw2100_wx_get_retry(struct net_device *dev,
7398                                 struct iw_request_info *info,
7399                                 union iwreq_data *wrqu, char *extra)
7400 {
7401         /*
7402          * This can be called at any time.  No action lock required
7403          */
7404
7405         struct ipw2100_priv *priv = libipw_priv(dev);
7406
7407         wrqu->retry.disabled = 0;       /* can't be disabled */
7408
7409         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7410                 return -EINVAL;
7411
7412         if (wrqu->retry.flags & IW_RETRY_LONG) {
7413                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7414                 wrqu->retry.value = priv->long_retry_limit;
7415         } else {
7416                 wrqu->retry.flags =
7417                     (priv->short_retry_limit !=
7418                      priv->long_retry_limit) ?
7419                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7420
7421                 wrqu->retry.value = priv->short_retry_limit;
7422         }
7423
7424         IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7425
7426         return 0;
7427 }
7428
7429 static int ipw2100_wx_set_scan(struct net_device *dev,
7430                                struct iw_request_info *info,
7431                                union iwreq_data *wrqu, char *extra)
7432 {
7433         struct ipw2100_priv *priv = libipw_priv(dev);
7434         int err = 0;
7435
7436         mutex_lock(&priv->action_mutex);
7437         if (!(priv->status & STATUS_INITIALIZED)) {
7438                 err = -EIO;
7439                 goto done;
7440         }
7441
7442         IPW_DEBUG_WX("Initiating scan...\n");
7443
7444         priv->user_requested_scan = 1;
7445         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7446                 IPW_DEBUG_WX("Start scan failed.\n");
7447
7448                 /* TODO: Mark a scan as pending so when hardware initialized
7449                  *       a scan starts */
7450         }
7451
7452       done:
7453         mutex_unlock(&priv->action_mutex);
7454         return err;
7455 }
7456
7457 static int ipw2100_wx_get_scan(struct net_device *dev,
7458                                struct iw_request_info *info,
7459                                union iwreq_data *wrqu, char *extra)
7460 {
7461         /*
7462          * This can be called at any time.  No action lock required
7463          */
7464
7465         struct ipw2100_priv *priv = libipw_priv(dev);
7466         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7467 }
7468
7469 /*
7470  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7471  */
7472 static int ipw2100_wx_set_encode(struct net_device *dev,
7473                                  struct iw_request_info *info,
7474                                  union iwreq_data *wrqu, char *key)
7475 {
7476         /*
7477          * No check of STATUS_INITIALIZED required
7478          */
7479
7480         struct ipw2100_priv *priv = libipw_priv(dev);
7481         return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7482 }
7483
7484 static int ipw2100_wx_get_encode(struct net_device *dev,
7485                                  struct iw_request_info *info,
7486                                  union iwreq_data *wrqu, char *key)
7487 {
7488         /*
7489          * This can be called at any time.  No action lock required
7490          */
7491
7492         struct ipw2100_priv *priv = libipw_priv(dev);
7493         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7494 }
7495
7496 static int ipw2100_wx_set_power(struct net_device *dev,
7497                                 struct iw_request_info *info,
7498                                 union iwreq_data *wrqu, char *extra)
7499 {
7500         struct ipw2100_priv *priv = libipw_priv(dev);
7501         int err = 0;
7502
7503         mutex_lock(&priv->action_mutex);
7504         if (!(priv->status & STATUS_INITIALIZED)) {
7505                 err = -EIO;
7506                 goto done;
7507         }
7508
7509         if (wrqu->power.disabled) {
7510                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7511                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7512                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7513                 goto done;
7514         }
7515
7516         switch (wrqu->power.flags & IW_POWER_MODE) {
7517         case IW_POWER_ON:       /* If not specified */
7518         case IW_POWER_MODE:     /* If set all mask */
7519         case IW_POWER_ALL_R:    /* If explicitly state all */
7520                 break;
7521         default:                /* Otherwise we don't support it */
7522                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7523                              wrqu->power.flags);
7524                 err = -EOPNOTSUPP;
7525                 goto done;
7526         }
7527
7528         /* If the user hasn't specified a power management mode yet, default
7529          * to BATTERY */
7530         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7531         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7532
7533         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7534
7535       done:
7536         mutex_unlock(&priv->action_mutex);
7537         return err;
7538
7539 }
7540
7541 static int ipw2100_wx_get_power(struct net_device *dev,
