GNU Linux-libre 4.19.207-gnu1
[releases.git] / drivers / net / hyperv / netvsc_drv.c
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * Authors:
17  *   Haiyang Zhang <haiyangz@microsoft.com>
18  *   Hank Janssen  <hjanssen@microsoft.com>
19  */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
27 #include <linux/io.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/pci.h>
33 #include <linux/skbuff.h>
34 #include <linux/if_vlan.h>
35 #include <linux/in.h>
36 #include <linux/slab.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/netpoll.h>
39
40 #include <net/arp.h>
41 #include <net/route.h>
42 #include <net/sock.h>
43 #include <net/pkt_sched.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46
47 #include "hyperv_net.h"
48
49 #define RING_SIZE_MIN   64
50 #define RETRY_US_LO     5000
51 #define RETRY_US_HI     10000
52 #define RETRY_MAX       2000    /* >10 sec */
53
54 #define LINKCHANGE_INT (2 * HZ)
55 #define VF_TAKEOVER_INT (HZ / 10)
56
57 static unsigned int ring_size __ro_after_init = 128;
58 module_param(ring_size, uint, 0444);
59 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
60 unsigned int netvsc_ring_bytes __ro_after_init;
61
62 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
63                                 NETIF_MSG_LINK | NETIF_MSG_IFUP |
64                                 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
65                                 NETIF_MSG_TX_ERR;
66
67 static int debug = -1;
68 module_param(debug, int, 0444);
69 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70
71 static LIST_HEAD(netvsc_dev_list);
72
73 static void netvsc_change_rx_flags(struct net_device *net, int change)
74 {
75         struct net_device_context *ndev_ctx = netdev_priv(net);
76         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
77         int inc;
78
79         if (!vf_netdev)
80                 return;
81
82         if (change & IFF_PROMISC) {
83                 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
84                 dev_set_promiscuity(vf_netdev, inc);
85         }
86
87         if (change & IFF_ALLMULTI) {
88                 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
89                 dev_set_allmulti(vf_netdev, inc);
90         }
91 }
92
93 static void netvsc_set_rx_mode(struct net_device *net)
94 {
95         struct net_device_context *ndev_ctx = netdev_priv(net);
96         struct net_device *vf_netdev;
97         struct netvsc_device *nvdev;
98
99         rcu_read_lock();
100         vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
101         if (vf_netdev) {
102                 dev_uc_sync(vf_netdev, net);
103                 dev_mc_sync(vf_netdev, net);
104         }
105
106         nvdev = rcu_dereference(ndev_ctx->nvdev);
107         if (nvdev)
108                 rndis_filter_update(nvdev);
109         rcu_read_unlock();
110 }
111
112 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
113                              struct net_device *ndev)
114 {
115         nvscdev->tx_disable = false;
116         virt_wmb(); /* ensure queue wake up mechanism is on */
117
118         netif_tx_wake_all_queues(ndev);
119 }
120
121 static int netvsc_open(struct net_device *net)
122 {
123         struct net_device_context *ndev_ctx = netdev_priv(net);
124         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
125         struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
126         struct rndis_device *rdev;
127         int ret = 0;
128
129         netif_carrier_off(net);
130
131         /* Open up the device */
132         ret = rndis_filter_open(nvdev);
133         if (ret != 0) {
134                 netdev_err(net, "unable to open device (ret %d).\n", ret);
135                 return ret;
136         }
137
138         rdev = nvdev->extension;
139         if (!rdev->link_state) {
140                 netif_carrier_on(net);
141                 netvsc_tx_enable(nvdev, net);
142         }
143
144         if (vf_netdev) {
145                 /* Setting synthetic device up transparently sets
146                  * slave as up. If open fails, then slave will be
147                  * still be offline (and not used).
148                  */
149                 ret = dev_open(vf_netdev);
150                 if (ret)
151                         netdev_warn(net,
152                                     "unable to open slave: %s: %d\n",
153                                     vf_netdev->name, ret);
154         }
155         return 0;
156 }
157
158 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
159 {
160         unsigned int retry = 0;
161         int i;
162
163         /* Ensure pending bytes in ring are read */
164         for (;;) {
165                 u32 aread = 0;
166
167                 for (i = 0; i < nvdev->num_chn; i++) {
168                         struct vmbus_channel *chn
169                                 = nvdev->chan_table[i].channel;
170
171                         if (!chn)
172                                 continue;
173
174                         /* make sure receive not running now */
175                         napi_synchronize(&nvdev->chan_table[i].napi);
176
177                         aread = hv_get_bytes_to_read(&chn->inbound);
178                         if (aread)
179                                 break;
180
181                         aread = hv_get_bytes_to_read(&chn->outbound);
182                         if (aread)
183                                 break;
184                 }
185
186                 if (aread == 0)
187                         return 0;
188
189                 if (++retry > RETRY_MAX)
190                         return -ETIMEDOUT;
191
192                 usleep_range(RETRY_US_LO, RETRY_US_HI);
193         }
194 }
195
196 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
197                               struct net_device *ndev)
198 {
199         if (nvscdev) {
200                 nvscdev->tx_disable = true;
201                 virt_wmb(); /* ensure txq will not wake up after stop */
202         }
203
204         netif_tx_disable(ndev);
205 }
206
207 static int netvsc_close(struct net_device *net)
208 {
209         struct net_device_context *net_device_ctx = netdev_priv(net);
210         struct net_device *vf_netdev
211                 = rtnl_dereference(net_device_ctx->vf_netdev);
212         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
213         int ret;
214
215         netvsc_tx_disable(nvdev, net);
216
217         /* No need to close rndis filter if it is removed already */
218         if (!nvdev)
219                 return 0;
220
221         ret = rndis_filter_close(nvdev);
222         if (ret != 0) {
223                 netdev_err(net, "unable to close device (ret %d).\n", ret);
224                 return ret;
225         }
226
227         ret = netvsc_wait_until_empty(nvdev);
228         if (ret)
229                 netdev_err(net, "Ring buffer not empty after closing rndis\n");
230
231         if (vf_netdev)
232                 dev_close(vf_netdev);
233
234         return ret;
235 }
236
237 static inline void *init_ppi_data(struct rndis_message *msg,
238                                   u32 ppi_size, u32 pkt_type)
239 {
240         struct rndis_packet *rndis_pkt = &msg->msg.pkt;
241         struct rndis_per_packet_info *ppi;
242
243         rndis_pkt->data_offset += ppi_size;
244         ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
245                 + rndis_pkt->per_pkt_info_len;
246
247         ppi->size = ppi_size;
248         ppi->type = pkt_type;
249         ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
250
251         rndis_pkt->per_pkt_info_len += ppi_size;
252
253         return ppi + 1;
254 }
255
256 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
257  * packets. We can use ethtool to change UDP hash level when necessary.
258  */
259 static inline u32 netvsc_get_hash(
260         struct sk_buff *skb,
261         const struct net_device_context *ndc)
262 {
263         struct flow_keys flow;
264         u32 hash, pkt_proto = 0;
265         static u32 hashrnd __read_mostly;
266
267         net_get_random_once(&hashrnd, sizeof(hashrnd));
268
269         if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
270                 return 0;
271
272         switch (flow.basic.ip_proto) {
273         case IPPROTO_TCP:
274                 if (flow.basic.n_proto == htons(ETH_P_IP))
275                         pkt_proto = HV_TCP4_L4HASH;
276                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
277                         pkt_proto = HV_TCP6_L4HASH;
278
279                 break;
280
281         case IPPROTO_UDP:
282                 if (flow.basic.n_proto == htons(ETH_P_IP))
283                         pkt_proto = HV_UDP4_L4HASH;
284                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
285                         pkt_proto = HV_UDP6_L4HASH;
286
287                 break;
288         }
289
290         if (pkt_proto & ndc->l4_hash) {
291                 return skb_get_hash(skb);
292         } else {
293                 if (flow.basic.n_proto == htons(ETH_P_IP))
294                         hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
295                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
296                         hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
297                 else
298                         return 0;
299
300                 __skb_set_sw_hash(skb, hash, false);
301         }
302
303         return hash;
304 }
305
306 static inline int netvsc_get_tx_queue(struct net_device *ndev,
307                                       struct sk_buff *skb, int old_idx)
308 {
309         const struct net_device_context *ndc = netdev_priv(ndev);
310         struct sock *sk = skb->sk;
311         int q_idx;
312
313         q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
314                               (VRSS_SEND_TAB_SIZE - 1)];
315
316         /* If queue index changed record the new value */
317         if (q_idx != old_idx &&
318             sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
319                 sk_tx_queue_set(sk, q_idx);
320
321         return q_idx;
322 }
323
324 /*
325  * Select queue for transmit.
326  *
327  * If a valid queue has already been assigned, then use that.
328  * Otherwise compute tx queue based on hash and the send table.
329  *
330  * This is basically similar to default (__netdev_pick_tx) with the added step
331  * of using the host send_table when no other queue has been assigned.
332  *
333  * TODO support XPS - but get_xps_queue not exported
334  */
335 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
336 {
337         int q_idx = sk_tx_queue_get(skb->sk);
338
339         if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
340                 /* If forwarding a packet, we use the recorded queue when
341                  * available for better cache locality.
342                  */
343                 if (skb_rx_queue_recorded(skb))
344                         q_idx = skb_get_rx_queue(skb);
345                 else
346                         q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
347         }
348
349         return q_idx;
350 }
351
352 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
353                                struct net_device *sb_dev,
354                                select_queue_fallback_t fallback)
355 {
356         struct net_device_context *ndc = netdev_priv(ndev);
357         struct net_device *vf_netdev;
358         u16 txq;
359
360         rcu_read_lock();
361         vf_netdev = rcu_dereference(ndc->vf_netdev);
362         if (vf_netdev) {
363                 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
364
365                 if (vf_ops->ndo_select_queue)
366                         txq = vf_ops->ndo_select_queue(vf_netdev, skb,
367                                                        sb_dev, fallback);
368                 else
369                         txq = fallback(vf_netdev, skb, NULL);
370
371                 /* Record the queue selected by VF so that it can be
372                  * used for common case where VF has more queues than
373                  * the synthetic device.
