GNU Linux-libre 5.10.153-gnu1
[releases.git] / drivers / net / hippi / rrunner.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
4  *
5  * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
6  *
7  * Thanks to Essential Communication for providing us with hardware
8  * and very comprehensive documentation without which I would not have
9  * been able to write this driver. A special thank you to John Gibbon
10  * for sorting out the legal issues, with the NDA, allowing the code to
11  * be released under the GPL.
12  *
13  * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
14  * stupid bugs in my code.
15  *
16  * Softnet support and various other patches from Val Henson of
17  * ODS/Essential.
18  *
19  * PCI DMA mapping code partly based on work by Francois Romieu.
20  */
21
22
23 #define DEBUG 1
24 #define RX_DMA_SKBUFF 1
25 #define PKT_COPY_THRESHOLD 512
26
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/pci.h>
32 #include <linux/kernel.h>
33 #include <linux/netdevice.h>
34 #include <linux/hippidevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/delay.h>
37 #include <linux/mm.h>
38 #include <linux/slab.h>
39 #include <net/sock.h>
40
41 #include <asm/cache.h>
42 #include <asm/byteorder.h>
43 #include <asm/io.h>
44 #include <asm/irq.h>
45 #include <linux/uaccess.h>
46
47 #define rr_if_busy(dev)     netif_queue_stopped(dev)
48 #define rr_if_running(dev)  netif_running(dev)
49
50 #include "rrunner.h"
51
52 #define RUN_AT(x) (jiffies + (x))
53
54
55 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
56 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
57 MODULE_LICENSE("GPL");
58
59 static const char version[] =
60 "rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
61
62
63 static const struct net_device_ops rr_netdev_ops = {
64         .ndo_open               = rr_open,
65         .ndo_stop               = rr_close,
66         .ndo_do_ioctl           = rr_ioctl,
67         .ndo_start_xmit         = rr_start_xmit,
68         .ndo_set_mac_address    = hippi_mac_addr,
69 };
70
71 /*
72  * Implementation notes:
73  *
74  * The DMA engine only allows for DMA within physical 64KB chunks of
75  * memory. The current approach of the driver (and stack) is to use
76  * linear blocks of memory for the skbuffs. However, as the data block
77  * is always the first part of the skb and skbs are 2^n aligned so we
78  * are guarantted to get the whole block within one 64KB align 64KB
79  * chunk.
80  *
81  * On the long term, relying on being able to allocate 64KB linear
82  * chunks of memory is not feasible and the skb handling code and the
83  * stack will need to know about I/O vectors or something similar.
84  */
85
86 static int rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
87 {
88         struct net_device *dev;
89         static int version_disp;
90         u8 pci_latency;
91         struct rr_private *rrpriv;
92         void *tmpptr;
93         dma_addr_t ring_dma;
94         int ret = -ENOMEM;
95
96         dev = alloc_hippi_dev(sizeof(struct rr_private));
97         if (!dev)
98                 goto out3;
99
100         ret = pci_enable_device(pdev);
101         if (ret) {
102                 ret = -ENODEV;
103                 goto out2;
104         }
105
106         rrpriv = netdev_priv(dev);
107
108         SET_NETDEV_DEV(dev, &pdev->dev);
109
110         ret = pci_request_regions(pdev, "rrunner");
111         if (ret < 0)
112                 goto out;
113
114         pci_set_drvdata(pdev, dev);
115
116         rrpriv->pci_dev = pdev;
117
118         spin_lock_init(&rrpriv->lock);
119
120         dev->netdev_ops = &rr_netdev_ops;
121
122         /* display version info if adapter is found */
123         if (!version_disp) {
124                 /* set display flag to TRUE so that */
125                 /* we only display this string ONCE */
126                 version_disp = 1;
127                 printk(version);
128         }
129
130         pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
131         if (pci_latency <= 0x58){
132                 pci_latency = 0x58;
133                 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
134         }
135
136         pci_set_master(pdev);
137
138         printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
139                "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
140                (unsigned long long)pci_resource_start(pdev, 0),
141                pdev->irq, pci_latency);
142
143         /*
144          * Remap the MMIO regs into kernel space.
145          */
146         rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
147         if (!rrpriv->regs) {
148                 printk(KERN_ERR "%s:  Unable to map I/O register, "
149                         "RoadRunner will be disabled.\n", dev->name);
150                 ret = -EIO;
151                 goto out;
152         }
153
154         tmpptr = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
155                                     GFP_KERNEL);
156         rrpriv->tx_ring = tmpptr;
157         rrpriv->tx_ring_dma = ring_dma;
158
159         if (!tmpptr) {
160                 ret = -ENOMEM;
161                 goto out;
162         }
163
164         tmpptr = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
165                                     GFP_KERNEL);
166         rrpriv->rx_ring = tmpptr;
167         rrpriv->rx_ring_dma = ring_dma;
168
169         if (!tmpptr) {
170                 ret = -ENOMEM;
171                 goto out;
172         }
173
174         tmpptr = dma_alloc_coherent(&pdev->dev, EVT_RING_SIZE, &ring_dma,
175                                     GFP_KERNEL);
176         rrpriv->evt_ring = tmpptr;
177         rrpriv->evt_ring_dma = ring_dma;
178
179         if (!tmpptr) {
180                 ret = -ENOMEM;
181                 goto out;
182         }
183
184         /*
185          * Don't access any register before this point!
186          */
187 #ifdef __BIG_ENDIAN
188         writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
189                 &rrpriv->regs->HostCtrl);
190 #endif
191         /*
192          * Need to add a case for little-endian 64-bit hosts here.
193          */
194
195         rr_init(dev);
196
197         ret = register_netdev(dev);
198         if (ret)
199                 goto out;
200         return 0;
201
202  out:
203         if (rrpriv->evt_ring)
204                 dma_free_coherent(&pdev->dev, EVT_RING_SIZE, rrpriv->evt_ring,
205                                   rrpriv->evt_ring_dma);
206         if (rrpriv->rx_ring)
207                 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, rrpriv->rx_ring,
208                                   rrpriv->rx_ring_dma);
209         if (rrpriv->tx_ring)
210                 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, rrpriv->tx_ring,
211                                   rrpriv->tx_ring_dma);
212         if (rrpriv->regs)
213                 pci_iounmap(pdev, rrpriv->regs);
214         if (pdev)
215                 pci_release_regions(pdev);
216  out2:
217         free_netdev(dev);
218  out3:
219         return ret;
220 }
221
222 static void rr_remove_one(struct pci_dev *pdev)
223 {
224         struct net_device *dev = pci_get_drvdata(pdev);
225         struct rr_private *rr = netdev_priv(dev);
226
227         if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
228                 printk(KERN_ERR "%s: trying to unload running NIC\n",
229                        dev->name);
230                 writel(HALT_NIC, &rr->regs->HostCtrl);
231         }
232
233         unregister_netdev(dev);
234         dma_free_coherent(&pdev->dev, EVT_RING_SIZE, rr->evt_ring,
235                           rr->evt_ring_dma);
236         dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, rr->rx_ring,
237                           rr->rx_ring_dma);
238         dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, rr->tx_ring,
239                           rr->tx_ring_dma);
240         pci_iounmap(pdev, rr->regs);
241         pci_release_regions(pdev);
242         pci_disable_device(pdev);
243         free_netdev(dev);
244 }
245
246
247 /*
248  * Commands are considered to be slow, thus there is no reason to
249  * inline this.
