GNU Linux-libre 6.7.9-gnu
[releases.git] / drivers / net / fddi / defxx.c
1 /*
2  * File Name:
3  *   defxx.c
4  *
5  * Copyright Information:
6  *   Copyright Digital Equipment Corporation 1996.
7  *
8  *   This software may be used and distributed according to the terms of
9  *   the GNU General Public License, incorporated herein by reference.
10  *
11  * Abstract:
12  *   A Linux device driver supporting the Digital Equipment Corporation
13  *   FDDI TURBOchannel, EISA and PCI controller families.  Supported
14  *   adapters include:
15  *
16  *              DEC FDDIcontroller/TURBOchannel (DEFTA)
17  *              DEC FDDIcontroller/EISA         (DEFEA)
18  *              DEC FDDIcontroller/PCI          (DEFPA)
19  *
20  * The original author:
21  *   LVS        Lawrence V. Stefani <lstefani@yahoo.com>
22  *
23  * Maintainers:
24  *   macro      Maciej W. Rozycki <macro@orcam.me.uk>
25  *
26  * Credits:
27  *   I'd like to thank Patricia Cross for helping me get started with
28  *   Linux, David Davies for a lot of help upgrading and configuring
29  *   my development system and for answering many OS and driver
30  *   development questions, and Alan Cox for recommendations and
31  *   integration help on getting FDDI support into Linux.  LVS
32  *
33  * Driver Architecture:
34  *   The driver architecture is largely based on previous driver work
35  *   for other operating systems.  The upper edge interface and
36  *   functions were largely taken from existing Linux device drivers
37  *   such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
38  *   driver.
39  *
40  *   Adapter Probe -
41  *              The driver scans for supported EISA adapters by reading the
42  *              SLOT ID register for each EISA slot and making a match
43  *              against the expected value.
44  *
45  *   Bus-Specific Initialization -
46  *              This driver currently supports both EISA and PCI controller
47  *              families.  While the custom DMA chip and FDDI logic is similar
48  *              or identical, the bus logic is very different.  After
49  *              initialization, the     only bus-specific differences is in how the
50  *              driver enables and disables interrupts.  Other than that, the
51  *              run-time critical code behaves the same on both families.
52  *              It's important to note that both adapter families are configured
53  *              to I/O map, rather than memory map, the adapter registers.
54  *
55  *   Driver Open/Close -
56  *              In the driver open routine, the driver ISR (interrupt service
57  *              routine) is registered and the adapter is brought to an
58  *              operational state.  In the driver close routine, the opposite
59  *              occurs; the driver ISR is deregistered and the adapter is
60  *              brought to a safe, but closed state.  Users may use consecutive
61  *              commands to bring the adapter up and down as in the following
62  *              example:
63  *                                      ifconfig fddi0 up
64  *                                      ifconfig fddi0 down
65  *                                      ifconfig fddi0 up
66  *
67  *   Driver Shutdown -
68  *              Apparently, there is no shutdown or halt routine support under
69  *              Linux.  This routine would be called during "reboot" or
70  *              "shutdown" to allow the driver to place the adapter in a safe
71  *              state before a warm reboot occurs.  To be really safe, the user
72  *              should close the adapter before shutdown (eg. ifconfig fddi0 down)
73  *              to ensure that the adapter DMA engine is taken off-line.  However,
74  *              the current driver code anticipates this problem and always issues
75  *              a soft reset of the adapter     at the beginning of driver initialization.
76  *              A future driver enhancement in this area may occur in 2.1.X where
77  *              Alan indicated that a shutdown handler may be implemented.
78  *
79  *   Interrupt Service Routine -
80  *              The driver supports shared interrupts, so the ISR is registered for
81  *              each board with the appropriate flag and the pointer to that board's
82  *              device structure.  This provides the context during interrupt
83  *              processing to support shared interrupts and multiple boards.
84  *
85  *              Interrupt enabling/disabling can occur at many levels.  At the host
86  *              end, you can disable system interrupts, or disable interrupts at the
87  *              PIC (on Intel systems).  Across the bus, both EISA and PCI adapters
88  *              have a bus-logic chip interrupt enable/disable as well as a DMA
89  *              controller interrupt enable/disable.
90  *
91  *              The driver currently enables and disables adapter interrupts at the
92  *              bus-logic chip and assumes that Linux will take care of clearing or
93  *              acknowledging any host-based interrupt chips.
94  *
95  *   Control Functions -
96  *              Control functions are those used to support functions such as adding
97  *              or deleting multicast addresses, enabling or disabling packet
98  *              reception filters, or other custom/proprietary commands.  Presently,
99  *              the driver supports the "get statistics", "set multicast list", and
100  *              "set mac address" functions defined by Linux.  A list of possible
101  *              enhancements include:
102  *
103  *                              - Custom ioctl interface for executing port interface commands
104  *                              - Custom ioctl interface for adding unicast addresses to
105  *                                adapter CAM (to support bridge functions).
106  *                              - Custom ioctl interface for supporting firmware upgrades.
107  *
108  *   Hardware (port interface) Support Routines -
109  *              The driver function names that start with "dfx_hw_" represent
110  *              low-level port interface routines that are called frequently.  They
111  *              include issuing a DMA or port control command to the adapter,
112  *              resetting the adapter, or reading the adapter state.  Since the
113  *              driver initialization and run-time code must make calls into the
114  *              port interface, these routines were written to be as generic and
115  *              usable as possible.
116  *
117  *   Receive Path -
118  *              The adapter DMA engine supports a 256 entry receive descriptor block
119  *              of which up to 255 entries can be used at any given time.  The
120  *              architecture is a standard producer, consumer, completion model in
121  *              which the driver "produces" receive buffers to the adapter, the
122  *              adapter "consumes" the receive buffers by DMAing incoming packet data,
123  *              and the driver "completes" the receive buffers by servicing the
124  *              incoming packet, then "produces" a new buffer and starts the cycle
125  *              again.  Receive buffers can be fragmented in up to 16 fragments
126  *              (descriptor     entries).  For simplicity, this driver posts
127  *              single-fragment receive buffers of 4608 bytes, then allocates a
128  *              sk_buff, copies the data, then reposts the buffer.  To reduce CPU
129  *              utilization, a better approach would be to pass up the receive
130  *              buffer (no extra copy) then allocate and post a replacement buffer.
131  *              This is a performance enhancement that should be looked into at
132  *              some point.
133  *
134  *   Transmit Path -
135  *              Like the receive path, the adapter DMA engine supports a 256 entry
136  *              transmit descriptor block of which up to 255 entries can be used at
137  *              any     given time.  Transmit buffers can be fragmented in up to 255
138  *              fragments (descriptor entries).  This driver always posts one
139  *              fragment per transmit packet request.
140  *
141  *              The fragment contains the entire packet from FC to end of data.
142  *              Before posting the buffer to the adapter, the driver sets a three-byte
143  *              packet request header (PRH) which is required by the Motorola MAC chip
144  *              used on the adapters.  The PRH tells the MAC the type of token to
145  *              receive/send, whether or not to generate and append the CRC, whether
146  *              synchronous or asynchronous framing is used, etc.  Since the PRH
147  *              definition is not necessarily consistent across all FDDI chipsets,
148  *              the driver, rather than the common FDDI packet handler routines,
149  *              sets these bytes.
150  *
151  *              To reduce the amount of descriptor fetches needed per transmit request,
152  *              the driver takes advantage of the fact that there are at least three
153  *              bytes available before the skb->data field on the outgoing transmit
154  *              request.  This is guaranteed by having fddi_setup() in net_init.c set
155  *              dev->hard_header_len to 24 bytes.  21 bytes accounts for the largest
156  *              header in an 802.2 SNAP frame.  The other 3 bytes are the extra "pad"
157  *              bytes which we'll use to store the PRH.
158  *
159  *              There's a subtle advantage to adding these pad bytes to the
160  *              hard_header_len, it ensures that the data portion of the packet for
161  *              an 802.2 SNAP frame is longword aligned.  Other FDDI driver
162  *              implementations may not need the extra padding and can start copying
163  *              or DMAing directly from the FC byte which starts at skb->data.  Should
164  *              another driver implementation need ADDITIONAL padding, the net_init.c
165  *              module should be updated and dev->hard_header_len should be increased.
166  *              NOTE: To maintain the alignment on the data portion of the packet,
167  *              dev->hard_header_len should always be evenly divisible by 4 and at
168  *              least 24 bytes in size.
169  *
170  * Modification History:
171  *              Date            Name    Description
172  *              16-Aug-96       LVS             Created.
173  *              20-Aug-96       LVS             Updated dfx_probe so that version information
174  *                                                      string is only displayed if 1 or more cards are
175  *                                                      found.  Changed dfx_rcv_queue_process to copy
176  *                                                      3 NULL bytes before FC to ensure that data is
177  *                                                      longword aligned in receive buffer.
178  *              09-Sep-96       LVS             Updated dfx_ctl_set_multicast_list to enable
179  *                                                      LLC group promiscuous mode if multicast list
180  *                                                      is too large.  LLC individual/group promiscuous
181  *                                                      mode is now disabled if IFF_PROMISC flag not set.
182  *                                                      dfx_xmt_queue_pkt no longer checks for NULL skb
183  *                                                      on Alan Cox recommendation.  Added node address
184  *                                                      override support.
185  *              12-Sep-96       LVS             Reset current address to factory address during
186  *                                                      device open.  Updated transmit path to post a
187  *                                                      single fragment which includes PRH->end of data.
188  *              Mar 2000        AC              Did various cleanups for 2.3.x
189  *              Jun 2000        jgarzik         PCI and resource alloc cleanups
190  *              Jul 2000        tjeerd          Much cleanup and some bug fixes
191  *              Sep 2000        tjeerd          Fix leak on unload, cosmetic code cleanup
192  *              Feb 2001                        Skb allocation fixes
193  *              Feb 2001        davej           PCI enable cleanups.
194  *              04 Aug 2003     macro           Converted to the DMA API.
195  *              14 Aug 2004     macro           Fix device names reported.
196  *              14 Jun 2005     macro           Use irqreturn_t.
197  *              23 Oct 2006     macro           Big-endian host support.
198  *              14 Dec 2006     macro           TURBOchannel support.
199  *              01 Jul 2014     macro           Fixes for DMA on 64-bit hosts.
200  *              10 Mar 2021     macro           Dynamic MMIO vs port I/O.
201  */
202
203 /* Include files */
204 #include <linux/bitops.h>
205 #include <linux/compiler.h>
206 #include <linux/delay.h>
207 #include <linux/dma-mapping.h>
208 #include <linux/eisa.h>
209 #include <linux/errno.h>
210 #include <linux/fddidevice.h>
211 #include <linux/interrupt.h>
212 #include <linux/ioport.h>
213 #include <linux/kernel.h>
214 #include <linux/module.h>
215 #include <linux/netdevice.h>
216 #include <linux/pci.h>
217 #include <linux/skbuff.h>
218 #include <linux/slab.h>
219 #include <linux/string.h>
220 #include <linux/tc.h>
221
222 #include <asm/byteorder.h>
223 #include <asm/io.h>
224
225 #include "defxx.h"
226
227 /* Version information string should be updated prior to each new release!  */
228 #define DRV_NAME "defxx"
229 #define DRV_VERSION "v1.12"
230 #define DRV_RELDATE "2021/03/10"
231
232 static const char version[] =
233         DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
234         "  Lawrence V. Stefani and others\n";
235
236 #define DYNAMIC_BUFFERS 1
237
238 #define SKBUFF_RX_COPYBREAK 200
239 /*
240  * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
241  * alignment for compatibility with old EISA boards.
242  */
243 #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
244
245 #ifdef CONFIG_EISA
246 #define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
247 #else
248 #define DFX_BUS_EISA(dev) 0
249 #endif
250
251 #ifdef CONFIG_TC
252 #define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
253 #else
254 #define DFX_BUS_TC(dev) 0
255 #endif
256
257 #if defined(CONFIG_EISA) || defined(CONFIG_PCI)
258 #define dfx_use_mmio bp->mmio
259 #else
260 #define dfx_use_mmio true
261 #endif
262
263 /* Define module-wide (static) routines */
264
265 static void             dfx_bus_init(struct net_device *dev);
266 static void             dfx_bus_uninit(struct net_device *dev);
267 static void             dfx_bus_config_check(DFX_board_t *bp);
268
269 static int              dfx_driver_init(struct net_device *dev,
270                                         const char *print_name,
271                                         resource_size_t bar_start);
272 static int              dfx_adap_init(DFX_board_t *bp, int get_buffers);
273
274 static int              dfx_open(struct net_device *dev);
275 static int              dfx_close(struct net_device *dev);
276
277 static void             dfx_int_pr_halt_id(DFX_board_t *bp);
278 static void             dfx_int_type_0_process(DFX_board_t *bp);
279 static void             dfx_int_common(struct net_device *dev);
280 static irqreturn_t      dfx_interrupt(int irq, void *dev_id);
281
282 static struct           net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
283 static void             dfx_ctl_set_multicast_list(struct net_device *dev);
284 static int              dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
285 static int              dfx_ctl_update_cam(DFX_board_t *bp);
286 static int              dfx_ctl_update_filters(DFX_board_t *bp);
287
288 static int              dfx_hw_dma_cmd_req(DFX_board_t *bp);
289 static int              dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
290 static void             dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
291 static int              dfx_hw_adap_state_rd(DFX_board_t *bp);
292 static int              dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
293
294 static int              dfx_rcv_init(DFX_board_t *bp, int get_buffers);
295 static void             dfx_rcv_queue_process(DFX_board_t *bp);
296 #ifdef DYNAMIC_BUFFERS
297 static void             dfx_rcv_flush(DFX_board_t *bp);
298 #else
299 static inline void      dfx_rcv_flush(DFX_board_t *bp) {}
300 #endif
301
302 static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
303                                      struct net_device *dev);
304 static int              dfx_xmt_done(DFX_board_t *bp);
305 static void             dfx_xmt_flush(DFX_board_t *bp);
306
307 /* Define module-wide (static) variables */
308
309 static struct pci_driver dfx_pci_driver;
310 static struct eisa_driver dfx_eisa_driver;
311 static struct tc_driver dfx_tc_driver;
312
313
314 /*
315  * =======================
316  * = dfx_port_write_long =
317  * = dfx_port_read_long  =
318  * =======================
319  *
320  * Overview:
321  *   Routines for reading and writing values from/to adapter
322  *
323  * Returns:
324  *   None
325  *
326  * Arguments:
327  *   bp         - pointer to board information
328  *   offset     - register offset from base I/O address
329  *   data       - for dfx_port_write_long, this is a value to write;
330  *                for dfx_port_read_long, this is a pointer to store
331  *                the read value
332  *
333  * Functional Description:
334  *   These routines perform the correct operation to read or write
335  *   the adapter register.
336  *
337  *   EISA port block base addresses are based on the slot number in which the
338  *   controller is installed.  For example, if the EISA controller is installed
339  *   in slot 4, the port block base address is 0x4000.  If the controller is
340  *   installed in slot 2, the port block base address is 0x2000, and so on.
341  *   This port block can be used to access PDQ, ESIC, and DEFEA on-board
342  *   registers using the register offsets defined in DEFXX.H.
343  *
344  *   PCI port block base addresses are assigned by the PCI BIOS or system
345  *   firmware.  There is one 128 byte port block which can be accessed.  It
346  *   allows for I/O mapping of both PDQ and PFI registers using the register
347  *   offsets defined in DEFXX.H.
348  *
349  * Return Codes:
350  *   None
351  *
352  * Assumptions:
353  *   bp->base is a valid base I/O address for this adapter.
354  *   offset is a valid register offset for this adapter.
355  *
356  * Side Effects:
357  *   Rather than produce macros for these functions, these routines
358  *   are defined using "inline" to ensure that the compiler will
359  *   generate inline code and not waste a procedure call and return.
360  *   This provides all the benefits of macros, but with the
361  *   advantage of strict data type checking.
362  */
363
364 static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
365 {
366         writel(data, bp->base.mem + offset);
367         mb();
368 }
369
370 static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
371 {
372         outl(data, bp->base.port + offset);
373 }
374
375 static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
376 {
377         struct device __maybe_unused *bdev = bp->bus_dev;
378
379         if (dfx_use_mmio)
380                 dfx_writel(bp, offset, data);
381         else
382                 dfx_outl(bp, offset, data);
383 }
384
385
386 static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
387 {
388         mb();
389         *data = readl(bp->base.mem + offset);
390 }
391
392 static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
393 {
394         *data = inl(bp->base.port + offset);
395 }
396
397 static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
398 {
399         struct device __maybe_unused *bdev = bp->bus_dev;
400
401         if (dfx_use_mmio)
402                 dfx_readl(bp, offset, data);
403         else
404                 dfx_inl(bp, offset, data);
405 }
406
407
408 /*
409  * ================
410  * = dfx_get_bars =
411  * ================
412  *
413  * Overview:
414  *   Retrieves the address ranges used to access control and status
415  *   registers.