374                  */
375                 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
376         } else {
377                 txq = netvsc_pick_tx(ndev, skb);
378         }
379         rcu_read_unlock();
380
381         while (txq >= ndev->real_num_tx_queues)
382                 txq -= ndev->real_num_tx_queues;
383
384         return txq;
385 }
386
387 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
388                        struct hv_page_buffer *pb)
389 {
390         int j = 0;
391
392         /* Deal with compund pages by ignoring unused part
393          * of the page.
394          */
395         page += (offset >> PAGE_SHIFT);
396         offset &= ~PAGE_MASK;
397
398         while (len > 0) {
399                 unsigned long bytes;
400
401                 bytes = PAGE_SIZE - offset;
402                 if (bytes > len)
403                         bytes = len;
404                 pb[j].pfn = page_to_pfn(page);
405                 pb[j].offset = offset;
406                 pb[j].len = bytes;
407
408                 offset += bytes;
409                 len -= bytes;
410
411                 if (offset == PAGE_SIZE && len) {
412                         page++;
413                         offset = 0;
414                         j++;
415                 }
416         }
417
418         return j + 1;
419 }
420
421 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
422                            struct hv_netvsc_packet *packet,
423                            struct hv_page_buffer *pb)
424 {
425         u32 slots_used = 0;
426         char *data = skb->data;
427         int frags = skb_shinfo(skb)->nr_frags;
428         int i;
429
430         /* The packet is laid out thus:
431          * 1. hdr: RNDIS header and PPI
432          * 2. skb linear data
433          * 3. skb fragment data
434          */
435         slots_used += fill_pg_buf(virt_to_page(hdr),
436                                   offset_in_page(hdr),
437                                   len, &pb[slots_used]);
438
439         packet->rmsg_size = len;
440         packet->rmsg_pgcnt = slots_used;
441
442         slots_used += fill_pg_buf(virt_to_page(data),
443                                 offset_in_page(data),
444                                 skb_headlen(skb), &pb[slots_used]);
445
446         for (i = 0; i < frags; i++) {
447                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
448
449                 slots_used += fill_pg_buf(skb_frag_page(frag),
450                                         frag->page_offset,
451                                         skb_frag_size(frag), &pb[slots_used]);
452         }
453         return slots_used;
454 }
455
456 static int count_skb_frag_slots(struct sk_buff *skb)
457 {
458         int i, frags = skb_shinfo(skb)->nr_frags;
459         int pages = 0;
460
461         for (i = 0; i < frags; i++) {
462                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
463                 unsigned long size = skb_frag_size(frag);
464                 unsigned long offset = frag->page_offset;
465
466                 /* Skip unused frames from start of page */
467                 offset &= ~PAGE_MASK;
468                 pages += PFN_UP(offset + size);
469         }
470         return pages;
471 }
472
473 static int netvsc_get_slots(struct sk_buff *skb)
474 {
475         char *data = skb->data;
476         unsigned int offset = offset_in_page(data);
477         unsigned int len = skb_headlen(skb);
478         int slots;
479         int frag_slots;
480
481         slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
482         frag_slots = count_skb_frag_slots(skb);
483         return slots + frag_slots;
484 }
485
486 static u32 net_checksum_info(struct sk_buff *skb)
487 {
488         if (skb->protocol == htons(ETH_P_IP)) {
489                 struct iphdr *ip = ip_hdr(skb);
490
491                 if (ip->protocol == IPPROTO_TCP)
492                         return TRANSPORT_INFO_IPV4_TCP;
493                 else if (ip->protocol == IPPROTO_UDP)
494                         return TRANSPORT_INFO_IPV4_UDP;
495         } else {
496                 struct ipv6hdr *ip6 = ipv6_hdr(skb);
497
498                 if (ip6->nexthdr == IPPROTO_TCP)
499                         return TRANSPORT_INFO_IPV6_TCP;
500                 else if (ip6->nexthdr == IPPROTO_UDP)
501                         return TRANSPORT_INFO_IPV6_UDP;
502         }
503
504         return TRANSPORT_INFO_NOT_IP;
505 }
506
507 /* Send skb on the slave VF device. */
508 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
509                           struct sk_buff *skb)
510 {
511         struct net_device_context *ndev_ctx = netdev_priv(net);
512         unsigned int len = skb->len;
513         int rc;
514
515         skb->dev = vf_netdev;
516         skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
517
518         rc = dev_queue_xmit(skb);
519         if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
520                 struct netvsc_vf_pcpu_stats *pcpu_stats
521                         = this_cpu_ptr(ndev_ctx->vf_stats);
522
523                 u64_stats_update_begin(&pcpu_stats->syncp);
524                 pcpu_stats->tx_packets++;
525                 pcpu_stats->tx_bytes += len;
526                 u64_stats_update_end(&pcpu_stats->syncp);
527         } else {
528                 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
529         }
530
531         return rc;
532 }
533
534 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
535 {
536         struct net_device_context *net_device_ctx = netdev_priv(net);
537         struct hv_netvsc_packet *packet = NULL;
538         int ret;
539         unsigned int num_data_pgs;
540         struct rndis_message *rndis_msg;
541         struct net_device *vf_netdev;
542         u32 rndis_msg_size;
543         u32 hash;
544         struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
545
546         /* If VF is present and up then redirect packets to it.
547          * Skip the VF if it is marked down or has no carrier.
548          * If netpoll is in uses, then VF can not be used either.
549          */
550         vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
551         if (vf_netdev && netif_running(vf_netdev) &&
552             netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net))
553                 return netvsc_vf_xmit(net, vf_netdev, skb);
554
555         /* We will atmost need two pages to describe the rndis
556          * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
557          * of pages in a single packet. If skb is scattered around
558          * more pages we try linearizing it.
559          */
560
561         num_data_pgs = netvsc_get_slots(skb) + 2;
562
563         if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
564                 ++net_device_ctx->eth_stats.tx_scattered;
565
566                 if (skb_linearize(skb))
567                         goto no_memory;
568
569                 num_data_pgs = netvsc_get_slots(skb) + 2;
570                 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
571                         ++net_device_ctx->eth_stats.tx_too_big;
572                         goto drop;
573                 }
574         }
575
576         /*
577          * Place the rndis header in the skb head room and
578          * the skb->cb will be used for hv_netvsc_packet
579          * structure.
580          */
581         ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
582         if (ret)
583                 goto no_memory;
584
585         /* Use the skb control buffer for building up the packet */
586         BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
587                         FIELD_SIZEOF(struct sk_buff, cb));
588         packet = (struct hv_netvsc_packet *)skb->cb;
589
590         packet->q_idx = skb_get_queue_mapping(skb);
591
592         packet->total_data_buflen = skb->len;
593         packet->total_bytes = skb->len;
594         packet->total_packets = 1;
595
596         rndis_msg = (struct rndis_message *)skb->head;
597
598         /* Add the rndis header */
599         rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
600         rndis_msg->msg_len = packet->total_data_buflen;
601
602         rndis_msg->msg.pkt = (struct rndis_packet) {
603                 .data_offset = sizeof(struct rndis_packet),
604                 .data_len = packet->total_data_buflen,
605                 .per_pkt_info_offset = sizeof(struct rndis_packet),
606         };
607
608         rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
609
610         hash = skb_get_hash_raw(skb);
611         if (hash != 0 && net->real_num_tx_queues > 1) {
612                 u32 *hash_info;
613
614                 rndis_msg_size += NDIS_HASH_PPI_SIZE;
615                 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
616                                           NBL_HASH_VALUE);
617                 *hash_info = hash;
618         }
619
620         if (skb_vlan_tag_present(skb)) {
621                 struct ndis_pkt_8021q_info *vlan;
622
623                 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
624                 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
625                                      IEEE_8021Q_INFO);
626
627                 vlan->value = 0;
628                 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
629                 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
630                                 VLAN_PRIO_SHIFT;
631         }
632
633         if (skb_is_gso(skb)) {
634                 struct ndis_tcp_lso_info *lso_info;
635
636                 rndis_msg_size += NDIS_LSO_PPI_SIZE;
637                 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
638                                          TCP_LARGESEND_PKTINFO);
639
640                 lso_info->value = 0;
641                 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
642                 if (skb->protocol == htons(ETH_P_IP)) {
643                         lso_info->lso_v2_transmit.ip_version =
644                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
645                         ip_hdr(skb)->tot_len = 0;
646                         ip_hdr(skb)->check = 0;
647                         tcp_hdr(skb)->check =