7542                                 struct iw_request_info *info,
7543                                 union iwreq_data *wrqu, char *extra)
7544 {
7545         /*
7546          * This can be called at any time.  No action lock required
7547          */
7548
7549         struct ipw2100_priv *priv = libipw_priv(dev);
7550
7551         if (!(priv->power_mode & IPW_POWER_ENABLED))
7552                 wrqu->power.disabled = 1;
7553         else {
7554                 wrqu->power.disabled = 0;
7555                 wrqu->power.flags = 0;
7556         }
7557
7558         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7559
7560         return 0;
7561 }
7562
7563 /*
7564  * WE-18 WPA support
7565  */
7566
7567 /* SIOCSIWGENIE */
7568 static int ipw2100_wx_set_genie(struct net_device *dev,
7569                                 struct iw_request_info *info,
7570                                 union iwreq_data *wrqu, char *extra)
7571 {
7572
7573         struct ipw2100_priv *priv = libipw_priv(dev);
7574         struct libipw_device *ieee = priv->ieee;
7575         u8 *buf;
7576
7577         if (!ieee->wpa_enabled)
7578                 return -EOPNOTSUPP;
7579
7580         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7581             (wrqu->data.length && extra == NULL))
7582                 return -EINVAL;
7583
7584         if (wrqu->data.length) {
7585                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7586                 if (buf == NULL)
7587                         return -ENOMEM;
7588
7589                 kfree(ieee->wpa_ie);
7590                 ieee->wpa_ie = buf;
7591                 ieee->wpa_ie_len = wrqu->data.length;
7592         } else {
7593                 kfree(ieee->wpa_ie);
7594                 ieee->wpa_ie = NULL;
7595                 ieee->wpa_ie_len = 0;
7596         }
7597
7598         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7599
7600         return 0;
7601 }
7602
7603 /* SIOCGIWGENIE */
7604 static int ipw2100_wx_get_genie(struct net_device *dev,
7605                                 struct iw_request_info *info,
7606                                 union iwreq_data *wrqu, char *extra)
7607 {
7608         struct ipw2100_priv *priv = libipw_priv(dev);
7609         struct libipw_device *ieee = priv->ieee;
7610
7611         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7612                 wrqu->data.length = 0;
7613                 return 0;
7614         }
7615
7616         if (wrqu->data.length < ieee->wpa_ie_len)
7617                 return -E2BIG;
7618
7619         wrqu->data.length = ieee->wpa_ie_len;
7620         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7621
7622         return 0;
7623 }
7624
7625 /* SIOCSIWAUTH */
7626 static int ipw2100_wx_set_auth(struct net_device *dev,
7627                                struct iw_request_info *info,
7628                                union iwreq_data *wrqu, char *extra)
7629 {
7630         struct ipw2100_priv *priv = libipw_priv(dev);
7631         struct libipw_device *ieee = priv->ieee;
7632         struct iw_param *param = &wrqu->param;
7633         struct lib80211_crypt_data *crypt;
7634         unsigned long flags;
7635         int ret = 0;
7636
7637         switch (param->flags & IW_AUTH_INDEX) {
7638         case IW_AUTH_WPA_VERSION:
7639         case IW_AUTH_CIPHER_PAIRWISE:
7640         case IW_AUTH_CIPHER_GROUP:
7641         case IW_AUTH_KEY_MGMT:
7642                 /*
7643                  * ipw2200 does not use these parameters
7644                  */
7645                 break;
7646
7647         case IW_AUTH_TKIP_COUNTERMEASURES:
7648                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7649                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7650                         break;
7651
7652                 flags = crypt->ops->get_flags(crypt->priv);
7653
7654                 if (param->value)
7655                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7656                 else
7657                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7658
7659                 crypt->ops->set_flags(flags, crypt->priv);
7660
7661                 break;
7662
7663         case IW_AUTH_DROP_UNENCRYPTED:{
7664                         /* HACK:
7665                          *
7666                          * wpa_supplicant calls set_wpa_enabled when the driver
7667                          * is loaded and unloaded, regardless of if WPA is being
7668                          * used.  No other calls are made which can be used to
7669                          * determine if encryption will be used or not prior to
7670                          * association being expected.  If encryption is not being
7671                          * used, drop_unencrypted is set to false, else true -- we
7672                          * can use this to determine if the CAP_PRIVACY_ON bit should
7673                          * be set.
7674                          */
7675                         struct libipw_security sec = {
7676                                 .flags = SEC_ENABLED,
7677                                 .enabled = param->value,
7678                         };
7679                         priv->ieee->drop_unencrypted = param->value;
7680                         /* We only change SEC_LEVEL for open mode. Others
7681                          * are set by ipw_wpa_set_encryption.
