GNU Linux-libre 4.9.332-gnu1
[releases.git] / drivers / net / fddi / defxx.c
1 /*
2  * File Name:
3  *   defxx.c
4  *
5  * Copyright Information:
6  *   Copyright Digital Equipment Corporation 1996.
7  *
8  *   This software may be used and distributed according to the terms of
9  *   the GNU General Public License, incorporated herein by reference.
10  *
11  * Abstract:
12  *   A Linux device driver supporting the Digital Equipment Corporation
13  *   FDDI TURBOchannel, EISA and PCI controller families.  Supported
14  *   adapters include:
15  *
16  *              DEC FDDIcontroller/TURBOchannel (DEFTA)
17  *              DEC FDDIcontroller/EISA         (DEFEA)
18  *              DEC FDDIcontroller/PCI          (DEFPA)
19  *
20  * The original author:
21  *   LVS        Lawrence V. Stefani <lstefani@yahoo.com>
22  *
23  * Maintainers:
24  *   macro      Maciej W. Rozycki <macro@linux-mips.org>
25  *
26  * Credits:
27  *   I'd like to thank Patricia Cross for helping me get started with
28  *   Linux, David Davies for a lot of help upgrading and configuring
29  *   my development system and for answering many OS and driver
30  *   development questions, and Alan Cox for recommendations and
31  *   integration help on getting FDDI support into Linux.  LVS
32  *
33  * Driver Architecture:
34  *   The driver architecture is largely based on previous driver work
35  *   for other operating systems.  The upper edge interface and
36  *   functions were largely taken from existing Linux device drivers
37  *   such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
38  *   driver.
39  *
40  *   Adapter Probe -
41  *              The driver scans for supported EISA adapters by reading the
42  *              SLOT ID register for each EISA slot and making a match
43  *              against the expected value.
44  *
45  *   Bus-Specific Initialization -
46  *              This driver currently supports both EISA and PCI controller
47  *              families.  While the custom DMA chip and FDDI logic is similar
48  *              or identical, the bus logic is very different.  After
49  *              initialization, the     only bus-specific differences is in how the
50  *              driver enables and disables interrupts.  Other than that, the
51  *              run-time critical code behaves the same on both families.
52  *              It's important to note that both adapter families are configured
53  *              to I/O map, rather than memory map, the adapter registers.
54  *
55  *   Driver Open/Close -
56  *              In the driver open routine, the driver ISR (interrupt service
57  *              routine) is registered and the adapter is brought to an
58  *              operational state.  In the driver close routine, the opposite
59  *              occurs; the driver ISR is deregistered and the adapter is
60  *              brought to a safe, but closed state.  Users may use consecutive
61  *              commands to bring the adapter up and down as in the following
62  *              example:
63  *                                      ifconfig fddi0 up
64  *                                      ifconfig fddi0 down
65  *                                      ifconfig fddi0 up
66  *
67  *   Driver Shutdown -
68  *              Apparently, there is no shutdown or halt routine support under
69  *              Linux.  This routine would be called during "reboot" or
70  *              "shutdown" to allow the driver to place the adapter in a safe
71  *              state before a warm reboot occurs.  To be really safe, the user
72  *              should close the adapter before shutdown (eg. ifconfig fddi0 down)
73  *              to ensure that the adapter DMA engine is taken off-line.  However,
74  *              the current driver code anticipates this problem and always issues
75  *              a soft reset of the adapter     at the beginning of driver initialization.
76  *              A future driver enhancement in this area may occur in 2.1.X where
77  *              Alan indicated that a shutdown handler may be implemented.
78  *
79  *   Interrupt Service Routine -
80  *              The driver supports shared interrupts, so the ISR is registered for
81  *              each board with the appropriate flag and the pointer to that board's
82  *              device structure.  This provides the context during interrupt
83  *              processing to support shared interrupts and multiple boards.
84  *
85  *              Interrupt enabling/disabling can occur at many levels.  At the host
86  *              end, you can disable system interrupts, or disable interrupts at the
87  *              PIC (on Intel systems).  Across the bus, both EISA and PCI adapters
88  *              have a bus-logic chip interrupt enable/disable as well as a DMA
89  *              controller interrupt enable/disable.
90  *
91  *              The driver currently enables and disables adapter interrupts at the
92  *              bus-logic chip and assumes that Linux will take care of clearing or
93  *              acknowledging any host-based interrupt chips.
94  *
95  *   Control Functions -
96  *              Control functions are those used to support functions such as adding
97  *              or deleting multicast addresses, enabling or disabling packet
98  *              reception filters, or other custom/proprietary commands.  Presently,
99  *              the driver supports the "get statistics", "set multicast list", and
100  *              "set mac address" functions defined by Linux.  A list of possible
101  *              enhancements include:
102  *
103  *                              - Custom ioctl interface for executing port interface commands
104  *                              - Custom ioctl interface for adding unicast addresses to
105  *                                adapter CAM (to support bridge functions).
106  *                              - Custom ioctl interface for supporting firmware upgrades.
107  *
108  *   Hardware (port interface) Support Routines -
109  *              The driver function names that start with "dfx_hw_" represent
110  *              low-level port interface routines that are called frequently.  They
111  *              include issuing a DMA or port control command to the adapter,
112  *              resetting the adapter, or reading the adapter state.  Since the
113  *              driver initialization and run-time code must make calls into the
114  *              port interface, these routines were written to be as generic and
115  *              usable as possible.
116  *
117  *   Receive Path -
118  *              The adapter DMA engine supports a 256 entry receive descriptor block
119  *              of which up to 255 entries can be used at any given time.  The
120  *              architecture is a standard producer, consumer, completion model in
121  *              which the driver "produces" receive buffers to the adapter, the
122  *              adapter "consumes" the receive buffers by DMAing incoming packet data,
123  *              and the driver "completes" the receive buffers by servicing the
124  *              incoming packet, then "produces" a new buffer and starts the cycle
125  *              again.  Receive buffers can be fragmented in up to 16 fragments
126  *              (descriptor     entries).  For simplicity, this driver posts
127  *              single-fragment receive buffers of 4608 bytes, then allocates a
128  *              sk_buff, copies the data, then reposts the buffer.  To reduce CPU
129  *              utilization, a better approach would be to pass up the receive
130  *              buffer (no extra copy) then allocate and post a replacement buffer.
131  *              This is a performance enhancement that should be looked into at
132  *              some point.
133  *
134  *   Transmit Path -
135  *              Like the receive path, the adapter DMA engine supports a 256 entry
136  *              transmit descriptor block of which up to 255 entries can be used at
137  *              any     given time.  Transmit buffers can be fragmented in up to 255
138  *              fragments (descriptor entries).  This driver always posts one
139  *              fragment per transmit packet request.
140  *
141  *              The fragment contains the entire packet from FC to end of data.
142  *              Before posting the buffer to the adapter, the driver sets a three-byte
143  *              packet request header (PRH) which is required by the Motorola MAC chip
144  *              used on the adapters.  The PRH tells the MAC the type of token to
145  *              receive/send, whether or not to generate and append the CRC, whether
146  *              synchronous or asynchronous framing is used, etc.  Since the PRH
147  *              definition is not necessarily consistent across all FDDI chipsets,
148  *              the driver, rather than the common FDDI packet handler routines,
149  *              sets these bytes.
150  *
151  *              To reduce the amount of descriptor fetches needed per transmit request,
152  *              the driver takes advantage of the fact that there are at least three
153  *              bytes available before the skb->data field on the outgoing transmit
154  *              request.  This is guaranteed by having fddi_setup() in net_init.c set
155  *              dev->hard_header_len to 24 bytes.  21 bytes accounts for the largest
156  *              header in an 802.2 SNAP frame.  The other 3 bytes are the extra "pad"
157  *              bytes which we'll use to store the PRH.
158  *
159  *              There's a subtle advantage to adding these pad bytes to the
160  *              hard_header_len, it ensures that the data portion of the packet for
161  *              an 802.2 SNAP frame is longword aligned.  Other FDDI driver
162  *              implementations may not need the extra padding and can start copying
163  *              or DMAing directly from the FC byte which starts at skb->data.  Should
164  *              another driver implementation need ADDITIONAL padding, the net_init.c
165  *              module should be updated and dev->hard_header_len should be increased.
166  *              NOTE: To maintain the alignment on the data portion of the packet,
167  *              dev->hard_header_len should always be evenly divisible by 4 and at
168  *              least 24 bytes in size.
169  *
170  * Modification History:
171  *              Date            Name    Description
172  *              16-Aug-96       LVS             Created.
173  *              20-Aug-96       LVS             Updated dfx_probe so that version information
174  *                                                      string is only displayed if 1 or more cards are
175  *                                                      found.  Changed dfx_rcv_queue_process to copy
176  *                                                      3 NULL bytes before FC to ensure that data is
177  *                                                      longword aligned in receive buffer.
178  *              09-Sep-96       LVS             Updated dfx_ctl_set_multicast_list to enable
179  *                                                      LLC group promiscuous mode if multicast list
180  *                                                      is too large.  LLC individual/group promiscuous
181  *                                                      mode is now disabled if IFF_PROMISC flag not set.
182  *                                                      dfx_xmt_queue_pkt no longer checks for NULL skb
183  *                                                      on Alan Cox recommendation.  Added node address
184  *                                                      override support.
185  *              12-Sep-96       LVS             Reset current address to factory address during
186  *                                                      device open.  Updated transmit path to post a
187  *                                                      single fragment which includes PRH->end of data.
188  *              Mar 2000        AC              Did various cleanups for 2.3.x
189  *              Jun 2000        jgarzik         PCI and resource alloc cleanups
190  *              Jul 2000        tjeerd          Much cleanup and some bug fixes
191  *              Sep 2000        tjeerd          Fix leak on unload, cosmetic code cleanup
192  *              Feb 2001                        Skb allocation fixes
193  *              Feb 2001        davej           PCI enable cleanups.
194  *              04 Aug 2003     macro           Converted to the DMA API.
195  *              14 Aug 2004     macro           Fix device names reported.
196  *              14 Jun 2005     macro           Use irqreturn_t.
197  *              23 Oct 2006     macro           Big-endian host support.
198  *              14 Dec 2006     macro           TURBOchannel support.
199  *              01 Jul 2014     macro           Fixes for DMA on 64-bit hosts.
200  */
201
202 /* Include files */
203 #include <linux/bitops.h>
204 #include <linux/compiler.h>
205 #include <linux/delay.h>
206 #include <linux/dma-mapping.h>
207 #include <linux/eisa.h>
208 #include <linux/errno.h>
209 #include <linux/fddidevice.h>
210 #include <linux/interrupt.h>
211 #include <linux/ioport.h>
212 #include <linux/kernel.h>
213 #include <linux/module.h>
214 #include <linux/netdevice.h>
215 #include <linux/pci.h>
216 #include <linux/skbuff.h>
217 #include <linux/slab.h>
218 #include <linux/string.h>
219 #include <linux/tc.h>
220
221 #include <asm/byteorder.h>
222 #include <asm/io.h>
223
224 #include "defxx.h"
225
226 /* Version information string should be updated prior to each new release!  */
227 #define DRV_NAME "defxx"
228 #define DRV_VERSION "v1.11"
229 #define DRV_RELDATE "2014/07/01"
230
231 static char version[] =
232         DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
233         "  Lawrence V. Stefani and others\n";
234
235 #define DYNAMIC_BUFFERS 1
236
237 #define SKBUFF_RX_COPYBREAK 200
238 /*
239  * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
240  * alignment for compatibility with old EISA boards.
241  */
242 #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
243
244 #ifdef CONFIG_EISA
245 #define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
246 #else
247 #define DFX_BUS_EISA(dev) 0
248 #endif
249
250 #ifdef CONFIG_TC
251 #define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
252 #else
253 #define DFX_BUS_TC(dev) 0
254 #endif
255
256 #ifdef CONFIG_DEFXX_MMIO
257 #define DFX_MMIO 1
258 #else
259 #define DFX_MMIO 0
260 #endif
261
262 /* Define module-wide (static) routines */
263
264 static void             dfx_bus_init(struct net_device *dev);
265 static void             dfx_bus_uninit(struct net_device *dev);
266 static void             dfx_bus_config_check(DFX_board_t *bp);
267
268 static int              dfx_driver_init(struct net_device *dev,
269                                         const char *print_name,
270                                         resource_size_t bar_start);
271 static int              dfx_adap_init(DFX_board_t *bp, int get_buffers);
272
273 static int              dfx_open(struct net_device *dev);
274 static int              dfx_close(struct net_device *dev);
275
276 static void             dfx_int_pr_halt_id(DFX_board_t *bp);
277 static void             dfx_int_type_0_process(DFX_board_t *bp);
278 static void             dfx_int_common(struct net_device *dev);
279 static irqreturn_t      dfx_interrupt(int irq, void *dev_id);
280
281 static struct           net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
282 static void             dfx_ctl_set_multicast_list(struct net_device *dev);
283 static int              dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
284 static int              dfx_ctl_update_cam(DFX_board_t *bp);
285 static int              dfx_ctl_update_filters(DFX_board_t *bp);
286
287 static int              dfx_hw_dma_cmd_req(DFX_board_t *bp);
288 static int              dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
289 static void             dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
290 static int              dfx_hw_adap_state_rd(DFX_board_t *bp);
291 static int              dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
292
293 static int              dfx_rcv_init(DFX_board_t *bp, int get_buffers);
294 static void             dfx_rcv_queue_process(DFX_board_t *bp);
295 #ifdef DYNAMIC_BUFFERS
296 static void             dfx_rcv_flush(DFX_board_t *bp);
297 #else
298 static inline void      dfx_rcv_flush(DFX_board_t *bp) {}
299 #endif
300
301 static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
302                                      struct net_device *dev);
303 static int              dfx_xmt_done(DFX_board_t *bp);
304 static void             dfx_xmt_flush(DFX_board_t *bp);
305
306 /* Define module-wide (static) variables */
307
308 static struct pci_driver dfx_pci_driver;
309 static struct eisa_driver dfx_eisa_driver;
310 static struct tc_driver dfx_tc_driver;
311
312
313 /*
314  * =======================
315  * = dfx_port_write_long =
316  * = dfx_port_read_long  =
317  * =======================
318  *
319  * Overview:
320  *   Routines for reading and writing values from/to adapter
321  *
322  * Returns:
323  *   None
324  *
325  * Arguments:
326  *   bp         - pointer to board information
327  *   offset     - register offset from base I/O address
328  *   data       - for dfx_port_write_long, this is a value to write;
329  *                for dfx_port_read_long, this is a pointer to store
330  *                the read value
331  *
332  * Functional Description:
333  *   These routines perform the correct operation to read or write
334  *   the adapter register.
335  *
336  *   EISA port block base addresses are based on the slot number in which the
337  *   controller is installed.  For example, if the EISA controller is installed
338  *   in slot 4, the port block base address is 0x4000.  If the controller is
339  *   installed in slot 2, the port block base address is 0x2000, and so on.
340  *   This port block can be used to access PDQ, ESIC, and DEFEA on-board
341  *   registers using the register offsets defined in DEFXX.H.
342  *
343  *   PCI port block base addresses are assigned by the PCI BIOS or system
344  *   firmware.  There is one 128 byte port block which can be accessed.  It
345  *   allows for I/O mapping of both PDQ and PFI registers using the register
346  *   offsets defined in DEFXX.H.
347  *
348  * Return Codes:
349  *   None
350  *
351  * Assumptions:
352  *   bp->base is a valid base I/O address for this adapter.
353  *   offset is a valid register offset for this adapter.
354  *
355  * Side Effects:
356  *   Rather than produce macros for these functions, these routines
357  *   are defined using "inline" to ensure that the compiler will
358  *   generate inline code and not waste a procedure call and return.
359  *   This provides all the benefits of macros, but with the
360  *   advantage of strict data type checking.
361  */
362
363 static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
364 {
365         writel(data, bp->base.mem + offset);
366         mb();
367 }
368
369 static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
370 {
371         outl(data, bp->base.port + offset);
372 }
373
374 static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
375 {
376         struct device __maybe_unused *bdev = bp->bus_dev;
377         int dfx_bus_tc = DFX_BUS_TC(bdev);
378         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
379
380         if (dfx_use_mmio)
381                 dfx_writel(bp, offset, data);
382         else
383                 dfx_outl(bp, offset, data);
384 }
385
386
387 static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
388 {
389         mb();
390         *data = readl(bp->base.mem + offset);
391 }
392
393 static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
394 {
395         *data = inl(bp->base.port + offset);
396 }
397
398 static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
399 {
400         struct device __maybe_unused *bdev = bp->bus_dev;
401         int dfx_bus_tc = DFX_BUS_TC(bdev);
402         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
403
404         if (dfx_use_mmio)
405                 dfx_readl(bp, offset, data);
406         else
407                 dfx_inl(bp, offset, data);
408 }
409
410
411 /*
412  * ================
413  * = dfx_get_bars =
414  * ================
415  *
416  * Overview:
417  *   Retrieves the address ranges used to access control and status
418  *   registers.