648                                 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
649                                                    ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
650                 } else {
651                         lso_info->lso_v2_transmit.ip_version =
652                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
653                         ipv6_hdr(skb)->payload_len = 0;
654                         tcp_hdr(skb)->check =
655                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
656                                                  &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
657                 }
658                 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
659                 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
660         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
661                 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
662                         struct ndis_tcp_ip_checksum_info *csum_info;
663
664                         rndis_msg_size += NDIS_CSUM_PPI_SIZE;
665                         csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
666                                                   TCPIP_CHKSUM_PKTINFO);
667
668                         csum_info->value = 0;
669                         csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
670
671                         if (skb->protocol == htons(ETH_P_IP)) {
672                                 csum_info->transmit.is_ipv4 = 1;
673
674                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
675                                         csum_info->transmit.tcp_checksum = 1;
676                                 else
677                                         csum_info->transmit.udp_checksum = 1;
678                         } else {
679                                 csum_info->transmit.is_ipv6 = 1;
680
681                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
682                                         csum_info->transmit.tcp_checksum = 1;
683                                 else
684                                         csum_info->transmit.udp_checksum = 1;
685                         }
686                 } else {
687                         /* Can't do offload of this type of checksum */
688                         if (skb_checksum_help(skb))
689                                 goto drop;
690                 }
691         }
692
693         /* Start filling in the page buffers with the rndis hdr */
694         rndis_msg->msg_len += rndis_msg_size;
695         packet->total_data_buflen = rndis_msg->msg_len;
696         packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
697                                                skb, packet, pb);
698
699         /* timestamp packet in software */
700         skb_tx_timestamp(skb);
701
702         ret = netvsc_send(net, packet, rndis_msg, pb, skb);
703         if (likely(ret == 0))
704                 return NETDEV_TX_OK;
705
706         if (ret == -EAGAIN) {
707                 ++net_device_ctx->eth_stats.tx_busy;
708                 return NETDEV_TX_BUSY;
709         }
710
711         if (ret == -ENOSPC)
712                 ++net_device_ctx->eth_stats.tx_no_space;
713
714 drop:
715         dev_kfree_skb_any(skb);
716         net->stats.tx_dropped++;
717
718         return NETDEV_TX_OK;
719
720 no_memory:
721         ++net_device_ctx->eth_stats.tx_no_memory;
722         goto drop;
723 }
724
725 /*
726  * netvsc_linkstatus_callback - Link up/down notification
727  */
728 void netvsc_linkstatus_callback(struct net_device *net,
729                                 struct rndis_message *resp)
730 {
731         struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
732         struct net_device_context *ndev_ctx = netdev_priv(net);
733         struct netvsc_reconfig *event;
734         unsigned long flags;
735
736         /* Update the physical link speed when changing to another vSwitch */
737         if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
738                 u32 speed;
739
740                 speed = *(u32 *)((void *)indicate
741                                  + indicate->status_buf_offset) / 10000;
742                 ndev_ctx->speed = speed;
743                 return;
744         }
745
746         /* Handle these link change statuses below */
747         if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
748             indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
749             indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
750                 return;
751
752         if (net->reg_state != NETREG_REGISTERED)
753                 return;
754
755         event = kzalloc(sizeof(*event), GFP_ATOMIC);
756         if (!event)
757                 return;
758         event->event = indicate->status;
759
760         spin_lock_irqsave(&ndev_ctx->lock, flags);
761         list_add_tail(&event->list, &ndev_ctx->reconfig_events);
762         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
763
764         schedule_delayed_work(&ndev_ctx->dwork, 0);
765 }
766
767 static void netvsc_comp_ipcsum(struct sk_buff *skb)
768 {
769         struct iphdr *iph = (struct iphdr *)skb->data;
770
771         iph->check = 0;
772         iph->check = ip_fast_csum(iph, iph->ihl);
773 }
774
775 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
776                                              struct napi_struct *napi,
777                                              const struct ndis_tcp_ip_checksum_info *csum_info,
778                                              const struct ndis_pkt_8021q_info *vlan,
779                                              void *data, u32 buflen)
780 {
781         struct sk_buff *skb;
782
783         skb = napi_alloc_skb(napi, buflen);
784         if (!skb)
785                 return skb;
786
787         /*
788          * Copy to skb. This copy is needed here since the memory pointed by
789          * hv_netvsc_packet cannot be deallocated
790          */
791         skb_put_data(skb, data, buflen);
792
793         skb->protocol = eth_type_trans(skb, net);
794
795         /* skb is already created with CHECKSUM_NONE */
796         skb_checksum_none_assert(skb);
797
798         /* Incoming packets may have IP header checksum verified by the host.
799          * They may not have IP header checksum computed after coalescing.
800          * We compute it here if the flags are set, because on Linux, the IP
801          * checksum is always checked.
802          */
803         if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
804             csum_info->receive.ip_checksum_succeeded &&
805             skb->protocol == htons(ETH_P_IP))
806                 netvsc_comp_ipcsum(skb);
807
808         /* Do L4 checksum offload if enabled and present. */
809         if (csum_info && (net->features & NETIF_F_RXCSUM)) {
810                 if (csum_info->receive.tcp_checksum_succeeded ||
811                     csum_info->receive.udp_checksum_succeeded)
812                         skb->ip_summed = CHECKSUM_UNNECESSARY;
813         }
814
815         if (vlan) {
816                 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);
817
818                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
819                                        vlan_tci);
820         }
821
822         return skb;
823 }
824
825 /*
826  * netvsc_recv_callback -  Callback when we receive a packet from the
827  * "wire" on the specified device.
828  */
829 int netvsc_recv_callback(struct net_device *net,
830                          struct netvsc_device *net_device,
831                          struct vmbus_channel *channel,
832                          void  *data, u32 len,
833                          const struct ndis_tcp_ip_checksum_info *csum_info,
834                          const struct ndis_pkt_8021q_info *vlan)
835 {
836         struct net_device_context *net_device_ctx = netdev_priv(net);
837         u16 q_idx = channel->offermsg.offer.sub_channel_index;
838         struct netvsc_channel *nvchan = &net_device->chan_table[q_idx];
839         struct sk_buff *skb;
840         struct netvsc_stats *rx_stats;
841
842         if (net->reg_state != NETREG_REGISTERED)
843                 return NVSP_STAT_FAIL;
844
845         /* Allocate a skb - TODO direct I/O to pages? */
846         skb = netvsc_alloc_recv_skb(net, &nvchan->napi,
847                                     csum_info, vlan, data, len);
848         if (unlikely(!skb)) {
849                 ++net_device_ctx->eth_stats.rx_no_memory;
850                 return NVSP_STAT_FAIL;
851         }
852
853         skb_record_rx_queue(skb, q_idx);
854
855         /*
856          * Even if injecting the packet, record the statistics
857          * on the synthetic device because modifying the VF device
858          * statistics will not work correctly.
859          */
860         rx_stats = &nvchan->rx_stats;
861         u64_stats_update_begin(&rx_stats->syncp);
862         rx_stats->packets++;
863         rx_stats->bytes += len;
864
865         if (skb->pkt_type == PACKET_BROADCAST)
866                 ++rx_stats->broadcast;
867         else if (skb->pkt_type == PACKET_MULTICAST)
868                 ++rx_stats->multicast;
869         u64_stats_update_end(&rx_stats->syncp);
870
871         napi_gro_receive(&nvchan->napi, skb);
872         return NVSP_STAT_SUCCESS;
873 }
874
875 static void netvsc_get_drvinfo(struct net_device *net,
876                                struct ethtool_drvinfo *info)
877 {
878         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
879         strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
880 }
881
882 static void netvsc_get_channels(struct net_device *net,
883                                 struct ethtool_channels *channel)
884 {
885         struct net_device_context *net_device_ctx = netdev_priv(net);
886         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
887
888         if (nvdev) {
889                 channel->max_combined   = nvdev->max_chn;
890                 channel->combined_count = nvdev->num_chn;
891         }
892 }
893
894 /* Alloc struct netvsc_device_info, and initialize it from either existing
895  * struct netvsc_device, or from default values.