7682                          */
7683                         if (!param->value) {
7684                                 sec.flags |= SEC_LEVEL;
7685                                 sec.level = SEC_LEVEL_0;
7686                         } else {
7687                                 sec.flags |= SEC_LEVEL;
7688                                 sec.level = SEC_LEVEL_1;
7689                         }
7690                         if (priv->ieee->set_security)
7691                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7692                         break;
7693                 }
7694
7695         case IW_AUTH_80211_AUTH_ALG:
7696                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7697                 break;
7698
7699         case IW_AUTH_WPA_ENABLED:
7700                 ret = ipw2100_wpa_enable(priv, param->value);
7701                 break;
7702
7703         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7704                 ieee->ieee802_1x = param->value;
7705                 break;
7706
7707                 //case IW_AUTH_ROAMING_CONTROL:
7708         case IW_AUTH_PRIVACY_INVOKED:
7709                 ieee->privacy_invoked = param->value;
7710                 break;
7711
7712         default:
7713                 return -EOPNOTSUPP;
7714         }
7715         return ret;
7716 }
7717
7718 /* SIOCGIWAUTH */
7719 static int ipw2100_wx_get_auth(struct net_device *dev,
7720                                struct iw_request_info *info,
7721                                union iwreq_data *wrqu, char *extra)
7722 {
7723         struct ipw2100_priv *priv = libipw_priv(dev);
7724         struct libipw_device *ieee = priv->ieee;
7725         struct lib80211_crypt_data *crypt;
7726         struct iw_param *param = &wrqu->param;
7727         int ret = 0;
7728
7729         switch (param->flags & IW_AUTH_INDEX) {
7730         case IW_AUTH_WPA_VERSION:
7731         case IW_AUTH_CIPHER_PAIRWISE:
7732         case IW_AUTH_CIPHER_GROUP:
7733         case IW_AUTH_KEY_MGMT:
7734                 /*
7735                  * wpa_supplicant will control these internally
7736                  */
7737                 ret = -EOPNOTSUPP;
7738                 break;
7739
7740         case IW_AUTH_TKIP_COUNTERMEASURES:
7741                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7742                 if (!crypt || !crypt->ops->get_flags) {
7743                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7744                                           "crypt not set!\n");
7745                         break;
7746                 }
7747
7748                 param->value = (crypt->ops->get_flags(crypt->priv) &
7749                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7750
7751                 break;
7752
7753         case IW_AUTH_DROP_UNENCRYPTED:
7754                 param->value = ieee->drop_unencrypted;
7755                 break;
7756
7757         case IW_AUTH_80211_AUTH_ALG:
7758                 param->value = priv->ieee->sec.auth_mode;
7759                 break;
7760
7761         case IW_AUTH_WPA_ENABLED:
7762                 param->value = ieee->wpa_enabled;
7763                 break;
7764
7765         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7766                 param->value = ieee->ieee802_1x;
7767                 break;
7768
7769         case IW_AUTH_ROAMING_CONTROL:
7770         case IW_AUTH_PRIVACY_INVOKED:
7771                 param->value = ieee->privacy_invoked;
7772                 break;
7773
7774         default:
7775                 return -EOPNOTSUPP;
7776         }
7777         return 0;
7778 }
7779
7780 /* SIOCSIWENCODEEXT */
7781 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7782                                     struct iw_request_info *info,
7783                                     union iwreq_data *wrqu, char *extra)
7784 {
7785         struct ipw2100_priv *priv = libipw_priv(dev);
7786         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7787 }
7788
7789 /* SIOCGIWENCODEEXT */
7790 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7791                                     struct iw_request_info *info,
7792                                     union iwreq_data *wrqu, char *extra)
7793 {
7794         struct ipw2100_priv *priv = libipw_priv(dev);
7795         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7796 }
7797
7798 /* SIOCSIWMLME */
7799 static int ipw2100_wx_set_mlme(struct net_device *dev,
7800                                struct iw_request_info *info,
7801                                union iwreq_data *wrqu, char *extra)
7802 {
7803         struct ipw2100_priv *priv = libipw_priv(dev);
7804         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7805         __le16 reason;
7806
7807         reason = cpu_to_le16(mlme->reason_code);
7808
7809         switch (mlme->cmd) {
7810         case IW_MLME_DEAUTH:
7811                 // silently ignore
7812                 break;
7813
7814         case IW_MLME_DISASSOC:
7815                 ipw2100_disassociate_bssid(priv);
7816                 break;
7817
7818         default:
7819                 return -EOPNOTSUPP;
7820         }
7821         return 0;
7822 }
7823
7824 /*
7825  *
7826  * IWPRIV handlers
7827  *
7828  */
7829 #ifdef CONFIG_IPW2100_MONITOR
7830 static int ipw2100_wx_set_promisc(struct net_device *dev,
7831                                   struct iw_request_info *info,
7832                                   union iwreq_data *wrqu, char *extra)
7833 {
7834         struct ipw2100_priv *priv = libipw_priv(dev);
7835         int *parms = (int *)extra;
7836         int enable = (parms[0] > 0);
7837         int err = 0;
7838
7839         mutex_lock(&priv->action_mutex);
7840         if (!(priv->status & STATUS_INITIALIZED)) {
7841                 err = -EIO;
7842                 goto done;
7843         }
7844
7845         if (enable) {
