GNU Linux-libre 4.19.245-gnu1
[releases.git] / drivers / net / wireless / ath / ath9k / eeprom.c
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include "hw.h"
18 #include <linux/ath9k_platform.h>
19
20 void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
21 {
22         REG_WRITE(ah, reg, val);
23
24         if (ah->config.analog_shiftreg)
25                 udelay(100);
26 }
27
28 void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
29                                u32 shift, u32 val)
30 {
31         REG_RMW(ah, reg, ((val << shift) & mask), mask);
32
33         if (ah->config.analog_shiftreg)
34                 udelay(100);
35 }
36
37 int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
38                              int16_t targetLeft, int16_t targetRight)
39 {
40         int16_t rv;
41
42         if (srcRight == srcLeft) {
43                 rv = targetLeft;
44         } else {
45                 rv = (int16_t) (((target - srcLeft) * targetRight +
46                                  (srcRight - target) * targetLeft) /
47                                 (srcRight - srcLeft));
48         }
49         return rv;
50 }
51
52 bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
53                                     u16 *indexL, u16 *indexR)
54 {
55         u16 i;
56
57         if (target <= pList[0]) {
58                 *indexL = *indexR = 0;
59                 return true;
60         }
61         if (target >= pList[listSize - 1]) {
62                 *indexL = *indexR = (u16) (listSize - 1);
63                 return true;
64         }
65
66         for (i = 0; i < listSize - 1; i++) {
67                 if (pList[i] == target) {
68                         *indexL = *indexR = i;
69                         return true;
70                 }
71                 if (target < pList[i + 1]) {
72                         *indexL = i;
73                         *indexR = (u16) (i + 1);
74                         return false;
75                 }
76         }
77         return false;
78 }
79
80 void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
81                                   int eep_start_loc, int size)
82 {
83         int i = 0, j, addr;
84         u32 addrdata[8];
85         u32 data[8];
86
87         for (addr = 0; addr < size; addr++) {
88                 addrdata[i] = AR5416_EEPROM_OFFSET +
89                         ((addr + eep_start_loc) << AR5416_EEPROM_S);
90                 i++;
91                 if (i == 8) {
92                         REG_READ_MULTI(ah, addrdata, data, i);
93
94                         for (j = 0; j < i; j++) {
95                                 *eep_data = data[j];
96                                 eep_data++;
97                         }
98                         i = 0;
99                 }
100         }
101
102         if (i != 0) {
103                 REG_READ_MULTI(ah, addrdata, data, i);
104
105                 for (j = 0; j < i; j++) {
106                         *eep_data = data[j];
107                         eep_data++;
108                 }
109         }
110 }
111
112 static bool ath9k_hw_nvram_read_array(u16 *blob, size_t blob_size,
113                                       off_t offset, u16 *data)
114 {
115         if (offset >= blob_size)
116                 return false;
117
118         *data =  blob[offset];
119         return true;
120 }
121
122 static bool ath9k_hw_nvram_read_pdata(struct ath9k_platform_data *pdata,
123                                       off_t offset, u16 *data)
124 {
125         return ath9k_hw_nvram_read_array(pdata->eeprom_data,
126                                          ARRAY_SIZE(pdata->eeprom_data),
127                                          offset, data);
128 }
129
130 static bool ath9k_hw_nvram_read_firmware(const struct firmware *eeprom_blob,
131                                          off_t offset, u16 *data)
132 {
133         return ath9k_hw_nvram_read_array((u16 *) eeprom_blob->data,
134                                          eeprom_blob->size / sizeof(u16),
135                                          offset, data);
136 }
137
138 bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
139 {
140         struct ath_common *common = ath9k_hw_common(ah);
141         struct ath9k_platform_data *pdata = ah->dev->platform_data;
142         bool ret;
143
144         if (ah->eeprom_blob)
145                 ret = ath9k_hw_nvram_read_firmware(ah->eeprom_blob, off, data);
146         else if (pdata && !pdata->use_eeprom)
147                 ret = ath9k_hw_nvram_read_pdata(pdata, off, data);
148         else
149                 ret = common->bus_ops->eeprom_read(common, off, data);
150
151         if (!ret)
152                 ath_dbg(common, EEPROM,
153                         "unable to read eeprom region at offset %u\n", off);
154
155         return ret;
156 }
157
158 int ath9k_hw_nvram_swap_data(struct ath_hw *ah, bool *swap_needed, int size)
159 {
160         u16 magic;
161         u16 *eepdata;
162         int i;
163         bool needs_byteswap = false;
164         struct ath_common *common = ath9k_hw_common(ah);
165
166         if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
167                 ath_err(common, "Reading Magic # failed\n");
168                 return -EIO;
169         }
170
171         if (swab16(magic) == AR5416_EEPROM_MAGIC) {
172                 needs_byteswap = true;