416  *
417  * Returns:
418  *   None
419  *
420  * Arguments:
421  *   bp         - pointer to board information
422  *   bar_start  - pointer to store the start addresses
423  *   bar_len    - pointer to store the lengths of the areas
424  *
425  * Assumptions:
426  *   I am sure there are some.
427  *
428  * Side Effects:
429  *   None
430  */
431 static void dfx_get_bars(DFX_board_t *bp,
432                          resource_size_t *bar_start, resource_size_t *bar_len)
433 {
434         struct device *bdev = bp->bus_dev;
435         int dfx_bus_pci = dev_is_pci(bdev);
436         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
437         int dfx_bus_tc = DFX_BUS_TC(bdev);
438
439         if (dfx_bus_pci) {
440                 int num = dfx_use_mmio ? 0 : 1;
441
442                 bar_start[0] = pci_resource_start(to_pci_dev(bdev), num);
443                 bar_len[0] = pci_resource_len(to_pci_dev(bdev), num);
444                 bar_start[2] = bar_start[1] = 0;
445                 bar_len[2] = bar_len[1] = 0;
446         }
447         if (dfx_bus_eisa) {
448                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
449                 resource_size_t bar_lo;
450                 resource_size_t bar_hi;
451
452                 if (dfx_use_mmio) {
453                         bar_lo = inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_2);
454                         bar_lo <<= 8;
455                         bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_1);
456                         bar_lo <<= 8;
457                         bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_0);
458                         bar_lo <<= 8;
459                         bar_start[0] = bar_lo;
460                         bar_hi = inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_2);
461                         bar_hi <<= 8;
462                         bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_1);
463                         bar_hi <<= 8;
464                         bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_0);
465                         bar_hi <<= 8;
466                         bar_len[0] = ((bar_hi - bar_lo) | PI_MEM_ADD_MASK_M) +
467                                      1;
468                 } else {
469                         bar_start[0] = base_addr;
470                         bar_len[0] = PI_ESIC_K_CSR_IO_LEN;
471                 }
472                 bar_start[1] = base_addr + PI_DEFEA_K_BURST_HOLDOFF;
473                 bar_len[1] = PI_ESIC_K_BURST_HOLDOFF_LEN;
474                 bar_start[2] = base_addr + PI_ESIC_K_ESIC_CSR;
475                 bar_len[2] = PI_ESIC_K_ESIC_CSR_LEN;
476         }
477         if (dfx_bus_tc) {
478                 bar_start[0] = to_tc_dev(bdev)->resource.start +
479                                PI_TC_K_CSR_OFFSET;
480                 bar_len[0] = PI_TC_K_CSR_LEN;
481                 bar_start[2] = bar_start[1] = 0;
482                 bar_len[2] = bar_len[1] = 0;
483         }
484 }
485
486 static const struct net_device_ops dfx_netdev_ops = {
487         .ndo_open               = dfx_open,
488         .ndo_stop               = dfx_close,
489         .ndo_start_xmit         = dfx_xmt_queue_pkt,
490         .ndo_get_stats          = dfx_ctl_get_stats,
491         .ndo_set_rx_mode        = dfx_ctl_set_multicast_list,
492         .ndo_set_mac_address    = dfx_ctl_set_mac_address,
493 };
494
495 static void dfx_register_res_err(const char *print_name, bool mmio,
496                                  unsigned long start, unsigned long len)
497 {
498         pr_err("%s: Cannot reserve %s resource 0x%lx @ 0x%lx, aborting\n",
499                print_name, mmio ? "MMIO" : "I/O", len, start);
500 }
501
502 /*
503  * ================
504  * = dfx_register =
505  * ================
506  *
507  * Overview:
508  *   Initializes a supported FDDI controller
509  *
510  * Returns:
511  *   Condition code
512  *
513  * Arguments:
514  *   bdev - pointer to device information
515  *
516  * Functional Description:
517  *
518  * Return Codes:
519  *   0           - This device (fddi0, fddi1, etc) configured successfully
520  *   -EBUSY      - Failed to get resources, or dfx_driver_init failed.
521  *
522  * Assumptions:
523  *   It compiles so it should work :-( (PCI cards do :-)
524  *
525  * Side Effects:
526  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
527  *   initialized and the board resources are read and stored in
528  *   the device structure.
529  */
530 static int dfx_register(struct device *bdev)
531 {
532         static int version_disp;
533         int dfx_bus_pci = dev_is_pci(bdev);
534         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
535         const char *print_name = dev_name(bdev);
536         struct net_device *dev;
537         DFX_board_t       *bp;                  /* board pointer */
538         resource_size_t bar_start[3] = {0};     /* pointers to ports */
539         resource_size_t bar_len[3] = {0};       /* resource length */
540         int alloc_size;                         /* total buffer size used */
541         struct resource *region;
542         int err = 0;
543
544         if (!version_disp) {    /* display version info if adapter is found */
545                 version_disp = 1;       /* set display flag to TRUE so that */
546                 printk(version);        /* we only display this string ONCE */
547         }
548
549         dev = alloc_fddidev(sizeof(*bp));
550         if (!dev) {
551                 printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
552                        print_name);
553                 return -ENOMEM;
554         }
555
556         /* Enable PCI device. */
557         if (dfx_bus_pci) {
558                 err = pci_enable_device(to_pci_dev(bdev));
559                 if (err) {
560                         pr_err("%s: Cannot enable PCI device, aborting\n",
561                                print_name);
562                         goto err_out;
563                 }
564         }
565
566         SET_NETDEV_DEV(dev, bdev);
567
568         bp = netdev_priv(dev);
569         bp->bus_dev = bdev;
570         dev_set_drvdata(bdev, dev);
571
572         bp->mmio = true;
573
574         dfx_get_bars(bp, bar_start, bar_len);
575         if (bar_len[0] == 0 ||
576             (dfx_bus_eisa && dfx_use_mmio && bar_start[0] == 0)) {
577                 bp->mmio = false;
578                 dfx_get_bars(bp, bar_start, bar_len);
579         }
580
581         if (dfx_use_mmio) {
582                 region = request_mem_region(bar_start[0], bar_len[0],
583                                             bdev->driver->name);
584                 if (!region && (dfx_bus_eisa || dfx_bus_pci)) {
585                         bp->mmio = false;
586                         dfx_get_bars(bp, bar_start, bar_len);
587                 }
588         }
589         if (!dfx_use_mmio)
590                 region = request_region(bar_start[0], bar_len[0],
591                                         bdev->driver->name);
592         if (!region) {
593                 dfx_register_res_err(print_name, dfx_use_mmio,
594                                      bar_start[0], bar_len[0]);
595                 err = -EBUSY;
596                 goto err_out_disable;
597         }
598         if (bar_start[1] != 0) {
599                 region = request_region(bar_start[1], bar_len[1],
600                                         bdev->driver->name);
601                 if (!region) {
602                         dfx_register_res_err(print_name, 0,
603                                              bar_start[1], bar_len[1]);
604                         err = -EBUSY;
605                         goto err_out_csr_region;
606                 }
607         }
608         if (bar_start[2] != 0) {
609                 region = request_region(bar_start[2], bar_len[2],
610                                         bdev->driver->name);
611                 if (!region) {
612                         dfx_register_res_err(print_name, 0,
613                                              bar_start[2], bar_len[2]);
614                         err = -EBUSY;
615                         goto err_out_bh_region;
616                 }
617         }
618
619         /* Set up I/O base address. */
620         if (dfx_use_mmio) {
621                 bp->base.mem = ioremap(bar_start[0], bar_len[0]);
622                 if (!bp->base.mem) {
623                         printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
624                         err = -ENOMEM;
625                         goto err_out_esic_region;
626                 }
627         } else {
628                 bp->base.port = bar_start[0];
629                 dev->base_addr = bar_start[0];
630         }
631
632         /* Initialize new device structure */
633         dev->netdev_ops                 = &dfx_netdev_ops;
634
635         if (dfx_bus_pci)
636                 pci_set_master(to_pci_dev(bdev));
637
638         if (dfx_driver_init(dev, print_name, bar_start[0]) != DFX_K_SUCCESS) {
639                 err = -ENODEV;
640                 goto err_out_unmap;
641         }
642
643         err = register_netdev(dev);
644         if (err)
645                 goto err_out_kfree;
646
647         printk("%s: registered as %s\n", print_name, dev->name);
648         return 0;
649
650 err_out_kfree:
651         alloc_size = sizeof(PI_DESCR_BLOCK) +
652                      PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
653 #ifndef DYNAMIC_BUFFERS
654                      (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
655 #endif
656                      sizeof(PI_CONSUMER_BLOCK) +
657                      (PI_ALIGN_K_DESC_BLK - 1);
658         if (bp->kmalloced)
659                 dma_free_coherent(bdev, alloc_size,
660                                   bp->kmalloced, bp->kmalloced_dma);
661
662 err_out_unmap:
663         if (dfx_use_mmio)
664                 iounmap(bp->base.mem);
665
666 err_out_esic_region:
667         if (bar_start[2] != 0)
668                 release_region(bar_start[2], bar_len[2]);
669
670 err_out_bh_region:
671         if (bar_start[1] != 0)
672                 release_region(bar_start[1], bar_len[1]);
673
674 err_out_csr_region:
675         if (dfx_use_mmio)
676                 release_mem_region(bar_start[0], bar_len[0]);
677         else
678                 release_region(bar_start[0], bar_len[0]);
679
680 err_out_disable:
681         if (dfx_bus_pci)
682                 pci_disable_device(to_pci_dev(bdev));
683
684 err_out:
685         free_netdev(dev);
686         return err;
687 }
688
689
690 /*
691  * ================
692  * = dfx_bus_init =
693  * ================
694  *
695  * Overview:
696  *   Initializes the bus-specific controller logic.
697  *
698  * Returns:
699  *   None
700  *
701  * Arguments:
702  *   dev - pointer to device information
703  *
704  * Functional Description:
705  *   Determine and save adapter IRQ in device table,
706  *   then perform bus-specific logic initialization.
707  *
708  * Return Codes:
709  *   None
710  *
711  * Assumptions:
712  *   bp->base has already been set with the proper
713  *       base I/O address for this device.
714  *
715  * Side Effects:
716  *   Interrupts are enabled at the adapter bus-specific logic.
717  *   Note:  Interrupts at the DMA engine (PDQ chip) are not
718  *   enabled yet.
719  */
720
721 static void dfx_bus_init(struct net_device *dev)
722 {
723         DFX_board_t *bp = netdev_priv(dev);
724         struct device *bdev = bp->bus_dev;
725         int dfx_bus_pci = dev_is_pci(bdev);
726         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
727         int dfx_bus_tc = DFX_BUS_TC(bdev);
728         u8 val;
729
730         DBG_printk("In dfx_bus_init...\n");
731
732         /* Initialize a pointer back to the net_device struct */
733         bp->dev = dev;
734
735         /* Initialize adapter based on bus type */
736
737         if (dfx_bus_tc)
738                 dev->irq = to_tc_dev(bdev)->interrupt;
739         if (dfx_bus_eisa) {
740                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
741
742                 /* Disable the board before fiddling with the decoders.  */
743                 outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL);
744
745                 /* Get the interrupt level from the ESIC chip.  */
746                 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
747                 val &= PI_CONFIG_STAT_0_M_IRQ;
748                 val >>= PI_CONFIG_STAT_0_V_IRQ;
749
750                 switch (val) {
751                 case PI_CONFIG_STAT_0_IRQ_K_9:
752                         dev->irq = 9;
753                         break;
754
755                 case PI_CONFIG_STAT_0_IRQ_K_10:
756                         dev->irq = 10;
757                         break;
758
759                 case PI_CONFIG_STAT_0_IRQ_K_11:
760                         dev->irq = 11;
761                         break;
762
763                 case PI_CONFIG_STAT_0_IRQ_K_15:
764                         dev->irq = 15;
765                         break;
766                 }
767
768                 /*
769                  * Enable memory decoding (MEMCS1) and/or port decoding
770                  * (IOCS1/IOCS0) as appropriate in Function Control
771                  * Register.  MEMCS1 or IOCS0 is used for PDQ registers,
772                  * taking 16 32-bit words, while IOCS1 is used for the
773                  * Burst Holdoff register, taking a single 32-bit word
774                  * only.  We use the slot-specific I/O range as per the
775                  * ESIC spec, that is set bits 15:12 in the mask registers
776                  * to mask them out.
777                  */
778
779                 /* Set the decode range of the board.  */
780                 val = 0;
781                 outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_1);
782                 val = PI_DEFEA_K_CSR_IO;
783                 outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_0);
784
785                 val = PI_IO_CMP_M_SLOT;
786                 outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_1);
787                 val = (PI_ESIC_K_CSR_IO_LEN - 1) & ~3;
788                 outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_0);
789
790                 val = 0;
791                 outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_1);
792                 val = PI_DEFEA_K_BURST_HOLDOFF;
793                 outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_0);
794
795                 val = PI_IO_CMP_M_SLOT;
796                 outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_1);
797                 val = (PI_ESIC_K_BURST_HOLDOFF_LEN - 1) & ~3;
798                 outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_0);
799
800                 /* Enable the decoders.  */
801                 val = PI_FUNCTION_CNTRL_M_IOCS1;
802                 if (dfx_use_mmio)
803                         val |= PI_FUNCTION_CNTRL_M_MEMCS1;
804                 else
805                         val |= PI_FUNCTION_CNTRL_M_IOCS0;
806                 outb(val, base_addr + PI_ESIC_K_FUNCTION_CNTRL);
807
808                 /*
809                  * Enable access to the rest of the module
810                  * (including PDQ and packet memory).
811                  */
812                 val = PI_SLOT_CNTRL_M_ENB;
813                 outb(val, base_addr + PI_ESIC_K_SLOT_CNTRL);
814
815                 /*
816                  * Map PDQ registers into memory or port space.  This is
817                  * done with a bit in the Burst Holdoff register.
818                  */
819                 val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
820                 if (dfx_use_mmio)
821                         val |= PI_BURST_HOLDOFF_M_MEM_MAP;
822                 else
823                         val &= ~PI_BURST_HOLDOFF_M_MEM_MAP;
824                 outb(val, base_addr + PI_DEFEA_K_BURST_HOLDOFF);
825
826                 /* Enable interrupts at EISA bus interface chip (ESIC) */
827                 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
828                 val |= PI_CONFIG_STAT_0_M_INT_ENB;
829                 outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
830         }
831         if (dfx_bus_pci) {
832                 struct pci_dev *pdev = to_pci_dev(bdev);
833
834                 /* Get the interrupt level from the PCI Configuration Table */
835
836                 dev->irq = pdev->irq;
837
838                 /* Check Latency Timer and set if less than minimal */
839
840                 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
841                 if (val < PFI_K_LAT_TIMER_MIN) {
842                         val = PFI_K_LAT_TIMER_DEF;
843                         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
844                 }
845
846                 /* Enable interrupts at PCI bus interface chip (PFI) */
847                 val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
848                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
849         }
850 }
851
852 /*
853  * ==================
854  * = dfx_bus_uninit =
855  * ==================
856  *
857  * Overview:
858  *   Uninitializes the bus-specific controller logic.
859  *
860  * Returns:
861  *   None
862  *
863  * Arguments:
864  *   dev - pointer to device information
865  *
866  * Functional Description:
867  *   Perform bus-specific logic uninitialization.
868  *
869  * Return Codes:
870  *   None
871  *
872  * Assumptions:
873  *   bp->base has already been set with the proper
874  *       base I/O address for this device.
875  *
876  * Side Effects:
877  *   Interrupts are disabled at the adapter bus-specific logic.