7846                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7847                         err = ipw2100_set_channel(priv, parms[1], 0);
7848                         goto done;
7849                 }
7850                 priv->channel = parms[1];
7851                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7852         } else {
7853                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7854                         err = ipw2100_switch_mode(priv, priv->last_mode);
7855         }
7856       done:
7857         mutex_unlock(&priv->action_mutex);
7858         return err;
7859 }
7860
7861 static int ipw2100_wx_reset(struct net_device *dev,
7862                             struct iw_request_info *info,
7863                             union iwreq_data *wrqu, char *extra)
7864 {
7865         struct ipw2100_priv *priv = libipw_priv(dev);
7866         if (priv->status & STATUS_INITIALIZED)
7867                 schedule_reset(priv);
7868         return 0;
7869 }
7870
7871 #endif
7872
7873 static int ipw2100_wx_set_powermode(struct net_device *dev,
7874                                     struct iw_request_info *info,
7875                                     union iwreq_data *wrqu, char *extra)
7876 {
7877         struct ipw2100_priv *priv = libipw_priv(dev);
7878         int err = 0, mode = *(int *)extra;
7879
7880         mutex_lock(&priv->action_mutex);
7881         if (!(priv->status & STATUS_INITIALIZED)) {
7882                 err = -EIO;
7883                 goto done;
7884         }
7885
7886         if ((mode < 0) || (mode > POWER_MODES))
7887                 mode = IPW_POWER_AUTO;
7888
7889         if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7890                 err = ipw2100_set_power_mode(priv, mode);
7891       done:
7892         mutex_unlock(&priv->action_mutex);
7893         return err;
7894 }
7895
7896 #define MAX_POWER_STRING 80
7897 static int ipw2100_wx_get_powermode(struct net_device *dev,
7898                                     struct iw_request_info *info,
7899                                     union iwreq_data *wrqu, char *extra)
7900 {
7901         /*
7902          * This can be called at any time.  No action lock required
7903          */
7904
7905         struct ipw2100_priv *priv = libipw_priv(dev);
7906         int level = IPW_POWER_LEVEL(priv->power_mode);
7907         s32 timeout, period;
7908
7909         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7910                 snprintf(extra, MAX_POWER_STRING,
7911                          "Power save level: %d (Off)", level);
7912         } else {
7913                 switch (level) {
7914                 case IPW_POWER_MODE_CAM:
7915                         snprintf(extra, MAX_POWER_STRING,
7916                                  "Power save level: %d (None)", level);
7917                         break;
7918                 case IPW_POWER_AUTO:
7919                         snprintf(extra, MAX_POWER_STRING,
7920                                  "Power save level: %d (Auto)", level);
7921                         break;
7922                 default:
7923                         timeout = timeout_duration[level - 1] / 1000;
7924                         period = period_duration[level - 1] / 1000;
7925                         snprintf(extra, MAX_POWER_STRING,
7926                                  "Power save level: %d "
7927                                  "(Timeout %dms, Period %dms)",
7928                                  level, timeout, period);
7929                 }
7930         }
7931
7932         wrqu->data.length = strlen(extra) + 1;
7933
7934         return 0;
7935 }
7936
7937 static int ipw2100_wx_set_preamble(struct net_device *dev,
7938                                    struct iw_request_info *info,
7939                                    union iwreq_data *wrqu, char *extra)
7940 {
7941         struct ipw2100_priv *priv = libipw_priv(dev);
7942         int err, mode = *(int *)extra;
7943
7944         mutex_lock(&priv->action_mutex);
7945         if (!(priv->status & STATUS_INITIALIZED)) {
7946                 err = -EIO;
7947                 goto done;
7948         }
7949
7950         if (mode == 1)
7951                 priv->config |= CFG_LONG_PREAMBLE;
7952         else if (mode == 0)
7953                 priv->config &= ~CFG_LONG_PREAMBLE;
7954         else {
7955                 err = -EINVAL;
7956                 goto done;
7957         }
7958
7959         err = ipw2100_system_config(priv, 0);
7960
7961       done:
7962         mutex_unlock(&priv->action_mutex);
7963         return err;
7964 }
7965
7966 static int ipw2100_wx_get_preamble(struct net_device *dev,
7967                                    struct iw_request_info *info,
7968                                    union iwreq_data *wrqu, char *extra)
7969 {
7970         /*
7971          * This can be called at any time.  No action lock required
7972          */
7973
7974         struct ipw2100_priv *priv = libipw_priv(dev);
7975
7976         if (priv->config & CFG_LONG_PREAMBLE)
7977                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7978         else
7979                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7980
7981         return 0;
7982 }
7983
7984 #ifdef CONFIG_IPW2100_MONITOR
7985 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7986                                     struct iw_request_info *info,
7987                                     union iwreq_data *wrqu, char *extra)
7988 {
7989         struct ipw2100_priv *priv = libipw_priv(dev);
7990         int err, mode = *(int *)extra;
7991
7992         mutex_lock(&priv->action_mutex);
7993         if (!(priv->status & STATUS_INITIALIZED)) {
7994                 err = -EIO;
7995                 goto done;
7996         }
7997
7998         if (mode == 1)
7999                 priv->config |= CFG_CRC_CHECK;
8000         else if (mode == 0)
8001                 priv->config &= ~CFG_CRC_CHECK;