896  */
897 static struct netvsc_device_info *netvsc_devinfo_get
898                         (struct netvsc_device *nvdev)
899 {
900         struct netvsc_device_info *dev_info;
901
902         dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
903
904         if (!dev_info)
905                 return NULL;
906
907         if (nvdev) {
908                 dev_info->num_chn = nvdev->num_chn;
909                 dev_info->send_sections = nvdev->send_section_cnt;
910                 dev_info->send_section_size = nvdev->send_section_size;
911                 dev_info->recv_sections = nvdev->recv_section_cnt;
912                 dev_info->recv_section_size = nvdev->recv_section_size;
913
914                 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
915                        NETVSC_HASH_KEYLEN);
916         } else {
917                 dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
918                 dev_info->send_sections = NETVSC_DEFAULT_TX;
919                 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
920                 dev_info->recv_sections = NETVSC_DEFAULT_RX;
921                 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
922         }
923
924         return dev_info;
925 }
926
927 static int netvsc_detach(struct net_device *ndev,
928                          struct netvsc_device *nvdev)
929 {
930         struct net_device_context *ndev_ctx = netdev_priv(ndev);
931         struct hv_device *hdev = ndev_ctx->device_ctx;
932         int ret;
933
934         /* Don't try continuing to try and setup sub channels */
935         if (cancel_work_sync(&nvdev->subchan_work))
936                 nvdev->num_chn = 1;
937
938         /* If device was up (receiving) then shutdown */
939         if (netif_running(ndev)) {
940                 netvsc_tx_disable(nvdev, ndev);
941
942                 ret = rndis_filter_close(nvdev);
943                 if (ret) {
944                         netdev_err(ndev,
945                                    "unable to close device (ret %d).\n", ret);
946                         return ret;
947                 }
948
949                 ret = netvsc_wait_until_empty(nvdev);
950                 if (ret) {
951                         netdev_err(ndev,
952                                    "Ring buffer not empty after closing rndis\n");
953                         return ret;
954                 }
955         }
956
957         netif_device_detach(ndev);
958
959         rndis_filter_device_remove(hdev, nvdev);
960
961         return 0;
962 }
963
964 static int netvsc_attach(struct net_device *ndev,
965                          struct netvsc_device_info *dev_info)
966 {
967         struct net_device_context *ndev_ctx = netdev_priv(ndev);
968         struct hv_device *hdev = ndev_ctx->device_ctx;
969         struct netvsc_device *nvdev;
970         struct rndis_device *rdev;
971         int ret;
972
973         nvdev = rndis_filter_device_add(hdev, dev_info);
974         if (IS_ERR(nvdev))
975                 return PTR_ERR(nvdev);
976
977         if (nvdev->num_chn > 1) {
978                 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
979
980                 /* if unavailable, just proceed with one queue */
981                 if (ret) {
982                         nvdev->max_chn = 1;
983                         nvdev->num_chn = 1;
984                 }
985         }
986
987         /* In any case device is now ready */
988         nvdev->tx_disable = false;
989         netif_device_attach(ndev);
990
991         /* Note: enable and attach happen when sub-channels setup */
992         netif_carrier_off(ndev);
993
994         if (netif_running(ndev)) {
995                 ret = rndis_filter_open(nvdev);
996                 if (ret)
997                         goto err;
998
999                 rdev = nvdev->extension;
1000                 if (!rdev->link_state)
1001                         netif_carrier_on(ndev);
1002         }
1003
1004         return 0;
1005
1006 err:
1007         netif_device_detach(ndev);
1008
1009         rndis_filter_device_remove(hdev, nvdev);
1010
1011         return ret;
1012 }
1013
1014 static int netvsc_set_channels(struct net_device *net,
1015                                struct ethtool_channels *channels)
1016 {
1017         struct net_device_context *net_device_ctx = netdev_priv(net);
1018         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1019         unsigned int orig, count = channels->combined_count;
1020         struct netvsc_device_info *device_info;
1021         int ret;
1022
1023         /* We do not support separate count for rx, tx, or other */
1024         if (count == 0 ||
1025             channels->rx_count || channels->tx_count || channels->other_count)
1026                 return -EINVAL;
1027
1028         if (!nvdev || nvdev->destroy)
1029                 return -ENODEV;
1030
1031         if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1032                 return -EINVAL;
1033
1034         if (count > nvdev->max_chn)
1035                 return -EINVAL;
1036
1037         orig = nvdev->num_chn;
1038
1039         device_info = netvsc_devinfo_get(nvdev);
1040
1041         if (!device_info)
1042                 return -ENOMEM;
1043
1044         device_info->num_chn = count;
1045
1046         ret = netvsc_detach(net, nvdev);
1047         if (ret)
1048                 goto out;
1049
1050         ret = netvsc_attach(net, device_info);
1051         if (ret) {
1052                 device_info->num_chn = orig;
1053                 if (netvsc_attach(net, device_info))
1054                         netdev_err(net, "restoring channel setting failed\n");
1055         }
1056
1057 out:
1058         kfree(device_info);
1059         return ret;
1060 }
1061
1062 static bool
1063 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
1064 {
1065         struct ethtool_link_ksettings diff1 = *cmd;
1066         struct ethtool_link_ksettings diff2 = {};
1067
1068         diff1.base.speed = 0;
1069         diff1.base.duplex = 0;
1070         /* advertising and cmd are usually set */
1071         ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
1072         diff1.base.cmd = 0;
1073         /* We set port to PORT_OTHER */
1074         diff2.base.port = PORT_OTHER;
1075
1076         return !memcmp(&diff1, &diff2, sizeof(diff1));
1077 }
1078
1079 static void netvsc_init_settings(struct net_device *dev)
1080 {
1081         struct net_device_context *ndc = netdev_priv(dev);
1082
1083         ndc->l4_hash = HV_DEFAULT_L4HASH;
1084
1085         ndc->speed = SPEED_UNKNOWN;
1086         ndc->duplex = DUPLEX_FULL;
1087 }
1088
1089 static int netvsc_get_link_ksettings(struct net_device *dev,
1090                                      struct ethtool_link_ksettings *cmd)
1091 {
1092         struct net_device_context *ndc = netdev_priv(dev);
1093
1094         cmd->base.speed = ndc->speed;
1095         cmd->base.duplex = ndc->duplex;
1096         cmd->base.port = PORT_OTHER;
1097
1098         return 0;
1099 }
1100
1101 static int netvsc_set_link_ksettings(struct net_device *dev,
1102                                      const struct ethtool_link_ksettings *cmd)
1103 {
1104         struct net_device_context *ndc = netdev_priv(dev);
1105         u32 speed;
1106
1107         speed = cmd->base.speed;
1108         if (!ethtool_validate_speed(speed) ||
1109             !ethtool_validate_duplex(cmd->base.duplex) ||
1110             !netvsc_validate_ethtool_ss_cmd(cmd))
1111                 return -EINVAL;
1112
1113         ndc->speed = speed;
1114         ndc->duplex = cmd->base.duplex;
1115
1116         return 0;
1117 }
1118
1119 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1120 {
1121         struct net_device_context *ndevctx = netdev_priv(ndev);
1122         struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1123         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1124         int orig_mtu = ndev->mtu;
1125         struct netvsc_device_info *device_info;
1126         int ret = 0;
1127
1128         if (!nvdev || nvdev->destroy)
1129                 return -ENODEV;
1130
1131         device_info = netvsc_devinfo_get(nvdev);
1132
1133         if (!device_info)
1134                 return -ENOMEM;
1135
1136         /* Change MTU of underlying VF netdev first. */
1137         if (vf_netdev) {
1138                 ret = dev_set_mtu(vf_netdev, mtu);
1139                 if (ret)
1140                         goto out;
1141         }
1142
1143         ret = netvsc_detach(ndev, nvdev);
1144         if (ret)
1145                 goto rollback_vf;
1146
1147         ndev->mtu = mtu;
1148
1149         ret = netvsc_attach(ndev, device_info);
1150         if (!ret)
1151                 goto out;
1152
1153         /* Attempt rollback to original MTU */
1154         ndev->mtu = orig_mtu;
1155
1156         if (netvsc_attach(ndev, device_info))
1157                 netdev_err(ndev, "restoring mtu failed\n");
1158 rollback_vf:
1159         if (vf_netdev)
1160                 dev_set_mtu(vf_netdev, orig_mtu);
1161
1162 out:
1163         kfree(device_info);
1164         return ret;
1165 }
1166
1167 static void netvsc_get_vf_stats(struct net_device *net,
1168                                 struct netvsc_vf_pcpu_stats *tot)
1169 {
1170         struct net_device_context *ndev_ctx = netdev_priv(net);
1171         int i;
1172
1173         memset(tot, 0, sizeof(*tot));
1174
1175         for_each_possible_cpu(i) {
1176                 const struct netvsc_vf_pcpu_stats *stats
1177                         = per_cpu_ptr(ndev_ctx->vf_stats, i);
1178                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1179                 unsigned int start;
1180
1181                 do {
1182                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1183                         rx_packets = stats->rx_packets;
1184                         tx_packets = stats->tx_packets;
1185                         rx_bytes = stats->rx_bytes;
1186                         tx_bytes = stats->tx_bytes;
1187                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1188
1189                 tot->rx_packets += rx_packets;
1190                 tot->tx_packets += tx_packets;
1191                 tot->rx_bytes   += rx_bytes;
1192                 tot->tx_bytes   += tx_bytes;
1193                 tot->tx_dropped += stats->tx_dropped;
1194         }
1195 }
1196
1197 static void netvsc_get_pcpu_stats(struct net_device *net,
1198                                   struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1199 {
1200         struct net_device_context *ndev_ctx = netdev_priv(net);
1201         struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1202         int i;
1203
1204         /* fetch percpu stats of vf */
1205         for_each_possible_cpu(i) {
1206                 const struct netvsc_vf_pcpu_stats *stats =
1207                         per_cpu_ptr(ndev_ctx->vf_stats, i);
1208                 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1209                 unsigned int start;
1210
1211                 do {
1212                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1213                         this_tot->vf_rx_packets = stats->rx_packets;
1214                         this_tot->vf_tx_packets = stats->tx_packets;
1215                         this_tot->vf_rx_bytes = stats->rx_bytes;
1216                         this_tot->vf_tx_bytes = stats->tx_bytes;
1217                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1218                 this_tot->rx_packets = this_tot->vf_rx_packets;
1219                 this_tot->tx_packets = this_tot->vf_tx_packets;
1220                 this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1221                 this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1222         }
1223
1224         /* fetch percpu stats of netvsc */
1225         for (i = 0; i < nvdev->num_chn; i++) {
1226                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1227                 const struct netvsc_stats *stats;
1228                 struct netvsc_ethtool_pcpu_stats *this_tot =
1229                         &pcpu_tot[nvchan->channel->target_cpu];
1230                 u64 packets, bytes;
1231                 unsigned int start;
1232
1233                 stats = &nvchan->tx_stats;
1234                 do {
1235                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1236                         packets = stats->packets;
1237                         bytes = stats->bytes;
1238                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1239
