GNU Linux-libre 5.15.54-gnu
[releases.git] / drivers / net / hyperv / netvsc_drv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/init.h>
12 #include <linux/atomic.h>
13 #include <linux/ethtool.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/device.h>
17 #include <linux/io.h>
18 #include <linux/delay.h>
19 #include <linux/netdevice.h>
20 #include <linux/inetdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/pci.h>
23 #include <linux/skbuff.h>
24 #include <linux/if_vlan.h>
25 #include <linux/in.h>
26 #include <linux/slab.h>
27 #include <linux/rtnetlink.h>
28 #include <linux/netpoll.h>
29 #include <linux/bpf.h>
30
31 #include <net/arp.h>
32 #include <net/route.h>
33 #include <net/sock.h>
34 #include <net/pkt_sched.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37
38 #include "hyperv_net.h"
39
40 #define RING_SIZE_MIN   64
41
42 #define LINKCHANGE_INT (2 * HZ)
43 #define VF_TAKEOVER_INT (HZ / 10)
44
45 static unsigned int ring_size __ro_after_init = 128;
46 module_param(ring_size, uint, 0444);
47 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
48 unsigned int netvsc_ring_bytes __ro_after_init;
49
50 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
51                                 NETIF_MSG_LINK | NETIF_MSG_IFUP |
52                                 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
53                                 NETIF_MSG_TX_ERR;
54
55 static int debug = -1;
56 module_param(debug, int, 0444);
57 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
58
59 static LIST_HEAD(netvsc_dev_list);
60
61 static void netvsc_change_rx_flags(struct net_device *net, int change)
62 {
63         struct net_device_context *ndev_ctx = netdev_priv(net);
64         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
65         int inc;
66
67         if (!vf_netdev)
68                 return;
69
70         if (change & IFF_PROMISC) {
71                 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
72                 dev_set_promiscuity(vf_netdev, inc);
73         }
74
75         if (change & IFF_ALLMULTI) {
76                 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
77                 dev_set_allmulti(vf_netdev, inc);
78         }
79 }
80
81 static void netvsc_set_rx_mode(struct net_device *net)
82 {
83         struct net_device_context *ndev_ctx = netdev_priv(net);
84         struct net_device *vf_netdev;
85         struct netvsc_device *nvdev;
86
87         rcu_read_lock();
88         vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
89         if (vf_netdev) {
90                 dev_uc_sync(vf_netdev, net);
91                 dev_mc_sync(vf_netdev, net);
92         }
93
94         nvdev = rcu_dereference(ndev_ctx->nvdev);
95         if (nvdev)
96                 rndis_filter_update(nvdev);
97         rcu_read_unlock();
98 }
99
100 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
101                              struct net_device *ndev)
102 {
103         nvscdev->tx_disable = false;
104         virt_wmb(); /* ensure queue wake up mechanism is on */
105
106         netif_tx_wake_all_queues(ndev);
107 }
108
109 static int netvsc_open(struct net_device *net)
110 {
111         struct net_device_context *ndev_ctx = netdev_priv(net);
112         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
113         struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
114         struct rndis_device *rdev;
115         int ret = 0;
116
117         netif_carrier_off(net);
118
119         /* Open up the device */
120         ret = rndis_filter_open(nvdev);
121         if (ret != 0) {
122                 netdev_err(net, "unable to open device (ret %d).\n", ret);
123                 return ret;
124         }
125
126         rdev = nvdev->extension;
127         if (!rdev->link_state) {
128                 netif_carrier_on(net);
129                 netvsc_tx_enable(nvdev, net);
130         }
131
132         if (vf_netdev) {
133                 /* Setting synthetic device up transparently sets
134                  * slave as up. If open fails, then slave will be
135                  * still be offline (and not used).
136                  */
137                 ret = dev_open(vf_netdev, NULL);
138                 if (ret)
139                         netdev_warn(net,
140                                     "unable to open slave: %s: %d\n",
141                                     vf_netdev->name, ret);
142         }
143         return 0;
144 }
145
146 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
147 {
148         unsigned int retry = 0;
149         int i;
150
151         /* Ensure pending bytes in ring are read */
152         for (;;) {
153                 u32 aread = 0;
154
155                 for (i = 0; i < nvdev->num_chn; i++) {
156                         struct vmbus_channel *chn
157                                 = nvdev->chan_table[i].channel;
158
159                         if (!chn)
160                                 continue;
161
162                         /* make sure receive not running now */
163                         napi_synchronize(&nvdev->chan_table[i].napi);
164
165                         aread = hv_get_bytes_to_read(&chn->inbound);
166                         if (aread)
167                                 break;
168
169                         aread = hv_get_bytes_to_read(&chn->outbound);
170                         if (aread)
171                                 break;
172                 }
173
174                 if (aread == 0)
175                         return 0;
176
177                 if (++retry > RETRY_MAX)
178                         return -ETIMEDOUT;
179
180                 usleep_range(RETRY_US_LO, RETRY_US_HI);
181         }
182 }
183
184 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
185                               struct net_device *ndev)
186 {
187         if (nvscdev) {
188                 nvscdev->tx_disable = true;
189                 virt_wmb(); /* ensure txq will not wake up after stop */
190         }
191
192         netif_tx_disable(ndev);
193 }
194
195 static int netvsc_close(struct net_device *net)
196 {
197         struct net_device_context *net_device_ctx = netdev_priv(net);
198         struct net_device *vf_netdev
199                 = rtnl_dereference(net_device_ctx->vf_netdev);
200         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
201         int ret;
202
203         netvsc_tx_disable(nvdev, net);
204
205         /* No need to close rndis filter if it is removed already */
206         if (!nvdev)
207                 return 0;
208
209         ret = rndis_filter_close(nvdev);
210         if (ret != 0) {
211                 netdev_err(net, "unable to close device (ret %d).\n", ret);
212                 return ret;
213         }
214
215         ret = netvsc_wait_until_empty(nvdev);
216         if (ret)
217                 netdev_err(net, "Ring buffer not empty after closing rndis\n");
218
219         if (vf_netdev)
220                 dev_close(vf_netdev);
221
222         return ret;
223 }
224
225 static inline void *init_ppi_data(struct rndis_message *msg,
226                                   u32 ppi_size, u32 pkt_type)
227 {
228         struct rndis_packet *rndis_pkt = &msg->msg.pkt;
229         struct rndis_per_packet_info *ppi;
230
231         rndis_pkt->data_offset += ppi_size;
232         ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
233                 + rndis_pkt->per_pkt_info_len;
234
235         ppi->size = ppi_size;
236         ppi->type = pkt_type;
237         ppi->internal = 0;
238         ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
239
240         rndis_pkt->per_pkt_info_len += ppi_size;
241
242         return ppi + 1;
243 }
244
245 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
246  * packets. We can use ethtool to change UDP hash level when necessary.
247  */
248 static inline u32 netvsc_get_hash(
249         struct sk_buff *skb,
250         const struct net_device_context *ndc)
251 {
252         struct flow_keys flow;
253         u32 hash, pkt_proto = 0;
254         static u32 hashrnd __read_mostly;
255
256         net_get_random_once(&hashrnd, sizeof(hashrnd));
257
258         if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
259                 return 0;
260
261         switch (flow.basic.ip_proto) {
262         case IPPROTO_TCP:
263                 if (flow.basic.n_proto == htons(ETH_P_IP))
264                         pkt_proto = HV_TCP4_L4HASH;
265                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
266                         pkt_proto = HV_TCP6_L4HASH;
267
268                 break;
269
270         case IPPROTO_UDP:
271                 if (flow.basic.n_proto == htons(ETH_P_IP))
272                         pkt_proto = HV_UDP4_L4HASH;
273                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
274                         pkt_proto = HV_UDP6_L4HASH;
275
276                 break;
277         }
278
279         if (pkt_proto & ndc->l4_hash) {
280                 return skb_get_hash(skb);
281         } else {
282                 if (flow.basic.n_proto == htons(ETH_P_IP))
283                         hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
284                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
285                         hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
286                 else
287                         return 0;
288
289                 __skb_set_sw_hash(skb, hash, false);
290         }
291
292         return hash;
293 }
294
295 static inline int netvsc_get_tx_queue(struct net_device *ndev,
296                                       struct sk_buff *skb, int old_idx)
297 {
298         const struct net_device_context *ndc = netdev_priv(ndev);
299         struct sock *sk = skb->sk;
300         int q_idx;
301
302         q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
303                               (VRSS_SEND_TAB_SIZE - 1)];
304
305         /* If queue index changed record the new value */
306         if (q_idx != old_idx &&
307             sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
308                 sk_tx_queue_set(sk, q_idx);
309
310         return q_idx;
311 }
312
313 /*
314  * Select queue for transmit.
315  *
316  * If a valid queue has already been assigned, then use that.
317  * Otherwise compute tx queue based on hash and the send table.
318  *
319  * This is basically similar to default (netdev_pick_tx) with the added step
320  * of using the host send_table when no other queue has been assigned.
321  *
322  * TODO support XPS - but get_xps_queue not exported
323  */
324 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
325 {
326         int q_idx = sk_tx_queue_get(skb->sk);
327
328         if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
329                 /* If forwarding a packet, we use the recorded queue when
330                  * available for better cache locality.
331                  */
332                 if (skb_rx_queue_recorded(skb))
333                         q_idx = skb_get_rx_queue(skb);
334                 else
335                         q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
336         }
337
338         return q_idx;
339 }
340
341 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
342                                struct net_device *sb_dev)
343 {
344         struct net_device_context *ndc = netdev_priv(ndev);
345         struct net_device *vf_netdev;
346         u16 txq;
347
348         rcu_read_lock();
349         vf_netdev = rcu_dereference(ndc->vf_netdev);
350         if (vf_netdev) {
351                 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
352
353                 if (vf_ops->ndo_select_queue)
354                         txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
355                 else
356                         txq = netdev_pick_tx(vf_netdev, skb, NULL);
357
358                 /* Record the queue selected by VF so that it can be
359                  * used for common case where VF has more queues than
360                  * the synthetic device.