8002         else {
8003                 err = -EINVAL;
8004                 goto done;
8005         }
8006         err = 0;
8007
8008       done:
8009         mutex_unlock(&priv->action_mutex);
8010         return err;
8011 }
8012
8013 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8014                                     struct iw_request_info *info,
8015                                     union iwreq_data *wrqu, char *extra)
8016 {
8017         /*
8018          * This can be called at any time.  No action lock required
8019          */
8020
8021         struct ipw2100_priv *priv = libipw_priv(dev);
8022
8023         if (priv->config & CFG_CRC_CHECK)
8024                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8025         else
8026                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8027
8028         return 0;
8029 }
8030 #endif                          /* CONFIG_IPW2100_MONITOR */
8031
8032 static iw_handler ipw2100_wx_handlers[] = {
8033         IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8034         IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8035         IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8036         IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8037         IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8038         IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8039         IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8040         IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8041         IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8042         IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8043         IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8044         IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8045         IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8046         IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8047         IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8048         IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8049         IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8050         IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8051         IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8052         IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8053         IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8054         IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8055         IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8056         IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8057         IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8058         IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8059         IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8060         IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8061         IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8062         IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8063         IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8064         IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8065         IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8066         IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8067         IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8068 };
8069
8070 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8071 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8072 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8073 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8074 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8075 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8076 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8077 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8078
8079 static const struct iw_priv_args ipw2100_private_args[] = {
8080
8081 #ifdef CONFIG_IPW2100_MONITOR
8082         {
8083          IPW2100_PRIV_SET_MONITOR,
8084          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8085         {
8086          IPW2100_PRIV_RESET,
8087          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8088 #endif                          /* CONFIG_IPW2100_MONITOR */
8089
8090         {
8091          IPW2100_PRIV_SET_POWER,
8092          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8093         {
8094          IPW2100_PRIV_GET_POWER,
8095          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8096          "get_power"},
8097         {
8098          IPW2100_PRIV_SET_LONGPREAMBLE,
8099          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8100         {
8101          IPW2100_PRIV_GET_LONGPREAMBLE,
8102          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8103 #ifdef CONFIG_IPW2100_MONITOR
8104         {
8105          IPW2100_PRIV_SET_CRC_CHECK,
8106          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8107         {
8108          IPW2100_PRIV_GET_CRC_CHECK,
8109          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8110 #endif                          /* CONFIG_IPW2100_MONITOR */
8111 };
8112
8113 static iw_handler ipw2100_private_handler[] = {
8114 #ifdef CONFIG_IPW2100_MONITOR
8115         ipw2100_wx_set_promisc,
8116         ipw2100_wx_reset,
8117 #else                           /* CONFIG_IPW2100_MONITOR */
8118         NULL,
8119         NULL,
8120 #endif                          /* CONFIG_IPW2100_MONITOR */
8121         ipw2100_wx_set_powermode,
8122         ipw2100_wx_get_powermode,
8123         ipw2100_wx_set_preamble,
8124         ipw2100_wx_get_preamble,
8125 #ifdef CONFIG_IPW2100_MONITOR
8126         ipw2100_wx_set_crc_check,
8127         ipw2100_wx_get_crc_check,
8128 #else                           /* CONFIG_IPW2100_MONITOR */
8129         NULL,
8130         NULL,
8131 #endif                          /* CONFIG_IPW2100_MONITOR */
8132 };
8133
8134 /*
8135  * Get wireless statistics.