419  *
420  * Returns:
421  *   None
422  *
423  * Arguments:
424  *   bdev       - pointer to device information
425  *   bar_start  - pointer to store the start addresses
426  *   bar_len    - pointer to store the lengths of the areas
427  *
428  * Assumptions:
429  *   I am sure there are some.
430  *
431  * Side Effects:
432  *   None
433  */
434 static void dfx_get_bars(struct device *bdev,
435                          resource_size_t *bar_start, resource_size_t *bar_len)
436 {
437         int dfx_bus_pci = dev_is_pci(bdev);
438         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
439         int dfx_bus_tc = DFX_BUS_TC(bdev);
440         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
441
442         if (dfx_bus_pci) {
443                 int num = dfx_use_mmio ? 0 : 1;
444
445                 bar_start[0] = pci_resource_start(to_pci_dev(bdev), num);
446                 bar_len[0] = pci_resource_len(to_pci_dev(bdev), num);
447                 bar_start[2] = bar_start[1] = 0;
448                 bar_len[2] = bar_len[1] = 0;
449         }
450         if (dfx_bus_eisa) {
451                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
452                 resource_size_t bar_lo;
453                 resource_size_t bar_hi;
454
455                 if (dfx_use_mmio) {
456                         bar_lo = inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_2);
457                         bar_lo <<= 8;
458                         bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_1);
459                         bar_lo <<= 8;
460                         bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_0);
461                         bar_lo <<= 8;
462                         bar_start[0] = bar_lo;
463                         bar_hi = inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_2);
464                         bar_hi <<= 8;
465                         bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_1);
466                         bar_hi <<= 8;
467                         bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_0);
468                         bar_hi <<= 8;
469                         bar_len[0] = ((bar_hi - bar_lo) | PI_MEM_ADD_MASK_M) +
470                                      1;
471                 } else {
472                         bar_start[0] = base_addr;
473                         bar_len[0] = PI_ESIC_K_CSR_IO_LEN;
474                 }
475                 bar_start[1] = base_addr + PI_DEFEA_K_BURST_HOLDOFF;
476                 bar_len[1] = PI_ESIC_K_BURST_HOLDOFF_LEN;
477                 bar_start[2] = base_addr + PI_ESIC_K_ESIC_CSR;
478                 bar_len[2] = PI_ESIC_K_ESIC_CSR_LEN;
479         }
480         if (dfx_bus_tc) {
481                 bar_start[0] = to_tc_dev(bdev)->resource.start +
482                                PI_TC_K_CSR_OFFSET;
483                 bar_len[0] = PI_TC_K_CSR_LEN;
484                 bar_start[2] = bar_start[1] = 0;
485                 bar_len[2] = bar_len[1] = 0;
486         }
487 }
488
489 static const struct net_device_ops dfx_netdev_ops = {
490         .ndo_open               = dfx_open,
491         .ndo_stop               = dfx_close,
492         .ndo_start_xmit         = dfx_xmt_queue_pkt,
493         .ndo_get_stats          = dfx_ctl_get_stats,
494         .ndo_set_rx_mode        = dfx_ctl_set_multicast_list,
495         .ndo_set_mac_address    = dfx_ctl_set_mac_address,
496 };
497
498 static void dfx_register_res_alloc_err(const char *print_name, bool mmio,
499                                        bool eisa)
500 {
501         pr_err("%s: Cannot use %s, no address set, aborting\n",
502                print_name, mmio ? "MMIO" : "I/O");
503         pr_err("%s: Recompile driver with \"CONFIG_DEFXX_MMIO=%c\"\n",
504                print_name, mmio ? 'n' : 'y');
505         if (eisa && mmio)
506                 pr_err("%s: Or run ECU and set adapter's MMIO location\n",
507                        print_name);
508 }
509
510 static void dfx_register_res_err(const char *print_name, bool mmio,
511                                  unsigned long start, unsigned long len)
512 {
513         pr_err("%s: Cannot reserve %s resource 0x%lx @ 0x%lx, aborting\n",
514                print_name, mmio ? "MMIO" : "I/O", len, start);
515 }
516
517 /*
518  * ================
519  * = dfx_register =
520  * ================
521  *
522  * Overview:
523  *   Initializes a supported FDDI controller
524  *
525  * Returns:
526  *   Condition code
527  *
528  * Arguments:
529  *   bdev - pointer to device information
530  *
531  * Functional Description:
532  *
533  * Return Codes:
534  *   0           - This device (fddi0, fddi1, etc) configured successfully
535  *   -EBUSY      - Failed to get resources, or dfx_driver_init failed.
536  *
537  * Assumptions:
538  *   It compiles so it should work :-( (PCI cards do :-)
539  *
540  * Side Effects:
541  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
542  *   initialized and the board resources are read and stored in
543  *   the device structure.
544  */
545 static int dfx_register(struct device *bdev)
546 {
547         static int version_disp;
548         int dfx_bus_pci = dev_is_pci(bdev);
549         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
550         int dfx_bus_tc = DFX_BUS_TC(bdev);
551         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
552         const char *print_name = dev_name(bdev);
553         struct net_device *dev;
554         DFX_board_t       *bp;                  /* board pointer */
555         resource_size_t bar_start[3] = {0};     /* pointers to ports */
556         resource_size_t bar_len[3] = {0};       /* resource length */
557         int alloc_size;                         /* total buffer size used */
558         struct resource *region;
559         int err = 0;
560
561         if (!version_disp) {    /* display version info if adapter is found */
562                 version_disp = 1;       /* set display flag to TRUE so that */
563                 printk(version);        /* we only display this string ONCE */
564         }
565
566         dev = alloc_fddidev(sizeof(*bp));
567         if (!dev) {
568                 printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
569                        print_name);
570                 return -ENOMEM;
571         }
572
573         /* Enable PCI device. */
574         if (dfx_bus_pci) {
575                 err = pci_enable_device(to_pci_dev(bdev));
576                 if (err) {
577                         pr_err("%s: Cannot enable PCI device, aborting\n",
578                                print_name);
579                         goto err_out;
580                 }
581         }
582
583         SET_NETDEV_DEV(dev, bdev);
584
585         bp = netdev_priv(dev);
586         bp->bus_dev = bdev;
587         dev_set_drvdata(bdev, dev);
588
589         dfx_get_bars(bdev, bar_start, bar_len);
590         if (bar_len[0] == 0 ||
591             (dfx_bus_eisa && dfx_use_mmio && bar_start[0] == 0)) {
592                 dfx_register_res_alloc_err(print_name, dfx_use_mmio,
593                                            dfx_bus_eisa);
594                 err = -ENXIO;
595                 goto err_out_disable;
596         }
597
598         if (dfx_use_mmio)
599                 region = request_mem_region(bar_start[0], bar_len[0],
600                                             print_name);
601         else
602                 region = request_region(bar_start[0], bar_len[0], print_name);
603         if (!region) {
604                 dfx_register_res_err(print_name, dfx_use_mmio,
605                                      bar_start[0], bar_len[0]);
606                 err = -EBUSY;
607                 goto err_out_disable;
608         }
609         if (bar_start[1] != 0) {
610                 region = request_region(bar_start[1], bar_len[1], print_name);
611                 if (!region) {
612                         dfx_register_res_err(print_name, 0,
613                                              bar_start[1], bar_len[1]);
614                         err = -EBUSY;
615                         goto err_out_csr_region;
616                 }
617         }
618         if (bar_start[2] != 0) {
619                 region = request_region(bar_start[2], bar_len[2], print_name);
620                 if (!region) {
621                         dfx_register_res_err(print_name, 0,
622                                              bar_start[2], bar_len[2]);
623                         err = -EBUSY;
624                         goto err_out_bh_region;
625                 }
626         }
627
628         /* Set up I/O base address. */
629         if (dfx_use_mmio) {
630                 bp->base.mem = ioremap_nocache(bar_start[0], bar_len[0]);
631                 if (!bp->base.mem) {
632                         printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
633                         err = -ENOMEM;
634                         goto err_out_esic_region;
635                 }
636         } else {
637                 bp->base.port = bar_start[0];
638                 dev->base_addr = bar_start[0];
639         }
640
641         /* Initialize new device structure */
642         dev->netdev_ops                 = &dfx_netdev_ops;
643
644         if (dfx_bus_pci)
645                 pci_set_master(to_pci_dev(bdev));
646
647         if (dfx_driver_init(dev, print_name, bar_start[0]) != DFX_K_SUCCESS) {
648                 err = -ENODEV;
649                 goto err_out_unmap;
650         }
651
652         err = register_netdev(dev);
653         if (err)
654                 goto err_out_kfree;
655
656         printk("%s: registered as %s\n", print_name, dev->name);
657         return 0;
658
659 err_out_kfree:
660         alloc_size = sizeof(PI_DESCR_BLOCK) +
661                      PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
662 #ifndef DYNAMIC_BUFFERS
663                      (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
664 #endif
665                      sizeof(PI_CONSUMER_BLOCK) +
666                      (PI_ALIGN_K_DESC_BLK - 1);
667         if (bp->kmalloced)
668                 dma_free_coherent(bdev, alloc_size,
669                                   bp->kmalloced, bp->kmalloced_dma);
670
671 err_out_unmap:
672         if (dfx_use_mmio)
673                 iounmap(bp->base.mem);
674
675 err_out_esic_region:
676         if (bar_start[2] != 0)
677                 release_region(bar_start[2], bar_len[2]);
678
679 err_out_bh_region:
680         if (bar_start[1] != 0)
681                 release_region(bar_start[1], bar_len[1]);
682
683 err_out_csr_region:
684         if (dfx_use_mmio)
685                 release_mem_region(bar_start[0], bar_len[0]);
686         else
687                 release_region(bar_start[0], bar_len[0]);
688
689 err_out_disable:
690         if (dfx_bus_pci)
691                 pci_disable_device(to_pci_dev(bdev));
692
693 err_out:
694         free_netdev(dev);
695         return err;
696 }
697
698
699 /*
700  * ================
701  * = dfx_bus_init =
702  * ================
703  *
704  * Overview:
705  *   Initializes the bus-specific controller logic.
706  *
707  * Returns:
708  *   None
709  *
710  * Arguments:
711  *   dev - pointer to device information
712  *
713  * Functional Description:
714  *   Determine and save adapter IRQ in device table,
715  *   then perform bus-specific logic initialization.
716  *
717  * Return Codes:
718  *   None
719  *
720  * Assumptions:
721  *   bp->base has already been set with the proper
722  *       base I/O address for this device.
723  *
724  * Side Effects:
725  *   Interrupts are enabled at the adapter bus-specific logic.
726  *   Note:  Interrupts at the DMA engine (PDQ chip) are not
727  *   enabled yet.
728  */
729
730 static void dfx_bus_init(struct net_device *dev)
731 {
732         DFX_board_t *bp = netdev_priv(dev);
733         struct device *bdev = bp->bus_dev;
734         int dfx_bus_pci = dev_is_pci(bdev);
735         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
736         int dfx_bus_tc = DFX_BUS_TC(bdev);
737         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
738         u8 val;
739
740         DBG_printk("In dfx_bus_init...\n");
741
742         /* Initialize a pointer back to the net_device struct */
743         bp->dev = dev;
744
745         /* Initialize adapter based on bus type */
746
747         if (dfx_bus_tc)
748                 dev->irq = to_tc_dev(bdev)->interrupt;
749         if (dfx_bus_eisa) {
750                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
751
752                 /* Disable the board before fiddling with the decoders.  */
753                 outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL);
754
755                 /* Get the interrupt level from the ESIC chip.  */
756                 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
757                 val &= PI_CONFIG_STAT_0_M_IRQ;
758                 val >>= PI_CONFIG_STAT_0_V_IRQ;
759
760                 switch (val) {
761                 case PI_CONFIG_STAT_0_IRQ_K_9:
762                         dev->irq = 9;
763                         break;
764
765                 case PI_CONFIG_STAT_0_IRQ_K_10:
766                         dev->irq = 10;
767                         break;
768
769                 case PI_CONFIG_STAT_0_IRQ_K_11:
770                         dev->irq = 11;
771                         break;
772
773                 case PI_CONFIG_STAT_0_IRQ_K_15:
774                         dev->irq = 15;
775                         break;
776                 }
777
778                 /*
779                  * Enable memory decoding (MEMCS1) and/or port decoding
780                  * (IOCS1/IOCS0) as appropriate in Function Control
781                  * Register.  MEMCS1 or IOCS0 is used for PDQ registers,
782                  * taking 16 32-bit words, while IOCS1 is used for the
783                  * Burst Holdoff register, taking a single 32-bit word
784                  * only.  We use the slot-specific I/O range as per the
785                  * ESIC spec, that is set bits 15:12 in the mask registers
786                  * to mask them out.
787                  */
788
789                 /* Set the decode range of the board.  */
790                 val = 0;
791                 outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_1);
792                 val = PI_DEFEA_K_CSR_IO;
793                 outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_0);
794
795                 val = PI_IO_CMP_M_SLOT;
796                 outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_1);
797                 val = (PI_ESIC_K_CSR_IO_LEN - 1) & ~3;
798                 outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_0);
799
800                 val = 0;
801                 outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_1);
802                 val = PI_DEFEA_K_BURST_HOLDOFF;
803                 outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_0);
804
805                 val = PI_IO_CMP_M_SLOT;
806                 outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_1);
807                 val = (PI_ESIC_K_BURST_HOLDOFF_LEN - 1) & ~3;
808                 outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_0);
809
810                 /* Enable the decoders.  */
811                 val = PI_FUNCTION_CNTRL_M_IOCS1;
812                 if (dfx_use_mmio)
813                         val |= PI_FUNCTION_CNTRL_M_MEMCS1;
814                 else
815                         val |= PI_FUNCTION_CNTRL_M_IOCS0;
816                 outb(val, base_addr + PI_ESIC_K_FUNCTION_CNTRL);
817
818                 /*
819                  * Enable access to the rest of the module
820                  * (including PDQ and packet memory).
821                  */
822                 val = PI_SLOT_CNTRL_M_ENB;
823                 outb(val, base_addr + PI_ESIC_K_SLOT_CNTRL);
824
825                 /*
826                  * Map PDQ registers into memory or port space.  This is
827                  * done with a bit in the Burst Holdoff register.
828                  */
829                 val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
830                 if (dfx_use_mmio)
831                         val |= PI_BURST_HOLDOFF_M_MEM_MAP;
832                 else
833                         val &= ~PI_BURST_HOLDOFF_M_MEM_MAP;
834                 outb(val, base_addr + PI_DEFEA_K_BURST_HOLDOFF);
835
836                 /* Enable interrupts at EISA bus interface chip (ESIC) */
837                 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
838                 val |= PI_CONFIG_STAT_0_M_INT_ENB;
839                 outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
840         }
841         if (dfx_bus_pci) {
842                 struct pci_dev *pdev = to_pci_dev(bdev);
843
844                 /* Get the interrupt level from the PCI Configuration Table */
845
846                 dev->irq = pdev->irq;
847
848                 /* Check Latency Timer and set if less than minimal */
849
850                 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
851                 if (val < PFI_K_LAT_TIMER_MIN) {
852                         val = PFI_K_LAT_TIMER_DEF;
853                         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
854                 }
855
856                 /* Enable interrupts at PCI bus interface chip (PFI) */
857                 val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
858                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
859         }
860 }
861
862 /*
863  * ==================
864  * = dfx_bus_uninit =
865  * ==================
866  *
867  * Overview:
868  *   Uninitializes the bus-specific controller logic.
869  *
870  * Returns:
871  *   None
872  *
873  * Arguments:
874  *   dev - pointer to device information
875  *
876  * Functional Description:
877  *   Perform bus-specific logic uninitialization.
878  *
879  * Return Codes:
880  *   None
881  *
882  * Assumptions:
883  *   bp->base has already been set with the proper
884  *       base I/O address for this device.
885  *
886  * Side Effects:
887  *   Interrupts are disabled at the adapter bus-specific logic.