361                  */
362                 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
363         } else {
364                 txq = netvsc_pick_tx(ndev, skb);
365         }
366         rcu_read_unlock();
367
368         while (txq >= ndev->real_num_tx_queues)
369                 txq -= ndev->real_num_tx_queues;
370
371         return txq;
372 }
373
374 static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
375                        struct hv_page_buffer *pb)
376 {
377         int j = 0;
378
379         hvpfn += offset >> HV_HYP_PAGE_SHIFT;
380         offset = offset & ~HV_HYP_PAGE_MASK;
381
382         while (len > 0) {
383                 unsigned long bytes;
384
385                 bytes = HV_HYP_PAGE_SIZE - offset;
386                 if (bytes > len)
387                         bytes = len;
388                 pb[j].pfn = hvpfn;
389                 pb[j].offset = offset;
390                 pb[j].len = bytes;
391
392                 offset += bytes;
393                 len -= bytes;
394
395                 if (offset == HV_HYP_PAGE_SIZE && len) {
396                         hvpfn++;
397                         offset = 0;
398                         j++;
399                 }
400         }
401
402         return j + 1;
403 }
404
405 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
406                            struct hv_netvsc_packet *packet,
407                            struct hv_page_buffer *pb)
408 {
409         u32 slots_used = 0;
410         char *data = skb->data;
411         int frags = skb_shinfo(skb)->nr_frags;
412         int i;
413
414         /* The packet is laid out thus:
415          * 1. hdr: RNDIS header and PPI
416          * 2. skb linear data
417          * 3. skb fragment data
418          */
419         slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
420                                   offset_in_hvpage(hdr),
421                                   len,
422                                   &pb[slots_used]);
423
424         packet->rmsg_size = len;
425         packet->rmsg_pgcnt = slots_used;
426
427         slots_used += fill_pg_buf(virt_to_hvpfn(data),
428                                   offset_in_hvpage(data),
429                                   skb_headlen(skb),
430                                   &pb[slots_used]);
431
432         for (i = 0; i < frags; i++) {
433                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
434
435                 slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
436                                           skb_frag_off(frag),
437                                           skb_frag_size(frag),
438                                           &pb[slots_used]);
439         }
440         return slots_used;
441 }
442
443 static int count_skb_frag_slots(struct sk_buff *skb)
444 {
445         int i, frags = skb_shinfo(skb)->nr_frags;
446         int pages = 0;
447
448         for (i = 0; i < frags; i++) {
449                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
450                 unsigned long size = skb_frag_size(frag);
451                 unsigned long offset = skb_frag_off(frag);
452
453                 /* Skip unused frames from start of page */
454                 offset &= ~HV_HYP_PAGE_MASK;
455                 pages += HVPFN_UP(offset + size);
456         }
457         return pages;
458 }
459
460 static int netvsc_get_slots(struct sk_buff *skb)
461 {
462         char *data = skb->data;
463         unsigned int offset = offset_in_hvpage(data);
464         unsigned int len = skb_headlen(skb);
465         int slots;
466         int frag_slots;
467
468         slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
469         frag_slots = count_skb_frag_slots(skb);
470         return slots + frag_slots;
471 }
472
473 static u32 net_checksum_info(struct sk_buff *skb)
474 {
475         if (skb->protocol == htons(ETH_P_IP)) {
476                 struct iphdr *ip = ip_hdr(skb);
477
478                 if (ip->protocol == IPPROTO_TCP)
479                         return TRANSPORT_INFO_IPV4_TCP;
480                 else if (ip->protocol == IPPROTO_UDP)
481                         return TRANSPORT_INFO_IPV4_UDP;
482         } else {
483                 struct ipv6hdr *ip6 = ipv6_hdr(skb);
484
485                 if (ip6->nexthdr == IPPROTO_TCP)
486                         return TRANSPORT_INFO_IPV6_TCP;
487                 else if (ip6->nexthdr == IPPROTO_UDP)
488                         return TRANSPORT_INFO_IPV6_UDP;
489         }
490
491         return TRANSPORT_INFO_NOT_IP;
492 }
493
494 /* Send skb on the slave VF device. */
495 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
496                           struct sk_buff *skb)
497 {
498         struct net_device_context *ndev_ctx = netdev_priv(net);
499         unsigned int len = skb->len;
500         int rc;
501
502         skb->dev = vf_netdev;
503         skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
504
505         rc = dev_queue_xmit(skb);
506         if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
507                 struct netvsc_vf_pcpu_stats *pcpu_stats
508                         = this_cpu_ptr(ndev_ctx->vf_stats);
509
510                 u64_stats_update_begin(&pcpu_stats->syncp);
511                 pcpu_stats->tx_packets++;
512                 pcpu_stats->tx_bytes += len;
513                 u64_stats_update_end(&pcpu_stats->syncp);
514         } else {
515                 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
516         }
517
518         return rc;
519 }
520
521 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
522 {
523         struct net_device_context *net_device_ctx = netdev_priv(net);
524         struct hv_netvsc_packet *packet = NULL;
525         int ret;
526         unsigned int num_data_pgs;
527         struct rndis_message *rndis_msg;
528         struct net_device *vf_netdev;
529         u32 rndis_msg_size;
530         u32 hash;
531         struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
532
533         /* If VF is present and up then redirect packets to it.
534          * Skip the VF if it is marked down or has no carrier.
535          * If netpoll is in uses, then VF can not be used either.
536          */
537         vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
538         if (vf_netdev && netif_running(vf_netdev) &&
539             netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
540             net_device_ctx->data_path_is_vf)
541                 return netvsc_vf_xmit(net, vf_netdev, skb);
542
543         /* We will atmost need two pages to describe the rndis
544          * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
545          * of pages in a single packet. If skb is scattered around
546          * more pages we try linearizing it.
547          */
548
549         num_data_pgs = netvsc_get_slots(skb) + 2;
550
551         if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
552                 ++net_device_ctx->eth_stats.tx_scattered;
553
554                 if (skb_linearize(skb))
555                         goto no_memory;
556
557                 num_data_pgs = netvsc_get_slots(skb) + 2;
558                 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
559                         ++net_device_ctx->eth_stats.tx_too_big;
560                         goto drop;
561                 }
562         }
563
564         /*
565          * Place the rndis header in the skb head room and
566          * the skb->cb will be used for hv_netvsc_packet
567          * structure.
568          */
569         ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
570         if (ret)
571                 goto no_memory;
572
573         /* Use the skb control buffer for building up the packet */
574         BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
575                         sizeof_field(struct sk_buff, cb));
576         packet = (struct hv_netvsc_packet *)skb->cb;
577
578         packet->q_idx = skb_get_queue_mapping(skb);
579
580         packet->total_data_buflen = skb->len;
581         packet->total_bytes = skb->len;
582         packet->total_packets = 1;
583
584         rndis_msg = (struct rndis_message *)skb->head;
585
586         /* Add the rndis header */
587         rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
588         rndis_msg->msg_len = packet->total_data_buflen;
589
590         rndis_msg->msg.pkt = (struct rndis_packet) {
591                 .data_offset = sizeof(struct rndis_packet),
592                 .data_len = packet->total_data_buflen,
593                 .per_pkt_info_offset = sizeof(struct rndis_packet),
594         };
595
596         rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
597
598         hash = skb_get_hash_raw(skb);
599         if (hash != 0 && net->real_num_tx_queues > 1) {
600                 u32 *hash_info;
601
602                 rndis_msg_size += NDIS_HASH_PPI_SIZE;
603                 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
604                                           NBL_HASH_VALUE);
605                 *hash_info = hash;
606         }
607
608         /* When using AF_PACKET we need to drop VLAN header from
609          * the frame and update the SKB to allow the HOST OS
610          * to transmit the 802.1Q packet
611          */
612         if (skb->protocol == htons(ETH_P_8021Q)) {
613                 u16 vlan_tci;
614
615                 skb_reset_mac_header(skb);
616                 if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
617                         if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
618                                 ++net_device_ctx->eth_stats.vlan_error;
619                                 goto drop;
620                         }
621
622                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
623                         /* Update the NDIS header pkt lengths */
624                         packet->total_data_buflen -= VLAN_HLEN;
625                         packet->total_bytes -= VLAN_HLEN;
626                         rndis_msg->msg_len = packet->total_data_buflen;
627                         rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
628                 }
629         }
630
631         if (skb_vlan_tag_present(skb)) {
632                 struct ndis_pkt_8021q_info *vlan;
633
634                 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
635                 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
636                                      IEEE_8021Q_INFO);
637
638                 vlan->value = 0;
639                 vlan->vlanid = skb_vlan_tag_get_id(skb);
640                 vlan->cfi = skb_vlan_tag_get_cfi(skb);
641                 vlan->pri = skb_vlan_tag_get_prio(skb);
642         }
643
644         if (skb_is_gso(skb)) {
645                 struct ndis_tcp_lso_info *lso_info;
646
647                 rndis_msg_size += NDIS_LSO_PPI_SIZE;
648                 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
649                                          TCP_LARGESEND_PKTINFO);
650
651                 lso_info->value = 0;
652                 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
653                 if (skb->protocol == htons(ETH_P_IP)) {
654                         lso_info->lso_v2_transmit.ip_version =
655                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
656                         ip_hdr(skb)->tot_len = 0;
657                         ip_hdr(skb)->check = 0;
658                         tcp_hdr(skb)->check =
659                                 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
660                                                    ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
661                 } else {
662                         lso_info->lso_v2_transmit.ip_version =
663                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
664                         tcp_v6_gso_csum_prep(skb);
665                 }
666                 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
667                 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
668         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
669                 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
670                         struct ndis_tcp_ip_checksum_info *csum_info;
671
672                         rndis_msg_size += NDIS_CSUM_PPI_SIZE;
673                         csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
674                                                   TCPIP_CHKSUM_PKTINFO);
675
676                         csum_info->value = 0;
677                         csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
678
679                         if (skb->protocol == htons(ETH_P_IP)) {
680                                 csum_info->transmit.is_ipv4 = 1;
681
682                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
683                                         csum_info->transmit.tcp_checksum = 1;
684                                 else
685                                         csum_info->transmit.udp_checksum = 1;
686                         } else {
687                                 csum_info->transmit.is_ipv6 = 1;
688
689                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
690                                         csum_info->transmit.tcp_checksum = 1;
691                                 else
692                                         csum_info->transmit.udp_checksum = 1;
693                         }
694                 } else {
695                         /* Can't do offload of this type of checksum */
696                         if (skb_checksum_help(skb))
697                                 goto drop;
698                 }
699         }
700
701         /* Start filling in the page buffers with the rndis hdr */
702         rndis_msg->msg_len += rndis_msg_size;
703         packet->total_data_buflen = rndis_msg->msg_len;
704         packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
705                                                skb, packet, pb);
706
707         /* timestamp packet in software */
708         skb_tx_timestamp(skb);
709
710         ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
711         if (likely(ret == 0))
712                 return NETDEV_TX_OK;
713
714         if (ret == -EAGAIN) {
715                 ++net_device_ctx->eth_stats.tx_busy;
716                 return NETDEV_TX_BUSY;
717         }
718
719         if (ret == -ENOSPC)
720                 ++net_device_ctx->eth_stats.tx_no_space;
721
722 drop:
723         dev_kfree_skb_any(skb);
724         net->stats.tx_dropped++;
725
726         return NETDEV_TX_OK;
727
728 no_memory:
729         ++net_device_ctx->eth_stats.tx_no_memory;
730         goto drop;
731 }
732
733 static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
734                                      struct net_device *ndev)
735 {
736         return netvsc_xmit(skb, ndev, false);
737 }
738
739 /*
740  * netvsc_linkstatus_callback - Link up/down notification
741  */
742 void netvsc_linkstatus_callback(struct net_device *net,
743                                 struct rndis_message *resp,
744                                 void *data, u32 data_buflen)
745 {
746         struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
747         struct net_device_context *ndev_ctx = netdev_priv(net);
748         struct netvsc_reconfig *event;
749         unsigned long flags;
750
751         /* Ensure the packet is big enough to access its fields */
752         if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
753                 netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
754                            resp->msg_len);
755                 return;
756         }
757
758         /* Copy the RNDIS indicate status into nvchan->recv_buf */
759         memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
760
761         /* Update the physical link speed when changing to another vSwitch */
762         if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
763                 u32 speed;
764
765                 /* Validate status_buf_offset and status_buflen.