250  */
251 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
252 {
253         struct rr_regs __iomem *regs;
254         u32 idx;
255
256         regs = rrpriv->regs;
257         /*
258          * This is temporary - it will go away in the final version.
259          * We probably also want to make this function inline.
260          */
261         if (readl(&regs->HostCtrl) & NIC_HALTED){
262                 printk("issuing command for halted NIC, code 0x%x, "
263                        "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
264                 if (readl(&regs->Mode) & FATAL_ERR)
265                         printk("error codes Fail1 %02x, Fail2 %02x\n",
266                                readl(&regs->Fail1), readl(&regs->Fail2));
267         }
268
269         idx = rrpriv->info->cmd_ctrl.pi;
270
271         writel(*(u32*)(cmd), &regs->CmdRing[idx]);
272         wmb();
273
274         idx = (idx - 1) % CMD_RING_ENTRIES;
275         rrpriv->info->cmd_ctrl.pi = idx;
276         wmb();
277
278         if (readl(&regs->Mode) & FATAL_ERR)
279                 printk("error code %02x\n", readl(&regs->Fail1));
280 }
281
282
283 /*
284  * Reset the board in a sensible manner. The NIC is already halted
285  * when we get here and a spin-lock is held.
286  */
287 static int rr_reset(struct net_device *dev)
288 {
289         struct rr_private *rrpriv;
290         struct rr_regs __iomem *regs;
291         u32 start_pc;
292         int i;
293
294         rrpriv = netdev_priv(dev);
295         regs = rrpriv->regs;
296
297         rr_load_firmware(dev);
298
299         writel(0x01000000, &regs->TX_state);
300         writel(0xff800000, &regs->RX_state);
301         writel(0, &regs->AssistState);
302         writel(CLEAR_INTA, &regs->LocalCtrl);
303         writel(0x01, &regs->BrkPt);
304         writel(0, &regs->Timer);
305         writel(0, &regs->TimerRef);
306         writel(RESET_DMA, &regs->DmaReadState);
307         writel(RESET_DMA, &regs->DmaWriteState);
308         writel(0, &regs->DmaWriteHostHi);
309         writel(0, &regs->DmaWriteHostLo);
310         writel(0, &regs->DmaReadHostHi);
311         writel(0, &regs->DmaReadHostLo);
312         writel(0, &regs->DmaReadLen);
313         writel(0, &regs->DmaWriteLen);
314         writel(0, &regs->DmaWriteLcl);
315         writel(0, &regs->DmaWriteIPchecksum);
316         writel(0, &regs->DmaReadLcl);
317         writel(0, &regs->DmaReadIPchecksum);
318         writel(0, &regs->PciState);
319 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
320         writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
321 #elif (BITS_PER_LONG == 64)
322         writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
323 #else
324         writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
325 #endif
326
327 #if 0
328         /*
329          * Don't worry, this is just black magic.
330          */
331         writel(0xdf000, &regs->RxBase);
332         writel(0xdf000, &regs->RxPrd);
333         writel(0xdf000, &regs->RxCon);
334         writel(0xce000, &regs->TxBase);
335         writel(0xce000, &regs->TxPrd);
336         writel(0xce000, &regs->TxCon);
337         writel(0, &regs->RxIndPro);
338         writel(0, &regs->RxIndCon);
339         writel(0, &regs->RxIndRef);
340         writel(0, &regs->TxIndPro);
341         writel(0, &regs->TxIndCon);
342         writel(0, &regs->TxIndRef);
343         writel(0xcc000, &regs->pad10[0]);
344         writel(0, &regs->DrCmndPro);
345         writel(0, &regs->DrCmndCon);
346         writel(0, &regs->DwCmndPro);
347         writel(0, &regs->DwCmndCon);
348         writel(0, &regs->DwCmndRef);
349         writel(0, &regs->DrDataPro);
350         writel(0, &regs->DrDataCon);
351         writel(0, &regs->DrDataRef);
352         writel(0, &regs->DwDataPro);
353         writel(0, &regs->DwDataCon);
354         writel(0, &regs->DwDataRef);
355 #endif
356
357         writel(0xffffffff, &regs->MbEvent);
358         writel(0, &regs->Event);
359
360         writel(0, &regs->TxPi);
361         writel(0, &regs->IpRxPi);
362
363         writel(0, &regs->EvtCon);
364         writel(0, &regs->EvtPrd);
365
366         rrpriv->info->evt_ctrl.pi = 0;
367
368         for (i = 0; i < CMD_RING_ENTRIES; i++)
369                 writel(0, &regs->CmdRing[i]);
370
371 /*
372  * Why 32 ? is this not cache line size dependent?
373  */
374         writel(RBURST_64|WBURST_64, &regs->PciState);
375         wmb();
376
377         start_pc = rr_read_eeprom_word(rrpriv,
378                         offsetof(struct eeprom, rncd_info.FwStart));
379
380 #if (DEBUG > 1)
381         printk("%s: Executing firmware at address 0x%06x\n",
382                dev->name, start_pc);
383 #endif
384
385         writel(start_pc + 0x800, &regs->Pc);
386         wmb();
387         udelay(5);
388
389         writel(start_pc, &regs->Pc);
390         wmb();
391
392         return 0;
393 }
394
395
396 /*
397  * Read a string from the EEPROM.
398  */
399 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
400                                 unsigned long offset,
401                                 unsigned char *buf,
402                                 unsigned long length)
403 {
404         struct rr_regs __iomem *regs = rrpriv->regs;
405         u32 misc, io, host, i;
406
407         io = readl(&regs->ExtIo);
408         writel(0, &regs->ExtIo);
409         misc = readl(&regs->LocalCtrl);
410         writel(0, &regs->LocalCtrl);
411         host = readl(&regs->HostCtrl);
412         writel(host | HALT_NIC, &regs->HostCtrl);
413         mb();
414
415         for (i = 0; i < length; i++){
416                 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
417                 mb();
418                 buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
419                 mb();
420         }
421
422         writel(host, &regs->HostCtrl);
423         writel(misc, &regs->LocalCtrl);
424         writel(io, &regs->ExtIo);
425         mb();
426         return i;
427 }
428
429
430 /*
431  * Shortcut to read one word (4 bytes) out of the EEPROM and convert
432  * it to our CPU byte-order.
433  */
434 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
435                             size_t offset)
436 {
437         __be32 word;
438
439         if ((rr_read_eeprom(rrpriv, offset,
440                             (unsigned char *)&word, 4) == 4))
441                 return be32_to_cpu(word);
442         return 0;
443 }
444
445
446 /*
447  * Write a string to the EEPROM.