888  */
889
890 static void dfx_bus_uninit(struct net_device *dev)
891 {
892         DFX_board_t *bp = netdev_priv(dev);
893         struct device *bdev = bp->bus_dev;
894         int dfx_bus_pci = dev_is_pci(bdev);
895         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
896         u8 val;
897
898         DBG_printk("In dfx_bus_uninit...\n");
899
900         /* Uninitialize adapter based on bus type */
901
902         if (dfx_bus_eisa) {
903                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
904
905                 /* Disable interrupts at EISA bus interface chip (ESIC) */
906                 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
907                 val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
908                 outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
909
910                 /* Disable the board.  */
911                 outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL);
912
913                 /* Disable memory and port decoders.  */
914                 outb(0, base_addr + PI_ESIC_K_FUNCTION_CNTRL);
915         }
916         if (dfx_bus_pci) {
917                 /* Disable interrupts at PCI bus interface chip (PFI) */
918                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
919         }
920 }
921
922
923 /*
924  * ========================
925  * = dfx_bus_config_check =
926  * ========================
927  *
928  * Overview:
929  *   Checks the configuration (burst size, full-duplex, etc.)  If any parameters
930  *   are illegal, then this routine will set new defaults.
931  *
932  * Returns:
933  *   None
934  *
935  * Arguments:
936  *   bp - pointer to board information
937  *
938  * Functional Description:
939  *   For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
940  *   PDQ, and all FDDI PCI controllers, all values are legal.
941  *
942  * Return Codes:
943  *   None
944  *
945  * Assumptions:
946  *   dfx_adap_init has NOT been called yet so burst size and other items have
947  *   not been set.
948  *
949  * Side Effects:
950  *   None
951  */
952
953 static void dfx_bus_config_check(DFX_board_t *bp)
954 {
955         struct device __maybe_unused *bdev = bp->bus_dev;
956         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
957         int     status;                         /* return code from adapter port control call */
958         u32     host_data;                      /* LW data returned from port control call */
959
960         DBG_printk("In dfx_bus_config_check...\n");
961
962         /* Configuration check only valid for EISA adapter */
963
964         if (dfx_bus_eisa) {
965                 /*
966                  * First check if revision 2 EISA controller.  Rev. 1 cards used
967                  * PDQ revision B, so no workaround needed in this case.  Rev. 3
968                  * cards used PDQ revision E, so no workaround needed in this
969                  * case, either.  Only Rev. 2 cards used either Rev. D or E
970                  * chips, so we must verify the chip revision on Rev. 2 cards.
971                  */
972                 if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
973                         /*
974                          * Revision 2 FDDI EISA controller found,
975                          * so let's check PDQ revision of adapter.
976                          */
977                         status = dfx_hw_port_ctrl_req(bp,
978                                                                                         PI_PCTRL_M_SUB_CMD,
979                                                                                         PI_SUB_CMD_K_PDQ_REV_GET,
980                                                                                         0,
981                                                                                         &host_data);
982                         if ((status != DFX_K_SUCCESS) || (host_data == 2))
983                                 {
984                                 /*
985                                  * Either we couldn't determine the PDQ revision, or
986                                  * we determined that it is at revision D.  In either case,
987                                  * we need to implement the workaround.
988                                  */
989
990                                 /* Ensure that the burst size is set to 8 longwords or less */
991
992                                 switch (bp->burst_size)
993                                         {
994                                         case PI_PDATA_B_DMA_BURST_SIZE_32:
995                                         case PI_PDATA_B_DMA_BURST_SIZE_16:
996                                                 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
997                                                 break;
998
999                                         default:
1000                                                 break;
1001                                         }
1002
1003                                 /* Ensure that full-duplex mode is not enabled */
1004
1005                                 bp->full_duplex_enb = PI_SNMP_K_FALSE;
1006                                 }
1007                         }
1008                 }
1009         }
1010
1011
1012 /*
1013  * ===================
1014  * = dfx_driver_init =
1015  * ===================
1016  *
1017  * Overview:
1018  *   Initializes remaining adapter board structure information
1019  *   and makes sure adapter is in a safe state prior to dfx_open().
1020  *
1021  * Returns:
1022  *   Condition code
1023  *
1024  * Arguments:
1025  *   dev - pointer to device information
1026  *   print_name - printable device name
1027  *
1028  * Functional Description:
1029  *   This function allocates additional resources such as the host memory
1030  *   blocks needed by the adapter (eg. descriptor and consumer blocks).
1031  *       Remaining bus initialization steps are also completed.  The adapter
1032  *   is also reset so that it is in the DMA_UNAVAILABLE state.  The OS
1033  *   must call dfx_open() to open the adapter and bring it on-line.
1034  *
1035  * Return Codes:
1036  *   DFX_K_SUCCESS      - initialization succeeded
1037  *   DFX_K_FAILURE      - initialization failed - could not allocate memory
1038  *                                              or read adapter MAC address
1039  *
1040  * Assumptions:
1041  *   Memory allocated from pci_alloc_consistent() call is physically
1042  *   contiguous, locked memory.
1043  *
1044  * Side Effects:
1045  *   Adapter is reset and should be in DMA_UNAVAILABLE state before
1046  *   returning from this routine.
1047  */
1048
1049 static int dfx_driver_init(struct net_device *dev, const char *print_name,
1050                            resource_size_t bar_start)
1051 {
1052         DFX_board_t *bp = netdev_priv(dev);
1053         struct device *bdev = bp->bus_dev;
1054         int dfx_bus_pci = dev_is_pci(bdev);
1055         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1056         int dfx_bus_tc = DFX_BUS_TC(bdev);
1057         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
1058         int alloc_size;                 /* total buffer size needed */
1059         char *top_v, *curr_v;           /* virtual addrs into memory block */
1060         dma_addr_t top_p, curr_p;       /* physical addrs into memory block */
1061         u32 data;                       /* host data register value */
1062         __le32 le32;
1063         char *board_name = NULL;
1064
1065         DBG_printk("In dfx_driver_init...\n");
1066
1067         /* Initialize bus-specific hardware registers */
1068
1069         dfx_bus_init(dev);
1070
1071         /*
1072          * Initialize default values for configurable parameters
1073          *
1074          * Note: All of these parameters are ones that a user may
1075          *       want to customize.  It'd be nice to break these
1076          *               out into Space.c or someplace else that's more
1077          *               accessible/understandable than this file.
1078          */
1079
1080         bp->full_duplex_enb             = PI_SNMP_K_FALSE;
1081         bp->req_ttrt                    = 8 * 12500;            /* 8ms in 80 nanosec units */
1082         bp->burst_size                  = PI_PDATA_B_DMA_BURST_SIZE_DEF;
1083         bp->rcv_bufs_to_post    = RCV_BUFS_DEF;
1084
1085         /*
1086          * Ensure that HW configuration is OK
1087          *
1088          * Note: Depending on the hardware revision, we may need to modify
1089          *       some of the configurable parameters to workaround hardware
1090          *       limitations.  We'll perform this configuration check AFTER
1091          *       setting the parameters to their default values.
1092          */
1093
1094         dfx_bus_config_check(bp);
1095
1096         /* Disable PDQ interrupts first */
1097
1098         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1099
1100         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1101
1102         (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1103
1104         /*  Read the factory MAC address from the adapter then save it */
1105
1106         if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
1107                                  &data) != DFX_K_SUCCESS) {
1108                 printk("%s: Could not read adapter factory MAC address!\n",
1109                        print_name);
1110                 return DFX_K_FAILURE;
1111         }
1112         le32 = cpu_to_le32(data);
1113         memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
1114
1115         if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
1116                                  &data) != DFX_K_SUCCESS) {
1117                 printk("%s: Could not read adapter factory MAC address!\n",
1118                        print_name);
1119                 return DFX_K_FAILURE;
1120         }
1121         le32 = cpu_to_le32(data);
1122         memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
1123
1124         /*
1125          * Set current address to factory address
1126          *
1127          * Note: Node address override support is handled through
1128          *       dfx_ctl_set_mac_address.
1129          */
1130
1131         memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1132         if (dfx_bus_tc)
1133                 board_name = "DEFTA";
1134         if (dfx_bus_eisa)
1135                 board_name = "DEFEA";
1136         if (dfx_bus_pci)
1137                 board_name = "DEFPA";
1138         pr_info("%s: %s at %s addr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
1139                 print_name, board_name, dfx_use_mmio ? "MMIO" : "I/O",
1140                 (long long)bar_start, dev->irq, dev->dev_addr);
1141
1142         /*
1143          * Get memory for descriptor block, consumer block, and other buffers
1144          * that need to be DMA read or written to by the adapter.
1145          */
1146
1147         alloc_size = sizeof(PI_DESCR_BLOCK) +
1148                                         PI_CMD_REQ_K_SIZE_MAX +
1149                                         PI_CMD_RSP_K_SIZE_MAX +
1150 #ifndef DYNAMIC_BUFFERS
1151                                         (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
1152 #endif
1153                                         sizeof(PI_CONSUMER_BLOCK) +
1154                                         (PI_ALIGN_K_DESC_BLK - 1);
1155         bp->kmalloced = top_v = dma_zalloc_coherent(bp->bus_dev, alloc_size,
1156                                                     &bp->kmalloced_dma,
1157                                                     GFP_ATOMIC);
1158         if (top_v == NULL)
1159                 return DFX_K_FAILURE;
1160
1161         top_p = bp->kmalloced_dma;      /* get physical address of buffer */
1162
1163         /*
1164          *  To guarantee the 8K alignment required for the descriptor block, 8K - 1
1165          *  plus the amount of memory needed was allocated.  The physical address
1166          *      is now 8K aligned.  By carving up the memory in a specific order,
1167          *  we'll guarantee the alignment requirements for all other structures.
1168          *
1169          *  Note: If the assumptions change regarding the non-paged, non-cached,
1170          *                physically contiguous nature of the memory block or the address
1171          *                alignments, then we'll need to implement a different algorithm
1172          *                for allocating the needed memory.
1173          */
1174
1175         curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
1176         curr_v = top_v + (curr_p - top_p);
1177
1178         /* Reserve space for descriptor block */
1179
1180         bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
1181         bp->descr_block_phys = curr_p;
1182         curr_v += sizeof(PI_DESCR_BLOCK);
1183         curr_p += sizeof(PI_DESCR_BLOCK);
1184
1185         /* Reserve space for command request buffer */
1186
1187         bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
1188         bp->cmd_req_phys = curr_p;
1189         curr_v += PI_CMD_REQ_K_SIZE_MAX;
1190         curr_p += PI_CMD_REQ_K_SIZE_MAX;
1191
1192         /* Reserve space for command response buffer */
1193
1194         bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
1195         bp->cmd_rsp_phys = curr_p;
1196         curr_v += PI_CMD_RSP_K_SIZE_MAX;
1197         curr_p += PI_CMD_RSP_K_SIZE_MAX;
1198
1199         /* Reserve space for the LLC host receive queue buffers */
1200
1201         bp->rcv_block_virt = curr_v;
1202         bp->rcv_block_phys = curr_p;
1203
1204 #ifndef DYNAMIC_BUFFERS
1205         curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1206         curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1207 #endif
1208
1209         /* Reserve space for the consumer block */
1210
1211         bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
1212         bp->cons_block_phys = curr_p;
1213
1214         /* Display virtual and physical addresses if debug driver */
1215
1216         DBG_printk("%s: Descriptor block virt = %p, phys = %pad\n",
1217                    print_name, bp->descr_block_virt, &bp->descr_block_phys);
1218         DBG_printk("%s: Command Request buffer virt = %p, phys = %pad\n",
1219                    print_name, bp->cmd_req_virt, &bp->cmd_req_phys);
1220         DBG_printk("%s: Command Response buffer virt = %p, phys = %pad\n",
1221                    print_name, bp->cmd_rsp_virt, &bp->cmd_rsp_phys);
1222         DBG_printk("%s: Receive buffer block virt = %p, phys = %pad\n",
1223                    print_name, bp->rcv_block_virt, &bp->rcv_block_phys);
1224         DBG_printk("%s: Consumer block virt = %p, phys = %pad\n",
1225                    print_name, bp->cons_block_virt, &bp->cons_block_phys);
1226
1227         return DFX_K_SUCCESS;
1228 }
1229
1230
1231 /*
1232  * =================
1233  * = dfx_adap_init =
1234  * =================
1235  *
1236  * Overview:
1237  *   Brings the adapter to the link avail/link unavailable state.
1238  *
1239  * Returns:
1240  *   Condition code
1241  *
1242  * Arguments:
1243  *   bp - pointer to board information
1244  *   get_buffers - non-zero if buffers to be allocated
1245  *
1246  * Functional Description:
1247  *   Issues the low-level firmware/hardware calls necessary to bring
1248  *   the adapter up, or to properly reset and restore adapter during
1249  *   run-time.
1250  *
1251  * Return Codes:
1252  *   DFX_K_SUCCESS - Adapter brought up successfully
1253  *   DFX_K_FAILURE - Adapter initialization failed
1254  *
1255  * Assumptions:
1256  *   bp->reset_type should be set to a valid reset type value before
1257  *   calling this routine.
1258  *
1259  * Side Effects:
1260  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1261  *   upon a successful return of this routine.
1262  */
1263
1264 static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1265         {
1266         DBG_printk("In dfx_adap_init...\n");
1267
1268         /* Disable PDQ interrupts first */
1269
1270         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1271
1272         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1273
1274         if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1275                 {
1276                 printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1277                 return DFX_K_FAILURE;
1278                 }
1279
1280         /*
1281          * When the PDQ is reset, some false Type 0 interrupts may be pending,
1282          * so we'll acknowledge all Type 0 interrupts now before continuing.
1283          */
1284
1285         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1286
1287         /*
1288          * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1289          *
1290          * Note: We only need to clear host copies of these registers.  The PDQ reset
1291          *       takes care of the on-board register values.
1292          */
1293
1294         bp->cmd_req_reg.lword   = 0;
1295         bp->cmd_rsp_reg.lword   = 0;
1296         bp->rcv_xmt_reg.lword   = 0;
1297
1298         /* Clear consumer block before going to DMA_AVAILABLE state */
1299
1300         memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1301
1302         /* Initialize the DMA Burst Size */
1303
1304         if (dfx_hw_port_ctrl_req(bp,
1305                                                         PI_PCTRL_M_SUB_CMD,
1306                                                         PI_SUB_CMD_K_BURST_SIZE_SET,
1307                                                         bp->burst_size,
1308                                                         NULL) != DFX_K_SUCCESS)
1309                 {
1310                 printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1311                 return DFX_K_FAILURE;
1312                 }
1313
1314         /*
1315          * Set base address of Consumer Block
1316          *
1317          * Assumption: 32-bit physical address of consumer block is 64 byte
1318          *                         aligned.  That is, bits 0-5 of the address must be zero.
1319          */
1320
1321         if (dfx_hw_port_ctrl_req(bp,
1322                                                         PI_PCTRL_M_CONS_BLOCK,
1323                                                         bp->cons_block_phys,
1324                                                         0,
1325                                                         NULL) != DFX_K_SUCCESS)
1326                 {
1327                 printk("%s: Could not set consumer block address!\n", bp->dev->name);
1328                 return DFX_K_FAILURE;
1329                 }
1330
1331         /*
1332          * Set the base address of Descriptor Block and bring adapter
1333          * to DMA_AVAILABLE state.
1334          *
1335          * Note: We also set the literal and data swapping requirements
1336          *       in this command.
1337          *
1338          * Assumption: 32-bit physical address of descriptor block
1339          *       is 8Kbyte aligned.