766                  *
767                  * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account
768                  * for the status buffer field in resp->msg_len; perform the validation
769                  * using data_buflen (>= resp->msg_len).
770                  */
771                 if (indicate->status_buflen < sizeof(speed) ||
772                     indicate->status_buf_offset < sizeof(*indicate) ||
773                     data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
774                     data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset
775                                 < indicate->status_buflen) {
776                         netdev_err(net, "invalid rndis_indicate_status packet\n");
777                         return;
778                 }
779
780                 speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
781                 ndev_ctx->speed = speed;
782                 return;
783         }
784
785         /* Handle these link change statuses below */
786         if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
787             indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
788             indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
789                 return;
790
791         if (net->reg_state != NETREG_REGISTERED)
792                 return;
793
794         event = kzalloc(sizeof(*event), GFP_ATOMIC);
795         if (!event)
796                 return;
797         event->event = indicate->status;
798
799         spin_lock_irqsave(&ndev_ctx->lock, flags);
800         list_add_tail(&event->list, &ndev_ctx->reconfig_events);
801         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
802
803         schedule_delayed_work(&ndev_ctx->dwork, 0);
804 }
805
806 static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
807 {
808         int rc;
809
810         skb->queue_mapping = skb_get_rx_queue(skb);
811         __skb_push(skb, ETH_HLEN);
812
813         rc = netvsc_xmit(skb, ndev, true);
814
815         if (dev_xmit_complete(rc))
816                 return;
817
818         dev_kfree_skb_any(skb);
819         ndev->stats.tx_dropped++;
820 }
821
822 static void netvsc_comp_ipcsum(struct sk_buff *skb)
823 {
824         struct iphdr *iph = (struct iphdr *)skb->data;
825
826         iph->check = 0;
827         iph->check = ip_fast_csum(iph, iph->ihl);
828 }
829
830 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
831                                              struct netvsc_channel *nvchan,
832                                              struct xdp_buff *xdp)
833 {
834         struct napi_struct *napi = &nvchan->napi;
835         const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
836         const struct ndis_tcp_ip_checksum_info *csum_info =
837                                                 &nvchan->rsc.csum_info;
838         const u32 *hash_info = &nvchan->rsc.hash_info;
839         u8 ppi_flags = nvchan->rsc.ppi_flags;
840         struct sk_buff *skb;
841         void *xbuf = xdp->data_hard_start;
842         int i;
843
844         if (xbuf) {
845                 unsigned int hdroom = xdp->data - xdp->data_hard_start;
846                 unsigned int xlen = xdp->data_end - xdp->data;
847                 unsigned int frag_size = xdp->frame_sz;
848
849                 skb = build_skb(xbuf, frag_size);
850
851                 if (!skb) {
852                         __free_page(virt_to_page(xbuf));
853                         return NULL;
854                 }
855
856                 skb_reserve(skb, hdroom);
857                 skb_put(skb, xlen);
858                 skb->dev = napi->dev;
859         } else {
860                 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
861
862                 if (!skb)
863                         return NULL;
864
865                 /* Copy to skb. This copy is needed here since the memory
866                  * pointed by hv_netvsc_packet cannot be deallocated.
867                  */
868                 for (i = 0; i < nvchan->rsc.cnt; i++)
869                         skb_put_data(skb, nvchan->rsc.data[i],
870                                      nvchan->rsc.len[i]);
871         }
872
873         skb->protocol = eth_type_trans(skb, net);
874
875         /* skb is already created with CHECKSUM_NONE */
876         skb_checksum_none_assert(skb);
877
878         /* Incoming packets may have IP header checksum verified by the host.
879          * They may not have IP header checksum computed after coalescing.
880          * We compute it here if the flags are set, because on Linux, the IP
881          * checksum is always checked.
882          */
883         if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
884             csum_info->receive.ip_checksum_succeeded &&
885             skb->protocol == htons(ETH_P_IP)) {
886                 /* Check that there is enough space to hold the IP header. */
887                 if (skb_headlen(skb) < sizeof(struct iphdr)) {
888                         kfree_skb(skb);
889                         return NULL;
890                 }
891                 netvsc_comp_ipcsum(skb);
892         }
893
894         /* Do L4 checksum offload if enabled and present. */
895         if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
896                 if (csum_info->receive.tcp_checksum_succeeded ||
897                     csum_info->receive.udp_checksum_succeeded)
898                         skb->ip_summed = CHECKSUM_UNNECESSARY;
899         }
900
901         if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
902                 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
903
904         if (ppi_flags & NVSC_RSC_VLAN) {
905                 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
906                         (vlan->cfi ? VLAN_CFI_MASK : 0);
907
908                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
909                                        vlan_tci);
910         }
911
912         return skb;
913 }
914
915 /*
916  * netvsc_recv_callback -  Callback when we receive a packet from the
917  * "wire" on the specified device.
918  */
919 int netvsc_recv_callback(struct net_device *net,
920                          struct netvsc_device *net_device,
921                          struct netvsc_channel *nvchan)
922 {
923         struct net_device_context *net_device_ctx = netdev_priv(net);
924         struct vmbus_channel *channel = nvchan->channel;
925         u16 q_idx = channel->offermsg.offer.sub_channel_index;
926         struct sk_buff *skb;
927         struct netvsc_stats *rx_stats = &nvchan->rx_stats;
928         struct xdp_buff xdp;
929         u32 act;
930
931         if (net->reg_state != NETREG_REGISTERED)
932                 return NVSP_STAT_FAIL;
933
934         act = netvsc_run_xdp(net, nvchan, &xdp);
935
936         if (act != XDP_PASS && act != XDP_TX) {
937                 u64_stats_update_begin(&rx_stats->syncp);
938                 rx_stats->xdp_drop++;
939                 u64_stats_update_end(&rx_stats->syncp);
940
941                 return NVSP_STAT_SUCCESS; /* consumed by XDP */
942         }
943
944         /* Allocate a skb - TODO direct I/O to pages? */
945         skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
946
947         if (unlikely(!skb)) {
948                 ++net_device_ctx->eth_stats.rx_no_memory;
949                 return NVSP_STAT_FAIL;
950         }
951
952         skb_record_rx_queue(skb, q_idx);
953
954         /*
955          * Even if injecting the packet, record the statistics
956          * on the synthetic device because modifying the VF device
957          * statistics will not work correctly.
958          */
959         u64_stats_update_begin(&rx_stats->syncp);
960         rx_stats->packets++;
961         rx_stats->bytes += nvchan->rsc.pktlen;
962
963         if (skb->pkt_type == PACKET_BROADCAST)
964                 ++rx_stats->broadcast;
965         else if (skb->pkt_type == PACKET_MULTICAST)
966                 ++rx_stats->multicast;
967         u64_stats_update_end(&rx_stats->syncp);
968
969         if (act == XDP_TX) {
970                 netvsc_xdp_xmit(skb, net);
971                 return NVSP_STAT_SUCCESS;
972         }
973
974         napi_gro_receive(&nvchan->napi, skb);
975         return NVSP_STAT_SUCCESS;
976 }
977
978 static void netvsc_get_drvinfo(struct net_device *net,
979                                struct ethtool_drvinfo *info)
980 {
981         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
982         strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
983 }
984
985 static void netvsc_get_channels(struct net_device *net,
986                                 struct ethtool_channels *channel)
987 {
988         struct net_device_context *net_device_ctx = netdev_priv(net);
989         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
990
991         if (nvdev) {
992                 channel->max_combined   = nvdev->max_chn;
993                 channel->combined_count = nvdev->num_chn;
994         }
995 }
996
997 /* Alloc struct netvsc_device_info, and initialize it from either existing
998  * struct netvsc_device, or from default values.