1240                 this_tot->tx_bytes      += bytes;
1241                 this_tot->tx_packets    += packets;
1242
1243                 stats = &nvchan->rx_stats;
1244                 do {
1245                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1246                         packets = stats->packets;
1247                         bytes = stats->bytes;
1248                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1249
1250                 this_tot->rx_bytes      += bytes;
1251                 this_tot->rx_packets    += packets;
1252         }
1253 }
1254
1255 static void netvsc_get_stats64(struct net_device *net,
1256                                struct rtnl_link_stats64 *t)
1257 {
1258         struct net_device_context *ndev_ctx = netdev_priv(net);
1259         struct netvsc_device *nvdev;
1260         struct netvsc_vf_pcpu_stats vf_tot;
1261         int i;
1262
1263         rcu_read_lock();
1264
1265         nvdev = rcu_dereference(ndev_ctx->nvdev);
1266         if (!nvdev)
1267                 goto out;
1268
1269         netdev_stats_to_stats64(t, &net->stats);
1270
1271         netvsc_get_vf_stats(net, &vf_tot);
1272         t->rx_packets += vf_tot.rx_packets;
1273         t->tx_packets += vf_tot.tx_packets;
1274         t->rx_bytes   += vf_tot.rx_bytes;
1275         t->tx_bytes   += vf_tot.tx_bytes;
1276         t->tx_dropped += vf_tot.tx_dropped;
1277
1278         for (i = 0; i < nvdev->num_chn; i++) {
1279                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1280                 const struct netvsc_stats *stats;
1281                 u64 packets, bytes, multicast;
1282                 unsigned int start;
1283
1284                 stats = &nvchan->tx_stats;
1285                 do {
1286                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1287                         packets = stats->packets;
1288                         bytes = stats->bytes;
1289                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1290
1291                 t->tx_bytes     += bytes;
1292                 t->tx_packets   += packets;
1293
1294                 stats = &nvchan->rx_stats;
1295                 do {
1296                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1297                         packets = stats->packets;
1298                         bytes = stats->bytes;
1299                         multicast = stats->multicast + stats->broadcast;
1300                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1301
1302                 t->rx_bytes     += bytes;
1303                 t->rx_packets   += packets;
1304                 t->multicast    += multicast;
1305         }
1306 out:
1307         rcu_read_unlock();
1308 }
1309
1310 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1311 {
1312         struct net_device_context *ndc = netdev_priv(ndev);
1313         struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1314         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1315         struct sockaddr *addr = p;
1316         int err;
1317
1318         err = eth_prepare_mac_addr_change(ndev, p);
1319         if (err)
1320                 return err;
1321
1322         if (!nvdev)
1323                 return -ENODEV;
1324
1325         if (vf_netdev) {
1326                 err = dev_set_mac_address(vf_netdev, addr);
1327                 if (err)
1328                         return err;
1329         }
1330
1331         err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1332         if (!err) {
1333                 eth_commit_mac_addr_change(ndev, p);
1334         } else if (vf_netdev) {
1335                 /* rollback change on VF */
1336                 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1337                 dev_set_mac_address(vf_netdev, addr);
1338         }
1339
1340         return err;
1341 }
1342
1343 static const struct {
1344         char name[ETH_GSTRING_LEN];
1345         u16 offset;
1346 } netvsc_stats[] = {
1347         { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1348         { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1349         { "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1350         { "tx_too_big",   offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1351         { "tx_busy",      offsetof(struct netvsc_ethtool_stats, tx_busy) },
1352         { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1353         { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1354         { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1355         { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1356         { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1357 }, pcpu_stats[] = {
1358         { "cpu%u_rx_packets",
1359                 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1360         { "cpu%u_rx_bytes",
1361                 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1362         { "cpu%u_tx_packets",
1363                 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1364         { "cpu%u_tx_bytes",
1365                 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1366         { "cpu%u_vf_rx_packets",
1367                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1368         { "cpu%u_vf_rx_bytes",
1369                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1370         { "cpu%u_vf_tx_packets",
1371                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1372         { "cpu%u_vf_tx_bytes",
1373                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1374 }, vf_stats[] = {
1375         { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1376         { "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1377         { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1378         { "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1379         { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1380 };
1381
1382 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1383 #define NETVSC_VF_STATS_LEN     ARRAY_SIZE(vf_stats)
1384
1385 /* statistics per queue (rx/tx packets/bytes) */
1386 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1387
1388 /* 4 statistics per queue (rx/tx packets/bytes) */
1389 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1390
1391 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1392 {
1393         struct net_device_context *ndc = netdev_priv(dev);
1394         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1395
1396         if (!nvdev)
1397                 return -ENODEV;
1398
1399         switch (string_set) {
1400         case ETH_SS_STATS:
1401                 return NETVSC_GLOBAL_STATS_LEN
1402                         + NETVSC_VF_STATS_LEN
1403                         + NETVSC_QUEUE_STATS_LEN(nvdev)
1404                         + NETVSC_PCPU_STATS_LEN;
1405         default:
1406                 return -EINVAL;
1407         }
1408 }
1409
1410 static void netvsc_get_ethtool_stats(struct net_device *dev,
1411                                      struct ethtool_stats *stats, u64 *data)
1412 {
1413         struct net_device_context *ndc = netdev_priv(dev);
1414         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1415         const void *nds = &ndc->eth_stats;
1416         const struct netvsc_stats *qstats;
1417         struct netvsc_vf_pcpu_stats sum;
1418         struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1419         unsigned int start;
1420         u64 packets, bytes;
1421         int i, j, cpu;
1422
1423         if (!nvdev)
1424                 return;
1425
1426         for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1427                 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1428
1429         netvsc_get_vf_stats(dev, &sum);
1430         for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1431                 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1432
1433         for (j = 0; j < nvdev->num_chn; j++) {
1434                 qstats = &nvdev->chan_table[j].tx_stats;
1435
1436                 do {
1437                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1438                         packets = qstats->packets;
1439                         bytes = qstats->bytes;
1440                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1441                 data[i++] = packets;
1442                 data[i++] = bytes;
1443
1444                 qstats = &nvdev->chan_table[j].rx_stats;
1445                 do {
1446                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1447                         packets = qstats->packets;
1448                         bytes = qstats->bytes;
1449                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1450                 data[i++] = packets;
1451                 data[i++] = bytes;
1452         }
1453
1454         pcpu_sum = kvmalloc_array(num_possible_cpus(),
1455                                   sizeof(struct netvsc_ethtool_pcpu_stats),
1456                                   GFP_KERNEL);
1457         netvsc_get_pcpu_stats(dev, pcpu_sum);
1458         for_each_present_cpu(cpu) {
1459                 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1460
1461                 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1462                         data[i++] = *(u64 *)((void *)this_sum
1463                                              + pcpu_stats[j].offset);
1464         }
1465         kvfree(pcpu_sum);
1466 }
1467
1468 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1469 {
1470         struct net_device_context *ndc = netdev_priv(dev);
1471         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1472         u8 *p = data;
1473         int i, cpu;
1474
1475         if (!nvdev)
1476                 return;
1477
1478         switch (stringset) {
1479         case ETH_SS_STATS:
1480                 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1481                         memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1482                         p += ETH_GSTRING_LEN;
1483                 }
1484
1485                 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1486                         memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1487                         p += ETH_GSTRING_LEN;
1488                 }
1489
1490                 for (i = 0; i < nvdev->num_chn; i++) {
1491                         sprintf(p, "tx_queue_%u_packets", i);
1492                         p += ETH_GSTRING_LEN;
1493                         sprintf(p, "tx_queue_%u_bytes", i);
1494                         p += ETH_GSTRING_LEN;
1495                         sprintf(p, "rx_queue_%u_packets", i);
1496                         p += ETH_GSTRING_LEN;
1497                         sprintf(p, "rx_queue_%u_bytes", i);
1498                         p += ETH_GSTRING_LEN;
1499                 }
1500
1501                 for_each_present_cpu(cpu) {
1502                         for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1503                                 sprintf(p, pcpu_stats[i].name, cpu);
1504                                 p += ETH_GSTRING_LEN;
1505                         }
1506                 }
1507
1508                 break;
1509         }
1510 }
1511
1512 static int
1513 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1514                          struct ethtool_rxnfc *info)
1515 {
1516         const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1517
1518         info->data = RXH_IP_SRC | RXH_IP_DST;
1519
1520         switch (info->flow_type) {
1521         case TCP_V4_FLOW:
1522                 if (ndc->l4_hash & HV_TCP4_L4HASH)
1523                         info->data |= l4_flag;
1524
1525                 break;
1526
1527         case TCP_V6_FLOW:
1528                 if (ndc->l4_hash & HV_TCP6_L4HASH)
1529                         info->data |= l4_flag;
1530
1531                 break;
1532
1533         case UDP_V4_FLOW:
1534                 if (ndc->l4_hash & HV_UDP4_L4HASH)
1535                         info->data |= l4_flag;
1536
1537                 break;
1538
1539         case UDP_V6_FLOW:
1540                 if (ndc->l4_hash & HV_UDP6_L4HASH)
1541                         info->data |= l4_flag;
1542
1543                 break;
1544
1545         case IPV4_FLOW:
1546         case IPV6_FLOW:
1547                 break;
1548         default:
1549                 info->data = 0;
1550                 break;
1551         }
1552
1553         return 0;
1554 }
1555
1556 static int
