GNU Linux-libre 4.9.333-gnu1
[releases.git] / drivers / net / wireless / intel / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169 #include "ipw.h"
170
171 #define IPW2100_VERSION "git-1.2.2"
172
173 #define DRV_NAME        "ipw2100"
174 #define DRV_VERSION     IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
177
178 static struct pm_qos_request ipw2100_pm_qos_req;
179
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG        /* Reception debugging */
183 #endif
184
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217         if (ipw2100_debug_level & (level)) { \
218                 printk(KERN_DEBUG "ipw2100: %c %s ", \
219                        in_interrupt() ? 'I' : 'U',  __func__); \
220                 printk(message); \
221         } \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif                          /* CONFIG_IPW2100_DEBUG */
226
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229         "undefined",
230         "unused",               /* HOST_ATTENTION */
231         "HOST_COMPLETE",
232         "unused",               /* SLEEP */
233         "unused",               /* HOST_POWER_DOWN */
234         "unused",
235         "SYSTEM_CONFIG",
236         "unused",               /* SET_IMR */
237         "SSID",
238         "MANDATORY_BSSID",
239         "AUTHENTICATION_TYPE",
240         "ADAPTER_ADDRESS",
241         "PORT_TYPE",
242         "INTERNATIONAL_MODE",
243         "CHANNEL",
244         "RTS_THRESHOLD",
245         "FRAG_THRESHOLD",
246         "POWER_MODE",
247         "TX_RATES",
248         "BASIC_TX_RATES",
249         "WEP_KEY_INFO",
250         "unused",
251         "unused",
252         "unused",
253         "unused",
254         "WEP_KEY_INDEX",
255         "WEP_FLAGS",
256         "ADD_MULTICAST",
257         "CLEAR_ALL_MULTICAST",
258         "BEACON_INTERVAL",
259         "ATIM_WINDOW",
260         "CLEAR_STATISTICS",
261         "undefined",
262         "undefined",
263         "undefined",
264         "undefined",
265         "TX_POWER_INDEX",
266         "undefined",
267         "undefined",
268         "undefined",
269         "undefined",
270         "undefined",
271         "undefined",
272         "BROADCAST_SCAN",
273         "CARD_DISABLE",
274         "PREFERRED_BSSID",
275         "SET_SCAN_OPTIONS",
276         "SCAN_DWELL_TIME",
277         "SWEEP_TABLE",
278         "AP_OR_STATION_TABLE",
279         "GROUP_ORDINALS",
280         "SHORT_RETRY_LIMIT",
281         "LONG_RETRY_LIMIT",
282         "unused",               /* SAVE_CALIBRATION */
283         "unused",               /* RESTORE_CALIBRATION */
284         "undefined",
285         "undefined",
286         "undefined",
287         "HOST_PRE_POWER_DOWN",
288         "unused",               /* HOST_INTERRUPT_COALESCING */
289         "undefined",
290         "CARD_DISABLE_PHY_OFF",
291         "MSDU_TX_RATES",
292         "undefined",
293         "SET_STATION_STAT_BITS",
294         "CLEAR_STATIONS_STAT_BITS",
295         "LEAP_ROGUE_MODE",
296         "SET_SECURITY_INFORMATION",
297         "DISASSOCIATION_BSSID",
298         "SET_WPA_ASS_IE"
299 };
300 #endif
301
302 static const long ipw2100_frequencies[] = {
303         2412, 2417, 2422, 2427,
304         2432, 2437, 2442, 2447,
305         2452, 2457, 2462, 2467,
306         2472, 2484
307 };
308
309 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
310
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312         { .bitrate = 10 },
313         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330                                struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332                                 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334                                  size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336                                     size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338                                      struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340                                   struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static struct iw_handler_def ipw2100_wx_handler_def;
344
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347         struct ipw2100_priv *priv = libipw_priv(dev);
348
349         *val = ioread32(priv->ioaddr + reg);
350         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355         struct ipw2100_priv *priv = libipw_priv(dev);
356
357         iowrite32(val, priv->ioaddr + reg);
358         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362                                       u16 * val)
363 {
364         struct ipw2100_priv *priv = libipw_priv(dev);
365
366         *val = ioread16(priv->ioaddr + reg);
367         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372         struct ipw2100_priv *priv = libipw_priv(dev);
373
374         *val = ioread8(priv->ioaddr + reg);
375         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380         struct ipw2100_priv *priv = libipw_priv(dev);
381
382         iowrite16(val, priv->ioaddr + reg);
383         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388         struct ipw2100_priv *priv = libipw_priv(dev);
389
390         iowrite8(val, priv->ioaddr + reg);
391         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397                        addr & IPW_REG_INDIRECT_ADDR_MASK);
398         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404                        addr & IPW_REG_INDIRECT_ADDR_MASK);
405         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411                        addr & IPW_REG_INDIRECT_ADDR_MASK);
412         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418                        addr & IPW_REG_INDIRECT_ADDR_MASK);
419         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425                        addr & IPW_REG_INDIRECT_ADDR_MASK);
426         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432                        addr & IPW_REG_INDIRECT_ADDR_MASK);
433         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439                        addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448                                     const u8 * buf)
449 {
450         u32 aligned_addr;
451         u32 aligned_len;
452         u32 dif_len;
453         u32 i;
454
455         /* read first nibble byte by byte */
456         aligned_addr = addr & (~0x3);
457         dif_len = addr - aligned_addr;
458         if (dif_len) {
459                 /* Start reading at aligned_addr + dif_len */
460                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461                                aligned_addr);
462                 for (i = dif_len; i < 4; i++, buf++)
463                         write_register_byte(dev,
464                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
465                                             *buf);
466
467                 len -= dif_len;
468                 aligned_addr += 4;
469         }
470
471         /* read DWs through autoincrement registers */
472         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473         aligned_len = len & (~0x3);
474         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476
477         /* copy the last nibble */
478         dif_len = len - aligned_len;
479         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480         for (i = 0; i < dif_len; i++, buf++)
481                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482                                     *buf);
483 }
484
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486                                    u8 * buf)
487 {
488         u32 aligned_addr;
489         u32 aligned_len;
490         u32 dif_len;
491         u32 i;
492
493         /* read first nibble byte by byte */
494         aligned_addr = addr & (~0x3);
495         dif_len = addr - aligned_addr;
496         if (dif_len) {
497                 /* Start reading at aligned_addr + dif_len */
498                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499                                aligned_addr);
500                 for (i = dif_len; i < 4; i++, buf++)
501                         read_register_byte(dev,
502                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
503                                            buf);
504
505                 len -= dif_len;
506                 aligned_addr += 4;
507         }
508
509         /* read DWs through autoincrement registers */
510         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511         aligned_len = len & (~0x3);
512         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514
515         /* copy the last nibble */
516         dif_len = len - aligned_len;
517         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518         for (i = 0; i < dif_len; i++, buf++)
519                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524         u32 dbg;
525
526         read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527
528         return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532                                void *val, u32 * len)
533 {
534         struct ipw2100_ordinals *ordinals = &priv->ordinals;
535         u32 addr;
536         u32 field_info;
537         u16 field_len;
538         u16 field_count;
539         u32 total_length;
540
541         if (ordinals->table1_addr == 0) {
542                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543                        "before they have been loaded.\n");
544                 return -EINVAL;
545         }
546
547         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
550
551                         printk(KERN_WARNING DRV_NAME
552                                ": ordinal buffer length too small, need %zd\n",
553                                IPW_ORD_TAB_1_ENTRY_SIZE);
554
555                         return -EINVAL;
556                 }
557
558                 read_nic_dword(priv->net_dev,
559                                ordinals->table1_addr + (ord << 2), &addr);
560                 read_nic_dword(priv->net_dev, addr, val);
561
562                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
563
564                 return 0;
565         }
566
567         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568
569                 ord -= IPW_START_ORD_TAB_2;
570
571                 /* get the address of statistic */
572                 read_nic_dword(priv->net_dev,
573                                ordinals->table2_addr + (ord << 3), &addr);
574
575                 /* get the second DW of statistics ;
576                  * two 16-bit words - first is length, second is count */
577                 read_nic_dword(priv->net_dev,
578                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
579                                &field_info);
580
581                 /* get each entry length */
582                 field_len = *((u16 *) & field_info);
583
584                 /* get number of entries */
585                 field_count = *(((u16 *) & field_info) + 1);
586
587                 /* abort if no enough memory */
588                 total_length = field_len * field_count;
589                 if (total_length > *len) {
590                         *len = total_length;
591                         return -EINVAL;
592                 }
593
594                 *len = total_length;
595                 if (!total_length)
596                         return 0;
597
598                 /* read the ordinal data from the SRAM */
599                 read_nic_memory(priv->net_dev, addr, total_length, val);
600
601                 return 0;
602         }
603
604         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605                "in table 2\n", ord);
606
607         return -EINVAL;
608 }
609
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611                                u32 * len)
612 {
613         struct ipw2100_ordinals *ordinals = &priv->ordinals;
614         u32 addr;
615
616         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619                         IPW_DEBUG_INFO("wrong size\n");
620                         return -EINVAL;
621                 }
622
623                 read_nic_dword(priv->net_dev,
624                                ordinals->table1_addr + (ord << 2), &addr);
625
626                 write_nic_dword(priv->net_dev, addr, *val);
627
628                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
629
630                 return 0;
631         }
632
633         IPW_DEBUG_INFO("wrong table\n");
634         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635                 return -EINVAL;
636
637         return -EINVAL;
638 }
639
640 static char *snprint_line(char *buf, size_t count,
641                           const u8 * data, u32 len, u32 ofs)
642 {
643         int out, i, j, l;
644         char c;
645
646         out = snprintf(buf, count, "%08X", ofs);
647
648         for (l = 0, i = 0; i < 2; i++) {
649                 out += snprintf(buf + out, count - out, " ");
650                 for (j = 0; j < 8 && l < len; j++, l++)
651                         out += snprintf(buf + out, count - out, "%02X ",
652                                         data[(i * 8 + j)]);
653                 for (; j < 8; j++)
654                         out += snprintf(buf + out, count - out, "   ");
655         }
656
657         out += snprintf(buf + out, count - out, " ");
658         for (l = 0, i = 0; i < 2; i++) {
659                 out += snprintf(buf + out, count - out, " ");
660                 for (j = 0; j < 8 && l < len; j++, l++) {
661                         c = data[(i * 8 + j)];
662                         if (!isascii(c) || !isprint(c))
663                                 c = '.';
664
665                         out += snprintf(buf + out, count - out, "%c", c);
666                 }
667
668                 for (; j < 8; j++)
669                         out += snprintf(buf + out, count - out, " ");
670         }
671
672         return buf;
673 }
674
675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677         char line[81];
678         u32 ofs = 0;
679         if (!(ipw2100_debug_level & level))
680                 return;
681
682         while (len) {
683                 printk(KERN_DEBUG "%s\n",
684                        snprint_line(line, sizeof(line), &data[ofs],
685                                     min(len, 16U), ofs));
686                 ofs += 16;
687                 len -= min(len, 16U);
688         }
689 }
690
691 #define MAX_RESET_BACKOFF 10
692
693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695         unsigned long now = get_seconds();
696
697         /* If we haven't received a reset request within the backoff period,
698          * then we can reset the backoff interval so this reset occurs
699          * immediately */
700         if (priv->reset_backoff &&
701             (now - priv->last_reset > priv->reset_backoff))
702                 priv->reset_backoff = 0;
703
704         priv->last_reset = get_seconds();
705
706         if (!(priv->status & STATUS_RESET_PENDING)) {
707                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708                                priv->net_dev->name, priv->reset_backoff);
709                 netif_carrier_off(priv->net_dev);
710                 netif_stop_queue(priv->net_dev);
711                 priv->status |= STATUS_RESET_PENDING;
712                 if (priv->reset_backoff)
713                         schedule_delayed_work(&priv->reset_work,
714                                               priv->reset_backoff * HZ);
715                 else
716                         schedule_delayed_work(&priv->reset_work, 0);
717
718                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719                         priv->reset_backoff++;
720
721                 wake_up_interruptible(&priv->wait_command_queue);
722         } else
723                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724                                priv->net_dev->name);
725
726 }
727
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730                                    struct host_command *cmd)
731 {
732         struct list_head *element;
733         struct ipw2100_tx_packet *packet;
734         unsigned long flags;
735         int err = 0;
736
737         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738                      command_types[cmd->host_command], cmd->host_command,
739                      cmd->host_command_length);
740         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741                    cmd->host_command_length);
742
743         spin_lock_irqsave(&priv->low_lock, flags);
744
745         if (priv->fatal_error) {
746                 IPW_DEBUG_INFO
747                     ("Attempt to send command while hardware in fatal error condition.\n");
748                 err = -EIO;
749                 goto fail_unlock;
750         }
751
752         if (!(priv->status & STATUS_RUNNING)) {
753                 IPW_DEBUG_INFO
754                     ("Attempt to send command while hardware is not running.\n");
755                 err = -EIO;
756                 goto fail_unlock;
757         }
758
759         if (priv->status & STATUS_CMD_ACTIVE) {
760                 IPW_DEBUG_INFO
761                     ("Attempt to send command while another command is pending.\n");
762                 err = -EBUSY;
763                 goto fail_unlock;
764         }
765
766         if (list_empty(&priv->msg_free_list)) {
767                 IPW_DEBUG_INFO("no available msg buffers\n");
768                 goto fail_unlock;
769         }
770
771         priv->status |= STATUS_CMD_ACTIVE;
772         priv->messages_sent++;
773
774         element = priv->msg_free_list.next;
775
776         packet = list_entry(element, struct ipw2100_tx_packet, list);
777         packet->jiffy_start = jiffies;
778
779         /* initialize the firmware command packet */
780         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782         packet->info.c_struct.cmd->host_command_len_reg =
783             cmd->host_command_length;
784         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785
786         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787                cmd->host_command_parameters,
788                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789
790         list_del(element);
791         DEC_STAT(&priv->msg_free_stat);
792
793         list_add_tail(element, &priv->msg_pend_list);
794         INC_STAT(&priv->msg_pend_stat);
795
796         ipw2100_tx_send_commands(priv);
797         ipw2100_tx_send_data(priv);
798
799         spin_unlock_irqrestore(&priv->low_lock, flags);
800
801         /*
802          * We must wait for this command to complete before another
803          * command can be sent...  but if we wait more than 3 seconds
804          * then there is a problem.
805          */
806
807         err =
808             wait_event_interruptible_timeout(priv->wait_command_queue,
809                                              !(priv->
810                                                status & STATUS_CMD_ACTIVE),
811                                              HOST_COMPLETE_TIMEOUT);
812
813         if (err == 0) {
814                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817                 priv->status &= ~STATUS_CMD_ACTIVE;
818                 schedule_reset(priv);
819                 return -EIO;
820         }
821
822         if (priv->fatal_error) {
823                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824                        priv->net_dev->name);
825                 return -EIO;
826         }
827
828         /* !!!!! HACK TEST !!!!!
829          * When lots of debug trace statements are enabled, the driver
830          * doesn't seem to have as many firmware restart cycles...
831          *
832          * As a test, we're sticking in a 1/100s delay here */
833         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834
835         return 0;
836
837       fail_unlock:
838         spin_unlock_irqrestore(&priv->low_lock, flags);
839
840         return err;
841 }
842
843 /*
844  * Verify the values and data access of the hardware
845  * No locks needed or used.  No functions called.
846  */
847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849         u32 data1, data2;
850         u32 address;
851
852         u32 val1 = 0x76543210;
853         u32 val2 = 0xFEDCBA98;
854
855         /* Domain 0 check - all values should be DOA_DEBUG */
856         for (address = IPW_REG_DOA_DEBUG_AREA_START;
857              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858                 read_register(priv->net_dev, address, &data1);
859                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860                         return -EIO;
861         }
862
863         /* Domain 1 check - use arbitrary read/write compare  */
864         for (address = 0; address < 5; address++) {
865                 /* The memory area is not used now */
866                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867                                val1);
868                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869                                val2);
870                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871                               &data1);
872                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873                               &data2);
874                 if (val1 == data1 && val2 == data2)
875                         return 0;
876         }
877
878         return -EIO;
879 }
880
881 /*
882  *
883  * Loop until the CARD_DISABLED bit is the same value as the
884  * supplied parameter
885  *
886  * TODO: See if it would be more efficient to do a wait/wake
887  *       cycle and have the completion event trigger the wakeup
888  *
889  */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893         int i;
894         u32 card_state;
895         u32 len = sizeof(card_state);
896         int err;
897
898         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900                                           &card_state, &len);
901                 if (err) {
902                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903                                        "failed.\n");
904                         return 0;
905                 }
906
907                 /* We'll break out if either the HW state says it is
908                  * in the state we want, or if HOST_COMPLETE command
909                  * finishes */
910                 if ((card_state == state) ||
911                     ((priv->status & STATUS_ENABLED) ?
912                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913                         if (state == IPW_HW_STATE_ENABLED)
914                                 priv->status |= STATUS_ENABLED;
915                         else
916                                 priv->status &= ~STATUS_ENABLED;
917
918                         return 0;
919                 }
920
921                 udelay(50);
922         }
923
924         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925                        state ? "DISABLED" : "ENABLED");
926         return -EIO;
927 }
928
929 /*********************************************************************
930     Procedure   :   sw_reset_and_clock
931     Purpose     :   Asserts s/w reset, asserts clock initialization
932                     and waits for clock stabilization
933  ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936         int i;
937         u32 r;
938
939         // assert s/w reset
940         write_register(priv->net_dev, IPW_REG_RESET_REG,
941                        IPW_AUX_HOST_RESET_REG_SW_RESET);
942
943         // wait for clock stabilization
944         for (i = 0; i < 1000; i++) {
945                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946
947                 // check clock ready bit
948                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950                         break;
951         }
952
953         if (i == 1000)
954                 return -EIO;    // TODO: better error value
955
956         /* set "initialization complete" bit to move adapter to
957          * D0 state */
958         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960
961         /* wait for clock stabilization */
962         for (i = 0; i < 10000; i++) {
963                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964
965                 /* check clock ready bit */
966                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968                         break;
969         }
970
971         if (i == 10000)
972                 return -EIO;    /* TODO: better error value */
973
974         /* set D0 standby bit */
975         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978
979         return 0;
980 }
981
982 /*********************************************************************
983     Procedure   :   ipw2100_download_firmware
984     Purpose     :   Initiaze adapter after power on.
985                     The sequence is:
986                     1. assert s/w reset first!
987                     2. awake clocks & wait for clock stabilization
988                     3. hold ARC (don't ask me why...)
989                     4. load Dino ucode and reset/clock init again
990                     5. zero-out shared mem
991                     6. download f/w
992  *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995         u32 address;
996         int err;
997
998 #ifndef CONFIG_PM
999         /* Fetch the firmware and microcode */
1000         struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002
1003         if (priv->fatal_error) {
1004                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005                                 "fatal error %d.  Interface must be brought down.\n",
1006                                 priv->net_dev->name, priv->fatal_error);
1007                 return -EINVAL;
1008         }
1009 #ifdef CONFIG_PM
1010         if (!ipw2100_firmware.version) {
1011                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012                 if (err) {
1013                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014                                         priv->net_dev->name, err);
1015                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016                         goto fail;
1017                 }
1018         }
1019 #else
1020         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021         if (err) {
1022                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023                                 priv->net_dev->name, err);
1024                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025                 goto fail;
1026         }
1027 #endif
1028         priv->firmware_version = ipw2100_firmware.version;
1029
1030         /* s/w reset and clock stabilization */
1031         err = sw_reset_and_clock(priv);
1032         if (err) {
1033                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034                                 priv->net_dev->name, err);
1035                 goto fail;
1036         }
1037
1038         err = ipw2100_verify(priv);
1039         if (err) {
1040                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041                                 priv->net_dev->name, err);
1042                 goto fail;
1043         }
1044
1045         /* Hold ARC */
1046         write_nic_dword(priv->net_dev,
1047                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048
1049         /* allow ARC to run */
1050         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051
1052         /* load microcode */
1053         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054         if (err) {
1055                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056                        priv->net_dev->name, err);
1057                 goto fail;
1058         }
1059
1060         /* release ARC */
1061         write_nic_dword(priv->net_dev,
1062                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063
1064         /* s/w reset and clock stabilization (again!!!) */
1065         err = sw_reset_and_clock(priv);
1066         if (err) {
1067                 printk(KERN_ERR DRV_NAME
1068                        ": %s: sw_reset_and_clock failed: %d\n",
1069                        priv->net_dev->name, err);
1070                 goto fail;
1071         }
1072
1073         /* load f/w */
1074         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075         if (err) {
1076                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077                                 priv->net_dev->name, err);
1078                 goto fail;
1079         }
1080 #ifndef CONFIG_PM
1081         /*
1082          * When the .resume method of the driver is called, the other
1083          * part of the system, i.e. the ide driver could still stay in
1084          * the suspend stage. This prevents us from loading the firmware
1085          * from the disk.  --YZ
1086          */
1087
1088         /* free any storage allocated for firmware image */
1089         ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091
1092         /* zero out Domain 1 area indirectly (Si requirement) */
1093         for (address = IPW_HOST_FW_SHARED_AREA0;
1094              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095                 write_nic_dword(priv->net_dev, address, 0);
1096         for (address = IPW_HOST_FW_SHARED_AREA1;
1097              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098                 write_nic_dword(priv->net_dev, address, 0);
1099         for (address = IPW_HOST_FW_SHARED_AREA2;
1100              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101                 write_nic_dword(priv->net_dev, address, 0);
1102         for (address = IPW_HOST_FW_SHARED_AREA3;
1103              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104                 write_nic_dword(priv->net_dev, address, 0);
1105         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107                 write_nic_dword(priv->net_dev, address, 0);
1108
1109         return 0;
1110
1111       fail:
1112         ipw2100_release_firmware(priv, &ipw2100_firmware);
1113         return err;
1114 }
1115
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118         if (priv->status & STATUS_INT_ENABLED)
1119                 return;
1120         priv->status |= STATUS_INT_ENABLED;
1121         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126         if (!(priv->status & STATUS_INT_ENABLED))
1127                 return;
1128         priv->status &= ~STATUS_INT_ENABLED;
1129         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134         struct ipw2100_ordinals *ord = &priv->ordinals;
1135
1136         IPW_DEBUG_INFO("enter\n");
1137
1138         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139                       &ord->table1_addr);
1140
1141         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142                       &ord->table2_addr);
1143
1144         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146
1147         ord->table2_size &= 0x0000FFFF;
1148
1149         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151         IPW_DEBUG_INFO("exit\n");
1152 }
1153
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156         u32 reg = 0;
1157         /*
1158          * Set GPIO 3 writable by FW; GPIO 1 writable
1159          * by driver and enable clock
1160          */
1161         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162                IPW_BIT_GPIO_LED_OFF);
1163         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170
1171         unsigned short value = 0;
1172         u32 reg = 0;
1173         int i;
1174
1175         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177                 priv->status &= ~STATUS_RF_KILL_HW;
1178                 return 0;
1179         }
1180
1181         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182                 udelay(RF_KILL_CHECK_DELAY);
1183                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185         }
1186
1187         if (value == 0) {
1188                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189                 priv->status |= STATUS_RF_KILL_HW;
1190         } else {
1191                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192                 priv->status &= ~STATUS_RF_KILL_HW;
1193         }
1194
1195         return (value == 0);
1196 }
1197
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200         u32 addr, len;
1201         u32 val;
1202
1203         /*
1204          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205          */
1206         len = sizeof(addr);
1207         if (ipw2100_get_ordinal
1208             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210                                __LINE__);
1211                 return -EIO;
1212         }
1213
1214         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215
1216         /*
1217          * EEPROM version is the byte at offset 0xfd in firmware
1218          * We read 4 bytes, then shift out the byte we actually want */
1219         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220         priv->eeprom_version = (val >> 24) & 0xFF;
1221         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222
1223         /*
1224          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225          *
1226          *  notice that the EEPROM bit is reverse polarity, i.e.
1227          *     bit = 0  signifies HW RF kill switch is supported
1228          *     bit = 1  signifies HW RF kill switch is NOT supported
1229          */
1230         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231         if (!((val >> 24) & 0x01))
1232                 priv->hw_features |= HW_FEATURE_RFKILL;
1233
1234         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236
1237         return 0;
1238 }
1239
1240 /*
1241  * Start firmware execution after power on and intialization
1242  * The sequence is:
1243  *  1. Release ARC
1244  *  2. Wait for f/w initialization completes;
1245  */
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248         int i;
1249         u32 inta, inta_mask, gpio;
1250
1251         IPW_DEBUG_INFO("enter\n");
1252
1253         if (priv->status & STATUS_RUNNING)
1254                 return 0;
1255
1256         /*
1257          * Initialize the hw - drive adapter to DO state by setting
1258          * init_done bit. Wait for clk_ready bit and Download
1259          * fw & dino ucode
1260          */
1261         if (ipw2100_download_firmware(priv)) {
1262                 printk(KERN_ERR DRV_NAME
1263                        ": %s: Failed to power on the adapter.\n",
1264                        priv->net_dev->name);
1265                 return -EIO;
1266         }
1267
1268         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269          * in the firmware RBD and TBD ring queue */
1270         ipw2100_queues_initialize(priv);
1271
1272         ipw2100_hw_set_gpio(priv);
1273
1274         /* TODO -- Look at disabling interrupts here to make sure none
1275          * get fired during FW initialization */
1276
1277         /* Release ARC - clear reset bit */
1278         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279
1280         /* wait for f/w intialization complete */
1281         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282         i = 5000;
1283         do {
1284                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285                 /* Todo... wait for sync command ... */
1286
1287                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288
1289                 /* check "init done" bit */
1290                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291                         /* reset "init done" bit */
1292                         write_register(priv->net_dev, IPW_REG_INTA,
1293                                        IPW2100_INTA_FW_INIT_DONE);
1294                         break;
1295                 }
1296
1297                 /* check error conditions : we check these after the firmware
1298                  * check so that if there is an error, the interrupt handler
1299                  * will see it and the adapter will be reset */
1300                 if (inta &
1301                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302                         /* clear error conditions */
1303                         write_register(priv->net_dev, IPW_REG_INTA,
1304                                        IPW2100_INTA_FATAL_ERROR |
1305                                        IPW2100_INTA_PARITY_ERROR);
1306                 }
1307         } while (--i);
1308
1309         /* Clear out any pending INTAs since we aren't supposed to have
1310          * interrupts enabled at this point... */
1311         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313         inta &= IPW_INTERRUPT_MASK;
1314         /* Clear out any pending interrupts */
1315         if (inta & inta_mask)
1316                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1317
1318         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319                      i ? "SUCCESS" : "FAILED");
1320
1321         if (!i) {
1322                 printk(KERN_WARNING DRV_NAME
1323                        ": %s: Firmware did not initialize.\n",
1324                        priv->net_dev->name);
1325                 return -EIO;
1326         }
1327
1328         /* allow firmware to write to GPIO1 & GPIO3 */
1329         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330
1331         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332
1333         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334
1335         /* Ready to receive commands */
1336         priv->status |= STATUS_RUNNING;
1337
1338         /* The adapter has been reset; we are not associated */
1339         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340
1341         IPW_DEBUG_INFO("exit\n");
1342
1343         return 0;
1344 }
1345
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348         if (!priv->fatal_error)
1349                 return;
1350
1351         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353         priv->fatal_error = 0;
1354 }
1355
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359         u32 reg;
1360         int i;
1361
1362         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363
1364         ipw2100_hw_set_gpio(priv);
1365
1366         /* Step 1. Stop Master Assert */
1367         write_register(priv->net_dev, IPW_REG_RESET_REG,
1368                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369
1370         /* Step 2. Wait for stop Master Assert
1371          *         (not more than 50us, otherwise ret error */
1372         i = 5;
1373         do {
1374                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376
1377                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378                         break;
1379         } while (--i);
1380
1381         priv->status &= ~STATUS_RESET_PENDING;
1382
1383         if (!i) {
1384                 IPW_DEBUG_INFO
1385                     ("exit - waited too long for master assert stop\n");
1386                 return -EIO;
1387         }
1388
1389         write_register(priv->net_dev, IPW_REG_RESET_REG,
1390                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1391
1392         /* Reset any fatal_error conditions */
1393         ipw2100_reset_fatalerror(priv);
1394
1395         /* At this point, the adapter is now stopped and disabled */
1396         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397                           STATUS_ASSOCIATED | STATUS_ENABLED);
1398
1399         return 0;
1400 }
1401
1402 /*
1403  * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404  *
1405  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406  *
1407  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408  * if STATUS_ASSN_LOST is sent.
1409  */
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412
1413 #define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50))
1414
1415         struct host_command cmd = {
1416                 .host_command = CARD_DISABLE_PHY_OFF,
1417                 .host_command_sequence = 0,
1418                 .host_command_length = 0,
1419         };
1420         int err, i;
1421         u32 val1, val2;
1422
1423         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424
1425         /* Turn off the radio */
1426         err = ipw2100_hw_send_command(priv, &cmd);
1427         if (err)
1428                 return err;
1429
1430         for (i = 0; i < 2500; i++) {
1431                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433
1434                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435                     (val2 & IPW2100_COMMAND_PHY_OFF))
1436                         return 0;
1437
1438                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439         }
1440
1441         return -EIO;
1442 }
1443
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446         struct host_command cmd = {
1447                 .host_command = HOST_COMPLETE,
1448                 .host_command_sequence = 0,
1449                 .host_command_length = 0
1450         };
1451         int err = 0;
1452
1453         IPW_DEBUG_HC("HOST_COMPLETE\n");
1454
1455         if (priv->status & STATUS_ENABLED)
1456                 return 0;
1457
1458         mutex_lock(&priv->adapter_mutex);
1459
1460         if (rf_kill_active(priv)) {
1461                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462                 goto fail_up;
1463         }
1464
1465         err = ipw2100_hw_send_command(priv, &cmd);
1466         if (err) {
1467                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468                 goto fail_up;
1469         }
1470
1471         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472         if (err) {
1473                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474                                priv->net_dev->name);
1475                 goto fail_up;
1476         }
1477
1478         if (priv->stop_hang_check) {
1479                 priv->stop_hang_check = 0;
1480                 schedule_delayed_work(&priv->hang_check, HZ / 2);
1481         }
1482
1483       fail_up:
1484         mutex_unlock(&priv->adapter_mutex);
1485         return err;
1486 }
1487
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491
1492         struct host_command cmd = {
1493                 .host_command = HOST_PRE_POWER_DOWN,
1494                 .host_command_sequence = 0,
1495                 .host_command_length = 0,
1496         };
1497         int err, i;
1498         u32 reg;
1499
1500         if (!(priv->status & STATUS_RUNNING))
1501                 return 0;
1502
1503         priv->status |= STATUS_STOPPING;
1504
1505         /* We can only shut down the card if the firmware is operational.  So,
1506          * if we haven't reset since a fatal_error, then we can not send the
1507          * shutdown commands. */
1508         if (!priv->fatal_error) {
1509                 /* First, make sure the adapter is enabled so that the PHY_OFF
1510                  * command can shut it down */
1511                 ipw2100_enable_adapter(priv);
1512
1513                 err = ipw2100_hw_phy_off(priv);
1514                 if (err)
1515                         printk(KERN_WARNING DRV_NAME
1516                                ": Error disabling radio %d\n", err);
1517
1518                 /*
1519                  * If in D0-standby mode going directly to D3 may cause a
1520                  * PCI bus violation.  Therefore we must change out of the D0
1521                  * state.
