GNU Linux-libre 6.9.1-gnu
[releases.git] / drivers / net / hyperv / netvsc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/wait.h>
14 #include <linux/mm.h>
15 #include <linux/delay.h>
16 #include <linux/io.h>
17 #include <linux/slab.h>
18 #include <linux/netdevice.h>
19 #include <linux/if_ether.h>
20 #include <linux/vmalloc.h>
21 #include <linux/rtnetlink.h>
22 #include <linux/prefetch.h>
23 #include <linux/filter.h>
24
25 #include <asm/sync_bitops.h>
26 #include <asm/mshyperv.h>
27
28 #include "hyperv_net.h"
29 #include "netvsc_trace.h"
30
31 /*
32  * Switch the data path from the synthetic interface to the VF
33  * interface.
34  */
35 int netvsc_switch_datapath(struct net_device *ndev, bool vf)
36 {
37         struct net_device_context *net_device_ctx = netdev_priv(ndev);
38         struct hv_device *dev = net_device_ctx->device_ctx;
39         struct netvsc_device *nv_dev = rtnl_dereference(net_device_ctx->nvdev);
40         struct nvsp_message *init_pkt = &nv_dev->channel_init_pkt;
41         int ret, retry = 0;
42
43         /* Block sending traffic to VF if it's about to be gone */
44         if (!vf)
45                 net_device_ctx->data_path_is_vf = vf;
46
47         memset(init_pkt, 0, sizeof(struct nvsp_message));
48         init_pkt->hdr.msg_type = NVSP_MSG4_TYPE_SWITCH_DATA_PATH;
49         if (vf)
50                 init_pkt->msg.v4_msg.active_dp.active_datapath =
51                         NVSP_DATAPATH_VF;
52         else
53                 init_pkt->msg.v4_msg.active_dp.active_datapath =
54                         NVSP_DATAPATH_SYNTHETIC;
55
56 again:
57         trace_nvsp_send(ndev, init_pkt);
58
59         ret = vmbus_sendpacket(dev->channel, init_pkt,
60                                sizeof(struct nvsp_message),
61                                (unsigned long)init_pkt, VM_PKT_DATA_INBAND,
62                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
63
64         /* If failed to switch to/from VF, let data_path_is_vf stay false,
65          * so we use synthetic path to send data.
66          */
67         if (ret) {
68                 if (ret != -EAGAIN) {
69                         netdev_err(ndev,
70                                    "Unable to send sw datapath msg, err: %d\n",
71                                    ret);
72                         return ret;
73                 }
74
75                 if (retry++ < RETRY_MAX) {
76                         usleep_range(RETRY_US_LO, RETRY_US_HI);
77                         goto again;
78                 } else {
79                         netdev_err(
80                                 ndev,
81                                 "Retry failed to send sw datapath msg, err: %d\n",
82                                 ret);
83                         return ret;
84                 }
85         }
86
87         wait_for_completion(&nv_dev->channel_init_wait);
88         net_device_ctx->data_path_is_vf = vf;
89
90         return 0;
91 }
92
93 /* Worker to setup sub channels on initial setup
94  * Initial hotplug event occurs in softirq context
95  * and can't wait for channels.
96  */
97 static void netvsc_subchan_work(struct work_struct *w)
98 {
99         struct netvsc_device *nvdev =
100                 container_of(w, struct netvsc_device, subchan_work);
101         struct rndis_device *rdev;
102         int i, ret;
103
104         /* Avoid deadlock with device removal already under RTNL */
105         if (!rtnl_trylock()) {
106                 schedule_work(w);
107                 return;
108         }
109
110         rdev = nvdev->extension;
111         if (rdev) {
112                 ret = rndis_set_subchannel(rdev->ndev, nvdev, NULL);
113                 if (ret == 0) {
114                         netif_device_attach(rdev->ndev);
115                 } else {
116                         /* fallback to only primary channel */
117                         for (i = 1; i < nvdev->num_chn; i++)
118                                 netif_napi_del(&nvdev->chan_table[i].napi);
119
120                         nvdev->max_chn = 1;
121                         nvdev->num_chn = 1;
122                 }
123         }
124
125         rtnl_unlock();
126 }
127
128 static struct netvsc_device *alloc_net_device(void)
129 {
130         struct netvsc_device *net_device;
131
132         net_device = kzalloc(sizeof(struct netvsc_device), GFP_KERNEL);
133         if (!net_device)
134                 return NULL;
135
136         init_waitqueue_head(&net_device->wait_drain);
137         net_device->destroy = false;
138         net_device->tx_disable = true;
139
140         net_device->max_pkt = RNDIS_MAX_PKT_DEFAULT;
141         net_device->pkt_align = RNDIS_PKT_ALIGN_DEFAULT;
142
143         init_completion(&net_device->channel_init_wait);
144         init_waitqueue_head(&net_device->subchan_open);
145         INIT_WORK(&net_device->subchan_work, netvsc_subchan_work);
146
147         return net_device;
148 }
149
150 static void free_netvsc_device(struct rcu_head *head)
151 {
152         struct netvsc_device *nvdev
153                 = container_of(head, struct netvsc_device, rcu);
154         int i;
155
156         kfree(nvdev->extension);
157
158         if (!nvdev->recv_buf_gpadl_handle.decrypted)
159                 vfree(nvdev->recv_buf);
160         if (!nvdev->send_buf_gpadl_handle.decrypted)
161                 vfree(nvdev->send_buf);
162         bitmap_free(nvdev->send_section_map);
163
164         for (i = 0; i < VRSS_CHANNEL_MAX; i++) {
165                 xdp_rxq_info_unreg(&nvdev->chan_table[i].xdp_rxq);
166                 kfree(nvdev->chan_table[i].recv_buf);
167                 vfree(nvdev->chan_table[i].mrc.slots);
168         }
169
170         kfree(nvdev);
171 }
172
173 static void free_netvsc_device_rcu(struct netvsc_device *nvdev)
174 {
175         call_rcu(&nvdev->rcu, free_netvsc_device);
176 }
177
178 static void netvsc_revoke_recv_buf(struct hv_device *device,
179                                    struct netvsc_device *net_device,
180                                    struct net_device *ndev)
181 {
182         struct nvsp_message *revoke_packet;
183         int ret;
184
185         /*
186          * If we got a section count, it means we received a
187          * SendReceiveBufferComplete msg (ie sent
188          * NvspMessage1TypeSendReceiveBuffer msg) therefore, we need
189          * to send a revoke msg here
190          */
191         if (net_device->recv_section_cnt) {
192                 /* Send the revoke receive buffer */
193                 revoke_packet = &net_device->revoke_packet;
194                 memset(revoke_packet, 0, sizeof(struct nvsp_message));
195
196                 revoke_packet->hdr.msg_type =
197                         NVSP_MSG1_TYPE_REVOKE_RECV_BUF;
198                 revoke_packet->msg.v1_msg.
199                 revoke_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID;
200
201                 trace_nvsp_send(ndev, revoke_packet);
202
203                 ret = vmbus_sendpacket(device->channel,
204                                        revoke_packet,
205                                        sizeof(struct nvsp_message),
206                                        VMBUS_RQST_ID_NO_RESPONSE,
207                                        VM_PKT_DATA_INBAND, 0);
208                 /* If the failure is because the channel is rescinded;
209                  * ignore the failure since we cannot send on a rescinded
210                  * channel. This would allow us to properly cleanup
211                  * even when the channel is rescinded.
212                  */
213                 if (device->channel->rescind)
214                         ret = 0;
215                 /*
216                  * If we failed here, we might as well return and
217                  * have a leak rather than continue and a bugchk
218                  */
219                 if (ret != 0) {
220                         netdev_err(ndev, "unable to send "
221                                 "revoke receive buffer to netvsp\n");
222                         return;
223                 }
224                 net_device->recv_section_cnt = 0;
225         }
226 }
227
228 static void netvsc_revoke_send_buf(struct hv_device *device,
229                                    struct netvsc_device *net_device,
230                                    struct net_device *ndev)
231 {
232         struct nvsp_message *revoke_packet;
233         int ret;
234
235         /* Deal with the send buffer we may have setup.
236          * If we got a  send section size, it means we received a
237          * NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE msg (ie sent
238          * NVSP_MSG1_TYPE_SEND_SEND_BUF msg) therefore, we need
239          * to send a revoke msg here
240          */
241         if (net_device->send_section_cnt) {
242                 /* Send the revoke receive buffer */
243                 revoke_packet = &net_device->revoke_packet;
244                 memset(revoke_packet, 0, sizeof(struct nvsp_message));
245
246                 revoke_packet->hdr.msg_type =
247                         NVSP_MSG1_TYPE_REVOKE_SEND_BUF;
248                 revoke_packet->msg.v1_msg.revoke_send_buf.id =
249                         NETVSC_SEND_BUFFER_ID;
250
251                 trace_nvsp_send(ndev, revoke_packet);
252
253                 ret = vmbus_sendpacket(device->channel,
254                                        revoke_packet,
255                                        sizeof(struct nvsp_message),
256                                        VMBUS_RQST_ID_NO_RESPONSE,
257                                        VM_PKT_DATA_INBAND, 0);
258
259                 /* If the failure is because the channel is rescinded;
260                  * ignore the failure since we cannot send on a rescinded
261                  * channel. This would allow us to properly cleanup
262                  * even when the channel is rescinded.