999  */
1000 static
1001 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
1002 {
1003         struct netvsc_device_info *dev_info;
1004         struct bpf_prog *prog;
1005
1006         dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
1007
1008         if (!dev_info)
1009                 return NULL;
1010
1011         if (nvdev) {
1012                 ASSERT_RTNL();
1013
1014                 dev_info->num_chn = nvdev->num_chn;
1015                 dev_info->send_sections = nvdev->send_section_cnt;
1016                 dev_info->send_section_size = nvdev->send_section_size;
1017                 dev_info->recv_sections = nvdev->recv_section_cnt;
1018                 dev_info->recv_section_size = nvdev->recv_section_size;
1019
1020                 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
1021                        NETVSC_HASH_KEYLEN);
1022
1023                 prog = netvsc_xdp_get(nvdev);
1024                 if (prog) {
1025                         bpf_prog_inc(prog);
1026                         dev_info->bprog = prog;
1027                 }
1028         } else {
1029                 dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
1030                 dev_info->send_sections = NETVSC_DEFAULT_TX;
1031                 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
1032                 dev_info->recv_sections = NETVSC_DEFAULT_RX;
1033                 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
1034         }
1035
1036         return dev_info;
1037 }
1038
1039 /* Free struct netvsc_device_info */
1040 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
1041 {
1042         if (dev_info->bprog) {
1043                 ASSERT_RTNL();
1044                 bpf_prog_put(dev_info->bprog);
1045         }
1046
1047         kfree(dev_info);
1048 }
1049
1050 static int netvsc_detach(struct net_device *ndev,
1051                          struct netvsc_device *nvdev)
1052 {
1053         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1054         struct hv_device *hdev = ndev_ctx->device_ctx;
1055         int ret;
1056
1057         /* Don't try continuing to try and setup sub channels */
1058         if (cancel_work_sync(&nvdev->subchan_work))
1059                 nvdev->num_chn = 1;
1060
1061         netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1062
1063         /* If device was up (receiving) then shutdown */
1064         if (netif_running(ndev)) {
1065                 netvsc_tx_disable(nvdev, ndev);
1066
1067                 ret = rndis_filter_close(nvdev);
1068                 if (ret) {
1069                         netdev_err(ndev,
1070                                    "unable to close device (ret %d).\n", ret);
1071                         return ret;
1072                 }
1073
1074                 ret = netvsc_wait_until_empty(nvdev);
1075                 if (ret) {
1076                         netdev_err(ndev,
1077                                    "Ring buffer not empty after closing rndis\n");
1078                         return ret;
1079                 }
1080         }
1081
1082         netif_device_detach(ndev);
1083
1084         rndis_filter_device_remove(hdev, nvdev);
1085
1086         return 0;
1087 }
1088
1089 static int netvsc_attach(struct net_device *ndev,
1090                          struct netvsc_device_info *dev_info)
1091 {
1092         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1093         struct hv_device *hdev = ndev_ctx->device_ctx;
1094         struct netvsc_device *nvdev;
1095         struct rndis_device *rdev;
1096         struct bpf_prog *prog;
1097         int ret = 0;
1098
1099         nvdev = rndis_filter_device_add(hdev, dev_info);
1100         if (IS_ERR(nvdev))
1101                 return PTR_ERR(nvdev);
1102
1103         if (nvdev->num_chn > 1) {
1104                 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1105
1106                 /* if unavailable, just proceed with one queue */
1107                 if (ret) {
1108                         nvdev->max_chn = 1;
1109                         nvdev->num_chn = 1;
1110                 }
1111         }
1112
1113         prog = dev_info->bprog;
1114         if (prog) {
1115                 bpf_prog_inc(prog);
1116                 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1117                 if (ret) {
1118                         bpf_prog_put(prog);
1119                         goto err1;
1120                 }
1121         }
1122
1123         /* In any case device is now ready */
1124         nvdev->tx_disable = false;
1125         netif_device_attach(ndev);
1126
1127         /* Note: enable and attach happen when sub-channels setup */
1128         netif_carrier_off(ndev);
1129
1130         if (netif_running(ndev)) {
1131                 ret = rndis_filter_open(nvdev);
1132                 if (ret)
1133                         goto err2;
1134
1135                 rdev = nvdev->extension;
1136                 if (!rdev->link_state)
1137                         netif_carrier_on(ndev);
1138         }
1139
1140         return 0;
1141
1142 err2:
1143         netif_device_detach(ndev);
1144
1145 err1:
1146         rndis_filter_device_remove(hdev, nvdev);
1147
1148         return ret;
1149 }
1150
1151 static int netvsc_set_channels(struct net_device *net,
1152                                struct ethtool_channels *channels)
1153 {
1154         struct net_device_context *net_device_ctx = netdev_priv(net);
1155         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1156         unsigned int orig, count = channels->combined_count;
1157         struct netvsc_device_info *device_info;
1158         int ret;
1159
1160         /* We do not support separate count for rx, tx, or other */
1161         if (count == 0 ||
1162             channels->rx_count || channels->tx_count || channels->other_count)
1163                 return -EINVAL;
1164
1165         if (!nvdev || nvdev->destroy)
1166                 return -ENODEV;
1167
1168         if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1169                 return -EINVAL;
1170
1171         if (count > nvdev->max_chn)
1172                 return -EINVAL;
1173
1174         orig = nvdev->num_chn;
1175
1176         device_info = netvsc_devinfo_get(nvdev);
1177
1178         if (!device_info)
1179                 return -ENOMEM;
1180
1181         device_info->num_chn = count;
1182
1183         ret = netvsc_detach(net, nvdev);
1184         if (ret)
1185                 goto out;
1186
1187         ret = netvsc_attach(net, device_info);
1188         if (ret) {
1189                 device_info->num_chn = orig;
1190                 if (netvsc_attach(net, device_info))
1191                         netdev_err(net, "restoring channel setting failed\n");
1192         }
1193
1194 out:
1195         netvsc_devinfo_put(device_info);
1196         return ret;
1197 }
1198
1199 static void netvsc_init_settings(struct net_device *dev)
1200 {
1201         struct net_device_context *ndc = netdev_priv(dev);
1202
1203         ndc->l4_hash = HV_DEFAULT_L4HASH;
1204
1205         ndc->speed = SPEED_UNKNOWN;
1206         ndc->duplex = DUPLEX_FULL;
1207
1208         dev->features = NETIF_F_LRO;
1209 }
1210
1211 static int netvsc_get_link_ksettings(struct net_device *dev,
1212                                      struct ethtool_link_ksettings *cmd)
1213 {
1214         struct net_device_context *ndc = netdev_priv(dev);
1215         struct net_device *vf_netdev;
1216
1217         vf_netdev = rtnl_dereference(ndc->vf_netdev);
1218
1219         if (vf_netdev)
1220                 return __ethtool_get_link_ksettings(vf_netdev, cmd);
1221
1222         cmd->base.speed = ndc->speed;
1223         cmd->base.duplex = ndc->duplex;
1224         cmd->base.port = PORT_OTHER;
1225
1226         return 0;
1227 }
1228
1229 static int netvsc_set_link_ksettings(struct net_device *dev,
1230                                      const struct ethtool_link_ksettings *cmd)
1231 {
1232         struct net_device_context *ndc = netdev_priv(dev);
1233         struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1234
1235         if (vf_netdev) {
1236                 if (!vf_netdev->ethtool_ops->set_link_ksettings)
1237                         return -EOPNOTSUPP;
1238
1239                 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1240                                                                   cmd);
1241         }
1242
1243         return ethtool_virtdev_set_link_ksettings(dev, cmd,
1244                                                   &ndc->speed, &ndc->duplex);
1245 }
1246
1247 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1248 {
1249         struct net_device_context *ndevctx = netdev_priv(ndev);
1250         struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1251         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1252         int orig_mtu = ndev->mtu;
1253         struct netvsc_device_info *device_info;
1254         int ret = 0;
1255
1256         if (!nvdev || nvdev->destroy)
1257                 return -ENODEV;
1258
1259         device_info = netvsc_devinfo_get(nvdev);
1260
1261         if (!device_info)
1262                 return -ENOMEM;
1263
1264         /* Change MTU of underlying VF netdev first. */
1265         if (vf_netdev) {
1266                 ret = dev_set_mtu(vf_netdev, mtu);
1267                 if (ret)
1268                         goto out;
1269         }
1270
1271         ret = netvsc_detach(ndev, nvdev);
1272         if (ret)
1273                 goto rollback_vf;
1274
1275         ndev->mtu = mtu;
1276
1277         ret = netvsc_attach(ndev, device_info);
1278         if (!ret)
1279                 goto out;
1280
1281         /* Attempt rollback to original MTU */
1282         ndev->mtu = orig_mtu;
1283
1284         if (netvsc_attach(ndev, device_info))
1285                 netdev_err(ndev, "restoring mtu failed\n");
1286 rollback_vf:
1287         if (vf_netdev)
1288                 dev_set_mtu(vf_netdev, orig_mtu);
1289
1290 out:
1291         netvsc_devinfo_put(device_info);
1292         return ret;
1293 }
1294
1295 static void netvsc_get_vf_stats(struct net_device *net,
1296                                 struct netvsc_vf_pcpu_stats *tot)
1297 {
1298         struct net_device_context *ndev_ctx = netdev_priv(net);
1299         int i;
1300
1301         memset(tot, 0, sizeof(*tot));
1302
1303         for_each_possible_cpu(i) {
1304                 const struct netvsc_vf_pcpu_stats *stats
1305                         = per_cpu_ptr(ndev_ctx->vf_stats, i);
1306                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1307                 unsigned int start;
1308
1309                 do {
1310                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1311                         rx_packets = stats->rx_packets;
1312                         tx_packets = stats->tx_packets;
1313                         rx_bytes = stats->rx_bytes;
1314                         tx_bytes = stats->tx_bytes;
1315                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1316
1317                 tot->rx_packets += rx_packets;
1318                 tot->tx_packets += tx_packets;
1319                 tot->rx_bytes   += rx_bytes;
1320                 tot->tx_bytes   += tx_bytes;
1321                 tot->tx_dropped += stats->tx_dropped;
1322         }
1323 }
1324
1325 static void netvsc_get_pcpu_stats(struct net_device *net,
1326                                   struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1327 {
1328         struct net_device_context *ndev_ctx = netdev_priv(net);
1329         struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1330         int i;
1331
1332         /* fetch percpu stats of vf */
1333         for_each_possible_cpu(i) {
1334                 const struct netvsc_vf_pcpu_stats *stats =
1335                         per_cpu_ptr(ndev_ctx->vf_stats, i);
1336                 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1337                 unsigned int start;
1338
1339                 do {
1340                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1341                         this_tot->vf_rx_packets = stats->rx_packets;
1342                         this_tot->vf_tx_packets = stats->tx_packets;
1343                         this_tot->vf_rx_bytes = stats->rx_bytes;
1344                         this_tot->vf_tx_bytes = stats->tx_bytes;
1345                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1346                 this_tot->rx_packets = this_tot->vf_rx_packets;
1347                 this_tot->tx_packets = this_tot->vf_tx_packets;
1348                 this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1349                 this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1350         }
1351
1352         /* fetch percpu stats of netvsc */
1353         for (i = 0; i < nvdev->num_chn; i++) {
1354                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1355                 const struct netvsc_stats *stats;
1356                 struct netvsc_ethtool_pcpu_stats *this_tot =
1357                         &pcpu_tot[nvchan->channel->target_cpu];
1358                 u64 packets, bytes;
1359                 unsigned int start;
1360
1361                 stats = &nvchan->tx_stats;
1362                 do {
1363                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1364                         packets = stats->packets;
1365                         bytes = stats->bytes;
1366                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1367
1368                 this_tot->tx_bytes      += bytes;
1369                 this_tot->tx_packets    += packets;
1370
1371                 stats = &nvchan->rx_stats;
1372                 do {
1373                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1374                         packets = stats->packets;
1375                         bytes = stats->bytes;
1376                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1377
1378                 this_tot->rx_bytes      += bytes;
1379                 this_tot->rx_packets    += packets;
1380         }
1381 }
1382
1383 static void netvsc_get_stats64(struct net_device *net,
1384                                struct rtnl_link_stats64 *t)
1385 {
1386         struct net_device_context *ndev_ctx = netdev_priv(net);
1387         struct netvsc_device *nvdev;
1388         struct netvsc_vf_pcpu_stats vf_tot;
1389         int i;
1390
1391         rcu_read_lock();
1392
1393         nvdev = rcu_dereference(ndev_ctx->nvdev);
1394         if (!nvdev)
1395                 goto out;
1396
1397         netdev_stats_to_stats64(t, &net->stats);
1398
1399         netvsc_get_vf_stats(net, &vf_tot);
1400         t->rx_packets += vf_tot.rx_packets;
1401         t->tx_packets += vf_tot.tx_packets;
1402         t->rx_bytes   += vf_tot.rx_bytes;
1403         t->tx_bytes   += vf_tot.tx_bytes;
1404         t->tx_dropped += vf_tot.tx_dropped;
1405
1406         for (i = 0; i < nvdev->num_chn; i++) {
1407                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1408                 const struct netvsc_stats *stats;
1409                 u64 packets, bytes, multicast;
1410                 unsigned int start;
1411
1412                 stats = &nvchan->tx_stats;
1413                 do {
1414                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1415                         packets = stats->packets;
1416                         bytes = stats->bytes;
1417                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1418
1419                 t->tx_bytes     += bytes;