173                 ath_dbg(common, EEPROM,
174                         "EEPROM needs byte-swapping to correct endianness.\n");
175         } else if (magic != AR5416_EEPROM_MAGIC) {
176                 if (ath9k_hw_use_flash(ah)) {
177                         ath_dbg(common, EEPROM,
178                                 "Ignoring invalid EEPROM magic (0x%04x).\n",
179                                 magic);
180                 } else {
181                         ath_err(common,
182                                 "Invalid EEPROM magic (0x%04x).\n", magic);
183                         return -EINVAL;
184                 }
185         }
186
187         if (needs_byteswap) {
188                 if (ah->ah_flags & AH_NO_EEP_SWAP) {
189                         ath_info(common,
190                                  "Ignoring endianness difference in EEPROM magic bytes.\n");
191                 } else {
192                         eepdata = (u16 *)(&ah->eeprom);
193
194                         for (i = 0; i < size; i++)
195                                 eepdata[i] = swab16(eepdata[i]);
196                 }
197         }
198
199         if (ah->eep_ops->get_eepmisc(ah) & AR5416_EEPMISC_BIG_ENDIAN) {
200                 *swap_needed = true;
201                 ath_dbg(common, EEPROM,
202                         "Big Endian EEPROM detected according to EEPMISC register.\n");
203         } else {
204                 *swap_needed = false;
205         }
206
207         return 0;
208 }
209
210 bool ath9k_hw_nvram_validate_checksum(struct ath_hw *ah, int size)
211 {
212         u32 i, sum = 0;
213         u16 *eepdata = (u16 *)(&ah->eeprom);
214         struct ath_common *common = ath9k_hw_common(ah);
215
216         for (i = 0; i < size; i++)
217                 sum ^= eepdata[i];
218
219         if (sum != 0xffff) {
220                 ath_err(common, "Bad EEPROM checksum 0x%x\n", sum);
221                 return false;
222         }
223
224         return true;
225 }
226
227 bool ath9k_hw_nvram_check_version(struct ath_hw *ah, int version, int minrev)
228 {
229         struct ath_common *common = ath9k_hw_common(ah);
230
231         if (ah->eep_ops->get_eeprom_ver(ah) != version ||
232             ah->eep_ops->get_eeprom_rev(ah) < minrev) {
233                 ath_err(common, "Bad EEPROM VER 0x%04x or REV 0x%04x\n",
234                         ah->eep_ops->get_eeprom_ver(ah),
235                         ah->eep_ops->get_eeprom_rev(ah));
236                 return false;
237         }
238
239         return true;
240 }
241
242 void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
243                              u8 *pVpdList, u16 numIntercepts,
244                              u8 *pRetVpdList)
245 {
246         u16 i, k;
247         u8 currPwr = pwrMin;
248         u16 idxL = 0, idxR = 0;
249
250         for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
251                 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
252                                                numIntercepts, &(idxL),
253                                                &(idxR));
254                 if (idxR < 1)
255                         idxR = 1;
256                 if (idxL == numIntercepts - 1)
257                         idxL = (u16) (numIntercepts - 2);
258                 if (pPwrList[idxL] == pPwrList[idxR])
259                         k = pVpdList[idxL];
260                 else
261                         k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
262                                    (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
263                                   (pPwrList[idxR] - pPwrList[idxL]));
264                 pRetVpdList[i] = (u8) k;
265                 currPwr += 2;
266         }
267 }
268
269 void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
270                                        struct ath9k_channel *chan,
271                                        struct cal_target_power_leg *powInfo,
272                                        u16 numChannels,
273                                        struct cal_target_power_leg *pNewPower,
274                                        u16 numRates, bool isExtTarget)
275 {
276         struct chan_centers centers;
277         u16 clo, chi;
278         int i;
279         int matchIndex = -1, lowIndex = -1;
280         u16 freq;
281
282         ath9k_hw_get_channel_centers(ah, chan, &centers);
283         freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
284
285         if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
286                                        IS_CHAN_2GHZ(chan))) {
287                 matchIndex = 0;
288         } else {
289                 for (i = 0; (i < numChannels) &&
290                              (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
291                         if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
292                                                        IS_CHAN_2GHZ(chan))) {
293                                 matchIndex = i;
294                                 break;
295                         } else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
296                                                 IS_CHAN_2GHZ(chan)) && i > 0 &&
297                                    freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