263                  */
264                 if (device->channel->rescind)
265                         ret = 0;
266
267                 /* If we failed here, we might as well return and
268                  * have a leak rather than continue and a bugchk
269                  */
270                 if (ret != 0) {
271                         netdev_err(ndev, "unable to send "
272                                    "revoke send buffer to netvsp\n");
273                         return;
274                 }
275                 net_device->send_section_cnt = 0;
276         }
277 }
278
279 static void netvsc_teardown_recv_gpadl(struct hv_device *device,
280                                        struct netvsc_device *net_device,
281                                        struct net_device *ndev)
282 {
283         int ret;
284
285         if (net_device->recv_buf_gpadl_handle.gpadl_handle) {
286                 ret = vmbus_teardown_gpadl(device->channel,
287                                            &net_device->recv_buf_gpadl_handle);
288
289                 /* If we failed here, we might as well return and have a leak
290                  * rather than continue and a bugchk
291                  */
292                 if (ret != 0) {
293                         netdev_err(ndev,
294                                    "unable to teardown receive buffer's gpadl\n");
295                         return;
296                 }
297         }
298 }
299
300 static void netvsc_teardown_send_gpadl(struct hv_device *device,
301                                        struct netvsc_device *net_device,
302                                        struct net_device *ndev)
303 {
304         int ret;
305
306         if (net_device->send_buf_gpadl_handle.gpadl_handle) {
307                 ret = vmbus_teardown_gpadl(device->channel,
308                                            &net_device->send_buf_gpadl_handle);
309
310                 /* If we failed here, we might as well return and have a leak
311                  * rather than continue and a bugchk
312                  */
313                 if (ret != 0) {
314                         netdev_err(ndev,
315                                    "unable to teardown send buffer's gpadl\n");
316                         return;
317                 }
318         }
319 }
320
321 int netvsc_alloc_recv_comp_ring(struct netvsc_device *net_device, u32 q_idx)
322 {
323         struct netvsc_channel *nvchan = &net_device->chan_table[q_idx];
324         int node = cpu_to_node(nvchan->channel->target_cpu);
325         size_t size;
326
327         size = net_device->recv_completion_cnt * sizeof(struct recv_comp_data);
328         nvchan->mrc.slots = vzalloc_node(size, node);
329         if (!nvchan->mrc.slots)
330                 nvchan->mrc.slots = vzalloc(size);
331
332         return nvchan->mrc.slots ? 0 : -ENOMEM;
333 }
334
335 static int netvsc_init_buf(struct hv_device *device,
336                            struct netvsc_device *net_device,
337                            const struct netvsc_device_info *device_info)
338 {
339         struct nvsp_1_message_send_receive_buffer_complete *resp;
340         struct net_device *ndev = hv_get_drvdata(device);
341         struct nvsp_message *init_packet;
342         unsigned int buf_size;
343         int i, ret = 0;
344
345         /* Get receive buffer area. */
346         buf_size = device_info->recv_sections * device_info->recv_section_size;
347         buf_size = roundup(buf_size, PAGE_SIZE);
348
349         /* Legacy hosts only allow smaller receive buffer */
350         if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
351                 buf_size = min_t(unsigned int, buf_size,
352                                  NETVSC_RECEIVE_BUFFER_SIZE_LEGACY);
353
354         net_device->recv_buf = vzalloc(buf_size);
355         if (!net_device->recv_buf) {
356                 netdev_err(ndev,
357                            "unable to allocate receive buffer of size %u\n",
358                            buf_size);
359                 ret = -ENOMEM;
360                 goto cleanup;
361         }
362
363         net_device->recv_buf_size = buf_size;
364
365         /*
366          * Establish the gpadl handle for this buffer on this
367          * channel.  Note: This call uses the vmbus connection rather
368          * than the channel to establish the gpadl handle.
369          */
370         ret = vmbus_establish_gpadl(device->channel, net_device->recv_buf,
371                                     buf_size,
372                                     &net_device->recv_buf_gpadl_handle);
373         if (ret != 0) {
374                 netdev_err(ndev,
375                         "unable to establish receive buffer's gpadl\n");
376                 goto cleanup;
377         }
378
379         /* Notify the NetVsp of the gpadl handle */
380         init_packet = &net_device->channel_init_pkt;
381         memset(init_packet, 0, sizeof(struct nvsp_message));
382         init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_RECV_BUF;
383         init_packet->msg.v1_msg.send_recv_buf.
384                 gpadl_handle = net_device->recv_buf_gpadl_handle.gpadl_handle;
385         init_packet->msg.v1_msg.
386                 send_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID;
387
388         trace_nvsp_send(ndev, init_packet);
389
390         /* Send the gpadl notification request */
391         ret = vmbus_sendpacket(device->channel, init_packet,
392                                sizeof(struct nvsp_message),
393                                (unsigned long)init_packet,
394                                VM_PKT_DATA_INBAND,
395                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
396         if (ret != 0) {
397                 netdev_err(ndev,
398                         "unable to send receive buffer's gpadl to netvsp\n");
399                 goto cleanup;
400         }
401
402         wait_for_completion(&net_device->channel_init_wait);
403
404         /* Check the response */
405         resp = &init_packet->msg.v1_msg.send_recv_buf_complete;
406         if (resp->status != NVSP_STAT_SUCCESS) {
407                 netdev_err(ndev,
408                            "Unable to complete receive buffer initialization with NetVsp - status %d\n",
409                            resp->status);
410                 ret = -EINVAL;
411                 goto cleanup;
412         }
413
414         /* Parse the response */
415         netdev_dbg(ndev, "Receive sections: %u sub_allocs: size %u count: %u\n",
416                    resp->num_sections, resp->sections[0].sub_alloc_size,
417                    resp->sections[0].num_sub_allocs);
418
419         /* There should only be one section for the entire receive buffer */
420         if (resp->num_sections != 1 || resp->sections[0].offset != 0) {
421                 ret = -EINVAL;
422                 goto cleanup;
423         }
424
425         net_device->recv_section_size = resp->sections[0].sub_alloc_size;
426         net_device->recv_section_cnt = resp->sections[0].num_sub_allocs;
427
428         /* Ensure buffer will not overflow */
429         if (net_device->recv_section_size < NETVSC_MTU_MIN || (u64)net_device->recv_section_size *
430             (u64)net_device->recv_section_cnt > (u64)buf_size) {
431                 netdev_err(ndev, "invalid recv_section_size %u\n",
432                            net_device->recv_section_size);
433                 ret = -EINVAL;
434                 goto cleanup;
435         }
436
437         for (i = 0; i < VRSS_CHANNEL_MAX; i++) {
438                 struct netvsc_channel *nvchan = &net_device->chan_table[i];
439
440                 nvchan->recv_buf = kzalloc(net_device->recv_section_size, GFP_KERNEL);
441                 if (nvchan->recv_buf == NULL) {
442                         ret = -ENOMEM;
443                         goto cleanup;
444                 }
445         }
446
447         /* Setup receive completion ring.
448          * Add 1 to the recv_section_cnt because at least one entry in a
449          * ring buffer has to be empty.
450          */
451         net_device->recv_completion_cnt = net_device->recv_section_cnt + 1;
452         ret = netvsc_alloc_recv_comp_ring(net_device, 0);
453         if (ret)
454                 goto cleanup;
455
456         /* Now setup the send buffer. */
457         buf_size = device_info->send_sections * device_info->send_section_size;
458         buf_size = round_up(buf_size, PAGE_SIZE);
459
460         net_device->send_buf = vzalloc(buf_size);
461         if (!net_device->send_buf) {
462                 netdev_err(ndev, "unable to allocate send buffer of size %u\n",
463                            buf_size);
464                 ret = -ENOMEM;
465                 goto cleanup;
466         }
467         net_device->send_buf_size = buf_size;
468
469         /* Establish the gpadl handle for this buffer on this
470          * channel.  Note: This call uses the vmbus connection rather
471          * than the channel to establish the gpadl handle.
472          */
473         ret = vmbus_establish_gpadl(device->channel, net_device->send_buf,
474                                     buf_size,
475                                     &net_device->send_buf_gpadl_handle);
476         if (ret != 0) {
477                 netdev_err(ndev,
478                            "unable to establish send buffer's gpadl\n");
479                 goto cleanup;
480         }
481
482         /* Notify the NetVsp of the gpadl handle */
483         init_packet = &net_device->channel_init_pkt;
484         memset(init_packet, 0, sizeof(struct nvsp_message));
485         init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_SEND_BUF;
486         init_packet->msg.v1_msg.send_send_buf.gpadl_handle =
487                 net_device->send_buf_gpadl_handle.gpadl_handle;
488         init_packet->msg.v1_msg.send_send_buf.id = NETVSC_SEND_BUFFER_ID;
489
490         trace_nvsp_send(ndev, init_packet);
491
492         /* Send the gpadl notification request */
493         ret = vmbus_sendpacket(device->channel, init_packet,
494                                sizeof(struct nvsp_message),
495                                (unsigned long)init_packet,
496                                VM_PKT_DATA_INBAND,
497                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
498         if (ret != 0) {
499                 netdev_err(ndev,
500                            "unable to send send buffer's gpadl to netvsp\n");
501                 goto cleanup;
502         }
503
504         wait_for_completion(&net_device->channel_init_wait);
505
506         /* Check the response */
507         if (init_packet->msg.v1_msg.