1420                 t->tx_packets   += packets;
1421
1422                 stats = &nvchan->rx_stats;
1423                 do {
1424                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1425                         packets = stats->packets;
1426                         bytes = stats->bytes;
1427                         multicast = stats->multicast + stats->broadcast;
1428                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1429
1430                 t->rx_bytes     += bytes;
1431                 t->rx_packets   += packets;
1432                 t->multicast    += multicast;
1433         }
1434 out:
1435         rcu_read_unlock();
1436 }
1437
1438 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1439 {
1440         struct net_device_context *ndc = netdev_priv(ndev);
1441         struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1442         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1443         struct sockaddr *addr = p;
1444         int err;
1445
1446         err = eth_prepare_mac_addr_change(ndev, p);
1447         if (err)
1448                 return err;
1449
1450         if (!nvdev)
1451                 return -ENODEV;
1452
1453         if (vf_netdev) {
1454                 err = dev_set_mac_address(vf_netdev, addr, NULL);
1455                 if (err)
1456                         return err;
1457         }
1458
1459         err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1460         if (!err) {
1461                 eth_commit_mac_addr_change(ndev, p);
1462         } else if (vf_netdev) {
1463                 /* rollback change on VF */
1464                 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1465                 dev_set_mac_address(vf_netdev, addr, NULL);
1466         }
1467
1468         return err;
1469 }
1470
1471 static const struct {
1472         char name[ETH_GSTRING_LEN];
1473         u16 offset;
1474 } netvsc_stats[] = {
1475         { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1476         { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1477         { "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1478         { "tx_too_big",   offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1479         { "tx_busy",      offsetof(struct netvsc_ethtool_stats, tx_busy) },
1480         { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1481         { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1482         { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1483         { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1484         { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1485         { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1486 }, pcpu_stats[] = {
1487         { "cpu%u_rx_packets",
1488                 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1489         { "cpu%u_rx_bytes",
1490                 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1491         { "cpu%u_tx_packets",
1492                 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1493         { "cpu%u_tx_bytes",
1494                 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1495         { "cpu%u_vf_rx_packets",
1496                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1497         { "cpu%u_vf_rx_bytes",
1498                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1499         { "cpu%u_vf_tx_packets",
1500                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1501         { "cpu%u_vf_tx_bytes",
1502                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1503 }, vf_stats[] = {
1504         { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1505         { "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1506         { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1507         { "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1508         { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1509 };
1510
1511 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1512 #define NETVSC_VF_STATS_LEN     ARRAY_SIZE(vf_stats)
1513
1514 /* statistics per queue (rx/tx packets/bytes) */
1515 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1516
1517 /* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */
1518 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5)
1519
1520 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1521 {
1522         struct net_device_context *ndc = netdev_priv(dev);
1523         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1524
1525         if (!nvdev)
1526                 return -ENODEV;
1527
1528         switch (string_set) {
1529         case ETH_SS_STATS:
1530                 return NETVSC_GLOBAL_STATS_LEN
1531                         + NETVSC_VF_STATS_LEN
1532                         + NETVSC_QUEUE_STATS_LEN(nvdev)
1533                         + NETVSC_PCPU_STATS_LEN;
1534         default:
1535                 return -EINVAL;
1536         }
1537 }
1538
1539 static void netvsc_get_ethtool_stats(struct net_device *dev,
1540                                      struct ethtool_stats *stats, u64 *data)
1541 {
1542         struct net_device_context *ndc = netdev_priv(dev);
1543         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1544         const void *nds = &ndc->eth_stats;
1545         const struct netvsc_stats *qstats;
1546         struct netvsc_vf_pcpu_stats sum;
1547         struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1548         unsigned int start;
1549         u64 packets, bytes;
1550         u64 xdp_drop;
1551         int i, j, cpu;
1552
1553         if (!nvdev)
1554                 return;
1555
1556         for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1557                 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1558
1559         netvsc_get_vf_stats(dev, &sum);
1560         for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1561                 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1562
1563         for (j = 0; j < nvdev->num_chn; j++) {
1564                 qstats = &nvdev->chan_table[j].tx_stats;
1565
1566                 do {
1567                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1568                         packets = qstats->packets;
1569                         bytes = qstats->bytes;
1570                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1571                 data[i++] = packets;
1572                 data[i++] = bytes;
1573
1574                 qstats = &nvdev->chan_table[j].rx_stats;
1575                 do {
1576                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1577                         packets = qstats->packets;
1578                         bytes = qstats->bytes;
1579                         xdp_drop = qstats->xdp_drop;
1580                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1581                 data[i++] = packets;
1582                 data[i++] = bytes;
1583                 data[i++] = xdp_drop;
1584         }
1585
1586         pcpu_sum = kvmalloc_array(num_possible_cpus(),
1587                                   sizeof(struct netvsc_ethtool_pcpu_stats),
1588                                   GFP_KERNEL);
1589         if (!pcpu_sum)
1590                 return;
1591
1592         netvsc_get_pcpu_stats(dev, pcpu_sum);
1593         for_each_present_cpu(cpu) {
1594                 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1595
1596                 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1597                         data[i++] = *(u64 *)((void *)this_sum
1598                                              + pcpu_stats[j].offset);
1599         }
1600         kvfree(pcpu_sum);
1601 }
1602
1603 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1604 {
1605         struct net_device_context *ndc = netdev_priv(dev);
1606         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1607         u8 *p = data;
1608         int i, cpu;
1609
1610         if (!nvdev)
1611                 return;
1612
1613         switch (stringset) {
1614         case ETH_SS_STATS:
1615                 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1616                         ethtool_sprintf(&p, netvsc_stats[i].name);
1617
1618                 for (i = 0; i < ARRAY_SIZE(vf_stats); i++)
1619                         ethtool_sprintf(&p, vf_stats[i].name);
1620
1621                 for (i = 0; i < nvdev->num_chn; i++) {
1622                         ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1623                         ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1624                         ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1625                         ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1626                         ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i);
1627                 }
1628
1629                 for_each_present_cpu(cpu) {
1630                         for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++)
1631                                 ethtool_sprintf(&p, pcpu_stats[i].name, cpu);
1632                 }
1633
1634                 break;
1635         }
1636 }
1637
1638 static int
1639 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1640                          struct ethtool_rxnfc *info)
1641 {
1642         const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1643
1644         info->data = RXH_IP_SRC | RXH_IP_DST;
1645
1646         switch (info->flow_type) {
1647         case TCP_V4_FLOW:
1648                 if (ndc->l4_hash & HV_TCP4_L4HASH)
1649                         info->data |= l4_flag;
1650
1651                 break;
1652
1653         case TCP_V6_FLOW:
1654                 if (ndc->l4_hash & HV_TCP6_L4HASH)
1655                         info->data |= l4_flag;
1656
1657                 break;
1658
1659         case UDP_V4_FLOW:
1660                 if (ndc->l4_hash & HV_UDP4_L4HASH)
1661                         info->data |= l4_flag;
1662
1663                 break;
1664
1665         case UDP_V6_FLOW:
1666                 if (ndc->l4_hash & HV_UDP6_L4HASH)
1667                         info->data |= l4_flag;
1668
1669                 break;
1670
1671         case IPV4_FLOW:
1672         case IPV6_FLOW:
1673                 break;
1674         default:
1675                 info->data = 0;
1676                 break;
1677         }
1678
1679         return 0;
1680 }
1681
1682 static int
1683 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1684                  u32 *rules)
1685 {
1686         struct net_device_context *ndc = netdev_priv(dev);
1687         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1688
1689         if (!nvdev)
1690                 return -ENODEV;
1691
1692         switch (info->cmd) {
1693         case ETHTOOL_GRXRINGS:
1694                 info->data = nvdev->num_chn;
1695                 return 0;
1696
1697         case ETHTOOL_GRXFH:
1698                 return netvsc_get_rss_hash_opts(ndc, info);
1699         }
1700         return -EOPNOTSUPP;
1701 }
1702
1703 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1704                                     struct ethtool_rxnfc *info)
1705 {
1706         if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1707                            RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1708                 switch (info->flow_type) {
1709                 case TCP_V4_FLOW:
1710                         ndc->l4_hash |= HV_TCP4_L4HASH;
1711                         break;
1712
1713                 case TCP_V6_FLOW:
1714                         ndc->l4_hash |= HV_TCP6_L4HASH;
1715                         break;
1716
1717                 case UDP_V4_FLOW:
1718                         ndc->l4_hash |= HV_UDP4_L4HASH;
1719                         break;
1720
1721                 case UDP_V6_FLOW:
1722                         ndc->l4_hash |= HV_UDP6_L4HASH;
1723                         break;
1724
1725                 default:
1726                         return -EOPNOTSUPP;
1727                 }
1728
1729                 return 0;
1730         }
1731
1732         if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1733                 switch (info->flow_type) {
1734                 case TCP_V4_FLOW:
1735                         ndc->l4_hash &= ~HV_TCP4_L4HASH;
1736                         break;
1737
1738                 case TCP_V6_FLOW:
1739                         ndc->l4_hash &= ~HV_TCP6_L4HASH;
1740                         break;
1741
1742                 case UDP_V4_FLOW:
1743                         ndc->l4_hash &= ~HV_UDP4_L4HASH;
1744                         break;
1745
1746                 case UDP_V6_FLOW:
1747                         ndc->l4_hash &= ~HV_UDP6_L4HASH;
1748                         break;
1749
1750                 default:
1751                         return -EOPNOTSUPP;
1752                 }
1753
1754                 return 0;
1755         }
1756
1757         return -EOPNOTSUPP;
1758 }
1759
1760 static int
1761 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1762 {
1763         struct net_device_context *ndc = netdev_priv(ndev);
1764
1765         if (info->cmd == ETHTOOL_SRXFH)
1766                 return netvsc_set_rss_hash_opts(ndc, info);
1767
1768         return -EOPNOTSUPP;
1769 }
1770
1771 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1772 {
1773         return NETVSC_HASH_KEYLEN;
1774 }
1775
1776 static u32 netvsc_rss_indir_size(struct net_device *dev)
1777 {
1778         return ITAB_NUM;
1779 }
1780
1781 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1782                            u8 *hfunc)
1783 {
1784         struct net_device_context *ndc = netdev_priv(dev);
1785         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1786         struct rndis_device *rndis_dev;
1787         int i;
1788
1789         if (!ndev)
1790                 return -ENODEV;
1791
1792         if (hfunc)
1793                 *hfunc = ETH_RSS_HASH_TOP;      /* Toeplitz */
1794
1795         rndis_dev = ndev->extension;
1796         if (indir) {
1797                 for (i = 0; i < ITAB_NUM; i++)
1798                         indir[i] = ndc->rx_table[i];
1799         }
1800
1801         if (key)
1802                 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1803
1804         return 0;
1805 }
1806
1807 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1808                            const u8 *key, const u8 hfunc)
1809 {
1810         struct net_device_context *ndc = netdev_priv(dev);
1811         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1812         struct rndis_device *rndis_dev;
1813         int i;
1814
1815         if (!ndev)
1816                 return -ENODEV;
1817
1818         if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1819                 return -EOPNOTSUPP;
1820
1821         rndis_dev = ndev->extension;
1822         if (indir) {
1823                 for (i = 0; i < ITAB_NUM; i++)
1824                         if (indir[i] >= ndev->num_chn)
1825                                 return -EINVAL;
1826
1827                 for (i = 0; i < ITAB_NUM; i++)
1828                         ndc->rx_table[i] = indir[i];
1829         }
1830
1831         if (!key) {
1832                 if (!indir)
1833                         return 0;
1834
1835                 key = rndis_dev->rss_key;
1836         }
1837
1838         return rndis_filter_set_rss_param(rndis_dev, key);
1839 }
1840
1841 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1842  * It does have pre-allocated receive area which is divided into sections.