1557 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1558                  u32 *rules)
1559 {
1560         struct net_device_context *ndc = netdev_priv(dev);
1561         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1562
1563         if (!nvdev)
1564                 return -ENODEV;
1565
1566         switch (info->cmd) {
1567         case ETHTOOL_GRXRINGS:
1568                 info->data = nvdev->num_chn;
1569                 return 0;
1570
1571         case ETHTOOL_GRXFH:
1572                 return netvsc_get_rss_hash_opts(ndc, info);
1573         }
1574         return -EOPNOTSUPP;
1575 }
1576
1577 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1578                                     struct ethtool_rxnfc *info)
1579 {
1580         if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1581                            RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1582                 switch (info->flow_type) {
1583                 case TCP_V4_FLOW:
1584                         ndc->l4_hash |= HV_TCP4_L4HASH;
1585                         break;
1586
1587                 case TCP_V6_FLOW:
1588                         ndc->l4_hash |= HV_TCP6_L4HASH;
1589                         break;
1590
1591                 case UDP_V4_FLOW:
1592                         ndc->l4_hash |= HV_UDP4_L4HASH;
1593                         break;
1594
1595                 case UDP_V6_FLOW:
1596                         ndc->l4_hash |= HV_UDP6_L4HASH;
1597                         break;
1598
1599                 default:
1600                         return -EOPNOTSUPP;
1601                 }
1602
1603                 return 0;
1604         }
1605
1606         if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1607                 switch (info->flow_type) {
1608                 case TCP_V4_FLOW:
1609                         ndc->l4_hash &= ~HV_TCP4_L4HASH;
1610                         break;
1611
1612                 case TCP_V6_FLOW:
1613                         ndc->l4_hash &= ~HV_TCP6_L4HASH;
1614                         break;
1615
1616                 case UDP_V4_FLOW:
1617                         ndc->l4_hash &= ~HV_UDP4_L4HASH;
1618                         break;
1619
1620                 case UDP_V6_FLOW:
1621                         ndc->l4_hash &= ~HV_UDP6_L4HASH;
1622                         break;
1623
1624                 default:
1625                         return -EOPNOTSUPP;
1626                 }
1627
1628                 return 0;
1629         }
1630
1631         return -EOPNOTSUPP;
1632 }
1633
1634 static int
1635 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1636 {
1637         struct net_device_context *ndc = netdev_priv(ndev);
1638
1639         if (info->cmd == ETHTOOL_SRXFH)
1640                 return netvsc_set_rss_hash_opts(ndc, info);
1641
1642         return -EOPNOTSUPP;
1643 }
1644
1645 #ifdef CONFIG_NET_POLL_CONTROLLER
1646 static void netvsc_poll_controller(struct net_device *dev)
1647 {
1648         struct net_device_context *ndc = netdev_priv(dev);
1649         struct netvsc_device *ndev;
1650         int i;
1651
1652         rcu_read_lock();
1653         ndev = rcu_dereference(ndc->nvdev);
1654         if (ndev) {
1655                 for (i = 0; i < ndev->num_chn; i++) {
1656                         struct netvsc_channel *nvchan = &ndev->chan_table[i];
1657
1658                         napi_schedule(&nvchan->napi);
1659                 }
1660         }
1661         rcu_read_unlock();
1662 }
1663 #endif
1664
1665 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1666 {
1667         return NETVSC_HASH_KEYLEN;
1668 }
1669
1670 static u32 netvsc_rss_indir_size(struct net_device *dev)
1671 {
1672         return ITAB_NUM;
1673 }
1674
1675 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1676                            u8 *hfunc)
1677 {
1678         struct net_device_context *ndc = netdev_priv(dev);
1679         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1680         struct rndis_device *rndis_dev;
1681         int i;
1682
1683         if (!ndev)
1684                 return -ENODEV;
1685
1686         if (hfunc)
1687                 *hfunc = ETH_RSS_HASH_TOP;      /* Toeplitz */
1688
1689         rndis_dev = ndev->extension;
1690         if (indir) {
1691                 for (i = 0; i < ITAB_NUM; i++)
1692                         indir[i] = ndc->rx_table[i];
1693         }
1694
1695         if (key)
1696                 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1697
1698         return 0;
1699 }
1700
1701 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1702                            const u8 *key, const u8 hfunc)
1703 {
1704         struct net_device_context *ndc = netdev_priv(dev);
1705         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1706         struct rndis_device *rndis_dev;
1707         int i;
1708
1709         if (!ndev)
1710                 return -ENODEV;
1711
1712         if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1713                 return -EOPNOTSUPP;
1714
1715         rndis_dev = ndev->extension;
1716         if (indir) {
1717                 for (i = 0; i < ITAB_NUM; i++)
1718                         if (indir[i] >= ndev->num_chn)
1719                                 return -EINVAL;
1720
1721                 for (i = 0; i < ITAB_NUM; i++)
1722                         ndc->rx_table[i] = indir[i];
1723         }
1724
1725         if (!key) {
1726                 if (!indir)
1727                         return 0;
1728
1729                 key = rndis_dev->rss_key;
1730         }
1731
1732         return rndis_filter_set_rss_param(rndis_dev, key);
1733 }
1734
1735 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1736  * It does have pre-allocated receive area which is divided into sections.
1737  */
1738 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1739                                    struct ethtool_ringparam *ring)
1740 {
1741         u32 max_buf_size;
1742
1743         ring->rx_pending = nvdev->recv_section_cnt;
1744         ring->tx_pending = nvdev->send_section_cnt;
1745
1746         if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1747                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1748         else
1749                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1750
1751         ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1752         ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1753                 / nvdev->send_section_size;
1754 }
1755
1756 static void netvsc_get_ringparam(struct net_device *ndev,
1757                                  struct ethtool_ringparam *ring)
1758 {
1759         struct net_device_context *ndevctx = netdev_priv(ndev);
1760         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1761
1762         if (!nvdev)
1763                 return;
1764
1765         __netvsc_get_ringparam(nvdev, ring);
1766 }
1767
1768 static int netvsc_set_ringparam(struct net_device *ndev,
1769                                 struct ethtool_ringparam *ring)
1770 {
1771         struct net_device_context *ndevctx = netdev_priv(ndev);
1772         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1773         struct netvsc_device_info *device_info;
1774         struct ethtool_ringparam orig;
1775         u32 new_tx, new_rx;
1776         int ret = 0;
1777
1778         if (!nvdev || nvdev->destroy)
1779                 return -ENODEV;
1780
1781         memset(&orig, 0, sizeof(orig));
1782         __netvsc_get_ringparam(nvdev, &orig);
1783
1784         new_tx = clamp_t(u32, ring->tx_pending,
1785                          NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1786         new_rx = clamp_t(u32, ring->rx_pending,
1787                          NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1788
1789         if (new_tx == orig.tx_pending &&
1790             new_rx == orig.rx_pending)
1791                 return 0;        /* no change */
1792
1793         device_info = netvsc_devinfo_get(nvdev);
1794
1795         if (!device_info)
1796                 return -ENOMEM;
1797
1798         device_info->send_sections = new_tx;
1799         device_info->recv_sections = new_rx;
1800
1801         ret = netvsc_detach(ndev, nvdev);
1802         if (ret)
1803                 goto out;
1804
1805         ret = netvsc_attach(ndev, device_info);
1806         if (ret) {
1807                 device_info->send_sections = orig.tx_pending;
1808                 device_info->recv_sections = orig.rx_pending;
1809
1810                 if (netvsc_attach(ndev, device_info))
1811                         netdev_err(ndev, "restoring ringparam failed");
1812         }
1813
1814 out:
1815         kfree(device_info);
1816         return ret;
1817 }
1818
1819 static u32 netvsc_get_msglevel(struct net_device *ndev)
1820 {
1821         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1822
1823         return ndev_ctx->msg_enable;
1824 }
1825
1826 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1827 {
1828         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1829
1830         ndev_ctx->msg_enable = val;
1831 }
1832
1833 static const struct ethtool_ops ethtool_ops = {
1834         .get_drvinfo    = netvsc_get_drvinfo,
1835         .get_msglevel   = netvsc_get_msglevel,
1836         .set_msglevel   = netvsc_set_msglevel,
1837         .get_link       = ethtool_op_get_link,
1838         .get_ethtool_stats = netvsc_get_ethtool_stats,
1839         .get_sset_count = netvsc_get_sset_count,
1840         .get_strings    = netvsc_get_strings,
1841         .get_channels   = netvsc_get_channels,
1842         .set_channels   = netvsc_set_channels,
1843         .get_ts_info    = ethtool_op_get_ts_info,
1844         .get_rxnfc      = netvsc_get_rxnfc,
1845         .set_rxnfc      = netvsc_set_rxnfc,
1846         .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1847         .get_rxfh_indir_size = netvsc_rss_indir_size,
1848         .get_rxfh       = netvsc_get_rxfh,
1849         .set_rxfh       = netvsc_set_rxfh,
1850         .get_link_ksettings = netvsc_get_link_ksettings,
1851         .set_link_ksettings = netvsc_set_link_ksettings,
1852         .get_ringparam  = netvsc_get_ringparam,
1853         .set_ringparam  = netvsc_set_ringparam,
1854 };
1855
1856 static const struct net_device_ops device_ops = {
1857         .ndo_open =                     netvsc_open,
1858         .ndo_stop =                     netvsc_close,
1859         .ndo_start_xmit =               netvsc_start_xmit,
1860         .ndo_change_rx_flags =          netvsc_change_rx_flags,
1861         .ndo_set_rx_mode =              netvsc_set_rx_mode,
1862         .ndo_change_mtu =               netvsc_change_mtu,
1863         .ndo_validate_addr =            eth_validate_addr,
1864         .ndo_set_mac_address =          netvsc_set_mac_addr,
1865         .ndo_select_queue =             netvsc_select_queue,
1866         .ndo_get_stats64 =              netvsc_get_stats64,
1867 #ifdef CONFIG_NET_POLL_CONTROLLER
1868         .ndo_poll_controller =          netvsc_poll_controller,
1869 #endif
1870 };
1871
1872 /*
1873  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1874  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1875  * present send GARP packet to network peers with netif_notify_peers().
1876  */
1877 static void netvsc_link_change(struct work_struct *w)
1878 {
1879         struct net_device_context *ndev_ctx =
1880                 container_of(w, struct net_device_context, dwork.work);
1881         struct hv_device *device_obj = ndev_ctx->device_ctx;
1882         struct net_device *net = hv_get_drvdata(device_obj);
1883         struct netvsc_device *net_device;
1884         struct rndis_device *rdev;
1885         struct netvsc_reconfig *event = NULL;
1886         bool notify = false, reschedule = false;
1887         unsigned long flags, next_reconfig, delay;
1888
1889         /* if changes are happening, comeback later */
1890         if (!rtnl_trylock()) {
1891                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1892                 return;
1893         }
1894
1895         net_device = rtnl_dereference(ndev_ctx->nvdev);
1896         if (!net_device)
1897                 goto out_unlock;
1898
1899         rdev = net_device->extension;
1900
1901         next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1902         if (time_is_after_jiffies(next_reconfig)) {
1903                 /* link_watch only sends one notification with current state
1904                  * per second, avoid doing reconfig more frequently. Handle
1905                  * wrap around.