8136  * Called by /proc/net/wireless
8137  * Also called by SIOCGIWSTATS
8138  */
8139 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8140 {
8141         enum {
8142                 POOR = 30,
8143                 FAIR = 60,
8144                 GOOD = 80,
8145                 VERY_GOOD = 90,
8146                 EXCELLENT = 95,
8147                 PERFECT = 100
8148         };
8149         int rssi_qual;
8150         int tx_qual;
8151         int beacon_qual;
8152         int quality;
8153
8154         struct ipw2100_priv *priv = libipw_priv(dev);
8155         struct iw_statistics *wstats;
8156         u32 rssi, tx_retries, missed_beacons, tx_failures;
8157         u32 ord_len = sizeof(u32);
8158
8159         if (!priv)
8160                 return (struct iw_statistics *)NULL;
8161
8162         wstats = &priv->wstats;
8163
8164         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8165          * ipw2100_wx_wireless_stats seems to be called before fw is
8166          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8167          * and associated; if not associcated, the values are all meaningless
8168          * anyway, so set them all to NULL and INVALID */
8169         if (!(priv->status & STATUS_ASSOCIATED)) {
8170                 wstats->miss.beacon = 0;
8171                 wstats->discard.retries = 0;
8172                 wstats->qual.qual = 0;
8173                 wstats->qual.level = 0;
8174                 wstats->qual.noise = 0;
8175                 wstats->qual.updated = 7;
8176                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8177                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8178                 return wstats;
8179         }
8180
8181         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8182                                 &missed_beacons, &ord_len))
8183                 goto fail_get_ordinal;
8184
8185         /* If we don't have a connection the quality and level is 0 */
8186         if (!(priv->status & STATUS_ASSOCIATED)) {
8187                 wstats->qual.qual = 0;
8188                 wstats->qual.level = 0;
8189         } else {
8190                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8191                                         &rssi, &ord_len))
8192                         goto fail_get_ordinal;
8193                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8194                 if (rssi < 10)
8195                         rssi_qual = rssi * POOR / 10;
8196                 else if (rssi < 15)
8197                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8198                 else if (rssi < 20)
8199                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8200                 else if (rssi < 30)
8201                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8202                             10 + GOOD;
8203                 else
8204                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8205                             10 + VERY_GOOD;
8206
8207                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8208                                         &tx_retries, &ord_len))
8209                         goto fail_get_ordinal;
8210
8211                 if (tx_retries > 75)
8212                         tx_qual = (90 - tx_retries) * POOR / 15;
8213                 else if (tx_retries > 70)
8214                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8215                 else if (tx_retries > 65)
8216                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8217                 else if (tx_retries > 50)
8218                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8219                             15 + GOOD;
8220                 else
8221                         tx_qual = (50 - tx_retries) *
8222                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8223
8224                 if (missed_beacons > 50)
8225                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8226                 else if (missed_beacons > 40)
8227                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8228                             10 + POOR;
8229                 else if (missed_beacons > 32)
8230                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8231                             18 + FAIR;
8232                 else if (missed_beacons > 20)
8233                         beacon_qual = (32 - missed_beacons) *
8234                             (VERY_GOOD - GOOD) / 20 + GOOD;
8235                 else
8236                         beacon_qual = (20 - missed_beacons) *
8237                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8238
8239                 quality = min(tx_qual, rssi_qual);
8240                 quality = min(beacon_qual, quality);
8241
8242 #ifdef CONFIG_IPW2100_DEBUG
8243                 if (beacon_qual == quality)
8244                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8245                 else if (tx_qual == quality)
8246                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8247                 else if (quality != 100)
8248                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8249                 else
8250                         IPW_DEBUG_WX("Quality not clamped.\n");
8251 #endif
8252
8253                 wstats->qual.qual = quality;
8254                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8255         }
8256
8257         wstats->qual.noise = 0;
8258         wstats->qual.updated = 7;
8259         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8260
8261         /* FIXME: this is percent and not a # */
8262         wstats->miss.beacon = missed_beacons;
8263
8264         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8265                                 &tx_failures, &ord_len))
8266                 goto fail_get_ordinal;
8267         wstats->discard.retries = tx_failures;
8268
8269         return wstats;
8270
8271       fail_get_ordinal:
8272         IPW_DEBUG_WX("failed querying ordinals.\n");
8273
8274         return (struct iw_statistics *)NULL;
8275 }
8276
8277 static const struct iw_handler_def ipw2100_wx_handler_def = {
8278         .standard = ipw2100_wx_handlers,