1843  */
1844 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1845                                    struct ethtool_ringparam *ring)
1846 {
1847         u32 max_buf_size;
1848
1849         ring->rx_pending = nvdev->recv_section_cnt;
1850         ring->tx_pending = nvdev->send_section_cnt;
1851
1852         if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1853                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1854         else
1855                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1856
1857         ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1858         ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1859                 / nvdev->send_section_size;
1860 }
1861
1862 static void netvsc_get_ringparam(struct net_device *ndev,
1863                                  struct ethtool_ringparam *ring)
1864 {
1865         struct net_device_context *ndevctx = netdev_priv(ndev);
1866         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1867
1868         if (!nvdev)
1869                 return;
1870
1871         __netvsc_get_ringparam(nvdev, ring);
1872 }
1873
1874 static int netvsc_set_ringparam(struct net_device *ndev,
1875                                 struct ethtool_ringparam *ring)
1876 {
1877         struct net_device_context *ndevctx = netdev_priv(ndev);
1878         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1879         struct netvsc_device_info *device_info;
1880         struct ethtool_ringparam orig;
1881         u32 new_tx, new_rx;
1882         int ret = 0;
1883
1884         if (!nvdev || nvdev->destroy)
1885                 return -ENODEV;
1886
1887         memset(&orig, 0, sizeof(orig));
1888         __netvsc_get_ringparam(nvdev, &orig);
1889
1890         new_tx = clamp_t(u32, ring->tx_pending,
1891                          NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1892         new_rx = clamp_t(u32, ring->rx_pending,
1893                          NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1894
1895         if (new_tx == orig.tx_pending &&
1896             new_rx == orig.rx_pending)
1897                 return 0;        /* no change */
1898
1899         device_info = netvsc_devinfo_get(nvdev);
1900
1901         if (!device_info)
1902                 return -ENOMEM;
1903
1904         device_info->send_sections = new_tx;
1905         device_info->recv_sections = new_rx;
1906
1907         ret = netvsc_detach(ndev, nvdev);
1908         if (ret)
1909                 goto out;
1910
1911         ret = netvsc_attach(ndev, device_info);
1912         if (ret) {
1913                 device_info->send_sections = orig.tx_pending;
1914                 device_info->recv_sections = orig.rx_pending;
1915
1916                 if (netvsc_attach(ndev, device_info))
1917                         netdev_err(ndev, "restoring ringparam failed");
1918         }
1919
1920 out:
1921         netvsc_devinfo_put(device_info);
1922         return ret;
1923 }
1924
1925 static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1926                                              netdev_features_t features)
1927 {
1928         struct net_device_context *ndevctx = netdev_priv(ndev);
1929         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1930
1931         if (!nvdev || nvdev->destroy)
1932                 return features;
1933
1934         if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1935                 features ^= NETIF_F_LRO;
1936                 netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1937         }
1938
1939         return features;
1940 }
1941
1942 static int netvsc_set_features(struct net_device *ndev,
1943                                netdev_features_t features)
1944 {
1945         netdev_features_t change = features ^ ndev->features;
1946         struct net_device_context *ndevctx = netdev_priv(ndev);
1947         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1948         struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1949         struct ndis_offload_params offloads;
1950         int ret = 0;
1951
1952         if (!nvdev || nvdev->destroy)
1953                 return -ENODEV;
1954
1955         if (!(change & NETIF_F_LRO))
1956                 goto syncvf;
1957
1958         memset(&offloads, 0, sizeof(struct ndis_offload_params));
1959
1960         if (features & NETIF_F_LRO) {
1961                 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1962                 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1963         } else {
1964                 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1965                 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1966         }
1967
1968         ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1969
1970         if (ret) {
1971                 features ^= NETIF_F_LRO;
1972                 ndev->features = features;
1973         }
1974
1975 syncvf:
1976         if (!vf_netdev)
1977                 return ret;
1978
1979         vf_netdev->wanted_features = features;
1980         netdev_update_features(vf_netdev);
1981
1982         return ret;
1983 }
1984
1985 static int netvsc_get_regs_len(struct net_device *netdev)
1986 {
1987         return VRSS_SEND_TAB_SIZE * sizeof(u32);
1988 }
1989
1990 static void netvsc_get_regs(struct net_device *netdev,
1991                             struct ethtool_regs *regs, void *p)
1992 {
1993         struct net_device_context *ndc = netdev_priv(netdev);
1994         u32 *regs_buff = p;
1995
1996         /* increase the version, if buffer format is changed. */
1997         regs->version = 1;
1998
1999         memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
2000 }
2001
2002 static u32 netvsc_get_msglevel(struct net_device *ndev)
2003 {
2004         struct net_device_context *ndev_ctx = netdev_priv(ndev);
2005
2006         return ndev_ctx->msg_enable;
2007 }
2008
2009 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
2010 {
2011         struct net_device_context *ndev_ctx = netdev_priv(ndev);
2012
2013         ndev_ctx->msg_enable = val;
2014 }
2015
2016 static const struct ethtool_ops ethtool_ops = {
2017         .get_drvinfo    = netvsc_get_drvinfo,
2018         .get_regs_len   = netvsc_get_regs_len,
2019         .get_regs       = netvsc_get_regs,
2020         .get_msglevel   = netvsc_get_msglevel,
2021         .set_msglevel   = netvsc_set_msglevel,
2022         .get_link       = ethtool_op_get_link,
2023         .get_ethtool_stats = netvsc_get_ethtool_stats,
2024         .get_sset_count = netvsc_get_sset_count,
2025         .get_strings    = netvsc_get_strings,
2026         .get_channels   = netvsc_get_channels,
2027         .set_channels   = netvsc_set_channels,
2028         .get_ts_info    = ethtool_op_get_ts_info,
2029         .get_rxnfc      = netvsc_get_rxnfc,
2030         .set_rxnfc      = netvsc_set_rxnfc,
2031         .get_rxfh_key_size = netvsc_get_rxfh_key_size,
2032         .get_rxfh_indir_size = netvsc_rss_indir_size,
2033         .get_rxfh       = netvsc_get_rxfh,
2034         .set_rxfh       = netvsc_set_rxfh,
2035         .get_link_ksettings = netvsc_get_link_ksettings,
2036         .set_link_ksettings = netvsc_set_link_ksettings,
2037         .get_ringparam  = netvsc_get_ringparam,
2038         .set_ringparam  = netvsc_set_ringparam,
2039 };
2040
2041 static const struct net_device_ops device_ops = {
2042         .ndo_open =                     netvsc_open,
2043         .ndo_stop =                     netvsc_close,
2044         .ndo_start_xmit =               netvsc_start_xmit,
2045         .ndo_change_rx_flags =          netvsc_change_rx_flags,
2046         .ndo_set_rx_mode =              netvsc_set_rx_mode,
2047         .ndo_fix_features =             netvsc_fix_features,
2048         .ndo_set_features =             netvsc_set_features,
2049         .ndo_change_mtu =               netvsc_change_mtu,
2050         .ndo_validate_addr =            eth_validate_addr,
2051         .ndo_set_mac_address =          netvsc_set_mac_addr,
2052         .ndo_select_queue =             netvsc_select_queue,
2053         .ndo_get_stats64 =              netvsc_get_stats64,
2054         .ndo_bpf =                      netvsc_bpf,
2055 };
2056
2057 /*
2058  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2059  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2060  * present send GARP packet to network peers with netif_notify_peers().
2061  */
2062 static void netvsc_link_change(struct work_struct *w)
2063 {
2064         struct net_device_context *ndev_ctx =
2065                 container_of(w, struct net_device_context, dwork.work);
2066         struct hv_device *device_obj = ndev_ctx->device_ctx;
2067         struct net_device *net = hv_get_drvdata(device_obj);
2068         unsigned long flags, next_reconfig, delay;
2069         struct netvsc_reconfig *event = NULL;
2070         struct netvsc_device *net_device;
2071         struct rndis_device *rdev;
2072         bool reschedule = false;
2073
2074         /* if changes are happening, comeback later */
2075         if (!rtnl_trylock()) {
2076                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2077                 return;
2078         }
2079
2080         net_device = rtnl_dereference(ndev_ctx->nvdev);
2081         if (!net_device)
2082                 goto out_unlock;
2083
2084         rdev = net_device->extension;
2085
2086         next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2087         if (time_is_after_jiffies(next_reconfig)) {
2088                 /* link_watch only sends one notification with current state
2089                  * per second, avoid doing reconfig more frequently. Handle
2090                  * wrap around.
2091                  */
2092                 delay = next_reconfig - jiffies;
2093                 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2094                 schedule_delayed_work(&ndev_ctx->dwork, delay);
2095                 goto out_unlock;
2096         }
2097         ndev_ctx->last_reconfig = jiffies;
2098
2099         spin_lock_irqsave(&ndev_ctx->lock, flags);
2100         if (!list_empty(&ndev_ctx->reconfig_events)) {
2101                 event = list_first_entry(&ndev_ctx->reconfig_events,
2102                                          struct netvsc_reconfig, list);
2103                 list_del(&event->list);
2104                 reschedule = !list_empty(&ndev_ctx->reconfig_events);
2105         }
2106         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2107
2108         if (!event)
2109                 goto out_unlock;
2110
2111         switch (event->event) {
2112                 /* Only the following events are possible due to the check in
2113                  * netvsc_linkstatus_callback()
2114                  */
2115         case RNDIS_STATUS_MEDIA_CONNECT:
2116                 if (rdev->link_state) {
2117                         rdev->link_state = false;
2118                         netif_carrier_on(net);
2119                         netvsc_tx_enable(net_device, net);
2120                 } else {
2121                         __netdev_notify_peers(net);
2122                 }
2123                 kfree(event);
2124                 break;
2125         case RNDIS_STATUS_MEDIA_DISCONNECT:
2126                 if (!rdev->link_state) {
2127                         rdev->link_state = true;
2128                         netif_carrier_off(net);
2129                         netvsc_tx_disable(net_device, net);
2130                 }
2131                 kfree(event);
2132                 break;
2133         case RNDIS_STATUS_NETWORK_CHANGE:
2134                 /* Only makes sense if carrier is present */
2135                 if (!rdev->link_state) {
2136                         rdev->link_state = true;
2137                         netif_carrier_off(net);
2138                         netvsc_tx_disable(net_device, net);
2139                         event->event = RNDIS_STATUS_MEDIA_CONNECT;
2140                         spin_lock_irqsave(&ndev_ctx->lock, flags);
2141                         list_add(&event->list, &ndev_ctx->reconfig_events);
2142                         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2143                         reschedule = true;
2144                 }
2145                 break;
2146         }
2147
2148         rtnl_unlock();
2149
2150         /* link_watch only sends one notification with current state per
2151          * second, handle next reconfig event in 2 seconds.