1522                  *
1523                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524                  * hardware from going into standby mode and will transition
1525                  * out of D0-standby if it is already in that state.
1526                  *
1527                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528                  * driver upon completion.  Once received, the driver can
1529                  * proceed to the D3 state.
1530                  *
1531                  * Prepare for power down command to fw.  This command would
1532                  * take HW out of D0-standby and prepare it for D3 state.
1533                  *
1534                  * Currently FW does not support event notification for this
1535                  * event. Therefore, skip waiting for it.  Just wait a fixed
1536                  * 100ms
1537                  */
1538                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539
1540                 err = ipw2100_hw_send_command(priv, &cmd);
1541                 if (err)
1542                         printk(KERN_WARNING DRV_NAME ": "
1543                                "%s: Power down command failed: Error %d\n",
1544                                priv->net_dev->name, err);
1545                 else
1546                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547         }
1548
1549         priv->status &= ~STATUS_ENABLED;
1550
1551         /*
1552          * Set GPIO 3 writable by FW; GPIO 1 writable
1553          * by driver and enable clock
1554          */
1555         ipw2100_hw_set_gpio(priv);
1556
1557         /*
1558          * Power down adapter.  Sequence:
1559          * 1. Stop master assert (RESET_REG[9]=1)
1560          * 2. Wait for stop master (RESET_REG[8]==1)
1561          * 3. S/w reset assert (RESET_REG[7] = 1)
1562          */
1563
1564         /* Stop master assert */
1565         write_register(priv->net_dev, IPW_REG_RESET_REG,
1566                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567
1568         /* wait stop master not more than 50 usec.
1569          * Otherwise return error. */
1570         for (i = 5; i > 0; i--) {
1571                 udelay(10);
1572
1573                 /* Check master stop bit */
1574                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575
1576                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577                         break;
1578         }
1579
1580         if (i == 0)
1581                 printk(KERN_WARNING DRV_NAME
1582                        ": %s: Could now power down adapter.\n",
1583                        priv->net_dev->name);
1584
1585         /* assert s/w reset */
1586         write_register(priv->net_dev, IPW_REG_RESET_REG,
1587                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1588
1589         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590
1591         return 0;
1592 }
1593
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596         struct host_command cmd = {
1597                 .host_command = CARD_DISABLE,
1598                 .host_command_sequence = 0,
1599                 .host_command_length = 0
1600         };
1601         int err = 0;
1602
1603         IPW_DEBUG_HC("CARD_DISABLE\n");
1604
1605         if (!(priv->status & STATUS_ENABLED))
1606                 return 0;
1607
1608         /* Make sure we clear the associated state */
1609         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610
1611         if (!priv->stop_hang_check) {
1612                 priv->stop_hang_check = 1;
1613                 cancel_delayed_work(&priv->hang_check);
1614         }
1615
1616         mutex_lock(&priv->adapter_mutex);
1617
1618         err = ipw2100_hw_send_command(priv, &cmd);
1619         if (err) {
1620                 printk(KERN_WARNING DRV_NAME
1621                        ": exit - failed to send CARD_DISABLE command\n");
1622                 goto fail_up;
1623         }
1624
1625         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626         if (err) {
1627                 printk(KERN_WARNING DRV_NAME
1628                        ": exit - card failed to change to DISABLED\n");
1629                 goto fail_up;
1630         }
1631
1632         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633
1634       fail_up:
1635         mutex_unlock(&priv->adapter_mutex);
1636         return err;
1637 }
1638
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641         struct host_command cmd = {
1642                 .host_command = SET_SCAN_OPTIONS,
1643                 .host_command_sequence = 0,
1644                 .host_command_length = 8
1645         };
1646         int err;
1647
1648         IPW_DEBUG_INFO("enter\n");
1649
1650         IPW_DEBUG_SCAN("setting scan options\n");
1651
1652         cmd.host_command_parameters[0] = 0;
1653
1654         if (!(priv->config & CFG_ASSOCIATE))
1655                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658         if (priv->config & CFG_PASSIVE_SCAN)
1659                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660
1661         cmd.host_command_parameters[1] = priv->channel_mask;
1662
1663         err = ipw2100_hw_send_command(priv, &cmd);
1664
1665         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666                      cmd.host_command_parameters[0]);
1667
1668         return err;
1669 }
1670
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673         struct host_command cmd = {
1674                 .host_command = BROADCAST_SCAN,
1675                 .host_command_sequence = 0,
1676                 .host_command_length = 4
1677         };
1678         int err;
1679
1680         IPW_DEBUG_HC("START_SCAN\n");
1681
1682         cmd.host_command_parameters[0] = 0;
1683
1684         /* No scanning if in monitor mode */
1685         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686                 return 1;
1687
1688         if (priv->status & STATUS_SCANNING) {
1689                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690                 return 0;
1691         }
1692
1693         IPW_DEBUG_INFO("enter\n");
1694
1695         /* Not clearing here; doing so makes iwlist always return nothing...
1696          *
1697          * We should modify the table logic to use aging tables vs. clearing
1698          * the table on each scan start.
1699          */
1700         IPW_DEBUG_SCAN("starting scan\n");
1701
1702         priv->status |= STATUS_SCANNING;
1703         err = ipw2100_hw_send_command(priv, &cmd);
1704         if (err)
1705                 priv->status &= ~STATUS_SCANNING;
1706
1707         IPW_DEBUG_INFO("exit\n");
1708
1709         return err;
1710 }
1711
1712 static const struct libipw_geo ipw_geos[] = {
1713         {                       /* Restricted */
1714          "---",
1715          .bg_channels = 14,
1716          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717                 {2427, 4}, {2432, 5}, {2437, 6},
1718                 {2442, 7}, {2447, 8}, {2452, 9},
1719                 {2457, 10}, {2462, 11}, {2467, 12},
1720                 {2472, 13}, {2484, 14}},
1721          },
1722 };
1723
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726         unsigned long flags;
1727         int rc = 0;
1728         u32 lock;
1729         u32 ord_len = sizeof(lock);
1730
1731         /* Age scan list entries found before suspend */
1732         if (priv->suspend_time) {
1733                 libipw_networks_age(priv->ieee, priv->suspend_time);
1734                 priv->suspend_time = 0;
1735         }
1736
1737         /* Quiet if manually disabled. */
1738         if (priv->status & STATUS_RF_KILL_SW) {
1739                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740                                "switch\n", priv->net_dev->name);
1741                 return 0;
1742         }
1743
1744         /* the ipw2100 hardware really doesn't want power management delays
1745          * longer than 175usec
1746          */
1747         pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748
1749         /* If the interrupt is enabled, turn it off... */
1750         spin_lock_irqsave(&priv->low_lock, flags);
1751         ipw2100_disable_interrupts(priv);
1752
1753         /* Reset any fatal_error conditions */
1754         ipw2100_reset_fatalerror(priv);
1755         spin_unlock_irqrestore(&priv->low_lock, flags);
1756
1757         if (priv->status & STATUS_POWERED ||
1758             (priv->status & STATUS_RESET_PENDING)) {
1759                 /* Power cycle the card ... */
1760                 if (ipw2100_power_cycle_adapter(priv)) {
1761                         printk(KERN_WARNING DRV_NAME
1762                                ": %s: Could not cycle adapter.\n",
1763                                priv->net_dev->name);
1764                         rc = 1;
1765                         goto exit;
1766                 }
1767         } else
1768                 priv->status |= STATUS_POWERED;
1769
1770         /* Load the firmware, start the clocks, etc. */
1771         if (ipw2100_start_adapter(priv)) {
1772                 printk(KERN_ERR DRV_NAME
1773                        ": %s: Failed to start the firmware.\n",
1774                        priv->net_dev->name);
1775                 rc = 1;
1776                 goto exit;
1777         }
1778
1779         ipw2100_initialize_ordinals(priv);
1780
1781         /* Determine capabilities of this particular HW configuration */
1782         if (ipw2100_get_hw_features(priv)) {
1783                 printk(KERN_ERR DRV_NAME
1784                        ": %s: Failed to determine HW features.\n",
1785                        priv->net_dev->name);
1786                 rc = 1;
1787                 goto exit;
1788         }
1789
1790         /* Initialize the geo */
1791         libipw_set_geo(priv->ieee, &ipw_geos[0]);
1792         priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793
1794         lock = LOCK_NONE;
1795         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1796                 printk(KERN_ERR DRV_NAME
1797                        ": %s: Failed to clear ordinal lock.\n",
1798                        priv->net_dev->name);
1799                 rc = 1;
1800                 goto exit;
1801         }
1802
1803         priv->status &= ~STATUS_SCANNING;
1804
1805         if (rf_kill_active(priv)) {
1806                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807                        priv->net_dev->name);
1808
1809                 if (priv->stop_rf_kill) {
1810                         priv->stop_rf_kill = 0;
1811                         schedule_delayed_work(&priv->rf_kill,
1812                                               round_jiffies_relative(HZ));
1813                 }
1814
1815                 deferred = 1;
1816         }
1817
1818         /* Turn on the interrupt so that commands can be processed */
1819         ipw2100_enable_interrupts(priv);
1820
1821         /* Send all of the commands that must be sent prior to
1822          * HOST_COMPLETE */
1823         if (ipw2100_adapter_setup(priv)) {
1824                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1825                        priv->net_dev->name);
1826                 rc = 1;
1827                 goto exit;
1828         }
1829
1830         if (!deferred) {
1831                 /* Enable the adapter - sends HOST_COMPLETE */
1832                 if (ipw2100_enable_adapter(priv)) {
1833                         printk(KERN_ERR DRV_NAME ": "
1834                                "%s: failed in call to enable adapter.\n",
1835                                priv->net_dev->name);
1836                         ipw2100_hw_stop_adapter(priv);
1837                         rc = 1;
1838                         goto exit;
1839                 }
1840
1841                 /* Start a scan . . . */
1842                 ipw2100_set_scan_options(priv);
1843                 ipw2100_start_scan(priv);
1844         }
1845
1846       exit:
1847         return rc;
1848 }
1849
1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852         unsigned long flags;
1853         union iwreq_data wrqu = {
1854                 .ap_addr = {
1855                             .sa_family = ARPHRD_ETHER}
1856         };
1857         int associated = priv->status & STATUS_ASSOCIATED;
1858
1859         /* Kill the RF switch timer */
1860         if (!priv->stop_rf_kill) {
1861                 priv->stop_rf_kill = 1;
1862                 cancel_delayed_work(&priv->rf_kill);
1863         }
1864
1865         /* Kill the firmware hang check timer */
1866         if (!priv->stop_hang_check) {
1867                 priv->stop_hang_check = 1;
1868                 cancel_delayed_work(&priv->hang_check);
1869         }
1870
1871         /* Kill any pending resets */
1872         if (priv->status & STATUS_RESET_PENDING)
1873                 cancel_delayed_work(&priv->reset_work);
1874
1875         /* Make sure the interrupt is on so that FW commands will be
1876          * processed correctly */
1877         spin_lock_irqsave(&priv->low_lock, flags);
1878         ipw2100_enable_interrupts(priv);
1879         spin_unlock_irqrestore(&priv->low_lock, flags);
1880
1881         if (ipw2100_hw_stop_adapter(priv))
1882                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883                        priv->net_dev->name);
1884
1885         /* Do not disable the interrupt until _after_ we disable
1886          * the adaptor.  Otherwise the CARD_DISABLE command will never
1887          * be ack'd by the firmware */
1888         spin_lock_irqsave(&priv->low_lock, flags);
1889         ipw2100_disable_interrupts(priv);
1890         spin_unlock_irqrestore(&priv->low_lock, flags);
1891
1892         pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893
1894         /* We have to signal any supplicant if we are disassociating */
1895         if (associated)
1896                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897
1898         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899         netif_carrier_off(priv->net_dev);
1900         netif_stop_queue(priv->net_dev);
1901 }
1902
1903 static int ipw2100_wdev_init(struct net_device *dev)
1904 {
1905         struct ipw2100_priv *priv = libipw_priv(dev);
1906         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1907         struct wireless_dev *wdev = &priv->ieee->wdev;
1908         int i;
1909
1910         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1911
1912         /* fill-out priv->ieee->bg_band */
1913         if (geo->bg_channels) {
1914                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1915
1916                 bg_band->band = NL80211_BAND_2GHZ;
1917                 bg_band->n_channels = geo->bg_channels;
1918                 bg_band->channels = kcalloc(geo->bg_channels,
1919                                             sizeof(struct ieee80211_channel),
1920                                             GFP_KERNEL);
1921                 if (!bg_band->channels) {
1922                         ipw2100_down(priv);
1923                         return -ENOMEM;
1924                 }
1925                 /* translate geo->bg to bg_band.channels */
1926                 for (i = 0; i < geo->bg_channels; i++) {
1927                         bg_band->channels[i].band = NL80211_BAND_2GHZ;
1928                         bg_band->channels[i].center_freq = geo->bg[i].freq;
1929                         bg_band->channels[i].hw_value = geo->bg[i].channel;
1930                         bg_band->channels[i].max_power = geo->bg[i].max_power;
1931                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1932                                 bg_band->channels[i].flags |=
1933                                         IEEE80211_CHAN_NO_IR;
1934                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1935                                 bg_band->channels[i].flags |=
1936                                         IEEE80211_CHAN_NO_IR;
1937                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1938                                 bg_band->channels[i].flags |=
1939                                         IEEE80211_CHAN_RADAR;
1940                         /* No equivalent for LIBIPW_CH_80211H_RULES,
1941                            LIBIPW_CH_UNIFORM_SPREADING, or
1942                            LIBIPW_CH_B_ONLY... */
1943                 }
1944                 /* point at bitrate info */
1945                 bg_band->bitrates = ipw2100_bg_rates;
1946                 bg_band->n_bitrates = RATE_COUNT;
1947
1948                 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
1949         }
1950
1951         wdev->wiphy->cipher_suites = ipw_cipher_suites;
1952         wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1953
1954         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1955         if (wiphy_register(wdev->wiphy))
1956                 return -EIO;
1957         return 0;
1958 }
1959
1960 static void ipw2100_reset_adapter(struct work_struct *work)
1961 {
1962         struct ipw2100_priv *priv =
1963                 container_of(work, struct ipw2100_priv, reset_work.work);
1964         unsigned long flags;
1965         union iwreq_data wrqu = {
1966                 .ap_addr = {
1967                             .sa_family = ARPHRD_ETHER}
1968         };
1969         int associated = priv->status & STATUS_ASSOCIATED;
1970
1971         spin_lock_irqsave(&priv->low_lock, flags);
1972         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1973         priv->resets++;
1974         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1975         priv->status |= STATUS_SECURITY_UPDATED;
1976
1977         /* Force a power cycle even if interface hasn't been opened
1978          * yet */
1979         cancel_delayed_work(&priv->reset_work);
1980         priv->status |= STATUS_RESET_PENDING;
1981         spin_unlock_irqrestore(&priv->low_lock, flags);
1982
1983         mutex_lock(&priv->action_mutex);
1984         /* stop timed checks so that they don't interfere with reset */
1985         priv->stop_hang_check = 1;
1986         cancel_delayed_work(&priv->hang_check);
1987
1988         /* We have to signal any supplicant if we are disassociating */
1989         if (associated)
1990                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1991
1992         ipw2100_up(priv, 0);
1993         mutex_unlock(&priv->action_mutex);
1994
1995 }
1996
1997 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1998 {
1999
2000 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2001         int ret;
2002         unsigned int len, essid_len;
2003         char essid[IW_ESSID_MAX_SIZE];
2004         u32 txrate;
2005         u32 chan;
2006         char *txratename;
2007         u8 bssid[ETH_ALEN];
2008
2009         /*
2010          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2011          *      an actual MAC of the AP. Seems like FW sets this
2012          *      address too late. Read it later and expose through
2013          *      /proc or schedule a later task to query and update
2014          */
2015
2016         essid_len = IW_ESSID_MAX_SIZE;
2017         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2018                                   essid, &essid_len);
2019         if (ret) {
2020                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2021                                __LINE__);
2022                 return;
2023         }
2024
2025         len = sizeof(u32);
2026         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2027         if (ret) {
2028                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2029                                __LINE__);
2030                 return;
2031         }
2032
2033         len = sizeof(u32);
2034         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2035         if (ret) {
2036                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2037                                __LINE__);
2038                 return;
2039         }
2040         len = ETH_ALEN;
2041         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2042                                   &len);
2043         if (ret) {
2044                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2045                                __LINE__);
2046                 return;
2047         }
2048         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2049
2050         switch (txrate) {
2051         case TX_RATE_1_MBIT:
2052                 txratename = "1Mbps";
2053                 break;
2054         case TX_RATE_2_MBIT:
2055                 txratename = "2Mbsp";
2056                 break;
2057         case TX_RATE_5_5_MBIT:
2058                 txratename = "5.5Mbps";
2059                 break;
2060         case TX_RATE_11_MBIT:
2061                 txratename = "11Mbps";
2062                 break;
2063         default:
2064                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2065                 txratename = "unknown rate";
2066                 break;
2067         }
2068
2069         IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n",
2070                        priv->net_dev->name, essid_len, essid,
2071                        txratename, chan, bssid);
2072
2073         /* now we copy read ssid into dev */
2074         if (!(priv->config & CFG_STATIC_ESSID)) {
2075                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2076                 memcpy(priv->essid, essid, priv->essid_len);
2077         }
2078         priv->channel = chan;
2079         memcpy(priv->bssid, bssid, ETH_ALEN);
2080
2081         priv->status |= STATUS_ASSOCIATING;
2082         priv->connect_start = get_seconds();
2083
2084         schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2085 }
2086
2087 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2088                              int length, int batch_mode)
2089 {
2090         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2091         struct host_command cmd = {
2092                 .host_command = SSID,
2093                 .host_command_sequence = 0,
2094                 .host_command_length = ssid_len
2095         };
2096         int err;
2097
2098         IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid);
2099
2100         if (ssid_len)
2101                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2102
2103         if (!batch_mode) {
2104                 err = ipw2100_disable_adapter(priv);
2105                 if (err)
2106                         return err;
2107         }
2108
2109         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2110          * disable auto association -- so we cheat by setting a bogus SSID */
2111         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2112                 int i;
2113                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2114                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2115                         bogus[i] = 0x18 + i;
2116                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2117         }
2118
2119         /* NOTE:  We always send the SSID command even if the provided ESSID is
2120          * the same as what we currently think is set. */
2121
2122         err = ipw2100_hw_send_command(priv, &cmd);
2123         if (!err) {
2124                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2125                 memcpy(priv->essid, essid, ssid_len);
2126                 priv->essid_len = ssid_len;
2127         }
2128
2129         if (!batch_mode) {
2130                 if (ipw2100_enable_adapter(priv))
2131                         err = -EIO;
2132         }
2133
2134         return err;
2135 }
2136
2137 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2138 {
2139         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2140                   "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid,
2141                   priv->bssid);
2142
2143         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2144
2145         if (priv->status & STATUS_STOPPING) {
2146                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2147                 return;
2148         }
2149
2150         eth_zero_addr(priv->bssid);
2151         eth_zero_addr(priv->ieee->bssid);
2152
2153         netif_carrier_off(priv->net_dev);
2154         netif_stop_queue(priv->net_dev);
2155
2156         if (!(priv->status & STATUS_RUNNING))
2157                 return;
2158
2159         if (priv->status & STATUS_SECURITY_UPDATED)
2160                 schedule_delayed_work(&priv->security_work, 0);
2161
2162         schedule_delayed_work(&priv->wx_event_work, 0);
2163 }
2164
2165 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2166 {
2167         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2168                        priv->net_dev->name);
2169
2170         /* RF_KILL is now enabled (else we wouldn't be here) */
2171         wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2172         priv->status |= STATUS_RF_KILL_HW;
2173
2174         /* Make sure the RF Kill check timer is running */
2175         priv->stop_rf_kill = 0;
2176         mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2177 }
2178
2179 static void ipw2100_scan_event(struct work_struct *work)
2180 {
2181         struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2182                                                  scan_event.work);
2183         union iwreq_data wrqu;
2184
2185         wrqu.data.length = 0;
2186         wrqu.data.flags = 0;
2187         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2188 }
2189
2190 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2191 {
2192         IPW_DEBUG_SCAN("scan complete\n");
2193         /* Age the scan results... */
2194         priv->ieee->scans++;
2195         priv->status &= ~STATUS_SCANNING;
2196
2197         /* Only userspace-requested scan completion events go out immediately */
2198         if (!priv->user_requested_scan) {
2199                 schedule_delayed_work(&priv->scan_event,
2200                                       round_jiffies_relative(msecs_to_jiffies(4000)));
2201         } else {
2202                 priv->user_requested_scan = 0;
2203                 mod_delayed_work(system_wq, &priv->scan_event, 0);
2204         }
2205 }
2206
2207 #ifdef CONFIG_IPW2100_DEBUG
2208 #define IPW2100_HANDLER(v, f) { v, f, # v }
2209 struct ipw2100_status_indicator {
2210         int status;
2211         void (*cb) (struct ipw2100_priv * priv, u32 status);
2212         char *name;
2213 };
2214 #else
2215 #define IPW2100_HANDLER(v, f) { v, f }
2216 struct ipw2100_status_indicator {
2217         int status;
2218         void (*cb) (struct ipw2100_priv * priv, u32 status);
2219 };
2220 #endif                          /* CONFIG_IPW2100_DEBUG */
2221
2222 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2223 {
2224         IPW_DEBUG_SCAN("Scanning...\n");
2225         priv->status |= STATUS_SCANNING;
2226 }
2227
2228 static const struct ipw2100_status_indicator status_handlers[] = {
2229         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2230         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2231         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2232         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2233         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2234         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2235         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2236         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2237         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2238         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2239         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2240         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2241         IPW2100_HANDLER(-1, NULL)
2242 };
2243
2244 static void isr_status_change(struct ipw2100_priv *priv, int status)
2245 {
2246         int i;
2247
2248         if (status == IPW_STATE_SCANNING &&
2249             priv->status & STATUS_ASSOCIATED &&
2250             !(priv->status & STATUS_SCANNING)) {
2251                 IPW_DEBUG_INFO("Scan detected while associated, with "
2252                                "no scan request.  Restarting firmware.\n");
2253
2254                 /* Wake up any sleeping jobs */
2255                 schedule_reset(priv);
2256         }
2257
2258         for (i = 0; status_handlers[i].status != -1; i++) {
2259                 if (status == status_handlers[i].status) {
2260                         IPW_DEBUG_NOTIF("Status change: %s\n",
2261                                         status_handlers[i].name);
2262                         if (status_handlers[i].cb)
2263                                 status_handlers[i].cb(priv, status);
2264                         priv->wstats.status = status;
2265                         return;
2266                 }
2267         }
2268
2269         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2270 }
2271
2272 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2273                                     struct ipw2100_cmd_header *cmd)
2274 {
2275 #ifdef CONFIG_IPW2100_DEBUG
2276         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2277                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2278                              command_types[cmd->host_command_reg],
2279                              cmd->host_command_reg);
2280         }
2281 #endif
2282         if (cmd->host_command_reg == HOST_COMPLETE)
2283                 priv->status |= STATUS_ENABLED;
2284
2285         if (cmd->host_command_reg == CARD_DISABLE)
2286                 priv->status &= ~STATUS_ENABLED;
2287
2288         priv->status &= ~STATUS_CMD_ACTIVE;
2289
2290         wake_up_interruptible(&priv->wait_command_queue);
2291 }
2292
2293 #ifdef CONFIG_IPW2100_DEBUG
2294 static const char *frame_types[] = {
2295         "COMMAND_STATUS_VAL",
2296         "STATUS_CHANGE_VAL",
2297         "P80211_DATA_VAL",
2298         "P8023_DATA_VAL",
2299         "HOST_NOTIFICATION_VAL"
2300 };
2301 #endif
2302
2303 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2304                                     struct ipw2100_rx_packet *packet)
2305 {
2306         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2307         if (!packet->skb)
2308                 return -ENOMEM;
2309
2310         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2311         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2312                                           sizeof(struct ipw2100_rx),
2313                                           PCI_DMA_FROMDEVICE);
2314         if (pci_dma_mapping_error(priv->pci_dev, packet->dma_addr)) {
2315                 dev_kfree_skb(packet->skb);
2316                 return -ENOMEM;
2317         }
2318
2319         return 0;
2320 }
2321
2322 #define SEARCH_ERROR   0xffffffff
2323 #define SEARCH_FAIL    0xfffffffe
2324 #define SEARCH_SUCCESS 0xfffffff0
2325 #define SEARCH_DISCARD 0
2326 #define SEARCH_SNAPSHOT 1
2327
2328 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2329 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2330 {
2331         int i;
2332         if (!priv->snapshot[0])
2333                 return;
2334         for (i = 0; i < 0x30; i++)
2335                 kfree(priv->snapshot[i]);
2336         priv->snapshot[0] = NULL;
2337 }
2338
2339 #ifdef IPW2100_DEBUG_C3
2340 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2341 {
2342         int i;
2343         if (priv->snapshot[0])
2344                 return 1;
2345         for (i = 0; i < 0x30; i++) {
2346                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2347                 if (!priv->snapshot[i]) {
2348                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2349                                        "buffer %d\n", priv->net_dev->name, i);
2350                         while (i > 0)
2351                                 kfree(priv->snapshot[--i]);
2352                         priv->snapshot[0] = NULL;
2353                         return 0;
2354                 }
2355         }
2356
2357         return 1;
2358 }
2359
2360 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2361                                     size_t len, int mode)
2362 {
2363         u32 i, j;
2364         u32 tmp;
2365         u8 *s, *d;
2366         u32 ret;
2367
2368         s = in_buf;
2369         if (mode == SEARCH_SNAPSHOT) {
2370                 if (!ipw2100_snapshot_alloc(priv))
2371                         mode = SEARCH_DISCARD;
2372         }
2373
2374         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2375                 read_nic_dword(priv->net_dev, i, &tmp);
2376                 if (mode == SEARCH_SNAPSHOT)
2377                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2378                 if (ret == SEARCH_FAIL) {
2379                         d = (u8 *) & tmp;
2380                         for (j = 0; j < 4; j++) {
2381                                 if (*s != *d) {
2382                                         s = in_buf;
2383                                         continue;
2384                                 }
2385
2386                                 s++;
2387                                 d++;
2388
2389                                 if ((s - in_buf) == len)
2390                                         ret = (i + j) - len + 1;
2391                         }
2392                 } else if (mode == SEARCH_DISCARD)
2393                         return ret;
2394         }
2395
2396         return ret;
2397 }
2398 #endif
2399
2400 /*
2401  *
2402  * 0) Disconnect the SKB from the firmware (just unmap)
2403  * 1) Pack the ETH header into the SKB
2404  * 2) Pass the SKB to the network stack
2405  *
2406  * When packet is provided by the firmware, it contains the following:
2407  *
2408  * .  libipw_hdr
2409  * .  libipw_snap_hdr
2410  *
2411  * The size of the constructed ethernet
2412  *
2413  */
2414 #ifdef IPW2100_RX_DEBUG
2415 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2416 #endif
2417
2418 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2419 {
2420 #ifdef IPW2100_DEBUG_C3
2421         struct ipw2100_status *status = &priv->status_queue.drv[i];
2422         u32 match, reg;
2423         int j;
2424 #endif
2425
2426         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2427                        i * sizeof(struct ipw2100_status));
2428
2429 #ifdef IPW2100_DEBUG_C3
2430         /* Halt the firmware so we can get a good image */
2431         write_register(priv->net_dev, IPW_REG_RESET_REG,
2432                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2433         j = 5;
2434         do {
2435                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2436                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2437
2438                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2439                         break;
2440         } while (j--);
2441
2442         match = ipw2100_match_buf(priv, (u8 *) status,
2443                                   sizeof(struct ipw2100_status),
2444                                   SEARCH_SNAPSHOT);
2445         if (match < SEARCH_SUCCESS)
2446                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2447                                "offset 0x%06X, length %d:\n",
2448                                priv->net_dev->name, match,
2449                                sizeof(struct ipw2100_status));
2450         else
2451                 IPW_DEBUG_INFO("%s: No DMA status match in "
2452                                "Firmware.\n", priv->net_dev->name);
2453
2454         printk_buf((u8 *) priv->status_queue.drv,
2455                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2456 #endif
2457
2458         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2459         priv->net_dev->stats.rx_errors++;
2460         schedule_reset(priv);
2461 }
2462
2463 static void isr_rx(struct ipw2100_priv *priv, int i,
2464                           struct libipw_rx_stats *stats)
2465 {
2466         struct net_device *dev = priv->net_dev;
2467         struct ipw2100_status *status = &priv->status_queue.drv[i];
2468         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2469
2470         IPW_DEBUG_RX("Handler...\n");
2471
2472         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2473                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2474                                "  Dropping.\n",
2475                                dev->name,
2476                                status->frame_size, skb_tailroom(packet->skb));
2477                 dev->stats.rx_errors++;
2478                 return;
2479         }
2480
2481         if (unlikely(!netif_running(dev))) {
2482                 dev->stats.rx_errors++;
2483                 priv->wstats.discard.misc++;
2484                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2485                 return;
2486         }
2487
2488         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2489                      !(priv->status & STATUS_ASSOCIATED))) {
2490                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2491                 priv->wstats.discard.misc++;
2492                 return;
2493         }
2494
2495         pci_unmap_single(priv->pci_dev,
2496                          packet->dma_addr,
2497                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2498
2499         skb_put(packet->skb, status->frame_size);
2500
2501 #ifdef IPW2100_RX_DEBUG
2502         /* Make a copy of the frame so we can dump it to the logs if
2503          * libipw_rx fails */
2504         skb_copy_from_linear_data(packet->skb, packet_data,
2505                                   min_t(u32, status->frame_size,
2506                                              IPW_RX_NIC_BUFFER_LENGTH));
2507 #endif
2508
2509         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2510 #ifdef IPW2100_RX_DEBUG
2511                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2512                                dev->name);
2513                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2514 #endif
2515                 dev->stats.rx_errors++;
2516
2517                 /* libipw_rx failed, so it didn't free the SKB */
2518                 dev_kfree_skb_any(packet->skb);
2519                 packet->skb = NULL;
2520         }
2521
2522         /* We need to allocate a new SKB and attach it to the RDB. */
2523         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2524                 printk(KERN_WARNING DRV_NAME ": "
2525                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2526                        "adapter.\n", dev->name);
2527                 /* TODO: schedule adapter shutdown */
2528                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2529         }
2530
2531         /* Update the RDB entry */
2532         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2533 }
2534
2535 #ifdef CONFIG_IPW2100_MONITOR
2536
2537 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2538                    struct libipw_rx_stats *stats)
2539 {
2540         struct net_device *dev = priv->net_dev;
2541         struct ipw2100_status *status = &priv->status_queue.drv[i];
2542         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2543
2544         /* Magic struct that slots into the radiotap header -- no reason
2545          * to build this manually element by element, we can write it much
2546          * more efficiently than we can parse it. ORDER MATTERS HERE */
2547         struct ipw_rt_hdr {
2548                 struct ieee80211_radiotap_header rt_hdr;
2549                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2550         } *ipw_rt;
2551
2552         IPW_DEBUG_RX("Handler...\n");
2553
2554         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2555                                 sizeof(struct ipw_rt_hdr))) {
2556                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2557                                "  Dropping.\n",
2558                                dev->name,
2559                                status->frame_size,
2560                                skb_tailroom(packet->skb));
2561                 dev->stats.rx_errors++;
2562                 return;
2563         }
2564
2565         if (unlikely(!netif_running(dev))) {
2566                 dev->stats.rx_errors++;
2567                 priv->wstats.discard.misc++;
2568                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2569                 return;
2570         }
2571
2572         if (unlikely(priv->config & CFG_CRC_CHECK &&
2573                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2574                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2575                 dev->stats.rx_errors++;
2576                 return;
2577         }
2578
2579         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2580                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2581         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2582                 packet->skb->data, status->frame_size);
2583
2584         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2585
2586         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2587         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2588         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2589
2590         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2591
2592         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2593
2594         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2595
2596         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2597                 dev->stats.rx_errors++;
2598
2599                 /* libipw_rx failed, so it didn't free the SKB */
2600                 dev_kfree_skb_any(packet->skb);
2601                 packet->skb = NULL;
2602         }
2603
2604         /* We need to allocate a new SKB and attach it to the RDB. */
2605         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2606                 IPW_DEBUG_WARNING(
2607                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2608                         "adapter.\n", dev->name);
2609                 /* TODO: schedule adapter shutdown */
2610                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2611         }
2612
2613         /* Update the RDB entry */
2614         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2615 }
2616
2617 #endif
2618
2619 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2620 {
2621         struct ipw2100_status *status = &priv->status_queue.drv[i];
2622         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2623         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2624
2625         switch (frame_type) {
2626         case COMMAND_STATUS_VAL:
2627                 return (status->frame_size != sizeof(u->rx_data.command));
2628         case STATUS_CHANGE_VAL:
2629                 return (status->frame_size != sizeof(u->rx_data.status));
2630         case HOST_NOTIFICATION_VAL:
2631                 return (status->frame_size < sizeof(u->rx_data.notification));
2632         case P80211_DATA_VAL:
2633         case P8023_DATA_VAL:
2634 #ifdef CONFIG_IPW2100_MONITOR
2635                 return 0;
2636 #else
2637                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2638                 case IEEE80211_FTYPE_MGMT:
2639                 case IEEE80211_FTYPE_CTL:
2640                         return 0;
2641                 case IEEE80211_FTYPE_DATA:
2642                         return (status->frame_size >
2643                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2644                 }
2645 #endif
2646         }
2647
2648         return 1;
2649 }
2650
2651 /*
2652  * ipw2100 interrupts are disabled at this point, and the ISR
2653  * is the only code that calls this method.  So, we do not need
2654  * to play with any locks.