298                                                 IS_CHAN_2GHZ(chan))) {
299                                 lowIndex = i - 1;
300                                 break;
301                         }
302                 }
303                 if ((matchIndex == -1) && (lowIndex == -1))
304                         matchIndex = i - 1;
305         }
306
307         if (matchIndex != -1) {
308                 *pNewPower = powInfo[matchIndex];
309         } else {
310                 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
311                                          IS_CHAN_2GHZ(chan));
312                 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
313                                          IS_CHAN_2GHZ(chan));
314
315                 for (i = 0; i < numRates; i++) {
316                         pNewPower->tPow2x[i] =
317                                 (u8)ath9k_hw_interpolate(freq, clo, chi,
318                                                 powInfo[lowIndex].tPow2x[i],
319                                                 powInfo[lowIndex + 1].tPow2x[i]);
320                 }
321         }
322 }
323
324 void ath9k_hw_get_target_powers(struct ath_hw *ah,
325                                 struct ath9k_channel *chan,
326                                 struct cal_target_power_ht *powInfo,
327                                 u16 numChannels,
328                                 struct cal_target_power_ht *pNewPower,
329                                 u16 numRates, bool isHt40Target)
330 {
331         struct chan_centers centers;
332         u16 clo, chi;
333         int i;
334         int matchIndex = -1, lowIndex = -1;
335         u16 freq;
336
337         ath9k_hw_get_channel_centers(ah, chan, &centers);
338         freq = isHt40Target ? centers.synth_center : centers.ctl_center;
339
340         if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
341                 matchIndex = 0;
342         } else {
343                 for (i = 0; (i < numChannels) &&
344                              (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
345                         if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
346                                                        IS_CHAN_2GHZ(chan))) {
347                                 matchIndex = i;
348                                 break;
349                         } else
350                                 if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
351                                                 IS_CHAN_2GHZ(chan)) && i > 0 &&
352                                     freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
353                                                 IS_CHAN_2GHZ(chan))) {
354                                         lowIndex = i - 1;
355                                         break;
356                                 }
357                 }
358                 if ((matchIndex == -1) && (lowIndex == -1))
359                         matchIndex = i - 1;
360         }
361
362         if (matchIndex != -1) {
363                 *pNewPower = powInfo[matchIndex];
364         } else {
365                 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
366                                          IS_CHAN_2GHZ(chan));
367                 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
368                                          IS_CHAN_2GHZ(chan));
369
370                 for (i = 0; i < numRates; i++) {
371                         pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
372                                                 clo, chi,
373                                                 powInfo[lowIndex].tPow2x[i],
374                                                 powInfo[lowIndex + 1].tPow2x[i]);
375                 }
376         }
377 }
378
379 u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
380                                 bool is2GHz, int num_band_edges)
381 {
382         u16 twiceMaxEdgePower = MAX_RATE_POWER;
383         int i;
384
385         for (i = 0; (i < num_band_edges) &&
386                      (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
387                 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
388                         twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
389                         break;
390                 } else if ((i > 0) &&
391                            (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
392                                                       is2GHz))) {
393                         if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
394                                                is2GHz) < freq &&
395                             CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
396                                 twiceMaxEdgePower =
397                                         CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
398                         }
399                         break;
400                 }
401         }
402
403         return twiceMaxEdgePower;
404 }
405
406 u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
407                               u8 antenna_reduction)
408 {
409         u16 reduction = antenna_reduction;
410
411         /*
412          * Reduce scaled Power by number of chains active
413          * to get the per chain tx power level.