2152          */
2153         if (reschedule)
2154                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2155
2156         return;
2157
2158 out_unlock:
2159         rtnl_unlock();
2160 }
2161
2162 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2163 {
2164         struct net_device_context *net_device_ctx;
2165         struct net_device *dev;
2166
2167         dev = netdev_master_upper_dev_get(vf_netdev);
2168         if (!dev || dev->netdev_ops != &device_ops)
2169                 return NULL;    /* not a netvsc device */
2170
2171         net_device_ctx = netdev_priv(dev);
2172         if (!rtnl_dereference(net_device_ctx->nvdev))
2173                 return NULL;    /* device is removed */
2174
2175         return dev;
2176 }
2177
2178 /* Called when VF is injecting data into network stack.
2179  * Change the associated network device from VF to netvsc.
2180  * note: already called with rcu_read_lock
2181  */
2182 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2183 {
2184         struct sk_buff *skb = *pskb;
2185         struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2186         struct net_device_context *ndev_ctx = netdev_priv(ndev);
2187         struct netvsc_vf_pcpu_stats *pcpu_stats
2188                  = this_cpu_ptr(ndev_ctx->vf_stats);
2189
2190         skb = skb_share_check(skb, GFP_ATOMIC);
2191         if (unlikely(!skb))
2192                 return RX_HANDLER_CONSUMED;
2193
2194         *pskb = skb;
2195
2196         skb->dev = ndev;
2197
2198         u64_stats_update_begin(&pcpu_stats->syncp);
2199         pcpu_stats->rx_packets++;
2200         pcpu_stats->rx_bytes += skb->len;
2201         u64_stats_update_end(&pcpu_stats->syncp);
2202
2203         return RX_HANDLER_ANOTHER;
2204 }
2205
2206 static int netvsc_vf_join(struct net_device *vf_netdev,
2207                           struct net_device *ndev)
2208 {
2209         struct net_device_context *ndev_ctx = netdev_priv(ndev);
2210         int ret;
2211
2212         ret = netdev_rx_handler_register(vf_netdev,
2213                                          netvsc_vf_handle_frame, ndev);
2214         if (ret != 0) {
2215                 netdev_err(vf_netdev,
2216                            "can not register netvsc VF receive handler (err = %d)\n",
2217                            ret);
2218                 goto rx_handler_failed;
2219         }
2220
2221         ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2222                                            NULL, NULL, NULL);
2223         if (ret != 0) {
2224                 netdev_err(vf_netdev,
2225                            "can not set master device %s (err = %d)\n",
2226                            ndev->name, ret);
2227                 goto upper_link_failed;
2228         }
2229
2230         /* set slave flag before open to prevent IPv6 addrconf */
2231         vf_netdev->flags |= IFF_SLAVE;
2232
2233         schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2234
2235         call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2236
2237         netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2238         return 0;
2239
2240 upper_link_failed:
2241         netdev_rx_handler_unregister(vf_netdev);
2242 rx_handler_failed:
2243         return ret;
2244 }
2245
2246 static void __netvsc_vf_setup(struct net_device *ndev,
2247                               struct net_device *vf_netdev)
2248 {
2249         int ret;
2250
2251         /* Align MTU of VF with master */
2252         ret = dev_set_mtu(vf_netdev, ndev->mtu);
2253         if (ret)
2254                 netdev_warn(vf_netdev,
2255                             "unable to change mtu to %u\n", ndev->mtu);
2256
2257         /* set multicast etc flags on VF */
2258         dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2259
2260         /* sync address list from ndev to VF */
2261         netif_addr_lock_bh(ndev);
2262         dev_uc_sync(vf_netdev, ndev);
2263         dev_mc_sync(vf_netdev, ndev);
2264         netif_addr_unlock_bh(ndev);
2265
2266         if (netif_running(ndev)) {
2267                 ret = dev_open(vf_netdev, NULL);
2268                 if (ret)
2269                         netdev_warn(vf_netdev,
2270                                     "unable to open: %d\n", ret);
2271         }
2272 }
2273
2274 /* Setup VF as slave of the synthetic device.
2275  * Runs in workqueue to avoid recursion in netlink callbacks.
2276  */
2277 static void netvsc_vf_setup(struct work_struct *w)
2278 {
2279         struct net_device_context *ndev_ctx
2280                 = container_of(w, struct net_device_context, vf_takeover.work);
2281         struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2282         struct net_device *vf_netdev;
2283
2284         if (!rtnl_trylock()) {
2285                 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2286                 return;
2287         }
2288
2289         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2290         if (vf_netdev)
2291                 __netvsc_vf_setup(ndev, vf_netdev);
2292
2293         rtnl_unlock();
2294 }
2295
2296 /* Find netvsc by VF serial number.
2297  * The PCI hyperv controller records the serial number as the slot kobj name.
2298  */
2299 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2300 {
2301         struct device *parent = vf_netdev->dev.parent;
2302         struct net_device_context *ndev_ctx;
2303         struct net_device *ndev;
2304         struct pci_dev *pdev;
2305         u32 serial;
2306
2307         if (!parent || !dev_is_pci(parent))
2308                 return NULL; /* not a PCI device */
2309
2310         pdev = to_pci_dev(parent);
2311         if (!pdev->slot) {
2312                 netdev_notice(vf_netdev, "no PCI slot information\n");
2313                 return NULL;
2314         }
2315
2316         if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2317                 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2318                               pci_slot_name(pdev->slot));
2319                 return NULL;
2320         }
2321
2322         list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2323                 if (!ndev_ctx->vf_alloc)
2324                         continue;
2325
2326                 if (ndev_ctx->vf_serial != serial)
2327                         continue;
2328
2329                 ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2330                 if (ndev->addr_len != vf_netdev->addr_len ||
2331                     memcmp(ndev->perm_addr, vf_netdev->perm_addr,
2332                            ndev->addr_len) != 0)
2333                         continue;
2334
2335                 return ndev;
2336
2337         }
2338
2339         netdev_notice(vf_netdev,
2340                       "no netdev found for vf serial:%u\n", serial);
2341         return NULL;
2342 }
2343
2344 static int netvsc_register_vf(struct net_device *vf_netdev)
2345 {
2346         struct net_device_context *net_device_ctx;
2347         struct netvsc_device *netvsc_dev;
2348         struct bpf_prog *prog;
2349         struct net_device *ndev;
2350         int ret;
2351
2352         if (vf_netdev->addr_len != ETH_ALEN)
2353                 return NOTIFY_DONE;
2354
2355         ndev = get_netvsc_byslot(vf_netdev);
2356         if (!ndev)
2357                 return NOTIFY_DONE;
2358
2359         net_device_ctx = netdev_priv(ndev);
2360         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2361         if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2362                 return NOTIFY_DONE;
2363
2364         /* if synthetic interface is a different namespace,
2365          * then move the VF to that namespace; join will be
2366          * done again in that context.
2367          */
2368         if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2369                 ret = dev_change_net_namespace(vf_netdev,
2370                                                dev_net(ndev), "eth%d");
2371                 if (ret)
2372                         netdev_err(vf_netdev,
2373                                    "could not move to same namespace as %s: %d\n",
2374                                    ndev->name, ret);
2375                 else
2376                         netdev_info(vf_netdev,
2377                                     "VF moved to namespace with: %s\n",
2378                                     ndev->name);
2379                 return NOTIFY_DONE;
2380         }
2381
2382         netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2383
2384         if (netvsc_vf_join(vf_netdev, ndev) != 0)
2385                 return NOTIFY_DONE;
2386
2387         dev_hold(vf_netdev);
2388         rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2389
2390         if (ndev->needed_headroom < vf_netdev->needed_headroom)
2391                 ndev->needed_headroom = vf_netdev->needed_headroom;
2392
2393         vf_netdev->wanted_features = ndev->features;
2394         netdev_update_features(vf_netdev);
2395
2396         prog = netvsc_xdp_get(netvsc_dev);
2397         netvsc_vf_setxdp(vf_netdev, prog);
2398
2399         return NOTIFY_OK;
2400 }
2401
2402 /* Change the data path when VF UP/DOWN/CHANGE are detected.
2403  *
2404  * Typically a UP or DOWN event is followed by a CHANGE event, so
2405  * net_device_ctx->data_path_is_vf is used to cache the current data path
2406  * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2407  * message.
2408  *
2409  * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2410  * interface, there is only the CHANGE event and no UP or DOWN event.
2411  */
2412 static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2413 {
2414         struct net_device_context *net_device_ctx;
2415         struct netvsc_device *netvsc_dev;
2416         struct net_device *ndev;
2417         bool vf_is_up = false;
2418         int ret;
2419
2420         if (event != NETDEV_GOING_DOWN)
2421                 vf_is_up = netif_running(vf_netdev);
2422
2423         ndev = get_netvsc_byref(vf_netdev);
2424         if (!ndev)
2425                 return NOTIFY_DONE;
2426
2427         net_device_ctx = netdev_priv(ndev);
2428         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2429         if (!netvsc_dev)
2430                 return NOTIFY_DONE;
2431
2432         if (net_device_ctx->data_path_is_vf == vf_is_up)
2433                 return NOTIFY_OK;
2434
2435         ret = netvsc_switch_datapath(ndev, vf_is_up);
2436
2437         if (ret) {
2438                 netdev_err(ndev,
2439                            "Data path failed to switch %s VF: %s, err: %d\n",
2440                            vf_is_up ? "to" : "from", vf_netdev->name, ret);
2441                 return NOTIFY_DONE;
2442         } else {
2443                 netdev_info(ndev, "Data path switched %s VF: %s\n",
2444                             vf_is_up ? "to" : "from", vf_netdev->name);
2445         }
2446
2447         return NOTIFY_OK;
2448 }
2449
2450 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2451 {
2452         struct net_device *ndev;
2453         struct net_device_context *net_device_ctx;
2454
2455         ndev = get_netvsc_byref(vf_netdev);
2456         if (!ndev)
2457                 return NOTIFY_DONE;
2458
2459         net_device_ctx = netdev_priv(ndev);
2460         cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2461
2462         netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2463
2464         netvsc_vf_setxdp(vf_netdev, NULL);
2465
2466         netdev_rx_handler_unregister(vf_netdev);
2467         netdev_upper_dev_unlink(vf_netdev, ndev);
2468         RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2469         dev_put(vf_netdev);
2470
2471         ndev->needed_headroom = RNDIS_AND_PPI_SIZE;
2472
2473         return NOTIFY_OK;
2474 }
2475
2476 static int netvsc_probe(struct hv_device *dev,
2477                         const struct hv_vmbus_device_id *dev_id)
2478 {
2479         struct net_device *net = NULL;
2480         struct net_device_context *net_device_ctx;
2481         struct netvsc_device_info *device_info = NULL;
2482         struct netvsc_device *nvdev;
2483         int ret = -ENOMEM;
2484
2485         net = alloc_etherdev_mq(sizeof(struct net_device_context),
2486                                 VRSS_CHANNEL_MAX);
2487         if (!net)
2488                 goto no_net;
2489
2490         netif_carrier_off(net);
2491
2492         netvsc_init_settings(net);
2493
2494         net_device_ctx = netdev_priv(net);
2495         net_device_ctx->device_ctx = dev;
2496         net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2497         if (netif_msg_probe(net_device_ctx))
2498                 netdev_dbg(net, "netvsc msg_enable: %d\n",
2499                            net_device_ctx->msg_enable);
2500
2501         hv_set_drvdata(dev, net);
2502
2503         INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2504
2505         spin_lock_init(&net_device_ctx->lock);
2506         INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2507         INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2508
2509         net_device_ctx->vf_stats
2510                 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2511         if (!net_device_ctx->vf_stats)
2512                 goto no_stats;
2513
2514         net->netdev_ops = &device_ops;
2515         net->ethtool_ops = &ethtool_ops;
2516         SET_NETDEV_DEV(net, &dev->device);
2517
2518         /* We always need headroom for rndis header */
2519         net->needed_headroom = RNDIS_AND_PPI_SIZE;
2520
2521         /* Initialize the number of queues to be 1, we may change it if more
2522          * channels are offered later.