2655  *
2656  * RX Queue works as follows:
2657  *
2658  * Read index - firmware places packet in entry identified by the
2659  *              Read index and advances Read index.  In this manner,
2660  *              Read index will always point to the next packet to
2661  *              be filled--but not yet valid.
2662  *
2663  * Write index - driver fills this entry with an unused RBD entry.
2664  *               This entry has not filled by the firmware yet.
2665  *
2666  * In between the W and R indexes are the RBDs that have been received
2667  * but not yet processed.
2668  *
2669  * The process of handling packets will start at WRITE + 1 and advance
2670  * until it reaches the READ index.
2671  *
2672  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2673  *
2674  */
2675 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2676 {
2677         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2678         struct ipw2100_status_queue *sq = &priv->status_queue;
2679         struct ipw2100_rx_packet *packet;
2680         u16 frame_type;
2681         u32 r, w, i, s;
2682         struct ipw2100_rx *u;
2683         struct libipw_rx_stats stats = {
2684                 .mac_time = jiffies,
2685         };
2686
2687         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2688         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2689
2690         if (r >= rxq->entries) {
2691                 IPW_DEBUG_RX("exit - bad read index\n");
2692                 return;
2693         }
2694
2695         i = (rxq->next + 1) % rxq->entries;
2696         s = i;
2697         while (i != r) {
2698                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2699                    r, rxq->next, i); */
2700
2701                 packet = &priv->rx_buffers[i];
2702
2703                 /* Sync the DMA for the RX buffer so CPU is sure to get
2704                  * the correct values */
2705                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2706                                             sizeof(struct ipw2100_rx),
2707                                             PCI_DMA_FROMDEVICE);
2708
2709                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2710                         ipw2100_corruption_detected(priv, i);
2711                         goto increment;
2712                 }
2713
2714                 u = packet->rxp;
2715                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2716                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2717                 stats.len = sq->drv[i].frame_size;
2718
2719                 stats.mask = 0;
2720                 if (stats.rssi != 0)
2721                         stats.mask |= LIBIPW_STATMASK_RSSI;
2722                 stats.freq = LIBIPW_24GHZ_BAND;
2723
2724                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2725                              priv->net_dev->name, frame_types[frame_type],
2726                              stats.len);
2727
2728                 switch (frame_type) {
2729                 case COMMAND_STATUS_VAL:
2730                         /* Reset Rx watchdog */
2731                         isr_rx_complete_command(priv, &u->rx_data.command);
2732                         break;
2733
2734                 case STATUS_CHANGE_VAL:
2735                         isr_status_change(priv, u->rx_data.status);
2736                         break;
2737
2738                 case P80211_DATA_VAL:
2739                 case P8023_DATA_VAL:
2740 #ifdef CONFIG_IPW2100_MONITOR
2741                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2742                                 isr_rx_monitor(priv, i, &stats);
2743                                 break;
2744                         }
2745 #endif
2746                         if (stats.len < sizeof(struct libipw_hdr_3addr))
2747                                 break;
2748                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2749                         case IEEE80211_FTYPE_MGMT:
2750                                 libipw_rx_mgt(priv->ieee,
2751                                                  &u->rx_data.header, &stats);
2752                                 break;
2753
2754                         case IEEE80211_FTYPE_CTL:
2755                                 break;
2756
2757                         case IEEE80211_FTYPE_DATA:
2758                                 isr_rx(priv, i, &stats);
2759                                 break;
2760
2761                         }
2762                         break;
2763                 }
2764
2765               increment:
2766                 /* clear status field associated with this RBD */
2767                 rxq->drv[i].status.info.field = 0;
2768
2769                 i = (i + 1) % rxq->entries;
2770         }
2771
2772         if (i != s) {
2773                 /* backtrack one entry, wrapping to end if at 0 */
2774                 rxq->next = (i ? i : rxq->entries) - 1;
2775
2776                 write_register(priv->net_dev,
2777                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2778         }
2779 }
2780
2781 /*
2782  * __ipw2100_tx_process
2783  *
2784  * This routine will determine whether the next packet on
2785  * the fw_pend_list has been processed by the firmware yet.
2786  *
2787  * If not, then it does nothing and returns.
2788  *
2789  * If so, then it removes the item from the fw_pend_list, frees
2790  * any associated storage, and places the item back on the
2791  * free list of its source (either msg_free_list or tx_free_list)
2792  *
2793  * TX Queue works as follows:
2794  *
2795  * Read index - points to the next TBD that the firmware will
2796  *              process.  The firmware will read the data, and once
2797  *              done processing, it will advance the Read index.
2798  *
2799  * Write index - driver fills this entry with an constructed TBD
2800  *               entry.  The Write index is not advanced until the
2801  *               packet has been configured.
2802  *
2803  * In between the W and R indexes are the TBDs that have NOT been
2804  * processed.  Lagging behind the R index are packets that have
2805  * been processed but have not been freed by the driver.
2806  *
2807  * In order to free old storage, an internal index will be maintained
2808  * that points to the next packet to be freed.  When all used
2809  * packets have been freed, the oldest index will be the same as the
2810  * firmware's read index.
2811  *
2812  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2813  *
2814  * Because the TBD structure can not contain arbitrary data, the
2815  * driver must keep an internal queue of cached allocations such that
2816  * it can put that data back into the tx_free_list and msg_free_list
2817  * for use by future command and data packets.
2818  *
2819  */
2820 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2821 {
2822         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2823         struct ipw2100_bd *tbd;
2824         struct list_head *element;
2825         struct ipw2100_tx_packet *packet;
2826         int descriptors_used;
2827         int e, i;
2828         u32 r, w, frag_num = 0;
2829
2830         if (list_empty(&priv->fw_pend_list))
2831                 return 0;
2832
2833         element = priv->fw_pend_list.next;
2834
2835         packet = list_entry(element, struct ipw2100_tx_packet, list);
2836         tbd = &txq->drv[packet->index];
2837
2838         /* Determine how many TBD entries must be finished... */
2839         switch (packet->type) {
2840         case COMMAND:
2841                 /* COMMAND uses only one slot; don't advance */
2842                 descriptors_used = 1;
2843                 e = txq->oldest;
2844                 break;
2845
2846         case DATA:
2847                 /* DATA uses two slots; advance and loop position. */
2848                 descriptors_used = tbd->num_fragments;
2849                 frag_num = tbd->num_fragments - 1;
2850                 e = txq->oldest + frag_num;
2851                 e %= txq->entries;
2852                 break;
2853
2854         default:
2855                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2856                        priv->net_dev->name);
2857                 return 0;
2858         }
2859
2860         /* if the last TBD is not done by NIC yet, then packet is
2861          * not ready to be released.
2862          *
2863          */
2864         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2865                       &r);
2866         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2867                       &w);
2868         if (w != txq->next)
2869                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2870                        priv->net_dev->name);
2871
2872         /*
2873          * txq->next is the index of the last packet written txq->oldest is
2874          * the index of the r is the index of the next packet to be read by
2875          * firmware
2876          */
2877
2878         /*
2879          * Quick graphic to help you visualize the following
2880          * if / else statement
2881          *
2882          * ===>|                     s---->|===============
2883          *                               e>|
2884          * | a | b | c | d | e | f | g | h | i | j | k | l
2885          *       r---->|
2886          *               w
2887          *
2888          * w - updated by driver
2889          * r - updated by firmware
2890          * s - start of oldest BD entry (txq->oldest)
2891          * e - end of oldest BD entry
2892          *
2893          */
2894         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2895                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2896                 return 0;
2897         }
2898
2899         list_del(element);
2900         DEC_STAT(&priv->fw_pend_stat);
2901
2902 #ifdef CONFIG_IPW2100_DEBUG
2903         {
2904                 i = txq->oldest;
2905                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2906                              &txq->drv[i],
2907                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2908                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2909
2910                 if (packet->type == DATA) {
2911                         i = (i + 1) % txq->entries;
2912
2913                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2914                                      &txq->drv[i],
2915                                      (u32) (txq->nic + i *
2916                                             sizeof(struct ipw2100_bd)),
2917                                      (u32) txq->drv[i].host_addr,
2918                                      txq->drv[i].buf_length);
2919                 }
2920         }
2921 #endif
2922
2923         switch (packet->type) {
2924         case DATA:
2925                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2926                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2927                                "Expecting DATA TBD but pulled "
2928                                "something else: ids %d=%d.\n",
2929                                priv->net_dev->name, txq->oldest, packet->index);
2930
2931                 /* DATA packet; we have to unmap and free the SKB */
2932                 for (i = 0; i < frag_num; i++) {
2933                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2934
2935                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2936                                      (packet->index + 1 + i) % txq->entries,
2937                                      tbd->host_addr, tbd->buf_length);
2938
2939                         pci_unmap_single(priv->pci_dev,
2940                                          tbd->host_addr,
2941                                          tbd->buf_length, PCI_DMA_TODEVICE);
2942                 }
2943
2944                 libipw_txb_free(packet->info.d_struct.txb);
2945                 packet->info.d_struct.txb = NULL;
2946
2947                 list_add_tail(element, &priv->tx_free_list);
2948                 INC_STAT(&priv->tx_free_stat);
2949
2950                 /* We have a free slot in the Tx queue, so wake up the
2951                  * transmit layer if it is stopped. */
2952                 if (priv->status & STATUS_ASSOCIATED)
2953                         netif_wake_queue(priv->net_dev);
2954
2955                 /* A packet was processed by the hardware, so update the
2956                  * watchdog */
2957                 netif_trans_update(priv->net_dev);
2958
2959                 break;
2960
2961         case COMMAND:
2962                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2963                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2964                                "Expecting COMMAND TBD but pulled "
2965                                "something else: ids %d=%d.\n",
2966                                priv->net_dev->name, txq->oldest, packet->index);
2967
2968 #ifdef CONFIG_IPW2100_DEBUG
2969                 if (packet->info.c_struct.cmd->host_command_reg <
2970                     ARRAY_SIZE(command_types))
2971                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2972                                      command_types[packet->info.c_struct.cmd->
2973                                                    host_command_reg],
2974                                      packet->info.c_struct.cmd->
2975                                      host_command_reg,
2976                                      packet->info.c_struct.cmd->cmd_status_reg);
2977 #endif
2978
2979                 list_add_tail(element, &priv->msg_free_list);
2980                 INC_STAT(&priv->msg_free_stat);
2981                 break;
2982         }
2983
2984         /* advance oldest used TBD pointer to start of next entry */
2985         txq->oldest = (e + 1) % txq->entries;
2986         /* increase available TBDs number */
2987         txq->available += descriptors_used;
2988         SET_STAT(&priv->txq_stat, txq->available);
2989
2990         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2991                      jiffies - packet->jiffy_start);
2992
2993         return (!list_empty(&priv->fw_pend_list));
2994 }
2995
2996 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2997 {
2998         int i = 0;
2999
3000         while (__ipw2100_tx_process(priv) && i < 200)
3001                 i++;
3002
3003         if (i == 200) {
3004                 printk(KERN_WARNING DRV_NAME ": "
3005                        "%s: Driver is running slow (%d iters).\n",
3006                        priv->net_dev->name, i);
3007         }
3008 }
3009
3010 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3011 {
3012         struct list_head *element;
3013         struct ipw2100_tx_packet *packet;
3014         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3015         struct ipw2100_bd *tbd;
3016         int next = txq->next;
3017
3018         while (!list_empty(&priv->msg_pend_list)) {
3019                 /* if there isn't enough space in TBD queue, then
3020                  * don't stuff a new one in.
3021                  * NOTE: 3 are needed as a command will take one,
3022                  *       and there is a minimum of 2 that must be
3023                  *       maintained between the r and w indexes
3024                  */
3025                 if (txq->available <= 3) {
3026                         IPW_DEBUG_TX("no room in tx_queue\n");
3027                         break;
3028                 }
3029
3030                 element = priv->msg_pend_list.next;
3031                 list_del(element);
3032                 DEC_STAT(&priv->msg_pend_stat);
3033
3034                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3035
3036                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3037                              &txq->drv[txq->next],
3038                              (u32) (txq->nic + txq->next *
3039                                       sizeof(struct ipw2100_bd)));
3040
3041                 packet->index = txq->next;
3042
3043                 tbd = &txq->drv[txq->next];
3044
3045                 /* initialize TBD */
3046                 tbd->host_addr = packet->info.c_struct.cmd_phys;
3047                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3048                 /* not marking number of fragments causes problems
3049                  * with f/w debug version */
3050                 tbd->num_fragments = 1;
3051                 tbd->status.info.field =
3052                     IPW_BD_STATUS_TX_FRAME_COMMAND |
3053                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3054
3055                 /* update TBD queue counters */
3056                 txq->next++;
3057                 txq->next %= txq->entries;
3058                 txq->available--;
3059                 DEC_STAT(&priv->txq_stat);
3060
3061                 list_add_tail(element, &priv->fw_pend_list);
3062                 INC_STAT(&priv->fw_pend_stat);
3063         }
3064
3065         if (txq->next != next) {
3066                 /* kick off the DMA by notifying firmware the
3067                  * write index has moved; make sure TBD stores are sync'd */
3068                 wmb();
3069                 write_register(priv->net_dev,
3070                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3071                                txq->next);
3072         }
3073 }
3074
3075 /*
3076  * ipw2100_tx_send_data
3077  *
3078  */
3079 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3080 {
3081         struct list_head *element;
3082         struct ipw2100_tx_packet *packet;
3083         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3084         struct ipw2100_bd *tbd;
3085         int next = txq->next;
3086         int i = 0;
3087         struct ipw2100_data_header *ipw_hdr;
3088         struct libipw_hdr_3addr *hdr;
3089
3090         while (!list_empty(&priv->tx_pend_list)) {
3091                 /* if there isn't enough space in TBD queue, then
3092                  * don't stuff a new one in.
3093                  * NOTE: 4 are needed as a data will take two,
3094                  *       and there is a minimum of 2 that must be
3095                  *       maintained between the r and w indexes
3096                  */
3097                 element = priv->tx_pend_list.next;
3098                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3099
3100                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3101                              IPW_MAX_BDS)) {
3102                         /* TODO: Support merging buffers if more than
3103                          * IPW_MAX_BDS are used */
3104                         IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3105                                        "Increase fragmentation level.\n",
3106                                        priv->net_dev->name);
3107                 }
3108
3109                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3110                         IPW_DEBUG_TX("no room in tx_queue\n");
3111                         break;
3112                 }
3113
3114                 list_del(element);
3115                 DEC_STAT(&priv->tx_pend_stat);
3116
3117                 tbd = &txq->drv[txq->next];
3118
3119                 packet->index = txq->next;
3120
3121                 ipw_hdr = packet->info.d_struct.data;
3122                 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3123                     fragments[0]->data;
3124
3125                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3126                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3127                            Addr3 = DA */
3128                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3129                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3130                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3131                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3132                            Addr3 = BSSID */
3133                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3134                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3135                 }
3136
3137                 ipw_hdr->host_command_reg = SEND;
3138                 ipw_hdr->host_command_reg1 = 0;
3139
3140                 /* For now we only support host based encryption */
3141                 ipw_hdr->needs_encryption = 0;
3142                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3143                 if (packet->info.d_struct.txb->nr_frags > 1)
3144                         ipw_hdr->fragment_size =
3145                             packet->info.d_struct.txb->frag_size -
3146                             LIBIPW_3ADDR_LEN;
3147                 else
3148                         ipw_hdr->fragment_size = 0;
3149
3150                 tbd->host_addr = packet->info.d_struct.data_phys;
3151                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3152                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3153                 tbd->status.info.field =
3154                     IPW_BD_STATUS_TX_FRAME_802_3 |
3155                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3156                 txq->next++;
3157                 txq->next %= txq->entries;
3158
3159                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3160                              packet->index, tbd->host_addr, tbd->buf_length);
3161 #ifdef CONFIG_IPW2100_DEBUG
3162                 if (packet->info.d_struct.txb->nr_frags > 1)
3163                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3164                                        packet->info.d_struct.txb->nr_frags);
3165 #endif
3166
3167                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3168                         tbd = &txq->drv[txq->next];
3169                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3170                                 tbd->status.info.field =
3171                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3172                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3173                         else
3174                                 tbd->status.info.field =
3175                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3176                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3177
3178                         tbd->buf_length = packet->info.d_struct.txb->
3179                             fragments[i]->len - LIBIPW_3ADDR_LEN;
3180
3181                         tbd->host_addr = pci_map_single(priv->pci_dev,
3182                                                         packet->info.d_struct.
3183                                                         txb->fragments[i]->
3184                                                         data +
3185                                                         LIBIPW_3ADDR_LEN,
3186                                                         tbd->buf_length,
3187                                                         PCI_DMA_TODEVICE);
3188                         if (pci_dma_mapping_error(priv->pci_dev,
3189                                                   tbd->host_addr)) {
3190                                 IPW_DEBUG_TX("dma mapping error\n");
3191                                 break;
3192                         }
3193
3194                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3195                                      txq->next, tbd->host_addr,
3196                                      tbd->buf_length);
3197
3198                         pci_dma_sync_single_for_device(priv->pci_dev,
3199                                                        tbd->host_addr,
3200                                                        tbd->buf_length,
3201                                                        PCI_DMA_TODEVICE);
3202
3203                         txq->next++;
3204                         txq->next %= txq->entries;
3205                 }
3206
3207                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3208                 SET_STAT(&priv->txq_stat, txq->available);
3209
3210                 list_add_tail(element, &priv->fw_pend_list);
3211                 INC_STAT(&priv->fw_pend_stat);
3212         }
3213
3214         if (txq->next != next) {
3215                 /* kick off the DMA by notifying firmware the
3216                  * write index has moved; make sure TBD stores are sync'd */
3217                 write_register(priv->net_dev,
3218                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3219                                txq->next);
3220         }
3221 }
3222
3223 static void ipw2100_irq_tasklet(unsigned long data)
3224 {
3225         struct ipw2100_priv *priv = (struct ipw2100_priv *)data;
3226         struct net_device *dev = priv->net_dev;
3227         unsigned long flags;
3228         u32 inta, tmp;
3229
3230         spin_lock_irqsave(&priv->low_lock, flags);
3231         ipw2100_disable_interrupts(priv);
3232
3233         read_register(dev, IPW_REG_INTA, &inta);
3234
3235         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3236                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3237
3238         priv->in_isr++;
3239         priv->interrupts++;
3240
3241         /* We do not loop and keep polling for more interrupts as this
3242          * is frowned upon and doesn't play nicely with other potentially
3243          * chained IRQs */
3244         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3245                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3246
3247         if (inta & IPW2100_INTA_FATAL_ERROR) {
3248                 printk(KERN_WARNING DRV_NAME
3249                        ": Fatal interrupt. Scheduling firmware restart.\n");
3250                 priv->inta_other++;
3251                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3252
3253                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3254                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3255                                priv->net_dev->name, priv->fatal_error);
3256
3257                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3258                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3259                                priv->net_dev->name, tmp);
3260
3261                 /* Wake up any sleeping jobs */
3262                 schedule_reset(priv);
3263         }
3264
3265         if (inta & IPW2100_INTA_PARITY_ERROR) {
3266                 printk(KERN_ERR DRV_NAME
3267                        ": ***** PARITY ERROR INTERRUPT !!!!\n");
3268                 priv->inta_other++;
3269                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3270         }
3271
3272         if (inta & IPW2100_INTA_RX_TRANSFER) {
3273                 IPW_DEBUG_ISR("RX interrupt\n");
3274
3275                 priv->rx_interrupts++;
3276
3277                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3278
3279                 __ipw2100_rx_process(priv);
3280                 __ipw2100_tx_complete(priv);
3281         }
3282
3283         if (inta & IPW2100_INTA_TX_TRANSFER) {
3284                 IPW_DEBUG_ISR("TX interrupt\n");
3285
3286                 priv->tx_interrupts++;
3287
3288                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3289
3290                 __ipw2100_tx_complete(priv);
3291                 ipw2100_tx_send_commands(priv);
3292                 ipw2100_tx_send_data(priv);
3293         }
3294
3295         if (inta & IPW2100_INTA_TX_COMPLETE) {
3296                 IPW_DEBUG_ISR("TX complete\n");
3297                 priv->inta_other++;
3298                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3299
3300                 __ipw2100_tx_complete(priv);
3301         }
3302
3303         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3304                 /* ipw2100_handle_event(dev); */
3305                 priv->inta_other++;
3306                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3307         }
3308
3309         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3310                 IPW_DEBUG_ISR("FW init done interrupt\n");
3311                 priv->inta_other++;
3312
3313                 read_register(dev, IPW_REG_INTA, &tmp);
3314                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3315                            IPW2100_INTA_PARITY_ERROR)) {
3316                         write_register(dev, IPW_REG_INTA,
3317                                        IPW2100_INTA_FATAL_ERROR |
3318                                        IPW2100_INTA_PARITY_ERROR);
3319                 }
3320
3321                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3322         }
3323
3324         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3325                 IPW_DEBUG_ISR("Status change interrupt\n");
3326                 priv->inta_other++;
3327                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3328         }
3329
3330         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3331                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3332                 priv->inta_other++;
3333                 write_register(dev, IPW_REG_INTA,
3334                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3335         }
3336
3337         priv->in_isr--;
3338         ipw2100_enable_interrupts(priv);
3339
3340         spin_unlock_irqrestore(&priv->low_lock, flags);
3341
3342         IPW_DEBUG_ISR("exit\n");
3343 }
3344
3345 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3346 {
3347         struct ipw2100_priv *priv = data;
3348         u32 inta, inta_mask;
3349
3350         if (!data)
3351                 return IRQ_NONE;
3352
3353         spin_lock(&priv->low_lock);
3354
3355         /* We check to see if we should be ignoring interrupts before
3356          * we touch the hardware.  During ucode load if we try and handle
3357          * an interrupt we can cause keyboard problems as well as cause
3358          * the ucode to fail to initialize */
3359         if (!(priv->status & STATUS_INT_ENABLED)) {
3360                 /* Shared IRQ */
3361                 goto none;
3362         }
3363
3364         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3365         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3366
3367         if (inta == 0xFFFFFFFF) {
3368                 /* Hardware disappeared */
3369                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3370                 goto none;
3371         }
3372
3373         inta &= IPW_INTERRUPT_MASK;
3374
3375         if (!(inta & inta_mask)) {
3376                 /* Shared interrupt */
3377                 goto none;
3378         }
3379
3380         /* We disable the hardware interrupt here just to prevent unneeded
3381          * calls to be made.  We disable this again within the actual
3382          * work tasklet, so if another part of the code re-enables the
3383          * interrupt, that is fine */
3384         ipw2100_disable_interrupts(priv);
3385
3386         tasklet_schedule(&priv->irq_tasklet);
3387         spin_unlock(&priv->low_lock);
3388
3389         return IRQ_HANDLED;
3390       none:
3391         spin_unlock(&priv->low_lock);
3392         return IRQ_NONE;
3393 }
3394
3395 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3396                               struct net_device *dev, int pri)
3397 {
3398         struct ipw2100_priv *priv = libipw_priv(dev);
3399         struct list_head *element;
3400         struct ipw2100_tx_packet *packet;
3401         unsigned long flags;
3402
3403         spin_lock_irqsave(&priv->low_lock, flags);
3404
3405         if (!(priv->status & STATUS_ASSOCIATED)) {
3406                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3407                 priv->net_dev->stats.tx_carrier_errors++;
3408                 netif_stop_queue(dev);
3409                 goto fail_unlock;
3410         }
3411
3412         if (list_empty(&priv->tx_free_list))
3413                 goto fail_unlock;
3414
3415         element = priv->tx_free_list.next;
3416         packet = list_entry(element, struct ipw2100_tx_packet, list);
3417
3418         packet->info.d_struct.txb = txb;
3419
3420         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3421         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3422
3423         packet->jiffy_start = jiffies;
3424
3425         list_del(element);
3426         DEC_STAT(&priv->tx_free_stat);
3427
3428         list_add_tail(element, &priv->tx_pend_list);
3429         INC_STAT(&priv->tx_pend_stat);
3430
3431         ipw2100_tx_send_data(priv);
3432
3433         spin_unlock_irqrestore(&priv->low_lock, flags);
3434         return NETDEV_TX_OK;
3435
3436 fail_unlock:
3437         netif_stop_queue(dev);
3438         spin_unlock_irqrestore(&priv->low_lock, flags);
3439         return NETDEV_TX_BUSY;
3440 }
3441
3442 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3443 {
3444         int i, j, err = -EINVAL;
3445         void *v;
3446         dma_addr_t p;
3447
3448         priv->msg_buffers =
3449             kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3450                     GFP_KERNEL);
3451         if (!priv->msg_buffers)
3452                 return -ENOMEM;
3453
3454         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3455                 v = pci_zalloc_consistent(priv->pci_dev,
3456                                           sizeof(struct ipw2100_cmd_header),
3457                                           &p);
3458                 if (!v) {
3459                         printk(KERN_ERR DRV_NAME ": "
3460                                "%s: PCI alloc failed for msg "
3461                                "buffers.\n", priv->net_dev->name);
3462                         err = -ENOMEM;
3463                         break;
3464                 }
3465
3466                 priv->msg_buffers[i].type = COMMAND;
3467                 priv->msg_buffers[i].info.c_struct.cmd =
3468                     (struct ipw2100_cmd_header *)v;
3469                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3470         }
3471
3472         if (i == IPW_COMMAND_POOL_SIZE)
3473                 return 0;
3474
3475         for (j = 0; j < i; j++) {
3476                 pci_free_consistent(priv->pci_dev,
3477                                     sizeof(struct ipw2100_cmd_header),
3478                                     priv->msg_buffers[j].info.c_struct.cmd,
3479                                     priv->msg_buffers[j].info.c_struct.