1906                  */
1907                 delay = next_reconfig - jiffies;
1908                 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1909                 schedule_delayed_work(&ndev_ctx->dwork, delay);
1910                 goto out_unlock;
1911         }
1912         ndev_ctx->last_reconfig = jiffies;
1913
1914         spin_lock_irqsave(&ndev_ctx->lock, flags);
1915         if (!list_empty(&ndev_ctx->reconfig_events)) {
1916                 event = list_first_entry(&ndev_ctx->reconfig_events,
1917                                          struct netvsc_reconfig, list);
1918                 list_del(&event->list);
1919                 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1920         }
1921         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1922
1923         if (!event)
1924                 goto out_unlock;
1925
1926         switch (event->event) {
1927                 /* Only the following events are possible due to the check in
1928                  * netvsc_linkstatus_callback()
1929                  */
1930         case RNDIS_STATUS_MEDIA_CONNECT:
1931                 if (rdev->link_state) {
1932                         rdev->link_state = false;
1933                         netif_carrier_on(net);
1934                         netvsc_tx_enable(net_device, net);
1935                 } else {
1936                         notify = true;
1937                 }
1938                 kfree(event);
1939                 break;
1940         case RNDIS_STATUS_MEDIA_DISCONNECT:
1941                 if (!rdev->link_state) {
1942                         rdev->link_state = true;
1943                         netif_carrier_off(net);
1944                         netvsc_tx_disable(net_device, net);
1945                 }
1946                 kfree(event);
1947                 break;
1948         case RNDIS_STATUS_NETWORK_CHANGE:
1949                 /* Only makes sense if carrier is present */
1950                 if (!rdev->link_state) {
1951                         rdev->link_state = true;
1952                         netif_carrier_off(net);
1953                         netvsc_tx_disable(net_device, net);
1954                         event->event = RNDIS_STATUS_MEDIA_CONNECT;
1955                         spin_lock_irqsave(&ndev_ctx->lock, flags);
1956                         list_add(&event->list, &ndev_ctx->reconfig_events);
1957                         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1958                         reschedule = true;
1959                 }
1960                 break;
1961         }
1962
1963         rtnl_unlock();
1964
1965         if (notify)
1966                 netdev_notify_peers(net);
1967
1968         /* link_watch only sends one notification with current state per
1969          * second, handle next reconfig event in 2 seconds.
1970          */
1971         if (reschedule)
1972                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1973
1974         return;
1975
1976 out_unlock:
1977         rtnl_unlock();
1978 }
1979
1980 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1981 {
1982         struct net_device_context *net_device_ctx;
1983         struct net_device *dev;
1984
1985         dev = netdev_master_upper_dev_get(vf_netdev);
1986         if (!dev || dev->netdev_ops != &device_ops)
1987                 return NULL;    /* not a netvsc device */
1988
1989         net_device_ctx = netdev_priv(dev);
1990         if (!rtnl_dereference(net_device_ctx->nvdev))
1991                 return NULL;    /* device is removed */
1992
1993         return dev;
1994 }
1995
1996 /* Called when VF is injecting data into network stack.
1997  * Change the associated network device from VF to netvsc.
1998  * note: already called with rcu_read_lock
1999  */
2000 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2001 {
2002         struct sk_buff *skb = *pskb;
2003         struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2004         struct net_device_context *ndev_ctx = netdev_priv(ndev);
2005         struct netvsc_vf_pcpu_stats *pcpu_stats
2006                  = this_cpu_ptr(ndev_ctx->vf_stats);
2007
2008         skb = skb_share_check(skb, GFP_ATOMIC);
2009         if (unlikely(!skb))
2010                 return RX_HANDLER_CONSUMED;
2011
2012         *pskb = skb;
2013
2014         skb->dev = ndev;
2015
2016         u64_stats_update_begin(&pcpu_stats->syncp);
2017         pcpu_stats->rx_packets++;
2018         pcpu_stats->rx_bytes += skb->len;
2019         u64_stats_update_end(&pcpu_stats->syncp);
2020
2021         return RX_HANDLER_ANOTHER;
2022 }
2023
2024 static int netvsc_vf_join(struct net_device *vf_netdev,
2025                           struct net_device *ndev)
2026 {
2027         struct net_device_context *ndev_ctx = netdev_priv(ndev);
2028         int ret;
2029
2030         ret = netdev_rx_handler_register(vf_netdev,
2031                                          netvsc_vf_handle_frame, ndev);
2032         if (ret != 0) {
2033                 netdev_err(vf_netdev,
2034                            "can not register netvsc VF receive handler (err = %d)\n",
2035                            ret);
2036                 goto rx_handler_failed;
2037         }
2038
2039         ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2040                                            NULL, NULL, NULL);
2041         if (ret != 0) {
2042                 netdev_err(vf_netdev,
2043                            "can not set master device %s (err = %d)\n",
2044                            ndev->name, ret);
2045                 goto upper_link_failed;
2046         }
2047
2048         /* set slave flag before open to prevent IPv6 addrconf */
2049         vf_netdev->flags |= IFF_SLAVE;
2050
2051         schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2052
2053         call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2054
2055         netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2056         return 0;
2057
2058 upper_link_failed:
2059         netdev_rx_handler_unregister(vf_netdev);
2060 rx_handler_failed:
2061         return ret;
2062 }
2063
2064 static void __netvsc_vf_setup(struct net_device *ndev,
2065                               struct net_device *vf_netdev)
2066 {
2067         int ret;
2068
2069         /* Align MTU of VF with master */
2070         ret = dev_set_mtu(vf_netdev, ndev->mtu);
2071         if (ret)
2072                 netdev_warn(vf_netdev,
2073                             "unable to change mtu to %u\n", ndev->mtu);
2074
2075         /* set multicast etc flags on VF */
2076         dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE);
2077
2078         /* sync address list from ndev to VF */
2079         netif_addr_lock_bh(ndev);
2080         dev_uc_sync(vf_netdev, ndev);
2081         dev_mc_sync(vf_netdev, ndev);
2082         netif_addr_unlock_bh(ndev);
2083
2084         if (netif_running(ndev)) {
2085                 ret = dev_open(vf_netdev);
2086                 if (ret)
2087                         netdev_warn(vf_netdev,
2088                                     "unable to open: %d\n", ret);
2089         }
2090 }
2091
2092 /* Setup VF as slave of the synthetic device.
2093  * Runs in workqueue to avoid recursion in netlink callbacks.
2094  */
2095 static void netvsc_vf_setup(struct work_struct *w)
2096 {
2097         struct net_device_context *ndev_ctx
2098                 = container_of(w, struct net_device_context, vf_takeover.work);
2099         struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2100         struct net_device *vf_netdev;
2101
2102         if (!rtnl_trylock()) {
2103                 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2104                 return;
2105         }
2106
2107         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2108         if (vf_netdev)
2109                 __netvsc_vf_setup(ndev, vf_netdev);
2110
2111         rtnl_unlock();
2112 }
2113
2114 /* Find netvsc by VF serial number.
2115  * The PCI hyperv controller records the serial number as the slot kobj name.
2116  */
2117 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2118 {
2119         struct device *parent = vf_netdev->dev.parent;
2120         struct net_device_context *ndev_ctx;
2121         struct pci_dev *pdev;
2122         u32 serial;
2123
2124         if (!parent || !dev_is_pci(parent))
2125                 return NULL; /* not a PCI device */
2126
2127         pdev = to_pci_dev(parent);
2128         if (!pdev->slot) {
2129                 netdev_notice(vf_netdev, "no PCI slot information\n");
2130                 return NULL;
2131         }
2132
2133         if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2134                 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2135                               pci_slot_name(pdev->slot));
2136                 return NULL;
2137         }
2138
2139         list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2140                 if (!ndev_ctx->vf_alloc)
2141                         continue;
2142
2143                 if (ndev_ctx->vf_serial == serial)
2144                         return hv_get_drvdata(ndev_ctx->device_ctx);
2145         }
2146
2147         netdev_notice(vf_netdev,
2148                       "no netdev found for vf serial:%u\n", serial);
2149         return NULL;
2150 }
2151
2152 static int netvsc_register_vf(struct net_device *vf_netdev)
2153 {
2154         struct net_device_context *net_device_ctx;
2155         struct netvsc_device *netvsc_dev;
2156         struct net_device *ndev;
2157         int ret;
2158
2159         if (vf_netdev->addr_len != ETH_ALEN)
2160                 return NOTIFY_DONE;
2161
2162         ndev = get_netvsc_byslot(vf_netdev);
2163         if (!ndev)
2164                 return NOTIFY_DONE;
2165
2166         net_device_ctx = netdev_priv(ndev);
2167         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2168         if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2169                 return NOTIFY_DONE;
2170
2171         /* if syntihetic interface is a different namespace,
2172          * then move the VF to that namespace; join will be
2173          * done again in that context.