448  *
449  * This is only called when the firmware is not running.
450  */
451 static unsigned int write_eeprom(struct rr_private *rrpriv,
452                                  unsigned long offset,
453                                  unsigned char *buf,
454                                  unsigned long length)
455 {
456         struct rr_regs __iomem *regs = rrpriv->regs;
457         u32 misc, io, data, i, j, ready, error = 0;
458
459         io = readl(&regs->ExtIo);
460         writel(0, &regs->ExtIo);
461         misc = readl(&regs->LocalCtrl);
462         writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
463         mb();
464
465         for (i = 0; i < length; i++){
466                 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
467                 mb();
468                 data = buf[i] << 24;
469                 /*
470                  * Only try to write the data if it is not the same
471                  * value already.
472                  */
473                 if ((readl(&regs->WinData) & 0xff000000) != data){
474                         writel(data, &regs->WinData);
475                         ready = 0;
476                         j = 0;
477                         mb();
478                         while(!ready){
479                                 udelay(20);
480                                 if ((readl(&regs->WinData) & 0xff000000) ==
481                                     data)
482                                         ready = 1;
483                                 mb();
484                                 if (j++ > 5000){
485                                         printk("data mismatch: %08x, "
486                                                "WinData %08x\n", data,
487                                                readl(&regs->WinData));
488                                         ready = 1;
489                                         error = 1;
490                                 }
491                         }
492                 }
493         }
494
495         writel(misc, &regs->LocalCtrl);
496         writel(io, &regs->ExtIo);
497         mb();
498
499         return error;
500 }
501
502
503 static int rr_init(struct net_device *dev)
504 {
505         struct rr_private *rrpriv;
506         struct rr_regs __iomem *regs;
507         u32 sram_size, rev;
508
509         rrpriv = netdev_priv(dev);
510         regs = rrpriv->regs;
511
512         rev = readl(&regs->FwRev);
513         rrpriv->fw_rev = rev;
514         if (rev > 0x00020024)
515                 printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
516                        ((rev >> 8) & 0xff), (rev & 0xff));
517         else if (rev >= 0x00020000) {
518                 printk("  Firmware revision: %i.%i.%i (2.0.37 or "
519                        "later is recommended)\n", (rev >> 16),
520                        ((rev >> 8) & 0xff), (rev & 0xff));
521         }else{
522                 printk("  Firmware revision too old: %i.%i.%i, please "
523                        "upgrade to 2.0.37 or later.\n",
524                        (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
525         }
526
527 #if (DEBUG > 2)
528         printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
529 #endif
530
531         /*
532          * Read the hardware address from the eeprom.  The HW address
533          * is not really necessary for HIPPI but awfully convenient.
534          * The pointer arithmetic to put it in dev_addr is ugly, but
535          * Donald Becker does it this way for the GigE version of this
536          * card and it's shorter and more portable than any
537          * other method I've seen.  -VAL
538          */
539
540         *(__be16 *)(dev->dev_addr) =
541           htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
542         *(__be32 *)(dev->dev_addr+2) =
543           htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
544
545         printk("  MAC: %pM\n", dev->dev_addr);
546
547         sram_size = rr_read_eeprom_word(rrpriv, 8);
548         printk("  SRAM size 0x%06x\n", sram_size);
549
550         return 0;
551 }
552
553
554 static int rr_init1(struct net_device *dev)
555 {
556         struct rr_private *rrpriv;
557         struct rr_regs __iomem *regs;
558         unsigned long myjif, flags;
559         struct cmd cmd;
560         u32 hostctrl;
561         int ecode = 0;
562         short i;
563
564         rrpriv = netdev_priv(dev);
565         regs = rrpriv->regs;
566
567         spin_lock_irqsave(&rrpriv->lock, flags);
568
569         hostctrl = readl(&regs->HostCtrl);
570         writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
571         wmb();
572
573         if (hostctrl & PARITY_ERR){
574                 printk("%s: Parity error halting NIC - this is serious!\n",
575                        dev->name);
576                 spin_unlock_irqrestore(&rrpriv->lock, flags);
577                 ecode = -EFAULT;
578                 goto error;
579         }
580
581         set_rxaddr(regs, rrpriv->rx_ctrl_dma);
582         set_infoaddr(regs, rrpriv->info_dma);
583
584         rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
585         rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
586         rrpriv->info->evt_ctrl.mode = 0;
587         rrpriv->info->evt_ctrl.pi = 0;
588         set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
589
590         rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
591         rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
592         rrpriv->info->cmd_ctrl.mode = 0;
593         rrpriv->info->cmd_ctrl.pi = 15;
594
595         for (i = 0; i < CMD_RING_ENTRIES; i++) {
596                 writel(0, &regs->CmdRing[i]);
597         }
598
599         for (i = 0; i < TX_RING_ENTRIES; i++) {
600                 rrpriv->tx_ring[i].size = 0;
601                 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
602                 rrpriv->tx_skbuff[i] = NULL;
603         }
604         rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
605         rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
606         rrpriv->info->tx_ctrl.mode = 0;
607         rrpriv->info->tx_ctrl.pi = 0;
608         set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
609
610         /*
611          * Set dirty_tx before we start receiving interrupts, otherwise
612          * the interrupt handler might think it is supposed to process
613          * tx ints before we are up and running, which may cause a null
614          * pointer access in the int handler.
615          */
616         rrpriv->tx_full = 0;
617         rrpriv->cur_rx = 0;
618         rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
619
620         rr_reset(dev);
621
622         /* Tuning values */
623         writel(0x5000, &regs->ConRetry);
624         writel(0x100, &regs->ConRetryTmr);
625         writel(0x500000, &regs->ConTmout);
626         writel(0x60, &regs->IntrTmr);
627         writel(0x500000, &regs->TxDataMvTimeout);
628         writel(0x200000, &regs->RxDataMvTimeout);
629         writel(0x80, &regs->WriteDmaThresh);
630         writel(0x80, &regs->ReadDmaThresh);
631
632         rrpriv->fw_running = 0;
633         wmb();
634
635         hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
636         writel(hostctrl, &regs->HostCtrl);
637         wmb();
638
639         spin_unlock_irqrestore(&rrpriv->lock, flags);
640
641         for (i = 0; i < RX_RING_ENTRIES; i++) {
642                 struct sk_buff *skb;
643                 dma_addr_t addr;
644
645                 rrpriv->rx_ring[i].mode = 0;
646                 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
647                 if (!skb) {
648                         printk(KERN_WARNING "%s: Unable to allocate memory "
649                                "for receive ring - halting NIC\n", dev->name);
650                         ecode = -ENOMEM;
651                         goto error;
652                 }
653                 rrpriv->rx_skbuff[i] = skb;
654                 addr = dma_map_single(&rrpriv->pci_dev->dev, skb->data,
655                                       dev->mtu + HIPPI_HLEN, DMA_FROM_DEVICE);
656                 /*
657                  * Sanity test to see if we conflict with the DMA
658                  * limitations of the Roadrunner.