3480                                     cmd_phys);
3481         }
3482
3483         kfree(priv->msg_buffers);
3484         priv->msg_buffers = NULL;
3485
3486         return err;
3487 }
3488
3489 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3490 {
3491         int i;
3492
3493         INIT_LIST_HEAD(&priv->msg_free_list);
3494         INIT_LIST_HEAD(&priv->msg_pend_list);
3495
3496         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3497                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3498         SET_STAT(&priv->msg_free_stat, i);
3499
3500         return 0;
3501 }
3502
3503 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3504 {
3505         int i;
3506
3507         if (!priv->msg_buffers)
3508                 return;
3509
3510         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3511                 pci_free_consistent(priv->pci_dev,
3512                                     sizeof(struct ipw2100_cmd_header),
3513                                     priv->msg_buffers[i].info.c_struct.cmd,
3514                                     priv->msg_buffers[i].info.c_struct.
3515                                     cmd_phys);
3516         }
3517
3518         kfree(priv->msg_buffers);
3519         priv->msg_buffers = NULL;
3520 }
3521
3522 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3523                         char *buf)
3524 {
3525         struct pci_dev *pci_dev = to_pci_dev(d);
3526         char *out = buf;
3527         int i, j;
3528         u32 val;
3529
3530         for (i = 0; i < 16; i++) {
3531                 out += sprintf(out, "[%08X] ", i * 16);
3532                 for (j = 0; j < 16; j += 4) {
3533                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3534                         out += sprintf(out, "%08X ", val);
3535                 }
3536                 out += sprintf(out, "\n");
3537         }
3538
3539         return out - buf;
3540 }
3541
3542 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3543
3544 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3545                         char *buf)
3546 {
3547         struct ipw2100_priv *p = dev_get_drvdata(d);
3548         return sprintf(buf, "0x%08x\n", (int)p->config);
3549 }
3550
3551 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3552
3553 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3554                            char *buf)
3555 {
3556         struct ipw2100_priv *p = dev_get_drvdata(d);
3557         return sprintf(buf, "0x%08x\n", (int)p->status);
3558 }
3559
3560 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3561
3562 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3563                                char *buf)
3564 {
3565         struct ipw2100_priv *p = dev_get_drvdata(d);
3566         return sprintf(buf, "0x%08x\n", (int)p->capability);
3567 }
3568
3569 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3570
3571 #define IPW2100_REG(x) { IPW_ ##x, #x }
3572 static const struct {
3573         u32 addr;
3574         const char *name;
3575 } hw_data[] = {
3576 IPW2100_REG(REG_GP_CNTRL),
3577             IPW2100_REG(REG_GPIO),
3578             IPW2100_REG(REG_INTA),
3579             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3580 #define IPW2100_NIC(x, s) { x, #x, s }
3581 static const struct {
3582         u32 addr;
3583         const char *name;
3584         size_t size;
3585 } nic_data[] = {
3586 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3587             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3588 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3589 static const struct {
3590         u8 index;
3591         const char *name;
3592         const char *desc;
3593 } ord_data[] = {
3594 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3595             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3596                                 "successful Host Tx's (MSDU)"),
3597             IPW2100_ORD(STAT_TX_DIR_DATA,
3598                                 "successful Directed Tx's (MSDU)"),
3599             IPW2100_ORD(STAT_TX_DIR_DATA1,
3600                                 "successful Directed Tx's (MSDU) @ 1MB"),
3601             IPW2100_ORD(STAT_TX_DIR_DATA2,
3602                                 "successful Directed Tx's (MSDU) @ 2MB"),
3603             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3604                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3605             IPW2100_ORD(STAT_TX_DIR_DATA11,
3606                                 "successful Directed Tx's (MSDU) @ 11MB"),
3607             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3608                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3609             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3610                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3611             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3612                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3613             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3614                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3615             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3616             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3617             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3618             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3619             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3620             IPW2100_ORD(STAT_TX_ASSN_RESP,
3621                                 "successful Association response Tx's"),
3622             IPW2100_ORD(STAT_TX_REASSN,
3623                                 "successful Reassociation Tx's"),
3624             IPW2100_ORD(STAT_TX_REASSN_RESP,
3625                                 "successful Reassociation response Tx's"),
3626             IPW2100_ORD(STAT_TX_PROBE,
3627                                 "probes successfully transmitted"),
3628             IPW2100_ORD(STAT_TX_PROBE_RESP,
3629                                 "probe responses successfully transmitted"),
3630             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3631             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3632             IPW2100_ORD(STAT_TX_DISASSN,
3633                                 "successful Disassociation TX"),
3634             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3635             IPW2100_ORD(STAT_TX_DEAUTH,
3636                                 "successful Deauthentication TX"),
3637             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3638                                 "Total successful Tx data bytes"),
3639             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3640             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3641             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3642             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3643             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3644             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3645             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3646                                 "times max tries in a hop failed"),
3647             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3648                                 "times disassociation failed"),
3649             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3650             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3651             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3652             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3653             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3654             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3655             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3656                                 "directed packets at 5.5MB"),
3657             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3658             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3659             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3660                                 "nondirected packets at 1MB"),
3661             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3662                                 "nondirected packets at 2MB"),
3663             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3664                                 "nondirected packets at 5.5MB"),
3665             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3666                                 "nondirected packets at 11MB"),
3667             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3668             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3669                                                                     "Rx CTS"),
3670             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3671             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3672             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3673             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3674             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3675             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3676             IPW2100_ORD(STAT_RX_REASSN_RESP,
3677                                 "Reassociation response Rx's"),
3678             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3679             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3680             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3681             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3682             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3683             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3684             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3685             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3686                                 "Total rx data bytes received"),
3687             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3688             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3689             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3690             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3691             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3692             IPW2100_ORD(STAT_RX_DUPLICATE1,
3693                                 "duplicate rx packets at 1MB"),
3694             IPW2100_ORD(STAT_RX_DUPLICATE2,
3695                                 "duplicate rx packets at 2MB"),
3696             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3697                                 "duplicate rx packets at 5.5MB"),
3698             IPW2100_ORD(STAT_RX_DUPLICATE11,
3699                                 "duplicate rx packets at 11MB"),
3700             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3701             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3702             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3703             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3704             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3705                                 "rx frames with invalid protocol"),
3706             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3707             IPW2100_ORD(STAT_RX_NO_BUFFER,
3708                                 "rx frames rejected due to no buffer"),
3709             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3710                                 "rx frames dropped due to missing fragment"),
3711             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3712                                 "rx frames dropped due to non-sequential fragment"),
3713             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3714                                 "rx frames dropped due to unmatched 1st frame"),
3715             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3716                                 "rx frames dropped due to uncompleted frame"),
3717             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3718                                 "ICV errors during decryption"),
3719             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3720             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3721             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3722                                 "poll response timeouts"),
3723             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3724                                 "timeouts waiting for last {broad,multi}cast pkt"),
3725             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3726             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3727             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3728             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3729             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3730                                 "current calculation of % missed beacons"),
3731             IPW2100_ORD(STAT_PERCENT_RETRIES,
3732                                 "current calculation of % missed tx retries"),
3733             IPW2100_ORD(ASSOCIATED_AP_PTR,
3734                                 "0 if not associated, else pointer to AP table entry"),
3735             IPW2100_ORD(AVAILABLE_AP_CNT,
3736                                 "AP's decsribed in the AP table"),
3737             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3738             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3739             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3740             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3741                                 "failures due to response fail"),
3742             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3743             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3744             IPW2100_ORD(STAT_ROAM_INHIBIT,
3745                                 "times roaming was inhibited due to activity"),
3746             IPW2100_ORD(RSSI_AT_ASSN,
3747                                 "RSSI of associated AP at time of association"),
3748             IPW2100_ORD(STAT_ASSN_CAUSE1,
3749                                 "reassociation: no probe response or TX on hop"),
3750             IPW2100_ORD(STAT_ASSN_CAUSE2,
3751                                 "reassociation: poor tx/rx quality"),
3752             IPW2100_ORD(STAT_ASSN_CAUSE3,
3753                                 "reassociation: tx/rx quality (excessive AP load"),
3754             IPW2100_ORD(STAT_ASSN_CAUSE4,
3755                                 "reassociation: AP RSSI level"),
3756             IPW2100_ORD(STAT_ASSN_CAUSE5,
3757                                 "reassociations due to load leveling"),
3758             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3759             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3760                                 "times authentication response failed"),
3761             IPW2100_ORD(STATION_TABLE_CNT,
3762                                 "entries in association table"),
3763             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3764             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3765             IPW2100_ORD(COUNTRY_CODE,
3766                                 "IEEE country code as recv'd from beacon"),
3767             IPW2100_ORD(COUNTRY_CHANNELS,
3768                                 "channels supported by country"),
3769             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3770             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3771             IPW2100_ORD(ANTENNA_DIVERSITY,
3772                                 "TRUE if antenna diversity is disabled"),
3773             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3774             IPW2100_ORD(OUR_FREQ,
3775                                 "current radio freq lower digits - channel ID"),
3776             IPW2100_ORD(RTC_TIME, "current RTC time"),
3777             IPW2100_ORD(PORT_TYPE, "operating mode"),
3778             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3779             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3780             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3781             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3782             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3783             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3784             IPW2100_ORD(CAPABILITIES,
3785                                 "Management frame capability field"),
3786             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3787             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3788             IPW2100_ORD(RTS_THRESHOLD,
3789                                 "Min packet length for RTS handshaking"),
3790             IPW2100_ORD(INT_MODE, "International mode"),
3791             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3792                                 "protocol frag threshold"),
3793             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3794                                 "EEPROM offset in SRAM"),
3795             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3796                                 "EEPROM size in SRAM"),
3797             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3798             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3799                                 "EEPROM IBSS 11b channel set"),
3800             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3801             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3802             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3803             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3804             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3805
3806 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3807                               char *buf)
3808 {
3809         int i;
3810         struct ipw2100_priv *priv = dev_get_drvdata(d);
3811         struct net_device *dev = priv->net_dev;
3812         char *out = buf;
3813         u32 val = 0;
3814
3815         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3816
3817         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3818                 read_register(dev, hw_data[i].addr, &val);
3819                 out += sprintf(out, "%30s [%08X] : %08X\n",
3820                                hw_data[i].name, hw_data[i].addr, val);
3821         }
3822
3823         return out - buf;
3824 }
3825
3826 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3827
3828 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3829                              char *buf)
3830 {
3831         struct ipw2100_priv *priv = dev_get_drvdata(d);
3832         struct net_device *dev = priv->net_dev;
3833         char *out = buf;
3834         int i;
3835
3836         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3837
3838         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3839                 u8 tmp8;
3840                 u16 tmp16;
3841                 u32 tmp32;
3842
3843                 switch (nic_data[i].size) {
3844                 case 1:
3845                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3846                         out += sprintf(out, "%30s [%08X] : %02X\n",
3847                                        nic_data[i].name, nic_data[i].addr,
3848                                        tmp8);
3849                         break;
3850                 case 2:
3851                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3852                         out += sprintf(out, "%30s [%08X] : %04X\n",
3853                                        nic_data[i].name, nic_data[i].addr,
3854                                        tmp16);
3855                         break;
3856                 case 4:
3857                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3858                         out += sprintf(out, "%30s [%08X] : %08X\n",
3859                                        nic_data[i].name, nic_data[i].addr,
3860                                        tmp32);
3861                         break;
3862                 }
3863         }
3864         return out - buf;
3865 }
3866
3867 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3868
3869 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3870                            char *buf)
3871 {
3872         struct ipw2100_priv *priv = dev_get_drvdata(d);
3873         struct net_device *dev = priv->net_dev;
3874         static unsigned long loop = 0;
3875         int len = 0;
3876         u32 buffer[4];
3877         int i;
3878         char line[81];
3879
3880         if (loop >= 0x30000)
3881                 loop = 0;
3882
3883         /* sysfs provides us PAGE_SIZE buffer */
3884         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3885
3886                 if (priv->snapshot[0])
3887                         for (i = 0; i < 4; i++)
3888                                 buffer[i] =
3889                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3890                 else
3891                         for (i = 0; i < 4; i++)
3892                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3893
3894                 if (priv->dump_raw)
3895                         len += sprintf(buf + len,
3896                                        "%c%c%c%c"
3897                                        "%c%c%c%c"
3898                                        "%c%c%c%c"
3899                                        "%c%c%c%c",
3900                                        ((u8 *) buffer)[0x0],
3901                                        ((u8 *) buffer)[0x1],
3902                                        ((u8 *) buffer)[0x2],
3903                                        ((u8 *) buffer)[0x3],
3904                                        ((u8 *) buffer)[0x4],
3905                                        ((u8 *) buffer)[0x5],
3906                                        ((u8 *) buffer)[0x6],
3907                                        ((u8 *) buffer)[0x7],
3908                                        ((u8 *) buffer)[0x8],
3909                                        ((u8 *) buffer)[0x9],
3910                                        ((u8 *) buffer)[0xa],
3911                                        ((u8 *) buffer)[0xb],
3912                                        ((u8 *) buffer)[0xc],
3913                                        ((u8 *) buffer)[0xd],
3914                                        ((u8 *) buffer)[0xe],
3915                                        ((u8 *) buffer)[0xf]);
3916                 else
3917                         len += sprintf(buf + len, "%s\n",
3918                                        snprint_line(line, sizeof(line),
3919                                                     (u8 *) buffer, 16, loop));
3920                 loop += 16;
3921         }
3922
3923         return len;
3924 }
3925
3926 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3927                             const char *buf, size_t count)
3928 {
3929         struct ipw2100_priv *priv = dev_get_drvdata(d);
3930         struct net_device *dev = priv->net_dev;
3931         const char *p = buf;
3932
3933         (void)dev;              /* kill unused-var warning for debug-only code */
3934
3935         if (count < 1)
3936                 return count;
3937
3938         if (p[0] == '1' ||
3939             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3940                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3941                                dev->name);
3942                 priv->dump_raw = 1;
3943
3944         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3945                                    tolower(p[1]) == 'f')) {
3946                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3947                                dev->name);
3948                 priv->dump_raw = 0;
3949
3950         } else if (tolower(p[0]) == 'r') {
3951                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3952                 ipw2100_snapshot_free(priv);
3953
3954         } else
3955                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3956                                "reset = clear memory snapshot\n", dev->name);
3957
3958         return count;
3959 }
3960
3961 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3962
3963 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3964                              char *buf)
3965 {
3966         struct ipw2100_priv *priv = dev_get_drvdata(d);
3967         u32 val = 0;
3968         int len = 0;
3969         u32 val_len;
3970         static int loop = 0;
3971
3972         if (priv->status & STATUS_RF_KILL_MASK)
3973                 return 0;
3974
3975         if (loop >= ARRAY_SIZE(ord_data))
3976                 loop = 0;
3977
3978         /* sysfs provides us PAGE_SIZE buffer */
3979         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3980                 val_len = sizeof(u32);
3981
3982                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3983                                         &val_len))
3984                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3985                                        ord_data[loop].index,
3986                                        ord_data[loop].desc);
3987                 else
3988                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3989                                        ord_data[loop].index, val,
3990                                        ord_data[loop].desc);
3991                 loop++;
3992         }
3993
3994         return len;
3995 }
3996
3997 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3998
3999 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4000                           char *buf)
4001 {
4002         struct ipw2100_priv *priv = dev_get_drvdata(d);
4003         char *out = buf;
4004
4005         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4006                        priv->interrupts, priv->tx_interrupts,
4007                        priv->rx_interrupts, priv->inta_other);
4008         out += sprintf(out, "firmware resets: %d\n", priv->resets);
4009         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4010 #ifdef CONFIG_IPW2100_DEBUG
4011         out += sprintf(out, "packet mismatch image: %s\n",
4012                        priv->snapshot[0] ? "YES" : "NO");
4013 #endif
4014
4015         return out - buf;
4016 }
4017
4018 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4019
4020 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4021 {
4022         int err;
4023
4024         if (mode == priv->ieee->iw_mode)
4025                 return 0;
4026
4027         err = ipw2100_disable_adapter(priv);
4028         if (err) {
4029                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4030                        priv->net_dev->name, err);
4031                 return err;
4032         }
4033
4034         switch (mode) {
4035         case IW_MODE_INFRA:
4036                 priv->net_dev->type = ARPHRD_ETHER;
4037                 break;
4038         case IW_MODE_ADHOC:
4039                 priv->net_dev->type = ARPHRD_ETHER;
4040                 break;
4041 #ifdef CONFIG_IPW2100_MONITOR
4042         case IW_MODE_MONITOR:
4043                 priv->last_mode = priv->ieee->iw_mode;
4044                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4045                 break;
4046 #endif                          /* CONFIG_IPW2100_MONITOR */
4047         }
4048
4049         priv->ieee->iw_mode = mode;
4050
4051 #ifdef CONFIG_PM
4052         /* Indicate ipw2100_download_firmware download firmware
4053          * from disk instead of memory. */
4054         ipw2100_firmware.version = 0;
4055 #endif
4056
4057         printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4058         priv->reset_backoff = 0;
4059         schedule_reset(priv);
4060
4061         return 0;
4062 }
4063
4064 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4065                               char *buf)
4066 {
4067         struct ipw2100_priv *priv = dev_get_drvdata(d);
4068         int len = 0;
4069
4070 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4071
4072         if (priv->status & STATUS_ASSOCIATED)
4073                 len += sprintf(buf + len, "connected: %lu\n",
4074                                get_seconds() - priv->connect_start);
4075         else
4076                 len += sprintf(buf + len, "not connected\n");
4077
4078         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4079         DUMP_VAR(status, "08lx");
4080         DUMP_VAR(config, "08lx");
4081         DUMP_VAR(capability, "08lx");
4082
4083         len +=
4084             sprintf(buf + len, "last_rtc: %lu\n",
4085                     (unsigned long)priv->last_rtc);
4086
4087         DUMP_VAR(fatal_error, "d");
4088         DUMP_VAR(stop_hang_check, "d");
4089         DUMP_VAR(stop_rf_kill, "d");
4090         DUMP_VAR(messages_sent, "d");
4091
4092         DUMP_VAR(tx_pend_stat.value, "d");
4093         DUMP_VAR(tx_pend_stat.hi, "d");
4094
4095         DUMP_VAR(tx_free_stat.value, "d");
4096         DUMP_VAR(tx_free_stat.lo, "d");
4097
4098         DUMP_VAR(msg_free_stat.value, "d");
4099         DUMP_VAR(msg_free_stat.lo, "d");
4100
4101         DUMP_VAR(msg_pend_stat.value, "d");
4102         DUMP_VAR(msg_pend_stat.hi, "d");
4103
4104         DUMP_VAR(fw_pend_stat.value, "d");
4105         DUMP_VAR(fw_pend_stat.hi, "d");
4106
4107         DUMP_VAR(txq_stat.value, "d");
4108         DUMP_VAR(txq_stat.lo, "d");
4109
4110         DUMP_VAR(ieee->scans, "d");
4111         DUMP_VAR(reset_backoff, "d");
4112
4113         return len;
4114 }
4115
4116 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4117
4118 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4119                             char *buf)
4120 {
4121         struct ipw2100_priv *priv = dev_get_drvdata(d);
4122         char essid[IW_ESSID_MAX_SIZE + 1];
4123         u8 bssid[ETH_ALEN];
4124         u32 chan = 0;
4125         char *out = buf;
4126         unsigned int length;
4127         int ret;
4128
4129         if (priv->status & STATUS_RF_KILL_MASK)
4130                 return 0;
4131
4132         memset(essid, 0, sizeof(essid));
4133         memset(bssid, 0, sizeof(bssid));
4134
4135         length = IW_ESSID_MAX_SIZE;
4136         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4137         if (ret)
4138                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4139                                __LINE__);
4140
4141         length = sizeof(bssid);
4142         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4143                                   bssid, &length);
4144         if (ret)
4145                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4146                                __LINE__);
4147
4148         length = sizeof(u32);
4149         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4150         if (ret)
4151                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4152                                __LINE__);
4153
4154         out += sprintf(out, "ESSID: %s\n", essid);
4155         out += sprintf(out, "BSSID:   %pM\n", bssid);
4156         out += sprintf(out, "Channel: %d\n", chan);
4157
4158         return out - buf;
4159 }
4160
4161 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4162
4163 #ifdef CONFIG_IPW2100_DEBUG
4164 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4165 {
4166         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4167 }
4168
4169 static ssize_t store_debug_level(struct device_driver *d,
4170                                  const char *buf, size_t count)
4171 {
4172         u32 val;
4173         int ret;
4174
4175         ret = kstrtou32(buf, 0, &val);
4176         if (ret)
4177                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4178         else
4179                 ipw2100_debug_level = val;
4180
4181         return strnlen(buf, count);
4182 }
4183
4184 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4185                    store_debug_level);
4186 #endif                          /* CONFIG_IPW2100_DEBUG */
4187
4188 static ssize_t show_fatal_error(struct device *d,
4189                                 struct device_attribute *attr, char *buf)
4190 {
4191         struct ipw2100_priv *priv = dev_get_drvdata(d);
4192         char *out = buf;
4193         int i;
4194
4195         if (priv->fatal_error)
4196                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4197         else
4198                 out += sprintf(out, "0\n");
4199
4200         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4201                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4202                                         IPW2100_ERROR_QUEUE])
4203                         continue;
4204
4205                 out += sprintf(out, "%d. 0x%08X\n", i,
4206                                priv->fatal_errors[(priv->fatal_index - i) %
4207                                                   IPW2100_ERROR_QUEUE]);
4208         }
4209
4210         return out - buf;
4211 }
4212
4213 static ssize_t store_fatal_error(struct device *d,
4214                                  struct device_attribute *attr, const char *buf,
4215                                  size_t count)
4216 {
4217         struct ipw2100_priv *priv = dev_get_drvdata(d);
4218         schedule_reset(priv);
4219         return count;
4220 }
4221
4222 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4223                    store_fatal_error);
4224
4225 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4226                              char *buf)
4227 {
4228         struct ipw2100_priv *priv = dev_get_drvdata(d);
4229         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4230 }
4231
4232 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4233                               const char *buf, size_t count)
4234 {
4235         struct ipw2100_priv *priv = dev_get_drvdata(d);
4236         struct net_device *dev = priv->net_dev;
4237         unsigned long val;
4238         int ret;
4239
4240         (void)dev;              /* kill unused-var warning for debug-only code */
4241
4242         IPW_DEBUG_INFO("enter\n");
4243
4244         ret = kstrtoul(buf, 0, &val);
4245         if (ret) {
4246                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4247         } else {
4248                 priv->ieee->scan_age = val;
4249                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4250         }
4251
4252         IPW_DEBUG_INFO("exit\n");
4253         return strnlen(buf, count);
4254 }
4255
4256 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4257
4258 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4259                             char *buf)
4260 {
4261         /* 0 - RF kill not enabled
4262            1 - SW based RF kill active (sysfs)
4263            2 - HW based RF kill active
4264            3 - Both HW and SW baed RF kill active */
4265         struct ipw2100_priv *priv = dev_get_drvdata(d);
4266         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4267             (rf_kill_active(priv) ? 0x2 : 0x0);
4268         return sprintf(buf, "%i\n", val);
4269 }
4270
4271 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4272 {
4273         if ((disable_radio ? 1 : 0) ==
4274             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4275                 return 0;
4276
4277         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4278                           disable_radio ? "OFF" : "ON");
4279
4280         mutex_lock(&priv->action_mutex);
4281
4282         if (disable_radio) {
4283                 priv->status |= STATUS_RF_KILL_SW;
4284                 ipw2100_down(priv);
4285         } else {
4286                 priv->status &= ~STATUS_RF_KILL_SW;
4287                 if (rf_kill_active(priv)) {
4288                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4289                                           "disabled by HW switch\n");
4290                         /* Make sure the RF_KILL check timer is running */
4291                         priv->stop_rf_kill = 0;
4292                         mod_delayed_work(system_wq, &priv->rf_kill,
4293                                          round_jiffies_relative(HZ));
4294                 } else
4295                         schedule_reset(priv);
4296         }
4297
4298         mutex_unlock(&priv->action_mutex);
4299         return 1;
4300 }
4301
4302 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4303                              const char *buf, size_t count)
4304 {
4305         struct ipw2100_priv *priv = dev_get_drvdata(d);
4306         ipw_radio_kill_sw(priv, buf[0] == '1');
4307         return count;
4308 }
4309
4310 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4311
4312 static struct attribute *ipw2100_sysfs_entries[] = {
4313         &dev_attr_hardware.attr,
4314         &dev_attr_registers.attr,
4315         &dev_attr_ordinals.attr,
4316         &dev_attr_pci.attr,
4317         &dev_attr_stats.attr,
4318         &dev_attr_internals.attr,
4319         &dev_attr_bssinfo.attr,
4320         &dev_attr_memory.attr,
4321         &dev_attr_scan_age.attr,
4322         &dev_attr_fatal_error.attr,
4323         &dev_attr_rf_kill.attr,
4324         &dev_attr_cfg.attr,
4325         &dev_attr_status.attr,
4326         &dev_attr_capability.attr,
4327         NULL,
4328 };
4329
4330 static struct attribute_group ipw2100_attribute_group = {
4331         .attrs = ipw2100_sysfs_entries,
4332 };
4333
4334 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4335 {
4336         struct ipw2100_status_queue *q = &priv->status_queue;
4337
4338         IPW_DEBUG_INFO("enter\n");
4339
4340         q->size = entries * sizeof(struct ipw2100_status);
4341         q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4342         if (!q->drv) {
4343                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4344                 return -ENOMEM;
4345         }
4346
4347         IPW_DEBUG_INFO("exit\n");
4348
4349         return 0;
4350 }
4351
4352 static void status_queue_free(struct ipw2100_priv *priv)
4353 {
4354         IPW_DEBUG_INFO("enter\n");
4355
4356         if (priv->status_queue.drv) {
4357                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4358                                     priv->status_queue.drv,
4359                                     priv->status_queue.nic);
4360                 priv->status_queue.drv = NULL;
4361         }
4362
4363         IPW_DEBUG_INFO("exit\n");
4364 }
4365
4366 static int bd_queue_allocate(struct ipw2100_priv *priv,
4367                              struct ipw2100_bd_queue *q, int entries)
4368 {
4369         IPW_DEBUG_INFO("enter\n");
4370
4371         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4372
4373         q->entries = entries;
4374         q->size = entries * sizeof(struct ipw2100_bd);
4375         q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4376         if (!q->drv) {
4377                 IPW_DEBUG_INFO
4378                     ("can't allocate shared memory for buffer descriptors\n");
4379                 return -ENOMEM;
4380         }
4381
4382         IPW_DEBUG_INFO("exit\n");
4383
4384         return 0;
4385 }
4386
4387 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4388 {
4389         IPW_DEBUG_INFO("enter\n");
4390
4391         if (!q)
4392                 return;
4393
4394         if (q->drv) {
4395                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4396                 q->drv = NULL;
4397         }
4398
4399         IPW_DEBUG_INFO("exit\n");
4400 }
4401
4402 static void bd_queue_initialize(struct ipw2100_priv *priv,
4403                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4404                                 u32 r, u32 w)
4405 {
4406         IPW_DEBUG_INFO("enter\n");
4407
4408         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4409                        (u32) q->nic);
4410
4411         write_register(priv->net_dev, base, q->nic);
4412         write_register(priv->net_dev, size, q->entries);
4413         write_register(priv->net_dev, r, q->oldest);
4414         write_register(priv->net_dev, w, q->next);
4415
4416         IPW_DEBUG_INFO("exit\n");
4417 }
4418
4419 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4420 {
4421         priv->stop_rf_kill = 1;
4422         priv->stop_hang_check = 1;
4423         cancel_delayed_work_sync(&priv->reset_work);
4424         cancel_delayed_work_sync(&priv->security_work);
4425         cancel_delayed_work_sync(&priv->wx_event_work);
4426         cancel_delayed_work_sync(&priv->hang_check);
4427         cancel_delayed_work_sync(&priv->rf_kill);
4428         cancel_delayed_work_sync(&priv->scan_event);
4429 }
4430
4431 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4432 {
4433         int i, j, err = -EINVAL;
4434         void *v;
4435         dma_addr_t p;
4436
4437         IPW_DEBUG_INFO("enter\n");
4438
4439         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4440         if (err) {
4441                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4442                                 priv->net_dev->name);
4443                 return err;
4444         }
4445
4446         priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4447                                          sizeof(struct ipw2100_tx_packet),
4448                                          GFP_ATOMIC);
4449         if (!priv->tx_buffers) {
4450                 bd_queue_free(priv, &priv->tx_queue);
4451                 return -ENOMEM;
4452         }
4453
4454         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4455                 v = pci_alloc_consistent(priv->pci_dev,
4456                                          sizeof(struct ipw2100_data_header),
4457                                          &p);
4458                 if (!v) {
4459                         printk(KERN_ERR DRV_NAME
4460                                ": %s: PCI alloc failed for tx " "buffers.\n",
4461                                priv->net_dev->name);
4462                         err = -ENOMEM;
4463                         break;
4464                 }
4465
4466                 priv->tx_buffers[i].type = DATA;
4467                 priv->tx_buffers[i].info.d_struct.data =
4468                     (struct ipw2100_data_header *)v;
4469                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4470                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4471         }
4472
4473         if (i == TX_PENDED_QUEUE_LENGTH)
4474                 return 0;
4475
4476         for (j = 0; j < i; j++) {
4477                 pci_free_consistent(priv->pci_dev,
4478                                     sizeof(struct ipw2100_data_header),
4479                                     priv->tx_buffers[j].info.d_struct.data,
4480                                     priv->tx_buffers[j].info.d_struct.