2174          */
2175         if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2176                 ret = dev_change_net_namespace(vf_netdev,
2177                                                dev_net(ndev), "eth%d");
2178                 if (ret)
2179                         netdev_err(vf_netdev,
2180                                    "could not move to same namespace as %s: %d\n",
2181                                    ndev->name, ret);
2182                 else
2183                         netdev_info(vf_netdev,
2184                                     "VF moved to namespace with: %s\n",
2185                                     ndev->name);
2186                 return NOTIFY_DONE;
2187         }
2188
2189         netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2190
2191         if (netvsc_vf_join(vf_netdev, ndev) != 0)
2192                 return NOTIFY_DONE;
2193
2194         dev_hold(vf_netdev);
2195         rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2196         return NOTIFY_OK;
2197 }
2198
2199 /* VF up/down change detected, schedule to change data path */
2200 static int netvsc_vf_changed(struct net_device *vf_netdev)
2201 {
2202         struct net_device_context *net_device_ctx;
2203         struct netvsc_device *netvsc_dev;
2204         struct net_device *ndev;
2205         bool vf_is_up = netif_running(vf_netdev);
2206
2207         ndev = get_netvsc_byref(vf_netdev);
2208         if (!ndev)
2209                 return NOTIFY_DONE;
2210
2211         net_device_ctx = netdev_priv(ndev);
2212         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2213         if (!netvsc_dev)
2214                 return NOTIFY_DONE;
2215
2216         netvsc_switch_datapath(ndev, vf_is_up);
2217         netdev_info(ndev, "Data path switched %s VF: %s\n",
2218                     vf_is_up ? "to" : "from", vf_netdev->name);
2219
2220         return NOTIFY_OK;
2221 }
2222
2223 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2224 {
2225         struct net_device *ndev;
2226         struct net_device_context *net_device_ctx;
2227
2228         ndev = get_netvsc_byref(vf_netdev);
2229         if (!ndev)
2230                 return NOTIFY_DONE;
2231
2232         net_device_ctx = netdev_priv(ndev);
2233         cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2234
2235         netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2236
2237         netdev_rx_handler_unregister(vf_netdev);
2238         netdev_upper_dev_unlink(vf_netdev, ndev);
2239         RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2240         dev_put(vf_netdev);
2241
2242         return NOTIFY_OK;
2243 }
2244
2245 static int netvsc_probe(struct hv_device *dev,
2246                         const struct hv_vmbus_device_id *dev_id)
2247 {
2248         struct net_device *net = NULL;
2249         struct net_device_context *net_device_ctx;
2250         struct netvsc_device_info *device_info = NULL;
2251         struct netvsc_device *nvdev;
2252         int ret = -ENOMEM;
2253
2254         net = alloc_etherdev_mq(sizeof(struct net_device_context),
2255                                 VRSS_CHANNEL_MAX);
2256         if (!net)
2257                 goto no_net;
2258
2259         netif_carrier_off(net);
2260
2261         netvsc_init_settings(net);
2262
2263         net_device_ctx = netdev_priv(net);
2264         net_device_ctx->device_ctx = dev;
2265         net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2266         if (netif_msg_probe(net_device_ctx))
2267                 netdev_dbg(net, "netvsc msg_enable: %d\n",
2268                            net_device_ctx->msg_enable);
2269
2270         hv_set_drvdata(dev, net);
2271
2272         INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2273
2274         spin_lock_init(&net_device_ctx->lock);
2275         INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2276         INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2277
2278         net_device_ctx->vf_stats
2279                 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2280         if (!net_device_ctx->vf_stats)
2281                 goto no_stats;
2282
2283         net->netdev_ops = &device_ops;
2284         net->ethtool_ops = &ethtool_ops;
2285         SET_NETDEV_DEV(net, &dev->device);
2286
2287         /* We always need headroom for rndis header */
2288         net->needed_headroom = RNDIS_AND_PPI_SIZE;
2289
2290         /* Initialize the number of queues to be 1, we may change it if more
2291          * channels are offered later.
2292          */
2293         netif_set_real_num_tx_queues(net, 1);
2294         netif_set_real_num_rx_queues(net, 1);
2295
2296         /* Notify the netvsc driver of the new device */
2297         device_info = netvsc_devinfo_get(NULL);
2298
2299         if (!device_info) {
2300                 ret = -ENOMEM;
2301                 goto devinfo_failed;
2302         }
2303
2304         nvdev = rndis_filter_device_add(dev, device_info);
2305         if (IS_ERR(nvdev)) {
2306                 ret = PTR_ERR(nvdev);
2307                 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2308                 goto rndis_failed;
2309         }
2310
2311         memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2312
2313         /* We must get rtnl lock before scheduling nvdev->subchan_work,
2314          * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2315          * all subchannels to show up, but that may not happen because
2316          * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2317          * -> ... -> device_add() -> ... -> __device_attach() can't get
2318          * the device lock, so all the subchannels can't be processed --
2319          * finally netvsc_subchan_work() hangs for ever.
2320          */
2321         rtnl_lock();
2322
2323         if (nvdev->num_chn > 1)
2324                 schedule_work(&nvdev->subchan_work);
2325
2326         /* hw_features computed in rndis_netdev_set_hwcaps() */
2327         net->features = net->hw_features |
2328                 NETIF_F_HIGHDMA | NETIF_F_SG |
2329                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2330         net->vlan_features = net->features;
2331
2332         netdev_lockdep_set_classes(net);
2333
2334         /* MTU range: 68 - 1500 or 65521 */
2335         net->min_mtu = NETVSC_MTU_MIN;
2336         if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2337                 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2338         else
2339                 net->max_mtu = ETH_DATA_LEN;
2340
2341         nvdev->tx_disable = false;
2342
2343         ret = register_netdevice(net);
2344         if (ret != 0) {
2345                 pr_err("Unable to register netdev.\n");
2346                 goto register_failed;
2347         }
2348
2349         list_add(&net_device_ctx->list, &netvsc_dev_list);
2350         rtnl_unlock();
2351
2352         kfree(device_info);
2353         return 0;
2354
2355 register_failed:
2356         rtnl_unlock();
2357         rndis_filter_device_remove(dev, nvdev);
2358 rndis_failed:
2359         kfree(device_info);
2360 devinfo_failed:
2361         free_percpu(net_device_ctx->vf_stats);
2362 no_stats:
2363         hv_set_drvdata(dev, NULL);
2364         free_netdev(net);
2365 no_net:
2366         return ret;
2367 }
2368
2369 static int netvsc_remove(struct hv_device *dev)
2370 {
2371         struct net_device_context *ndev_ctx;
2372         struct net_device *vf_netdev, *net;
2373         struct netvsc_device *nvdev;
2374
2375         net = hv_get_drvdata(dev);
2376         if (net == NULL) {
2377                 dev_err(&dev->device, "No net device to remove\n");
2378                 return 0;
2379         }
2380
2381         ndev_ctx = netdev_priv(net);
2382
2383         cancel_delayed_work_sync(&ndev_ctx->dwork);
2384
2385         rtnl_lock();
2386         nvdev = rtnl_dereference(ndev_ctx->nvdev);
2387         if (nvdev)
2388                 cancel_work_sync(&nvdev->subchan_work);
2389
2390         /*
2391          * Call to the vsc driver to let it know that the device is being
2392          * removed. Also blocks mtu and channel changes.
2393          */
2394         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2395         if (vf_netdev)
2396                 netvsc_unregister_vf(vf_netdev);
2397
2398         if (nvdev)
2399                 rndis_filter_device_remove(dev, nvdev);
2400
2401         unregister_netdevice(net);
2402         list_del(&ndev_ctx->list);
2403
2404         rtnl_unlock();
2405
2406         hv_set_drvdata(dev, NULL);
2407
2408         free_percpu(ndev_ctx->vf_stats);
2409         free_netdev(net);
2410         return 0;
2411 }
2412
2413 static const struct hv_vmbus_device_id id_table[] = {
2414         /* Network guid */
2415         { HV_NIC_GUID, },
2416         { },
2417 };
2418
2419 MODULE_DEVICE_TABLE(vmbus, id_table);
2420
2421 /* The one and only one */
2422 static struct  hv_driver netvsc_drv = {
2423         .name = KBUILD_MODNAME,
2424         .id_table = id_table,
2425         .probe = netvsc_probe,
2426         .remove = netvsc_remove,
2427         .driver = {
2428                 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2429         },
2430 };
2431
2432 /*
2433  * On Hyper-V, every VF interface is matched with a corresponding
2434  * synthetic interface. The synthetic interface is presented first
2435  * to the guest. When the corresponding VF instance is registered,
2436  * we will take care of switching the data path.
2437  */
2438 static int netvsc_netdev_event(struct notifier_block *this,
2439                                unsigned long event, void *ptr)
2440 {
2441         struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2442
2443         /* Skip our own events */
2444         if (event_dev->netdev_ops == &device_ops)
2445                 return NOTIFY_DONE;
2446
2447         /* Avoid non-Ethernet type devices */
2448         if (event_dev->type != ARPHRD_ETHER)
2449                 return NOTIFY_DONE;
2450
2451         /* Avoid Vlan dev with same MAC registering as VF */
2452         if (is_vlan_dev(event_dev))
2453                 return NOTIFY_DONE;
2454
2455         /* Avoid Bonding master dev with same MAC registering as VF */
2456         if ((event_dev->priv_flags & IFF_BONDING) &&
2457             (event_dev->flags & IFF_MASTER))
2458                 return NOTIFY_DONE;
2459
2460         switch (event) {
2461         case NETDEV_REGISTER:
2462                 return netvsc_register_vf(event_dev);
2463         case NETDEV_UNREGISTER:
2464                 return netvsc_unregister_vf(event_dev);
2465         case NETDEV_UP:
2466         case NETDEV_DOWN:
2467                 return netvsc_vf_changed(event_dev);
2468         default:
2469                 return NOTIFY_DONE;
2470         }
2471 }
2472
2473 static struct notifier_block netvsc_netdev_notifier = {
2474         .notifier_call = netvsc_netdev_event,
2475 };
2476
2477 static void __exit netvsc_drv_exit(void)
2478 {
2479         unregister_netdevice_notifier(&netvsc_netdev_notifier);
2480         vmbus_driver_unregister(&netvsc_drv);
2481 }
2482
2483 static int __init netvsc_drv_init(void)
2484 {
2485         int ret;
2486
2487         if (ring_size < RING_SIZE_MIN) {
2488                 ring_size = RING_SIZE_MIN;
2489                 pr_info("Increased ring_size to %u (min allowed)\n",
2490                         ring_size);
2491         }
2492         netvsc_ring_bytes = ring_size * PAGE_SIZE;
2493
2494         ret = vmbus_driver_register(&netvsc_drv);
2495         if (ret)
2496                 return ret;
2497
2498         register_netdevice_notifier(&netvsc_netdev_notifier);
2499         return 0;
2500 }
2501
2502 MODULE_LICENSE("GPL");
2503 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2504
2505 module_init(netvsc_drv_init);
2506 module_exit(netvsc_drv_exit);