1340          */
1341         if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
1342                                  (u32)(bp->descr_block_phys |
1343                                        PI_PDATA_A_INIT_M_BSWAP_INIT),
1344                                  0, NULL) != DFX_K_SUCCESS) {
1345                 printk("%s: Could not set descriptor block address!\n",
1346                        bp->dev->name);
1347                 return DFX_K_FAILURE;
1348         }
1349
1350         /* Set transmit flush timeout value */
1351
1352         bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1353         bp->cmd_req_virt->char_set.item[0].item_code    = PI_ITEM_K_FLUSH_TIME;
1354         bp->cmd_req_virt->char_set.item[0].value                = 3;    /* 3 seconds */
1355         bp->cmd_req_virt->char_set.item[0].item_index   = 0;
1356         bp->cmd_req_virt->char_set.item[1].item_code    = PI_ITEM_K_EOL;
1357         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1358                 {
1359                 printk("%s: DMA command request failed!\n", bp->dev->name);
1360                 return DFX_K_FAILURE;
1361                 }
1362
1363         /* Set the initial values for eFDXEnable and MACTReq MIB objects */
1364
1365         bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1366         bp->cmd_req_virt->snmp_set.item[0].item_code    = PI_ITEM_K_FDX_ENB_DIS;
1367         bp->cmd_req_virt->snmp_set.item[0].value                = bp->full_duplex_enb;
1368         bp->cmd_req_virt->snmp_set.item[0].item_index   = 0;
1369         bp->cmd_req_virt->snmp_set.item[1].item_code    = PI_ITEM_K_MAC_T_REQ;
1370         bp->cmd_req_virt->snmp_set.item[1].value                = bp->req_ttrt;
1371         bp->cmd_req_virt->snmp_set.item[1].item_index   = 0;
1372         bp->cmd_req_virt->snmp_set.item[2].item_code    = PI_ITEM_K_EOL;
1373         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1374                 {
1375                 printk("%s: DMA command request failed!\n", bp->dev->name);
1376                 return DFX_K_FAILURE;
1377                 }
1378
1379         /* Initialize adapter CAM */
1380
1381         if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1382                 {
1383                 printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1384                 return DFX_K_FAILURE;
1385                 }
1386
1387         /* Initialize adapter filters */
1388
1389         if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1390                 {
1391                 printk("%s: Adapter filters update failed!\n", bp->dev->name);
1392                 return DFX_K_FAILURE;
1393                 }
1394
1395         /*
1396          * Remove any existing dynamic buffers (i.e. if the adapter is being
1397          * reinitialized)
1398          */
1399
1400         if (get_buffers)
1401                 dfx_rcv_flush(bp);
1402
1403         /* Initialize receive descriptor block and produce buffers */
1404
1405         if (dfx_rcv_init(bp, get_buffers))
1406                 {
1407                 printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1408                 if (get_buffers)
1409                         dfx_rcv_flush(bp);
1410                 return DFX_K_FAILURE;
1411                 }
1412
1413         /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1414
1415         bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1416         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1417                 {
1418                 printk("%s: Start command failed\n", bp->dev->name);
1419                 if (get_buffers)
1420                         dfx_rcv_flush(bp);
1421                 return DFX_K_FAILURE;
1422                 }
1423
1424         /* Initialization succeeded, reenable PDQ interrupts */
1425
1426         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1427         return DFX_K_SUCCESS;
1428         }
1429
1430
1431 /*
1432  * ============
1433  * = dfx_open =
1434  * ============
1435  *
1436  * Overview:
1437  *   Opens the adapter
1438  *
1439  * Returns:
1440  *   Condition code
1441  *
1442  * Arguments:
1443  *   dev - pointer to device information
1444  *
1445  * Functional Description:
1446  *   This function brings the adapter to an operational state.
1447  *
1448  * Return Codes:
1449  *   0           - Adapter was successfully opened
1450  *   -EAGAIN - Could not register IRQ or adapter initialization failed
1451  *
1452  * Assumptions:
1453  *   This routine should only be called for a device that was
1454  *   initialized successfully.
1455  *
1456  * Side Effects:
1457  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1458  *   if the open is successful.
1459  */
1460
1461 static int dfx_open(struct net_device *dev)
1462 {
1463         DFX_board_t *bp = netdev_priv(dev);
1464         int ret;
1465
1466         DBG_printk("In dfx_open...\n");
1467
1468         /* Register IRQ - support shared interrupts by passing device ptr */
1469
1470         ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
1471                           dev);
1472         if (ret) {
1473                 printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1474                 return ret;
1475         }
1476
1477         /*
1478          * Set current address to factory MAC address
1479          *
1480          * Note: We've already done this step in dfx_driver_init.
1481          *       However, it's possible that a user has set a node
1482          *               address override, then closed and reopened the
1483          *               adapter.  Unless we reset the device address field
1484          *               now, we'll continue to use the existing modified
1485          *               address.
1486          */
1487
1488         memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1489
1490         /* Clear local unicast/multicast address tables and counts */
1491
1492         memset(bp->uc_table, 0, sizeof(bp->uc_table));
1493         memset(bp->mc_table, 0, sizeof(bp->mc_table));
1494         bp->uc_count = 0;
1495         bp->mc_count = 0;
1496
1497         /* Disable promiscuous filter settings */
1498
1499         bp->ind_group_prom      = PI_FSTATE_K_BLOCK;
1500         bp->group_prom          = PI_FSTATE_K_BLOCK;
1501
1502         spin_lock_init(&bp->lock);
1503
1504         /* Reset and initialize adapter */
1505
1506         bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST;    /* skip self-test */
1507         if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1508         {
1509                 printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1510                 free_irq(dev->irq, dev);
1511                 return -EAGAIN;
1512         }
1513
1514         /* Set device structure info */
1515         netif_start_queue(dev);
1516         return 0;
1517 }
1518
1519
1520 /*
1521  * =============
1522  * = dfx_close =
1523  * =============
1524  *
1525  * Overview:
1526  *   Closes the device/module.
1527  *
1528  * Returns:
1529  *   Condition code
1530  *
1531  * Arguments:
1532  *   dev - pointer to device information
1533  *
1534  * Functional Description:
1535  *   This routine closes the adapter and brings it to a safe state.
1536  *   The interrupt service routine is deregistered with the OS.
1537  *   The adapter can be opened again with another call to dfx_open().
1538  *
1539  * Return Codes:
1540  *   Always return 0.
1541  *
1542  * Assumptions:
1543  *   No further requests for this adapter are made after this routine is
1544  *   called.  dfx_open() can be called to reset and reinitialize the
1545  *   adapter.
1546  *
1547  * Side Effects:
1548  *   Adapter should be in DMA_UNAVAILABLE state upon completion of this
1549  *   routine.
1550  */
1551
1552 static int dfx_close(struct net_device *dev)
1553 {
1554         DFX_board_t *bp = netdev_priv(dev);
1555
1556         DBG_printk("In dfx_close...\n");
1557
1558         /* Disable PDQ interrupts first */
1559
1560         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1561
1562         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1563
1564         (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1565
1566         /*
1567          * Flush any pending transmit buffers
1568          *
1569          * Note: It's important that we flush the transmit buffers
1570          *               BEFORE we clear our copy of the Type 2 register.
1571          *               Otherwise, we'll have no idea how many buffers
1572          *               we need to free.
1573          */
1574
1575         dfx_xmt_flush(bp);
1576
1577         /*
1578          * Clear Type 1 and Type 2 registers after adapter reset
1579          *
1580          * Note: Even though we're closing the adapter, it's
1581          *       possible that an interrupt will occur after
1582          *               dfx_close is called.  Without some assurance to
1583          *               the contrary we want to make sure that we don't
1584          *               process receive and transmit LLC frames and update
1585          *               the Type 2 register with bad information.
1586          */
1587
1588         bp->cmd_req_reg.lword   = 0;
1589         bp->cmd_rsp_reg.lword   = 0;
1590         bp->rcv_xmt_reg.lword   = 0;
1591
1592         /* Clear consumer block for the same reason given above */
1593
1594         memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1595
1596         /* Release all dynamically allocate skb in the receive ring. */
1597
1598         dfx_rcv_flush(bp);
1599
1600         /* Clear device structure flags */
1601
1602         netif_stop_queue(dev);
1603
1604         /* Deregister (free) IRQ */
1605
1606         free_irq(dev->irq, dev);
1607
1608         return 0;
1609 }
1610
1611
1612 /*
1613  * ======================
1614  * = dfx_int_pr_halt_id =
1615  * ======================
1616  *
1617  * Overview:
1618  *   Displays halt id's in string form.
1619  *
1620  * Returns:
1621  *   None
1622  *
1623  * Arguments:
1624  *   bp - pointer to board information
1625  *
1626  * Functional Description:
1627  *   Determine current halt id and display appropriate string.
1628  *
1629  * Return Codes:
1630  *   None
1631  *
1632  * Assumptions:
1633  *   None
1634  *
1635  * Side Effects:
1636  *   None
1637  */
1638
1639 static void dfx_int_pr_halt_id(DFX_board_t      *bp)
1640         {
1641         PI_UINT32       port_status;                    /* PDQ port status register value */
1642         PI_UINT32       halt_id;                                /* PDQ port status halt ID */
1643
1644         /* Read the latest port status */
1645
1646         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1647
1648         /* Display halt state transition information */
1649
1650         halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1651         switch (halt_id)
1652                 {
1653                 case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1654                         printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1655                         break;
1656
1657                 case PI_HALT_ID_K_PARITY_ERROR:
1658                         printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1659                         break;
1660
1661                 case PI_HALT_ID_K_HOST_DIR_HALT:
1662                         printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1663                         break;
1664
1665                 case PI_HALT_ID_K_SW_FAULT:
1666                         printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1667                         break;
1668
1669                 case PI_HALT_ID_K_HW_FAULT:
1670                         printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1671                         break;
1672
1673                 case PI_HALT_ID_K_PC_TRACE:
1674                         printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1675                         break;
1676
1677                 case PI_HALT_ID_K_DMA_ERROR:
1678                         printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1679                         break;
1680
1681                 case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1682                         printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1683                         break;
1684
1685                 case PI_HALT_ID_K_BUS_EXCEPTION:
1686                         printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1687                         break;
1688
1689                 default:
1690                         printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1691                         break;
1692                 }
1693         }
1694
1695
1696 /*
1697  * ==========================
1698  * = dfx_int_type_0_process =
1699  * ==========================
1700  *
1701  * Overview:
1702  *   Processes Type 0 interrupts.
1703  *
1704  * Returns:
1705  *   None
1706  *
1707  * Arguments:
1708  *   bp - pointer to board information
1709  *
1710  * Functional Description:
1711  *   Processes all enabled Type 0 interrupts.  If the reason for the interrupt
1712  *   is a serious fault on the adapter, then an error message is displayed
1713  *   and the adapter is reset.
1714  *
1715  *   One tricky potential timing window is the rapid succession of "link avail"
1716  *   "link unavail" state change interrupts.  The acknowledgement of the Type 0
1717  *   interrupt must be done before reading the state from the Port Status
1718  *   register.  This is true because a state change could occur after reading
1719  *   the data, but before acknowledging the interrupt.  If this state change
1720  *   does happen, it would be lost because the driver is using the old state,
1721  *   and it will never know about the new state because it subsequently
1722  *   acknowledges the state change interrupt.
1723  *
1724  *          INCORRECT                                      CORRECT
1725  *      read type 0 int reasons                   read type 0 int reasons
1726  *      read adapter state                        ack type 0 interrupts
1727  *      ack type 0 interrupts                     read adapter state
1728  *      ... process interrupt ...                 ... process interrupt ...
1729  *
1730  * Return Codes:
1731  *   None
1732  *
1733  * Assumptions:
1734  *   None
1735  *
1736  * Side Effects:
1737  *   An adapter reset may occur if the adapter has any Type 0 error interrupts
1738  *   or if the port status indicates that the adapter is halted.  The driver
1739  *   is responsible for reinitializing the adapter with the current CAM
1740  *   contents and adapter filter settings.
1741  */
1742
1743 static void dfx_int_type_0_process(DFX_board_t  *bp)
1744
1745         {
1746         PI_UINT32       type_0_status;          /* Host Interrupt Type 0 register */
1747         PI_UINT32       state;                          /* current adap state (from port status) */
1748
1749         /*
1750          * Read host interrupt Type 0 register to determine which Type 0
1751          * interrupts are pending.  Immediately write it back out to clear
1752          * those interrupts.
1753          */
1754
1755         dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1756         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1757
1758         /* Check for Type 0 error interrupts */
1759
1760         if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1761                                                         PI_TYPE_0_STAT_M_PM_PAR_ERR |
1762                                                         PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1763                 {
1764                 /* Check for Non-Existent Memory error */
1765
1766                 if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1767                         printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1768
1769                 /* Check for Packet Memory Parity error */
1770
1771                 if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1772                         printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1773
1774                 /* Check for Host Bus Parity error */
1775
1776                 if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1777                         printk("%s: Host Bus Parity Error\n", bp->dev->name);
1778
1779                 /* Reset adapter and bring it back on-line */
1780
1781                 bp->link_available = PI_K_FALSE;        /* link is no longer available */
1782                 bp->reset_type = 0;                                     /* rerun on-board diagnostics */
1783                 printk("%s: Resetting adapter...\n", bp->dev->name);
1784                 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1785                         {
1786                         printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1787                         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1788                         return;
1789                         }
1790                 printk("%s: Adapter reset successful!\n", bp->dev->name);
1791                 return;
1792                 }
1793
1794         /* Check for transmit flush interrupt */
1795
1796         if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1797                 {
1798                 /* Flush any pending xmt's and acknowledge the flush interrupt */
1799
1800                 bp->link_available = PI_K_FALSE;                /* link is no longer available */
1801                 dfx_xmt_flush(bp);                                              /* flush any outstanding packets */
1802                 (void) dfx_hw_port_ctrl_req(bp,
1803                                                                         PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1804                                                                         0,
1805                                                                         0,
1806                                                                         NULL);
1807                 }
1808
1809         /* Check for adapter state change */
1810
1811         if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
1812                 {
1813                 /* Get latest adapter state */
1814
1815                 state = dfx_hw_adap_state_rd(bp);       /* get adapter state */
1816                 if (state == PI_STATE_K_HALTED)
1817                         {
1818                         /*
1819                          * Adapter has transitioned to HALTED state, try to reset
1820                          * adapter to bring it back on-line.  If reset fails,
1821                          * leave the adapter in the broken state.
1822                          */
1823
1824                         printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1825                         dfx_int_pr_halt_id(bp);                 /* display halt id as string */
1826
1827                         /* Reset adapter and bring it back on-line */
1828
1829                         bp->link_available = PI_K_FALSE;        /* link is no longer available */
1830                         bp->reset_type = 0;                                     /* rerun on-board diagnostics */
1831                         printk("%s: Resetting adapter...\n", bp->dev->name);
1832                         if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1833                                 {
1834                                 printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1835                                 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1836                                 return;
1837                                 }
1838                         printk("%s: Adapter reset successful!\n", bp->dev->name);
1839                         }
1840                 else if (state == PI_STATE_K_LINK_AVAIL)
1841                         {
1842                         bp->link_available = PI_K_TRUE;         /* set link available flag */
1843                         }
1844                 }
1845         }
1846
1847
1848 /*
1849  * ==================
1850  * = dfx_int_common =
1851  * ==================
1852  *
1853  * Overview:
1854  *   Interrupt service routine (ISR)
1855  *
1856  * Returns:
1857  *   None
1858  *
1859  * Arguments:
1860  *   bp - pointer to board information
1861  *
1862  * Functional Description:
1863  *   This is the ISR which processes incoming adapter interrupts.
1864  *
1865  * Return Codes:
1866  *   None
1867  *
1868  * Assumptions:
1869  *   This routine assumes PDQ interrupts have not been disabled.
1870  *   When interrupts are disabled at the PDQ, the Port Status register
1871  *   is automatically cleared.  This routine uses the Port Status
1872  *   register value to determine whether a Type 0 interrupt occurred,
1873  *   so it's important that adapter interrupts are not normally
1874  *   enabled/disabled at the PDQ.
1875  *
1876  *   It's vital that this routine is NOT reentered for the
1877  *   same board and that the OS is not in another section of
1878  *   code (eg. dfx_xmt_queue_pkt) for the same board on a
1879  *   different thread.
1880  *
1881  * Side Effects:
1882  *   Pending interrupts are serviced.  Depending on the type of
1883  *   interrupt, acknowledging and clearing the interrupt at the
1884  *   PDQ involves writing a register to clear the interrupt bit
1885  *   or updating completion indices.
1886  */
1887
1888 static void dfx_int_common(struct net_device *dev)
1889 {
1890         DFX_board_t *bp = netdev_priv(dev);
1891         PI_UINT32       port_status;            /* Port Status register */
1892
1893         /* Process xmt interrupts - frequent case, so always call this routine */
1894
1895         if(dfx_xmt_done(bp))                            /* free consumed xmt packets */
1896                 netif_wake_queue(dev);
1897
1898         /* Process rcv interrupts - frequent case, so always call this routine */
1899
1900         dfx_rcv_queue_process(bp);              /* service received LLC frames */
1901
1902         /*
1903          * Transmit and receive producer and completion indices are updated on the
1904          * adapter by writing to the Type 2 Producer register.  Since the frequent
1905          * case is that we'll be processing either LLC transmit or receive buffers,
1906          * we'll optimize I/O writes by doing a single register write here.