4481                                     data_phys);
4482         }
4483
4484         kfree(priv->tx_buffers);
4485         priv->tx_buffers = NULL;
4486
4487         return err;
4488 }
4489
4490 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4491 {
4492         int i;
4493
4494         IPW_DEBUG_INFO("enter\n");
4495
4496         /*
4497          * reinitialize packet info lists
4498          */
4499         INIT_LIST_HEAD(&priv->fw_pend_list);
4500         INIT_STAT(&priv->fw_pend_stat);
4501
4502         /*
4503          * reinitialize lists
4504          */
4505         INIT_LIST_HEAD(&priv->tx_pend_list);
4506         INIT_LIST_HEAD(&priv->tx_free_list);
4507         INIT_STAT(&priv->tx_pend_stat);
4508         INIT_STAT(&priv->tx_free_stat);
4509
4510         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4511                 /* We simply drop any SKBs that have been queued for
4512                  * transmit */
4513                 if (priv->tx_buffers[i].info.d_struct.txb) {
4514                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4515                                            txb);
4516                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4517                 }
4518
4519                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4520         }
4521
4522         SET_STAT(&priv->tx_free_stat, i);
4523
4524         priv->tx_queue.oldest = 0;
4525         priv->tx_queue.available = priv->tx_queue.entries;
4526         priv->tx_queue.next = 0;
4527         INIT_STAT(&priv->txq_stat);
4528         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4529
4530         bd_queue_initialize(priv, &priv->tx_queue,
4531                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4532                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4533                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4534                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4535
4536         IPW_DEBUG_INFO("exit\n");
4537
4538 }
4539
4540 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4541 {
4542         int i;
4543
4544         IPW_DEBUG_INFO("enter\n");
4545
4546         bd_queue_free(priv, &priv->tx_queue);
4547
4548         if (!priv->tx_buffers)
4549                 return;
4550
4551         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4552                 if (priv->tx_buffers[i].info.d_struct.txb) {
4553                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4554                                            txb);
4555                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4556                 }
4557                 if (priv->tx_buffers[i].info.d_struct.data)
4558                         pci_free_consistent(priv->pci_dev,
4559                                             sizeof(struct ipw2100_data_header),
4560                                             priv->tx_buffers[i].info.d_struct.
4561                                             data,
4562                                             priv->tx_buffers[i].info.d_struct.
4563                                             data_phys);
4564         }
4565
4566         kfree(priv->tx_buffers);
4567         priv->tx_buffers = NULL;
4568
4569         IPW_DEBUG_INFO("exit\n");
4570 }
4571
4572 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4573 {
4574         int i, j, err = -EINVAL;
4575
4576         IPW_DEBUG_INFO("enter\n");
4577
4578         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4579         if (err) {
4580                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4581                 return err;
4582         }
4583
4584         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4585         if (err) {
4586                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4587                 bd_queue_free(priv, &priv->rx_queue);
4588                 return err;
4589         }
4590
4591         /*
4592          * allocate packets
4593          */
4594         priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4595                                    sizeof(struct ipw2100_rx_packet),
4596                                    GFP_KERNEL);
4597         if (!priv->rx_buffers) {
4598                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4599
4600                 bd_queue_free(priv, &priv->rx_queue);
4601
4602                 status_queue_free(priv);
4603
4604                 return -ENOMEM;
4605         }
4606
4607         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4608                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4609
4610                 err = ipw2100_alloc_skb(priv, packet);
4611                 if (unlikely(err)) {
4612                         err = -ENOMEM;
4613                         break;
4614                 }
4615
4616                 /* The BD holds the cache aligned address */
4617                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4618                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4619                 priv->status_queue.drv[i].status_fields = 0;
4620         }
4621
4622         if (i == RX_QUEUE_LENGTH)
4623                 return 0;
4624
4625         for (j = 0; j < i; j++) {
4626                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4627                                  sizeof(struct ipw2100_rx_packet),
4628                                  PCI_DMA_FROMDEVICE);
4629                 dev_kfree_skb(priv->rx_buffers[j].skb);
4630         }
4631
4632         kfree(priv->rx_buffers);
4633         priv->rx_buffers = NULL;
4634
4635         bd_queue_free(priv, &priv->rx_queue);
4636
4637         status_queue_free(priv);
4638
4639         return err;
4640 }
4641
4642 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4643 {
4644         IPW_DEBUG_INFO("enter\n");
4645
4646         priv->rx_queue.oldest = 0;
4647         priv->rx_queue.available = priv->rx_queue.entries - 1;
4648         priv->rx_queue.next = priv->rx_queue.entries - 1;
4649
4650         INIT_STAT(&priv->rxq_stat);
4651         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4652
4653         bd_queue_initialize(priv, &priv->rx_queue,
4654                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4655                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4656                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4657                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4658
4659         /* set up the status queue */
4660         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4661                        priv->status_queue.nic);
4662
4663         IPW_DEBUG_INFO("exit\n");
4664 }
4665
4666 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4667 {
4668         int i;
4669
4670         IPW_DEBUG_INFO("enter\n");
4671
4672         bd_queue_free(priv, &priv->rx_queue);
4673         status_queue_free(priv);
4674
4675         if (!priv->rx_buffers)
4676                 return;
4677
4678         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4679                 if (priv->rx_buffers[i].rxp) {
4680                         pci_unmap_single(priv->pci_dev,
4681                                          priv->rx_buffers[i].dma_addr,
4682                                          sizeof(struct ipw2100_rx),
4683                                          PCI_DMA_FROMDEVICE);
4684                         dev_kfree_skb(priv->rx_buffers[i].skb);
4685                 }
4686         }
4687
4688         kfree(priv->rx_buffers);
4689         priv->rx_buffers = NULL;
4690
4691         IPW_DEBUG_INFO("exit\n");
4692 }
4693
4694 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4695 {
4696         u32 length = ETH_ALEN;
4697         u8 addr[ETH_ALEN];
4698
4699         int err;
4700
4701         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4702         if (err) {
4703                 IPW_DEBUG_INFO("MAC address read failed\n");
4704                 return -EIO;
4705         }
4706
4707         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4708         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4709
4710         return 0;
4711 }
4712
4713 /********************************************************************
4714  *
4715  * Firmware Commands
4716  *
4717  ********************************************************************/
4718
4719 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4720 {
4721         struct host_command cmd = {
4722                 .host_command = ADAPTER_ADDRESS,
4723                 .host_command_sequence = 0,
4724                 .host_command_length = ETH_ALEN
4725         };
4726         int err;
4727
4728         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4729
4730         IPW_DEBUG_INFO("enter\n");
4731
4732         if (priv->config & CFG_CUSTOM_MAC) {
4733                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4734                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4735         } else
4736                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4737                        ETH_ALEN);
4738
4739         err = ipw2100_hw_send_command(priv, &cmd);
4740
4741         IPW_DEBUG_INFO("exit\n");
4742         return err;
4743 }
4744
4745 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4746                                  int batch_mode)
4747 {
4748         struct host_command cmd = {
4749                 .host_command = PORT_TYPE,
4750                 .host_command_sequence = 0,
4751                 .host_command_length = sizeof(u32)
4752         };
4753         int err;
4754
4755         switch (port_type) {
4756         case IW_MODE_INFRA:
4757                 cmd.host_command_parameters[0] = IPW_BSS;
4758                 break;
4759         case IW_MODE_ADHOC:
4760                 cmd.host_command_parameters[0] = IPW_IBSS;
4761                 break;
4762         }
4763
4764         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4765                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4766
4767         if (!batch_mode) {
4768                 err = ipw2100_disable_adapter(priv);
4769                 if (err) {
4770                         printk(KERN_ERR DRV_NAME
4771                                ": %s: Could not disable adapter %d\n",
4772                                priv->net_dev->name, err);
4773                         return err;
4774                 }
4775         }
4776
4777         /* send cmd to firmware */
4778         err = ipw2100_hw_send_command(priv, &cmd);
4779
4780         if (!batch_mode)
4781                 ipw2100_enable_adapter(priv);
4782
4783         return err;
4784 }
4785
4786 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4787                                int batch_mode)
4788 {
4789         struct host_command cmd = {
4790                 .host_command = CHANNEL,
4791                 .host_command_sequence = 0,
4792                 .host_command_length = sizeof(u32)
4793         };
4794         int err;
4795
4796         cmd.host_command_parameters[0] = channel;
4797
4798         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4799
4800         /* If BSS then we don't support channel selection */
4801         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4802                 return 0;
4803
4804         if ((channel != 0) &&
4805             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4806                 return -EINVAL;
4807
4808         if (!batch_mode) {
4809                 err = ipw2100_disable_adapter(priv);
4810                 if (err)
4811                         return err;
4812         }
4813
4814         err = ipw2100_hw_send_command(priv, &cmd);
4815         if (err) {
4816                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4817                 return err;
4818         }
4819
4820         if (channel)
4821                 priv->config |= CFG_STATIC_CHANNEL;
4822         else
4823                 priv->config &= ~CFG_STATIC_CHANNEL;
4824
4825         priv->channel = channel;
4826
4827         if (!batch_mode) {
4828                 err = ipw2100_enable_adapter(priv);
4829                 if (err)
4830                         return err;
4831         }
4832
4833         return 0;
4834 }
4835
4836 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4837 {
4838         struct host_command cmd = {
4839                 .host_command = SYSTEM_CONFIG,
4840                 .host_command_sequence = 0,
4841                 .host_command_length = 12,
4842         };
4843         u32 ibss_mask, len = sizeof(u32);
4844         int err;
4845
4846         /* Set system configuration */
4847
4848         if (!batch_mode) {
4849                 err = ipw2100_disable_adapter(priv);
4850                 if (err)
4851                         return err;
4852         }
4853
4854         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4855                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4856
4857         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4858             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4859
4860         if (!(priv->config & CFG_LONG_PREAMBLE))
4861                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4862
4863         err = ipw2100_get_ordinal(priv,
4864                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4865                                   &ibss_mask, &len);
4866         if (err)
4867                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4868
4869         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4870         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4871
4872         /* 11b only */
4873         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4874
4875         err = ipw2100_hw_send_command(priv, &cmd);
4876         if (err)
4877                 return err;
4878
4879 /* If IPv6 is configured in the kernel then we don't want to filter out all
4880  * of the multicast packets as IPv6 needs some. */
4881 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4882         cmd.host_command = ADD_MULTICAST;
4883         cmd.host_command_sequence = 0;
4884         cmd.host_command_length = 0;
4885
4886         ipw2100_hw_send_command(priv, &cmd);
4887 #endif
4888         if (!batch_mode) {
4889                 err = ipw2100_enable_adapter(priv);
4890                 if (err)
4891                         return err;
4892         }
4893
4894         return 0;
4895 }
4896
4897 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4898                                 int batch_mode)
4899 {
4900         struct host_command cmd = {
4901                 .host_command = BASIC_TX_RATES,
4902                 .host_command_sequence = 0,
4903                 .host_command_length = 4
4904         };
4905         int err;
4906
4907         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4908
4909         if (!batch_mode) {
4910                 err = ipw2100_disable_adapter(priv);
4911                 if (err)
4912                         return err;
4913         }
4914
4915         /* Set BASIC TX Rate first */
4916         ipw2100_hw_send_command(priv, &cmd);
4917
4918         /* Set TX Rate */
4919         cmd.host_command = TX_RATES;
4920         ipw2100_hw_send_command(priv, &cmd);
4921
4922         /* Set MSDU TX Rate */
4923         cmd.host_command = MSDU_TX_RATES;
4924         ipw2100_hw_send_command(priv, &cmd);
4925
4926         if (!batch_mode) {
4927                 err = ipw2100_enable_adapter(priv);
4928                 if (err)
4929                         return err;
4930         }
4931
4932         priv->tx_rates = rate;
4933
4934         return 0;
4935 }
4936
4937 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4938 {
4939         struct host_command cmd = {
4940                 .host_command = POWER_MODE,
4941                 .host_command_sequence = 0,
4942                 .host_command_length = 4
4943         };
4944         int err;
4945
4946         cmd.host_command_parameters[0] = power_level;
4947
4948         err = ipw2100_hw_send_command(priv, &cmd);
4949         if (err)
4950                 return err;
4951
4952         if (power_level == IPW_POWER_MODE_CAM)
4953                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4954         else
4955                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4956
4957 #ifdef IPW2100_TX_POWER
4958         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4959                 /* Set beacon interval */
4960                 cmd.host_command = TX_POWER_INDEX;
4961                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4962
4963                 err = ipw2100_hw_send_command(priv, &cmd);
4964                 if (err)
4965                         return err;
4966         }
4967 #endif
4968
4969         return 0;
4970 }
4971
4972 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4973 {
4974         struct host_command cmd = {
4975                 .host_command = RTS_THRESHOLD,
4976                 .host_command_sequence = 0,
4977                 .host_command_length = 4
4978         };
4979         int err;
4980
4981         if (threshold & RTS_DISABLED)
4982                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4983         else
4984                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4985
4986         err = ipw2100_hw_send_command(priv, &cmd);
4987         if (err)
4988                 return err;
4989
4990         priv->rts_threshold = threshold;
4991
4992         return 0;
4993 }
4994
4995 #if 0
4996 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4997                                         u32 threshold, int batch_mode)
4998 {
4999         struct host_command cmd = {
5000                 .host_command = FRAG_THRESHOLD,
5001                 .host_command_sequence = 0,
5002                 .host_command_length = 4,
5003                 .host_command_parameters[0] = 0,
5004         };
5005         int err;
5006
5007         if (!batch_mode) {
5008                 err = ipw2100_disable_adapter(priv);
5009                 if (err)
5010                         return err;
5011         }
5012
5013         if (threshold == 0)
5014                 threshold = DEFAULT_FRAG_THRESHOLD;
5015         else {
5016                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5017                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5018         }
5019
5020         cmd.host_command_parameters[0] = threshold;
5021
5022         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5023
5024         err = ipw2100_hw_send_command(priv, &cmd);
5025
5026         if (!batch_mode)
5027                 ipw2100_enable_adapter(priv);
5028
5029         if (!err)
5030                 priv->frag_threshold = threshold;
5031
5032         return err;
5033 }
5034 #endif
5035
5036 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5037 {
5038         struct host_command cmd = {
5039                 .host_command = SHORT_RETRY_LIMIT,
5040                 .host_command_sequence = 0,
5041                 .host_command_length = 4
5042         };
5043         int err;
5044
5045         cmd.host_command_parameters[0] = retry;
5046
5047         err = ipw2100_hw_send_command(priv, &cmd);
5048         if (err)
5049                 return err;
5050
5051         priv->short_retry_limit = retry;
5052
5053         return 0;
5054 }
5055
5056 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5057 {
5058         struct host_command cmd = {
5059                 .host_command = LONG_RETRY_LIMIT,
5060                 .host_command_sequence = 0,
5061                 .host_command_length = 4
5062         };
5063         int err;
5064
5065         cmd.host_command_parameters[0] = retry;
5066
5067         err = ipw2100_hw_send_command(priv, &cmd);
5068         if (err)
5069                 return err;
5070
5071         priv->long_retry_limit = retry;
5072
5073         return 0;
5074 }
5075
5076 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5077                                        int batch_mode)
5078 {
5079         struct host_command cmd = {
5080                 .host_command = MANDATORY_BSSID,
5081                 .host_command_sequence = 0,
5082                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5083         };
5084         int err;
5085
5086 #ifdef CONFIG_IPW2100_DEBUG
5087         if (bssid != NULL)
5088                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5089         else
5090                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5091 #endif
5092         /* if BSSID is empty then we disable mandatory bssid mode */
5093         if (bssid != NULL)
5094                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5095
5096         if (!batch_mode) {
5097                 err = ipw2100_disable_adapter(priv);
5098                 if (err)
5099                         return err;
5100         }
5101
5102         err = ipw2100_hw_send_command(priv, &cmd);
5103
5104         if (!batch_mode)
5105                 ipw2100_enable_adapter(priv);
5106
5107         return err;
5108 }
5109
5110 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5111 {
5112         struct host_command cmd = {
5113                 .host_command = DISASSOCIATION_BSSID,
5114                 .host_command_sequence = 0,
5115                 .host_command_length = ETH_ALEN
5116         };
5117         int err;
5118         int len;
5119
5120         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5121
5122         len = ETH_ALEN;
5123         /* The Firmware currently ignores the BSSID and just disassociates from
5124          * the currently associated AP -- but in the off chance that a future
5125          * firmware does use the BSSID provided here, we go ahead and try and
5126          * set it to the currently associated AP's BSSID */
5127         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5128
5129         err = ipw2100_hw_send_command(priv, &cmd);
5130
5131         return err;
5132 }
5133
5134 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5135                               struct ipw2100_wpa_assoc_frame *, int)
5136     __attribute__ ((unused));
5137
5138 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5139                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5140                               int batch_mode)
5141 {
5142         struct host_command cmd = {
5143                 .host_command = SET_WPA_IE,
5144                 .host_command_sequence = 0,
5145                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5146         };
5147         int err;
5148
5149         IPW_DEBUG_HC("SET_WPA_IE\n");
5150
5151         if (!batch_mode) {
5152                 err = ipw2100_disable_adapter(priv);
5153                 if (err)
5154                         return err;
5155         }
5156
5157         memcpy(cmd.host_command_parameters, wpa_frame,
5158                sizeof(struct ipw2100_wpa_assoc_frame));
5159
5160         err = ipw2100_hw_send_command(priv, &cmd);
5161
5162         if (!batch_mode) {
5163                 if (ipw2100_enable_adapter(priv))
5164                         err = -EIO;
5165         }
5166
5167         return err;
5168 }
5169
5170 struct security_info_params {
5171         u32 allowed_ciphers;
5172         u16 version;
5173         u8 auth_mode;
5174         u8 replay_counters_number;
5175         u8 unicast_using_group;
5176 } __packed;
5177
5178 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5179                                             int auth_mode,
5180                                             int security_level,
5181                                             int unicast_using_group,
5182                                             int batch_mode)
5183 {
5184         struct host_command cmd = {
5185                 .host_command = SET_SECURITY_INFORMATION,
5186                 .host_command_sequence = 0,
5187                 .host_command_length = sizeof(struct security_info_params)
5188         };
5189         struct security_info_params *security =
5190             (struct security_info_params *)&cmd.host_command_parameters;
5191         int err;
5192         memset(security, 0, sizeof(*security));
5193
5194         /* If shared key AP authentication is turned on, then we need to
5195          * configure the firmware to try and use it.
5196          *
5197          * Actual data encryption/decryption is handled by the host. */
5198         security->auth_mode = auth_mode;
5199         security->unicast_using_group = unicast_using_group;
5200
5201         switch (security_level) {
5202         default:
5203         case SEC_LEVEL_0:
5204                 security->allowed_ciphers = IPW_NONE_CIPHER;
5205                 break;
5206         case SEC_LEVEL_1:
5207                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5208                     IPW_WEP104_CIPHER;
5209                 break;
5210         case SEC_LEVEL_2:
5211                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5212                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5213                 break;
5214         case SEC_LEVEL_2_CKIP:
5215                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5216                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5217                 break;
5218         case SEC_LEVEL_3:
5219                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5220                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5221                 break;
5222         }
5223
5224         IPW_DEBUG_HC
5225             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5226              security->auth_mode, security->allowed_ciphers, security_level);
5227
5228         security->replay_counters_number = 0;
5229
5230         if (!batch_mode) {
5231                 err = ipw2100_disable_adapter(priv);
5232                 if (err)
5233                         return err;
5234         }
5235
5236         err = ipw2100_hw_send_command(priv, &cmd);
5237
5238         if (!batch_mode)
5239                 ipw2100_enable_adapter(priv);
5240
5241         return err;
5242 }
5243
5244 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5245 {
5246         struct host_command cmd = {
5247                 .host_command = TX_POWER_INDEX,
5248                 .host_command_sequence = 0,
5249                 .host_command_length = 4
5250         };
5251         int err = 0;
5252         u32 tmp = tx_power;
5253
5254         if (tx_power != IPW_TX_POWER_DEFAULT)
5255                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5256                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5257
5258         cmd.host_command_parameters[0] = tmp;
5259
5260         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5261                 err = ipw2100_hw_send_command(priv, &cmd);
5262         if (!err)
5263                 priv->tx_power = tx_power;
5264
5265         return 0;
5266 }
5267
5268 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5269                                             u32 interval, int batch_mode)
5270 {
5271         struct host_command cmd = {
5272                 .host_command = BEACON_INTERVAL,
5273                 .host_command_sequence = 0,
5274                 .host_command_length = 4
5275         };
5276         int err;
5277
5278         cmd.host_command_parameters[0] = interval;
5279
5280         IPW_DEBUG_INFO("enter\n");
5281
5282         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5283                 if (!batch_mode) {
5284                         err = ipw2100_disable_adapter(priv);
5285                         if (err)
5286                                 return err;
5287                 }
5288
5289                 ipw2100_hw_send_command(priv, &cmd);
5290
5291                 if (!batch_mode) {
5292                         err = ipw2100_enable_adapter(priv);
5293                         if (err)
5294                                 return err;
5295                 }
5296         }
5297
5298         IPW_DEBUG_INFO("exit\n");
5299
5300         return 0;
5301 }
5302
5303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5304 {
5305         ipw2100_tx_initialize(priv);
5306         ipw2100_rx_initialize(priv);
5307         ipw2100_msg_initialize(priv);
5308 }
5309
5310 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5311 {
5312         ipw2100_tx_free(priv);
5313         ipw2100_rx_free(priv);
5314         ipw2100_msg_free(priv);
5315 }
5316
5317 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5318 {
5319         if (ipw2100_tx_allocate(priv) ||
5320             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5321                 goto fail;
5322
5323         return 0;
5324
5325       fail:
5326         ipw2100_tx_free(priv);
5327         ipw2100_rx_free(priv);
5328         ipw2100_msg_free(priv);
5329         return -ENOMEM;
5330 }
5331
5332 #define IPW_PRIVACY_CAPABLE 0x0008
5333
5334 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5335                                  int batch_mode)
5336 {
5337         struct host_command cmd = {
5338                 .host_command = WEP_FLAGS,
5339                 .host_command_sequence = 0,
5340                 .host_command_length = 4
5341         };
5342         int err;
5343
5344         cmd.host_command_parameters[0] = flags;
5345
5346         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5347
5348         if (!batch_mode) {
5349                 err = ipw2100_disable_adapter(priv);
5350                 if (err) {
5351                         printk(KERN_ERR DRV_NAME
5352                                ": %s: Could not disable adapter %d\n",
5353                                priv->net_dev->name, err);
5354                         return err;
5355                 }
5356         }
5357
5358         /* send cmd to firmware */
5359         err = ipw2100_hw_send_command(priv, &cmd);
5360
5361         if (!batch_mode)
5362                 ipw2100_enable_adapter(priv);
5363
5364         return err;
5365 }
5366
5367 struct ipw2100_wep_key {
5368         u8 idx;
5369         u8 len;
5370         u8 key[13];
5371 };
5372
5373 /* Macros to ease up priting WEP keys */
5374 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5375 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5376 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5377 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5378
5379 /**
5380  * Set a the wep key
5381  *
5382  * @priv: struct to work on
5383  * @idx: index of the key we want to set
5384  * @key: ptr to the key data to set
5385  * @len: length of the buffer at @key
5386  * @batch_mode: FIXME perform the operation in batch mode, not
5387  *              disabling the device.
5388  *
5389  * @returns 0 if OK, < 0 errno code on error.
5390  *
5391  * Fill out a command structure with the new wep key, length an
5392  * index and send it down the wire.
5393  */
5394 static int ipw2100_set_key(struct ipw2100_priv *priv,
5395                            int idx, char *key, int len, int batch_mode)
5396 {
5397         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5398         struct host_command cmd = {
5399                 .host_command = WEP_KEY_INFO,
5400                 .host_command_sequence = 0,
5401                 .host_command_length = sizeof(struct ipw2100_wep_key),
5402         };
5403         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5404         int err;
5405
5406         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5407                      idx, keylen, len);
5408
5409         /* NOTE: We don't check cached values in case the firmware was reset
5410          * or some other problem is occurring.  If the user is setting the key,
5411          * then we push the change */
5412
5413         wep_key->idx = idx;
5414         wep_key->len = keylen;
5415
5416         if (keylen) {
5417                 memcpy(wep_key->key, key, len);
5418                 memset(wep_key->key + len, 0, keylen - len);
5419         }
5420
5421         /* Will be optimized out on debug not being configured in */
5422         if (keylen == 0)
5423                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5424                               priv->net_dev->name, wep_key->idx);
5425         else if (keylen == 5)
5426                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5427                               priv->net_dev->name, wep_key->idx, wep_key->len,
5428                               WEP_STR_64(wep_key->key));
5429         else
5430                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5431                               "\n",
5432                               priv->net_dev->name, wep_key->idx, wep_key->len,
5433                               WEP_STR_128(wep_key->key));
5434
5435         if (!batch_mode) {
5436                 err = ipw2100_disable_adapter(priv);
5437                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5438                 if (err) {
5439                         printk(KERN_ERR DRV_NAME
5440                                ": %s: Could not disable adapter %d\n",
5441                                priv->net_dev->name, err);
5442                         return err;
5443                 }
5444         }
5445
5446         /* send cmd to firmware */
5447         err = ipw2100_hw_send_command(priv, &cmd);
5448
5449         if (!batch_mode) {
5450                 int err2 = ipw2100_enable_adapter(priv);
5451                 if (err == 0)
5452                         err = err2;
5453         }
5454         return err;
5455 }
5456
5457 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5458                                  int idx, int batch_mode)
5459 {
5460         struct host_command cmd = {
5461                 .host_command = WEP_KEY_INDEX,
5462                 .host_command_sequence = 0,
5463                 .host_command_length = 4,
5464                 .host_command_parameters = {idx},
5465         };
5466         int err;
5467
5468         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5469
5470         if (idx < 0 || idx > 3)
5471                 return -EINVAL;
5472
5473         if (!batch_mode) {
5474                 err = ipw2100_disable_adapter(priv);
5475                 if (err) {
5476                         printk(KERN_ERR DRV_NAME
5477                                ": %s: Could not disable adapter %d\n",
5478                                priv->net_dev->name, err);
5479                         return err;
5480                 }
5481         }
5482
5483         /* send cmd to firmware */
5484         err = ipw2100_hw_send_command(priv, &cmd);
5485
5486         if (!batch_mode)
5487                 ipw2100_enable_adapter(priv);
5488
5489         return err;
5490 }
5491
5492 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5493 {
5494         int i, err, auth_mode, sec_level, use_group;
5495
5496         if (!(priv->status & STATUS_RUNNING))
5497                 return 0;
5498
5499         if (!batch_mode) {
5500                 err = ipw2100_disable_adapter(priv);
5501                 if (err)
5502                         return err;
5503         }
5504
5505         if (!priv->ieee->sec.enabled) {
5506                 err =
5507                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5508                                                      SEC_LEVEL_0, 0, 1);
5509         } else {
5510                 auth_mode = IPW_AUTH_OPEN;
5511                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5512                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5513                                 auth_mode = IPW_AUTH_SHARED;
5514                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5515                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5516                 }
5517
5518                 sec_level = SEC_LEVEL_0;
5519                 if (priv->ieee->sec.flags & SEC_LEVEL)
5520                         sec_level = priv->ieee->sec.level;
5521
5522                 use_group = 0;
5523                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5524                         use_group = priv->ieee->sec.unicast_uses_group;
5525
5526                 err =
5527                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5528                                                      use_group, 1);
5529         }
5530
5531         if (err)
5532                 goto exit;
5533
5534         if (priv->ieee->sec.enabled) {
5535                 for (i = 0; i < 4; i++) {
5536                         if (!(priv->ieee->sec.flags & (1 << i))) {
5537                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5538                                 priv->ieee->sec.key_sizes[i] = 0;
5539                         } else {
5540                                 err = ipw2100_set_key(priv, i,
5541                                                       priv->ieee->sec.keys[i],
5542                                                       priv->ieee->sec.
5543                                                       key_sizes[i], 1);
5544                                 if (err)
5545                                         goto exit;
5546                         }
5547                 }
5548
5549                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5550         }
5551
5552         /* Always enable privacy so the Host can filter WEP packets if
5553          * encrypted data is sent up */
5554         err =
5555             ipw2100_set_wep_flags(priv,
5556                                   priv->ieee->sec.