878  */
879
880 static void dfx_bus_uninit(struct net_device *dev)
881 {
882         DFX_board_t *bp = netdev_priv(dev);
883         struct device *bdev = bp->bus_dev;
884         int dfx_bus_pci = dev_is_pci(bdev);
885         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
886         u8 val;
887
888         DBG_printk("In dfx_bus_uninit...\n");
889
890         /* Uninitialize adapter based on bus type */
891
892         if (dfx_bus_eisa) {
893                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
894
895                 /* Disable interrupts at EISA bus interface chip (ESIC) */
896                 val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
897                 val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
898                 outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
899
900                 /* Disable the board.  */
901                 outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL);
902
903                 /* Disable memory and port decoders.  */
904                 outb(0, base_addr + PI_ESIC_K_FUNCTION_CNTRL);
905         }
906         if (dfx_bus_pci) {
907                 /* Disable interrupts at PCI bus interface chip (PFI) */
908                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
909         }
910 }
911
912
913 /*
914  * ========================
915  * = dfx_bus_config_check =
916  * ========================
917  *
918  * Overview:
919  *   Checks the configuration (burst size, full-duplex, etc.)  If any parameters
920  *   are illegal, then this routine will set new defaults.
921  *
922  * Returns:
923  *   None
924  *
925  * Arguments:
926  *   bp - pointer to board information
927  *
928  * Functional Description:
929  *   For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
930  *   PDQ, and all FDDI PCI controllers, all values are legal.
931  *
932  * Return Codes:
933  *   None
934  *
935  * Assumptions:
936  *   dfx_adap_init has NOT been called yet so burst size and other items have
937  *   not been set.
938  *
939  * Side Effects:
940  *   None
941  */
942
943 static void dfx_bus_config_check(DFX_board_t *bp)
944 {
945         struct device __maybe_unused *bdev = bp->bus_dev;
946         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
947         int     status;                         /* return code from adapter port control call */
948         u32     host_data;                      /* LW data returned from port control call */
949
950         DBG_printk("In dfx_bus_config_check...\n");
951
952         /* Configuration check only valid for EISA adapter */
953
954         if (dfx_bus_eisa) {
955                 /*
956                  * First check if revision 2 EISA controller.  Rev. 1 cards used
957                  * PDQ revision B, so no workaround needed in this case.  Rev. 3
958                  * cards used PDQ revision E, so no workaround needed in this
959                  * case, either.  Only Rev. 2 cards used either Rev. D or E
960                  * chips, so we must verify the chip revision on Rev. 2 cards.
961                  */
962                 if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
963                         /*
964                          * Revision 2 FDDI EISA controller found,
965                          * so let's check PDQ revision of adapter.
966                          */
967                         status = dfx_hw_port_ctrl_req(bp,
968                                                                                         PI_PCTRL_M_SUB_CMD,
969                                                                                         PI_SUB_CMD_K_PDQ_REV_GET,
970                                                                                         0,
971                                                                                         &host_data);
972                         if ((status != DFX_K_SUCCESS) || (host_data == 2))
973                                 {
974                                 /*
975                                  * Either we couldn't determine the PDQ revision, or
976                                  * we determined that it is at revision D.  In either case,
977                                  * we need to implement the workaround.
978                                  */
979
980                                 /* Ensure that the burst size is set to 8 longwords or less */
981
982                                 switch (bp->burst_size)
983                                         {
984                                         case PI_PDATA_B_DMA_BURST_SIZE_32:
985                                         case PI_PDATA_B_DMA_BURST_SIZE_16:
986                                                 bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
987                                                 break;
988
989                                         default:
990                                                 break;
991                                         }
992
993                                 /* Ensure that full-duplex mode is not enabled */
994
995                                 bp->full_duplex_enb = PI_SNMP_K_FALSE;
996                                 }
997                         }
998                 }
999         }
1000
1001
1002 /*
1003  * ===================
1004  * = dfx_driver_init =
1005  * ===================
1006  *
1007  * Overview:
1008  *   Initializes remaining adapter board structure information
1009  *   and makes sure adapter is in a safe state prior to dfx_open().
1010  *
1011  * Returns:
1012  *   Condition code
1013  *
1014  * Arguments:
1015  *   dev - pointer to device information
1016  *   print_name - printable device name
1017  *
1018  * Functional Description:
1019  *   This function allocates additional resources such as the host memory
1020  *   blocks needed by the adapter (eg. descriptor and consumer blocks).
1021  *       Remaining bus initialization steps are also completed.  The adapter
1022  *   is also reset so that it is in the DMA_UNAVAILABLE state.  The OS
1023  *   must call dfx_open() to open the adapter and bring it on-line.
1024  *
1025  * Return Codes:
1026  *   DFX_K_SUCCESS      - initialization succeeded
1027  *   DFX_K_FAILURE      - initialization failed - could not allocate memory
1028  *                                              or read adapter MAC address
1029  *
1030  * Assumptions:
1031  *   Memory allocated from dma_alloc_coherent() call is physically
1032  *   contiguous, locked memory.
1033  *
1034  * Side Effects:
1035  *   Adapter is reset and should be in DMA_UNAVAILABLE state before
1036  *   returning from this routine.
1037  */
1038
1039 static int dfx_driver_init(struct net_device *dev, const char *print_name,
1040                            resource_size_t bar_start)
1041 {
1042         DFX_board_t *bp = netdev_priv(dev);
1043         struct device *bdev = bp->bus_dev;
1044         int dfx_bus_pci = dev_is_pci(bdev);
1045         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1046         int dfx_bus_tc = DFX_BUS_TC(bdev);
1047         int alloc_size;                 /* total buffer size needed */
1048         char *top_v, *curr_v;           /* virtual addrs into memory block */
1049         dma_addr_t top_p, curr_p;       /* physical addrs into memory block */
1050         u32 data;                       /* host data register value */
1051         __le32 le32;
1052         char *board_name = NULL;
1053
1054         DBG_printk("In dfx_driver_init...\n");
1055
1056         /* Initialize bus-specific hardware registers */
1057
1058         dfx_bus_init(dev);
1059
1060         /*
1061          * Initialize default values for configurable parameters
1062          *
1063          * Note: All of these parameters are ones that a user may
1064          *       want to customize.  It'd be nice to break these
1065          *               out into Space.c or someplace else that's more
1066          *               accessible/understandable than this file.
1067          */
1068
1069         bp->full_duplex_enb             = PI_SNMP_K_FALSE;
1070         bp->req_ttrt                    = 8 * 12500;            /* 8ms in 80 nanosec units */
1071         bp->burst_size                  = PI_PDATA_B_DMA_BURST_SIZE_DEF;
1072         bp->rcv_bufs_to_post    = RCV_BUFS_DEF;
1073
1074         /*
1075          * Ensure that HW configuration is OK
1076          *
1077          * Note: Depending on the hardware revision, we may need to modify
1078          *       some of the configurable parameters to workaround hardware
1079          *       limitations.  We'll perform this configuration check AFTER
1080          *       setting the parameters to their default values.
1081          */
1082
1083         dfx_bus_config_check(bp);
1084
1085         /* Disable PDQ interrupts first */
1086
1087         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1088
1089         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1090
1091         (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1092
1093         /*  Read the factory MAC address from the adapter then save it */
1094
1095         if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
1096                                  &data) != DFX_K_SUCCESS) {
1097                 printk("%s: Could not read adapter factory MAC address!\n",
1098                        print_name);
1099                 return DFX_K_FAILURE;
1100         }
1101         le32 = cpu_to_le32(data);
1102         memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
1103
1104         if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
1105                                  &data) != DFX_K_SUCCESS) {
1106                 printk("%s: Could not read adapter factory MAC address!\n",
1107                        print_name);
1108                 return DFX_K_FAILURE;
1109         }
1110         le32 = cpu_to_le32(data);
1111         memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
1112
1113         /*
1114          * Set current address to factory address
1115          *
1116          * Note: Node address override support is handled through
1117          *       dfx_ctl_set_mac_address.
1118          */
1119
1120         dev_addr_set(dev, bp->factory_mac_addr);
1121         if (dfx_bus_tc)
1122                 board_name = "DEFTA";
1123         if (dfx_bus_eisa)
1124                 board_name = "DEFEA";
1125         if (dfx_bus_pci)
1126                 board_name = "DEFPA";
1127         pr_info("%s: %s at %s addr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
1128                 print_name, board_name, dfx_use_mmio ? "MMIO" : "I/O",
1129                 (long long)bar_start, dev->irq, dev->dev_addr);
1130
1131         /*
1132          * Get memory for descriptor block, consumer block, and other buffers
1133          * that need to be DMA read or written to by the adapter.
1134          */
1135
1136         alloc_size = sizeof(PI_DESCR_BLOCK) +
1137                                         PI_CMD_REQ_K_SIZE_MAX +
1138                                         PI_CMD_RSP_K_SIZE_MAX +
1139 #ifndef DYNAMIC_BUFFERS
1140                                         (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
1141 #endif
1142                                         sizeof(PI_CONSUMER_BLOCK) +
1143                                         (PI_ALIGN_K_DESC_BLK - 1);
1144         bp->kmalloced = top_v = dma_alloc_coherent(bp->bus_dev, alloc_size,
1145                                                    &bp->kmalloced_dma,
1146                                                    GFP_ATOMIC);
1147         if (top_v == NULL)
1148                 return DFX_K_FAILURE;
1149
1150         top_p = bp->kmalloced_dma;      /* get physical address of buffer */
1151
1152         /*
1153          *  To guarantee the 8K alignment required for the descriptor block, 8K - 1
1154          *  plus the amount of memory needed was allocated.  The physical address
1155          *      is now 8K aligned.  By carving up the memory in a specific order,
1156          *  we'll guarantee the alignment requirements for all other structures.
1157          *
1158          *  Note: If the assumptions change regarding the non-paged, non-cached,
1159          *                physically contiguous nature of the memory block or the address
1160          *                alignments, then we'll need to implement a different algorithm
1161          *                for allocating the needed memory.
1162          */
1163
1164         curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
1165         curr_v = top_v + (curr_p - top_p);
1166
1167         /* Reserve space for descriptor block */
1168
1169         bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
1170         bp->descr_block_phys = curr_p;
1171         curr_v += sizeof(PI_DESCR_BLOCK);
1172         curr_p += sizeof(PI_DESCR_BLOCK);
1173
1174         /* Reserve space for command request buffer */
1175
1176         bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
1177         bp->cmd_req_phys = curr_p;
1178         curr_v += PI_CMD_REQ_K_SIZE_MAX;
1179         curr_p += PI_CMD_REQ_K_SIZE_MAX;
1180
1181         /* Reserve space for command response buffer */
1182
1183         bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
1184         bp->cmd_rsp_phys = curr_p;
1185         curr_v += PI_CMD_RSP_K_SIZE_MAX;
1186         curr_p += PI_CMD_RSP_K_SIZE_MAX;
1187
1188         /* Reserve space for the LLC host receive queue buffers */
1189
1190         bp->rcv_block_virt = curr_v;
1191         bp->rcv_block_phys = curr_p;
1192
1193 #ifndef DYNAMIC_BUFFERS
1194         curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1195         curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1196 #endif
1197
1198         /* Reserve space for the consumer block */
1199
1200         bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
1201         bp->cons_block_phys = curr_p;
1202
1203         /* Display virtual and physical addresses if debug driver */
1204
1205         DBG_printk("%s: Descriptor block virt = %p, phys = %pad\n",
1206                    print_name, bp->descr_block_virt, &bp->descr_block_phys);
1207         DBG_printk("%s: Command Request buffer virt = %p, phys = %pad\n",
1208                    print_name, bp->cmd_req_virt, &bp->cmd_req_phys);
1209         DBG_printk("%s: Command Response buffer virt = %p, phys = %pad\n",
1210                    print_name, bp->cmd_rsp_virt, &bp->cmd_rsp_phys);
1211         DBG_printk("%s: Receive buffer block virt = %p, phys = %pad\n",
1212                    print_name, bp->rcv_block_virt, &bp->rcv_block_phys);
1213         DBG_printk("%s: Consumer block virt = %p, phys = %pad\n",
1214                    print_name, bp->cons_block_virt, &bp->cons_block_phys);
1215
1216         return DFX_K_SUCCESS;
1217 }
1218
1219
1220 /*
1221  * =================
1222  * = dfx_adap_init =
1223  * =================
1224  *
1225  * Overview:
1226  *   Brings the adapter to the link avail/link unavailable state.
1227  *
1228  * Returns:
1229  *   Condition code
1230  *
1231  * Arguments:
1232  *   bp - pointer to board information
1233  *   get_buffers - non-zero if buffers to be allocated
1234  *
1235  * Functional Description:
1236  *   Issues the low-level firmware/hardware calls necessary to bring
1237  *   the adapter up, or to properly reset and restore adapter during
1238  *   run-time.
1239  *
1240  * Return Codes:
1241  *   DFX_K_SUCCESS - Adapter brought up successfully
1242  *   DFX_K_FAILURE - Adapter initialization failed
1243  *
1244  * Assumptions:
1245  *   bp->reset_type should be set to a valid reset type value before
1246  *   calling this routine.
1247  *
1248  * Side Effects:
1249  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1250  *   upon a successful return of this routine.
1251  */
1252
1253 static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1254         {
1255         DBG_printk("In dfx_adap_init...\n");
1256
1257         /* Disable PDQ interrupts first */
1258
1259         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1260
1261         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1262
1263         if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1264                 {
1265                 printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1266                 return DFX_K_FAILURE;
1267                 }
1268
1269         /*
1270          * When the PDQ is reset, some false Type 0 interrupts may be pending,
1271          * so we'll acknowledge all Type 0 interrupts now before continuing.
1272          */
1273
1274         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1275
1276         /*
1277          * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1278          *
1279          * Note: We only need to clear host copies of these registers.  The PDQ reset
1280          *       takes care of the on-board register values.
1281          */
1282
1283         bp->cmd_req_reg.lword   = 0;
1284         bp->cmd_rsp_reg.lword   = 0;
1285         bp->rcv_xmt_reg.lword   = 0;
1286
1287         /* Clear consumer block before going to DMA_AVAILABLE state */
1288
1289         memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1290
1291         /* Initialize the DMA Burst Size */
1292
1293         if (dfx_hw_port_ctrl_req(bp,
1294                                                         PI_PCTRL_M_SUB_CMD,
1295                                                         PI_SUB_CMD_K_BURST_SIZE_SET,
1296                                                         bp->burst_size,
1297                                                         NULL) != DFX_K_SUCCESS)
1298                 {
1299                 printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1300                 return DFX_K_FAILURE;
1301                 }
1302
1303         /*
1304          * Set base address of Consumer Block
1305          *
1306          * Assumption: 32-bit physical address of consumer block is 64 byte
1307          *                         aligned.  That is, bits 0-5 of the address must be zero.
1308          */
1309
1310         if (dfx_hw_port_ctrl_req(bp,
1311                                                         PI_PCTRL_M_CONS_BLOCK,
1312                                                         bp->cons_block_phys,
1313                                                         0,
1314                                                         NULL) != DFX_K_SUCCESS)
1315                 {
1316                 printk("%s: Could not set consumer block address!\n", bp->dev->name);
1317                 return DFX_K_FAILURE;
1318                 }
1319
1320         /*
1321          * Set the base address of Descriptor Block and bring adapter
1322          * to DMA_AVAILABLE state.
1323          *
1324          * Note: We also set the literal and data swapping requirements
1325          *       in this command.
1326          *
1327          * Assumption: 32-bit physical address of descriptor block
1328          *       is 8Kbyte aligned.