659                  */
660                 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
661                         printk("skb alloc error\n");
662
663                 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
664                 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
665         }
666
667         rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
668         rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
669         rrpriv->rx_ctrl[4].mode = 8;
670         rrpriv->rx_ctrl[4].pi = 0;
671         wmb();
672         set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
673
674         udelay(1000);
675
676         /*
677          * Now start the FirmWare.
678          */
679         cmd.code = C_START_FW;
680         cmd.ring = 0;
681         cmd.index = 0;
682
683         rr_issue_cmd(rrpriv, &cmd);
684
685         /*
686          * Give the FirmWare time to chew on the `get running' command.
687          */
688         myjif = jiffies + 5 * HZ;
689         while (time_before(jiffies, myjif) && !rrpriv->fw_running)
690                 cpu_relax();
691
692         netif_start_queue(dev);
693
694         return ecode;
695
696  error:
697         /*
698          * We might have gotten here because we are out of memory,
699          * make sure we release everything we allocated before failing
700          */
701         for (i = 0; i < RX_RING_ENTRIES; i++) {
702                 struct sk_buff *skb = rrpriv->rx_skbuff[i];
703
704                 if (skb) {
705                         dma_unmap_single(&rrpriv->pci_dev->dev,
706                                          rrpriv->rx_ring[i].addr.addrlo,
707                                          dev->mtu + HIPPI_HLEN,
708                                          DMA_FROM_DEVICE);
709                         rrpriv->rx_ring[i].size = 0;
710                         set_rraddr(&rrpriv->rx_ring[i].addr, 0);
711                         dev_kfree_skb(skb);
712                         rrpriv->rx_skbuff[i] = NULL;
713                 }
714         }
715         return ecode;
716 }
717
718
719 /*
720  * All events are considered to be slow (RX/TX ints do not generate
721  * events) and are handled here, outside the main interrupt handler,
722  * to reduce the size of the handler.
723  */
724 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
725 {
726         struct rr_private *rrpriv;
727         struct rr_regs __iomem *regs;
728         u32 tmp;
729
730         rrpriv = netdev_priv(dev);
731         regs = rrpriv->regs;
732
733         while (prodidx != eidx){
734                 switch (rrpriv->evt_ring[eidx].code){
735                 case E_NIC_UP:
736                         tmp = readl(&regs->FwRev);
737                         printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
738                                "up and running\n", dev->name,
739                                (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
740                         rrpriv->fw_running = 1;
741                         writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
742                         wmb();
743                         break;
744                 case E_LINK_ON:
745                         printk(KERN_INFO "%s: Optical link ON\n", dev->name);
746                         break;
747                 case E_LINK_OFF:
748                         printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
749                         break;
750                 case E_RX_IDLE:
751                         printk(KERN_WARNING "%s: RX data not moving\n",
752                                dev->name);
753                         goto drop;
754                 case E_WATCHDOG:
755                         printk(KERN_INFO "%s: The watchdog is here to see "
756                                "us\n", dev->name);
757                         break;
758                 case E_INTERN_ERR:
759                         printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
760                                dev->name);
761                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
762                                &regs->HostCtrl);
763                         wmb();
764                         break;
765                 case E_HOST_ERR:
766                         printk(KERN_ERR "%s: Host software error\n",
767                                dev->name);
768                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
769                                &regs->HostCtrl);
770                         wmb();
771                         break;
772                 /*
773                  * TX events.
774                  */
775                 case E_CON_REJ:
776                         printk(KERN_WARNING "%s: Connection rejected\n",
777                                dev->name);
778                         dev->stats.tx_aborted_errors++;
779                         break;
780                 case E_CON_TMOUT:
781                         printk(KERN_WARNING "%s: Connection timeout\n",
782                                dev->name);
783                         break;
784                 case E_DISC_ERR:
785                         printk(KERN_WARNING "%s: HIPPI disconnect error\n",
786                                dev->name);
787                         dev->stats.tx_aborted_errors++;
788                         break;
789                 case E_INT_PRTY:
790                         printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
791                                dev->name);
792                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
793                                &regs->HostCtrl);
794                         wmb();
795                         break;
796                 case E_TX_IDLE:
797                         printk(KERN_WARNING "%s: Transmitter idle\n",
798                                dev->name);
799                         break;
800                 case E_TX_LINK_DROP:
801                         printk(KERN_WARNING "%s: Link lost during transmit\n",
802                                dev->name);
803                         dev->stats.tx_aborted_errors++;
804                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
805                                &regs->HostCtrl);
806                         wmb();
807                         break;
808                 case E_TX_INV_RNG:
809                         printk(KERN_ERR "%s: Invalid send ring block\n",
810                                dev->name);
811                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
812                                &regs->HostCtrl);
813                         wmb();
814                         break;
815                 case E_TX_INV_BUF:
816                         printk(KERN_ERR "%s: Invalid send buffer address\n",
817                                dev->name);
818                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
819                                &regs->HostCtrl);
820                         wmb();
821                         break;
822                 case E_TX_INV_DSC:
823                         printk(KERN_ERR "%s: Invalid descriptor address\n",
824                                dev->name);
825                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
826                                &regs->HostCtrl);
827                         wmb();
828                         break;
829                 /*
830                  * RX events.
831                  */
832                 case E_RX_RNG_OUT:
833                         printk(KERN_INFO "%s: Receive ring full\n", dev->name);
834                         break;
835
836                 case E_RX_PAR_ERR:
837                         printk(KERN_WARNING "%s: Receive parity error\n",
838                                dev->name);
839                         goto drop;
840                 case E_RX_LLRC_ERR:
841                         printk(KERN_WARNING "%s: Receive LLRC error\n",
842                                dev->name);
843                         goto drop;
844                 case E_PKT_LN_ERR:
845                         printk(KERN_WARNING "%s: Receive packet length "
846                                "error\n", dev->name);
847                         goto drop;
848                 case E_DTA_CKSM_ERR:
849                         printk(KERN_WARNING "%s: Data checksum error\n",
850                                dev->name);
851                         goto drop;
852                 case E_SHT_BST:
853                         printk(KERN_WARNING "%s: Unexpected short burst "
854                                "error\n", dev->name);
855                         goto drop;
856                 case E_STATE_ERR:
857                         printk(KERN_WARNING "%s: Recv. state transition"
858                                " error\n", dev->name);
859                         goto drop;
860                 case E_UNEXP_DATA:
861                         printk(KERN_WARNING "%s: Unexpected data error\n",
862                                dev->name);
863                         goto drop;
864                 case E_LST_LNK_ERR:
865                         printk(KERN_WARNING "%s: Link lost error\n",
866                                dev->name);
867                         goto drop;
868                 case E_FRM_ERR:
869                         printk(KERN_WARNING "%s: Framing Error\n",
870                                dev->name);
871                         goto drop;
872                 case E_FLG_SYN_ERR:
873                         printk(KERN_WARNING "%s: Flag sync. lost during "
874                                "packet\n", dev->name);
875                         goto drop;
876                 case E_RX_INV_BUF:
877                         printk(KERN_ERR "%s: Invalid receive buffer "
878                                "address\n", dev->name);
879                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
880                                &regs->HostCtrl);
881                         wmb();
882                         break;
883                 case E_RX_INV_DSC:
884                         printk(KERN_ERR "%s: Invalid receive descriptor "
885                                "address\n", dev->name);
886                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
887                                &regs->HostCtrl);
888                         wmb();
889                         break;
890                 case E_RNG_BLK:
891                         printk(KERN_ERR "%s: Invalid ring block\n",
892                                dev->name);
893                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
894                                &regs->HostCtrl);
895                         wmb();
896                         break;
897                 drop:
898                         /* Label packet to be dropped.