508             send_send_buf_complete.status != NVSP_STAT_SUCCESS) {
509                 netdev_err(ndev, "Unable to complete send buffer "
510                            "initialization with NetVsp - status %d\n",
511                            init_packet->msg.v1_msg.
512                            send_send_buf_complete.status);
513                 ret = -EINVAL;
514                 goto cleanup;
515         }
516
517         /* Parse the response */
518         net_device->send_section_size = init_packet->msg.
519                                 v1_msg.send_send_buf_complete.section_size;
520         if (net_device->send_section_size < NETVSC_MTU_MIN) {
521                 netdev_err(ndev, "invalid send_section_size %u\n",
522                            net_device->send_section_size);
523                 ret = -EINVAL;
524                 goto cleanup;
525         }
526
527         /* Section count is simply the size divided by the section size. */
528         net_device->send_section_cnt = buf_size / net_device->send_section_size;
529
530         netdev_dbg(ndev, "Send section size: %d, Section count:%d\n",
531                    net_device->send_section_size, net_device->send_section_cnt);
532
533         /* Setup state for managing the send buffer. */
534         net_device->send_section_map = bitmap_zalloc(net_device->send_section_cnt,
535                                                      GFP_KERNEL);
536         if (!net_device->send_section_map) {
537                 ret = -ENOMEM;
538                 goto cleanup;
539         }
540
541         goto exit;
542
543 cleanup:
544         netvsc_revoke_recv_buf(device, net_device, ndev);
545         netvsc_revoke_send_buf(device, net_device, ndev);
546         netvsc_teardown_recv_gpadl(device, net_device, ndev);
547         netvsc_teardown_send_gpadl(device, net_device, ndev);
548
549 exit:
550         return ret;
551 }
552
553 /* Negotiate NVSP protocol version */
554 static int negotiate_nvsp_ver(struct hv_device *device,
555                               struct netvsc_device *net_device,
556                               struct nvsp_message *init_packet,
557                               u32 nvsp_ver)
558 {
559         struct net_device *ndev = hv_get_drvdata(device);
560         int ret;
561
562         memset(init_packet, 0, sizeof(struct nvsp_message));
563         init_packet->hdr.msg_type = NVSP_MSG_TYPE_INIT;
564         init_packet->msg.init_msg.init.min_protocol_ver = nvsp_ver;
565         init_packet->msg.init_msg.init.max_protocol_ver = nvsp_ver;
566         trace_nvsp_send(ndev, init_packet);
567
568         /* Send the init request */
569         ret = vmbus_sendpacket(device->channel, init_packet,
570                                sizeof(struct nvsp_message),
571                                (unsigned long)init_packet,
572                                VM_PKT_DATA_INBAND,
573                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
574
575         if (ret != 0)
576                 return ret;
577
578         wait_for_completion(&net_device->channel_init_wait);
579
580         if (init_packet->msg.init_msg.init_complete.status !=
581             NVSP_STAT_SUCCESS)
582                 return -EINVAL;
583
584         if (nvsp_ver == NVSP_PROTOCOL_VERSION_1)
585                 return 0;
586
587         /* NVSPv2 or later: Send NDIS config */
588         memset(init_packet, 0, sizeof(struct nvsp_message));
589         init_packet->hdr.msg_type = NVSP_MSG2_TYPE_SEND_NDIS_CONFIG;
590         init_packet->msg.v2_msg.send_ndis_config.mtu = ndev->mtu + ETH_HLEN;
591         init_packet->msg.v2_msg.send_ndis_config.capability.ieee8021q = 1;
592
593         if (nvsp_ver >= NVSP_PROTOCOL_VERSION_5) {
594                 if (hv_is_isolation_supported())
595                         netdev_info(ndev, "SR-IOV not advertised by guests on the host supporting isolation\n");
596                 else
597                         init_packet->msg.v2_msg.send_ndis_config.capability.sriov = 1;
598
599                 /* Teaming bit is needed to receive link speed updates */
600                 init_packet->msg.v2_msg.send_ndis_config.capability.teaming = 1;
601         }
602
603         if (nvsp_ver >= NVSP_PROTOCOL_VERSION_61)
604                 init_packet->msg.v2_msg.send_ndis_config.capability.rsc = 1;
605
606         trace_nvsp_send(ndev, init_packet);
607
608         ret = vmbus_sendpacket(device->channel, init_packet,
609                                 sizeof(struct nvsp_message),
610                                 VMBUS_RQST_ID_NO_RESPONSE,
611                                 VM_PKT_DATA_INBAND, 0);
612
613         return ret;
614 }
615
616 static int netvsc_connect_vsp(struct hv_device *device,
617                               struct netvsc_device *net_device,
618                               const struct netvsc_device_info *device_info)
619 {
620         struct net_device *ndev = hv_get_drvdata(device);
621         static const u32 ver_list[] = {
622                 NVSP_PROTOCOL_VERSION_1, NVSP_PROTOCOL_VERSION_2,
623                 NVSP_PROTOCOL_VERSION_4, NVSP_PROTOCOL_VERSION_5,
624                 NVSP_PROTOCOL_VERSION_6, NVSP_PROTOCOL_VERSION_61
625         };
626         struct nvsp_message *init_packet;
627         int ndis_version, i, ret;
628
629         init_packet = &net_device->channel_init_pkt;
630
631         /* Negotiate the latest NVSP protocol supported */
632         for (i = ARRAY_SIZE(ver_list) - 1; i >= 0; i--)
633                 if (negotiate_nvsp_ver(device, net_device, init_packet,
634                                        ver_list[i])  == 0) {
635                         net_device->nvsp_version = ver_list[i];
636                         break;
637                 }
638
639         if (i < 0) {
640                 ret = -EPROTO;
641                 goto cleanup;
642         }
643
644         if (hv_is_isolation_supported() && net_device->nvsp_version < NVSP_PROTOCOL_VERSION_61) {
645                 netdev_err(ndev, "Invalid NVSP version 0x%x (expected >= 0x%x) from the host supporting isolation\n",
646                            net_device->nvsp_version, NVSP_PROTOCOL_VERSION_61);
647                 ret = -EPROTO;
648                 goto cleanup;
649         }
650
651         pr_debug("Negotiated NVSP version:%x\n", net_device->nvsp_version);
652
653         /* Send the ndis version */
654         memset(init_packet, 0, sizeof(struct nvsp_message));
655
656         if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_4)
657                 ndis_version = 0x00060001;
658         else
659                 ndis_version = 0x0006001e;
660
661         init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_NDIS_VER;
662         init_packet->msg.v1_msg.
663                 send_ndis_ver.ndis_major_ver =
664                                 (ndis_version & 0xFFFF0000) >> 16;
665         init_packet->msg.v1_msg.
666                 send_ndis_ver.ndis_minor_ver =
667                                 ndis_version & 0xFFFF;
668
669         trace_nvsp_send(ndev, init_packet);
670
671         /* Send the init request */
672         ret = vmbus_sendpacket(device->channel, init_packet,
673                                 sizeof(struct nvsp_message),
674                                 VMBUS_RQST_ID_NO_RESPONSE,
675                                 VM_PKT_DATA_INBAND, 0);
676         if (ret != 0)
677                 goto cleanup;
678
679
680         ret = netvsc_init_buf(device, net_device, device_info);
681
682 cleanup:
683         return ret;
684 }
685
686 /*
687  * netvsc_device_remove - Callback when the root bus device is removed
688  */
689 void netvsc_device_remove(struct hv_device *device)
690 {
691         struct net_device *ndev = hv_get_drvdata(device);
692         struct net_device_context *net_device_ctx = netdev_priv(ndev);
693         struct netvsc_device *net_device
694                 = rtnl_dereference(net_device_ctx->nvdev);
695         int i;
696
697         /*
698          * Revoke receive buffer. If host is pre-Win2016 then tear down
699          * receive buffer GPADL. Do the same for send buffer.