414          */
415         switch (ar5416_get_ntxchains(ah->txchainmask)) {
416         case 1:
417                 break;
418         case 2:
419                 reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
420                 break;
421         case 3:
422                 reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
423                 break;
424         }
425
426         if (power_limit > reduction)
427                 power_limit -= reduction;
428         else
429                 power_limit = 0;
430
431         return power_limit;
432 }
433
434 void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
435 {
436         struct ath_common *common = ath9k_hw_common(ah);
437         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
438
439         switch (ar5416_get_ntxchains(ah->txchainmask)) {
440         case 1:
441                 break;
442         case 2:
443                 regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
444                 break;
445         case 3:
446                 regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
447                 break;
448         default:
449                 ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
450                 break;
451         }
452 }
453
454 void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
455                                 struct ath9k_channel *chan,
456                                 void *pRawDataSet,
457                                 u8 *bChans, u16 availPiers,
458                                 u16 tPdGainOverlap,
459                                 u16 *pPdGainBoundaries, u8 *pPDADCValues,
460                                 u16 numXpdGains)
461 {
462         int i, j, k;
463         int16_t ss;
464         u16 idxL = 0, idxR = 0, numPiers;
465         static u8 vpdTableL[AR5416_NUM_PD_GAINS]
466                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
467         static u8 vpdTableR[AR5416_NUM_PD_GAINS]
468                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
469         static u8 vpdTableI[AR5416_NUM_PD_GAINS]
470                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
471
472         u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
473         u8 minPwrT4[AR5416_NUM_PD_GAINS];
474         u8 maxPwrT4[AR5416_NUM_PD_GAINS];
475         int16_t vpdStep;
476         int16_t tmpVal;
477         u16 sizeCurrVpdTable, maxIndex, tgtIndex;
478         bool match;
479         int16_t minDelta = 0;
480         struct chan_centers centers;
481         int pdgain_boundary_default;
482         struct cal_data_per_freq *data_def = pRawDataSet;
483         struct cal_data_per_freq_4k *data_4k = pRawDataSet;
484         struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
485         bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
486         int intercepts;
487
488         if (AR_SREV_9287(ah))
489                 intercepts = AR9287_PD_GAIN_ICEPTS;
490         else
491                 intercepts = AR5416_PD_GAIN_ICEPTS;
492
493         memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
494         ath9k_hw_get_channel_centers(ah, chan, &centers);
495
496         for (numPiers = 0; numPiers < availPiers; numPiers++) {
497                 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
498                         break;
499         }
500
501         match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
502                                                              IS_CHAN_2GHZ(chan)),
503                                                bChans, numPiers, &idxL, &idxR);
504
505         if (match) {
506                 if (AR_SREV_9287(ah)) {
507                         for (i = 0; i < numXpdGains; i++) {
508                                 minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
509                                 maxPwrT4[i] = data_9287[idxL].pwrPdg[i][intercepts - 1];
510                                 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
511                                                 data_9287[idxL].pwrPdg[i],
512                                                 data_9287[idxL].vpdPdg[i],
513                                                 intercepts,
514                                                 vpdTableI[i]);
515                         }
516                 } else if (eeprom_4k) {
517                         for (i = 0; i < numXpdGains; i++) {
518                                 minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
519                                 maxPwrT4[i] = data_4k[idxL].pwrPdg[i][intercepts - 1];
520                                 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
521                                                 data_4k[idxL].pwrPdg[i],
522                                                 data_4k[idxL].vpdPdg[i],
523                                                 intercepts,
524                                                 vpdTableI[i]);
525                         }
526                 } else {
527                         for (i = 0; i < numXpdGains; i++) {
528                                 minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
529                                 maxPwrT4[i] = data_def[idxL].pwrPdg[i][intercepts - 1];
530                                 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
531                                                 data_def[idxL].pwrPdg[i],
532                                                 data_def[idxL].vpdPdg[i],
533                                                 intercepts,
534                                                 vpdTableI[i]);
535                         }
536                 }
537         } else {
538                 for (i = 0; i < numXpdGains; i++) {
539                         if (AR_SREV_9287(ah)) {
540                                 pVpdL = data_9287[idxL].vpdPdg[i];
541                                 pPwrL = data_9287[idxL].pwrPdg[i];
542                                 pVpdR = data_9287[idxR].vpdPdg[i];
543                                 pPwrR = data_9287[idxR].pwrPdg[i];
544                         } else if (eeprom_4k) {
545                                 pVpdL = data_4k[idxL].vpdPdg[i];
546                                 pPwrL = data_4k[idxL].pwrPdg[i];
547                                 pVpdR = data_4k[idxR].vpdPdg[i];
548                                 pPwrR = data_4k[idxR].pwrPdg[i];
549                         } else {
550                                 pVpdL = data_def[idxL].vpdPdg[i];
551                                 pPwrL = data_def[idxL].pwrPdg[i];
552                                 pVpdR = data_def[idxR].vpdPdg[i];
553                                 pPwrR = data_def[idxR].pwrPdg[i];
554                         }
555
556                         minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
557
558                         maxPwrT4[i] =
559                                 min(pPwrL[intercepts - 1],
560                                     pPwrR[intercepts - 1]);
561
562
563                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
564                                                 pPwrL, pVpdL,
565                                                 intercepts,
566                                                 vpdTableL[i]);
567                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
568                                                 pPwrR, pVpdR,
569                                                 intercepts,
570                                                 vpdTableR[i]);
571
572                         for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
573                                 vpdTableI[i][j] =
574                                         (u8)(ath9k_hw_interpolate((u16)