899                          * Actual dropping occurs in rx
900                          * handling.
901                          *
902                          * The index of packet we get to drop is
903                          * the index of the packet following
904                          * the bad packet. -kbf
905                          */
906                         {
907                                 u16 index = rrpriv->evt_ring[eidx].index;
908                                 index = (index + (RX_RING_ENTRIES - 1)) %
909                                         RX_RING_ENTRIES;
910                                 rrpriv->rx_ring[index].mode |=
911                                         (PACKET_BAD | PACKET_END);
912                         }
913                         break;
914                 default:
915                         printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
916                                dev->name, rrpriv->evt_ring[eidx].code);
917                 }
918                 eidx = (eidx + 1) % EVT_RING_ENTRIES;
919         }
920
921         rrpriv->info->evt_ctrl.pi = eidx;
922         wmb();
923         return eidx;
924 }
925
926
927 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
928 {
929         struct rr_private *rrpriv = netdev_priv(dev);
930         struct rr_regs __iomem *regs = rrpriv->regs;
931
932         do {
933                 struct rx_desc *desc;
934                 u32 pkt_len;
935
936                 desc = &(rrpriv->rx_ring[index]);
937                 pkt_len = desc->size;
938 #if (DEBUG > 2)
939                 printk("index %i, rxlimit %i\n", index, rxlimit);
940                 printk("len %x, mode %x\n", pkt_len, desc->mode);
941 #endif
942                 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
943                         dev->stats.rx_dropped++;
944                         goto defer;
945                 }
946
947                 if (pkt_len > 0){
948                         struct sk_buff *skb, *rx_skb;
949
950                         rx_skb = rrpriv->rx_skbuff[index];
951
952                         if (pkt_len < PKT_COPY_THRESHOLD) {
953                                 skb = alloc_skb(pkt_len, GFP_ATOMIC);
954                                 if (skb == NULL){
955                                         printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
956                                         dev->stats.rx_dropped++;
957                                         goto defer;
958                                 } else {
959                                         dma_sync_single_for_cpu(&rrpriv->pci_dev->dev,
960                                                                 desc->addr.addrlo,
961                                                                 pkt_len,
962                                                                 DMA_FROM_DEVICE);
963
964                                         skb_put_data(skb, rx_skb->data,
965                                                      pkt_len);
966
967                                         dma_sync_single_for_device(&rrpriv->pci_dev->dev,
968                                                                    desc->addr.addrlo,
969                                                                    pkt_len,
970                                                                    DMA_FROM_DEVICE);
971                                 }
972                         }else{
973                                 struct sk_buff *newskb;
974
975                                 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
976                                         GFP_ATOMIC);
977                                 if (newskb){
978                                         dma_addr_t addr;
979
980                                         dma_unmap_single(&rrpriv->pci_dev->dev,
981                                                          desc->addr.addrlo,
982                                                          dev->mtu + HIPPI_HLEN,
983                                                          DMA_FROM_DEVICE);
984                                         skb = rx_skb;
985                                         skb_put(skb, pkt_len);
986                                         rrpriv->rx_skbuff[index] = newskb;
987                                         addr = dma_map_single(&rrpriv->pci_dev->dev,
988                                                               newskb->data,
989                                                               dev->mtu + HIPPI_HLEN,
990                                                               DMA_FROM_DEVICE);
991                                         set_rraddr(&desc->addr, addr);
992                                 } else {
993                                         printk("%s: Out of memory, deferring "
994                                                "packet\n", dev->name);
995                                         dev->stats.rx_dropped++;
996                                         goto defer;
997                                 }
998                         }
999                         skb->protocol = hippi_type_trans(skb, dev);
1000
1001                         netif_rx(skb);          /* send it up */
1002
1003                         dev->stats.rx_packets++;
1004                         dev->stats.rx_bytes += pkt_len;
1005                 }
1006         defer:
1007                 desc->mode = 0;
1008                 desc->size = dev->mtu + HIPPI_HLEN;
1009
1010                 if ((index & 7) == 7)
1011                         writel(index, &regs->IpRxPi);
1012
1013                 index = (index + 1) % RX_RING_ENTRIES;
1014         } while(index != rxlimit);
1015
1016         rrpriv->cur_rx = index;
1017         wmb();
1018 }
1019
1020
1021 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1022 {
1023         struct rr_private *rrpriv;
1024         struct rr_regs __iomem *regs;
1025         struct net_device *dev = (struct net_device *)dev_id;
1026         u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1027
1028         rrpriv = netdev_priv(dev);
1029         regs = rrpriv->regs;
1030
1031         if (!(readl(&regs->HostCtrl) & RR_INT))
1032                 return IRQ_NONE;
1033
1034         spin_lock(&rrpriv->lock);
1035
1036         prodidx = readl(&regs->EvtPrd);
1037         txcsmr = (prodidx >> 8) & 0xff;
1038         rxlimit = (prodidx >> 16) & 0xff;
1039         prodidx &= 0xff;
1040
1041 #if (DEBUG > 2)
1042         printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1043                prodidx, rrpriv->info->evt_ctrl.pi);
1044 #endif
1045         /*
1046          * Order here is important.  We must handle events
1047          * before doing anything else in order to catch
1048          * such things as LLRC errors, etc -kbf
1049          */
1050
1051         eidx = rrpriv->info->evt_ctrl.pi;
1052         if (prodidx != eidx)
1053                 eidx = rr_handle_event(dev, prodidx, eidx);
1054
1055         rxindex = rrpriv->cur_rx;
1056         if (rxindex != rxlimit)
1057                 rx_int(dev, rxlimit, rxindex);
1058
1059         txcon = rrpriv->dirty_tx;
1060         if (txcsmr != txcon) {
1061                 do {
1062                         /* Due to occational firmware TX producer/consumer out
1063                          * of sync. error need to check entry in ring -kbf
1064                          */
1065                         if(rrpriv->tx_skbuff[txcon]){
1066                                 struct tx_desc *desc;
1067                                 struct sk_buff *skb;
1068
1069                                 desc = &(rrpriv->tx_ring[txcon]);
1070                                 skb = rrpriv->tx_skbuff[txcon];
1071
1072                                 dev->stats.tx_packets++;
1073                                 dev->stats.tx_bytes += skb->len;
1074
1075                                 dma_unmap_single(&rrpriv->pci_dev->dev,
1076                                                  desc->addr.addrlo, skb->len,
1077                                                  DMA_TO_DEVICE);
1078                                 dev_kfree_skb_irq(skb);
1079
1080                                 rrpriv->tx_skbuff[txcon] = NULL;
1081                                 desc->size = 0;
1082                                 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1083                                 desc->mode = 0;
1084                         }
1085                         txcon = (txcon + 1) % TX_RING_ENTRIES;
1086                 } while (txcsmr != txcon);
1087                 wmb();
1088
1089                 rrpriv->dirty_tx = txcon;
1090                 if (rrpriv->tx_full && rr_if_busy(dev) &&
1091                     (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1092                      != rrpriv->dirty_tx)){
1093                         rrpriv->tx_full = 0;
1094                         netif_wake_queue(dev);
1095                 }
1096         }
1097
1098         eidx |= ((txcsmr << 8) | (rxlimit << 16));
1099         writel(eidx, &regs->EvtCon);
1100         wmb();
1101
1102         spin_unlock(&rrpriv->lock);
1103         return IRQ_HANDLED;