5557                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5558         if (err)
5559                 goto exit;
5560
5561         priv->status &= ~STATUS_SECURITY_UPDATED;
5562
5563       exit:
5564         if (!batch_mode)
5565                 ipw2100_enable_adapter(priv);
5566
5567         return err;
5568 }
5569
5570 static void ipw2100_security_work(struct work_struct *work)
5571 {
5572         struct ipw2100_priv *priv =
5573                 container_of(work, struct ipw2100_priv, security_work.work);
5574
5575         /* If we happen to have reconnected before we get a chance to
5576          * process this, then update the security settings--which causes
5577          * a disassociation to occur */
5578         if (!(priv->status & STATUS_ASSOCIATED) &&
5579             priv->status & STATUS_SECURITY_UPDATED)
5580                 ipw2100_configure_security(priv, 0);
5581 }
5582
5583 static void shim__set_security(struct net_device *dev,
5584                                struct libipw_security *sec)
5585 {
5586         struct ipw2100_priv *priv = libipw_priv(dev);
5587         int i, force_update = 0;
5588
5589         mutex_lock(&priv->action_mutex);
5590         if (!(priv->status & STATUS_INITIALIZED))
5591                 goto done;
5592
5593         for (i = 0; i < 4; i++) {
5594                 if (sec->flags & (1 << i)) {
5595                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5596                         if (sec->key_sizes[i] == 0)
5597                                 priv->ieee->sec.flags &= ~(1 << i);
5598                         else
5599                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5600                                        sec->key_sizes[i]);
5601                         if (sec->level == SEC_LEVEL_1) {
5602                                 priv->ieee->sec.flags |= (1 << i);
5603                                 priv->status |= STATUS_SECURITY_UPDATED;
5604                         } else
5605                                 priv->ieee->sec.flags &= ~(1 << i);
5606                 }
5607         }
5608
5609         if ((sec->flags & SEC_ACTIVE_KEY) &&
5610             priv->ieee->sec.active_key != sec->active_key) {
5611                 if (sec->active_key <= 3) {
5612                         priv->ieee->sec.active_key = sec->active_key;
5613                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5614                 } else
5615                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5616
5617                 priv->status |= STATUS_SECURITY_UPDATED;
5618         }
5619
5620         if ((sec->flags & SEC_AUTH_MODE) &&
5621             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5622                 priv->ieee->sec.auth_mode = sec->auth_mode;
5623                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5624                 priv->status |= STATUS_SECURITY_UPDATED;
5625         }
5626
5627         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5628                 priv->ieee->sec.flags |= SEC_ENABLED;
5629                 priv->ieee->sec.enabled = sec->enabled;
5630                 priv->status |= STATUS_SECURITY_UPDATED;
5631                 force_update = 1;
5632         }
5633
5634         if (sec->flags & SEC_ENCRYPT)
5635                 priv->ieee->sec.encrypt = sec->encrypt;
5636
5637         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5638                 priv->ieee->sec.level = sec->level;
5639                 priv->ieee->sec.flags |= SEC_LEVEL;
5640                 priv->status |= STATUS_SECURITY_UPDATED;
5641         }
5642
5643         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5644                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5645                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5646                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5647                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5648                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5649                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5650                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5651                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5652                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5653
5654 /* As a temporary work around to enable WPA until we figure out why
5655  * wpa_supplicant toggles the security capability of the driver, which
5656  * forces a disassocation with force_update...
5657  *
5658  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5659         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5660                 ipw2100_configure_security(priv, 0);
5661       done:
5662         mutex_unlock(&priv->action_mutex);
5663 }
5664
5665 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5666 {
5667         int err;
5668         int batch_mode = 1;
5669         u8 *bssid;
5670
5671         IPW_DEBUG_INFO("enter\n");
5672
5673         err = ipw2100_disable_adapter(priv);
5674         if (err)
5675                 return err;
5676 #ifdef CONFIG_IPW2100_MONITOR
5677         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5678                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5679                 if (err)
5680                         return err;
5681
5682                 IPW_DEBUG_INFO("exit\n");
5683
5684                 return 0;
5685         }
5686 #endif                          /* CONFIG_IPW2100_MONITOR */
5687
5688         err = ipw2100_read_mac_address(priv);
5689         if (err)
5690                 return -EIO;
5691
5692         err = ipw2100_set_mac_address(priv, batch_mode);
5693         if (err)
5694                 return err;
5695
5696         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5697         if (err)
5698                 return err;
5699
5700         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5701                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5702                 if (err)
5703                         return err;
5704         }
5705
5706         err = ipw2100_system_config(priv, batch_mode);
5707         if (err)
5708                 return err;
5709
5710         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5711         if (err)
5712                 return err;
5713
5714         /* Default to power mode OFF */
5715         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5716         if (err)
5717                 return err;
5718
5719         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5720         if (err)
5721                 return err;
5722
5723         if (priv->config & CFG_STATIC_BSSID)
5724                 bssid = priv->bssid;
5725         else
5726                 bssid = NULL;
5727         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5728         if (err)
5729                 return err;
5730
5731         if (priv->config & CFG_STATIC_ESSID)
5732                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5733                                         batch_mode);
5734         else
5735                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5736         if (err)
5737                 return err;
5738
5739         err = ipw2100_configure_security(priv, batch_mode);
5740         if (err)
5741                 return err;
5742
5743         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5744                 err =
5745                     ipw2100_set_ibss_beacon_interval(priv,
5746                                                      priv->beacon_interval,
5747                                                      batch_mode);
5748                 if (err)
5749                         return err;
5750
5751                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5752                 if (err)
5753                         return err;
5754         }
5755
5756         /*
5757            err = ipw2100_set_fragmentation_threshold(
5758            priv, priv->frag_threshold, batch_mode);
5759            if (err)
5760            return err;
5761          */
5762
5763         IPW_DEBUG_INFO("exit\n");
5764
5765         return 0;
5766 }
5767
5768 /*************************************************************************
5769  *
5770  * EXTERNALLY CALLED METHODS
5771  *
5772  *************************************************************************/
5773
5774 /* This method is called by the network layer -- not to be confused with
5775  * ipw2100_set_mac_address() declared above called by this driver (and this
5776  * method as well) to talk to the firmware */
5777 static int ipw2100_set_address(struct net_device *dev, void *p)
5778 {
5779         struct ipw2100_priv *priv = libipw_priv(dev);
5780         struct sockaddr *addr = p;
5781         int err = 0;
5782
5783         if (!is_valid_ether_addr(addr->sa_data))
5784                 return -EADDRNOTAVAIL;
5785
5786         mutex_lock(&priv->action_mutex);
5787
5788         priv->config |= CFG_CUSTOM_MAC;
5789         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5790
5791         err = ipw2100_set_mac_address(priv, 0);
5792         if (err)
5793                 goto done;
5794
5795         priv->reset_backoff = 0;
5796         mutex_unlock(&priv->action_mutex);
5797         ipw2100_reset_adapter(&priv->reset_work.work);
5798         return 0;
5799
5800       done:
5801         mutex_unlock(&priv->action_mutex);
5802         return err;
5803 }
5804
5805 static int ipw2100_open(struct net_device *dev)
5806 {
5807         struct ipw2100_priv *priv = libipw_priv(dev);
5808         unsigned long flags;
5809         IPW_DEBUG_INFO("dev->open\n");
5810
5811         spin_lock_irqsave(&priv->low_lock, flags);
5812         if (priv->status & STATUS_ASSOCIATED) {
5813                 netif_carrier_on(dev);
5814                 netif_start_queue(dev);
5815         }
5816         spin_unlock_irqrestore(&priv->low_lock, flags);
5817
5818         return 0;
5819 }
5820
5821 static int ipw2100_close(struct net_device *dev)
5822 {
5823         struct ipw2100_priv *priv = libipw_priv(dev);
5824         unsigned long flags;
5825         struct list_head *element;
5826         struct ipw2100_tx_packet *packet;
5827
5828         IPW_DEBUG_INFO("enter\n");
5829
5830         spin_lock_irqsave(&priv->low_lock, flags);
5831
5832         if (priv->status & STATUS_ASSOCIATED)
5833                 netif_carrier_off(dev);
5834         netif_stop_queue(dev);
5835
5836         /* Flush the TX queue ... */
5837         while (!list_empty(&priv->tx_pend_list)) {
5838                 element = priv->tx_pend_list.next;
5839                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5840
5841                 list_del(element);
5842                 DEC_STAT(&priv->tx_pend_stat);
5843
5844                 libipw_txb_free(packet->info.d_struct.txb);
5845                 packet->info.d_struct.txb = NULL;
5846
5847                 list_add_tail(element, &priv->tx_free_list);
5848                 INC_STAT(&priv->tx_free_stat);
5849         }
5850         spin_unlock_irqrestore(&priv->low_lock, flags);
5851
5852         IPW_DEBUG_INFO("exit\n");
5853
5854         return 0;
5855 }
5856
5857 /*
5858  * TODO:  Fix this function... its just wrong
5859  */
5860 static void ipw2100_tx_timeout(struct net_device *dev)
5861 {
5862         struct ipw2100_priv *priv = libipw_priv(dev);
5863
5864         dev->stats.tx_errors++;
5865
5866 #ifdef CONFIG_IPW2100_MONITOR
5867         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5868                 return;
5869 #endif
5870
5871         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5872                        dev->name);
5873         schedule_reset(priv);
5874 }
5875
5876 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5877 {
5878         /* This is called when wpa_supplicant loads and closes the driver
5879          * interface. */
5880         priv->ieee->wpa_enabled = value;
5881         return 0;
5882 }
5883
5884 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5885 {
5886
5887         struct libipw_device *ieee = priv->ieee;
5888         struct libipw_security sec = {
5889                 .flags = SEC_AUTH_MODE,
5890         };
5891         int ret = 0;
5892
5893         if (value & IW_AUTH_ALG_SHARED_KEY) {
5894                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5895                 ieee->open_wep = 0;
5896         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5897                 sec.auth_mode = WLAN_AUTH_OPEN;
5898                 ieee->open_wep = 1;
5899         } else if (value & IW_AUTH_ALG_LEAP) {
5900                 sec.auth_mode = WLAN_AUTH_LEAP;
5901                 ieee->open_wep = 1;
5902         } else
5903                 return -EINVAL;
5904
5905         if (ieee->set_security)
5906                 ieee->set_security(ieee->dev, &sec);
5907         else
5908                 ret = -EOPNOTSUPP;
5909
5910         return ret;
5911 }
5912
5913 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5914                                     char *wpa_ie, int wpa_ie_len)
5915 {
5916
5917         struct ipw2100_wpa_assoc_frame frame;
5918
5919         frame.fixed_ie_mask = 0;
5920
5921         /* copy WPA IE */
5922         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5923         frame.var_ie_len = wpa_ie_len;
5924
5925         /* make sure WPA is enabled */
5926         ipw2100_wpa_enable(priv, 1);
5927         ipw2100_set_wpa_ie(priv, &frame, 0);
5928 }
5929
5930 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5931                                     struct ethtool_drvinfo *info)
5932 {
5933         struct ipw2100_priv *priv = libipw_priv(dev);
5934         char fw_ver[64], ucode_ver[64];
5935
5936         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5937         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5938
5939         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5940         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5941
5942         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5943                  fw_ver, priv->eeprom_version, ucode_ver);
5944
5945         strlcpy(info->bus_info, pci_name(priv->pci_dev),
5946                 sizeof(info->bus_info));
5947 }
5948
5949 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5950 {
5951         struct ipw2100_priv *priv = libipw_priv(dev);
5952         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5953 }
5954
5955 static const struct ethtool_ops ipw2100_ethtool_ops = {
5956         .get_link = ipw2100_ethtool_get_link,
5957         .get_drvinfo = ipw_ethtool_get_drvinfo,
5958 };
5959
5960 static void ipw2100_hang_check(struct work_struct *work)
5961 {
5962         struct ipw2100_priv *priv =
5963                 container_of(work, struct ipw2100_priv, hang_check.work);
5964         unsigned long flags;
5965         u32 rtc = 0xa5a5a5a5;
5966         u32 len = sizeof(rtc);
5967         int restart = 0;
5968
5969         spin_lock_irqsave(&priv->low_lock, flags);
5970
5971         if (priv->fatal_error != 0) {
5972                 /* If fatal_error is set then we need to restart */
5973                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5974                                priv->net_dev->name);
5975
5976                 restart = 1;
5977         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5978                    (rtc == priv->last_rtc)) {
5979                 /* Check if firmware is hung */
5980                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5981                                priv->net_dev->name);
5982
5983                 restart = 1;
5984         }
5985
5986         if (restart) {
5987                 /* Kill timer */
5988                 priv->stop_hang_check = 1;
5989                 priv->hangs++;
5990
5991                 /* Restart the NIC */
5992                 schedule_reset(priv);
5993         }
5994
5995         priv->last_rtc = rtc;
5996
5997         if (!priv->stop_hang_check)
5998                 schedule_delayed_work(&priv->hang_check, HZ / 2);
5999
6000         spin_unlock_irqrestore(&priv->low_lock, flags);
6001 }
6002
6003 static void ipw2100_rf_kill(struct work_struct *work)
6004 {
6005         struct ipw2100_priv *priv =
6006                 container_of(work, struct ipw2100_priv, rf_kill.work);
6007         unsigned long flags;
6008
6009         spin_lock_irqsave(&priv->low_lock, flags);
6010
6011         if (rf_kill_active(priv)) {
6012                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6013                 if (!priv->stop_rf_kill)
6014                         schedule_delayed_work(&priv->rf_kill,
6015                                               round_jiffies_relative(HZ));
6016                 goto exit_unlock;
6017         }
6018
6019         /* RF Kill is now disabled, so bring the device back up */
6020
6021         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6022                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6023                                   "device\n");
6024                 schedule_reset(priv);
6025         } else
6026                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6027                                   "enabled\n");
6028
6029       exit_unlock:
6030         spin_unlock_irqrestore(&priv->low_lock, flags);
6031 }
6032
6033 static void ipw2100_irq_tasklet(unsigned long data);
6034
6035 static const struct net_device_ops ipw2100_netdev_ops = {
6036         .ndo_open               = ipw2100_open,
6037         .ndo_stop               = ipw2100_close,
6038         .ndo_start_xmit         = libipw_xmit,
6039         .ndo_change_mtu         = libipw_change_mtu,
6040         .ndo_tx_timeout         = ipw2100_tx_timeout,
6041         .ndo_set_mac_address    = ipw2100_set_address,
6042         .ndo_validate_addr      = eth_validate_addr,
6043 };
6044
6045 /* Look into using netdev destructor to shutdown libipw? */
6046
6047 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6048                                                void __iomem * ioaddr)
6049 {
6050         struct ipw2100_priv *priv;
6051         struct net_device *dev;
6052
6053         dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6054         if (!dev)
6055                 return NULL;
6056         priv = libipw_priv(dev);
6057         priv->ieee = netdev_priv(dev);
6058         priv->pci_dev = pci_dev;
6059         priv->net_dev = dev;
6060         priv->ioaddr = ioaddr;
6061
6062         priv->ieee->hard_start_xmit = ipw2100_tx;
6063         priv->ieee->set_security = shim__set_security;
6064
6065         priv->ieee->perfect_rssi = -20;
6066         priv->ieee->worst_rssi = -85;
6067
6068         dev->netdev_ops = &ipw2100_netdev_ops;
6069         dev->ethtool_ops = &ipw2100_ethtool_ops;
6070         dev->wireless_handlers = &ipw2100_wx_handler_def;
6071         priv->wireless_data.libipw = priv->ieee;
6072         dev->wireless_data = &priv->wireless_data;
6073         dev->watchdog_timeo = 3 * HZ;
6074         dev->irq = 0;
6075
6076         /* NOTE: We don't use the wireless_handlers hook
6077          * in dev as the system will start throwing WX requests
6078          * to us before we're actually initialized and it just
6079          * ends up causing problems.  So, we just handle
6080          * the WX extensions through the ipw2100_ioctl interface */
6081
6082         /* memset() puts everything to 0, so we only have explicitly set
6083          * those values that need to be something else */
6084
6085         /* If power management is turned on, default to AUTO mode */
6086         priv->power_mode = IPW_POWER_AUTO;
6087
6088 #ifdef CONFIG_IPW2100_MONITOR
6089         priv->config |= CFG_CRC_CHECK;
6090 #endif
6091         priv->ieee->wpa_enabled = 0;
6092         priv->ieee->drop_unencrypted = 0;
6093         priv->ieee->privacy_invoked = 0;
6094         priv->ieee->ieee802_1x = 1;
6095
6096         /* Set module parameters */
6097         switch (network_mode) {
6098         case 1:
6099                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6100                 break;
6101 #ifdef CONFIG_IPW2100_MONITOR
6102         case 2:
6103                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6104                 break;
6105 #endif
6106         default:
6107         case 0:
6108                 priv->ieee->iw_mode = IW_MODE_INFRA;
6109                 break;
6110         }
6111
6112         if (disable == 1)
6113                 priv->status |= STATUS_RF_KILL_SW;
6114
6115         if (channel != 0 &&
6116             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6117                 priv->config |= CFG_STATIC_CHANNEL;
6118                 priv->channel = channel;
6119         }
6120
6121         if (associate)
6122                 priv->config |= CFG_ASSOCIATE;
6123
6124         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6125         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6126         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6127         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6128         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6129         priv->tx_power = IPW_TX_POWER_DEFAULT;
6130         priv->tx_rates = DEFAULT_TX_RATES;
6131
6132         strcpy(priv->nick, "ipw2100");
6133
6134         spin_lock_init(&priv->low_lock);
6135         mutex_init(&priv->action_mutex);
6136         mutex_init(&priv->adapter_mutex);
6137
6138         init_waitqueue_head(&priv->wait_command_queue);
6139
6140         netif_carrier_off(dev);
6141
6142         INIT_LIST_HEAD(&priv->msg_free_list);
6143         INIT_LIST_HEAD(&priv->msg_pend_list);
6144         INIT_STAT(&priv->msg_free_stat);
6145         INIT_STAT(&priv->msg_pend_stat);
6146
6147         INIT_LIST_HEAD(&priv->tx_free_list);
6148         INIT_LIST_HEAD(&priv->tx_pend_list);
6149         INIT_STAT(&priv->tx_free_stat);
6150         INIT_STAT(&priv->tx_pend_stat);
6151
6152         INIT_LIST_HEAD(&priv->fw_pend_list);
6153         INIT_STAT(&priv->fw_pend_stat);
6154
6155         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6156         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6157         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6158         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6159         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6160         INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6161
6162         tasklet_init(&priv->irq_tasklet,
6163                      ipw2100_irq_tasklet, (unsigned long)priv);
6164
6165         /* NOTE:  We do not start the deferred work for status checks yet */
6166         priv->stop_rf_kill = 1;
6167         priv->stop_hang_check = 1;
6168
6169         return dev;
6170 }
6171
6172 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6173                                 const struct pci_device_id *ent)
6174 {
6175         void __iomem *ioaddr;
6176         struct net_device *dev = NULL;
6177         struct ipw2100_priv *priv = NULL;
6178         int err = 0;
6179         int registered = 0;
6180         u32 val;
6181
6182         IPW_DEBUG_INFO("enter\n");
6183
6184         if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6185                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6186                 err = -ENODEV;
6187                 goto out;
6188         }
6189
6190         ioaddr = pci_iomap(pci_dev, 0, 0);
6191         if (!ioaddr) {
6192                 printk(KERN_WARNING DRV_NAME
6193                        "Error calling ioremap_nocache.\n");
6194                 err = -EIO;
6195                 goto fail;
6196         }
6197
6198         /* allocate and initialize our net_device */
6199         dev = ipw2100_alloc_device(pci_dev, ioaddr);
6200         if (!dev) {
6201                 printk(KERN_WARNING DRV_NAME
6202                        "Error calling ipw2100_alloc_device.\n");
6203                 err = -ENOMEM;
6204                 goto fail;
6205         }
6206
6207         /* set up PCI mappings for device */
6208         err = pci_enable_device(pci_dev);
6209         if (err) {
6210                 printk(KERN_WARNING DRV_NAME
6211                        "Error calling pci_enable_device.\n");
6212                 return err;
6213         }
6214
6215         priv = libipw_priv(dev);
6216
6217         pci_set_master(pci_dev);
6218         pci_set_drvdata(pci_dev, priv);
6219
6220         err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6221         if (err) {
6222                 printk(KERN_WARNING DRV_NAME
6223                        "Error calling pci_set_dma_mask.\n");
6224                 pci_disable_device(pci_dev);
6225                 return err;
6226         }
6227
6228         err = pci_request_regions(pci_dev, DRV_NAME);
6229         if (err) {
6230                 printk(KERN_WARNING DRV_NAME
6231                        "Error calling pci_request_regions.\n");
6232                 pci_disable_device(pci_dev);
6233                 return err;
6234         }
6235
6236         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6237          * PCI Tx retries from interfering with C3 CPU state */
6238         pci_read_config_dword(pci_dev, 0x40, &val);
6239         if ((val & 0x0000ff00) != 0)
6240                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6241
6242         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6243                 printk(KERN_WARNING DRV_NAME
6244                        "Device not found via register read.\n");
6245                 err = -ENODEV;
6246                 goto fail;
6247         }
6248
6249         SET_NETDEV_DEV(dev, &pci_dev->dev);
6250
6251         /* Force interrupts to be shut off on the device */
6252         priv->status |= STATUS_INT_ENABLED;
6253         ipw2100_disable_interrupts(priv);
6254
6255         /* Allocate and initialize the Tx/Rx queues and lists */
6256         if (ipw2100_queues_allocate(priv)) {
6257                 printk(KERN_WARNING DRV_NAME
6258                        "Error calling ipw2100_queues_allocate.\n");
6259                 err = -ENOMEM;
6260                 goto fail;
6261         }
6262         ipw2100_queues_initialize(priv);
6263
6264         err = request_irq(pci_dev->irq,
6265                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6266         if (err) {
6267                 printk(KERN_WARNING DRV_NAME
6268                        "Error calling request_irq: %d.\n", pci_dev->irq);
6269                 goto fail;
6270         }
6271         dev->irq = pci_dev->irq;
6272
6273         IPW_DEBUG_INFO("Attempting to register device...\n");
6274
6275         printk(KERN_INFO DRV_NAME
6276                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6277
6278         err = ipw2100_up(priv, 1);
6279         if (err)
6280                 goto fail;
6281
6282         err = ipw2100_wdev_init(dev);
6283         if (err)
6284                 goto fail;
6285         registered = 1;
6286
6287         /* Bring up the interface.  Pre 0.46, after we registered the
6288          * network device we would call ipw2100_up.  This introduced a race
6289          * condition with newer hotplug configurations (network was coming
6290          * up and making calls before the device was initialized).
6291          */
6292         err = register_netdev(dev);
6293         if (err) {
6294                 printk(KERN_WARNING DRV_NAME
6295                        "Error calling register_netdev.\n");
6296                 goto fail;
6297         }
6298         registered = 2;
6299
6300         mutex_lock(&priv->action_mutex);
6301
6302         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6303
6304         /* perform this after register_netdev so that dev->name is set */
6305         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6306         if (err)
6307                 goto fail_unlock;
6308
6309         /* If the RF Kill switch is disabled, go ahead and complete the
6310          * startup sequence */
6311         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6312                 /* Enable the adapter - sends HOST_COMPLETE */
6313                 if (ipw2100_enable_adapter(priv)) {
6314                         printk(KERN_WARNING DRV_NAME
6315                                ": %s: failed in call to enable adapter.\n",
6316                                priv->net_dev->name);
6317                         ipw2100_hw_stop_adapter(priv);
6318                         err = -EIO;
6319                         goto fail_unlock;
6320                 }
6321
6322                 /* Start a scan . . . */
6323                 ipw2100_set_scan_options(priv);
6324                 ipw2100_start_scan(priv);
6325         }
6326
6327         IPW_DEBUG_INFO("exit\n");
6328
6329         priv->status |= STATUS_INITIALIZED;
6330
6331         mutex_unlock(&priv->action_mutex);
6332 out:
6333         return err;
6334
6335       fail_unlock:
6336         mutex_unlock(&priv->action_mutex);
6337       fail:
6338         if (dev) {
6339                 if (registered >= 2)
6340                         unregister_netdev(dev);
6341
6342                 if (registered) {
6343                         wiphy_unregister(priv->ieee->wdev.wiphy);
6344                         kfree(priv->ieee->bg_band.channels);
6345                 }
6346
6347                 ipw2100_hw_stop_adapter(priv);
6348
6349                 ipw2100_disable_interrupts(priv);
6350
6351                 if (dev->irq)
6352                         free_irq(dev->irq, priv);
6353
6354                 ipw2100_kill_works(priv);
6355
6356                 /* These are safe to call even if they weren't allocated */
6357                 ipw2100_queues_free(priv);
6358                 sysfs_remove_group(&pci_dev->dev.kobj,
6359                                    &ipw2100_attribute_group);
6360
6361                 free_libipw(dev, 0);
6362         }
6363
6364         pci_iounmap(pci_dev, ioaddr);
6365
6366         pci_release_regions(pci_dev);
6367         pci_disable_device(pci_dev);
6368         goto out;
6369 }
6370
6371 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6372 {
6373         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6374         struct net_device *dev = priv->net_dev;
6375
6376         mutex_lock(&priv->action_mutex);
6377
6378         priv->status &= ~STATUS_INITIALIZED;
6379
6380         sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6381
6382 #ifdef CONFIG_PM
6383         if (ipw2100_firmware.version)
6384                 ipw2100_release_firmware(priv, &ipw2100_firmware);
6385 #endif
6386         /* Take down the hardware */
6387         ipw2100_down(priv);
6388
6389         /* Release the mutex so that the network subsystem can
6390          * complete any needed calls into the driver... */
6391         mutex_unlock(&priv->action_mutex);
6392
6393         /* Unregister the device first - this results in close()
6394          * being called if the device is open.  If we free storage
6395          * first, then close() will crash.
6396          * FIXME: remove the comment above. */
6397         unregister_netdev(dev);
6398
6399         ipw2100_kill_works(priv);
6400
6401         ipw2100_queues_free(priv);
6402
6403         /* Free potential debugging firmware snapshot */
6404         ipw2100_snapshot_free(priv);
6405
6406         free_irq(dev->irq, priv);
6407
6408         pci_iounmap(pci_dev, priv->ioaddr);
6409
6410         /* wiphy_unregister needs to be here, before free_libipw */
6411         wiphy_unregister(priv->ieee->wdev.wiphy);
6412         kfree(priv->ieee->bg_band.channels);
6413         free_libipw(dev, 0);
6414
6415         pci_release_regions(pci_dev);
6416         pci_disable_device(pci_dev);
6417
6418         IPW_DEBUG_INFO("exit\n");
6419 }
6420
6421 #ifdef CONFIG_PM
6422 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6423 {
6424         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6425         struct net_device *dev = priv->net_dev;
6426
6427         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6428
6429         mutex_lock(&priv->action_mutex);
6430         if (priv->status & STATUS_INITIALIZED) {
6431                 /* Take down the device; powers it off, etc. */
6432                 ipw2100_down(priv);
6433         }
6434
6435         /* Remove the PRESENT state of the device */
6436         netif_device_detach(dev);
6437
6438         pci_save_state(pci_dev);
6439         pci_disable_device(pci_dev);
6440         pci_set_power_state(pci_dev, PCI_D3hot);
6441
6442         priv->suspend_at = get_seconds();
6443
6444         mutex_unlock(&priv->action_mutex);
6445
6446         return 0;
6447 }
6448
6449 static int ipw2100_resume(struct pci_dev *pci_dev)
6450 {
6451         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6452         struct net_device *dev = priv->net_dev;
6453         int err;
6454         u32 val;
6455
6456         if (IPW2100_PM_DISABLED)
6457                 return 0;
6458
6459         mutex_lock(&priv->action_mutex);
6460
6461         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6462
6463         pci_set_power_state(pci_dev, PCI_D0);
6464         err = pci_enable_device(pci_dev);
6465         if (err) {
6466                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6467                        dev->name);
6468                 mutex_unlock(&priv->action_mutex);
6469                 return err;
6470         }
6471         pci_restore_state(pci_dev);
6472
6473         /*
6474          * Suspend/Resume resets the PCI configuration space, so we have to
6475          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6476          * from interfering with C3 CPU state. pci_restore_state won't help
6477          * here since it only restores the first 64 bytes pci config header.
6478          */
6479         pci_read_config_dword(pci_dev, 0x40, &val);
6480         if ((val & 0x0000ff00) != 0)
6481                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6482
6483         /* Set the device back into the PRESENT state; this will also wake
6484          * the queue of needed */
6485         netif_device_attach(dev);
6486
6487         priv->suspend_time = get_seconds() - priv->suspend_at;
6488
6489         /* Bring the device back up */
6490         if (!(priv->status & STATUS_RF_KILL_SW))
6491                 ipw2100_up(priv, 0);
6492
6493         mutex_unlock(&priv->action_mutex);
6494
6495         return 0;
6496 }
6497 #endif
6498
6499 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6500 {
6501         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6502
6503         /* Take down the device; powers it off, etc. */
6504         ipw2100_down(priv);
6505
6506         pci_disable_device(pci_dev);
6507 }
6508
6509 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6510
6511 static const struct pci_device_id ipw2100_pci_id_table[] = {
6512         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6513         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6514         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6515         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6516         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6517         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6518         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6519         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6520         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6521         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6522         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6523         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6524         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6525
6526         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6527         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6528         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6529         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6530         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6531
6532         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6533         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6534         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6535         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6536         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6537         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6538         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6539
6540         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6541
6542         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6543         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6544         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6545         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6546         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6547         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6548         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6549
6550         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6551         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6552         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6553         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6554         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6555         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6556
6557         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6558         {0,},
6559 };
6560
6561 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6562
6563 static struct pci_driver ipw2100_pci_driver = {
6564         .name = DRV_NAME,
6565         .id_table = ipw2100_pci_id_table,
6566         .probe = ipw2100_pci_init_one,
6567         .remove = ipw2100_pci_remove_one,
6568 #ifdef CONFIG_PM
6569         .suspend = ipw2100_suspend,
6570         .resume = ipw2100_resume,
6571 #endif
6572         .shutdown = ipw2100_shutdown,
6573 };
6574
6575 /**
6576  * Initialize the ipw2100 driver/module
6577  *
6578  * @returns 0 if ok, < 0 errno node con error.
6579  *
6580  * Note: we cannot init the /proc stuff until the PCI driver is there,
6581  * or we risk an unlikely race condition on someone accessing
6582  * uninitialized data in the PCI dev struct through /proc.