8279         .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8280         .num_private = ARRAY_SIZE(ipw2100_private_handler),
8281         .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8282         .private = (iw_handler *) ipw2100_private_handler,
8283         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8284         .get_wireless_stats = ipw2100_wx_wireless_stats,
8285 };
8286
8287 static void ipw2100_wx_event_work(struct work_struct *work)
8288 {
8289         struct ipw2100_priv *priv =
8290                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8291         union iwreq_data wrqu;
8292         unsigned int len = ETH_ALEN;
8293
8294         if (priv->status & STATUS_STOPPING)
8295                 return;
8296
8297         mutex_lock(&priv->action_mutex);
8298
8299         IPW_DEBUG_WX("enter\n");
8300
8301         mutex_unlock(&priv->action_mutex);
8302
8303         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8304
8305         /* Fetch BSSID from the hardware */
8306         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8307             priv->status & STATUS_RF_KILL_MASK ||
8308             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8309                                 &priv->bssid, &len)) {
8310                 eth_zero_addr(wrqu.ap_addr.sa_data);
8311         } else {
8312                 /* We now have the BSSID, so can finish setting to the full
8313                  * associated state */
8314                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8315                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8316                 priv->status &= ~STATUS_ASSOCIATING;
8317                 priv->status |= STATUS_ASSOCIATED;
8318                 netif_carrier_on(priv->net_dev);
8319                 netif_wake_queue(priv->net_dev);
8320         }
8321
8322         if (!(priv->status & STATUS_ASSOCIATED)) {
8323                 IPW_DEBUG_WX("Configuring ESSID\n");
8324                 mutex_lock(&priv->action_mutex);
8325                 /* This is a disassociation event, so kick the firmware to
8326                  * look for another AP */
8327                 if (priv->config & CFG_STATIC_ESSID)
8328                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8329                                           0);
8330                 else
8331                         ipw2100_set_essid(priv, NULL, 0, 0);
8332                 mutex_unlock(&priv->action_mutex);
8333         }
8334
8335         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8336 }
8337
8338 /*(DEBLOBBED)*/
8339
8340 #define IPW2100_FW_PREFIX "/*(DEBLOBBED)*/" /*(DEBLOBBED)*/
8341
8342 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX /*(DEBLOBBED)*/
8343
8344 /*
8345
8346 BINARY FIRMWARE HEADER FORMAT
8347
8348 offset      length   desc
8349 0           2        version
8350 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8351 4           4        fw_len
8352 8           4        uc_len
8353 C           fw_len   firmware data
8354 12 + fw_len uc_len   microcode data
8355
8356 */
8357
8358 struct ipw2100_fw_header {
8359         short version;
8360         short mode;
8361         unsigned int fw_size;
8362         unsigned int uc_size;
8363 } __packed;
8364
8365 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8366 {
8367         struct ipw2100_fw_header *h =
8368             (struct ipw2100_fw_header *)fw->fw_entry->data;
8369
8370         /*(DEBLOBBED)*/
8371
8372         fw->version = h->version;
8373         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8374         fw->fw.size = h->fw_size;
8375         fw->uc.data = fw->fw.data + h->fw_size;
8376         fw->uc.size = h->uc_size;
8377
8378         return 0;
8379 }
8380
8381 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8382                                 struct ipw2100_fw *fw)
8383 {
8384         char *fw_name;
8385         int rc;
8386
8387         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8388                        priv->net_dev->name);
8389
8390         switch (priv->ieee->iw_mode) {
8391         case IW_MODE_ADHOC:
8392                 fw_name = IPW2100_FW_NAME("-i");
8393                 break;
8394 #ifdef CONFIG_IPW2100_MONITOR
8395         case IW_MODE_MONITOR:
8396                 fw_name = IPW2100_FW_NAME("-p");
8397                 break;
8398 #endif
8399         case IW_MODE_INFRA:
8400         default:
8401                 fw_name = IPW2100_FW_NAME("");
8402                 break;
8403         }
8404
8405         rc = reject_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8406
8407         if (rc < 0) {
8408                 printk(KERN_ERR DRV_NAME ": "
8409                        "%s: Firmware '%s' not available or load failed.\n",
8410                        priv->net_dev->name, fw_name);
8411                 return rc;
8412         }
8413         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8414                        fw->fw_entry->size);
8415
8416         ipw2100_mod_firmware_load(fw);
8417
8418         return 0;
8419 }
8420
8421 /*(DEBLOBBED)*/
8422 #ifdef CONFIG_IPW2100_MONITOR
8423 /*(DEBLOBBED)*/
8424 #endif
8425 /*(DEBLOBBED)*/
8426
8427 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8428                                      struct ipw2100_fw *fw)
8429 {
8430         fw->version = 0;
8431         release_firmware(fw->fw_entry);
8432         fw->fw_entry = NULL;
8433 }
8434
8435 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8436                                  size_t max)
8437 {
8438         char ver[MAX_FW_VERSION_LEN];
8439         u32 len = MAX_FW_VERSION_LEN;
8440         u32 tmp;
8441         int i;
8442         /* firmware version is an ascii string (max len of 14) */
8443         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8444                 return -EIO;
8445         tmp = max;
8446         if (len >= max)
8447                 len = max - 1;
8448         for (i = 0; i < len; i++)
8449                 buf[i] = ver[i];
8450         buf[i] = '\0';
8451         return tmp;
8452 }
8453
8454 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8455                                     size_t max)
8456 {
8457         u32 ver;
8458         u32 len = sizeof(ver);
8459         /* microcode version is a 32 bit integer */