700          */
701         netvsc_revoke_recv_buf(device, net_device, ndev);
702         if (vmbus_proto_version < VERSION_WIN10)
703                 netvsc_teardown_recv_gpadl(device, net_device, ndev);
704
705         netvsc_revoke_send_buf(device, net_device, ndev);
706         if (vmbus_proto_version < VERSION_WIN10)
707                 netvsc_teardown_send_gpadl(device, net_device, ndev);
708
709         RCU_INIT_POINTER(net_device_ctx->nvdev, NULL);
710
711         /* Disable NAPI and disassociate its context from the device. */
712         for (i = 0; i < net_device->num_chn; i++) {
713                 /* See also vmbus_reset_channel_cb(). */
714                 /* only disable enabled NAPI channel */
715                 if (i < ndev->real_num_rx_queues)
716                         napi_disable(&net_device->chan_table[i].napi);
717
718                 netif_napi_del(&net_device->chan_table[i].napi);
719         }
720
721         /*
722          * At this point, no one should be accessing net_device
723          * except in here
724          */
725         netdev_dbg(ndev, "net device safe to remove\n");
726
727         /* Now, we can close the channel safely */
728         vmbus_close(device->channel);
729
730         /*
731          * If host is Win2016 or higher then we do the GPADL tear down
732          * here after VMBus is closed.
733         */
734         if (vmbus_proto_version >= VERSION_WIN10) {
735                 netvsc_teardown_recv_gpadl(device, net_device, ndev);
736                 netvsc_teardown_send_gpadl(device, net_device, ndev);
737         }
738
739         /* Release all resources */
740         free_netvsc_device_rcu(net_device);
741 }
742
743 #define RING_AVAIL_PERCENT_HIWATER 20
744 #define RING_AVAIL_PERCENT_LOWATER 10
745
746 static inline void netvsc_free_send_slot(struct netvsc_device *net_device,
747                                          u32 index)
748 {
749         sync_change_bit(index, net_device->send_section_map);
750 }
751
752 static void netvsc_send_tx_complete(struct net_device *ndev,
753                                     struct netvsc_device *net_device,
754                                     struct vmbus_channel *channel,
755                                     const struct vmpacket_descriptor *desc,
756                                     int budget)
757 {
758         struct net_device_context *ndev_ctx = netdev_priv(ndev);
759         struct sk_buff *skb;
760         u16 q_idx = 0;
761         int queue_sends;
762         u64 cmd_rqst;
763
764         cmd_rqst = channel->request_addr_callback(channel, desc->trans_id);
765         if (cmd_rqst == VMBUS_RQST_ERROR) {
766                 netdev_err(ndev, "Invalid transaction ID %llx\n", desc->trans_id);
767                 return;
768         }
769
770         skb = (struct sk_buff *)(unsigned long)cmd_rqst;
771
772         /* Notify the layer above us */
773         if (likely(skb)) {
774                 struct hv_netvsc_packet *packet
775                         = (struct hv_netvsc_packet *)skb->cb;
776                 u32 send_index = packet->send_buf_index;
777                 struct netvsc_stats_tx *tx_stats;
778
779                 if (send_index != NETVSC_INVALID_INDEX)
780                         netvsc_free_send_slot(net_device, send_index);
781                 q_idx = packet->q_idx;
782
783                 tx_stats = &net_device->chan_table[q_idx].tx_stats;
784
785                 u64_stats_update_begin(&tx_stats->syncp);
786                 tx_stats->packets += packet->total_packets;
787                 tx_stats->bytes += packet->total_bytes;
788                 u64_stats_update_end(&tx_stats->syncp);
789
790                 netvsc_dma_unmap(ndev_ctx->device_ctx, packet);
791                 napi_consume_skb(skb, budget);
792         }
793
794         queue_sends =
795                 atomic_dec_return(&net_device->chan_table[q_idx].queue_sends);
796
797         if (unlikely(net_device->destroy)) {
798                 if (queue_sends == 0)
799                         wake_up(&net_device->wait_drain);
800         } else {
801                 struct netdev_queue *txq = netdev_get_tx_queue(ndev, q_idx);
802
803                 if (netif_tx_queue_stopped(txq) && !net_device->tx_disable &&
804                     (hv_get_avail_to_write_percent(&channel->outbound) >
805                      RING_AVAIL_PERCENT_HIWATER || queue_sends < 1)) {
806                         netif_tx_wake_queue(txq);
807                         ndev_ctx->eth_stats.wake_queue++;
808                 }
809         }
810 }
811
812 static void netvsc_send_completion(struct net_device *ndev,
813                                    struct netvsc_device *net_device,
814                                    struct vmbus_channel *incoming_channel,
815                                    const struct vmpacket_descriptor *desc,
816                                    int budget)
817 {
818         const struct nvsp_message *nvsp_packet;
819         u32 msglen = hv_pkt_datalen(desc);
820         struct nvsp_message *pkt_rqst;
821         u64 cmd_rqst;
822         u32 status;
823
824         /* First check if this is a VMBUS completion without data payload */
825         if (!msglen) {
826                 cmd_rqst = incoming_channel->request_addr_callback(incoming_channel,
827                                                                    desc->trans_id);
828                 if (cmd_rqst == VMBUS_RQST_ERROR) {
829                         netdev_err(ndev, "Invalid transaction ID %llx\n", desc->trans_id);
830                         return;
831                 }
832
833                 pkt_rqst = (struct nvsp_message *)(uintptr_t)cmd_rqst;
834                 switch (pkt_rqst->hdr.msg_type) {
835                 case NVSP_MSG4_TYPE_SWITCH_DATA_PATH:
836                         complete(&net_device->channel_init_wait);
837                         break;
838
839                 default:
840                         netdev_err(ndev, "Unexpected VMBUS completion!!\n");
841                 }
842                 return;
843         }
844
845         /* Ensure packet is big enough to read header fields */
846         if (msglen < sizeof(struct nvsp_message_header)) {
847                 netdev_err(ndev, "nvsp_message length too small: %u\n", msglen);
848                 return;
849         }
850
851         nvsp_packet = hv_pkt_data(desc);
852         switch (nvsp_packet->hdr.msg_type) {
853         case NVSP_MSG_TYPE_INIT_COMPLETE:
854                 if (msglen < sizeof(struct nvsp_message_header) +
855                                 sizeof(struct nvsp_message_init_complete)) {
856                         netdev_err(ndev, "nvsp_msg length too small: %u\n",
857                                    msglen);
858                         return;
859                 }
860                 break;
861
862         case NVSP_MSG1_TYPE_SEND_RECV_BUF_COMPLETE:
863                 if (msglen < sizeof(struct nvsp_message_header) +
864                                 sizeof(struct nvsp_1_message_send_receive_buffer_complete)) {
865                         netdev_err(ndev, "nvsp_msg1 length too small: %u\n",
866                                    msglen);
867                         return;
868                 }
869                 break;
870
871         case NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE:
872                 if (msglen < sizeof(struct nvsp_message_header) +
873                                 sizeof(struct nvsp_1_message_send_send_buffer_complete)) {
874                         netdev_err(ndev, "nvsp_msg1 length too small: %u\n",
875                                    msglen);
876                         return;
877                 }
878                 break;
879
880         case NVSP_MSG5_TYPE_SUBCHANNEL:
881                 if (msglen < sizeof(struct nvsp_message_header) +
882                                 sizeof(struct nvsp_5_subchannel_complete)) {
883                         netdev_err(ndev, "nvsp_msg5 length too small: %u\n",
884                                    msglen);
885                         return;
886                 }
887                 break;
888
889         case NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE:
890                 if (msglen < sizeof(struct nvsp_message_header) +
891                     sizeof(struct nvsp_1_message_send_rndis_packet_complete)) {
892                         if (net_ratelimit())
893                                 netdev_err(ndev, "nvsp_rndis_pkt_complete length too small: %u\n",
894                                            msglen);
895                         return;
896                 }
897
898                 /* If status indicates an error, output a message so we know
899                  * there's a problem. But process the completion anyway so the
900                  * resources are released.