2523          */
2524         netif_set_real_num_tx_queues(net, 1);
2525         netif_set_real_num_rx_queues(net, 1);
2526
2527         /* Notify the netvsc driver of the new device */
2528         device_info = netvsc_devinfo_get(NULL);
2529
2530         if (!device_info) {
2531                 ret = -ENOMEM;
2532                 goto devinfo_failed;
2533         }
2534
2535         nvdev = rndis_filter_device_add(dev, device_info);
2536         if (IS_ERR(nvdev)) {
2537                 ret = PTR_ERR(nvdev);
2538                 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2539                 goto rndis_failed;
2540         }
2541
2542         memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2543
2544         /* We must get rtnl lock before scheduling nvdev->subchan_work,
2545          * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2546          * all subchannels to show up, but that may not happen because
2547          * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2548          * -> ... -> device_add() -> ... -> __device_attach() can't get
2549          * the device lock, so all the subchannels can't be processed --
2550          * finally netvsc_subchan_work() hangs forever.
2551          */
2552         rtnl_lock();
2553
2554         if (nvdev->num_chn > 1)
2555                 schedule_work(&nvdev->subchan_work);
2556
2557         /* hw_features computed in rndis_netdev_set_hwcaps() */
2558         net->features = net->hw_features |
2559                 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2560                 NETIF_F_HW_VLAN_CTAG_RX;
2561         net->vlan_features = net->features;
2562
2563         netdev_lockdep_set_classes(net);
2564
2565         /* MTU range: 68 - 1500 or 65521 */
2566         net->min_mtu = NETVSC_MTU_MIN;
2567         if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2568                 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2569         else
2570                 net->max_mtu = ETH_DATA_LEN;
2571
2572         nvdev->tx_disable = false;
2573
2574         ret = register_netdevice(net);
2575         if (ret != 0) {
2576                 pr_err("Unable to register netdev.\n");
2577                 goto register_failed;
2578         }
2579
2580         list_add(&net_device_ctx->list, &netvsc_dev_list);
2581         rtnl_unlock();
2582
2583         netvsc_devinfo_put(device_info);
2584         return 0;
2585
2586 register_failed:
2587         rtnl_unlock();
2588         rndis_filter_device_remove(dev, nvdev);
2589 rndis_failed:
2590         netvsc_devinfo_put(device_info);
2591 devinfo_failed:
2592         free_percpu(net_device_ctx->vf_stats);
2593 no_stats:
2594         hv_set_drvdata(dev, NULL);
2595         free_netdev(net);
2596 no_net:
2597         return ret;
2598 }
2599
2600 static int netvsc_remove(struct hv_device *dev)
2601 {
2602         struct net_device_context *ndev_ctx;
2603         struct net_device *vf_netdev, *net;
2604         struct netvsc_device *nvdev;
2605
2606         net = hv_get_drvdata(dev);
2607         if (net == NULL) {
2608                 dev_err(&dev->device, "No net device to remove\n");
2609                 return 0;
2610         }
2611
2612         ndev_ctx = netdev_priv(net);
2613
2614         cancel_delayed_work_sync(&ndev_ctx->dwork);
2615
2616         rtnl_lock();
2617         nvdev = rtnl_dereference(ndev_ctx->nvdev);
2618         if (nvdev) {
2619                 cancel_work_sync(&nvdev->subchan_work);
2620                 netvsc_xdp_set(net, NULL, NULL, nvdev);
2621         }
2622
2623         /*
2624          * Call to the vsc driver to let it know that the device is being
2625          * removed. Also blocks mtu and channel changes.
2626          */
2627         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2628         if (vf_netdev)
2629                 netvsc_unregister_vf(vf_netdev);
2630
2631         if (nvdev)
2632                 rndis_filter_device_remove(dev, nvdev);
2633
2634         unregister_netdevice(net);
2635         list_del(&ndev_ctx->list);
2636
2637         rtnl_unlock();
2638
2639         hv_set_drvdata(dev, NULL);
2640
2641         free_percpu(ndev_ctx->vf_stats);
2642         free_netdev(net);
2643         return 0;
2644 }
2645
2646 static int netvsc_suspend(struct hv_device *dev)
2647 {
2648         struct net_device_context *ndev_ctx;
2649         struct netvsc_device *nvdev;
2650         struct net_device *net;
2651         int ret;
2652
2653         net = hv_get_drvdata(dev);
2654
2655         ndev_ctx = netdev_priv(net);
2656         cancel_delayed_work_sync(&ndev_ctx->dwork);
2657
2658         rtnl_lock();
2659
2660         nvdev = rtnl_dereference(ndev_ctx->nvdev);
2661         if (nvdev == NULL) {
2662                 ret = -ENODEV;
2663                 goto out;
2664         }
2665
2666         /* Save the current config info */
2667         ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2668         if (!ndev_ctx->saved_netvsc_dev_info) {
2669                 ret = -ENOMEM;
2670                 goto out;
2671         }
2672         ret = netvsc_detach(net, nvdev);
2673 out:
2674         rtnl_unlock();
2675
2676         return ret;
2677 }
2678
2679 static int netvsc_resume(struct hv_device *dev)
2680 {
2681         struct net_device *net = hv_get_drvdata(dev);
2682         struct net_device_context *net_device_ctx;
2683         struct netvsc_device_info *device_info;
2684         int ret;
2685
2686         rtnl_lock();
2687
2688         net_device_ctx = netdev_priv(net);
2689
2690         /* Reset the data path to the netvsc NIC before re-opening the vmbus
2691          * channel. Later netvsc_netdev_event() will switch the data path to
2692          * the VF upon the UP or CHANGE event.
2693          */
2694         net_device_ctx->data_path_is_vf = false;
2695         device_info = net_device_ctx->saved_netvsc_dev_info;
2696
2697         ret = netvsc_attach(net, device_info);
2698
2699         netvsc_devinfo_put(device_info);
2700         net_device_ctx->saved_netvsc_dev_info = NULL;
2701
2702         rtnl_unlock();
2703
2704         return ret;
2705 }
2706 static const struct hv_vmbus_device_id id_table[] = {
2707         /* Network guid */
2708         { HV_NIC_GUID, },
2709         { },
2710 };
2711
2712 MODULE_DEVICE_TABLE(vmbus, id_table);
2713
2714 /* The one and only one */
2715 static struct  hv_driver netvsc_drv = {
2716         .name = KBUILD_MODNAME,
2717         .id_table = id_table,
2718         .probe = netvsc_probe,
2719         .remove = netvsc_remove,
2720         .suspend = netvsc_suspend,
2721         .resume = netvsc_resume,
2722         .driver = {
2723                 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2724         },
2725 };
2726
2727 /*
2728  * On Hyper-V, every VF interface is matched with a corresponding
2729  * synthetic interface. The synthetic interface is presented first
2730  * to the guest. When the corresponding VF instance is registered,
2731  * we will take care of switching the data path.
2732  */
2733 static int netvsc_netdev_event(struct notifier_block *this,
2734                                unsigned long event, void *ptr)
2735 {
2736         struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2737
2738         /* Skip our own events */
2739         if (event_dev->netdev_ops == &device_ops)
2740                 return NOTIFY_DONE;
2741
2742         /* Avoid non-Ethernet type devices */
2743         if (event_dev->type != ARPHRD_ETHER)
2744                 return NOTIFY_DONE;
2745
2746         /* Avoid Vlan dev with same MAC registering as VF */
2747         if (is_vlan_dev(event_dev))
2748                 return NOTIFY_DONE;
2749
2750         /* Avoid Bonding master dev with same MAC registering as VF */
2751         if ((event_dev->priv_flags & IFF_BONDING) &&
2752             (event_dev->flags & IFF_MASTER))
2753                 return NOTIFY_DONE;
2754
2755         switch (event) {
2756         case NETDEV_REGISTER:
2757                 return netvsc_register_vf(event_dev);
2758         case NETDEV_UNREGISTER:
2759                 return netvsc_unregister_vf(event_dev);
2760         case NETDEV_UP:
2761         case NETDEV_DOWN:
2762         case NETDEV_CHANGE:
2763         case NETDEV_GOING_DOWN:
2764                 return netvsc_vf_changed(event_dev, event);
2765         default:
2766                 return NOTIFY_DONE;
2767         }
2768 }
2769
2770 static struct notifier_block netvsc_netdev_notifier = {
2771         .notifier_call = netvsc_netdev_event,
2772 };
2773
2774 static void __exit netvsc_drv_exit(void)
2775 {
2776         unregister_netdevice_notifier(&netvsc_netdev_notifier);
2777         vmbus_driver_unregister(&netvsc_drv);
2778 }
2779
2780 static int __init netvsc_drv_init(void)
2781 {
2782         int ret;
2783
2784         if (ring_size < RING_SIZE_MIN) {
2785                 ring_size = RING_SIZE_MIN;
2786                 pr_info("Increased ring_size to %u (min allowed)\n",
2787                         ring_size);
2788         }
2789         netvsc_ring_bytes = ring_size * PAGE_SIZE;
2790
2791         ret = vmbus_driver_register(&netvsc_drv);
2792         if (ret)
2793                 return ret;
2794
2795         register_netdevice_notifier(&netvsc_netdev_notifier);
2796         return 0;
2797 }
2798
2799 MODULE_LICENSE("GPL");
2800 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2801
2802 module_init(netvsc_drv_init);
2803 module_exit(netvsc_drv_exit);