1329          */
1330         if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
1331                                  (u32)(bp->descr_block_phys |
1332                                        PI_PDATA_A_INIT_M_BSWAP_INIT),
1333                                  0, NULL) != DFX_K_SUCCESS) {
1334                 printk("%s: Could not set descriptor block address!\n",
1335                        bp->dev->name);
1336                 return DFX_K_FAILURE;
1337         }
1338
1339         /* Set transmit flush timeout value */
1340
1341         bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1342         bp->cmd_req_virt->char_set.item[0].item_code    = PI_ITEM_K_FLUSH_TIME;
1343         bp->cmd_req_virt->char_set.item[0].value                = 3;    /* 3 seconds */
1344         bp->cmd_req_virt->char_set.item[0].item_index   = 0;
1345         bp->cmd_req_virt->char_set.item[1].item_code    = PI_ITEM_K_EOL;
1346         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1347                 {
1348                 printk("%s: DMA command request failed!\n", bp->dev->name);
1349                 return DFX_K_FAILURE;
1350                 }
1351
1352         /* Set the initial values for eFDXEnable and MACTReq MIB objects */
1353
1354         bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1355         bp->cmd_req_virt->snmp_set.item[0].item_code    = PI_ITEM_K_FDX_ENB_DIS;
1356         bp->cmd_req_virt->snmp_set.item[0].value                = bp->full_duplex_enb;
1357         bp->cmd_req_virt->snmp_set.item[0].item_index   = 0;
1358         bp->cmd_req_virt->snmp_set.item[1].item_code    = PI_ITEM_K_MAC_T_REQ;
1359         bp->cmd_req_virt->snmp_set.item[1].value                = bp->req_ttrt;
1360         bp->cmd_req_virt->snmp_set.item[1].item_index   = 0;
1361         bp->cmd_req_virt->snmp_set.item[2].item_code    = PI_ITEM_K_EOL;
1362         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1363                 {
1364                 printk("%s: DMA command request failed!\n", bp->dev->name);
1365                 return DFX_K_FAILURE;
1366                 }
1367
1368         /* Initialize adapter CAM */
1369
1370         if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1371                 {
1372                 printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1373                 return DFX_K_FAILURE;
1374                 }
1375
1376         /* Initialize adapter filters */
1377
1378         if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1379                 {
1380                 printk("%s: Adapter filters update failed!\n", bp->dev->name);
1381                 return DFX_K_FAILURE;
1382                 }
1383
1384         /*
1385          * Remove any existing dynamic buffers (i.e. if the adapter is being
1386          * reinitialized)
1387          */
1388
1389         if (get_buffers)
1390                 dfx_rcv_flush(bp);
1391
1392         /* Initialize receive descriptor block and produce buffers */
1393
1394         if (dfx_rcv_init(bp, get_buffers))
1395                 {
1396                 printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1397                 if (get_buffers)
1398                         dfx_rcv_flush(bp);
1399                 return DFX_K_FAILURE;
1400                 }
1401
1402         /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1403
1404         bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1405         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1406                 {
1407                 printk("%s: Start command failed\n", bp->dev->name);
1408                 if (get_buffers)
1409                         dfx_rcv_flush(bp);
1410                 return DFX_K_FAILURE;
1411                 }
1412
1413         /* Initialization succeeded, reenable PDQ interrupts */
1414
1415         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1416         return DFX_K_SUCCESS;
1417         }
1418
1419
1420 /*
1421  * ============
1422  * = dfx_open =
1423  * ============
1424  *
1425  * Overview:
1426  *   Opens the adapter
1427  *
1428  * Returns:
1429  *   Condition code
1430  *
1431  * Arguments:
1432  *   dev - pointer to device information
1433  *
1434  * Functional Description:
1435  *   This function brings the adapter to an operational state.
1436  *
1437  * Return Codes:
1438  *   0           - Adapter was successfully opened
1439  *   -EAGAIN - Could not register IRQ or adapter initialization failed
1440  *
1441  * Assumptions:
1442  *   This routine should only be called for a device that was
1443  *   initialized successfully.
1444  *
1445  * Side Effects:
1446  *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1447  *   if the open is successful.
1448  */
1449
1450 static int dfx_open(struct net_device *dev)
1451 {
1452         DFX_board_t *bp = netdev_priv(dev);
1453         int ret;
1454
1455         DBG_printk("In dfx_open...\n");
1456
1457         /* Register IRQ - support shared interrupts by passing device ptr */
1458
1459         ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
1460                           dev);
1461         if (ret) {
1462                 printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1463                 return ret;
1464         }
1465
1466         /*
1467          * Set current address to factory MAC address
1468          *
1469          * Note: We've already done this step in dfx_driver_init.
1470          *       However, it's possible that a user has set a node
1471          *               address override, then closed and reopened the
1472          *               adapter.  Unless we reset the device address field
1473          *               now, we'll continue to use the existing modified
1474          *               address.
1475          */
1476
1477         dev_addr_set(dev, bp->factory_mac_addr);
1478
1479         /* Clear local unicast/multicast address tables and counts */
1480
1481         memset(bp->uc_table, 0, sizeof(bp->uc_table));
1482         memset(bp->mc_table, 0, sizeof(bp->mc_table));
1483         bp->uc_count = 0;
1484         bp->mc_count = 0;
1485
1486         /* Disable promiscuous filter settings */
1487
1488         bp->ind_group_prom      = PI_FSTATE_K_BLOCK;
1489         bp->group_prom          = PI_FSTATE_K_BLOCK;
1490
1491         spin_lock_init(&bp->lock);
1492
1493         /* Reset and initialize adapter */
1494
1495         bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST;    /* skip self-test */
1496         if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1497         {
1498                 printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1499                 free_irq(dev->irq, dev);
1500                 return -EAGAIN;
1501         }
1502
1503         /* Set device structure info */
1504         netif_start_queue(dev);
1505         return 0;
1506 }
1507
1508
1509 /*
1510  * =============
1511  * = dfx_close =
1512  * =============
1513  *
1514  * Overview:
1515  *   Closes the device/module.
1516  *
1517  * Returns:
1518  *   Condition code
1519  *
1520  * Arguments:
1521  *   dev - pointer to device information
1522  *
1523  * Functional Description:
1524  *   This routine closes the adapter and brings it to a safe state.
1525  *   The interrupt service routine is deregistered with the OS.
1526  *   The adapter can be opened again with another call to dfx_open().
1527  *
1528  * Return Codes:
1529  *   Always return 0.
1530  *
1531  * Assumptions:
1532  *   No further requests for this adapter are made after this routine is
1533  *   called.  dfx_open() can be called to reset and reinitialize the
1534  *   adapter.
1535  *
1536  * Side Effects:
1537  *   Adapter should be in DMA_UNAVAILABLE state upon completion of this
1538  *   routine.
1539  */
1540
1541 static int dfx_close(struct net_device *dev)
1542 {
1543         DFX_board_t *bp = netdev_priv(dev);
1544
1545         DBG_printk("In dfx_close...\n");
1546
1547         /* Disable PDQ interrupts first */
1548
1549         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1550
1551         /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1552
1553         (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1554
1555         /*
1556          * Flush any pending transmit buffers
1557          *
1558          * Note: It's important that we flush the transmit buffers
1559          *               BEFORE we clear our copy of the Type 2 register.
1560          *               Otherwise, we'll have no idea how many buffers
1561          *               we need to free.
1562          */
1563
1564         dfx_xmt_flush(bp);
1565
1566         /*
1567          * Clear Type 1 and Type 2 registers after adapter reset
1568          *
1569          * Note: Even though we're closing the adapter, it's
1570          *       possible that an interrupt will occur after
1571          *               dfx_close is called.  Without some assurance to
1572          *               the contrary we want to make sure that we don't
1573          *               process receive and transmit LLC frames and update
1574          *               the Type 2 register with bad information.
1575          */
1576
1577         bp->cmd_req_reg.lword   = 0;
1578         bp->cmd_rsp_reg.lword   = 0;
1579         bp->rcv_xmt_reg.lword   = 0;
1580
1581         /* Clear consumer block for the same reason given above */
1582
1583         memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1584
1585         /* Release all dynamically allocate skb in the receive ring. */
1586
1587         dfx_rcv_flush(bp);
1588
1589         /* Clear device structure flags */
1590
1591         netif_stop_queue(dev);
1592
1593         /* Deregister (free) IRQ */
1594
1595         free_irq(dev->irq, dev);
1596
1597         return 0;
1598 }
1599
1600
1601 /*
1602  * ======================
1603  * = dfx_int_pr_halt_id =
1604  * ======================
1605  *
1606  * Overview:
1607  *   Displays halt id's in string form.
1608  *
1609  * Returns:
1610  *   None
1611  *
1612  * Arguments:
1613  *   bp - pointer to board information
1614  *
1615  * Functional Description:
1616  *   Determine current halt id and display appropriate string.
1617  *
1618  * Return Codes:
1619  *   None
1620  *
1621  * Assumptions:
1622  *   None
1623  *
1624  * Side Effects:
1625  *   None
1626  */
1627
1628 static void dfx_int_pr_halt_id(DFX_board_t      *bp)
1629         {
1630         PI_UINT32       port_status;                    /* PDQ port status register value */
1631         PI_UINT32       halt_id;                                /* PDQ port status halt ID */
1632
1633         /* Read the latest port status */
1634
1635         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1636
1637         /* Display halt state transition information */
1638
1639         halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1640         switch (halt_id)
1641                 {
1642                 case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1643                         printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1644                         break;
1645
1646                 case PI_HALT_ID_K_PARITY_ERROR:
1647                         printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1648                         break;
1649
1650                 case PI_HALT_ID_K_HOST_DIR_HALT:
1651                         printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1652                         break;
1653
1654                 case PI_HALT_ID_K_SW_FAULT:
1655                         printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1656                         break;
1657
1658                 case PI_HALT_ID_K_HW_FAULT:
1659                         printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1660                         break;
1661
1662                 case PI_HALT_ID_K_PC_TRACE:
1663                         printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1664                         break;
1665
1666                 case PI_HALT_ID_K_DMA_ERROR:
1667                         printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1668                         break;
1669
1670                 case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1671                         printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1672                         break;
1673
1674                 case PI_HALT_ID_K_BUS_EXCEPTION:
1675                         printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1676                         break;
1677
1678                 default:
1679                         printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1680                         break;
1681                 }
1682         }
1683
1684
1685 /*
1686  * ==========================
1687  * = dfx_int_type_0_process =
1688  * ==========================
1689  *
1690  * Overview:
1691  *   Processes Type 0 interrupts.
1692  *
1693  * Returns:
1694  *   None
1695  *
1696  * Arguments:
1697  *   bp - pointer to board information
1698  *
1699  * Functional Description:
1700  *   Processes all enabled Type 0 interrupts.  If the reason for the interrupt
1701  *   is a serious fault on the adapter, then an error message is displayed
1702  *   and the adapter is reset.
1703  *
1704  *   One tricky potential timing window is the rapid succession of "link avail"
1705  *   "link unavail" state change interrupts.  The acknowledgement of the Type 0
1706  *   interrupt must be done before reading the state from the Port Status
1707  *   register.  This is true because a state change could occur after reading
1708  *   the data, but before acknowledging the interrupt.  If this state change
1709  *   does happen, it would be lost because the driver is using the old state,
1710  *   and it will never know about the new state because it subsequently
1711  *   acknowledges the state change interrupt.
1712  *
1713  *          INCORRECT                                      CORRECT
1714  *      read type 0 int reasons                   read type 0 int reasons
1715  *      read adapter state                        ack type 0 interrupts
1716  *      ack type 0 interrupts                     read adapter state
1717  *      ... process interrupt ...                 ... process interrupt ...
1718  *
1719  * Return Codes:
1720  *   None
1721  *
1722  * Assumptions:
1723  *   None
1724  *
1725  * Side Effects:
1726  *   An adapter reset may occur if the adapter has any Type 0 error interrupts
1727  *   or if the port status indicates that the adapter is halted.  The driver
1728  *   is responsible for reinitializing the adapter with the current CAM
1729  *   contents and adapter filter settings.
1730  */
1731
1732 static void dfx_int_type_0_process(DFX_board_t  *bp)
1733
1734         {
1735         PI_UINT32       type_0_status;          /* Host Interrupt Type 0 register */
1736         PI_UINT32       state;                          /* current adap state (from port status) */
1737
1738         /*
1739          * Read host interrupt Type 0 register to determine which Type 0
1740          * interrupts are pending.  Immediately write it back out to clear
1741          * those interrupts.
1742          */
1743
1744         dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1745         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1746
1747         /* Check for Type 0 error interrupts */
1748
1749         if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1750                                                         PI_TYPE_0_STAT_M_PM_PAR_ERR |
1751                                                         PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1752                 {
1753                 /* Check for Non-Existent Memory error */
1754
1755                 if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1756                         printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1757
1758                 /* Check for Packet Memory Parity error */
1759
1760                 if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1761                         printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1762
1763                 /* Check for Host Bus Parity error */
1764
1765                 if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1766                         printk("%s: Host Bus Parity Error\n", bp->dev->name);
1767
1768                 /* Reset adapter and bring it back on-line */
1769
1770                 bp->link_available = PI_K_FALSE;        /* link is no longer available */
1771                 bp->reset_type = 0;                                     /* rerun on-board diagnostics */
1772                 printk("%s: Resetting adapter...\n", bp->dev->name);
1773                 if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1774                         {
1775                         printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1776                         dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1777                         return;
1778                         }
1779                 printk("%s: Adapter reset successful!\n", bp->dev->name);
1780                 return;
1781                 }
1782
1783         /* Check for transmit flush interrupt */
1784
1785         if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1786                 {
1787                 /* Flush any pending xmt's and acknowledge the flush interrupt */
1788
1789                 bp->link_available = PI_K_FALSE;                /* link is no longer available */
1790                 dfx_xmt_flush(bp);                                              /* flush any outstanding packets */
1791                 (void) dfx_hw_port_ctrl_req(bp,
1792                                                                         PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1793                                                                         0,
1794                                                                         0,
1795                                                                         NULL);
1796                 }
1797
1798         /* Check for adapter state change */
1799
1800         if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
1801                 {
1802                 /* Get latest adapter state */
1803
1804                 state = dfx_hw_adap_state_rd(bp);       /* get adapter state */
1805                 if (state == PI_STATE_K_HALTED)
1806                         {
1807                         /*
1808                          * Adapter has transitioned to HALTED state, try to reset
1809                          * adapter to bring it back on-line.  If reset fails,
1810                          * leave the adapter in the broken state.
1811                          */
1812
1813                         printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1814                         dfx_int_pr_halt_id(bp);                 /* display halt id as string */
1815
1816                         /* Reset adapter and bring it back on-line */
1817
1818                         bp->link_available = PI_K_FALSE;        /* link is no longer available */
1819                         bp->reset_type = 0;                                     /* rerun on-board diagnostics */
1820                         printk("%s: Resetting adapter...\n", bp->dev->name);
1821                         if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1822                                 {
1823                                 printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1824                                 dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1825                                 return;
1826                                 }
1827                         printk("%s: Adapter reset successful!\n", bp->dev->name);
1828                         }
1829                 else if (state == PI_STATE_K_LINK_AVAIL)
1830                         {
1831                         bp->link_available = PI_K_TRUE;         /* set link available flag */
1832                         }
1833                 }
1834         }
1835
1836
1837 /*
1838  * ==================
1839  * = dfx_int_common =
1840  * ==================
1841  *
1842  * Overview:
1843  *   Interrupt service routine (ISR)
1844  *
1845  * Returns:
1846  *   None
1847  *
1848  * Arguments:
1849  *   bp - pointer to board information
1850  *
1851  * Functional Description:
1852  *   This is the ISR which processes incoming adapter interrupts.
1853  *
1854  * Return Codes:
1855  *   None
1856  *
1857  * Assumptions:
1858  *   This routine assumes PDQ interrupts have not been disabled.
1859  *   When interrupts are disabled at the PDQ, the Port Status register
1860  *   is automatically cleared.  This routine uses the Port Status
1861  *   register value to determine whether a Type 0 interrupt occurred,
1862  *   so it's important that adapter interrupts are not normally
1863  *   enabled/disabled at the PDQ.
1864  *
1865  *   It's vital that this routine is NOT reentered for the
1866  *   same board and that the OS is not in another section of
1867  *   code (eg. dfx_xmt_queue_pkt) for the same board on a
1868  *   different thread.
1869  *
1870  * Side Effects:
1871  *   Pending interrupts are serviced.  Depending on the type of
1872  *   interrupt, acknowledging and clearing the interrupt at the
1873  *   PDQ involves writing a register to clear the interrupt bit
1874  *   or updating completion indices.
1875  */
1876
1877 static void dfx_int_common(struct net_device *dev)
1878 {
1879         DFX_board_t *bp = netdev_priv(dev);
1880         PI_UINT32       port_status;            /* Port Status register */
1881
1882         /* Process xmt interrupts - frequent case, so always call this routine */
1883
1884         if(dfx_xmt_done(bp))                            /* free consumed xmt packets */
1885                 netif_wake_queue(dev);
1886
1887         /* Process rcv interrupts - frequent case, so always call this routine */
1888
1889         dfx_rcv_queue_process(bp);              /* service received LLC frames */
1890
1891         /*
1892          * Transmit and receive producer and completion indices are updated on the
1893          * adapter by writing to the Type 2 Producer register.  Since the frequent
1894          * case is that we'll be processing either LLC transmit or receive buffers,
1895          * we'll optimize I/O writes by doing a single register write here.
1896          */
1897
1898         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1899
1900         /* Read PDQ Port Status register to find out which interrupts need processing */
1901
1902         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1903
1904         /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1905
1906         if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1907                 dfx_int_type_0_process(bp);     /* process Type 0 interrupts */
1908         }
1909
1910
1911 /*
1912  * =================
1913  * = dfx_interrupt =
1914  * =================
1915  *
1916  * Overview:
1917  *   Interrupt processing routine
1918  *
1919  * Returns:
1920  *   Whether a valid interrupt was seen.