6583  */
6584 static int __init ipw2100_init(void)
6585 {
6586         int ret;
6587
6588         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6589         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6590
6591         pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6592                            PM_QOS_DEFAULT_VALUE);
6593
6594         ret = pci_register_driver(&ipw2100_pci_driver);
6595         if (ret)
6596                 goto out;
6597
6598 #ifdef CONFIG_IPW2100_DEBUG
6599         ipw2100_debug_level = debug;
6600         ret = driver_create_file(&ipw2100_pci_driver.driver,
6601                                  &driver_attr_debug_level);
6602 #endif
6603
6604 out:
6605         return ret;
6606 }
6607
6608 /**
6609  * Cleanup ipw2100 driver registration
6610  */
6611 static void __exit ipw2100_exit(void)
6612 {
6613         /* FIXME: IPG: check that we have no instances of the devices open */
6614 #ifdef CONFIG_IPW2100_DEBUG
6615         driver_remove_file(&ipw2100_pci_driver.driver,
6616                            &driver_attr_debug_level);
6617 #endif
6618         pci_unregister_driver(&ipw2100_pci_driver);
6619         pm_qos_remove_request(&ipw2100_pm_qos_req);
6620 }
6621
6622 module_init(ipw2100_init);
6623 module_exit(ipw2100_exit);
6624
6625 static int ipw2100_wx_get_name(struct net_device *dev,
6626                                struct iw_request_info *info,
6627                                union iwreq_data *wrqu, char *extra)
6628 {
6629         /*
6630          * This can be called at any time.  No action lock required
6631          */
6632
6633         struct ipw2100_priv *priv = libipw_priv(dev);
6634         if (!(priv->status & STATUS_ASSOCIATED))
6635                 strcpy(wrqu->name, "unassociated");
6636         else
6637                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6638
6639         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6640         return 0;
6641 }
6642
6643 static int ipw2100_wx_set_freq(struct net_device *dev,
6644                                struct iw_request_info *info,
6645                                union iwreq_data *wrqu, char *extra)
6646 {
6647         struct ipw2100_priv *priv = libipw_priv(dev);
6648         struct iw_freq *fwrq = &wrqu->freq;
6649         int err = 0;
6650
6651         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6652                 return -EOPNOTSUPP;
6653
6654         mutex_lock(&priv->action_mutex);
6655         if (!(priv->status & STATUS_INITIALIZED)) {
6656                 err = -EIO;
6657                 goto done;
6658         }
6659
6660         /* if setting by freq convert to channel */
6661         if (fwrq->e == 1) {
6662                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6663                         int f = fwrq->m / 100000;
6664                         int c = 0;
6665
6666                         while ((c < REG_MAX_CHANNEL) &&
6667                                (f != ipw2100_frequencies[c]))
6668                                 c++;
6669
6670                         /* hack to fall through */
6671                         fwrq->e = 0;
6672                         fwrq->m = c + 1;
6673                 }
6674         }
6675
6676         if (fwrq->e > 0 || fwrq->m > 1000) {
6677                 err = -EOPNOTSUPP;
6678                 goto done;
6679         } else {                /* Set the channel */
6680                 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6681                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6682         }
6683
6684       done:
6685         mutex_unlock(&priv->action_mutex);
6686         return err;
6687 }
6688
6689 static int ipw2100_wx_get_freq(struct net_device *dev,
6690                                struct iw_request_info *info,
6691                                union iwreq_data *wrqu, char *extra)
6692 {
6693         /*
6694          * This can be called at any time.  No action lock required
6695          */
6696
6697         struct ipw2100_priv *priv = libipw_priv(dev);
6698
6699         wrqu->freq.e = 0;
6700
6701         /* If we are associated, trying to associate, or have a statically
6702          * configured CHANNEL then return that; otherwise return ANY */
6703         if (priv->config & CFG_STATIC_CHANNEL ||
6704             priv->status & STATUS_ASSOCIATED)
6705                 wrqu->freq.m = priv->channel;
6706         else
6707                 wrqu->freq.m = 0;
6708
6709         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6710         return 0;
6711
6712 }
6713
6714 static int ipw2100_wx_set_mode(struct net_device *dev,
6715                                struct iw_request_info *info,
6716                                union iwreq_data *wrqu, char *extra)
6717 {
6718         struct ipw2100_priv *priv = libipw_priv(dev);
6719         int err = 0;
6720
6721         IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6722
6723         if (wrqu->mode == priv->ieee->iw_mode)
6724                 return 0;
6725
6726         mutex_lock(&priv->action_mutex);
6727         if (!(priv->status & STATUS_INITIALIZED)) {
6728                 err = -EIO;
6729                 goto done;
6730         }
6731
6732         switch (wrqu->mode) {
6733 #ifdef CONFIG_IPW2100_MONITOR
6734         case IW_MODE_MONITOR:
6735                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6736                 break;
6737 #endif                          /* CONFIG_IPW2100_MONITOR */
6738         case IW_MODE_ADHOC:
6739                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6740                 break;
6741         case IW_MODE_INFRA:
6742         case IW_MODE_AUTO:
6743         default:
6744                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6745                 break;
6746         }
6747
6748       done:
6749         mutex_unlock(&priv->action_mutex);
6750         return err;
6751 }
6752
6753 static int ipw2100_wx_get_mode(struct net_device *dev,
6754                                struct iw_request_info *info,
6755                                union iwreq_data *wrqu, char *extra)
6756 {
6757         /*
6758          * This can be called at any time.  No action lock required
6759          */
6760
6761         struct ipw2100_priv *priv = libipw_priv(dev);
6762
6763         wrqu->mode = priv->ieee->iw_mode;
6764         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6765
6766         return 0;
6767 }
6768
6769 #define POWER_MODES 5
6770
6771 /* Values are in microsecond */
6772 static const s32 timeout_duration[POWER_MODES] = {
6773         350000,
6774         250000,
6775         75000,
6776         37000,
6777         25000,
6778 };
6779
6780 static const s32 period_duration[POWER_MODES] = {
6781         400000,
6782         700000,
6783         1000000,
6784         1000000,
6785         1000000
6786 };
6787
6788 static int ipw2100_wx_get_range(struct net_device *dev,
6789                                 struct iw_request_info *info,
6790                                 union iwreq_data *wrqu, char *extra)
6791 {
6792         /*
6793          * This can be called at any time.  No action lock required
6794          */
6795
6796         struct ipw2100_priv *priv = libipw_priv(dev);
6797         struct iw_range *range = (struct iw_range *)extra;
6798         u16 val;
6799         int i, level;
6800
6801         wrqu->data.length = sizeof(*range);
6802         memset(range, 0, sizeof(*range));
6803
6804         /* Let's try to keep this struct in the same order as in
6805          * linux/include/wireless.h
6806          */
6807
6808         /* TODO: See what values we can set, and remove the ones we can't
6809          * set, or fill them with some default data.
6810          */
6811
6812         /* ~5 Mb/s real (802.11b) */
6813         range->throughput = 5 * 1000 * 1000;
6814
6815 //      range->sensitivity;     /* signal level threshold range */
6816
6817         range->max_qual.qual = 100;
6818         /* TODO: Find real max RSSI and stick here */
6819         range->max_qual.level = 0;
6820         range->max_qual.noise = 0;
6821         range->max_qual.updated = 7;    /* Updated all three */
6822
6823         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6824         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6825         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6826         range->avg_qual.noise = 0;
6827         range->avg_qual.updated = 7;    /* Updated all three */
6828
6829         range->num_bitrates = RATE_COUNT;
6830
6831         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6832                 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6833         }
6834
6835         range->min_rts = MIN_RTS_THRESHOLD;
6836         range->max_rts = MAX_RTS_THRESHOLD;
6837         range->min_frag = MIN_FRAG_THRESHOLD;
6838         range->max_frag = MAX_FRAG_THRESHOLD;
6839
6840         range->min_pmp = period_duration[0];    /* Minimal PM period */
6841         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6842         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6843         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6844
6845         /* How to decode max/min PM period */
6846         range->pmp_flags = IW_POWER_PERIOD;
6847         /* How to decode max/min PM period */
6848         range->pmt_flags = IW_POWER_TIMEOUT;
6849         /* What PM options are supported */
6850         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6851
6852         range->encoding_size[0] = 5;
6853         range->encoding_size[1] = 13;   /* Different token sizes */
6854         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6855         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6856 //      range->encoding_login_index;            /* token index for login token */
6857
6858         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6859                 range->txpower_capa = IW_TXPOW_DBM;
6860                 range->num_txpower = IW_MAX_TXPOWER;
6861                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6862                      i < IW_MAX_TXPOWER;
6863                      i++, level -=
6864                      ((IPW_TX_POWER_MAX_DBM -
6865                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6866                         range->txpower[i] = level / 16;
6867         } else {
6868                 range->txpower_capa = 0;
6869                 range->num_txpower = 0;
6870         }
6871
6872         /* Set the Wireless Extension versions */
6873         range->we_version_compiled = WIRELESS_EXT;
6874         range->we_version_source = 18;
6875
6876 //      range->retry_capa;      /* What retry options are supported */
6877 //      range->retry_flags;     /* How to decode max/min retry limit */
6878 //      range->r_time_flags;    /* How to decode max/min retry life */
6879 //      range->min_retry;       /* Minimal number of retries */
6880 //      range->max_retry;       /* Maximal number of retries */
6881 //      range->min_r_time;      /* Minimal retry lifetime */
6882 //      range->max_r_time;      /* Maximal retry lifetime */
6883
6884         range->num_channels = FREQ_COUNT;
6885
6886         val = 0;
6887         for (i = 0; i < FREQ_COUNT; i++) {
6888                 // TODO: Include only legal frequencies for some countries
6889 //              if (local->channel_mask & (1 << i)) {
6890                 range->freq[val].i = i + 1;
6891                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6892                 range->freq[val].e = 1;
6893                 val++;
6894 //              }
6895                 if (val == IW_MAX_FREQUENCIES)
6896                         break;
6897         }
6898         range->num_frequency = val;
6899
6900         /* Event capability (kernel + driver) */
6901         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6902                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6903         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6904
6905         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6906                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6907
6908         IPW_DEBUG_WX("GET Range\n");
6909
6910         return 0;
6911 }
6912
6913 static int ipw2100_wx_set_wap(struct net_device *dev,
6914                               struct iw_request_info *info,
6915                               union iwreq_data *wrqu, char *extra)
6916 {
6917         struct ipw2100_priv *priv = libipw_priv(dev);
6918         int err = 0;
6919
6920         // sanity checks
6921         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6922                 return -EINVAL;
6923
6924         mutex_lock(&priv->action_mutex);
6925         if (!(priv->status & STATUS_INITIALIZED)) {
6926                 err = -EIO;
6927                 goto done;
6928         }
6929
6930         if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6931             is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6932                 /* we disable mandatory BSSID association */
6933                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6934                 priv->config &= ~CFG_STATIC_BSSID;
6935                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6936                 goto done;
6937         }
6938
6939         priv->config |= CFG_STATIC_BSSID;
6940         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6941
6942         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6943
6944         IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6945
6946       done:
6947         mutex_unlock(&priv->action_mutex);
6948         return err;
6949 }
6950
6951 static int ipw2100_wx_get_wap(struct net_device *dev,
6952                               struct iw_request_info *info,
6953                               union iwreq_data *wrqu, char *extra)
6954 {
6955         /*
6956          * This can be called at any time.  No action lock required
6957          */
6958
6959         struct ipw2100_priv *priv = libipw_priv(dev);
6960
6961         /* If we are associated, trying to associate, or have a statically
6962          * configured BSSID then return that; otherwise return ANY */
6963         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6964                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6965                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6966         } else
6967                 eth_zero_addr(wrqu->ap_addr.sa_data);
6968
6969         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6970         return 0;
6971 }
6972
6973 static int ipw2100_wx_set_essid(struct net_device *dev,
6974                                 struct iw_request_info *info,
6975                                 union iwreq_data *wrqu, char *extra)
6976 {
6977         struct ipw2100_priv *priv = libipw_priv(dev);
6978         char *essid = "";       /* ANY */
6979         int length = 0;
6980         int err = 0;
6981
6982         mutex_lock(&priv->action_mutex);
6983         if (!(priv->status & STATUS_INITIALIZED)) {
6984                 err = -EIO;
6985                 goto done;
6986         }
6987
6988         if (wrqu->essid.flags && wrqu->essid.length) {
6989                 length = wrqu->essid.length;
6990                 essid = extra;
6991         }
6992
6993         if (length == 0) {
6994                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6995                 priv->config &= ~CFG_STATIC_ESSID;
6996                 err = ipw2100_set_essid(priv, NULL, 0, 0);
6997                 goto done;
6998         }
6999
7000         length = min(length, IW_ESSID_MAX_SIZE);
7001
7002         priv->config |= CFG_STATIC_ESSID;
7003
7004         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7005                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7006                 err = 0;
7007                 goto done;
7008         }
7009
7010         IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length);
7011
7012         priv->essid_len = length;
7013         memcpy(priv->essid, essid, priv->essid_len);
7014
7015         err = ipw2100_set_essid(priv, essid, length, 0);
7016
7017       done:
7018         mutex_unlock(&priv->action_mutex);
7019         return err;
7020 }
7021
7022 static int ipw2100_wx_get_essid(struct net_device *dev,
7023                                 struct iw_request_info *info,
7024                                 union iwreq_data *wrqu, char *extra)
7025 {
7026         /*
7027          * This can be called at any time.  No action lock required
7028          */
7029
7030         struct ipw2100_priv *priv = libipw_priv(dev);
7031
7032         /* If we are associated, trying to associate, or have a statically
7033          * configured ESSID then return that; otherwise return ANY */
7034         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7035                 IPW_DEBUG_WX("Getting essid: '%*pE'\n",
7036                              priv->essid_len, priv->essid);
7037                 memcpy(extra, priv->essid, priv->essid_len);
7038                 wrqu->essid.length = priv->essid_len;
7039                 wrqu->essid.flags = 1;  /* active */
7040         } else {
7041                 IPW_DEBUG_WX("Getting essid: ANY\n");
7042                 wrqu->essid.length = 0;
7043                 wrqu->essid.flags = 0;  /* active */
7044         }
7045
7046         return 0;
7047 }
7048
7049 static int ipw2100_wx_set_nick(struct net_device *dev,
7050                                struct iw_request_info *info,
7051                                union iwreq_data *wrqu, char *extra)
7052 {
7053         /*
7054          * This can be called at any time.  No action lock required
7055          */
7056
7057         struct ipw2100_priv *priv = libipw_priv(dev);
7058
7059         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7060                 return -E2BIG;
7061
7062         wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
7063         memset(priv->nick, 0, sizeof(priv->nick));
7064         memcpy(priv->nick, extra, wrqu->data.length);
7065
7066         IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7067
7068         return 0;
7069 }
7070
7071 static int ipw2100_wx_get_nick(struct net_device *dev,
7072                                struct iw_request_info *info,
7073                                union iwreq_data *wrqu, char *extra)
7074 {
7075         /*
7076          * This can be called at any time.  No action lock required
7077          */
7078
7079         struct ipw2100_priv *priv = libipw_priv(dev);
7080
7081         wrqu->data.length = strlen(priv->nick);
7082         memcpy(extra, priv->nick, wrqu->data.length);
7083         wrqu->data.flags = 1;   /* active */
7084
7085         IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7086
7087         return 0;
7088 }
7089
7090 static int ipw2100_wx_set_rate(struct net_device *dev,
7091                                struct iw_request_info *info,
7092                                union iwreq_data *wrqu, char *extra)
7093 {
7094         struct ipw2100_priv *priv = libipw_priv(dev);
7095         u32 target_rate = wrqu->bitrate.value;
7096         u32 rate;
7097         int err = 0;
7098
7099         mutex_lock(&priv->action_mutex);
7100         if (!(priv->status & STATUS_INITIALIZED)) {
7101                 err = -EIO;
7102                 goto done;
7103         }
7104
7105         rate = 0;
7106
7107         if (target_rate == 1000000 ||
7108             (!wrqu->bitrate.fixed && target_rate > 1000000))
7109                 rate |= TX_RATE_1_MBIT;
7110         if (target_rate == 2000000 ||
7111             (!wrqu->bitrate.fixed && target_rate > 2000000))
7112                 rate |= TX_RATE_2_MBIT;
7113         if (target_rate == 5500000 ||
7114             (!wrqu->bitrate.fixed && target_rate > 5500000))
7115                 rate |= TX_RATE_5_5_MBIT;
7116         if (target_rate == 11000000 ||
7117             (!wrqu->bitrate.fixed && target_rate > 11000000))
7118                 rate |= TX_RATE_11_MBIT;
7119         if (rate == 0)
7120                 rate = DEFAULT_TX_RATES;
7121
7122         err = ipw2100_set_tx_rates(priv, rate, 0);
7123
7124         IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7125       done:
7126         mutex_unlock(&priv->action_mutex);
7127         return err;
7128 }
7129
7130 static int ipw2100_wx_get_rate(struct net_device *dev,
7131                                struct iw_request_info *info,
7132                                union iwreq_data *wrqu, char *extra)
7133 {
7134         struct ipw2100_priv *priv = libipw_priv(dev);
7135         int val;
7136         unsigned int len = sizeof(val);
7137         int err = 0;
7138
7139         if (!(priv->status & STATUS_ENABLED) ||
7140             priv->status & STATUS_RF_KILL_MASK ||
7141             !(priv->status & STATUS_ASSOCIATED)) {
7142                 wrqu->bitrate.value = 0;
7143                 return 0;
7144         }
7145
7146         mutex_lock(&priv->action_mutex);
7147         if (!(priv->status & STATUS_INITIALIZED)) {
7148                 err = -EIO;
7149                 goto done;
7150         }
7151
7152         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7153         if (err) {
7154                 IPW_DEBUG_WX("failed querying ordinals.\n");
7155                 goto done;
7156         }
7157
7158         switch (val & TX_RATE_MASK) {
7159         case TX_RATE_1_MBIT:
7160                 wrqu->bitrate.value = 1000000;
7161                 break;
7162         case TX_RATE_2_MBIT:
7163                 wrqu->bitrate.value = 2000000;
7164                 break;
7165         case TX_RATE_5_5_MBIT:
7166                 wrqu->bitrate.value = 5500000;
7167                 break;
7168         case TX_RATE_11_MBIT:
7169                 wrqu->bitrate.value = 11000000;
7170                 break;
7171         default:
7172                 wrqu->bitrate.value = 0;
7173         }
7174
7175         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7176
7177       done:
7178         mutex_unlock(&priv->action_mutex);
7179         return err;
7180 }
7181
7182 static int ipw2100_wx_set_rts(struct net_device *dev,
7183                               struct iw_request_info *info,
7184                               union iwreq_data *wrqu, char *extra)
7185 {
7186         struct ipw2100_priv *priv = libipw_priv(dev);
7187         int value, err;
7188
7189         /* Auto RTS not yet supported */
7190         if (wrqu->rts.fixed == 0)
7191                 return -EINVAL;
7192
7193         mutex_lock(&priv->action_mutex);
7194         if (!(priv->status & STATUS_INITIALIZED)) {
7195                 err = -EIO;
7196                 goto done;
7197         }
7198
7199         if (wrqu->rts.disabled)
7200                 value = priv->rts_threshold | RTS_DISABLED;
7201         else {
7202                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7203                         err = -EINVAL;
7204                         goto done;
7205                 }
7206                 value = wrqu->rts.value;
7207         }
7208
7209         err = ipw2100_set_rts_threshold(priv, value);
7210
7211         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7212       done:
7213         mutex_unlock(&priv->action_mutex);
7214         return err;
7215 }
7216
7217 static int ipw2100_wx_get_rts(struct net_device *dev,
7218                               struct iw_request_info *info,
7219                               union iwreq_data *wrqu, char *extra)
7220 {
7221         /*
7222          * This can be called at any time.  No action lock required
7223          */
7224
7225         struct ipw2100_priv *priv = libipw_priv(dev);
7226
7227         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7228         wrqu->rts.fixed = 1;    /* no auto select */
7229
7230         /* If RTS is set to the default value, then it is disabled */
7231         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7232
7233         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7234
7235         return 0;
7236 }
7237
7238 static int ipw2100_wx_set_txpow(struct net_device *dev,
7239                                 struct iw_request_info *info,
7240                                 union iwreq_data *wrqu, char *extra)
7241 {
7242         struct ipw2100_priv *priv = libipw_priv(dev);
7243         int err = 0, value;
7244         
7245         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7246                 return -EINPROGRESS;
7247
7248         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7249                 return 0;
7250
7251         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7252                 return -EINVAL;
7253
7254         if (wrqu->txpower.fixed == 0)
7255                 value = IPW_TX_POWER_DEFAULT;
7256         else {
7257                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7258                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7259                         return -EINVAL;
7260
7261                 value = wrqu->txpower.value;
7262         }
7263
7264         mutex_lock(&priv->action_mutex);
7265         if (!(priv->status & STATUS_INITIALIZED)) {
7266                 err = -EIO;
7267                 goto done;
7268         }
7269
7270         err = ipw2100_set_tx_power(priv, value);
7271
7272         IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7273
7274       done:
7275         mutex_unlock(&priv->action_mutex);
7276         return err;
7277 }
7278
7279 static int ipw2100_wx_get_txpow(struct net_device *dev,
7280                                 struct iw_request_info *info,
7281                                 union iwreq_data *wrqu, char *extra)
7282 {
7283         /*
7284          * This can be called at any time.  No action lock required
7285          */
7286
7287         struct ipw2100_priv *priv = libipw_priv(dev);
7288
7289         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7290
7291         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7292                 wrqu->txpower.fixed = 0;
7293                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7294         } else {
7295                 wrqu->txpower.fixed = 1;
7296                 wrqu->txpower.value = priv->tx_power;
7297         }
7298
7299         wrqu->txpower.flags = IW_TXPOW_DBM;
7300
7301         IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7302
7303         return 0;
7304 }
7305
7306 static int ipw2100_wx_set_frag(struct net_device *dev,
7307                                struct iw_request_info *info,
7308                                union iwreq_data *wrqu, char *extra)
7309 {
7310         /*
7311          * This can be called at any time.  No action lock required
7312          */
7313
7314         struct ipw2100_priv *priv = libipw_priv(dev);
7315
7316         if (!wrqu->frag.fixed)
7317                 return -EINVAL;
7318
7319         if (wrqu->frag.disabled) {
7320                 priv->frag_threshold |= FRAG_DISABLED;
7321                 priv->ieee->fts = DEFAULT_FTS;
7322         } else {
7323                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7324                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7325                         return -EINVAL;
7326
7327                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7328                 priv->frag_threshold = priv->ieee->fts;
7329         }
7330
7331         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7332
7333         return 0;
7334 }
7335
7336 static int ipw2100_wx_get_frag(struct net_device *dev,
7337                                struct iw_request_info *info,
7338                                union iwreq_data *wrqu, char *extra)
7339 {
7340         /*
7341          * This can be called at any time.  No action lock required
7342          */
7343
7344         struct ipw2100_priv *priv = libipw_priv(dev);
7345         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7346         wrqu->frag.fixed = 0;   /* no auto select */
7347         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7348
7349         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7350
7351         return 0;
7352 }
7353
7354 static int ipw2100_wx_set_retry(struct net_device *dev,
7355                                 struct iw_request_info *info,
7356                                 union iwreq_data *wrqu, char *extra)
7357 {
7358         struct ipw2100_priv *priv = libipw_priv(dev);
7359         int err = 0;
7360
7361         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7362                 return -EINVAL;
7363
7364         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7365                 return 0;
7366
7367         mutex_lock(&priv->action_mutex);
7368         if (!(priv->status & STATUS_INITIALIZED)) {
7369                 err = -EIO;
7370                 goto done;
7371         }
7372
7373         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7374                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7375                 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7376                              wrqu->retry.value);
7377                 goto done;
7378         }
7379
7380         if (wrqu->retry.flags & IW_RETRY_LONG) {
7381                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7382                 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7383                              wrqu->retry.value);
7384                 goto done;
7385         }
7386
7387         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7388         if (!err)
7389                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7390
7391         IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7392
7393       done:
7394         mutex_unlock(&priv->action_mutex);
7395         return err;
7396 }
7397
7398 static int ipw2100_wx_get_retry(struct net_device *dev,
7399                                 struct iw_request_info *info,
7400                                 union iwreq_data *wrqu, char *extra)
7401 {
7402         /*
7403          * This can be called at any time.  No action lock required
7404          */
7405
7406         struct ipw2100_priv *priv = libipw_priv(dev);
7407
7408         wrqu->retry.disabled = 0;       /* can't be disabled */
7409
7410         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7411                 return -EINVAL;
7412
7413         if (wrqu->retry.flags & IW_RETRY_LONG) {
7414                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7415                 wrqu->retry.value = priv->long_retry_limit;
7416         } else {
7417                 wrqu->retry.flags =
7418                     (priv->short_retry_limit !=
7419                      priv->long_retry_limit) ?
7420                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7421
7422                 wrqu->retry.value = priv->short_retry_limit;
7423         }
7424
7425         IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7426
7427         return 0;
7428 }
7429
7430 static int ipw2100_wx_set_scan(struct net_device *dev,
7431                                struct iw_request_info *info,
7432                                union iwreq_data *wrqu, char *extra)
7433 {
7434         struct ipw2100_priv *priv = libipw_priv(dev);
7435         int err = 0;
7436
7437         mutex_lock(&priv->action_mutex);
7438         if (!(priv->status & STATUS_INITIALIZED)) {
7439                 err = -EIO;
7440                 goto done;
7441         }
7442
7443         IPW_DEBUG_WX("Initiating scan...\n");
7444
7445         priv->user_requested_scan = 1;
7446         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7447                 IPW_DEBUG_WX("Start scan failed.\n");
7448
7449                 /* TODO: Mark a scan as pending so when hardware initialized
7450                  *       a scan starts */
7451         }
7452
7453       done:
7454         mutex_unlock(&priv->action_mutex);
7455         return err;
7456 }
7457
7458 static int ipw2100_wx_get_scan(struct net_device *dev,
7459                                struct iw_request_info *info,
7460                                union iwreq_data *wrqu, char *extra)
7461 {
7462         /*
7463          * This can be called at any time.  No action lock required
7464          */
7465
7466         struct ipw2100_priv *priv = libipw_priv(dev);
7467         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7468 }
7469
7470 /*
7471  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7472  */
7473 static int ipw2100_wx_set_encode(struct net_device *dev,
7474                                  struct iw_request_info *info,
7475                                  union iwreq_data *wrqu, char *key)
7476 {
7477         /*
7478          * No check of STATUS_INITIALIZED required
7479          */
7480
7481         struct ipw2100_priv *priv = libipw_priv(dev);
7482         return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7483 }
7484
7485 static int ipw2100_wx_get_encode(struct net_device *dev,
7486                                  struct iw_request_info *info,
7487                                  union iwreq_data *wrqu, char *key)
7488 {
7489         /*
7490          * This can be called at any time.  No action lock required
7491          */
7492
7493         struct ipw2100_priv *priv = libipw_priv(dev);
7494         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7495 }
7496
7497 static int ipw2100_wx_set_power(struct net_device *dev,
7498                                 struct iw_request_info *info,
7499                                 union iwreq_data *wrqu, char *extra)
7500 {
7501         struct ipw2100_priv *priv = libipw_priv(dev);
7502         int err = 0;
7503
7504         mutex_lock(&priv->action_mutex);
7505         if (!(priv->status & STATUS_INITIALIZED)) {
7506                 err = -EIO;
7507                 goto done;
7508         }
7509
7510         if (wrqu->power.disabled) {
7511                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7512                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7513                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7514                 goto done;
7515         }
7516
7517         switch (wrqu->power.flags & IW_POWER_MODE) {
7518         case IW_POWER_ON:       /* If not specified */
7519         case IW_POWER_MODE:     /* If set all mask */
7520         case IW_POWER_ALL_R:    /* If explicitly state all */
7521                 break;
7522         default:                /* Otherwise we don't support it */
7523                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7524                              wrqu->power.flags);
7525                 err = -EOPNOTSUPP;
7526                 goto done;
7527         }
7528
7529         /* If the user hasn't specified a power management mode yet, default
7530          * to BATTERY */
7531         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7532         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7533
7534         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7535
7536       done:
7537         mutex_unlock(&priv->action_mutex);
7538         return err;
7539
7540 }
7541
7542 static int ipw2100_wx_get_power(struct net_device *dev,
7543                                 struct iw_request_info *info,
7544                                 union iwreq_data *wrqu, char *extra)
7545 {
7546         /*
7547          * This can be called at any time.  No action lock required
7548          */
7549
7550         struct ipw2100_priv *priv = libipw_priv(dev);
7551
7552         if (!(priv->power_mode & IPW_POWER_ENABLED))
7553                 wrqu->power.disabled = 1;
7554         else {
7555                 wrqu->power.disabled = 0;
7556                 wrqu->power.flags = 0;
7557         }
7558
7559         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7560
7561         return 0;
7562 }
7563
7564 /*
7565  * WE-18 WPA support
7566  */
7567
7568 /* SIOCSIWGENIE */
7569 static int ipw2100_wx_set_genie(struct net_device *dev,
7570                                 struct iw_request_info *info,
7571                                 union iwreq_data *wrqu, char *extra)
7572 {
7573
7574         struct ipw2100_priv *priv = libipw_priv(dev);
7575         struct libipw_device *ieee = priv->ieee;
7576         u8 *buf;
7577
7578         if (!ieee->wpa_enabled)
7579                 return -EOPNOTSUPP;
7580
7581         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7582             (wrqu->data.length && extra == NULL))
7583                 return -EINVAL;
7584
7585         if (wrqu->data.length) {
7586                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7587                 if (buf == NULL)
7588                         return -ENOMEM;
7589
7590                 kfree(ieee->wpa_ie);
7591                 ieee->wpa_ie = buf;
7592                 ieee->wpa_ie_len = wrqu->data.length;
7593         } else {
7594                 kfree(ieee->wpa_ie);
7595                 ieee->wpa_ie = NULL;
7596                 ieee->wpa_ie_len = 0;
7597         }
7598
7599         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7600
7601         return 0;
7602 }
7603
7604 /* SIOCGIWGENIE */
7605 static int ipw2100_wx_get_genie(struct net_device *dev,
7606                                 struct iw_request_info *info,
7607                                 union iwreq_data *wrqu, char *extra)
7608 {
7609         struct ipw2100_priv *priv = libipw_priv(dev);
7610         struct libipw_device *ieee = priv->ieee;
7611
7612         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7613                 wrqu->data.length = 0;
7614                 return 0;
7615         }
7616
7617         if (wrqu->data.length < ieee->wpa_ie_len)
7618                 return -E2BIG;
7619
7620         wrqu->data.length = ieee->wpa_ie_len;
7621         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7622
7623         return 0;
7624 }
7625
7626 /* SIOCSIWAUTH */
7627 static int ipw2100_wx_set_auth(struct net_device *dev,
7628                                struct iw_request_info *info,
7629                                union iwreq_data *wrqu, char *extra)
7630 {
7631         struct ipw2100_priv *priv = libipw_priv(dev);
7632         struct libipw_device *ieee = priv->ieee;
7633         struct iw_param *param = &wrqu->param;
7634         struct lib80211_crypt_data *crypt;
7635         unsigned long flags;
7636         int ret = 0;
7637
7638         switch (param->flags & IW_AUTH_INDEX) {
7639         case IW_AUTH_WPA_VERSION:
7640         case IW_AUTH_CIPHER_PAIRWISE:
7641         case IW_AUTH_CIPHER_GROUP:
7642         case IW_AUTH_KEY_MGMT:
7643                 /*
7644                  * ipw2200 does not use these parameters
7645                  */
7646                 break;
7647
7648         case IW_AUTH_TKIP_COUNTERMEASURES:
7649                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7650                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7651                         break;
7652
7653                 flags = crypt->ops->get_flags(crypt->priv);
7654
7655                 if (param->value)
7656                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7657                 else
7658                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7659
7660                 crypt->ops->set_flags(flags, crypt->priv);
7661
7662                 break;
7663
7664         case IW_AUTH_DROP_UNENCRYPTED:{
7665                         /* HACK:
7666                          *
7667                          * wpa_supplicant calls set_wpa_enabled when the driver
7668                          * is loaded and unloaded, regardless of if WPA is being
7669                          * used.  No other calls are made which can be used to
7670                          * determine if encryption will be used or not prior to
7671                          * association being expected.  If encryption is not being
7672                          * used, drop_unencrypted is set to false, else true -- we
7673                          * can use this to determine if the CAP_PRIVACY_ON bit should
7674                          * be set.