1104 }
1105
1106 static inline void rr_raz_tx(struct rr_private *rrpriv,
1107                              struct net_device *dev)
1108 {
1109         int i;
1110
1111         for (i = 0; i < TX_RING_ENTRIES; i++) {
1112                 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1113
1114                 if (skb) {
1115                         struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1116
1117                         dma_unmap_single(&rrpriv->pci_dev->dev,
1118                                          desc->addr.addrlo, skb->len,
1119                                          DMA_TO_DEVICE);
1120                         desc->size = 0;
1121                         set_rraddr(&desc->addr, 0);
1122                         dev_kfree_skb(skb);
1123                         rrpriv->tx_skbuff[i] = NULL;
1124                 }
1125         }
1126 }
1127
1128
1129 static inline void rr_raz_rx(struct rr_private *rrpriv,
1130                              struct net_device *dev)
1131 {
1132         int i;
1133
1134         for (i = 0; i < RX_RING_ENTRIES; i++) {
1135                 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1136
1137                 if (skb) {
1138                         struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1139
1140                         dma_unmap_single(&rrpriv->pci_dev->dev,
1141                                          desc->addr.addrlo,
1142                                          dev->mtu + HIPPI_HLEN,
1143                                          DMA_FROM_DEVICE);
1144                         desc->size = 0;
1145                         set_rraddr(&desc->addr, 0);
1146                         dev_kfree_skb(skb);
1147                         rrpriv->rx_skbuff[i] = NULL;
1148                 }
1149         }
1150 }
1151
1152 static void rr_timer(struct timer_list *t)
1153 {
1154         struct rr_private *rrpriv = from_timer(rrpriv, t, timer);
1155         struct net_device *dev = pci_get_drvdata(rrpriv->pci_dev);
1156         struct rr_regs __iomem *regs = rrpriv->regs;
1157         unsigned long flags;
1158
1159         if (readl(&regs->HostCtrl) & NIC_HALTED){
1160                 printk("%s: Restarting nic\n", dev->name);
1161                 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1162                 memset(rrpriv->info, 0, sizeof(struct rr_info));
1163                 wmb();
1164
1165                 rr_raz_tx(rrpriv, dev);
1166                 rr_raz_rx(rrpriv, dev);
1167
1168                 if (rr_init1(dev)) {
1169                         spin_lock_irqsave(&rrpriv->lock, flags);
1170                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1171                                &regs->HostCtrl);
1172                         spin_unlock_irqrestore(&rrpriv->lock, flags);
1173                 }
1174         }
1175         rrpriv->timer.expires = RUN_AT(5*HZ);
1176         add_timer(&rrpriv->timer);
1177 }
1178
1179
1180 static int rr_open(struct net_device *dev)
1181 {
1182         struct rr_private *rrpriv = netdev_priv(dev);
1183         struct pci_dev *pdev = rrpriv->pci_dev;
1184         struct rr_regs __iomem *regs;
1185         int ecode = 0;
1186         unsigned long flags;
1187         dma_addr_t dma_addr;
1188
1189         regs = rrpriv->regs;
1190
1191         if (rrpriv->fw_rev < 0x00020000) {
1192                 printk(KERN_WARNING "%s: trying to configure device with "
1193                        "obsolete firmware\n", dev->name);
1194                 ecode = -EBUSY;
1195                 goto error;
1196         }
1197
1198         rrpriv->rx_ctrl = dma_alloc_coherent(&pdev->dev,
1199                                              256 * sizeof(struct ring_ctrl),
1200                                              &dma_addr, GFP_KERNEL);
1201         if (!rrpriv->rx_ctrl) {
1202                 ecode = -ENOMEM;
1203                 goto error;
1204         }
1205         rrpriv->rx_ctrl_dma = dma_addr;
1206
1207         rrpriv->info = dma_alloc_coherent(&pdev->dev, sizeof(struct rr_info),
1208                                           &dma_addr, GFP_KERNEL);
1209         if (!rrpriv->info) {
1210                 ecode = -ENOMEM;
1211                 goto error;
1212         }
1213         rrpriv->info_dma = dma_addr;
1214         wmb();
1215
1216         spin_lock_irqsave(&rrpriv->lock, flags);
1217         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1218         readl(&regs->HostCtrl);
1219         spin_unlock_irqrestore(&rrpriv->lock, flags);
1220
1221         if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1222                 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1223                        dev->name, pdev->irq);
1224                 ecode = -EAGAIN;
1225                 goto error;
1226         }
1227
1228         if ((ecode = rr_init1(dev)))
1229                 goto error;
1230
1231         /* Set the timer to switch to check for link beat and perhaps switch
1232            to an alternate media type. */
1233         timer_setup(&rrpriv->timer, rr_timer, 0);
1234         rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
1235         add_timer(&rrpriv->timer);
1236
1237         netif_start_queue(dev);
1238
1239         return ecode;
1240
1241  error:
1242         spin_lock_irqsave(&rrpriv->lock, flags);
1243         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1244         spin_unlock_irqrestore(&rrpriv->lock, flags);
1245
1246         if (rrpriv->info) {
1247                 dma_free_coherent(&pdev->dev, sizeof(struct rr_info),
1248                                   rrpriv->info, rrpriv->info_dma);
1249                 rrpriv->info = NULL;
1250         }
1251         if (rrpriv->rx_ctrl) {
1252                 dma_free_coherent(&pdev->dev, 256 * sizeof(struct ring_ctrl),
1253                                   rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1254                 rrpriv->rx_ctrl = NULL;
1255         }
1256
1257         netif_stop_queue(dev);
1258
1259         return ecode;
1260 }
1261
1262
1263 static void rr_dump(struct net_device *dev)
1264 {
1265         struct rr_private *rrpriv;
1266         struct rr_regs __iomem *regs;
1267         u32 index, cons;
1268         short i;
1269         int len;
1270
1271         rrpriv = netdev_priv(dev);
1272         regs = rrpriv->regs;
1273
1274         printk("%s: dumping NIC TX rings\n", dev->name);
1275
1276         printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1277                readl(&regs->RxPrd), readl(&regs->TxPrd),
1278                readl(&regs->EvtPrd), readl(&regs->TxPi),
1279                rrpriv->info->tx_ctrl.pi);
1280
1281         printk("Error code 0x%x\n", readl(&regs->Fail1));
1282
1283         index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1284         cons = rrpriv->dirty_tx;
1285         printk("TX ring index %i, TX consumer %i\n",
1286                index, cons);
1287
1288         if (rrpriv->tx_skbuff[index]){
1289                 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1290                 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1291                 for (i = 0; i < len; i++){
1292                         if (!(i & 7))
1293                                 printk("\n");
1294                         printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1295                 }
1296                 printk("\n");
1297         }
1298
1299         if (rrpriv->tx_skbuff[cons]){
1300                 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1301                 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1302                 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %p, truesize 0x%x\n",
1303                        rrpriv->tx_ring[cons].mode,
1304                        rrpriv->tx_ring[cons].size,
1305                        (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1306                        rrpriv->tx_skbuff[cons]->data,
1307                        (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1308                 for (i = 0; i < len; i++){
1309                         if (!(i & 7))
1310                                 printk("\n");
1311                         printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1312                 }
1313                 printk("\n");
1314         }
1315
1316         printk("dumping TX ring info:\n");
1317         for (i = 0; i < TX_RING_ENTRIES; i++)
1318                 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1319                        rrpriv->tx_ring[i].mode,
1320                        rrpriv->tx_ring[i].size,
1321                        (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1322
1323 }
1324
1325
1326 static int rr_close(struct net_device *dev)
1327 {
1328         struct rr_private *rrpriv = netdev_priv(dev);
1329         struct rr_regs __iomem *regs = rrpriv->regs;
1330         struct pci_dev *pdev = rrpriv->pci_dev;
1331         unsigned long flags;
1332         u32 tmp;
1333         short i;
1334
1335         netif_stop_queue(dev);
1336
1337
1338         /*
1339          * Lock to make sure we are not cleaning up while another CPU
1340          * is handling interrupts.