1907          */
1908
1909         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1910
1911         /* Read PDQ Port Status register to find out which interrupts need processing */
1912
1913         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1914
1915         /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1916
1917         if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1918                 dfx_int_type_0_process(bp);     /* process Type 0 interrupts */
1919         }
1920
1921
1922 /*
1923  * =================
1924  * = dfx_interrupt =
1925  * =================
1926  *
1927  * Overview:
1928  *   Interrupt processing routine
1929  *
1930  * Returns:
1931  *   Whether a valid interrupt was seen.
1932  *
1933  * Arguments:
1934  *   irq        - interrupt vector
1935  *   dev_id     - pointer to device information
1936  *
1937  * Functional Description:
1938  *   This routine calls the interrupt processing routine for this adapter.  It
1939  *   disables and reenables adapter interrupts, as appropriate.  We can support
1940  *   shared interrupts since the incoming dev_id pointer provides our device
1941  *   structure context.
1942  *
1943  * Return Codes:
1944  *   IRQ_HANDLED - an IRQ was handled.
1945  *   IRQ_NONE    - no IRQ was handled.
1946  *
1947  * Assumptions:
1948  *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1949  *   on Intel-based systems) is done by the operating system outside this
1950  *   routine.
1951  *
1952  *       System interrupts are enabled through this call.
1953  *
1954  * Side Effects:
1955  *   Interrupts are disabled, then reenabled at the adapter.
1956  */
1957
1958 static irqreturn_t dfx_interrupt(int irq, void *dev_id)
1959 {
1960         struct net_device *dev = dev_id;
1961         DFX_board_t *bp = netdev_priv(dev);
1962         struct device *bdev = bp->bus_dev;
1963         int dfx_bus_pci = dev_is_pci(bdev);
1964         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1965         int dfx_bus_tc = DFX_BUS_TC(bdev);
1966
1967         /* Service adapter interrupts */
1968
1969         if (dfx_bus_pci) {
1970                 u32 status;
1971
1972                 dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1973                 if (!(status & PFI_STATUS_M_PDQ_INT))
1974                         return IRQ_NONE;
1975
1976                 spin_lock(&bp->lock);
1977
1978                 /* Disable PDQ-PFI interrupts at PFI */
1979                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1980                                     PFI_MODE_M_DMA_ENB);
1981
1982                 /* Call interrupt service routine for this adapter */
1983                 dfx_int_common(dev);
1984
1985                 /* Clear PDQ interrupt status bit and reenable interrupts */
1986                 dfx_port_write_long(bp, PFI_K_REG_STATUS,
1987                                     PFI_STATUS_M_PDQ_INT);
1988                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1989                                     (PFI_MODE_M_PDQ_INT_ENB |
1990                                      PFI_MODE_M_DMA_ENB));
1991
1992                 spin_unlock(&bp->lock);
1993         }
1994         if (dfx_bus_eisa) {
1995                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
1996                 u8 status;
1997
1998                 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1999                 if (!(status & PI_CONFIG_STAT_0_M_PEND))
2000                         return IRQ_NONE;
2001
2002                 spin_lock(&bp->lock);
2003
2004                 /* Disable interrupts at the ESIC */
2005                 status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
2006                 outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
2007
2008                 /* Call interrupt service routine for this adapter */
2009                 dfx_int_common(dev);
2010
2011                 /* Reenable interrupts at the ESIC */
2012                 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
2013                 status |= PI_CONFIG_STAT_0_M_INT_ENB;
2014                 outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
2015
2016                 spin_unlock(&bp->lock);
2017         }
2018         if (dfx_bus_tc) {
2019                 u32 status;
2020
2021                 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
2022                 if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
2023                                 PI_PSTATUS_M_XMT_DATA_PENDING |
2024                                 PI_PSTATUS_M_SMT_HOST_PENDING |
2025                                 PI_PSTATUS_M_UNSOL_PENDING |
2026                                 PI_PSTATUS_M_CMD_RSP_PENDING |
2027                                 PI_PSTATUS_M_CMD_REQ_PENDING |
2028                                 PI_PSTATUS_M_TYPE_0_PENDING)))
2029                         return IRQ_NONE;
2030
2031                 spin_lock(&bp->lock);
2032
2033                 /* Call interrupt service routine for this adapter */
2034                 dfx_int_common(dev);
2035
2036                 spin_unlock(&bp->lock);
2037         }
2038
2039         return IRQ_HANDLED;
2040 }
2041
2042
2043 /*
2044  * =====================
2045  * = dfx_ctl_get_stats =
2046  * =====================
2047  *
2048  * Overview:
2049  *   Get statistics for FDDI adapter
2050  *
2051  * Returns:
2052  *   Pointer to FDDI statistics structure
2053  *
2054  * Arguments:
2055  *   dev - pointer to device information
2056  *
2057  * Functional Description:
2058  *   Gets current MIB objects from adapter, then
2059  *   returns FDDI statistics structure as defined
2060  *   in if_fddi.h.
2061  *
2062  *   Note: Since the FDDI statistics structure is
2063  *   still new and the device structure doesn't
2064  *   have an FDDI-specific get statistics handler,
2065  *   we'll return the FDDI statistics structure as
2066  *   a pointer to an Ethernet statistics structure.
2067  *   That way, at least the first part of the statistics
2068  *   structure can be decoded properly, and it allows
2069  *   "smart" applications to perform a second cast to
2070  *   decode the FDDI-specific statistics.
2071  *
2072  *   We'll have to pay attention to this routine as the
2073  *   device structure becomes more mature and LAN media
2074  *   independent.
2075  *
2076  * Return Codes:
2077  *   None
2078  *
2079  * Assumptions:
2080  *   None
2081  *
2082  * Side Effects:
2083  *   None
2084  */
2085
2086 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
2087         {
2088         DFX_board_t *bp = netdev_priv(dev);
2089
2090         /* Fill the bp->stats structure with driver-maintained counters */
2091
2092         bp->stats.gen.rx_packets = bp->rcv_total_frames;
2093         bp->stats.gen.tx_packets = bp->xmt_total_frames;
2094         bp->stats.gen.rx_bytes   = bp->rcv_total_bytes;
2095         bp->stats.gen.tx_bytes   = bp->xmt_total_bytes;
2096         bp->stats.gen.rx_errors  = bp->rcv_crc_errors +
2097                                    bp->rcv_frame_status_errors +
2098                                    bp->rcv_length_errors;
2099         bp->stats.gen.tx_errors  = bp->xmt_length_errors;
2100         bp->stats.gen.rx_dropped = bp->rcv_discards;
2101         bp->stats.gen.tx_dropped = bp->xmt_discards;
2102         bp->stats.gen.multicast  = bp->rcv_multicast_frames;
2103         bp->stats.gen.collisions = 0;           /* always zero (0) for FDDI */
2104
2105         /* Get FDDI SMT MIB objects */
2106
2107         bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
2108         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2109                 return (struct net_device_stats *)&bp->stats;
2110
2111         /* Fill the bp->stats structure with the SMT MIB object values */
2112
2113         memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
2114         bp->stats.smt_op_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
2115         bp->stats.smt_hi_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
2116         bp->stats.smt_lo_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
2117         memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
2118         bp->stats.smt_mib_version_id                            = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
2119         bp->stats.smt_mac_cts                                           = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
2120         bp->stats.smt_non_master_cts                            = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
2121         bp->stats.smt_master_cts                                        = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
2122         bp->stats.smt_available_paths                           = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
2123         bp->stats.smt_config_capabilities                       = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
2124         bp->stats.smt_config_policy                                     = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
2125         bp->stats.smt_connection_policy                         = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
2126         bp->stats.smt_t_notify                                          = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
2127         bp->stats.smt_stat_rpt_policy                           = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
2128         bp->stats.smt_trace_max_expiration                      = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
2129         bp->stats.smt_bypass_present                            = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
2130         bp->stats.smt_ecm_state                                         = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
2131         bp->stats.smt_cf_state                                          = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
2132         bp->stats.smt_remote_disconnect_flag            = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
2133         bp->stats.smt_station_status                            = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
2134         bp->stats.smt_peer_wrap_flag                            = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
2135         bp->stats.smt_time_stamp                                        = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
2136         bp->stats.smt_transition_time_stamp                     = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
2137         bp->stats.mac_frame_status_functions            = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
2138         bp->stats.mac_t_max_capability                          = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
2139         bp->stats.mac_tvx_capability                            = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
2140         bp->stats.mac_available_paths                           = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
2141         bp->stats.mac_current_path                                      = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
2142         memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
2143         memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
2144         memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
2145         memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
2146         bp->stats.mac_dup_address_test                          = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
2147         bp->stats.mac_requested_paths                           = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
2148         bp->stats.mac_downstream_port_type                      = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
2149         memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
2150         bp->stats.mac_t_req                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
2151         bp->stats.mac_t_neg                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
2152         bp->stats.mac_t_max                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
2153         bp->stats.mac_tvx_value                                         = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
2154         bp->stats.mac_frame_error_threshold                     = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
2155         bp->stats.mac_frame_error_ratio                         = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
2156         bp->stats.mac_rmt_state                                         = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
2157         bp->stats.mac_da_flag                                           = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
2158         bp->stats.mac_una_da_flag                                       = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
2159         bp->stats.mac_frame_error_flag                          = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
2160         bp->stats.mac_ma_unitdata_available                     = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
2161         bp->stats.mac_hardware_present                          = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
2162         bp->stats.mac_ma_unitdata_enable                        = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
2163         bp->stats.path_tvx_lower_bound                          = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
2164         bp->stats.path_t_max_lower_bound                        = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
2165         bp->stats.path_max_t_req                                        = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
2166         memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
2167         bp->stats.port_my_type[0]                                       = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
2168         bp->stats.port_my_type[1]                                       = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
2169         bp->stats.port_neighbor_type[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
2170         bp->stats.port_neighbor_type[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
2171         bp->stats.port_connection_policies[0]           = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
2172         bp->stats.port_connection_policies[1]           = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
2173         bp->stats.port_mac_indicated[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
2174         bp->stats.port_mac_indicated[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
2175         bp->stats.port_current_path[0]                          = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
2176         bp->stats.port_current_path[1]                          = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
2177         memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
2178         memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
2179         bp->stats.port_mac_placement[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
2180         bp->stats.port_mac_placement[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
2181         bp->stats.port_available_paths[0]                       = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
2182         bp->stats.port_available_paths[1]                       = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
2183         bp->stats.port_pmd_class[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
2184         bp->stats.port_pmd_class[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
2185         bp->stats.port_connection_capabilities[0]       = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
2186         bp->stats.port_connection_capabilities[1]       = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
2187         bp->stats.port_bs_flag[0]                                       = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
2188         bp->stats.port_bs_flag[1]                                       = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
2189         bp->stats.port_ler_estimate[0]                          = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
2190         bp->stats.port_ler_estimate[1]                          = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
2191         bp->stats.port_ler_cutoff[0]                            = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
2192         bp->stats.port_ler_cutoff[1]                            = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
2193         bp->stats.port_ler_alarm[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
2194         bp->stats.port_ler_alarm[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
2195         bp->stats.port_connect_state[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
2196         bp->stats.port_connect_state[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
2197         bp->stats.port_pcm_state[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
2198         bp->stats.port_pcm_state[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
2199         bp->stats.port_pc_withhold[0]                           = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
2200         bp->stats.port_pc_withhold[1]                           = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
2201         bp->stats.port_ler_flag[0]                                      = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
2202         bp->stats.port_ler_flag[1]                                      = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
2203         bp->stats.port_hardware_present[0]                      = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
2204         bp->stats.port_hardware_present[1]                      = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
2205
2206         /* Get FDDI counters */
2207
2208         bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
2209         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2210                 return (struct net_device_stats *)&bp->stats;
2211
2212         /* Fill the bp->stats structure with the FDDI counter values */
2213
2214         bp->stats.mac_frame_cts                         = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
2215         bp->stats.mac_copied_cts                        = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
2216         bp->stats.mac_transmit_cts                      = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
2217         bp->stats.mac_error_cts                         = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
2218         bp->stats.mac_lost_cts                          = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
2219         bp->stats.port_lct_fail_cts[0]          = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
2220         bp->stats.port_lct_fail_cts[1]          = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
2221         bp->stats.port_lem_reject_cts[0]        = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
2222         bp->stats.port_lem_reject_cts[1]        = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
2223         bp->stats.port_lem_cts[0]                       = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
2224         bp->stats.port_lem_cts[1]                       = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
2225
2226         return (struct net_device_stats *)&bp->stats;
2227         }
2228
2229
2230 /*
2231  * ==============================
2232  * = dfx_ctl_set_multicast_list =
2233  * ==============================
2234  *
2235  * Overview:
2236  *   Enable/Disable LLC frame promiscuous mode reception
2237  *   on the adapter and/or update multicast address table.
2238  *
2239  * Returns:
2240  *   None
2241  *
2242  * Arguments:
2243  *   dev - pointer to device information
2244  *
2245  * Functional Description:
2246  *   This routine follows a fairly simple algorithm for setting the
2247  *   adapter filters and CAM:
2248  *
2249  *              if IFF_PROMISC flag is set
2250  *                      enable LLC individual/group promiscuous mode
2251  *              else
2252  *                      disable LLC individual/group promiscuous mode
2253  *                      if number of incoming multicast addresses >
2254  *                                      (CAM max size - number of unicast addresses in CAM)
2255  *                              enable LLC group promiscuous mode
2256  *                              set driver-maintained multicast address count to zero
2257  *                      else
2258  *                              disable LLC group promiscuous mode
2259  *                              set driver-maintained multicast address count to incoming count
2260  *                      update adapter CAM
2261  *              update adapter filters
2262  *
2263  * Return Codes:
2264  *   None
2265  *
2266  * Assumptions:
2267  *   Multicast addresses are presented in canonical (LSB) format.
2268  *
2269  * Side Effects:
2270  *   On-board adapter CAM and filters are updated.
2271  */
2272
2273 static void dfx_ctl_set_multicast_list(struct net_device *dev)
2274 {
2275         DFX_board_t *bp = netdev_priv(dev);
2276         int                                     i;                      /* used as index in for loop */
2277         struct netdev_hw_addr *ha;
2278
2279         /* Enable LLC frame promiscuous mode, if necessary */
2280
2281         if (dev->flags & IFF_PROMISC)
2282                 bp->ind_group_prom = PI_FSTATE_K_PASS;          /* Enable LLC ind/group prom mode */
2283
2284         /* Else, update multicast address table */
2285
2286         else
2287                 {
2288                 bp->ind_group_prom = PI_FSTATE_K_BLOCK;         /* Disable LLC ind/group prom mode */
2289                 /*
2290                  * Check whether incoming multicast address count exceeds table size
2291                  *
2292                  * Note: The adapters utilize an on-board 64 entry CAM for
2293                  *       supporting perfect filtering of multicast packets
2294                  *               and bridge functions when adding unicast addresses.
2295                  *               There is no hash function available.  To support
2296                  *               additional multicast addresses, the all multicast
2297                  *               filter (LLC group promiscuous mode) must be enabled.
2298                  *
2299                  *               The firmware reserves two CAM entries for SMT-related
2300                  *               multicast addresses, which leaves 62 entries available.
2301                  *               The following code ensures that we're not being asked
2302                  *               to add more than 62 addresses to the CAM.  If we are,
2303                  *               the driver will enable the all multicast filter.
2304                  *               Should the number of multicast addresses drop below
2305                  *               the high water mark, the filter will be disabled and
2306                  *               perfect filtering will be used.
2307                  */
2308
2309                 if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2310                         {
2311                         bp->group_prom  = PI_FSTATE_K_PASS;             /* Enable LLC group prom mode */
2312                         bp->mc_count    = 0;                                    /* Don't add mc addrs to CAM */
2313                         }
2314                 else
2315                         {
2316                         bp->group_prom  = PI_FSTATE_K_BLOCK;    /* Disable LLC group prom mode */
2317                         bp->mc_count    = netdev_mc_count(dev);         /* Add mc addrs to CAM */
2318                         }
2319
2320                 /* Copy addresses to multicast address table, then update adapter CAM */
2321
2322                 i = 0;
2323                 netdev_for_each_mc_addr(ha, dev)
2324                         memcpy(&bp->mc_table[i++ * FDDI_K_ALEN],
2325                                ha->addr, FDDI_K_ALEN);
2326
2327                 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2328                         {
2329                         DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2330                         }
2331                 else
2332                         {
2333                         DBG_printk("%s: Multicast address table updated!  Added %d addresses.\n", dev->name, bp->mc_count);
2334                         }
2335                 }
2336
2337         /* Update adapter filters */
2338
2339         if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2340                 {
2341                 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2342                 }
2343         else
2344                 {
2345                 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2346                 }
2347         }
2348
2349
2350 /*
2351  * ===========================
2352  * = dfx_ctl_set_mac_address =
2353  * ===========================
2354  *
2355  * Overview:
2356  *   Add node address override (unicast address) to adapter
2357  *   CAM and update dev_addr field in device table.