7675                          */
7676                         struct libipw_security sec = {
7677                                 .flags = SEC_ENABLED,
7678                                 .enabled = param->value,
7679                         };
7680                         priv->ieee->drop_unencrypted = param->value;
7681                         /* We only change SEC_LEVEL for open mode. Others
7682                          * are set by ipw_wpa_set_encryption.
7683                          */
7684                         if (!param->value) {
7685                                 sec.flags |= SEC_LEVEL;
7686                                 sec.level = SEC_LEVEL_0;
7687                         } else {
7688                                 sec.flags |= SEC_LEVEL;
7689                                 sec.level = SEC_LEVEL_1;
7690                         }
7691                         if (priv->ieee->set_security)
7692                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7693                         break;
7694                 }
7695
7696         case IW_AUTH_80211_AUTH_ALG:
7697                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7698                 break;
7699
7700         case IW_AUTH_WPA_ENABLED:
7701                 ret = ipw2100_wpa_enable(priv, param->value);
7702                 break;
7703
7704         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7705                 ieee->ieee802_1x = param->value;
7706                 break;
7707
7708                 //case IW_AUTH_ROAMING_CONTROL:
7709         case IW_AUTH_PRIVACY_INVOKED:
7710                 ieee->privacy_invoked = param->value;
7711                 break;
7712
7713         default:
7714                 return -EOPNOTSUPP;
7715         }
7716         return ret;
7717 }
7718
7719 /* SIOCGIWAUTH */
7720 static int ipw2100_wx_get_auth(struct net_device *dev,
7721                                struct iw_request_info *info,
7722                                union iwreq_data *wrqu, char *extra)
7723 {
7724         struct ipw2100_priv *priv = libipw_priv(dev);
7725         struct libipw_device *ieee = priv->ieee;
7726         struct lib80211_crypt_data *crypt;
7727         struct iw_param *param = &wrqu->param;
7728         int ret = 0;
7729
7730         switch (param->flags & IW_AUTH_INDEX) {
7731         case IW_AUTH_WPA_VERSION:
7732         case IW_AUTH_CIPHER_PAIRWISE:
7733         case IW_AUTH_CIPHER_GROUP:
7734         case IW_AUTH_KEY_MGMT:
7735                 /*
7736                  * wpa_supplicant will control these internally
7737                  */
7738                 ret = -EOPNOTSUPP;
7739                 break;
7740
7741         case IW_AUTH_TKIP_COUNTERMEASURES:
7742                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7743                 if (!crypt || !crypt->ops->get_flags) {
7744                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7745                                           "crypt not set!\n");
7746                         break;
7747                 }
7748
7749                 param->value = (crypt->ops->get_flags(crypt->priv) &
7750                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7751
7752                 break;
7753
7754         case IW_AUTH_DROP_UNENCRYPTED:
7755                 param->value = ieee->drop_unencrypted;
7756                 break;
7757
7758         case IW_AUTH_80211_AUTH_ALG:
7759                 param->value = priv->ieee->sec.auth_mode;
7760                 break;
7761
7762         case IW_AUTH_WPA_ENABLED:
7763                 param->value = ieee->wpa_enabled;
7764                 break;
7765
7766         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7767                 param->value = ieee->ieee802_1x;
7768                 break;
7769
7770         case IW_AUTH_ROAMING_CONTROL:
7771         case IW_AUTH_PRIVACY_INVOKED:
7772                 param->value = ieee->privacy_invoked;
7773                 break;
7774
7775         default:
7776                 return -EOPNOTSUPP;
7777         }
7778         return 0;
7779 }
7780
7781 /* SIOCSIWENCODEEXT */
7782 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7783                                     struct iw_request_info *info,
7784                                     union iwreq_data *wrqu, char *extra)
7785 {
7786         struct ipw2100_priv *priv = libipw_priv(dev);
7787         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7788 }
7789
7790 /* SIOCGIWENCODEEXT */
7791 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7792                                     struct iw_request_info *info,
7793                                     union iwreq_data *wrqu, char *extra)
7794 {
7795         struct ipw2100_priv *priv = libipw_priv(dev);
7796         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7797 }
7798
7799 /* SIOCSIWMLME */
7800 static int ipw2100_wx_set_mlme(struct net_device *dev,
7801                                struct iw_request_info *info,
7802                                union iwreq_data *wrqu, char *extra)
7803 {
7804         struct ipw2100_priv *priv = libipw_priv(dev);
7805         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7806         __le16 reason;
7807
7808         reason = cpu_to_le16(mlme->reason_code);
7809
7810         switch (mlme->cmd) {
7811         case IW_MLME_DEAUTH:
7812                 // silently ignore
7813                 break;
7814
7815         case IW_MLME_DISASSOC:
7816                 ipw2100_disassociate_bssid(priv);
7817                 break;
7818
7819         default:
7820                 return -EOPNOTSUPP;
7821         }
7822         return 0;
7823 }
7824
7825 /*
7826  *
7827  * IWPRIV handlers
7828  *
7829  */
7830 #ifdef CONFIG_IPW2100_MONITOR
7831 static int ipw2100_wx_set_promisc(struct net_device *dev,
7832                                   struct iw_request_info *info,
7833                                   union iwreq_data *wrqu, char *extra)
7834 {
7835         struct ipw2100_priv *priv = libipw_priv(dev);
7836         int *parms = (int *)extra;
7837         int enable = (parms[0] > 0);
7838         int err = 0;
7839
7840         mutex_lock(&priv->action_mutex);
7841         if (!(priv->status & STATUS_INITIALIZED)) {
7842                 err = -EIO;
7843                 goto done;
7844         }
7845
7846         if (enable) {
7847                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7848                         err = ipw2100_set_channel(priv, parms[1], 0);
7849                         goto done;
7850                 }
7851                 priv->channel = parms[1];
7852                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7853         } else {
7854                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7855                         err = ipw2100_switch_mode(priv, priv->last_mode);
7856         }
7857       done:
7858         mutex_unlock(&priv->action_mutex);
7859         return err;
7860 }
7861
7862 static int ipw2100_wx_reset(struct net_device *dev,
7863                             struct iw_request_info *info,
7864                             union iwreq_data *wrqu, char *extra)
7865 {
7866         struct ipw2100_priv *priv = libipw_priv(dev);
7867         if (priv->status & STATUS_INITIALIZED)
7868                 schedule_reset(priv);
7869         return 0;
7870 }
7871
7872 #endif
7873
7874 static int ipw2100_wx_set_powermode(struct net_device *dev,
7875                                     struct iw_request_info *info,
7876                                     union iwreq_data *wrqu, char *extra)
7877 {
7878         struct ipw2100_priv *priv = libipw_priv(dev);
7879         int err = 0, mode = *(int *)extra;
7880
7881         mutex_lock(&priv->action_mutex);
7882         if (!(priv->status & STATUS_INITIALIZED)) {
7883                 err = -EIO;
7884                 goto done;
7885         }
7886
7887         if ((mode < 0) || (mode > POWER_MODES))
7888                 mode = IPW_POWER_AUTO;
7889
7890         if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7891                 err = ipw2100_set_power_mode(priv, mode);
7892       done:
7893         mutex_unlock(&priv->action_mutex);
7894         return err;
7895 }
7896
7897 #define MAX_POWER_STRING 80
7898 static int ipw2100_wx_get_powermode(struct net_device *dev,
7899                                     struct iw_request_info *info,
7900                                     union iwreq_data *wrqu, char *extra)
7901 {
7902         /*
7903          * This can be called at any time.  No action lock required
7904          */
7905
7906         struct ipw2100_priv *priv = libipw_priv(dev);
7907         int level = IPW_POWER_LEVEL(priv->power_mode);
7908         s32 timeout, period;
7909
7910         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7911                 snprintf(extra, MAX_POWER_STRING,
7912                          "Power save level: %d (Off)", level);
7913         } else {
7914                 switch (level) {
7915                 case IPW_POWER_MODE_CAM:
7916                         snprintf(extra, MAX_POWER_STRING,
7917                                  "Power save level: %d (None)", level);
7918                         break;
7919                 case IPW_POWER_AUTO:
7920                         snprintf(extra, MAX_POWER_STRING,
7921                                  "Power save level: %d (Auto)", level);
7922                         break;
7923                 default:
7924                         timeout = timeout_duration[level - 1] / 1000;
7925                         period = period_duration[level - 1] / 1000;
7926                         snprintf(extra, MAX_POWER_STRING,
7927                                  "Power save level: %d "
7928                                  "(Timeout %dms, Period %dms)",
7929                                  level, timeout, period);
7930                 }
7931         }
7932
7933         wrqu->data.length = strlen(extra) + 1;
7934
7935         return 0;
7936 }
7937
7938 static int ipw2100_wx_set_preamble(struct net_device *dev,
7939                                    struct iw_request_info *info,
7940                                    union iwreq_data *wrqu, char *extra)
7941 {
7942         struct ipw2100_priv *priv = libipw_priv(dev);
7943         int err, mode = *(int *)extra;
7944
7945         mutex_lock(&priv->action_mutex);
7946         if (!(priv->status & STATUS_INITIALIZED)) {
7947                 err = -EIO;
7948                 goto done;
7949         }
7950
7951         if (mode == 1)
7952                 priv->config |= CFG_LONG_PREAMBLE;
7953         else if (mode == 0)
7954                 priv->config &= ~CFG_LONG_PREAMBLE;
7955         else {
7956                 err = -EINVAL;
7957                 goto done;
7958         }
7959
7960         err = ipw2100_system_config(priv, 0);
7961
7962       done:
7963         mutex_unlock(&priv->action_mutex);
7964         return err;
7965 }
7966
7967 static int ipw2100_wx_get_preamble(struct net_device *dev,
7968                                    struct iw_request_info *info,
7969                                    union iwreq_data *wrqu, char *extra)
7970 {
7971         /*
7972          * This can be called at any time.  No action lock required
7973          */
7974
7975         struct ipw2100_priv *priv = libipw_priv(dev);
7976
7977         if (priv->config & CFG_LONG_PREAMBLE)
7978                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7979         else
7980                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7981
7982         return 0;
7983 }
7984
7985 #ifdef CONFIG_IPW2100_MONITOR
7986 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7987                                     struct iw_request_info *info,
7988                                     union iwreq_data *wrqu, char *extra)
7989 {
7990         struct ipw2100_priv *priv = libipw_priv(dev);
7991         int err, mode = *(int *)extra;
7992
7993         mutex_lock(&priv->action_mutex);
7994         if (!(priv->status & STATUS_INITIALIZED)) {
7995                 err = -EIO;
7996                 goto done;
7997         }
7998
7999         if (mode == 1)
8000                 priv->config |= CFG_CRC_CHECK;
8001         else if (mode == 0)
8002                 priv->config &= ~CFG_CRC_CHECK;
8003         else {
8004                 err = -EINVAL;
8005                 goto done;
8006         }
8007         err = 0;
8008
8009       done:
8010         mutex_unlock(&priv->action_mutex);
8011         return err;
8012 }
8013
8014 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8015                                     struct iw_request_info *info,
8016                                     union iwreq_data *wrqu, char *extra)
8017 {
8018         /*
8019          * This can be called at any time.  No action lock required
8020          */
8021
8022         struct ipw2100_priv *priv = libipw_priv(dev);
8023
8024         if (priv->config & CFG_CRC_CHECK)
8025                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8026         else
8027                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8028
8029         return 0;
8030 }
8031 #endif                          /* CONFIG_IPW2100_MONITOR */
8032
8033 static iw_handler ipw2100_wx_handlers[] = {
8034         IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8035         IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8036         IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8037         IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8038         IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8039         IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8040         IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8041         IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8042         IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8043         IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8044         IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8045         IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8046         IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8047         IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8048         IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8049         IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8050         IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8051         IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8052         IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8053         IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8054         IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8055         IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8056         IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8057         IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8058         IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8059         IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8060         IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8061         IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8062         IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8063         IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8064         IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8065         IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8066         IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8067         IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8068         IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8069 };
8070
8071 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8072 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8073 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8074 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8075 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8076 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8077 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8078 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8079
8080 static const struct iw_priv_args ipw2100_private_args[] = {
8081
8082 #ifdef CONFIG_IPW2100_MONITOR
8083         {
8084          IPW2100_PRIV_SET_MONITOR,
8085          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8086         {
8087          IPW2100_PRIV_RESET,
8088          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8089 #endif                          /* CONFIG_IPW2100_MONITOR */
8090
8091         {
8092          IPW2100_PRIV_SET_POWER,
8093          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8094         {
8095          IPW2100_PRIV_GET_POWER,
8096          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8097          "get_power"},
8098         {
8099          IPW2100_PRIV_SET_LONGPREAMBLE,
8100          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8101         {
8102          IPW2100_PRIV_GET_LONGPREAMBLE,
8103          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8104 #ifdef CONFIG_IPW2100_MONITOR
8105         {
8106          IPW2100_PRIV_SET_CRC_CHECK,
8107          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8108         {
8109          IPW2100_PRIV_GET_CRC_CHECK,
8110          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8111 #endif                          /* CONFIG_IPW2100_MONITOR */
8112 };
8113
8114 static iw_handler ipw2100_private_handler[] = {
8115 #ifdef CONFIG_IPW2100_MONITOR
8116         ipw2100_wx_set_promisc,
8117         ipw2100_wx_reset,
8118 #else                           /* CONFIG_IPW2100_MONITOR */
8119         NULL,
8120         NULL,
8121 #endif                          /* CONFIG_IPW2100_MONITOR */
8122         ipw2100_wx_set_powermode,
8123         ipw2100_wx_get_powermode,
8124         ipw2100_wx_set_preamble,
8125         ipw2100_wx_get_preamble,
8126 #ifdef CONFIG_IPW2100_MONITOR
8127         ipw2100_wx_set_crc_check,
8128         ipw2100_wx_get_crc_check,
8129 #else                           /* CONFIG_IPW2100_MONITOR */
8130         NULL,
8131         NULL,
8132 #endif                          /* CONFIG_IPW2100_MONITOR */
8133 };
8134
8135 /*
8136  * Get wireless statistics.
8137  * Called by /proc/net/wireless
8138  * Also called by SIOCGIWSTATS
8139  */
8140 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8141 {
8142         enum {
8143                 POOR = 30,
8144                 FAIR = 60,
8145                 GOOD = 80,
8146                 VERY_GOOD = 90,
8147                 EXCELLENT = 95,
8148                 PERFECT = 100
8149         };
8150         int rssi_qual;
8151         int tx_qual;
8152         int beacon_qual;
8153         int quality;
8154
8155         struct ipw2100_priv *priv = libipw_priv(dev);
8156         struct iw_statistics *wstats;
8157         u32 rssi, tx_retries, missed_beacons, tx_failures;
8158         u32 ord_len = sizeof(u32);
8159
8160         if (!priv)
8161                 return (struct iw_statistics *)NULL;
8162
8163         wstats = &priv->wstats;
8164
8165         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8166          * ipw2100_wx_wireless_stats seems to be called before fw is
8167          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8168          * and associated; if not associcated, the values are all meaningless
8169          * anyway, so set them all to NULL and INVALID */
8170         if (!(priv->status & STATUS_ASSOCIATED)) {
8171                 wstats->miss.beacon = 0;
8172                 wstats->discard.retries = 0;
8173                 wstats->qual.qual = 0;
8174                 wstats->qual.level = 0;
8175                 wstats->qual.noise = 0;
8176                 wstats->qual.updated = 7;
8177                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8178                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8179                 return wstats;
8180         }
8181
8182         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8183                                 &missed_beacons, &ord_len))
8184                 goto fail_get_ordinal;
8185
8186         /* If we don't have a connection the quality and level is 0 */
8187         if (!(priv->status & STATUS_ASSOCIATED)) {
8188                 wstats->qual.qual = 0;
8189                 wstats->qual.level = 0;
8190         } else {
8191                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8192                                         &rssi, &ord_len))
8193                         goto fail_get_ordinal;
8194                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8195                 if (rssi < 10)
8196                         rssi_qual = rssi * POOR / 10;
8197                 else if (rssi < 15)
8198                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8199                 else if (rssi < 20)
8200                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8201                 else if (rssi < 30)
8202                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8203                             10 + GOOD;
8204                 else
8205                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8206                             10 + VERY_GOOD;
8207
8208                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8209                                         &tx_retries, &ord_len))
8210                         goto fail_get_ordinal;
8211
8212                 if (tx_retries > 75)
8213                         tx_qual = (90 - tx_retries) * POOR / 15;
8214                 else if (tx_retries > 70)
8215                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8216                 else if (tx_retries > 65)
8217                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8218                 else if (tx_retries > 50)
8219                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8220                             15 + GOOD;
8221                 else
8222                         tx_qual = (50 - tx_retries) *
8223                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8224
8225                 if (missed_beacons > 50)
8226                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8227                 else if (missed_beacons > 40)
8228                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8229                             10 + POOR;
8230                 else if (missed_beacons > 32)
8231                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8232                             18 + FAIR;
8233                 else if (missed_beacons > 20)
8234                         beacon_qual = (32 - missed_beacons) *
8235                             (VERY_GOOD - GOOD) / 20 + GOOD;
8236                 else
8237                         beacon_qual = (20 - missed_beacons) *
8238                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8239
8240                 quality = min(tx_qual, rssi_qual);
8241                 quality = min(beacon_qual, quality);
8242
8243 #ifdef CONFIG_IPW2100_DEBUG
8244                 if (beacon_qual == quality)
8245                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8246                 else if (tx_qual == quality)
8247                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8248                 else if (quality != 100)
8249                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8250                 else
8251                         IPW_DEBUG_WX("Quality not clamped.\n");
8252 #endif
8253
8254                 wstats->qual.qual = quality;
8255                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8256         }
8257
8258         wstats->qual.noise = 0;
8259         wstats->qual.updated = 7;
8260         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8261
8262         /* FIXME: this is percent and not a # */
8263         wstats->miss.beacon = missed_beacons;
8264
8265         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8266                                 &tx_failures, &ord_len))
8267                 goto fail_get_ordinal;
8268         wstats->discard.retries = tx_failures;
8269
8270         return wstats;
8271
8272       fail_get_ordinal:
8273         IPW_DEBUG_WX("failed querying ordinals.\n");
8274
8275         return (struct iw_statistics *)NULL;
8276 }
8277
8278 static struct iw_handler_def ipw2100_wx_handler_def = {
8279         .standard = ipw2100_wx_handlers,
8280         .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8281         .num_private = ARRAY_SIZE(ipw2100_private_handler),
8282         .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8283         .private = (iw_handler *) ipw2100_private_handler,
8284         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8285         .get_wireless_stats = ipw2100_wx_wireless_stats,
8286 };
8287
8288 static void ipw2100_wx_event_work(struct work_struct *work)
8289 {
8290         struct ipw2100_priv *priv =
8291                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8292         union iwreq_data wrqu;
8293         unsigned int len = ETH_ALEN;
8294
8295         if (priv->status & STATUS_STOPPING)
8296                 return;
8297
8298         mutex_lock(&priv->action_mutex);
8299
8300         IPW_DEBUG_WX("enter\n");
8301
8302         mutex_unlock(&priv->action_mutex);
8303
8304         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8305
8306         /* Fetch BSSID from the hardware */
8307         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8308             priv->status & STATUS_RF_KILL_MASK ||
8309             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8310                                 &priv->bssid, &len)) {
8311                 eth_zero_addr(wrqu.ap_addr.sa_data);
8312         } else {
8313                 /* We now have the BSSID, so can finish setting to the full
8314                  * associated state */
8315                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8316                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8317                 priv->status &= ~STATUS_ASSOCIATING;
8318                 priv->status |= STATUS_ASSOCIATED;
8319                 netif_carrier_on(priv->net_dev);
8320                 netif_wake_queue(priv->net_dev);
8321         }
8322
8323         if (!(priv->status & STATUS_ASSOCIATED)) {
8324                 IPW_DEBUG_WX("Configuring ESSID\n");
8325                 mutex_lock(&priv->action_mutex);
8326                 /* This is a disassociation event, so kick the firmware to
8327                  * look for another AP */
8328                 if (priv->config & CFG_STATIC_ESSID)
8329                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8330                                           0);
8331                 else
8332                         ipw2100_set_essid(priv, NULL, 0, 0);
8333                 mutex_unlock(&priv->action_mutex);
8334         }
8335
8336         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8337 }
8338
8339 /*(DEBLOBBED)*/
8340
8341 #define IPW2100_FW_PREFIX "/*(DEBLOBBED)*/" /*(DEBLOBBED)*/
8342
8343 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX /*(DEBLOBBED)*/
8344
8345 /*
8346
8347 BINARY FIRMWARE HEADER FORMAT
8348
8349 offset      length   desc
8350 0           2        version
8351 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8352 4           4        fw_len
8353 8           4        uc_len
8354 C           fw_len   firmware data
8355 12 + fw_len uc_len   microcode data
8356
8357 */
8358
8359 struct ipw2100_fw_header {
8360         short version;
8361         short mode;
8362         unsigned int fw_size;
8363         unsigned int uc_size;
8364 } __packed;
8365
8366 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8367 {
8368         struct ipw2100_fw_header *h =
8369             (struct ipw2100_fw_header *)fw->fw_entry->data;
8370
8371         /*(DEBLOBBED)*/
8372
8373         fw->version = h->version;
8374         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8375         fw->fw.size = h->fw_size;
8376         fw->uc.data = fw->fw.data + h->fw_size;
8377         fw->uc.size = h->uc_size;
8378
8379         return 0;
8380 }
8381
8382 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8383                                 struct ipw2100_fw *fw)
8384 {
8385         char *fw_name;
8386         int rc;
8387
8388         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8389                        priv->net_dev->name);
8390
8391         switch (priv->ieee->iw_mode) {
8392         case IW_MODE_ADHOC:
8393                 fw_name = IPW2100_FW_NAME("-i");
8394                 break;
8395 #ifdef CONFIG_IPW2100_MONITOR
8396         case IW_MODE_MONITOR:
8397                 fw_name = IPW2100_FW_NAME("-p");
8398                 break;
8399 #endif
8400         case IW_MODE_INFRA:
8401         default:
8402                 fw_name = IPW2100_FW_NAME("");
8403                 break;
8404         }
8405
8406         rc = reject_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8407
8408         if (rc < 0) {
8409                 printk(KERN_ERR DRV_NAME ": "
8410                        "%s: Firmware '%s' not available or load failed.\n",
8411                        priv->net_dev->name, fw_name);
8412                 return rc;
8413         }
8414         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8415                        fw->fw_entry->size);
8416
8417         ipw2100_mod_firmware_load(fw);
8418
8419         return 0;
8420 }
8421
8422 /*(DEBLOBBED)*/
8423 #ifdef CONFIG_IPW2100_MONITOR
8424 /*(DEBLOBBED)*/
8425 #endif
8426 /*(DEBLOBBED)*/
8427
8428 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8429                                      struct ipw2100_fw *fw)
8430 {
8431         fw->version = 0;
8432         release_firmware(fw->fw_entry);
8433         fw->fw_entry = NULL;
8434 }
8435
8436 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8437                                  size_t max)
8438 {
8439         char ver[MAX_FW_VERSION_LEN];
8440         u32 len = MAX_FW_VERSION_LEN;
8441         u32 tmp;
8442         int i;
8443         /* firmware version is an ascii string (max len of 14) */
8444         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8445                 return -EIO;
8446         tmp = max;
8447         if (len >= max)
8448                 len = max - 1;
8449         for (i = 0; i < len; i++)
8450                 buf[i] = ver[i];
8451         buf[i] = '\0';
8452         return tmp;
8453 }
8454
8455 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8456                                     size_t max)
8457 {
8458         u32 ver;
8459         u32 len = sizeof(ver);
8460         /* microcode version is a 32 bit integer */
8461         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8462                 return -EIO;
8463         return snprintf(buf, max, "%08X", ver);
8464 }
8465
8466 /*
8467  * On exit, the firmware will have been freed from the fw list
8468  */
8469 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8470 {
8471         /* firmware is constructed of N contiguous entries, each entry is
8472          * structured as:
8473          *
8474          * offset    sie         desc
8475          * 0         4           address to write to
8476          * 4         2           length of data run
8477          * 6         length      data
8478          */
8479         unsigned int addr;
8480         unsigned short len;
8481
8482         const unsigned char *firmware_data = fw->fw.data;
8483         unsigned int firmware_data_left = fw->fw.size;
8484
8485         while (firmware_data_left > 0) {
8486                 addr = *(u32 *) (firmware_data);
8487                 firmware_data += 4;
8488                 firmware_data_left -= 4;
8489
8490                 len = *(u16 *) (firmware_data);
8491                 firmware_data += 2;
8492                 firmware_data_left -= 2;
8493
8494                 if (len > 32) {
8495                         printk(KERN_ERR DRV_NAME ": "
8496                                "Invalid firmware run-length of %d bytes\n",
8497                                len);
8498                         return -EINVAL;
8499                 }
8500
8501                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8502                 firmware_data += len;
8503                 firmware_data_left -= len;
8504         }
8505
8506         return 0;
8507 }
8508
8509 struct symbol_alive_response {
8510         u8 cmd_id;
8511         u8 seq_num;
8512         u8 ucode_rev;
8513         u8 eeprom_valid;
8514         u16 valid_flags;
8515         u8 IEEE_addr[6];
8516         u16 flags;
8517         u16 pcb_rev;
8518         u16 clock_settle_time;  // 1us LSB
8519         u16 powerup_settle_time;        // 1us LSB
8520         u16 hop_settle_time;    // 1us LSB
8521         u8 date[3];             // month, day, year
8522         u8 time[2];             // hours, minutes
8523         u8 ucode_valid;
8524 };
8525
8526 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8527                                   struct ipw2100_fw *fw)
8528 {
8529         struct net_device *dev = priv->net_dev;
8530         const unsigned char *microcode_data = fw->uc.data;
8531         unsigned int microcode_data_left = fw->uc.size;
8532         void __iomem *reg = priv->ioaddr;
8533
8534         struct symbol_alive_response response;
8535         int i, j;
8536         u8 data;
8537
8538         /* Symbol control */
8539         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8540         readl(reg);
8541         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8542         readl(reg);
8543
8544         /* HW config */
8545         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8546         readl(reg);
8547         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8548         readl(reg);
8549
8550         /* EN_CS_ACCESS bit to reset control store pointer */
8551         write_nic_byte(dev, 0x210000, 0x40);
8552         readl(reg);
8553         write_nic_byte(dev, 0x210000, 0x0);
8554         readl(reg);
8555         write_nic_byte(dev, 0x210000, 0x40);
8556         readl(reg);
8557
8558         /* copy microcode from buffer into Symbol */
8559
8560         while (microcode_data_left > 0) {
8561                 write_nic_byte(dev, 0x210010, *microcode_data++);
8562                 write_nic_byte(dev, 0x210010, *microcode_data++);
8563                 microcode_data_left -= 2;
8564         }
8565
8566         /* EN_CS_ACCESS bit to reset the control store pointer */
8567         write_nic_byte(dev, 0x210000, 0x0);
8568         readl(reg);
8569
8570         /* Enable System (Reg 0)
8571          * first enable causes garbage in RX FIFO */
8572         write_nic_byte(dev, 0x210000, 0x0);
8573         readl(reg);
8574         write_nic_byte(dev, 0x210000, 0x80);
8575         readl(reg);
8576
8577         /* Reset External Baseband Reg */
8578         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8579         readl(reg);
8580         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8581         readl(reg);
8582
8583         /* HW Config (Reg 5) */
8584         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8585         readl(reg);
8586         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8587         readl(reg);
8588
8589         /* Enable System (Reg 0)
8590          * second enable should be OK */
8591         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8592         readl(reg);
8593         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8594
8595         /* check Symbol is enabled - upped this from 5 as it wasn't always
8596          * catching the update */
8597         for (i = 0; i < 10; i++) {
8598                 udelay(10);
8599
8600                 /* check Dino is enabled bit */
8601                 read_nic_byte(dev, 0x210000, &data);
8602                 if (data & 0x1)
8603                         break;
8604         }
8605
8606         if (i == 10) {
8607                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8608                        dev->name);
8609                 return -EIO;
8610         }
8611
8612         /* Get Symbol alive response */
8613         for (i = 0; i < 30; i++) {
8614                 /* Read alive response structure */
8615                 for (j = 0;
8616                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8617                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8618
8619                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8620                         break;
8621                 udelay(10);
8622         }
8623
8624         if (i == 30) {
8625                 printk(KERN_ERR DRV_NAME
8626                        ": %s: No response from Symbol - hw not alive\n",
8627                        dev->name);
8628                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8629                 return -EIO;
8630         }
8631
8632         return 0;
8633 }