901                  */
902                 status = nvsp_packet->msg.v1_msg.send_rndis_pkt_complete.status;
903                 if (status != NVSP_STAT_SUCCESS && net_ratelimit())
904                         netdev_err(ndev, "nvsp_rndis_pkt_complete error status: %x\n",
905                                    status);
906
907                 netvsc_send_tx_complete(ndev, net_device, incoming_channel,
908                                         desc, budget);
909                 return;
910
911         default:
912                 netdev_err(ndev,
913                            "Unknown send completion type %d received!!\n",
914                            nvsp_packet->hdr.msg_type);
915                 return;
916         }
917
918         /* Copy the response back */
919         memcpy(&net_device->channel_init_pkt, nvsp_packet,
920                sizeof(struct nvsp_message));
921         complete(&net_device->channel_init_wait);
922 }
923
924 static u32 netvsc_get_next_send_section(struct netvsc_device *net_device)
925 {
926         unsigned long *map_addr = net_device->send_section_map;
927         unsigned int i;
928
929         for_each_clear_bit(i, map_addr, net_device->send_section_cnt) {
930                 if (sync_test_and_set_bit(i, map_addr) == 0)
931                         return i;
932         }
933
934         return NETVSC_INVALID_INDEX;
935 }
936
937 static void netvsc_copy_to_send_buf(struct netvsc_device *net_device,
938                                     unsigned int section_index,
939                                     u32 pend_size,
940                                     struct hv_netvsc_packet *packet,
941                                     struct rndis_message *rndis_msg,
942                                     struct hv_page_buffer *pb,
943                                     bool xmit_more)
944 {
945         char *start = net_device->send_buf;
946         char *dest = start + (section_index * net_device->send_section_size)
947                      + pend_size;
948         int i;
949         u32 padding = 0;
950         u32 page_count = packet->cp_partial ? packet->rmsg_pgcnt :
951                 packet->page_buf_cnt;
952         u32 remain;
953
954         /* Add padding */
955         remain = packet->total_data_buflen & (net_device->pkt_align - 1);
956         if (xmit_more && remain) {
957                 padding = net_device->pkt_align - remain;
958                 rndis_msg->msg_len += padding;
959                 packet->total_data_buflen += padding;
960         }
961
962         for (i = 0; i < page_count; i++) {
963                 char *src = phys_to_virt(pb[i].pfn << HV_HYP_PAGE_SHIFT);
964                 u32 offset = pb[i].offset;
965                 u32 len = pb[i].len;
966
967                 memcpy(dest, (src + offset), len);
968                 dest += len;
969         }
970
971         if (padding)
972                 memset(dest, 0, padding);
973 }
974
975 void netvsc_dma_unmap(struct hv_device *hv_dev,
976                       struct hv_netvsc_packet *packet)
977 {
978         int i;
979
980         if (!hv_is_isolation_supported())
981                 return;
982
983         if (!packet->dma_range)
984                 return;
985
986         for (i = 0; i < packet->page_buf_cnt; i++)
987                 dma_unmap_single(&hv_dev->device, packet->dma_range[i].dma,
988                                  packet->dma_range[i].mapping_size,
989                                  DMA_TO_DEVICE);
990
991         kfree(packet->dma_range);
992 }
993
994 /* netvsc_dma_map - Map swiotlb bounce buffer with data page of
995  * packet sent by vmbus_sendpacket_pagebuffer() in the Isolation
996  * VM.
997  *
998  * In isolation VM, netvsc send buffer has been marked visible to
999  * host and so the data copied to send buffer doesn't need to use
1000  * bounce buffer. The data pages handled by vmbus_sendpacket_pagebuffer()
1001  * may not be copied to send buffer and so these pages need to be
1002  * mapped with swiotlb bounce buffer. netvsc_dma_map() is to do
1003  * that. The pfns in the struct hv_page_buffer need to be converted
1004  * to bounce buffer's pfn. The loop here is necessary because the
1005  * entries in the page buffer array are not necessarily full
1006  * pages of data.  Each entry in the array has a separate offset and
1007  * len that may be non-zero, even for entries in the middle of the
1008  * array.  And the entries are not physically contiguous.  So each
1009  * entry must be individually mapped rather than as a contiguous unit.
1010  * So not use dma_map_sg() here.
1011  */
1012 static int netvsc_dma_map(struct hv_device *hv_dev,
1013                           struct hv_netvsc_packet *packet,
1014                           struct hv_page_buffer *pb)
1015 {
1016         u32 page_count = packet->page_buf_cnt;
1017         dma_addr_t dma;
1018         int i;
1019
1020         if (!hv_is_isolation_supported())
1021                 return 0;
1022
1023         packet->dma_range = kcalloc(page_count,
1024                                     sizeof(*packet->dma_range),
1025                                     GFP_ATOMIC);
1026         if (!packet->dma_range)
1027                 return -ENOMEM;
1028
1029         for (i = 0; i < page_count; i++) {
1030                 char *src = phys_to_virt((pb[i].pfn << HV_HYP_PAGE_SHIFT)
1031                                          + pb[i].offset);
1032                 u32 len = pb[i].len;
1033
1034                 dma = dma_map_single(&hv_dev->device, src, len,
1035                                      DMA_TO_DEVICE);
1036                 if (dma_mapping_error(&hv_dev->device, dma)) {
1037                         kfree(packet->dma_range);
1038                         return -ENOMEM;
1039                 }
1040
1041                 /* pb[].offset and pb[].len are not changed during dma mapping
1042                  * and so not reassign.
1043                  */
1044                 packet->dma_range[i].dma = dma;
1045                 packet->dma_range[i].mapping_size = len;
1046                 pb[i].pfn = dma >> HV_HYP_PAGE_SHIFT;
1047         }
1048
1049         return 0;
1050 }
1051
1052 static inline int netvsc_send_pkt(
1053         struct hv_device *device,
1054         struct hv_netvsc_packet *packet,
1055         struct netvsc_device *net_device,
1056         struct hv_page_buffer *pb,
1057         struct sk_buff *skb)
1058 {
1059         struct nvsp_message nvmsg;
1060         struct nvsp_1_message_send_rndis_packet *rpkt =
1061                 &nvmsg.msg.v1_msg.send_rndis_pkt;
1062         struct netvsc_channel * const nvchan =
1063                 &net_device->chan_table[packet->q_idx];
1064         struct vmbus_channel *out_channel = nvchan->channel;
1065         struct net_device *ndev = hv_get_drvdata(device);
1066         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1067         struct netdev_queue *txq = netdev_get_tx_queue(ndev, packet->q_idx);
1068         u64 req_id;
1069         int ret;
1070         u32 ring_avail = hv_get_avail_to_write_percent(&out_channel->outbound);
1071
1072         memset(&nvmsg, 0, sizeof(struct nvsp_message));
1073         nvmsg.hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT;
1074         if (skb)
1075                 rpkt->channel_type = 0;         /* 0 is RMC_DATA */
1076         else
1077                 rpkt->channel_type = 1;         /* 1 is RMC_CONTROL */
1078
1079         rpkt->send_buf_section_index = packet->send_buf_index;
1080         if (packet->send_buf_index == NETVSC_INVALID_INDEX)
1081                 rpkt->send_buf_section_size = 0;
1082         else
1083                 rpkt->send_buf_section_size = packet->total_data_buflen;
1084
1085         req_id = (ulong)skb;
1086
1087         if (out_channel->rescind)
1088                 return -ENODEV;
1089
1090         trace_nvsp_send_pkt(ndev, out_channel, rpkt);
1091
1092         packet->dma_range = NULL;
1093         if (packet->page_buf_cnt) {
1094                 if (packet->cp_partial)
1095                         pb += packet->rmsg_pgcnt;
1096
1097                 ret = netvsc_dma_map(ndev_ctx->device_ctx, packet, pb);
1098                 if (ret) {
1099                         ret = -EAGAIN;
1100                         goto exit;
1101                 }
1102
1103                 ret = vmbus_sendpacket_pagebuffer(out_channel,
1104                                                   pb, packet->page_buf_cnt,
1105                                                   &nvmsg, sizeof(nvmsg),
1106                                                   req_id);
1107
1108                 if (ret)
1109                         netvsc_dma_unmap(ndev_ctx->device_ctx, packet);
1110         } else {
1111                 ret = vmbus_sendpacket(out_channel,
1112                                        &nvmsg, sizeof(nvmsg),
1113                                        req_id, VM_PKT_DATA_INBAND,
1114                                        VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1115         }
1116
1117 exit:
1118         if (ret == 0) {
1119                 atomic_inc_return(&nvchan->queue_sends);
1120
1121                 if (ring_avail < RING_AVAIL_PERCENT_LOWATER) {
1122                         netif_tx_stop_queue(txq);
1123                         ndev_ctx->eth_stats.stop_queue++;
1124                 }
1125         } else if (ret == -EAGAIN) {
1126                 netif_tx_stop_queue(txq);
1127                 ndev_ctx->eth_stats.stop_queue++;
1128         } else {
1129                 netdev_err(ndev,
1130                            "Unable to send packet pages %u len %u, ret %d\n",
1131                            packet->page_buf_cnt, packet->total_data_buflen,
1132                            ret);
1133         }
1134
1135         if (netif_tx_queue_stopped(txq) &&
1136             atomic_read(&nvchan->queue_sends) < 1 &&
1137             !net_device->tx_disable) {
1138                 netif_tx_wake_queue(txq);
1139                 ndev_ctx->eth_stats.wake_queue++;
1140                 if (ret == -EAGAIN)
1141                         ret = -ENOSPC;
1142         }
1143
1144         return ret;
1145 }
1146
1147 /* Move packet out of multi send data (msd), and clear msd */
1148 static inline void move_pkt_msd(struct hv_netvsc_packet **msd_send,
1149                                 struct sk_buff **msd_skb,
1150                                 struct multi_send_data *msdp)
1151 {
1152         *msd_skb = msdp->skb;
1153         *msd_send = msdp->pkt;
1154         msdp->skb = NULL;
1155         msdp->pkt = NULL;
1156         msdp->count = 0;
1157 }
1158
1159 /* RCU already held by caller */
1160 /* Batching/bouncing logic is designed to attempt to optimize
1161  * performance.
1162  *
1163  * For small, non-LSO packets we copy the packet to a send buffer
1164  * which is pre-registered with the Hyper-V side. This enables the
1165  * hypervisor to avoid remapping the aperture to access the packet
1166  * descriptor and data.