2358  *
2359  * Returns:
2360  *   None
2361  *
2362  * Arguments:
2363  *   dev  - pointer to device information
2364  *   addr - pointer to sockaddr structure containing unicast address to add
2365  *
2366  * Functional Description:
2367  *   The adapter supports node address overrides by adding one or more
2368  *   unicast addresses to the adapter CAM.  This is similar to adding
2369  *   multicast addresses.  In this routine we'll update the driver and
2370  *   device structures with the new address, then update the adapter CAM
2371  *   to ensure that the adapter will copy and strip frames destined and
2372  *   sourced by that address.
2373  *
2374  * Return Codes:
2375  *   Always returns zero.
2376  *
2377  * Assumptions:
2378  *   The address pointed to by addr->sa_data is a valid unicast
2379  *   address and is presented in canonical (LSB) format.
2380  *
2381  * Side Effects:
2382  *   On-board adapter CAM is updated.  On-board adapter filters
2383  *   may be updated.
2384  */
2385
2386 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2387         {
2388         struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
2389         DFX_board_t *bp = netdev_priv(dev);
2390
2391         /* Copy unicast address to driver-maintained structs and update count */
2392
2393         memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);        /* update device struct */
2394         memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN);     /* update driver struct */
2395         bp->uc_count = 1;
2396
2397         /*
2398          * Verify we're not exceeding the CAM size by adding unicast address
2399          *
2400          * Note: It's possible that before entering this routine we've
2401          *       already filled the CAM with 62 multicast addresses.
2402          *               Since we need to place the node address override into
2403          *               the CAM, we have to check to see that we're not
2404          *               exceeding the CAM size.  If we are, we have to enable
2405          *               the LLC group (multicast) promiscuous mode filter as
2406          *               in dfx_ctl_set_multicast_list.
2407          */
2408
2409         if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2410                 {
2411                 bp->group_prom  = PI_FSTATE_K_PASS;             /* Enable LLC group prom mode */
2412                 bp->mc_count    = 0;                                    /* Don't add mc addrs to CAM */
2413
2414                 /* Update adapter filters */
2415
2416                 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2417                         {
2418                         DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2419                         }
2420                 else
2421                         {
2422                         DBG_printk("%s: Adapter filters updated!\n", dev->name);
2423                         }
2424                 }
2425
2426         /* Update adapter CAM with new unicast address */
2427
2428         if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2429                 {
2430                 DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2431                 }
2432         else
2433                 {
2434                 DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2435                 }
2436         return 0;                       /* always return zero */
2437         }
2438
2439
2440 /*
2441  * ======================
2442  * = dfx_ctl_update_cam =
2443  * ======================
2444  *
2445  * Overview:
2446  *   Procedure to update adapter CAM (Content Addressable Memory)
2447  *   with desired unicast and multicast address entries.
2448  *
2449  * Returns:
2450  *   Condition code
2451  *
2452  * Arguments:
2453  *   bp - pointer to board information
2454  *
2455  * Functional Description:
2456  *   Updates adapter CAM with current contents of board structure
2457  *   unicast and multicast address tables.  Since there are only 62
2458  *   free entries in CAM, this routine ensures that the command
2459  *   request buffer is not overrun.
2460  *
2461  * Return Codes:
2462  *   DFX_K_SUCCESS - Request succeeded
2463  *   DFX_K_FAILURE - Request failed
2464  *
2465  * Assumptions:
2466  *   All addresses being added (unicast and multicast) are in canonical
2467  *   order.
2468  *
2469  * Side Effects:
2470  *   On-board adapter CAM is updated.
2471  */
2472
2473 static int dfx_ctl_update_cam(DFX_board_t *bp)
2474         {
2475         int                     i;                              /* used as index */
2476         PI_LAN_ADDR     *p_addr;                /* pointer to CAM entry */
2477
2478         /*
2479          * Fill in command request information
2480          *
2481          * Note: Even though both the unicast and multicast address
2482          *       table entries are stored as contiguous 6 byte entries,
2483          *               the firmware address filter set command expects each
2484          *               entry to be two longwords (8 bytes total).  We must be
2485          *               careful to only copy the six bytes of each unicast and
2486          *               multicast table entry into each command entry.  This
2487          *               is also why we must first clear the entire command
2488          *               request buffer.
2489          */
2490
2491         memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX);     /* first clear buffer */
2492         bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2493         p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2494
2495         /* Now add unicast addresses to command request buffer, if any */
2496
2497         for (i=0; i < (int)bp->uc_count; i++)
2498                 {
2499                 if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2500                         {
2501                         memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2502                         p_addr++;                       /* point to next command entry */
2503                         }
2504                 }
2505
2506         /* Now add multicast addresses to command request buffer, if any */
2507
2508         for (i=0; i < (int)bp->mc_count; i++)
2509                 {
2510                 if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2511                         {
2512                         memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2513                         p_addr++;                       /* point to next command entry */
2514                         }
2515                 }
2516
2517         /* Issue command to update adapter CAM, then return */
2518
2519         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2520                 return DFX_K_FAILURE;
2521         return DFX_K_SUCCESS;
2522         }
2523
2524
2525 /*
2526  * ==========================
2527  * = dfx_ctl_update_filters =
2528  * ==========================
2529  *
2530  * Overview:
2531  *   Procedure to update adapter filters with desired
2532  *   filter settings.
2533  *
2534  * Returns:
2535  *   Condition code
2536  *
2537  * Arguments:
2538  *   bp - pointer to board information
2539  *
2540  * Functional Description:
2541  *   Enables or disables filter using current filter settings.
2542  *
2543  * Return Codes:
2544  *   DFX_K_SUCCESS - Request succeeded.
2545  *   DFX_K_FAILURE - Request failed.
2546  *
2547  * Assumptions:
2548  *   We must always pass up packets destined to the broadcast
2549  *   address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2550  *   broadcast filter enabled.
2551  *
2552  * Side Effects:
2553  *   On-board adapter filters are updated.
2554  */
2555
2556 static int dfx_ctl_update_filters(DFX_board_t *bp)
2557         {
2558         int     i = 0;                                  /* used as index */
2559
2560         /* Fill in command request information */
2561
2562         bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2563
2564         /* Initialize Broadcast filter - * ALWAYS ENABLED * */
2565
2566         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_BROADCAST;
2567         bp->cmd_req_virt->filter_set.item[i++].value    = PI_FSTATE_K_PASS;
2568
2569         /* Initialize LLC Individual/Group Promiscuous filter */
2570
2571         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_IND_GROUP_PROM;
2572         bp->cmd_req_virt->filter_set.item[i++].value    = bp->ind_group_prom;
2573
2574         /* Initialize LLC Group Promiscuous filter */
2575
2576         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_GROUP_PROM;
2577         bp->cmd_req_virt->filter_set.item[i++].value    = bp->group_prom;
2578
2579         /* Terminate the item code list */
2580
2581         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_EOL;
2582
2583         /* Issue command to update adapter filters, then return */
2584
2585         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2586                 return DFX_K_FAILURE;
2587         return DFX_K_SUCCESS;
2588         }
2589
2590
2591 /*
2592  * ======================
2593  * = dfx_hw_dma_cmd_req =
2594  * ======================
2595  *
2596  * Overview:
2597  *   Sends PDQ DMA command to adapter firmware
2598  *
2599  * Returns:
2600  *   Condition code
2601  *
2602  * Arguments:
2603  *   bp - pointer to board information
2604  *
2605  * Functional Description:
2606  *   The command request and response buffers are posted to the adapter in the manner
2607  *   described in the PDQ Port Specification:
2608  *
2609  *              1. Command Response Buffer is posted to adapter.
2610  *              2. Command Request Buffer is posted to adapter.
2611  *              3. Command Request consumer index is polled until it indicates that request
2612  *         buffer has been DMA'd to adapter.
2613  *              4. Command Response consumer index is polled until it indicates that response
2614  *         buffer has been DMA'd from adapter.
2615  *
2616  *   This ordering ensures that a response buffer is already available for the firmware
2617  *   to use once it's done processing the request buffer.
2618  *
2619  * Return Codes:
2620  *   DFX_K_SUCCESS        - DMA command succeeded
2621  *       DFX_K_OUTSTATE   - Adapter is NOT in proper state
2622  *   DFX_K_HW_TIMEOUT - DMA command timed out
2623  *
2624  * Assumptions:
2625  *   Command request buffer has already been filled with desired DMA command.
2626  *
2627  * Side Effects:
2628  *   None
2629  */
2630
2631 static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2632         {
2633         int status;                     /* adapter status */
2634         int timeout_cnt;        /* used in for loops */
2635
2636         /* Make sure the adapter is in a state that we can issue the DMA command in */
2637
2638         status = dfx_hw_adap_state_rd(bp);
2639         if ((status == PI_STATE_K_RESET)                ||
2640                 (status == PI_STATE_K_HALTED)           ||
2641                 (status == PI_STATE_K_DMA_UNAVAIL)      ||
2642                 (status == PI_STATE_K_UPGRADE))
2643                 return DFX_K_OUTSTATE;
2644
2645         /* Put response buffer on the command response queue */
2646
2647         bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2648                         ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2649         bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2650
2651         /* Bump (and wrap) the producer index and write out to register */
2652
2653         bp->cmd_rsp_reg.index.prod += 1;
2654         bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2655         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2656
2657         /* Put request buffer on the command request queue */
2658
2659         bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2660                         PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2661         bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2662
2663         /* Bump (and wrap) the producer index and write out to register */
2664
2665         bp->cmd_req_reg.index.prod += 1;
2666         bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2667         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2668
2669         /*
2670          * Here we wait for the command request consumer index to be equal
2671          * to the producer, indicating that the adapter has DMAed the request.
2672          */
2673
2674         for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2675                 {
2676                 if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2677                         break;
2678                 udelay(100);                    /* wait for 100 microseconds */
2679                 }
2680         if (timeout_cnt == 0)
2681                 return DFX_K_HW_TIMEOUT;
2682
2683         /* Bump (and wrap) the completion index and write out to register */
2684
2685         bp->cmd_req_reg.index.comp += 1;
2686         bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2687         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2688
2689         /*
2690          * Here we wait for the command response consumer index to be equal
2691          * to the producer, indicating that the adapter has DMAed the response.
2692          */
2693
2694         for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2695                 {
2696                 if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2697                         break;
2698                 udelay(100);                    /* wait for 100 microseconds */
2699                 }
2700         if (timeout_cnt == 0)
2701                 return DFX_K_HW_TIMEOUT;
2702
2703         /* Bump (and wrap) the completion index and write out to register */
2704
2705         bp->cmd_rsp_reg.index.comp += 1;
2706         bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2707         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2708         return DFX_K_SUCCESS;
2709         }
2710
2711
2712 /*
2713  * ========================
2714  * = dfx_hw_port_ctrl_req =
2715  * ========================
2716  *
2717  * Overview:
2718  *   Sends PDQ port control command to adapter firmware
2719  *
2720  * Returns:
2721  *   Host data register value in host_data if ptr is not NULL
2722  *
2723  * Arguments:
2724  *   bp                 - pointer to board information
2725  *       command        - port control command
2726  *       data_a         - port data A register value
2727  *       data_b         - port data B register value
2728  *       host_data      - ptr to host data register value
2729  *
2730  * Functional Description:
2731  *   Send generic port control command to adapter by writing
2732  *   to various PDQ port registers, then polling for completion.
2733  *
2734  * Return Codes:
2735  *   DFX_K_SUCCESS        - port control command succeeded
2736  *   DFX_K_HW_TIMEOUT - port control command timed out
2737  *
2738  * Assumptions:
2739  *   None
2740  *
2741  * Side Effects:
2742  *   None
2743  */
2744
2745 static int dfx_hw_port_ctrl_req(
2746         DFX_board_t     *bp,
2747         PI_UINT32       command,
2748         PI_UINT32       data_a,
2749         PI_UINT32       data_b,
2750         PI_UINT32       *host_data
2751         )
2752
2753         {
2754         PI_UINT32       port_cmd;               /* Port Control command register value */
2755         int                     timeout_cnt;    /* used in for loops */
2756
2757         /* Set Command Error bit in command longword */
2758
2759         port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2760
2761         /* Issue port command to the adapter */
2762
2763         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2764         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2765         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2766
2767         /* Now wait for command to complete */
2768
2769         if (command == PI_PCTRL_M_BLAST_FLASH)
2770                 timeout_cnt = 600000;   /* set command timeout count to 60 seconds */
2771         else
2772                 timeout_cnt = 20000;    /* set command timeout count to 2 seconds */
2773
2774         for (; timeout_cnt > 0; timeout_cnt--)
2775                 {
2776                 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2777                 if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2778                         break;
2779                 udelay(100);                    /* wait for 100 microseconds */
2780                 }
2781         if (timeout_cnt == 0)
2782                 return DFX_K_HW_TIMEOUT;
2783
2784         /*
2785          * If the address of host_data is non-zero, assume caller has supplied a
2786          * non NULL pointer, and return the contents of the HOST_DATA register in
2787          * it.
2788          */
2789
2790         if (host_data != NULL)
2791                 dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2792         return DFX_K_SUCCESS;
2793         }
2794
2795
2796 /*
2797  * =====================
2798  * = dfx_hw_adap_reset =
2799  * =====================
2800  *
2801  * Overview:
2802  *   Resets adapter
2803  *
2804  * Returns:
2805  *   None
2806  *
2807  * Arguments:
2808  *   bp   - pointer to board information
2809  *   type - type of reset to perform
2810  *
2811  * Functional Description:
2812  *   Issue soft reset to adapter by writing to PDQ Port Reset
2813  *   register.  Use incoming reset type to tell adapter what
2814  *   kind of reset operation to perform.
2815  *
2816  * Return Codes:
2817  *   None
2818  *
2819  * Assumptions:
2820  *   This routine merely issues a soft reset to the adapter.
2821  *   It is expected that after this routine returns, the caller
2822  *   will appropriately poll the Port Status register for the
2823  *   adapter to enter the proper state.
2824  *
2825  * Side Effects:
2826  *   Internal adapter registers are cleared.
2827  */
2828
2829 static void dfx_hw_adap_reset(
2830         DFX_board_t     *bp,
2831         PI_UINT32       type
2832         )
2833
2834         {
2835         /* Set Reset type and assert reset */
2836
2837         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type);        /* tell adapter type of reset */
2838         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2839
2840         /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2841
2842         udelay(20);
2843
2844         /* Deassert reset */
2845
2846         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2847         }
2848
2849
2850 /*
2851  * ========================
2852  * = dfx_hw_adap_state_rd =
2853  * ========================
2854  *
2855  * Overview:
2856  *   Returns current adapter state
2857  *
2858  * Returns:
2859  *   Adapter state per PDQ Port Specification
2860  *
2861  * Arguments:
2862  *   bp - pointer to board information
2863  *
2864  * Functional Description:
2865  *   Reads PDQ Port Status register and returns adapter state.
2866  *
2867  * Return Codes:
2868  *   None
2869  *
2870  * Assumptions:
2871  *   None
2872  *
2873  * Side Effects:
2874  *   None
2875  */
2876
2877 static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2878         {
2879         PI_UINT32 port_status;          /* Port Status register value */
2880
2881         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2882         return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE;
2883         }
2884
2885
2886 /*
2887  * =====================
2888  * = dfx_hw_dma_uninit =
2889  * =====================
2890  *
2891  * Overview:
2892  *   Brings adapter to DMA_UNAVAILABLE state
2893  *
2894  * Returns:
2895  *   Condition code
2896  *
2897  * Arguments:
2898  *   bp   - pointer to board information
2899  *   type - type of reset to perform
2900  *
2901  * Functional Description:
2902  *   Bring adapter to DMA_UNAVAILABLE state by performing the following:
2903  *              1. Set reset type bit in Port Data A Register then reset adapter.
2904  *              2. Check that adapter is in DMA_UNAVAILABLE state.
2905  *
2906  * Return Codes:
2907  *   DFX_K_SUCCESS        - adapter is in DMA_UNAVAILABLE state
2908  *   DFX_K_HW_TIMEOUT - adapter did not reset properly
2909  *
2910  * Assumptions:
2911  *   None
2912  *
2913  * Side Effects:
2914  *   Internal adapter registers are cleared.