1921  *
1922  * Arguments:
1923  *   irq        - interrupt vector
1924  *   dev_id     - pointer to device information
1925  *
1926  * Functional Description:
1927  *   This routine calls the interrupt processing routine for this adapter.  It
1928  *   disables and reenables adapter interrupts, as appropriate.  We can support
1929  *   shared interrupts since the incoming dev_id pointer provides our device
1930  *   structure context.
1931  *
1932  * Return Codes:
1933  *   IRQ_HANDLED - an IRQ was handled.
1934  *   IRQ_NONE    - no IRQ was handled.
1935  *
1936  * Assumptions:
1937  *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1938  *   on Intel-based systems) is done by the operating system outside this
1939  *   routine.
1940  *
1941  *       System interrupts are enabled through this call.
1942  *
1943  * Side Effects:
1944  *   Interrupts are disabled, then reenabled at the adapter.
1945  */
1946
1947 static irqreturn_t dfx_interrupt(int irq, void *dev_id)
1948 {
1949         struct net_device *dev = dev_id;
1950         DFX_board_t *bp = netdev_priv(dev);
1951         struct device *bdev = bp->bus_dev;
1952         int dfx_bus_pci = dev_is_pci(bdev);
1953         int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1954         int dfx_bus_tc = DFX_BUS_TC(bdev);
1955
1956         /* Service adapter interrupts */
1957
1958         if (dfx_bus_pci) {
1959                 u32 status;
1960
1961                 dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1962                 if (!(status & PFI_STATUS_M_PDQ_INT))
1963                         return IRQ_NONE;
1964
1965                 spin_lock(&bp->lock);
1966
1967                 /* Disable PDQ-PFI interrupts at PFI */
1968                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1969                                     PFI_MODE_M_DMA_ENB);
1970
1971                 /* Call interrupt service routine for this adapter */
1972                 dfx_int_common(dev);
1973
1974                 /* Clear PDQ interrupt status bit and reenable interrupts */
1975                 dfx_port_write_long(bp, PFI_K_REG_STATUS,
1976                                     PFI_STATUS_M_PDQ_INT);
1977                 dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1978                                     (PFI_MODE_M_PDQ_INT_ENB |
1979                                      PFI_MODE_M_DMA_ENB));
1980
1981                 spin_unlock(&bp->lock);
1982         }
1983         if (dfx_bus_eisa) {
1984                 unsigned long base_addr = to_eisa_device(bdev)->base_addr;
1985                 u8 status;
1986
1987                 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1988                 if (!(status & PI_CONFIG_STAT_0_M_PEND))
1989                         return IRQ_NONE;
1990
1991                 spin_lock(&bp->lock);
1992
1993                 /* Disable interrupts at the ESIC */
1994                 status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
1995                 outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1996
1997                 /* Call interrupt service routine for this adapter */
1998                 dfx_int_common(dev);
1999
2000                 /* Reenable interrupts at the ESIC */
2001                 status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
2002                 status |= PI_CONFIG_STAT_0_M_INT_ENB;
2003                 outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
2004
2005                 spin_unlock(&bp->lock);
2006         }
2007         if (dfx_bus_tc) {
2008                 u32 status;
2009
2010                 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
2011                 if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
2012                                 PI_PSTATUS_M_XMT_DATA_PENDING |
2013                                 PI_PSTATUS_M_SMT_HOST_PENDING |
2014                                 PI_PSTATUS_M_UNSOL_PENDING |
2015                                 PI_PSTATUS_M_CMD_RSP_PENDING |
2016                                 PI_PSTATUS_M_CMD_REQ_PENDING |
2017                                 PI_PSTATUS_M_TYPE_0_PENDING)))
2018                         return IRQ_NONE;
2019
2020                 spin_lock(&bp->lock);
2021
2022                 /* Call interrupt service routine for this adapter */
2023                 dfx_int_common(dev);
2024
2025                 spin_unlock(&bp->lock);
2026         }
2027
2028         return IRQ_HANDLED;
2029 }
2030
2031
2032 /*
2033  * =====================
2034  * = dfx_ctl_get_stats =
2035  * =====================
2036  *
2037  * Overview:
2038  *   Get statistics for FDDI adapter
2039  *
2040  * Returns:
2041  *   Pointer to FDDI statistics structure
2042  *
2043  * Arguments:
2044  *   dev - pointer to device information
2045  *
2046  * Functional Description:
2047  *   Gets current MIB objects from adapter, then
2048  *   returns FDDI statistics structure as defined
2049  *   in if_fddi.h.
2050  *
2051  *   Note: Since the FDDI statistics structure is
2052  *   still new and the device structure doesn't
2053  *   have an FDDI-specific get statistics handler,
2054  *   we'll return the FDDI statistics structure as
2055  *   a pointer to an Ethernet statistics structure.
2056  *   That way, at least the first part of the statistics
2057  *   structure can be decoded properly, and it allows
2058  *   "smart" applications to perform a second cast to
2059  *   decode the FDDI-specific statistics.
2060  *
2061  *   We'll have to pay attention to this routine as the
2062  *   device structure becomes more mature and LAN media
2063  *   independent.
2064  *
2065  * Return Codes:
2066  *   None
2067  *
2068  * Assumptions:
2069  *   None
2070  *
2071  * Side Effects:
2072  *   None
2073  */
2074
2075 static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
2076         {
2077         DFX_board_t *bp = netdev_priv(dev);
2078
2079         /* Fill the bp->stats structure with driver-maintained counters */
2080
2081         bp->stats.gen.rx_packets = bp->rcv_total_frames;
2082         bp->stats.gen.tx_packets = bp->xmt_total_frames;
2083         bp->stats.gen.rx_bytes   = bp->rcv_total_bytes;
2084         bp->stats.gen.tx_bytes   = bp->xmt_total_bytes;
2085         bp->stats.gen.rx_errors  = bp->rcv_crc_errors +
2086                                    bp->rcv_frame_status_errors +
2087                                    bp->rcv_length_errors;
2088         bp->stats.gen.tx_errors  = bp->xmt_length_errors;
2089         bp->stats.gen.rx_dropped = bp->rcv_discards;
2090         bp->stats.gen.tx_dropped = bp->xmt_discards;
2091         bp->stats.gen.multicast  = bp->rcv_multicast_frames;
2092         bp->stats.gen.collisions = 0;           /* always zero (0) for FDDI */
2093
2094         /* Get FDDI SMT MIB objects */
2095
2096         bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
2097         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2098                 return (struct net_device_stats *)&bp->stats;
2099
2100         /* Fill the bp->stats structure with the SMT MIB object values */
2101
2102         memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
2103         bp->stats.smt_op_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
2104         bp->stats.smt_hi_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
2105         bp->stats.smt_lo_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
2106         memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
2107         bp->stats.smt_mib_version_id                            = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
2108         bp->stats.smt_mac_cts                                           = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
2109         bp->stats.smt_non_master_cts                            = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
2110         bp->stats.smt_master_cts                                        = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
2111         bp->stats.smt_available_paths                           = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
2112         bp->stats.smt_config_capabilities                       = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
2113         bp->stats.smt_config_policy                                     = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
2114         bp->stats.smt_connection_policy                         = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
2115         bp->stats.smt_t_notify                                          = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
2116         bp->stats.smt_stat_rpt_policy                           = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
2117         bp->stats.smt_trace_max_expiration                      = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
2118         bp->stats.smt_bypass_present                            = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
2119         bp->stats.smt_ecm_state                                         = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
2120         bp->stats.smt_cf_state                                          = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
2121         bp->stats.smt_remote_disconnect_flag            = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
2122         bp->stats.smt_station_status                            = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
2123         bp->stats.smt_peer_wrap_flag                            = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
2124         bp->stats.smt_time_stamp                                        = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
2125         bp->stats.smt_transition_time_stamp                     = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
2126         bp->stats.mac_frame_status_functions            = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
2127         bp->stats.mac_t_max_capability                          = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
2128         bp->stats.mac_tvx_capability                            = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
2129         bp->stats.mac_available_paths                           = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
2130         bp->stats.mac_current_path                                      = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
2131         memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
2132         memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
2133         memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
2134         memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
2135         bp->stats.mac_dup_address_test                          = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
2136         bp->stats.mac_requested_paths                           = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
2137         bp->stats.mac_downstream_port_type                      = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
2138         memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
2139         bp->stats.mac_t_req                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
2140         bp->stats.mac_t_neg                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
2141         bp->stats.mac_t_max                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
2142         bp->stats.mac_tvx_value                                         = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
2143         bp->stats.mac_frame_error_threshold                     = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
2144         bp->stats.mac_frame_error_ratio                         = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
2145         bp->stats.mac_rmt_state                                         = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
2146         bp->stats.mac_da_flag                                           = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
2147         bp->stats.mac_una_da_flag                                       = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
2148         bp->stats.mac_frame_error_flag                          = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
2149         bp->stats.mac_ma_unitdata_available                     = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
2150         bp->stats.mac_hardware_present                          = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
2151         bp->stats.mac_ma_unitdata_enable                        = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
2152         bp->stats.path_tvx_lower_bound                          = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
2153         bp->stats.path_t_max_lower_bound                        = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
2154         bp->stats.path_max_t_req                                        = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
2155         memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
2156         bp->stats.port_my_type[0]                                       = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
2157         bp->stats.port_my_type[1]                                       = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
2158         bp->stats.port_neighbor_type[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
2159         bp->stats.port_neighbor_type[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
2160         bp->stats.port_connection_policies[0]           = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
2161         bp->stats.port_connection_policies[1]           = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
2162         bp->stats.port_mac_indicated[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
2163         bp->stats.port_mac_indicated[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
2164         bp->stats.port_current_path[0]                          = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
2165         bp->stats.port_current_path[1]                          = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
2166         memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
2167         memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
2168         bp->stats.port_mac_placement[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
2169         bp->stats.port_mac_placement[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
2170         bp->stats.port_available_paths[0]                       = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
2171         bp->stats.port_available_paths[1]                       = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
2172         bp->stats.port_pmd_class[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
2173         bp->stats.port_pmd_class[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
2174         bp->stats.port_connection_capabilities[0]       = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
2175         bp->stats.port_connection_capabilities[1]       = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
2176         bp->stats.port_bs_flag[0]                                       = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
2177         bp->stats.port_bs_flag[1]                                       = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
2178         bp->stats.port_ler_estimate[0]                          = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
2179         bp->stats.port_ler_estimate[1]                          = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
2180         bp->stats.port_ler_cutoff[0]                            = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
2181         bp->stats.port_ler_cutoff[1]                            = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
2182         bp->stats.port_ler_alarm[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
2183         bp->stats.port_ler_alarm[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
2184         bp->stats.port_connect_state[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
2185         bp->stats.port_connect_state[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
2186         bp->stats.port_pcm_state[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
2187         bp->stats.port_pcm_state[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
2188         bp->stats.port_pc_withhold[0]                           = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
2189         bp->stats.port_pc_withhold[1]                           = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
2190         bp->stats.port_ler_flag[0]                                      = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
2191         bp->stats.port_ler_flag[1]                                      = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
2192         bp->stats.port_hardware_present[0]                      = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
2193         bp->stats.port_hardware_present[1]                      = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
2194
2195         /* Get FDDI counters */
2196
2197         bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
2198         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2199                 return (struct net_device_stats *)&bp->stats;
2200
2201         /* Fill the bp->stats structure with the FDDI counter values */
2202
2203         bp->stats.mac_frame_cts                         = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
2204         bp->stats.mac_copied_cts                        = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
2205         bp->stats.mac_transmit_cts                      = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
2206         bp->stats.mac_error_cts                         = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
2207         bp->stats.mac_lost_cts                          = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
2208         bp->stats.port_lct_fail_cts[0]          = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
2209         bp->stats.port_lct_fail_cts[1]          = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
2210         bp->stats.port_lem_reject_cts[0]        = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
2211         bp->stats.port_lem_reject_cts[1]        = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
2212         bp->stats.port_lem_cts[0]                       = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
2213         bp->stats.port_lem_cts[1]                       = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
2214
2215         return (struct net_device_stats *)&bp->stats;
2216         }
2217
2218
2219 /*
2220  * ==============================
2221  * = dfx_ctl_set_multicast_list =
2222  * ==============================
2223  *
2224  * Overview:
2225  *   Enable/Disable LLC frame promiscuous mode reception
2226  *   on the adapter and/or update multicast address table.
2227  *
2228  * Returns:
2229  *   None
2230  *
2231  * Arguments:
2232  *   dev - pointer to device information
2233  *
2234  * Functional Description:
2235  *   This routine follows a fairly simple algorithm for setting the
2236  *   adapter filters and CAM:
2237  *
2238  *              if IFF_PROMISC flag is set
2239  *                      enable LLC individual/group promiscuous mode
2240  *              else
2241  *                      disable LLC individual/group promiscuous mode
2242  *                      if number of incoming multicast addresses >
2243  *                                      (CAM max size - number of unicast addresses in CAM)
2244  *                              enable LLC group promiscuous mode
2245  *                              set driver-maintained multicast address count to zero
2246  *                      else
2247  *                              disable LLC group promiscuous mode
2248  *                              set driver-maintained multicast address count to incoming count
2249  *                      update adapter CAM
2250  *              update adapter filters
2251  *
2252  * Return Codes:
2253  *   None
2254  *
2255  * Assumptions:
2256  *   Multicast addresses are presented in canonical (LSB) format.
2257  *
2258  * Side Effects:
2259  *   On-board adapter CAM and filters are updated.
2260  */
2261
2262 static void dfx_ctl_set_multicast_list(struct net_device *dev)
2263 {
2264         DFX_board_t *bp = netdev_priv(dev);
2265         int                                     i;                      /* used as index in for loop */
2266         struct netdev_hw_addr *ha;
2267
2268         /* Enable LLC frame promiscuous mode, if necessary */
2269
2270         if (dev->flags & IFF_PROMISC)
2271                 bp->ind_group_prom = PI_FSTATE_K_PASS;          /* Enable LLC ind/group prom mode */
2272
2273         /* Else, update multicast address table */
2274
2275         else
2276                 {
2277                 bp->ind_group_prom = PI_FSTATE_K_BLOCK;         /* Disable LLC ind/group prom mode */
2278                 /*
2279                  * Check whether incoming multicast address count exceeds table size
2280                  *
2281                  * Note: The adapters utilize an on-board 64 entry CAM for
2282                  *       supporting perfect filtering of multicast packets
2283                  *               and bridge functions when adding unicast addresses.
2284                  *               There is no hash function available.  To support
2285                  *               additional multicast addresses, the all multicast
2286                  *               filter (LLC group promiscuous mode) must be enabled.
2287                  *
2288                  *               The firmware reserves two CAM entries for SMT-related
2289                  *               multicast addresses, which leaves 62 entries available.
2290                  *               The following code ensures that we're not being asked
2291                  *               to add more than 62 addresses to the CAM.  If we are,
2292                  *               the driver will enable the all multicast filter.
2293                  *               Should the number of multicast addresses drop below
2294                  *               the high water mark, the filter will be disabled and
2295                  *               perfect filtering will be used.
2296                  */
2297
2298                 if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2299                         {
2300                         bp->group_prom  = PI_FSTATE_K_PASS;             /* Enable LLC group prom mode */
2301                         bp->mc_count    = 0;                                    /* Don't add mc addrs to CAM */
2302                         }
2303                 else
2304                         {
2305                         bp->group_prom  = PI_FSTATE_K_BLOCK;    /* Disable LLC group prom mode */
2306                         bp->mc_count    = netdev_mc_count(dev);         /* Add mc addrs to CAM */
2307                         }
2308
2309                 /* Copy addresses to multicast address table, then update adapter CAM */
2310
2311                 i = 0;
2312                 netdev_for_each_mc_addr(ha, dev)
2313                         memcpy(&bp->mc_table[i++ * FDDI_K_ALEN],
2314                                ha->addr, FDDI_K_ALEN);
2315
2316                 if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2317                         {
2318                         DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2319                         }
2320                 else
2321                         {
2322                         DBG_printk("%s: Multicast address table updated!  Added %d addresses.\n", dev->name, bp->mc_count);
2323                         }
2324                 }
2325
2326         /* Update adapter filters */
2327
2328         if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2329                 {
2330                 DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2331                 }
2332         else
2333                 {
2334                 DBG_printk("%s: Adapter filters updated!\n", dev->name);
2335                 }
2336         }
2337
2338
2339 /*
2340  * ===========================
2341  * = dfx_ctl_set_mac_address =
2342  * ===========================
2343  *
2344  * Overview:
2345  *   Add node address override (unicast address) to adapter
2346  *   CAM and update dev_addr field in device table.