8460         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8461                 return -EIO;
8462         return snprintf(buf, max, "%08X", ver);
8463 }
8464
8465 /*
8466  * On exit, the firmware will have been freed from the fw list
8467  */
8468 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8469 {
8470         /* firmware is constructed of N contiguous entries, each entry is
8471          * structured as:
8472          *
8473          * offset    sie         desc
8474          * 0         4           address to write to
8475          * 4         2           length of data run
8476          * 6         length      data
8477          */
8478         unsigned int addr;
8479         unsigned short len;
8480
8481         const unsigned char *firmware_data = fw->fw.data;
8482         unsigned int firmware_data_left = fw->fw.size;
8483
8484         while (firmware_data_left > 0) {
8485                 addr = *(u32 *) (firmware_data);
8486                 firmware_data += 4;
8487                 firmware_data_left -= 4;
8488
8489                 len = *(u16 *) (firmware_data);
8490                 firmware_data += 2;
8491                 firmware_data_left -= 2;
8492
8493                 if (len > 32) {
8494                         printk(KERN_ERR DRV_NAME ": "
8495                                "Invalid firmware run-length of %d bytes\n",
8496                                len);
8497                         return -EINVAL;
8498                 }
8499
8500                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8501                 firmware_data += len;
8502                 firmware_data_left -= len;
8503         }
8504
8505         return 0;
8506 }
8507
8508 struct symbol_alive_response {
8509         u8 cmd_id;
8510         u8 seq_num;
8511         u8 ucode_rev;
8512         u8 eeprom_valid;
8513         u16 valid_flags;
8514         u8 IEEE_addr[6];
8515         u16 flags;
8516         u16 pcb_rev;
8517         u16 clock_settle_time;  // 1us LSB
8518         u16 powerup_settle_time;        // 1us LSB
8519         u16 hop_settle_time;    // 1us LSB
8520         u8 date[3];             // month, day, year
8521         u8 time[2];             // hours, minutes
8522         u8 ucode_valid;
8523 };
8524
8525 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8526                                   struct ipw2100_fw *fw)
8527 {
8528         struct net_device *dev = priv->net_dev;
8529         const unsigned char *microcode_data = fw->uc.data;
8530         unsigned int microcode_data_left = fw->uc.size;
8531         void __iomem *reg = priv->ioaddr;
8532
8533         struct symbol_alive_response response;
8534         int i, j;
8535         u8 data;
8536
8537         /* Symbol control */
8538         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8539         readl(reg);
8540         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8541         readl(reg);
8542
8543         /* HW config */
8544         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8545         readl(reg);
8546         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8547         readl(reg);
8548
8549         /* EN_CS_ACCESS bit to reset control store pointer */
8550         write_nic_byte(dev, 0x210000, 0x40);
8551         readl(reg);
8552         write_nic_byte(dev, 0x210000, 0x0);
8553         readl(reg);
8554         write_nic_byte(dev, 0x210000, 0x40);
8555         readl(reg);
8556
8557         /* copy microcode from buffer into Symbol */
8558
8559         while (microcode_data_left > 0) {
8560                 write_nic_byte(dev, 0x210010, *microcode_data++);
8561                 write_nic_byte(dev, 0x210010, *microcode_data++);
8562                 microcode_data_left -= 2;
8563         }
8564
8565         /* EN_CS_ACCESS bit to reset the control store pointer */
8566         write_nic_byte(dev, 0x210000, 0x0);
8567         readl(reg);
8568
8569         /* Enable System (Reg 0)
8570          * first enable causes garbage in RX FIFO */
8571         write_nic_byte(dev, 0x210000, 0x0);
8572         readl(reg);
8573         write_nic_byte(dev, 0x210000, 0x80);
8574         readl(reg);
8575
8576         /* Reset External Baseband Reg */
8577         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8578         readl(reg);
8579         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8580         readl(reg);
8581
8582         /* HW Config (Reg 5) */
8583         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8584         readl(reg);
8585         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8586         readl(reg);
8587
8588         /* Enable System (Reg 0)
8589          * second enable should be OK */
8590         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8591         readl(reg);
8592         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8593
8594         /* check Symbol is enabled - upped this from 5 as it wasn't always
8595          * catching the update */
8596         for (i = 0; i < 10; i++) {
8597                 udelay(10);
8598
8599                 /* check Dino is enabled bit */
8600                 read_nic_byte(dev, 0x210000, &data);
8601                 if (data & 0x1)
8602                         break;
8603         }
8604
8605         if (i == 10) {
8606                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8607                        dev->name);
8608                 return -EIO;
8609         }
8610
8611         /* Get Symbol alive response */
8612         for (i = 0; i < 30; i++) {
8613                 /* Read alive response structure */
8614                 for (j = 0;
8615                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8616                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8617
8618                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8619                         break;
8620                 udelay(10);
8621         }
8622
8623         if (i == 30) {
8624                 printk(KERN_ERR DRV_NAME
8625                        ": %s: No response from Symbol - hw not alive\n",
8626                        dev->name);
8627                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8628                 return -EIO;
8629         }
8630
8631         return 0;
8632 }