1167  *
1168  * If we already started using a buffer and the netdev is transmitting
1169  * a burst of packets, keep on copying into the buffer until it is
1170  * full or we are done collecting a burst. If there is an existing
1171  * buffer with space for the RNDIS descriptor but not the packet, copy
1172  * the RNDIS descriptor to the buffer, keeping the packet in place.
1173  *
1174  * If we do batching and send more than one packet using a single
1175  * NetVSC message, free the SKBs of the packets copied, except for the
1176  * last packet. This is done to streamline the handling of the case
1177  * where the last packet only had the RNDIS descriptor copied to the
1178  * send buffer, with the data pointers included in the NetVSC message.
1179  */
1180 int netvsc_send(struct net_device *ndev,
1181                 struct hv_netvsc_packet *packet,
1182                 struct rndis_message *rndis_msg,
1183                 struct hv_page_buffer *pb,
1184                 struct sk_buff *skb,
1185                 bool xdp_tx)
1186 {
1187         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1188         struct netvsc_device *net_device
1189                 = rcu_dereference_bh(ndev_ctx->nvdev);
1190         struct hv_device *device = ndev_ctx->device_ctx;
1191         int ret = 0;
1192         struct netvsc_channel *nvchan;
1193         u32 pktlen = packet->total_data_buflen, msd_len = 0;
1194         unsigned int section_index = NETVSC_INVALID_INDEX;
1195         struct multi_send_data *msdp;
1196         struct hv_netvsc_packet *msd_send = NULL, *cur_send = NULL;
1197         struct sk_buff *msd_skb = NULL;
1198         bool try_batch, xmit_more;
1199
1200         /* If device is rescinded, return error and packet will get dropped. */
1201         if (unlikely(!net_device || net_device->destroy))
1202                 return -ENODEV;
1203
1204         nvchan = &net_device->chan_table[packet->q_idx];
1205         packet->send_buf_index = NETVSC_INVALID_INDEX;
1206         packet->cp_partial = false;
1207
1208         /* Send a control message or XDP packet directly without accessing
1209          * msd (Multi-Send Data) field which may be changed during data packet
1210          * processing.
1211          */
1212         if (!skb || xdp_tx)
1213                 return netvsc_send_pkt(device, packet, net_device, pb, skb);
1214
1215         /* batch packets in send buffer if possible */
1216         msdp = &nvchan->msd;
1217         if (msdp->pkt)
1218                 msd_len = msdp->pkt->total_data_buflen;
1219
1220         try_batch =  msd_len > 0 && msdp->count < net_device->max_pkt;
1221         if (try_batch && msd_len + pktlen + net_device->pkt_align <
1222             net_device->send_section_size) {
1223                 section_index = msdp->pkt->send_buf_index;
1224
1225         } else if (try_batch && msd_len + packet->rmsg_size <
1226                    net_device->send_section_size) {
1227                 section_index = msdp->pkt->send_buf_index;
1228                 packet->cp_partial = true;
1229
1230         } else if (pktlen + net_device->pkt_align <
1231                    net_device->send_section_size) {
1232                 section_index = netvsc_get_next_send_section(net_device);
1233                 if (unlikely(section_index == NETVSC_INVALID_INDEX)) {
1234                         ++ndev_ctx->eth_stats.tx_send_full;
1235                 } else {
1236                         move_pkt_msd(&msd_send, &msd_skb, msdp);
1237                         msd_len = 0;
1238                 }
1239         }
1240
1241         /* Keep aggregating only if stack says more data is coming
1242          * and not doing mixed modes send and not flow blocked
1243          */
1244         xmit_more = netdev_xmit_more() &&
1245                 !packet->cp_partial &&
1246                 !netif_xmit_stopped(netdev_get_tx_queue(ndev, packet->q_idx));
1247
1248         if (section_index != NETVSC_INVALID_INDEX) {
1249                 netvsc_copy_to_send_buf(net_device,
1250                                         section_index, msd_len,
1251                                         packet, rndis_msg, pb, xmit_more);
1252
1253                 packet->send_buf_index = section_index;
1254
1255                 if (packet->cp_partial) {
1256                         packet->page_buf_cnt -= packet->rmsg_pgcnt;
1257                         packet->total_data_buflen = msd_len + packet->rmsg_size;
1258                 } else {
1259                         packet->page_buf_cnt = 0;
1260                         packet->total_data_buflen += msd_len;
1261                 }
1262
1263                 if (msdp->pkt) {
1264                         packet->total_packets += msdp->pkt->total_packets;
1265                         packet->total_bytes += msdp->pkt->total_bytes;
1266                 }
1267
1268                 if (msdp->skb)
1269                         dev_consume_skb_any(msdp->skb);
1270
1271                 if (xmit_more) {
1272                         msdp->skb = skb;
1273                         msdp->pkt = packet;
1274                         msdp->count++;
1275                 } else {
1276                         cur_send = packet;
1277                         msdp->skb = NULL;
1278                         msdp->pkt = NULL;
1279                         msdp->count = 0;
1280                 }
1281         } else {
1282                 move_pkt_msd(&msd_send, &msd_skb, msdp);
1283                 cur_send = packet;
1284         }
1285
1286         if (msd_send) {
1287                 int m_ret = netvsc_send_pkt(device, msd_send, net_device,
1288                                             NULL, msd_skb);
1289
1290                 if (m_ret != 0) {
1291                         netvsc_free_send_slot(net_device,
1292                                               msd_send->send_buf_index);
1293                         dev_kfree_skb_any(msd_skb);
1294                 }
1295         }
1296
1297         if (cur_send)
1298                 ret = netvsc_send_pkt(device, cur_send, net_device, pb, skb);
1299
1300         if (ret != 0 && section_index != NETVSC_INVALID_INDEX)
1301                 netvsc_free_send_slot(net_device, section_index);
1302
1303         return ret;
1304 }
1305
1306 /* Send pending recv completions */
1307 static int send_recv_completions(struct net_device *ndev,
1308                                  struct netvsc_device *nvdev,
1309                                  struct netvsc_channel *nvchan)
1310 {
1311         struct multi_recv_comp *mrc = &nvchan->mrc;
1312         struct recv_comp_msg {
1313                 struct nvsp_message_header hdr;
1314                 u32 status;
1315         }  __packed;
1316         struct recv_comp_msg msg = {
1317                 .hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE,
1318         };
1319         int ret;
1320
1321         while (mrc->first != mrc->next) {
1322                 const struct recv_comp_data *rcd
1323                         = mrc->slots + mrc->first;
1324
1325                 msg.status = rcd->status;
1326                 ret = vmbus_sendpacket(nvchan->channel, &msg, sizeof(msg),
1327                                        rcd->tid, VM_PKT_COMP, 0);
1328                 if (unlikely(ret)) {
1329                         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1330
1331                         ++ndev_ctx->eth_stats.rx_comp_busy;
1332                         return ret;
1333                 }
1334
1335                 if (++mrc->first == nvdev->recv_completion_cnt)
1336                         mrc->first = 0;
1337         }
1338
1339         /* receive completion ring has been emptied */
1340         if (unlikely(nvdev->destroy))
1341                 wake_up(&nvdev->wait_drain);
1342
1343         return 0;
1344 }
1345
1346 /* Count how many receive completions are outstanding */
1347 static void recv_comp_slot_avail(const struct netvsc_device *nvdev,
1348                                  const struct multi_recv_comp *mrc,
1349                                  u32 *filled, u32 *avail)
1350 {
1351         u32 count = nvdev->recv_completion_cnt;
1352
1353         if (mrc->next >= mrc->first)
1354                 *filled = mrc->next - mrc->first;
1355         else
1356                 *filled = (count - mrc->first) + mrc->next;
1357
1358         *avail = count - *filled - 1;
1359 }
1360
1361 /* Add receive complete to ring to send to host. */
1362 static void enq_receive_complete(struct net_device *ndev,
1363                                  struct netvsc_device *nvdev, u16 q_idx,
1364                                  u64 tid, u32 status)
1365 {
1366         struct netvsc_channel *nvchan = &nvdev->chan_table[q_idx];
1367         struct multi_recv_comp *mrc = &nvchan->mrc;
1368         struct recv_comp_data *rcd;
1369         u32 filled, avail;
1370
1371         recv_comp_slot_avail(nvdev, mrc, &filled, &avail);
1372
1373         if (unlikely(filled > NAPI_POLL_WEIGHT)) {
1374                 send_recv_completions(ndev, nvdev, nvchan);
1375                 recv_comp_slot_avail(nvdev, mrc, &filled, &avail);
1376         }
1377
1378         if (unlikely(!avail)) {
1379                 netdev_err(ndev, "Recv_comp full buf q:%hd, tid:%llx\n",
1380                            q_idx, tid);
1381                 return;
1382         }
1383
1384         rcd = mrc->slots + mrc->next;
1385         rcd->tid = tid;
1386         rcd->status = status;
1387
1388         if (++mrc->next == nvdev->recv_completion_cnt)
1389                 mrc->next = 0;
1390 }
1391
1392 static int netvsc_receive(struct net_device *ndev,
1393                           struct netvsc_device *net_device,
1394                           struct netvsc_channel *nvchan,
1395                           const struct vmpacket_descriptor *desc)
1396 {
1397         struct net_device_context *net_device_ctx = netdev_priv(ndev);
1398         struct vmbus_channel *channel = nvchan->channel;
1399         const struct vmtransfer_page_packet_header *vmxferpage_packet
1400                 = container_of(desc, const struct vmtransfer_page_packet_header, d);
1401         const struct nvsp_message *nvsp = hv_pkt_data(desc);
1402         u32 msglen = hv_pkt_datalen(desc);
1403         u16 q_idx = channel->offermsg.offer.sub_channel_index;
1404         char *recv_buf = net_device->recv_buf;