2347  *
2348  * Returns:
2349  *   None
2350  *
2351  * Arguments:
2352  *   dev  - pointer to device information
2353  *   addr - pointer to sockaddr structure containing unicast address to add
2354  *
2355  * Functional Description:
2356  *   The adapter supports node address overrides by adding one or more
2357  *   unicast addresses to the adapter CAM.  This is similar to adding
2358  *   multicast addresses.  In this routine we'll update the driver and
2359  *   device structures with the new address, then update the adapter CAM
2360  *   to ensure that the adapter will copy and strip frames destined and
2361  *   sourced by that address.
2362  *
2363  * Return Codes:
2364  *   Always returns zero.
2365  *
2366  * Assumptions:
2367  *   The address pointed to by addr->sa_data is a valid unicast
2368  *   address and is presented in canonical (LSB) format.
2369  *
2370  * Side Effects:
2371  *   On-board adapter CAM is updated.  On-board adapter filters
2372  *   may be updated.
2373  */
2374
2375 static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2376         {
2377         struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
2378         DFX_board_t *bp = netdev_priv(dev);
2379
2380         /* Copy unicast address to driver-maintained structs and update count */
2381
2382         dev_addr_set(dev, p_sockaddr->sa_data);                         /* update device struct */
2383         memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN);     /* update driver struct */
2384         bp->uc_count = 1;
2385
2386         /*
2387          * Verify we're not exceeding the CAM size by adding unicast address
2388          *
2389          * Note: It's possible that before entering this routine we've
2390          *       already filled the CAM with 62 multicast addresses.
2391          *               Since we need to place the node address override into
2392          *               the CAM, we have to check to see that we're not
2393          *               exceeding the CAM size.  If we are, we have to enable
2394          *               the LLC group (multicast) promiscuous mode filter as
2395          *               in dfx_ctl_set_multicast_list.
2396          */
2397
2398         if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2399                 {
2400                 bp->group_prom  = PI_FSTATE_K_PASS;             /* Enable LLC group prom mode */
2401                 bp->mc_count    = 0;                                    /* Don't add mc addrs to CAM */
2402
2403                 /* Update adapter filters */
2404
2405                 if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2406                         {
2407                         DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2408                         }
2409                 else
2410                         {
2411                         DBG_printk("%s: Adapter filters updated!\n", dev->name);
2412                         }
2413                 }
2414
2415         /* Update adapter CAM with new unicast address */
2416
2417         if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2418                 {
2419                 DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2420                 }
2421         else
2422                 {
2423                 DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2424                 }
2425         return 0;                       /* always return zero */
2426         }
2427
2428
2429 /*
2430  * ======================
2431  * = dfx_ctl_update_cam =
2432  * ======================
2433  *
2434  * Overview:
2435  *   Procedure to update adapter CAM (Content Addressable Memory)
2436  *   with desired unicast and multicast address entries.
2437  *
2438  * Returns:
2439  *   Condition code
2440  *
2441  * Arguments:
2442  *   bp - pointer to board information
2443  *
2444  * Functional Description:
2445  *   Updates adapter CAM with current contents of board structure
2446  *   unicast and multicast address tables.  Since there are only 62
2447  *   free entries in CAM, this routine ensures that the command
2448  *   request buffer is not overrun.
2449  *
2450  * Return Codes:
2451  *   DFX_K_SUCCESS - Request succeeded
2452  *   DFX_K_FAILURE - Request failed
2453  *
2454  * Assumptions:
2455  *   All addresses being added (unicast and multicast) are in canonical
2456  *   order.
2457  *
2458  * Side Effects:
2459  *   On-board adapter CAM is updated.
2460  */
2461
2462 static int dfx_ctl_update_cam(DFX_board_t *bp)
2463         {
2464         int                     i;                              /* used as index */
2465         PI_LAN_ADDR     *p_addr;                /* pointer to CAM entry */
2466
2467         /*
2468          * Fill in command request information
2469          *
2470          * Note: Even though both the unicast and multicast address
2471          *       table entries are stored as contiguous 6 byte entries,
2472          *               the firmware address filter set command expects each
2473          *               entry to be two longwords (8 bytes total).  We must be
2474          *               careful to only copy the six bytes of each unicast and
2475          *               multicast table entry into each command entry.  This
2476          *               is also why we must first clear the entire command
2477          *               request buffer.
2478          */
2479
2480         memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX);     /* first clear buffer */
2481         bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2482         p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2483
2484         /* Now add unicast addresses to command request buffer, if any */
2485
2486         for (i=0; i < (int)bp->uc_count; i++)
2487                 {
2488                 if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2489                         {
2490                         memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2491                         p_addr++;                       /* point to next command entry */
2492                         }
2493                 }
2494
2495         /* Now add multicast addresses to command request buffer, if any */
2496
2497         for (i=0; i < (int)bp->mc_count; i++)
2498                 {
2499                 if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2500                         {
2501                         memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2502                         p_addr++;                       /* point to next command entry */
2503                         }
2504                 }
2505
2506         /* Issue command to update adapter CAM, then return */
2507
2508         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2509                 return DFX_K_FAILURE;
2510         return DFX_K_SUCCESS;
2511         }
2512
2513
2514 /*
2515  * ==========================
2516  * = dfx_ctl_update_filters =
2517  * ==========================
2518  *
2519  * Overview:
2520  *   Procedure to update adapter filters with desired
2521  *   filter settings.
2522  *
2523  * Returns:
2524  *   Condition code
2525  *
2526  * Arguments:
2527  *   bp - pointer to board information
2528  *
2529  * Functional Description:
2530  *   Enables or disables filter using current filter settings.
2531  *
2532  * Return Codes:
2533  *   DFX_K_SUCCESS - Request succeeded.
2534  *   DFX_K_FAILURE - Request failed.
2535  *
2536  * Assumptions:
2537  *   We must always pass up packets destined to the broadcast
2538  *   address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2539  *   broadcast filter enabled.
2540  *
2541  * Side Effects:
2542  *   On-board adapter filters are updated.
2543  */
2544
2545 static int dfx_ctl_update_filters(DFX_board_t *bp)
2546         {
2547         int     i = 0;                                  /* used as index */
2548
2549         /* Fill in command request information */
2550
2551         bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2552
2553         /* Initialize Broadcast filter - * ALWAYS ENABLED * */
2554
2555         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_BROADCAST;
2556         bp->cmd_req_virt->filter_set.item[i++].value    = PI_FSTATE_K_PASS;
2557
2558         /* Initialize LLC Individual/Group Promiscuous filter */
2559
2560         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_IND_GROUP_PROM;
2561         bp->cmd_req_virt->filter_set.item[i++].value    = bp->ind_group_prom;
2562
2563         /* Initialize LLC Group Promiscuous filter */
2564
2565         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_GROUP_PROM;
2566         bp->cmd_req_virt->filter_set.item[i++].value    = bp->group_prom;
2567
2568         /* Terminate the item code list */
2569
2570         bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_EOL;
2571
2572         /* Issue command to update adapter filters, then return */
2573
2574         if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2575                 return DFX_K_FAILURE;
2576         return DFX_K_SUCCESS;
2577         }
2578
2579
2580 /*
2581  * ======================
2582  * = dfx_hw_dma_cmd_req =
2583  * ======================
2584  *
2585  * Overview:
2586  *   Sends PDQ DMA command to adapter firmware
2587  *
2588  * Returns:
2589  *   Condition code
2590  *
2591  * Arguments:
2592  *   bp - pointer to board information
2593  *
2594  * Functional Description:
2595  *   The command request and response buffers are posted to the adapter in the manner
2596  *   described in the PDQ Port Specification:
2597  *
2598  *              1. Command Response Buffer is posted to adapter.
2599  *              2. Command Request Buffer is posted to adapter.
2600  *              3. Command Request consumer index is polled until it indicates that request
2601  *         buffer has been DMA'd to adapter.
2602  *              4. Command Response consumer index is polled until it indicates that response
2603  *         buffer has been DMA'd from adapter.
2604  *
2605  *   This ordering ensures that a response buffer is already available for the firmware
2606  *   to use once it's done processing the request buffer.
2607  *
2608  * Return Codes:
2609  *   DFX_K_SUCCESS        - DMA command succeeded
2610  *       DFX_K_OUTSTATE   - Adapter is NOT in proper state
2611  *   DFX_K_HW_TIMEOUT - DMA command timed out
2612  *
2613  * Assumptions:
2614  *   Command request buffer has already been filled with desired DMA command.
2615  *
2616  * Side Effects:
2617  *   None
2618  */
2619
2620 static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2621         {
2622         int status;                     /* adapter status */
2623         int timeout_cnt;        /* used in for loops */
2624
2625         /* Make sure the adapter is in a state that we can issue the DMA command in */
2626
2627         status = dfx_hw_adap_state_rd(bp);
2628         if ((status == PI_STATE_K_RESET)                ||
2629                 (status == PI_STATE_K_HALTED)           ||
2630                 (status == PI_STATE_K_DMA_UNAVAIL)      ||
2631                 (status == PI_STATE_K_UPGRADE))
2632                 return DFX_K_OUTSTATE;
2633
2634         /* Put response buffer on the command response queue */
2635
2636         bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2637                         ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2638         bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2639
2640         /* Bump (and wrap) the producer index and write out to register */
2641
2642         bp->cmd_rsp_reg.index.prod += 1;
2643         bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2644         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2645
2646         /* Put request buffer on the command request queue */
2647
2648         bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2649                         PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2650         bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2651
2652         /* Bump (and wrap) the producer index and write out to register */
2653
2654         bp->cmd_req_reg.index.prod += 1;
2655         bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2656         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2657
2658         /*
2659          * Here we wait for the command request consumer index to be equal
2660          * to the producer, indicating that the adapter has DMAed the request.
2661          */
2662
2663         for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2664                 {
2665                 if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2666                         break;
2667                 udelay(100);                    /* wait for 100 microseconds */
2668                 }
2669         if (timeout_cnt == 0)
2670                 return DFX_K_HW_TIMEOUT;
2671
2672         /* Bump (and wrap) the completion index and write out to register */
2673
2674         bp->cmd_req_reg.index.comp += 1;
2675         bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2676         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2677
2678         /*
2679          * Here we wait for the command response consumer index to be equal
2680          * to the producer, indicating that the adapter has DMAed the response.
2681          */
2682
2683         for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2684                 {
2685                 if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2686                         break;
2687                 udelay(100);                    /* wait for 100 microseconds */
2688                 }
2689         if (timeout_cnt == 0)
2690                 return DFX_K_HW_TIMEOUT;
2691
2692         /* Bump (and wrap) the completion index and write out to register */
2693
2694         bp->cmd_rsp_reg.index.comp += 1;
2695         bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2696         dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2697         return DFX_K_SUCCESS;
2698         }
2699
2700
2701 /*
2702  * ========================
2703  * = dfx_hw_port_ctrl_req =
2704  * ========================
2705  *
2706  * Overview:
2707  *   Sends PDQ port control command to adapter firmware
2708  *
2709  * Returns:
2710  *   Host data register value in host_data if ptr is not NULL
2711  *
2712  * Arguments:
2713  *   bp                 - pointer to board information
2714  *       command        - port control command
2715  *       data_a         - port data A register value
2716  *       data_b         - port data B register value
2717  *       host_data      - ptr to host data register value
2718  *
2719  * Functional Description:
2720  *   Send generic port control command to adapter by writing
2721  *   to various PDQ port registers, then polling for completion.
2722  *
2723  * Return Codes:
2724  *   DFX_K_SUCCESS        - port control command succeeded
2725  *   DFX_K_HW_TIMEOUT - port control command timed out
2726  *
2727  * Assumptions:
2728  *   None
2729  *
2730  * Side Effects:
2731  *   None
2732  */
2733
2734 static int dfx_hw_port_ctrl_req(
2735         DFX_board_t     *bp,
2736         PI_UINT32       command,
2737         PI_UINT32       data_a,
2738         PI_UINT32       data_b,
2739         PI_UINT32       *host_data
2740         )
2741
2742         {
2743         PI_UINT32       port_cmd;               /* Port Control command register value */
2744         int                     timeout_cnt;    /* used in for loops */
2745
2746         /* Set Command Error bit in command longword */
2747
2748         port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2749
2750         /* Issue port command to the adapter */
2751
2752         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2753         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2754         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2755
2756         /* Now wait for command to complete */
2757
2758         if (command == PI_PCTRL_M_BLAST_FLASH)
2759                 timeout_cnt = 600000;   /* set command timeout count to 60 seconds */
2760         else
2761                 timeout_cnt = 20000;    /* set command timeout count to 2 seconds */
2762
2763         for (; timeout_cnt > 0; timeout_cnt--)
2764                 {
2765                 dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2766                 if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2767                         break;
2768                 udelay(100);                    /* wait for 100 microseconds */
2769                 }
2770         if (timeout_cnt == 0)
2771                 return DFX_K_HW_TIMEOUT;
2772
2773         /*
2774          * If the address of host_data is non-zero, assume caller has supplied a
2775          * non NULL pointer, and return the contents of the HOST_DATA register in
2776          * it.
2777          */
2778
2779         if (host_data != NULL)
2780                 dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2781         return DFX_K_SUCCESS;
2782         }
2783
2784
2785 /*
2786  * =====================
2787  * = dfx_hw_adap_reset =
2788  * =====================
2789  *
2790  * Overview:
2791  *   Resets adapter
2792  *
2793  * Returns:
2794  *   None
2795  *
2796  * Arguments:
2797  *   bp   - pointer to board information
2798  *   type - type of reset to perform
2799  *
2800  * Functional Description:
2801  *   Issue soft reset to adapter by writing to PDQ Port Reset
2802  *   register.  Use incoming reset type to tell adapter what
2803  *   kind of reset operation to perform.
2804  *
2805  * Return Codes:
2806  *   None
2807  *
2808  * Assumptions:
2809  *   This routine merely issues a soft reset to the adapter.
2810  *   It is expected that after this routine returns, the caller
2811  *   will appropriately poll the Port Status register for the
2812  *   adapter to enter the proper state.
2813  *
2814  * Side Effects:
2815  *   Internal adapter registers are cleared.
2816  */
2817
2818 static void dfx_hw_adap_reset(
2819         DFX_board_t     *bp,
2820         PI_UINT32       type
2821         )
2822
2823         {
2824         /* Set Reset type and assert reset */
2825
2826         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type);        /* tell adapter type of reset */
2827         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2828
2829         /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2830
2831         udelay(20);
2832
2833         /* Deassert reset */
2834
2835         dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2836         }
2837
2838
2839 /*
2840  * ========================
2841  * = dfx_hw_adap_state_rd =
2842  * ========================
2843  *
2844  * Overview:
2845  *   Returns current adapter state
2846  *
2847  * Returns:
2848  *   Adapter state per PDQ Port Specification
2849  *
2850  * Arguments:
2851  *   bp - pointer to board information
2852  *
2853  * Functional Description:
2854  *   Reads PDQ Port Status register and returns adapter state.
2855  *
2856  * Return Codes:
2857  *   None
2858  *
2859  * Assumptions:
2860  *   None
2861  *
2862  * Side Effects:
2863  *   None
2864  */
2865
2866 static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2867         {
2868         PI_UINT32 port_status;          /* Port Status register value */
2869
2870         dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2871         return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE;
2872         }
2873
2874
2875 /*
2876  * =====================
2877  * = dfx_hw_dma_uninit =
2878  * =====================
2879  *
2880  * Overview:
2881  *   Brings adapter to DMA_UNAVAILABLE state
2882  *
2883  * Returns:
2884  *   Condition code
2885  *
2886  * Arguments:
2887  *   bp   - pointer to board information
2888  *   type - type of reset to perform
2889  *
2890  * Functional Description:
2891  *   Bring adapter to DMA_UNAVAILABLE state by performing the following:
2892  *              1. Set reset type bit in Port Data A Register then reset adapter.
2893  *              2. Check that adapter is in DMA_UNAVAILABLE state.
2894  *
2895  * Return Codes:
2896  *   DFX_K_SUCCESS        - adapter is in DMA_UNAVAILABLE state
2897  *   DFX_K_HW_TIMEOUT - adapter did not reset properly
2898  *
2899  * Assumptions:
2900  *   None
2901  *
2902  * Side Effects:
2903  *   Internal adapter registers are cleared.