2915  */
2916
2917 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2918         {
2919         int timeout_cnt;        /* used in for loops */
2920
2921         /* Set reset type bit and reset adapter */
2922
2923         dfx_hw_adap_reset(bp, type);
2924
2925         /* Now wait for adapter to enter DMA_UNAVAILABLE state */
2926
2927         for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2928                 {
2929                 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2930                         break;
2931                 udelay(100);                                    /* wait for 100 microseconds */
2932                 }
2933         if (timeout_cnt == 0)
2934                 return DFX_K_HW_TIMEOUT;
2935         return DFX_K_SUCCESS;
2936         }
2937
2938 /*
2939  *      Align an sk_buff to a boundary power of 2
2940  *
2941  */
2942 #ifdef DYNAMIC_BUFFERS
2943 static void my_skb_align(struct sk_buff *skb, int n)
2944 {
2945         unsigned long x = (unsigned long)skb->data;
2946         unsigned long v;
2947
2948         v = ALIGN(x, n);        /* Where we want to be */
2949
2950         skb_reserve(skb, v - x);
2951 }
2952 #endif
2953
2954 /*
2955  * ================
2956  * = dfx_rcv_init =
2957  * ================
2958  *
2959  * Overview:
2960  *   Produces buffers to adapter LLC Host receive descriptor block
2961  *
2962  * Returns:
2963  *   None
2964  *
2965  * Arguments:
2966  *   bp - pointer to board information
2967  *   get_buffers - non-zero if buffers to be allocated
2968  *
2969  * Functional Description:
2970  *   This routine can be called during dfx_adap_init() or during an adapter
2971  *       reset.  It initializes the descriptor block and produces all allocated
2972  *   LLC Host queue receive buffers.
2973  *
2974  * Return Codes:
2975  *   Return 0 on success or -ENOMEM if buffer allocation failed (when using
2976  *   dynamic buffer allocation). If the buffer allocation failed, the
2977  *   already allocated buffers will not be released and the caller should do
2978  *   this.
2979  *
2980  * Assumptions:
2981  *   The PDQ has been reset and the adapter and driver maintained Type 2
2982  *   register indices are cleared.
2983  *
2984  * Side Effects:
2985  *   Receive buffers are posted to the adapter LLC queue and the adapter
2986  *   is notified.
2987  */
2988
2989 static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2990         {
2991         int     i, j;                                   /* used in for loop */
2992
2993         /*
2994          *  Since each receive buffer is a single fragment of same length, initialize
2995          *  first longword in each receive descriptor for entire LLC Host descriptor
2996          *  block.  Also initialize second longword in each receive descriptor with
2997          *  physical address of receive buffer.  We'll always allocate receive
2998          *  buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2999          *  block and produce new receive buffers by simply updating the receive
3000          *  producer index.
3001          *
3002          *      Assumptions:
3003          *              To support all shipping versions of PDQ, the receive buffer size
3004          *              must be mod 128 in length and the physical address must be 128 byte
3005          *              aligned.  In other words, bits 0-6 of the length and address must
3006          *              be zero for the following descriptor field entries to be correct on
3007          *              all PDQ-based boards.  We guaranteed both requirements during
3008          *              driver initialization when we allocated memory for the receive buffers.
3009          */
3010
3011         if (get_buffers) {
3012 #ifdef DYNAMIC_BUFFERS
3013         for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3014                 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3015                 {
3016                         struct sk_buff *newskb;
3017                         dma_addr_t dma_addr;
3018
3019                         newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE,
3020                                                     GFP_NOIO);
3021                         if (!newskb)
3022                                 return -ENOMEM;
3023                         /*
3024                          * align to 128 bytes for compatibility with
3025                          * the old EISA boards.
3026                          */
3027
3028                         my_skb_align(newskb, 128);
3029                         dma_addr = dma_map_single(bp->bus_dev,
3030                                                   newskb->data,
3031                                                   PI_RCV_DATA_K_SIZE_MAX,
3032                                                   DMA_FROM_DEVICE);
3033                         if (dma_mapping_error(bp->bus_dev, dma_addr)) {
3034                                 dev_kfree_skb(newskb);
3035                                 return -ENOMEM;
3036                         }
3037                         bp->descr_block_virt->rcv_data[i + j].long_0 =
3038                                 (u32)(PI_RCV_DESCR_M_SOP |
3039                                       ((PI_RCV_DATA_K_SIZE_MAX /
3040                                         PI_ALIGN_K_RCV_DATA_BUFF) <<
3041                                        PI_RCV_DESCR_V_SEG_LEN));
3042                         bp->descr_block_virt->rcv_data[i + j].long_1 =
3043                                 (u32)dma_addr;
3044
3045                         /*
3046                          * p_rcv_buff_va is only used inside the
3047                          * kernel so we put the skb pointer here.
3048                          */
3049                         bp->p_rcv_buff_va[i+j] = (char *) newskb;
3050                 }
3051 #else
3052         for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
3053                 for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3054                         {
3055                         bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
3056                                 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
3057                         bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
3058                         bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
3059                         }
3060 #endif
3061         }
3062
3063         /* Update receive producer and Type 2 register */
3064
3065         bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
3066         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3067         return 0;
3068         }
3069
3070
3071 /*
3072  * =========================
3073  * = dfx_rcv_queue_process =
3074  * =========================
3075  *
3076  * Overview:
3077  *   Process received LLC frames.
3078  *
3079  * Returns:
3080  *   None
3081  *
3082  * Arguments:
3083  *   bp - pointer to board information
3084  *
3085  * Functional Description:
3086  *   Received LLC frames are processed until there are no more consumed frames.
3087  *   Once all frames are processed, the receive buffers are returned to the
3088  *   adapter.  Note that this algorithm fixes the length of time that can be spent
3089  *   in this routine, because there are a fixed number of receive buffers to
3090  *   process and buffers are not produced until this routine exits and returns
3091  *   to the ISR.
3092  *
3093  * Return Codes:
3094  *   None
3095  *
3096  * Assumptions:
3097  *   None
3098  *
3099  * Side Effects:
3100  *   None
3101  */
3102
3103 static void dfx_rcv_queue_process(
3104         DFX_board_t *bp
3105         )
3106
3107         {
3108         PI_TYPE_2_CONSUMER      *p_type_2_cons;         /* ptr to rcv/xmt consumer block register */
3109         char                            *p_buff;                        /* ptr to start of packet receive buffer (FMC descriptor) */
3110         u32                                     descr, pkt_len;         /* FMC descriptor field and packet length */
3111         struct sk_buff          *skb = NULL;                    /* pointer to a sk_buff to hold incoming packet data */
3112
3113         /* Service all consumed LLC receive frames */
3114
3115         p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3116         while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
3117                 {
3118                 /* Process any errors */
3119                 dma_addr_t dma_addr;
3120                 int entry;
3121
3122                 entry = bp->rcv_xmt_reg.index.rcv_comp;
3123 #ifdef DYNAMIC_BUFFERS
3124                 p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
3125 #else
3126                 p_buff = bp->p_rcv_buff_va[entry];
3127 #endif
3128                 dma_addr = bp->descr_block_virt->rcv_data[entry].long_1;
3129                 dma_sync_single_for_cpu(bp->bus_dev,
3130                                         dma_addr + RCV_BUFF_K_DESCR,
3131                                         sizeof(u32),
3132                                         DMA_FROM_DEVICE);
3133                 memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
3134
3135                 if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
3136                         {
3137                         if (descr & PI_FMC_DESCR_M_RCC_CRC)
3138                                 bp->rcv_crc_errors++;
3139                         else
3140                                 bp->rcv_frame_status_errors++;
3141                         }
3142                 else
3143                 {
3144                         int rx_in_place = 0;
3145
3146                         /* The frame was received without errors - verify packet length */
3147
3148                         pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
3149                         pkt_len -= 4;                           /* subtract 4 byte CRC */
3150                         if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3151                                 bp->rcv_length_errors++;
3152                         else{
3153 #ifdef DYNAMIC_BUFFERS
3154                                 struct sk_buff *newskb = NULL;
3155
3156                                 if (pkt_len > SKBUFF_RX_COPYBREAK) {
3157                                         dma_addr_t new_dma_addr;
3158
3159                                         newskb = netdev_alloc_skb(bp->dev,
3160                                                                   NEW_SKB_SIZE);
3161                                         if (newskb){
3162                                                 my_skb_align(newskb, 128);
3163                                                 new_dma_addr = dma_map_single(
3164                                                                 bp->bus_dev,
3165                                                                 newskb->data,
3166                                                                 PI_RCV_DATA_K_SIZE_MAX,
3167                                                                 DMA_FROM_DEVICE);
3168                                                 if (dma_mapping_error(
3169                                                                 bp->bus_dev,
3170                                                                 new_dma_addr)) {
3171                                                         dev_kfree_skb(newskb);
3172                                                         newskb = NULL;
3173                                                 }
3174                                         }
3175                                         if (newskb) {
3176                                                 rx_in_place = 1;
3177
3178                                                 skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
3179                                                 dma_unmap_single(bp->bus_dev,
3180                                                         dma_addr,
3181                                                         PI_RCV_DATA_K_SIZE_MAX,
3182                                                         DMA_FROM_DEVICE);
3183                                                 skb_reserve(skb, RCV_BUFF_K_PADDING);
3184                                                 bp->p_rcv_buff_va[entry] = (char *)newskb;
3185                                                 bp->descr_block_virt->rcv_data[entry].long_1 = (u32)new_dma_addr;
3186                                         }
3187                                 }
3188                                 if (!newskb)
3189 #endif
3190                                         /* Alloc new buffer to pass up,
3191                                          * add room for PRH. */
3192                                         skb = netdev_alloc_skb(bp->dev,
3193                                                                pkt_len + 3);
3194                                 if (skb == NULL)
3195                                         {
3196                                         printk("%s: Could not allocate receive buffer.  Dropping packet.\n", bp->dev->name);
3197                                         bp->rcv_discards++;
3198                                         break;
3199                                         }
3200                                 else {
3201                                         if (!rx_in_place) {
3202                                                 /* Receive buffer allocated, pass receive packet up */
3203                                                 dma_sync_single_for_cpu(
3204                                                         bp->bus_dev,
3205                                                         dma_addr +
3206                                                         RCV_BUFF_K_PADDING,
3207                                                         pkt_len + 3,
3208                                                         DMA_FROM_DEVICE);
3209
3210                                                 skb_copy_to_linear_data(skb,
3211                                                                p_buff + RCV_BUFF_K_PADDING,
3212                                                                pkt_len + 3);
3213                                         }
3214
3215                                         skb_reserve(skb,3);             /* adjust data field so that it points to FC byte */
3216                                         skb_put(skb, pkt_len);          /* pass up packet length, NOT including CRC */
3217                                         skb->protocol = fddi_type_trans(skb, bp->dev);
3218                                         bp->rcv_total_bytes += skb->len;
3219                                         netif_rx(skb);
3220
3221                                         /* Update the rcv counters */
3222                                         bp->rcv_total_frames++;
3223                                         if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
3224                                                 bp->rcv_multicast_frames++;
3225                                 }
3226                         }
3227                         }
3228
3229                 /*
3230                  * Advance the producer (for recycling) and advance the completion
3231                  * (for servicing received frames).  Note that it is okay to
3232                  * advance the producer without checking that it passes the
3233                  * completion index because they are both advanced at the same
3234                  * rate.
3235                  */
3236
3237                 bp->rcv_xmt_reg.index.rcv_prod += 1;
3238                 bp->rcv_xmt_reg.index.rcv_comp += 1;
3239                 }
3240         }
3241
3242
3243 /*
3244  * =====================
3245  * = dfx_xmt_queue_pkt =
3246  * =====================
3247  *
3248  * Overview:
3249  *   Queues packets for transmission
3250  *
3251  * Returns:
3252  *   Condition code
3253  *
3254  * Arguments:
3255  *   skb - pointer to sk_buff to queue for transmission
3256  *   dev - pointer to device information
3257  *
3258  * Functional Description:
3259  *   Here we assume that an incoming skb transmit request
3260  *   is contained in a single physically contiguous buffer
3261  *   in which the virtual address of the start of packet
3262  *   (skb->data) can be converted to a physical address
3263  *   by using pci_map_single().
3264  *
3265  *   Since the adapter architecture requires a three byte
3266  *   packet request header to prepend the start of packet,
3267  *   we'll write the three byte field immediately prior to
3268  *   the FC byte.  This assumption is valid because we've
3269  *   ensured that dev->hard_header_len includes three pad
3270  *   bytes.  By posting a single fragment to the adapter,
3271  *   we'll reduce the number of descriptor fetches and
3272  *   bus traffic needed to send the request.
3273  *
3274  *   Also, we can't free the skb until after it's been DMA'd
3275  *   out by the adapter, so we'll queue it in the driver and
3276  *   return it in dfx_xmt_done.
3277  *
3278  * Return Codes:
3279  *   0 - driver queued packet, link is unavailable, or skbuff was bad
3280  *       1 - caller should requeue the sk_buff for later transmission
3281  *
3282  * Assumptions:
3283  *       First and foremost, we assume the incoming skb pointer
3284  *   is NOT NULL and is pointing to a valid sk_buff structure.
3285  *
3286  *   The outgoing packet is complete, starting with the
3287  *   frame control byte including the last byte of data,
3288  *   but NOT including the 4 byte CRC.  We'll let the
3289  *   adapter hardware generate and append the CRC.
3290  *
3291  *   The entire packet is stored in one physically
3292  *   contiguous buffer which is not cached and whose
3293  *   32-bit physical address can be determined.
3294  *
3295  *   It's vital that this routine is NOT reentered for the
3296  *   same board and that the OS is not in another section of
3297  *   code (eg. dfx_int_common) for the same board on a
3298  *   different thread.
3299  *
3300  * Side Effects:
3301  *   None
3302  */
3303
3304 static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
3305                                      struct net_device *dev)
3306         {
3307         DFX_board_t             *bp = netdev_priv(dev);
3308         u8                      prod;                           /* local transmit producer index */
3309         PI_XMT_DESCR            *p_xmt_descr;           /* ptr to transmit descriptor block entry */
3310         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3311         dma_addr_t              dma_addr;
3312         unsigned long           flags;
3313
3314         netif_stop_queue(dev);
3315
3316         /*
3317          * Verify that incoming transmit request is OK
3318          *
3319          * Note: The packet size check is consistent with other
3320          *               Linux device drivers, although the correct packet
3321          *               size should be verified before calling the
3322          *               transmit routine.
3323          */
3324
3325         if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3326         {
3327                 printk("%s: Invalid packet length - %u bytes\n",
3328                         dev->name, skb->len);
3329                 bp->xmt_length_errors++;                /* bump error counter */
3330                 netif_wake_queue(dev);
3331                 dev_kfree_skb(skb);
3332                 return NETDEV_TX_OK;                    /* return "success" */
3333         }
3334         /*
3335          * See if adapter link is available, if not, free buffer
3336          *
3337          * Note: If the link isn't available, free buffer and return 0
3338          *               rather than tell the upper layer to requeue the packet.
3339          *               The methodology here is that by the time the link
3340          *               becomes available, the packet to be sent will be
3341          *               fairly stale.  By simply dropping the packet, the
3342          *               higher layer protocols will eventually time out
3343          *               waiting for response packets which it won't receive.
3344          */
3345
3346         if (bp->link_available == PI_K_FALSE)
3347                 {
3348                 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL)  /* is link really available? */
3349                         bp->link_available = PI_K_TRUE;         /* if so, set flag and continue */
3350                 else
3351                         {
3352                         bp->xmt_discards++;                                     /* bump error counter */
3353                         dev_kfree_skb(skb);             /* free sk_buff now */
3354                         netif_wake_queue(dev);
3355                         return NETDEV_TX_OK;            /* return "success" */
3356                         }
3357                 }
3358
3359         /* Write the three PRH bytes immediately before the FC byte */
3360
3361         skb_push(skb, 3);
3362         skb->data[0] = DFX_PRH0_BYTE;   /* these byte values are defined */
3363         skb->data[1] = DFX_PRH1_BYTE;   /* in the Motorola FDDI MAC chip */
3364         skb->data[2] = DFX_PRH2_BYTE;   /* specification */
3365
3366         dma_addr = dma_map_single(bp->bus_dev, skb->data, skb->len,
3367                                   DMA_TO_DEVICE);
3368         if (dma_mapping_error(bp->bus_dev, dma_addr)) {
3369                 skb_pull(skb, 3);
3370                 return NETDEV_TX_BUSY;
3371         }
3372
3373         spin_lock_irqsave(&bp->lock, flags);
3374
3375         /* Get the current producer and the next free xmt data descriptor */
3376
3377         prod            = bp->rcv_xmt_reg.index.xmt_prod;
3378         p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3379
3380         /*
3381          * Get pointer to auxiliary queue entry to contain information
3382          * for this packet.