1405         u32 status = NVSP_STAT_SUCCESS;
1406         int i;
1407         int count = 0;
1408
1409         /* Ensure packet is big enough to read header fields */
1410         if (msglen < sizeof(struct nvsp_message_header)) {
1411                 netif_err(net_device_ctx, rx_err, ndev,
1412                           "invalid nvsp header, length too small: %u\n",
1413                           msglen);
1414                 return 0;
1415         }
1416
1417         /* Make sure this is a valid nvsp packet */
1418         if (unlikely(nvsp->hdr.msg_type != NVSP_MSG1_TYPE_SEND_RNDIS_PKT)) {
1419                 netif_err(net_device_ctx, rx_err, ndev,
1420                           "Unknown nvsp packet type received %u\n",
1421                           nvsp->hdr.msg_type);
1422                 return 0;
1423         }
1424
1425         /* Validate xfer page pkt header */
1426         if ((desc->offset8 << 3) < sizeof(struct vmtransfer_page_packet_header)) {
1427                 netif_err(net_device_ctx, rx_err, ndev,
1428                           "Invalid xfer page pkt, offset too small: %u\n",
1429                           desc->offset8 << 3);
1430                 return 0;
1431         }
1432
1433         if (unlikely(vmxferpage_packet->xfer_pageset_id != NETVSC_RECEIVE_BUFFER_ID)) {
1434                 netif_err(net_device_ctx, rx_err, ndev,
1435                           "Invalid xfer page set id - expecting %x got %x\n",
1436                           NETVSC_RECEIVE_BUFFER_ID,
1437                           vmxferpage_packet->xfer_pageset_id);
1438                 return 0;
1439         }
1440
1441         count = vmxferpage_packet->range_cnt;
1442
1443         /* Check count for a valid value */
1444         if (NETVSC_XFER_HEADER_SIZE(count) > desc->offset8 << 3) {
1445                 netif_err(net_device_ctx, rx_err, ndev,
1446                           "Range count is not valid: %d\n",
1447                           count);
1448                 return 0;
1449         }
1450
1451         /* Each range represents 1 RNDIS pkt that contains 1 ethernet frame */
1452         for (i = 0; i < count; i++) {
1453                 u32 offset = vmxferpage_packet->ranges[i].byte_offset;
1454                 u32 buflen = vmxferpage_packet->ranges[i].byte_count;
1455                 void *data;
1456                 int ret;
1457
1458                 if (unlikely(offset > net_device->recv_buf_size ||
1459                              buflen > net_device->recv_buf_size - offset)) {
1460                         nvchan->rsc.cnt = 0;
1461                         status = NVSP_STAT_FAIL;
1462                         netif_err(net_device_ctx, rx_err, ndev,
1463                                   "Packet offset:%u + len:%u too big\n",
1464                                   offset, buflen);
1465
1466                         continue;
1467                 }
1468
1469                 /* We're going to copy (sections of) the packet into nvchan->recv_buf;
1470                  * make sure that nvchan->recv_buf is large enough to hold the packet.
1471                  */
1472                 if (unlikely(buflen > net_device->recv_section_size)) {
1473                         nvchan->rsc.cnt = 0;
1474                         status = NVSP_STAT_FAIL;
1475                         netif_err(net_device_ctx, rx_err, ndev,
1476                                   "Packet too big: buflen=%u recv_section_size=%u\n",
1477                                   buflen, net_device->recv_section_size);
1478
1479                         continue;
1480                 }
1481
1482                 data = recv_buf + offset;
1483
1484                 nvchan->rsc.is_last = (i == count - 1);
1485
1486                 trace_rndis_recv(ndev, q_idx, data);
1487
1488                 /* Pass it to the upper layer */
1489                 ret = rndis_filter_receive(ndev, net_device,
1490                                            nvchan, data, buflen);
1491
1492                 if (unlikely(ret != NVSP_STAT_SUCCESS)) {
1493                         /* Drop incomplete packet */
1494                         nvchan->rsc.cnt = 0;
1495                         status = NVSP_STAT_FAIL;
1496                 }
1497         }
1498
1499         enq_receive_complete(ndev, net_device, q_idx,
1500                              vmxferpage_packet->d.trans_id, status);
1501
1502         return count;
1503 }
1504
1505 static void netvsc_send_table(struct net_device *ndev,
1506                               struct netvsc_device *nvscdev,
1507                               const struct nvsp_message *nvmsg,
1508                               u32 msglen)
1509 {
1510         struct net_device_context *net_device_ctx = netdev_priv(ndev);
1511         u32 count, offset, *tab;
1512         int i;
1513
1514         /* Ensure packet is big enough to read send_table fields */
1515         if (msglen < sizeof(struct nvsp_message_header) +
1516                      sizeof(struct nvsp_5_send_indirect_table)) {
1517                 netdev_err(ndev, "nvsp_v5_msg length too small: %u\n", msglen);
1518                 return;
1519         }
1520
1521         count = nvmsg->msg.v5_msg.send_table.count;
1522         offset = nvmsg->msg.v5_msg.send_table.offset;
1523
1524         if (count != VRSS_SEND_TAB_SIZE) {
1525                 netdev_err(ndev, "Received wrong send-table size:%u\n", count);
1526                 return;
1527         }
1528
1529         /* If negotiated version <= NVSP_PROTOCOL_VERSION_6, the offset may be
1530          * wrong due to a host bug. So fix the offset here.
1531          */
1532         if (nvscdev->nvsp_version <= NVSP_PROTOCOL_VERSION_6 &&
1533             msglen >= sizeof(struct nvsp_message_header) +
1534             sizeof(union nvsp_6_message_uber) + count * sizeof(u32))
1535                 offset = sizeof(struct nvsp_message_header) +
1536                          sizeof(union nvsp_6_message_uber);
1537
1538         /* Boundary check for all versions */
1539         if (msglen < count * sizeof(u32) || offset > msglen - count * sizeof(u32)) {
1540                 netdev_err(ndev, "Received send-table offset too big:%u\n",
1541                            offset);
1542                 return;
1543         }
1544
1545         tab = (void *)nvmsg + offset;
1546
1547         for (i = 0; i < count; i++)
1548                 net_device_ctx->tx_table[i] = tab[i];
1549 }
1550
1551 static void netvsc_send_vf(struct net_device *ndev,
1552                            const struct nvsp_message *nvmsg,
1553                            u32 msglen)
1554 {
1555         struct net_device_context *net_device_ctx = netdev_priv(ndev);
1556
1557         /* Ensure packet is big enough to read its fields */
1558         if (msglen < sizeof(struct nvsp_message_header) +
1559                      sizeof(struct nvsp_4_send_vf_association)) {
1560                 netdev_err(ndev, "nvsp_v4_msg length too small: %u\n", msglen);
1561                 return;
1562         }
1563
1564         net_device_ctx->vf_alloc = nvmsg->msg.v4_msg.vf_assoc.allocated;
1565         net_device_ctx->vf_serial = nvmsg->msg.v4_msg.vf_assoc.serial;
1566
1567         if (net_device_ctx->vf_alloc)
1568                 complete(&net_device_ctx->vf_add);
1569
1570         netdev_info(ndev, "VF slot %u %s\n",
1571                     net_device_ctx->vf_serial,
1572                     net_device_ctx->vf_alloc ? "added" : "removed");
1573 }
1574
1575 static void netvsc_receive_inband(struct net_device *ndev,
1576                                   struct netvsc_device *nvscdev,
1577                                   const struct vmpacket_descriptor *desc)
1578 {
1579         const struct nvsp_message *nvmsg = hv_pkt_data(desc);
1580         u32 msglen = hv_pkt_datalen(desc);
1581
1582         /* Ensure packet is big enough to read header fields */
1583         if (msglen < sizeof(struct nvsp_message_header)) {
1584                 netdev_err(ndev, "inband nvsp_message length too small: %u\n", msglen);
1585                 return;
1586         }
1587
1588         switch (nvmsg->hdr.msg_type) {
1589         case NVSP_MSG5_TYPE_SEND_INDIRECTION_TABLE:
1590                 netvsc_send_table(ndev, nvscdev, nvmsg, msglen);
1591                 break;
1592
1593         case NVSP_MSG4_TYPE_SEND_VF_ASSOCIATION:
1594                 if (hv_is_isolation_supported())
1595                         netdev_err(ndev, "Ignore VF_ASSOCIATION msg from the host supporting isolation\n");
1596                 else
1597                         netvsc_send_vf(ndev, nvmsg, msglen);
1598                 break;
1599         }
1600 }
1601
1602 static int netvsc_process_raw_pkt(struct hv_device *device,
1603                                   struct netvsc_channel *nvchan,
1604                                   struct netvsc_device *net_device,
1605                                   struct net_device *ndev,
1606                                   const struct vmpacket_descriptor *desc,
1607                                   int budget)
1608 {
1609         struct vmbus_channel *channel = nvchan->channel;
1610         const struct nvsp_message *nvmsg = hv_pkt_data(desc);
1611
1612         trace_nvsp_recv(ndev, channel, nvmsg);
1613
1614         switch (desc->type) {
1615         case VM_PKT_COMP:
1616                 netvsc_send_completion(ndev, net_device, channel, desc, budget);
1617                 break;
1618
1619         case VM_PKT_DATA_USING_XFER_PAGES:
1620                 return netvsc_receive(ndev, net_device, nvchan, desc);
1621
1622         case VM_PKT_DATA_INBAND:
1623                 netvsc_receive_inband(ndev, net_device, desc);
1624                 break;
1625
1626         default:
1627                 netdev_err(ndev, "unhandled packet type %d, tid %llx\n",
1628                            desc->type, desc->trans_id);
1629                 break;
1630         }
1631
1632         return 0;
1633 }
1634
1635 static struct hv_device *netvsc_channel_to_device(struct vmbus_channel *channel)
1636 {
1637         struct vmbus_channel *primary = channel->primary_channel;
1638
1639         return primary ? primary->device_obj : channel->device_obj;
1640 }
1641
1642 /* Network processing softirq
1643  * Process data in incoming ring buffer from host
1644  * Stops when ring is empty or budget is met or exceeded.