2904  */
2905
2906 static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2907         {
2908         int timeout_cnt;        /* used in for loops */
2909
2910         /* Set reset type bit and reset adapter */
2911
2912         dfx_hw_adap_reset(bp, type);
2913
2914         /* Now wait for adapter to enter DMA_UNAVAILABLE state */
2915
2916         for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2917                 {
2918                 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2919                         break;
2920                 udelay(100);                                    /* wait for 100 microseconds */
2921                 }
2922         if (timeout_cnt == 0)
2923                 return DFX_K_HW_TIMEOUT;
2924         return DFX_K_SUCCESS;
2925         }
2926
2927 /*
2928  *      Align an sk_buff to a boundary power of 2
2929  *
2930  */
2931 #ifdef DYNAMIC_BUFFERS
2932 static void my_skb_align(struct sk_buff *skb, int n)
2933 {
2934         unsigned long x = (unsigned long)skb->data;
2935         unsigned long v;
2936
2937         v = ALIGN(x, n);        /* Where we want to be */
2938
2939         skb_reserve(skb, v - x);
2940 }
2941 #endif
2942
2943 /*
2944  * ================
2945  * = dfx_rcv_init =
2946  * ================
2947  *
2948  * Overview:
2949  *   Produces buffers to adapter LLC Host receive descriptor block
2950  *
2951  * Returns:
2952  *   None
2953  *
2954  * Arguments:
2955  *   bp - pointer to board information
2956  *   get_buffers - non-zero if buffers to be allocated
2957  *
2958  * Functional Description:
2959  *   This routine can be called during dfx_adap_init() or during an adapter
2960  *       reset.  It initializes the descriptor block and produces all allocated
2961  *   LLC Host queue receive buffers.
2962  *
2963  * Return Codes:
2964  *   Return 0 on success or -ENOMEM if buffer allocation failed (when using
2965  *   dynamic buffer allocation). If the buffer allocation failed, the
2966  *   already allocated buffers will not be released and the caller should do
2967  *   this.
2968  *
2969  * Assumptions:
2970  *   The PDQ has been reset and the adapter and driver maintained Type 2
2971  *   register indices are cleared.
2972  *
2973  * Side Effects:
2974  *   Receive buffers are posted to the adapter LLC queue and the adapter
2975  *   is notified.
2976  */
2977
2978 static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2979         {
2980         int     i, j;                                   /* used in for loop */
2981
2982         /*
2983          *  Since each receive buffer is a single fragment of same length, initialize
2984          *  first longword in each receive descriptor for entire LLC Host descriptor
2985          *  block.  Also initialize second longword in each receive descriptor with
2986          *  physical address of receive buffer.  We'll always allocate receive
2987          *  buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2988          *  block and produce new receive buffers by simply updating the receive
2989          *  producer index.
2990          *
2991          *      Assumptions:
2992          *              To support all shipping versions of PDQ, the receive buffer size
2993          *              must be mod 128 in length and the physical address must be 128 byte
2994          *              aligned.  In other words, bits 0-6 of the length and address must
2995          *              be zero for the following descriptor field entries to be correct on
2996          *              all PDQ-based boards.  We guaranteed both requirements during
2997          *              driver initialization when we allocated memory for the receive buffers.
2998          */
2999
3000         if (get_buffers) {
3001 #ifdef DYNAMIC_BUFFERS
3002         for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3003                 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3004                 {
3005                         struct sk_buff *newskb;
3006                         dma_addr_t dma_addr;
3007
3008                         newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE,
3009                                                     GFP_NOIO);
3010                         if (!newskb)
3011                                 return -ENOMEM;
3012                         /*
3013                          * align to 128 bytes for compatibility with
3014                          * the old EISA boards.
3015                          */
3016
3017                         my_skb_align(newskb, 128);
3018                         dma_addr = dma_map_single(bp->bus_dev,
3019                                                   newskb->data,
3020                                                   PI_RCV_DATA_K_SIZE_MAX,
3021                                                   DMA_FROM_DEVICE);
3022                         if (dma_mapping_error(bp->bus_dev, dma_addr)) {
3023                                 dev_kfree_skb(newskb);
3024                                 return -ENOMEM;
3025                         }
3026                         bp->descr_block_virt->rcv_data[i + j].long_0 =
3027                                 (u32)(PI_RCV_DESCR_M_SOP |
3028                                       ((PI_RCV_DATA_K_SIZE_MAX /
3029                                         PI_ALIGN_K_RCV_DATA_BUFF) <<
3030                                        PI_RCV_DESCR_V_SEG_LEN));
3031                         bp->descr_block_virt->rcv_data[i + j].long_1 =
3032                                 (u32)dma_addr;
3033
3034                         /*
3035                          * p_rcv_buff_va is only used inside the
3036                          * kernel so we put the skb pointer here.
3037                          */
3038                         bp->p_rcv_buff_va[i+j] = (char *) newskb;
3039                 }
3040 #else
3041         for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
3042                 for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3043                         {
3044                         bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
3045                                 ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
3046                         bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
3047                         bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
3048                         }
3049 #endif
3050         }
3051
3052         /* Update receive producer and Type 2 register */
3053
3054         bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
3055         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3056         return 0;
3057         }
3058
3059
3060 /*
3061  * =========================
3062  * = dfx_rcv_queue_process =
3063  * =========================
3064  *
3065  * Overview:
3066  *   Process received LLC frames.
3067  *
3068  * Returns:
3069  *   None
3070  *
3071  * Arguments:
3072  *   bp - pointer to board information
3073  *
3074  * Functional Description:
3075  *   Received LLC frames are processed until there are no more consumed frames.
3076  *   Once all frames are processed, the receive buffers are returned to the
3077  *   adapter.  Note that this algorithm fixes the length of time that can be spent
3078  *   in this routine, because there are a fixed number of receive buffers to
3079  *   process and buffers are not produced until this routine exits and returns
3080  *   to the ISR.
3081  *
3082  * Return Codes:
3083  *   None
3084  *
3085  * Assumptions:
3086  *   None
3087  *
3088  * Side Effects:
3089  *   None
3090  */
3091
3092 static void dfx_rcv_queue_process(
3093         DFX_board_t *bp
3094         )
3095
3096         {
3097         PI_TYPE_2_CONSUMER      *p_type_2_cons;         /* ptr to rcv/xmt consumer block register */
3098         char                            *p_buff;                        /* ptr to start of packet receive buffer (FMC descriptor) */
3099         u32                                     descr, pkt_len;         /* FMC descriptor field and packet length */
3100         struct sk_buff          *skb = NULL;                    /* pointer to a sk_buff to hold incoming packet data */
3101
3102         /* Service all consumed LLC receive frames */
3103
3104         p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3105         while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
3106                 {
3107                 /* Process any errors */
3108                 dma_addr_t dma_addr;
3109                 int entry;
3110
3111                 entry = bp->rcv_xmt_reg.index.rcv_comp;
3112 #ifdef DYNAMIC_BUFFERS
3113                 p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
3114 #else
3115                 p_buff = bp->p_rcv_buff_va[entry];
3116 #endif
3117                 dma_addr = bp->descr_block_virt->rcv_data[entry].long_1;
3118                 dma_sync_single_for_cpu(bp->bus_dev,
3119                                         dma_addr + RCV_BUFF_K_DESCR,
3120                                         sizeof(u32),
3121                                         DMA_FROM_DEVICE);
3122                 memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
3123
3124                 if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
3125                         {
3126                         if (descr & PI_FMC_DESCR_M_RCC_CRC)
3127                                 bp->rcv_crc_errors++;
3128                         else
3129                                 bp->rcv_frame_status_errors++;
3130                         }
3131                 else
3132                 {
3133                         int rx_in_place = 0;
3134
3135                         /* The frame was received without errors - verify packet length */
3136
3137                         pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
3138                         pkt_len -= 4;                           /* subtract 4 byte CRC */
3139                         if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3140                                 bp->rcv_length_errors++;
3141                         else{
3142 #ifdef DYNAMIC_BUFFERS
3143                                 struct sk_buff *newskb = NULL;
3144
3145                                 if (pkt_len > SKBUFF_RX_COPYBREAK) {
3146                                         dma_addr_t new_dma_addr;
3147
3148                                         newskb = netdev_alloc_skb(bp->dev,
3149                                                                   NEW_SKB_SIZE);
3150                                         if (newskb){
3151                                                 my_skb_align(newskb, 128);
3152                                                 new_dma_addr = dma_map_single(
3153                                                                 bp->bus_dev,
3154                                                                 newskb->data,
3155                                                                 PI_RCV_DATA_K_SIZE_MAX,
3156                                                                 DMA_FROM_DEVICE);
3157                                                 if (dma_mapping_error(
3158                                                                 bp->bus_dev,
3159                                                                 new_dma_addr)) {
3160                                                         dev_kfree_skb(newskb);
3161                                                         newskb = NULL;
3162                                                 }
3163                                         }
3164                                         if (newskb) {
3165                                                 rx_in_place = 1;
3166
3167                                                 skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
3168                                                 dma_unmap_single(bp->bus_dev,
3169                                                         dma_addr,
3170                                                         PI_RCV_DATA_K_SIZE_MAX,
3171                                                         DMA_FROM_DEVICE);
3172                                                 skb_reserve(skb, RCV_BUFF_K_PADDING);
3173                                                 bp->p_rcv_buff_va[entry] = (char *)newskb;
3174                                                 bp->descr_block_virt->rcv_data[entry].long_1 = (u32)new_dma_addr;
3175                                         }
3176                                 }
3177                                 if (!newskb)
3178 #endif
3179                                         /* Alloc new buffer to pass up,
3180                                          * add room for PRH. */
3181                                         skb = netdev_alloc_skb(bp->dev,
3182                                                                pkt_len + 3);
3183                                 if (skb == NULL)
3184                                         {
3185                                         printk("%s: Could not allocate receive buffer.  Dropping packet.\n", bp->dev->name);
3186                                         bp->rcv_discards++;
3187                                         break;
3188                                         }
3189                                 else {
3190                                         if (!rx_in_place) {
3191                                                 /* Receive buffer allocated, pass receive packet up */
3192                                                 dma_sync_single_for_cpu(
3193                                                         bp->bus_dev,
3194                                                         dma_addr +
3195                                                         RCV_BUFF_K_PADDING,
3196                                                         pkt_len + 3,
3197                                                         DMA_FROM_DEVICE);
3198
3199                                                 skb_copy_to_linear_data(skb,
3200                                                                p_buff + RCV_BUFF_K_PADDING,
3201                                                                pkt_len + 3);
3202                                         }
3203
3204                                         skb_reserve(skb,3);             /* adjust data field so that it points to FC byte */
3205                                         skb_put(skb, pkt_len);          /* pass up packet length, NOT including CRC */
3206                                         skb->protocol = fddi_type_trans(skb, bp->dev);
3207                                         bp->rcv_total_bytes += skb->len;
3208                                         netif_rx(skb);
3209
3210                                         /* Update the rcv counters */
3211                                         bp->rcv_total_frames++;
3212                                         if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
3213                                                 bp->rcv_multicast_frames++;
3214                                 }
3215                         }
3216                         }
3217
3218                 /*
3219                  * Advance the producer (for recycling) and advance the completion
3220                  * (for servicing received frames).  Note that it is okay to
3221                  * advance the producer without checking that it passes the
3222                  * completion index because they are both advanced at the same
3223                  * rate.
3224                  */
3225
3226                 bp->rcv_xmt_reg.index.rcv_prod += 1;
3227                 bp->rcv_xmt_reg.index.rcv_comp += 1;
3228                 }
3229         }
3230
3231
3232 /*
3233  * =====================
3234  * = dfx_xmt_queue_pkt =
3235  * =====================
3236  *
3237  * Overview:
3238  *   Queues packets for transmission
3239  *
3240  * Returns:
3241  *   Condition code
3242  *
3243  * Arguments:
3244  *   skb - pointer to sk_buff to queue for transmission
3245  *   dev - pointer to device information
3246  *
3247  * Functional Description:
3248  *   Here we assume that an incoming skb transmit request
3249  *   is contained in a single physically contiguous buffer
3250  *   in which the virtual address of the start of packet
3251  *   (skb->data) can be converted to a physical address
3252  *   by using dma_map_single().
3253  *
3254  *   Since the adapter architecture requires a three byte
3255  *   packet request header to prepend the start of packet,
3256  *   we'll write the three byte field immediately prior to
3257  *   the FC byte.  This assumption is valid because we've
3258  *   ensured that dev->hard_header_len includes three pad
3259  *   bytes.  By posting a single fragment to the adapter,
3260  *   we'll reduce the number of descriptor fetches and
3261  *   bus traffic needed to send the request.
3262  *
3263  *   Also, we can't free the skb until after it's been DMA'd
3264  *   out by the adapter, so we'll queue it in the driver and
3265  *   return it in dfx_xmt_done.
3266  *
3267  * Return Codes:
3268  *   0 - driver queued packet, link is unavailable, or skbuff was bad
3269  *       1 - caller should requeue the sk_buff for later transmission
3270  *
3271  * Assumptions:
3272  *       First and foremost, we assume the incoming skb pointer
3273  *   is NOT NULL and is pointing to a valid sk_buff structure.
3274  *
3275  *   The outgoing packet is complete, starting with the
3276  *   frame control byte including the last byte of data,
3277  *   but NOT including the 4 byte CRC.  We'll let the
3278  *   adapter hardware generate and append the CRC.
3279  *
3280  *   The entire packet is stored in one physically
3281  *   contiguous buffer which is not cached and whose
3282  *   32-bit physical address can be determined.
3283  *
3284  *   It's vital that this routine is NOT reentered for the
3285  *   same board and that the OS is not in another section of
3286  *   code (eg. dfx_int_common) for the same board on a
3287  *   different thread.
3288  *
3289  * Side Effects:
3290  *   None
3291  */
3292
3293 static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
3294                                      struct net_device *dev)
3295         {
3296         DFX_board_t             *bp = netdev_priv(dev);
3297         u8                      prod;                           /* local transmit producer index */
3298         PI_XMT_DESCR            *p_xmt_descr;           /* ptr to transmit descriptor block entry */
3299         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3300         dma_addr_t              dma_addr;
3301         unsigned long           flags;
3302
3303         netif_stop_queue(dev);
3304
3305         /*
3306          * Verify that incoming transmit request is OK
3307          *
3308          * Note: The packet size check is consistent with other
3309          *               Linux device drivers, although the correct packet
3310          *               size should be verified before calling the
3311          *               transmit routine.
3312          */
3313
3314         if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3315         {
3316                 printk("%s: Invalid packet length - %u bytes\n",
3317                         dev->name, skb->len);
3318                 bp->xmt_length_errors++;                /* bump error counter */
3319                 netif_wake_queue(dev);
3320                 dev_kfree_skb(skb);
3321                 return NETDEV_TX_OK;                    /* return "success" */
3322         }
3323         /*
3324          * See if adapter link is available, if not, free buffer
3325          *
3326          * Note: If the link isn't available, free buffer and return 0
3327          *               rather than tell the upper layer to requeue the packet.
3328          *               The methodology here is that by the time the link
3329          *               becomes available, the packet to be sent will be
3330          *               fairly stale.  By simply dropping the packet, the
3331          *               higher layer protocols will eventually time out
3332          *               waiting for response packets which it won't receive.
3333          */
3334
3335         if (bp->link_available == PI_K_FALSE)
3336                 {
3337                 if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL)  /* is link really available? */
3338                         bp->link_available = PI_K_TRUE;         /* if so, set flag and continue */
3339                 else
3340                         {
3341                         bp->xmt_discards++;                                     /* bump error counter */
3342                         dev_kfree_skb(skb);             /* free sk_buff now */
3343                         netif_wake_queue(dev);
3344                         return NETDEV_TX_OK;            /* return "success" */
3345                         }
3346                 }
3347
3348         /* Write the three PRH bytes immediately before the FC byte */
3349
3350         skb_push(skb, 3);
3351         skb->data[0] = DFX_PRH0_BYTE;   /* these byte values are defined */
3352         skb->data[1] = DFX_PRH1_BYTE;   /* in the Motorola FDDI MAC chip */
3353         skb->data[2] = DFX_PRH2_BYTE;   /* specification */
3354
3355         dma_addr = dma_map_single(bp->bus_dev, skb->data, skb->len,
3356                                   DMA_TO_DEVICE);
3357         if (dma_mapping_error(bp->bus_dev, dma_addr)) {
3358                 skb_pull(skb, 3);
3359                 return NETDEV_TX_BUSY;
3360         }
3361
3362         spin_lock_irqsave(&bp->lock, flags);
3363
3364         /* Get the current producer and the next free xmt data descriptor */
3365
3366         prod            = bp->rcv_xmt_reg.index.xmt_prod;
3367         p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3368
3369         /*
3370          * Get pointer to auxiliary queue entry to contain information
3371          * for this packet.