575                                              FREQ2FBIN(centers.
576                                                        synth_center,
577                                                        IS_CHAN_2GHZ
578                                                        (chan)),
579                                              bChans[idxL], bChans[idxR],
580                                              vpdTableL[i][j], vpdTableR[i][j]));
581                         }
582                 }
583         }
584
585         k = 0;
586
587         for (i = 0; i < numXpdGains; i++) {
588                 if (i == (numXpdGains - 1))
589                         pPdGainBoundaries[i] =
590                                 (u16)(maxPwrT4[i] / 2);
591                 else
592                         pPdGainBoundaries[i] =
593                                 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
594
595                 pPdGainBoundaries[i] =
596                         min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
597
598                 minDelta = 0;
599
600                 if (i == 0) {
601                         if (AR_SREV_9280_20_OR_LATER(ah))
602                                 ss = (int16_t)(0 - (minPwrT4[i] / 2));
603                         else
604                                 ss = 0;
605                 } else {
606                         ss = (int16_t)((pPdGainBoundaries[i - 1] -
607                                         (minPwrT4[i] / 2)) -
608                                        tPdGainOverlap + 1 + minDelta);
609                 }
610                 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
611                 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
612
613                 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
614                         tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
615                         pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
616                         ss++;
617                 }
618
619                 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
620                 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
621                                 (minPwrT4[i] / 2));
622                 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
623                         tgtIndex : sizeCurrVpdTable;
624
625                 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
626                         pPDADCValues[k++] = vpdTableI[i][ss++];
627                 }
628
629                 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
630                                     vpdTableI[i][sizeCurrVpdTable - 2]);
631                 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
632
633                 if (tgtIndex >= maxIndex) {
634                         while ((ss <= tgtIndex) &&
635                                (k < (AR5416_NUM_PDADC_VALUES - 1))) {
636                                 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
637                                                     (ss - maxIndex + 1) * vpdStep));
638                                 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
639                                                          255 : tmpVal);
640                                 ss++;
641                         }
642                 }
643         }
644
645         if (eeprom_4k)
646                 pdgain_boundary_default = 58;
647         else
648                 pdgain_boundary_default = pPdGainBoundaries[i - 1];
649
650         while (i < AR5416_PD_GAINS_IN_MASK) {
651                 pPdGainBoundaries[i] = pdgain_boundary_default;
652                 i++;
653         }
654
655         while (k < AR5416_NUM_PDADC_VALUES) {
656                 pPDADCValues[k] = pPDADCValues[k - 1];
657                 k++;
658         }
659 }
660
661 int ath9k_hw_eeprom_init(struct ath_hw *ah)
662 {
663         int status;
664
665         if (AR_SREV_9300_20_OR_LATER(ah))
666                 ah->eep_ops = &eep_ar9300_ops;
667         else if (AR_SREV_9287(ah)) {
668                 ah->eep_ops = &eep_ar9287_ops;
669         } else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
670                 ah->eep_ops = &eep_4k_ops;
671         } else {
672                 ah->eep_ops = &eep_def_ops;
673         }
674
675         if (!ah->eep_ops->fill_eeprom(ah))
676                 return -EIO;
677
678         status = ah->eep_ops->check_eeprom(ah);
679
680         return status;
681 }