1645  */
1646 int netvsc_poll(struct napi_struct *napi, int budget)
1647 {
1648         struct netvsc_channel *nvchan
1649                 = container_of(napi, struct netvsc_channel, napi);
1650         struct netvsc_device *net_device = nvchan->net_device;
1651         struct vmbus_channel *channel = nvchan->channel;
1652         struct hv_device *device = netvsc_channel_to_device(channel);
1653         struct net_device *ndev = hv_get_drvdata(device);
1654         int work_done = 0;
1655         int ret;
1656
1657         /* If starting a new interval */
1658         if (!nvchan->desc)
1659                 nvchan->desc = hv_pkt_iter_first(channel);
1660
1661         nvchan->xdp_flush = false;
1662
1663         while (nvchan->desc && work_done < budget) {
1664                 work_done += netvsc_process_raw_pkt(device, nvchan, net_device,
1665                                                     ndev, nvchan->desc, budget);
1666                 nvchan->desc = hv_pkt_iter_next(channel, nvchan->desc);
1667         }
1668
1669         if (nvchan->xdp_flush)
1670                 xdp_do_flush();
1671
1672         /* Send any pending receive completions */
1673         ret = send_recv_completions(ndev, net_device, nvchan);
1674
1675         /* If it did not exhaust NAPI budget this time
1676          *  and not doing busy poll
1677          * then re-enable host interrupts
1678          *  and reschedule if ring is not empty
1679          *   or sending receive completion failed.
1680          */
1681         if (work_done < budget &&
1682             napi_complete_done(napi, work_done) &&
1683             (ret || hv_end_read(&channel->inbound)) &&
1684             napi_schedule_prep(napi)) {
1685                 hv_begin_read(&channel->inbound);
1686                 __napi_schedule(napi);
1687         }
1688
1689         /* Driver may overshoot since multiple packets per descriptor */
1690         return min(work_done, budget);
1691 }
1692
1693 /* Call back when data is available in host ring buffer.
1694  * Processing is deferred until network softirq (NAPI)
1695  */
1696 void netvsc_channel_cb(void *context)
1697 {
1698         struct netvsc_channel *nvchan = context;
1699         struct vmbus_channel *channel = nvchan->channel;
1700         struct hv_ring_buffer_info *rbi = &channel->inbound;
1701
1702         /* preload first vmpacket descriptor */
1703         prefetch(hv_get_ring_buffer(rbi) + rbi->priv_read_index);
1704
1705         if (napi_schedule_prep(&nvchan->napi)) {
1706                 /* disable interrupts from host */
1707                 hv_begin_read(rbi);
1708
1709                 __napi_schedule_irqoff(&nvchan->napi);
1710         }
1711 }
1712
1713 /*
1714  * netvsc_device_add - Callback when the device belonging to this
1715  * driver is added
1716  */
1717 struct netvsc_device *netvsc_device_add(struct hv_device *device,
1718                                 const struct netvsc_device_info *device_info)
1719 {
1720         int i, ret = 0;
1721         struct netvsc_device *net_device;
1722         struct net_device *ndev = hv_get_drvdata(device);
1723         struct net_device_context *net_device_ctx = netdev_priv(ndev);
1724
1725         net_device = alloc_net_device();
1726         if (!net_device)
1727                 return ERR_PTR(-ENOMEM);
1728
1729         for (i = 0; i < VRSS_SEND_TAB_SIZE; i++)
1730                 net_device_ctx->tx_table[i] = 0;
1731
1732         /* Because the device uses NAPI, all the interrupt batching and
1733          * control is done via Net softirq, not the channel handling
1734          */
1735         set_channel_read_mode(device->channel, HV_CALL_ISR);
1736
1737         /* If we're reopening the device we may have multiple queues, fill the
1738          * chn_table with the default channel to use it before subchannels are
1739          * opened.
1740          * Initialize the channel state before we open;
1741          * we can be interrupted as soon as we open the channel.
1742          */
1743
1744         for (i = 0; i < VRSS_CHANNEL_MAX; i++) {
1745                 struct netvsc_channel *nvchan = &net_device->chan_table[i];
1746
1747                 nvchan->channel = device->channel;
1748                 nvchan->net_device = net_device;
1749                 u64_stats_init(&nvchan->tx_stats.syncp);
1750                 u64_stats_init(&nvchan->rx_stats.syncp);
1751
1752                 ret = xdp_rxq_info_reg(&nvchan->xdp_rxq, ndev, i, 0);
1753
1754                 if (ret) {
1755                         netdev_err(ndev, "xdp_rxq_info_reg fail: %d\n", ret);
1756                         goto cleanup2;
1757                 }
1758
1759                 ret = xdp_rxq_info_reg_mem_model(&nvchan->xdp_rxq,
1760                                                  MEM_TYPE_PAGE_SHARED, NULL);
1761
1762                 if (ret) {
1763                         netdev_err(ndev, "xdp reg_mem_model fail: %d\n", ret);
1764                         goto cleanup2;
1765                 }
1766         }
1767
1768         /* Enable NAPI handler before init callbacks */
1769         netif_napi_add(ndev, &net_device->chan_table[0].napi, netvsc_poll);
1770
1771         /* Open the channel */
1772         device->channel->next_request_id_callback = vmbus_next_request_id;
1773         device->channel->request_addr_callback = vmbus_request_addr;
1774         device->channel->rqstor_size = netvsc_rqstor_size(netvsc_ring_bytes);
1775         device->channel->max_pkt_size = NETVSC_MAX_PKT_SIZE;
1776
1777         ret = vmbus_open(device->channel, netvsc_ring_bytes,
1778                          netvsc_ring_bytes,  NULL, 0,
1779                          netvsc_channel_cb, net_device->chan_table);
1780
1781         if (ret != 0) {
1782                 netdev_err(ndev, "unable to open channel: %d\n", ret);
1783                 goto cleanup;
1784         }
1785
1786         /* Channel is opened */
1787         netdev_dbg(ndev, "hv_netvsc channel opened successfully\n");
1788
1789         napi_enable(&net_device->chan_table[0].napi);
1790
1791         /* Connect with the NetVsp */
1792         ret = netvsc_connect_vsp(device, net_device, device_info);
1793         if (ret != 0) {
1794                 netdev_err(ndev,
1795                         "unable to connect to NetVSP - %d\n", ret);
1796                 goto close;
1797         }
1798
1799         /* Writing nvdev pointer unlocks netvsc_send(), make sure chn_table is
1800          * populated.
1801          */
1802         rcu_assign_pointer(net_device_ctx->nvdev, net_device);
1803
1804         return net_device;
1805
1806 close:
1807         RCU_INIT_POINTER(net_device_ctx->nvdev, NULL);
1808         napi_disable(&net_device->chan_table[0].napi);
1809
1810         /* Now, we can close the channel safely */
1811         vmbus_close(device->channel);
1812
1813 cleanup:
1814         netif_napi_del(&net_device->chan_table[0].napi);
1815
1816 cleanup2:
1817         free_netvsc_device(&net_device->rcu);
1818
1819         return ERR_PTR(ret);
1820 }