3383          *
3384          * Note: The current xmt producer index will become the
3385          *       current xmt completion index when we complete this
3386          *       packet later on.  So, we'll get the pointer to the
3387          *       next auxiliary queue entry now before we bump the
3388          *       producer index.
3389          */
3390
3391         p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]);     /* also bump producer index */
3392
3393         /*
3394          * Write the descriptor with buffer info and bump producer
3395          *
3396          * Note: Since we need to start DMA from the packet request
3397          *               header, we'll add 3 bytes to the DMA buffer length,
3398          *               and we'll determine the physical address of the
3399          *               buffer from the PRH, not skb->data.
3400          *
3401          * Assumptions:
3402          *               1. Packet starts with the frame control (FC) byte
3403          *                  at skb->data.
3404          *               2. The 4-byte CRC is not appended to the buffer or
3405          *                      included in the length.
3406          *               3. Packet length (skb->len) is from FC to end of
3407          *                      data, inclusive.
3408          *               4. The packet length does not exceed the maximum
3409          *                      FDDI LLC frame length of 4491 bytes.
3410          *               5. The entire packet is contained in a physically
3411          *                      contiguous, non-cached, locked memory space
3412          *                      comprised of a single buffer pointed to by
3413          *                      skb->data.
3414          *               6. The physical address of the start of packet
3415          *                      can be determined from the virtual address
3416          *                      by using pci_map_single() and is only 32-bits
3417          *                      wide.
3418          */
3419
3420         p_xmt_descr->long_0     = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
3421         p_xmt_descr->long_1 = (u32)dma_addr;
3422
3423         /*
3424          * Verify that descriptor is actually available
3425          *
3426          * Note: If descriptor isn't available, return 1 which tells
3427          *       the upper layer to requeue the packet for later
3428          *       transmission.
3429          *
3430          *       We need to ensure that the producer never reaches the
3431          *       completion, except to indicate that the queue is empty.
3432          */
3433
3434         if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3435         {
3436                 skb_pull(skb,3);
3437                 spin_unlock_irqrestore(&bp->lock, flags);
3438                 return NETDEV_TX_BUSY;  /* requeue packet for later */
3439         }
3440
3441         /*
3442          * Save info for this packet for xmt done indication routine
3443          *
3444          * Normally, we'd save the producer index in the p_xmt_drv_descr
3445          * structure so that we'd have it handy when we complete this
3446          * packet later (in dfx_xmt_done).  However, since the current
3447          * transmit architecture guarantees a single fragment for the
3448          * entire packet, we can simply bump the completion index by
3449          * one (1) for each completed packet.
3450          *
3451          * Note: If this assumption changes and we're presented with
3452          *       an inconsistent number of transmit fragments for packet
3453          *       data, we'll need to modify this code to save the current
3454          *       transmit producer index.
3455          */
3456
3457         p_xmt_drv_descr->p_skb = skb;
3458
3459         /* Update Type 2 register */
3460
3461         bp->rcv_xmt_reg.index.xmt_prod = prod;
3462         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3463         spin_unlock_irqrestore(&bp->lock, flags);
3464         netif_wake_queue(dev);
3465         return NETDEV_TX_OK;    /* packet queued to adapter */
3466         }
3467
3468
3469 /*
3470  * ================
3471  * = dfx_xmt_done =
3472  * ================
3473  *
3474  * Overview:
3475  *   Processes all frames that have been transmitted.
3476  *
3477  * Returns:
3478  *   None
3479  *
3480  * Arguments:
3481  *   bp - pointer to board information
3482  *
3483  * Functional Description:
3484  *   For all consumed transmit descriptors that have not
3485  *   yet been completed, we'll free the skb we were holding
3486  *   onto using dev_kfree_skb and bump the appropriate
3487  *   counters.
3488  *
3489  * Return Codes:
3490  *   None
3491  *
3492  * Assumptions:
3493  *   The Type 2 register is not updated in this routine.  It is
3494  *   assumed that it will be updated in the ISR when dfx_xmt_done
3495  *   returns.
3496  *
3497  * Side Effects:
3498  *   None
3499  */
3500
3501 static int dfx_xmt_done(DFX_board_t *bp)
3502         {
3503         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3504         PI_TYPE_2_CONSUMER      *p_type_2_cons;         /* ptr to rcv/xmt consumer block register */
3505         u8                      comp;                   /* local transmit completion index */
3506         int                     freed = 0;              /* buffers freed */
3507
3508         /* Service all consumed transmit frames */
3509
3510         p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3511         while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3512                 {
3513                 /* Get pointer to the transmit driver descriptor block information */
3514
3515                 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3516
3517                 /* Increment transmit counters */
3518
3519                 bp->xmt_total_frames++;
3520                 bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3521
3522                 /* Return skb to operating system */
3523                 comp = bp->rcv_xmt_reg.index.xmt_comp;
3524                 dma_unmap_single(bp->bus_dev,
3525                                  bp->descr_block_virt->xmt_data[comp].long_1,
3526                                  p_xmt_drv_descr->p_skb->len,
3527                                  DMA_TO_DEVICE);
3528                 dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
3529
3530                 /*
3531                  * Move to start of next packet by updating completion index
3532                  *
3533                  * Here we assume that a transmit packet request is always
3534                  * serviced by posting one fragment.  We can therefore
3535                  * simplify the completion code by incrementing the
3536                  * completion index by one.  This code will need to be
3537                  * modified if this assumption changes.  See comments
3538                  * in dfx_xmt_queue_pkt for more details.
3539                  */
3540
3541                 bp->rcv_xmt_reg.index.xmt_comp += 1;
3542                 freed++;
3543                 }
3544         return freed;
3545         }
3546
3547
3548 /*
3549  * =================
3550  * = dfx_rcv_flush =
3551  * =================
3552  *
3553  * Overview:
3554  *   Remove all skb's in the receive ring.
3555  *
3556  * Returns:
3557  *   None
3558  *
3559  * Arguments:
3560  *   bp - pointer to board information
3561  *
3562  * Functional Description:
3563  *   Free's all the dynamically allocated skb's that are
3564  *   currently attached to the device receive ring. This
3565  *   function is typically only used when the device is
3566  *   initialized or reinitialized.
3567  *
3568  * Return Codes:
3569  *   None
3570  *
3571  * Side Effects:
3572  *   None
3573  */
3574 #ifdef DYNAMIC_BUFFERS
3575 static void dfx_rcv_flush( DFX_board_t *bp )
3576         {
3577         int i, j;
3578
3579         for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3580                 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3581                 {
3582                         struct sk_buff *skb;
3583                         skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3584                         if (skb) {
3585                                 dma_unmap_single(bp->bus_dev,
3586                                                  bp->descr_block_virt->rcv_data[i+j].long_1,
3587                                                  PI_RCV_DATA_K_SIZE_MAX,
3588                                                  DMA_FROM_DEVICE);
3589                                 dev_kfree_skb(skb);
3590                         }
3591                         bp->p_rcv_buff_va[i+j] = NULL;
3592                 }
3593
3594         }
3595 #endif /* DYNAMIC_BUFFERS */
3596
3597 /*
3598  * =================
3599  * = dfx_xmt_flush =
3600  * =================
3601  *
3602  * Overview:
3603  *   Processes all frames whether they've been transmitted
3604  *   or not.
3605  *
3606  * Returns:
3607  *   None
3608  *
3609  * Arguments:
3610  *   bp - pointer to board information
3611  *
3612  * Functional Description:
3613  *   For all produced transmit descriptors that have not
3614  *   yet been completed, we'll free the skb we were holding
3615  *   onto using dev_kfree_skb and bump the appropriate
3616  *   counters.  Of course, it's possible that some of
3617  *   these transmit requests actually did go out, but we
3618  *   won't make that distinction here.  Finally, we'll
3619  *   update the consumer index to match the producer.
3620  *
3621  * Return Codes:
3622  *   None
3623  *
3624  * Assumptions:
3625  *   This routine does NOT update the Type 2 register.  It
3626  *   is assumed that this routine is being called during a
3627  *   transmit flush interrupt, or a shutdown or close routine.
3628  *
3629  * Side Effects:
3630  *   None
3631  */
3632
3633 static void dfx_xmt_flush( DFX_board_t *bp )
3634         {
3635         u32                     prod_cons;              /* rcv/xmt consumer block longword */
3636         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3637         u8                      comp;                   /* local transmit completion index */
3638
3639         /* Flush all outstanding transmit frames */
3640
3641         while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3642                 {
3643                 /* Get pointer to the transmit driver descriptor block information */
3644
3645                 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3646
3647                 /* Return skb to operating system */
3648                 comp = bp->rcv_xmt_reg.index.xmt_comp;
3649                 dma_unmap_single(bp->bus_dev,
3650                                  bp->descr_block_virt->xmt_data[comp].long_1,
3651                                  p_xmt_drv_descr->p_skb->len,
3652                                  DMA_TO_DEVICE);
3653                 dev_kfree_skb(p_xmt_drv_descr->p_skb);
3654
3655                 /* Increment transmit error counter */
3656
3657                 bp->xmt_discards++;
3658
3659                 /*
3660                  * Move to start of next packet by updating completion index
3661                  *
3662                  * Here we assume that a transmit packet request is always
3663                  * serviced by posting one fragment.  We can therefore
3664                  * simplify the completion code by incrementing the
3665                  * completion index by one.  This code will need to be
3666                  * modified if this assumption changes.  See comments
3667                  * in dfx_xmt_queue_pkt for more details.
3668                  */
3669
3670                 bp->rcv_xmt_reg.index.xmt_comp += 1;
3671                 }
3672
3673         /* Update the transmit consumer index in the consumer block */
3674
3675         prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3676         prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3677         bp->cons_block_virt->xmt_rcv_data = prod_cons;
3678         }
3679
3680 /*
3681  * ==================
3682  * = dfx_unregister =
3683  * ==================
3684  *
3685  * Overview:
3686  *   Shuts down an FDDI controller
3687  *
3688  * Returns:
3689  *   Condition code
3690  *
3691  * Arguments:
3692  *   bdev - pointer to device information
3693  *
3694  * Functional Description:
3695  *
3696  * Return Codes:
3697  *   None
3698  *
3699  * Assumptions:
3700  *   It compiles so it should work :-( (PCI cards do :-)
3701  *
3702  * Side Effects:
3703  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
3704  *   freed.
3705  */
3706 static void dfx_unregister(struct device *bdev)
3707 {
3708         struct net_device *dev = dev_get_drvdata(bdev);
3709         DFX_board_t *bp = netdev_priv(dev);
3710         int dfx_bus_pci = dev_is_pci(bdev);
3711         int dfx_bus_tc = DFX_BUS_TC(bdev);
3712         int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
3713         resource_size_t bar_start[3] = {0};     /* pointers to ports */
3714         resource_size_t bar_len[3] = {0};       /* resource lengths */
3715         int             alloc_size;             /* total buffer size used */
3716
3717         unregister_netdev(dev);
3718
3719         alloc_size = sizeof(PI_DESCR_BLOCK) +
3720                      PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3721 #ifndef DYNAMIC_BUFFERS
3722                      (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3723 #endif
3724                      sizeof(PI_CONSUMER_BLOCK) +
3725                      (PI_ALIGN_K_DESC_BLK - 1);
3726         if (bp->kmalloced)
3727                 dma_free_coherent(bdev, alloc_size,
3728                                   bp->kmalloced, bp->kmalloced_dma);
3729
3730         dfx_bus_uninit(dev);
3731
3732         dfx_get_bars(bdev, bar_start, bar_len);
3733         if (bar_start[2] != 0)
3734                 release_region(bar_start[2], bar_len[2]);
3735         if (bar_start[1] != 0)
3736                 release_region(bar_start[1], bar_len[1]);
3737         if (dfx_use_mmio) {
3738                 iounmap(bp->base.mem);
3739                 release_mem_region(bar_start[0], bar_len[0]);
3740         } else
3741                 release_region(bar_start[0], bar_len[0]);
3742
3743         if (dfx_bus_pci)
3744                 pci_disable_device(to_pci_dev(bdev));
3745
3746         free_netdev(dev);
3747 }
3748
3749
3750 static int __maybe_unused dfx_dev_register(struct device *);
3751 static int __maybe_unused dfx_dev_unregister(struct device *);
3752
3753 #ifdef CONFIG_PCI
3754 static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *);
3755 static void dfx_pci_unregister(struct pci_dev *);
3756
3757 static const struct pci_device_id dfx_pci_table[] = {
3758         { PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
3759         { }
3760 };
3761 MODULE_DEVICE_TABLE(pci, dfx_pci_table);
3762
3763 static struct pci_driver dfx_pci_driver = {
3764         .name           = "defxx",
3765         .id_table       = dfx_pci_table,
3766         .probe          = dfx_pci_register,
3767         .remove         = dfx_pci_unregister,
3768 };
3769
3770 static int dfx_pci_register(struct pci_dev *pdev,
3771                             const struct pci_device_id *ent)
3772 {
3773         return dfx_register(&pdev->dev);
3774 }
3775
3776 static void dfx_pci_unregister(struct pci_dev *pdev)
3777 {
3778         dfx_unregister(&pdev->dev);
3779 }
3780 #endif /* CONFIG_PCI */
3781
3782 #ifdef CONFIG_EISA
3783 static struct eisa_device_id dfx_eisa_table[] = {
3784         { "DEC3001", DEFEA_PROD_ID_1 },
3785         { "DEC3002", DEFEA_PROD_ID_2 },
3786         { "DEC3003", DEFEA_PROD_ID_3 },
3787         { "DEC3004", DEFEA_PROD_ID_4 },
3788         { }
3789 };
3790 MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
3791
3792 static struct eisa_driver dfx_eisa_driver = {
3793         .id_table       = dfx_eisa_table,
3794         .driver         = {
3795                 .name   = "defxx",
3796                 .bus    = &eisa_bus_type,
3797                 .probe  = dfx_dev_register,
3798                 .remove = dfx_dev_unregister,
3799         },
3800 };
3801 #endif /* CONFIG_EISA */
3802
3803 #ifdef CONFIG_TC
3804 static struct tc_device_id const dfx_tc_table[] = {
3805         { "DEC     ", "PMAF-FA " },
3806         { "DEC     ", "PMAF-FD " },
3807         { "DEC     ", "PMAF-FS " },
3808         { "DEC     ", "PMAF-FU " },
3809         { }
3810 };
3811 MODULE_DEVICE_TABLE(tc, dfx_tc_table);
3812
3813 static struct tc_driver dfx_tc_driver = {
3814         .id_table       = dfx_tc_table,
3815         .driver         = {
3816                 .name   = "defxx",
3817                 .bus    = &tc_bus_type,
3818                 .probe  = dfx_dev_register,
3819                 .remove = dfx_dev_unregister,
3820         },
3821 };
3822 #endif /* CONFIG_TC */
3823
3824 static int __maybe_unused dfx_dev_register(struct device *dev)
3825 {
3826         int status;
3827
3828         status = dfx_register(dev);
3829         if (!status)
3830                 get_device(dev);
3831         return status;
3832 }
3833
3834 static int __maybe_unused dfx_dev_unregister(struct device *dev)
3835 {
3836         put_device(dev);
3837         dfx_unregister(dev);
3838         return 0;
3839 }
3840
3841
3842 static int dfx_init(void)
3843 {
3844         int status;
3845
3846         status = pci_register_driver(&dfx_pci_driver);
3847         if (!status)
3848                 status = eisa_driver_register(&dfx_eisa_driver);
3849         if (!status)
3850                 status = tc_register_driver(&dfx_tc_driver);
3851         return status;
3852 }
3853
3854 static void dfx_cleanup(void)
3855 {
3856         tc_unregister_driver(&dfx_tc_driver);
3857         eisa_driver_unregister(&dfx_eisa_driver);
3858         pci_unregister_driver(&dfx_pci_driver);
3859 }
3860
3861 module_init(dfx_init);
3862 module_exit(dfx_cleanup);
3863 MODULE_AUTHOR("Lawrence V. Stefani");
3864 MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
3865                    DRV_VERSION " " DRV_RELDATE);
3866 MODULE_LICENSE("GPL");