1341          */
1342         spin_lock_irqsave(&rrpriv->lock, flags);
1343
1344         tmp = readl(&regs->HostCtrl);
1345         if (tmp & NIC_HALTED){
1346                 printk("%s: NIC already halted\n", dev->name);
1347                 rr_dump(dev);
1348         }else{
1349                 tmp |= HALT_NIC | RR_CLEAR_INT;
1350                 writel(tmp, &regs->HostCtrl);
1351                 readl(&regs->HostCtrl);
1352         }
1353
1354         rrpriv->fw_running = 0;
1355
1356         spin_unlock_irqrestore(&rrpriv->lock, flags);
1357         del_timer_sync(&rrpriv->timer);
1358         spin_lock_irqsave(&rrpriv->lock, flags);
1359
1360         writel(0, &regs->TxPi);
1361         writel(0, &regs->IpRxPi);
1362
1363         writel(0, &regs->EvtCon);
1364         writel(0, &regs->EvtPrd);
1365
1366         for (i = 0; i < CMD_RING_ENTRIES; i++)
1367                 writel(0, &regs->CmdRing[i]);
1368
1369         rrpriv->info->tx_ctrl.entries = 0;
1370         rrpriv->info->cmd_ctrl.pi = 0;
1371         rrpriv->info->evt_ctrl.pi = 0;
1372         rrpriv->rx_ctrl[4].entries = 0;
1373
1374         rr_raz_tx(rrpriv, dev);
1375         rr_raz_rx(rrpriv, dev);
1376
1377         dma_free_coherent(&pdev->dev, 256 * sizeof(struct ring_ctrl),
1378                           rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1379         rrpriv->rx_ctrl = NULL;
1380
1381         dma_free_coherent(&pdev->dev, sizeof(struct rr_info), rrpriv->info,
1382                           rrpriv->info_dma);
1383         rrpriv->info = NULL;
1384
1385         spin_unlock_irqrestore(&rrpriv->lock, flags);
1386         free_irq(pdev->irq, dev);
1387
1388         return 0;
1389 }
1390
1391
1392 static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1393                                  struct net_device *dev)
1394 {
1395         struct rr_private *rrpriv = netdev_priv(dev);
1396         struct rr_regs __iomem *regs = rrpriv->regs;
1397         struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1398         struct ring_ctrl *txctrl;
1399         unsigned long flags;
1400         u32 index, len = skb->len;
1401         u32 *ifield;
1402         struct sk_buff *new_skb;
1403
1404         if (readl(&regs->Mode) & FATAL_ERR)
1405                 printk("error codes Fail1 %02x, Fail2 %02x\n",
1406                        readl(&regs->Fail1), readl(&regs->Fail2));
1407
1408         /*
1409          * We probably need to deal with tbusy here to prevent overruns.
1410          */
1411
1412         if (skb_headroom(skb) < 8){
1413                 printk("incoming skb too small - reallocating\n");
1414                 if (!(new_skb = dev_alloc_skb(len + 8))) {
1415                         dev_kfree_skb(skb);
1416                         netif_wake_queue(dev);
1417                         return NETDEV_TX_OK;
1418                 }
1419                 skb_reserve(new_skb, 8);
1420                 skb_put(new_skb, len);
1421                 skb_copy_from_linear_data(skb, new_skb->data, len);
1422                 dev_kfree_skb(skb);
1423                 skb = new_skb;
1424         }
1425
1426         ifield = skb_push(skb, 8);
1427
1428         ifield[0] = 0;
1429         ifield[1] = hcb->ifield;
1430
1431         /*
1432          * We don't need the lock before we are actually going to start
1433          * fiddling with the control blocks.
1434          */
1435         spin_lock_irqsave(&rrpriv->lock, flags);
1436
1437         txctrl = &rrpriv->info->tx_ctrl;
1438
1439         index = txctrl->pi;
1440
1441         rrpriv->tx_skbuff[index] = skb;
1442         set_rraddr(&rrpriv->tx_ring[index].addr,
1443                    dma_map_single(&rrpriv->pci_dev->dev, skb->data, len + 8, DMA_TO_DEVICE));
1444         rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1445         rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1446         txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1447         wmb();
1448         writel(txctrl->pi, &regs->TxPi);
1449
1450         if (txctrl->pi == rrpriv->dirty_tx){
1451                 rrpriv->tx_full = 1;
1452                 netif_stop_queue(dev);
1453         }
1454
1455         spin_unlock_irqrestore(&rrpriv->lock, flags);
1456
1457         return NETDEV_TX_OK;
1458 }
1459
1460
1461 /*
1462  * Read the firmware out of the EEPROM and put it into the SRAM
1463  * (or from user space - later)
1464  *
1465  * This operation requires the NIC to be halted and is performed with
1466  * interrupts disabled and with the spinlock hold.
1467  */
1468 static int rr_load_firmware(struct net_device *dev)
1469 {
1470         struct rr_private *rrpriv;
1471         struct rr_regs __iomem *regs;
1472         size_t eptr, segptr;
1473         int i, j;
1474         u32 localctrl, sptr, len, tmp;
1475         u32 p2len, p2size, nr_seg, revision, io, sram_size;
1476
1477         rrpriv = netdev_priv(dev);
1478         regs = rrpriv->regs;
1479
1480         if (dev->flags & IFF_UP)
1481                 return -EBUSY;
1482
1483         if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1484                 printk("%s: Trying to load firmware to a running NIC.\n",
1485                        dev->name);
1486                 return -EBUSY;
1487         }
1488
1489         localctrl = readl(&regs->LocalCtrl);
1490         writel(0, &regs->LocalCtrl);
1491
1492         writel(0, &regs->EvtPrd);
1493         writel(0, &regs->RxPrd);
1494         writel(0, &regs->TxPrd);
1495
1496         /*
1497          * First wipe the entire SRAM, otherwise we might run into all
1498          * kinds of trouble ... sigh, this took almost all afternoon
1499          * to track down ;-(
1500          */
1501         io = readl(&regs->ExtIo);
1502         writel(0, &regs->ExtIo);
1503         sram_size = rr_read_eeprom_word(rrpriv, 8);
1504
1505         for (i = 200; i < sram_size / 4; i++){
1506                 writel(i * 4, &regs->WinBase);
1507                 mb();
1508                 writel(0, &regs->WinData);
1509                 mb();
1510         }
1511         writel(io, &regs->ExtIo);
1512         mb();
1513
1514         eptr = rr_read_eeprom_word(rrpriv,
1515                        offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1516         eptr = ((eptr & 0x1fffff) >> 3);
1517
1518         p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1519         p2len = (p2len << 2);
1520         p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1521         p2size = ((p2size & 0x1fffff) >> 3);
1522
1523         if ((eptr < p2size) || (eptr > (p2size + p2len))){
1524                 printk("%s: eptr is invalid\n", dev->name);
1525                 goto out;
1526         }
1527
1528         revision = rr_read_eeprom_word(rrpriv,
1529                         offsetof(struct eeprom, manf.HeaderFmt));
1530
1531         if (revision != 1){
1532                 printk("%s: invalid firmware format (%i)\n",
1533                        dev->name, revision);
1534                 goto out;
1535         }
1536
1537         nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1538         eptr +=4;
1539 #if (DEBUG > 1)
1540         printk("%s: nr_seg %i\n", dev->name, nr_seg);
1541 #endif
1542
1543         for (i = 0; i < nr_seg; i++){
1544                 sptr = rr_read_eeprom_word(rrpriv, eptr);
1545                 eptr += 4;
1546                 len = rr_read_eeprom_word(rrpriv, eptr);
1547                 eptr += 4;
1548                 segptr = rr_read_eeprom_word(rrpriv, eptr);
1549                 segptr = ((segptr & 0x1fffff) >> 3);
1550                 eptr += 4;
1551 #if (DEBUG > 1)
1552                 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1553                        dev->name, i, sptr, len, segptr);
1554 #endif
1555                 for (j = 0; j < len; j++){
1556                         tmp = rr_read_eeprom_word(rrpriv, segptr);
1557                         writel(sptr, &regs->WinBase);
1558                         mb();
1559                         writel(tmp, &regs->WinData);
1560                         mb();
1561                         segptr += 4;
1562                         sptr += 4;
1563                 }
1564         }
1565
1566 out:
1567         writel(localctrl, &regs->LocalCtrl);
1568         mb();
1569         return 0;
1570 }
1571
1572
1573 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1574 {
1575         struct rr_private *rrpriv;
1576         unsigned char *image, *oldimage;
1577         unsigned long flags;
1578         unsigned int i;
1579         int error = -EOPNOTSUPP;
1580
1581         rrpriv = netdev_priv(dev);
1582
1583         switch(cmd){
1584         case SIOCRRGFW:
1585                 if (!capable(CAP_SYS_RAWIO)){
1586                         return -EPERM;
1587                 }
1588
1589                 image = kmalloc_array(EEPROM_WORDS, sizeof(u32), GFP_KERNEL);
1590                 if (!image)
1591                         return -ENOMEM;
1592
1593                 if (rrpriv->fw_running){
1594                         printk("%s: Firmware already running\n", dev->name);
1595                         error = -EPERM;
1596                         goto gf_out;
1597                 }
1598
1599                 spin_lock_irqsave(&rrpriv->lock, flags);
1600                 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1601                 spin_unlock_irqrestore(&rrpriv->lock, flags);
1602                 if (i != EEPROM_BYTES){
1603                         printk(KERN_ERR "%s: Error reading EEPROM\n",
1604                                dev->name);
1605                         error = -EFAULT;
1606                         goto gf_out;
1607                 }
1608                 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1609                 if (error)
1610                         error = -EFAULT;
1611         gf_out:
1612                 kfree(image);
1613                 return error;
1614
1615         case SIOCRRPFW:
1616                 if (!capable(CAP_SYS_RAWIO)){
1617                         return -EPERM;
1618                 }
1619
1620                 image = memdup_user(rq->ifr_data, EEPROM_BYTES);
1621                 if (IS_ERR(image))
1622                         return PTR_ERR(image);
1623
1624                 oldimage = kmalloc(EEPROM_BYTES, GFP_KERNEL);
1625                 if (!oldimage) {
1626                         kfree(image);
1627                         return -ENOMEM;
1628                 }
1629
1630                 if (rrpriv->fw_running){
1631                         printk("%s: Firmware already running\n", dev->name);
1632                         error = -EPERM;
1633                         goto wf_out;
1634                 }
1635
1636                 printk("%s: Updating EEPROM firmware\n", dev->name);
1637
1638                 spin_lock_irqsave(&rrpriv->lock, flags);
1639                 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1640                 if (error)
1641                         printk(KERN_ERR "%s: Error writing EEPROM\n",
1642                                dev->name);
1643
1644                 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1645                 spin_unlock_irqrestore(&rrpriv->lock, flags);
1646
1647                 if (i != EEPROM_BYTES)
1648                         printk(KERN_ERR "%s: Error reading back EEPROM "
1649                                "image\n", dev->name);
1650
1651                 error = memcmp(image, oldimage, EEPROM_BYTES);
1652                 if (error){
1653                         printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1654                                dev->name);
1655                         error = -EFAULT;
1656                 }
1657         wf_out:
1658                 kfree(oldimage);
1659                 kfree(image);
1660                 return error;
1661
1662         case SIOCRRID:
1663                 return put_user(0x52523032, (int __user *)rq->ifr_data);
1664         default:
1665                 return error;
1666         }
1667 }
1668
1669 static const struct pci_device_id rr_pci_tbl[] = {
1670         { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1671                 PCI_ANY_ID, PCI_ANY_ID, },
1672         { 0,}
1673 };
1674 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1675
1676 static struct pci_driver rr_driver = {
1677         .name           = "rrunner",
1678         .id_table       = rr_pci_tbl,
1679         .probe          = rr_init_one,
1680         .remove         = rr_remove_one,
1681 };
1682
1683 module_pci_driver(rr_driver);