3372          *
3373          * Note: The current xmt producer index will become the
3374          *       current xmt completion index when we complete this
3375          *       packet later on.  So, we'll get the pointer to the
3376          *       next auxiliary queue entry now before we bump the
3377          *       producer index.
3378          */
3379
3380         p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]);     /* also bump producer index */
3381
3382         /*
3383          * Write the descriptor with buffer info and bump producer
3384          *
3385          * Note: Since we need to start DMA from the packet request
3386          *               header, we'll add 3 bytes to the DMA buffer length,
3387          *               and we'll determine the physical address of the
3388          *               buffer from the PRH, not skb->data.
3389          *
3390          * Assumptions:
3391          *               1. Packet starts with the frame control (FC) byte
3392          *                  at skb->data.
3393          *               2. The 4-byte CRC is not appended to the buffer or
3394          *                      included in the length.
3395          *               3. Packet length (skb->len) is from FC to end of
3396          *                      data, inclusive.
3397          *               4. The packet length does not exceed the maximum
3398          *                      FDDI LLC frame length of 4491 bytes.
3399          *               5. The entire packet is contained in a physically
3400          *                      contiguous, non-cached, locked memory space
3401          *                      comprised of a single buffer pointed to by
3402          *                      skb->data.
3403          *               6. The physical address of the start of packet
3404          *                      can be determined from the virtual address
3405          *                      by using dma_map_single() and is only 32-bits
3406          *                      wide.
3407          */
3408
3409         p_xmt_descr->long_0     = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
3410         p_xmt_descr->long_1 = (u32)dma_addr;
3411
3412         /*
3413          * Verify that descriptor is actually available
3414          *
3415          * Note: If descriptor isn't available, return 1 which tells
3416          *       the upper layer to requeue the packet for later
3417          *       transmission.
3418          *
3419          *       We need to ensure that the producer never reaches the
3420          *       completion, except to indicate that the queue is empty.
3421          */
3422
3423         if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3424         {
3425                 skb_pull(skb,3);
3426                 spin_unlock_irqrestore(&bp->lock, flags);
3427                 return NETDEV_TX_BUSY;  /* requeue packet for later */
3428         }
3429
3430         /*
3431          * Save info for this packet for xmt done indication routine
3432          *
3433          * Normally, we'd save the producer index in the p_xmt_drv_descr
3434          * structure so that we'd have it handy when we complete this
3435          * packet later (in dfx_xmt_done).  However, since the current
3436          * transmit architecture guarantees a single fragment for the
3437          * entire packet, we can simply bump the completion index by
3438          * one (1) for each completed packet.
3439          *
3440          * Note: If this assumption changes and we're presented with
3441          *       an inconsistent number of transmit fragments for packet
3442          *       data, we'll need to modify this code to save the current
3443          *       transmit producer index.
3444          */
3445
3446         p_xmt_drv_descr->p_skb = skb;
3447
3448         /* Update Type 2 register */
3449
3450         bp->rcv_xmt_reg.index.xmt_prod = prod;
3451         dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3452         spin_unlock_irqrestore(&bp->lock, flags);
3453         netif_wake_queue(dev);
3454         return NETDEV_TX_OK;    /* packet queued to adapter */
3455         }
3456
3457
3458 /*
3459  * ================
3460  * = dfx_xmt_done =
3461  * ================
3462  *
3463  * Overview:
3464  *   Processes all frames that have been transmitted.
3465  *
3466  * Returns:
3467  *   None
3468  *
3469  * Arguments:
3470  *   bp - pointer to board information
3471  *
3472  * Functional Description:
3473  *   For all consumed transmit descriptors that have not
3474  *   yet been completed, we'll free the skb we were holding
3475  *   onto using dev_kfree_skb and bump the appropriate
3476  *   counters.
3477  *
3478  * Return Codes:
3479  *   None
3480  *
3481  * Assumptions:
3482  *   The Type 2 register is not updated in this routine.  It is
3483  *   assumed that it will be updated in the ISR when dfx_xmt_done
3484  *   returns.
3485  *
3486  * Side Effects:
3487  *   None
3488  */
3489
3490 static int dfx_xmt_done(DFX_board_t *bp)
3491         {
3492         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3493         PI_TYPE_2_CONSUMER      *p_type_2_cons;         /* ptr to rcv/xmt consumer block register */
3494         u8                      comp;                   /* local transmit completion index */
3495         int                     freed = 0;              /* buffers freed */
3496
3497         /* Service all consumed transmit frames */
3498
3499         p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3500         while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3501                 {
3502                 /* Get pointer to the transmit driver descriptor block information */
3503
3504                 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3505
3506                 /* Increment transmit counters */
3507
3508                 bp->xmt_total_frames++;
3509                 bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3510
3511                 /* Return skb to operating system */
3512                 comp = bp->rcv_xmt_reg.index.xmt_comp;
3513                 dma_unmap_single(bp->bus_dev,
3514                                  bp->descr_block_virt->xmt_data[comp].long_1,
3515                                  p_xmt_drv_descr->p_skb->len,
3516                                  DMA_TO_DEVICE);
3517                 dev_consume_skb_irq(p_xmt_drv_descr->p_skb);
3518
3519                 /*
3520                  * Move to start of next packet by updating completion index
3521                  *
3522                  * Here we assume that a transmit packet request is always
3523                  * serviced by posting one fragment.  We can therefore
3524                  * simplify the completion code by incrementing the
3525                  * completion index by one.  This code will need to be
3526                  * modified if this assumption changes.  See comments
3527                  * in dfx_xmt_queue_pkt for more details.
3528                  */
3529
3530                 bp->rcv_xmt_reg.index.xmt_comp += 1;
3531                 freed++;
3532                 }
3533         return freed;
3534         }
3535
3536
3537 /*
3538  * =================
3539  * = dfx_rcv_flush =
3540  * =================
3541  *
3542  * Overview:
3543  *   Remove all skb's in the receive ring.
3544  *
3545  * Returns:
3546  *   None
3547  *
3548  * Arguments:
3549  *   bp - pointer to board information
3550  *
3551  * Functional Description:
3552  *   Free's all the dynamically allocated skb's that are
3553  *   currently attached to the device receive ring. This
3554  *   function is typically only used when the device is
3555  *   initialized or reinitialized.
3556  *
3557  * Return Codes:
3558  *   None
3559  *
3560  * Side Effects:
3561  *   None
3562  */
3563 #ifdef DYNAMIC_BUFFERS
3564 static void dfx_rcv_flush( DFX_board_t *bp )
3565         {
3566         int i, j;
3567
3568         for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3569                 for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3570                 {
3571                         struct sk_buff *skb;
3572                         skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3573                         if (skb) {
3574                                 dma_unmap_single(bp->bus_dev,
3575                                                  bp->descr_block_virt->rcv_data[i+j].long_1,
3576                                                  PI_RCV_DATA_K_SIZE_MAX,
3577                                                  DMA_FROM_DEVICE);
3578                                 dev_kfree_skb(skb);
3579                         }
3580                         bp->p_rcv_buff_va[i+j] = NULL;
3581                 }
3582
3583         }
3584 #endif /* DYNAMIC_BUFFERS */
3585
3586 /*
3587  * =================
3588  * = dfx_xmt_flush =
3589  * =================
3590  *
3591  * Overview:
3592  *   Processes all frames whether they've been transmitted
3593  *   or not.
3594  *
3595  * Returns:
3596  *   None
3597  *
3598  * Arguments:
3599  *   bp - pointer to board information
3600  *
3601  * Functional Description:
3602  *   For all produced transmit descriptors that have not
3603  *   yet been completed, we'll free the skb we were holding
3604  *   onto using dev_kfree_skb and bump the appropriate
3605  *   counters.  Of course, it's possible that some of
3606  *   these transmit requests actually did go out, but we
3607  *   won't make that distinction here.  Finally, we'll
3608  *   update the consumer index to match the producer.
3609  *
3610  * Return Codes:
3611  *   None
3612  *
3613  * Assumptions:
3614  *   This routine does NOT update the Type 2 register.  It
3615  *   is assumed that this routine is being called during a
3616  *   transmit flush interrupt, or a shutdown or close routine.
3617  *
3618  * Side Effects:
3619  *   None
3620  */
3621
3622 static void dfx_xmt_flush( DFX_board_t *bp )
3623         {
3624         u32                     prod_cons;              /* rcv/xmt consumer block longword */
3625         XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3626         u8                      comp;                   /* local transmit completion index */
3627
3628         /* Flush all outstanding transmit frames */
3629
3630         while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3631                 {
3632                 /* Get pointer to the transmit driver descriptor block information */
3633
3634                 p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3635
3636                 /* Return skb to operating system */
3637                 comp = bp->rcv_xmt_reg.index.xmt_comp;
3638                 dma_unmap_single(bp->bus_dev,
3639                                  bp->descr_block_virt->xmt_data[comp].long_1,
3640                                  p_xmt_drv_descr->p_skb->len,
3641                                  DMA_TO_DEVICE);
3642                 dev_kfree_skb(p_xmt_drv_descr->p_skb);
3643
3644                 /* Increment transmit error counter */
3645
3646                 bp->xmt_discards++;
3647
3648                 /*
3649                  * Move to start of next packet by updating completion index
3650                  *
3651                  * Here we assume that a transmit packet request is always
3652                  * serviced by posting one fragment.  We can therefore
3653                  * simplify the completion code by incrementing the
3654                  * completion index by one.  This code will need to be
3655                  * modified if this assumption changes.  See comments
3656                  * in dfx_xmt_queue_pkt for more details.
3657                  */
3658
3659                 bp->rcv_xmt_reg.index.xmt_comp += 1;
3660                 }
3661
3662         /* Update the transmit consumer index in the consumer block */
3663
3664         prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3665         prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3666         bp->cons_block_virt->xmt_rcv_data = prod_cons;
3667         }
3668
3669 /*
3670  * ==================
3671  * = dfx_unregister =
3672  * ==================
3673  *
3674  * Overview:
3675  *   Shuts down an FDDI controller
3676  *
3677  * Returns:
3678  *   Condition code
3679  *
3680  * Arguments:
3681  *   bdev - pointer to device information
3682  *
3683  * Functional Description:
3684  *
3685  * Return Codes:
3686  *   None
3687  *
3688  * Assumptions:
3689  *   It compiles so it should work :-( (PCI cards do :-)
3690  *
3691  * Side Effects:
3692  *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
3693  *   freed.
3694  */
3695 static void dfx_unregister(struct device *bdev)
3696 {
3697         struct net_device *dev = dev_get_drvdata(bdev);
3698         DFX_board_t *bp = netdev_priv(dev);
3699         int dfx_bus_pci = dev_is_pci(bdev);
3700         resource_size_t bar_start[3] = {0};     /* pointers to ports */
3701         resource_size_t bar_len[3] = {0};       /* resource lengths */
3702         int             alloc_size;             /* total buffer size used */
3703
3704         unregister_netdev(dev);
3705
3706         alloc_size = sizeof(PI_DESCR_BLOCK) +
3707                      PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3708 #ifndef DYNAMIC_BUFFERS
3709                      (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3710 #endif
3711                      sizeof(PI_CONSUMER_BLOCK) +
3712                      (PI_ALIGN_K_DESC_BLK - 1);
3713         if (bp->kmalloced)
3714                 dma_free_coherent(bdev, alloc_size,
3715                                   bp->kmalloced, bp->kmalloced_dma);
3716
3717         dfx_bus_uninit(dev);
3718
3719         dfx_get_bars(bp, bar_start, bar_len);
3720         if (bar_start[2] != 0)
3721                 release_region(bar_start[2], bar_len[2]);
3722         if (bar_start[1] != 0)
3723                 release_region(bar_start[1], bar_len[1]);
3724         if (dfx_use_mmio) {
3725                 iounmap(bp->base.mem);
3726                 release_mem_region(bar_start[0], bar_len[0]);
3727         } else
3728                 release_region(bar_start[0], bar_len[0]);
3729
3730         if (dfx_bus_pci)
3731                 pci_disable_device(to_pci_dev(bdev));
3732
3733         free_netdev(dev);
3734 }
3735
3736
3737 static int __maybe_unused dfx_dev_register(struct device *);
3738 static int __maybe_unused dfx_dev_unregister(struct device *);
3739
3740 #ifdef CONFIG_PCI
3741 static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *);
3742 static void dfx_pci_unregister(struct pci_dev *);
3743
3744 static const struct pci_device_id dfx_pci_table[] = {
3745         { PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
3746         { }
3747 };
3748 MODULE_DEVICE_TABLE(pci, dfx_pci_table);
3749
3750 static struct pci_driver dfx_pci_driver = {
3751         .name           = DRV_NAME,
3752         .id_table       = dfx_pci_table,
3753         .probe          = dfx_pci_register,
3754         .remove         = dfx_pci_unregister,
3755 };
3756
3757 static int dfx_pci_register(struct pci_dev *pdev,
3758                             const struct pci_device_id *ent)
3759 {
3760         return dfx_register(&pdev->dev);
3761 }
3762
3763 static void dfx_pci_unregister(struct pci_dev *pdev)
3764 {
3765         dfx_unregister(&pdev->dev);
3766 }
3767 #endif /* CONFIG_PCI */
3768
3769 #ifdef CONFIG_EISA
3770 static const struct eisa_device_id dfx_eisa_table[] = {
3771         { "DEC3001", DEFEA_PROD_ID_1 },
3772         { "DEC3002", DEFEA_PROD_ID_2 },
3773         { "DEC3003", DEFEA_PROD_ID_3 },
3774         { "DEC3004", DEFEA_PROD_ID_4 },
3775         { }
3776 };
3777 MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
3778
3779 static struct eisa_driver dfx_eisa_driver = {
3780         .id_table       = dfx_eisa_table,
3781         .driver         = {
3782                 .name   = DRV_NAME,
3783                 .bus    = &eisa_bus_type,
3784                 .probe  = dfx_dev_register,
3785                 .remove = dfx_dev_unregister,
3786         },
3787 };
3788 #endif /* CONFIG_EISA */
3789
3790 #ifdef CONFIG_TC
3791 static struct tc_device_id const dfx_tc_table[] = {
3792         { "DEC     ", "PMAF-FA " },
3793         { "DEC     ", "PMAF-FD " },
3794         { "DEC     ", "PMAF-FS " },
3795         { "DEC     ", "PMAF-FU " },
3796         { }
3797 };
3798 MODULE_DEVICE_TABLE(tc, dfx_tc_table);
3799
3800 static struct tc_driver dfx_tc_driver = {
3801         .id_table       = dfx_tc_table,
3802         .driver         = {
3803                 .name   = DRV_NAME,
3804                 .bus    = &tc_bus_type,
3805                 .probe  = dfx_dev_register,
3806                 .remove = dfx_dev_unregister,
3807         },
3808 };
3809 #endif /* CONFIG_TC */
3810
3811 static int __maybe_unused dfx_dev_register(struct device *dev)
3812 {
3813         int status;
3814
3815         status = dfx_register(dev);
3816         if (!status)
3817                 get_device(dev);
3818         return status;
3819 }
3820
3821 static int __maybe_unused dfx_dev_unregister(struct device *dev)
3822 {
3823         put_device(dev);
3824         dfx_unregister(dev);
3825         return 0;
3826 }
3827
3828
3829 static int dfx_init(void)
3830 {
3831         int status;
3832
3833         status = pci_register_driver(&dfx_pci_driver);
3834         if (status)
3835                 goto err_pci_register;
3836
3837         status = eisa_driver_register(&dfx_eisa_driver);
3838         if (status)
3839                 goto err_eisa_register;
3840
3841         status = tc_register_driver(&dfx_tc_driver);
3842         if (status)
3843                 goto err_tc_register;
3844
3845         return 0;
3846
3847 err_tc_register:
3848         eisa_driver_unregister(&dfx_eisa_driver);
3849 err_eisa_register:
3850         pci_unregister_driver(&dfx_pci_driver);
3851 err_pci_register:
3852         return status;
3853 }
3854
3855 static void dfx_cleanup(void)
3856 {
3857         tc_unregister_driver(&dfx_tc_driver);
3858         eisa_driver_unregister(&dfx_eisa_driver);
3859         pci_unregister_driver(&dfx_pci_driver);
3860 }
3861
3862 module_init(dfx_init);
3863 module_exit(dfx_cleanup);
3864 MODULE_AUTHOR("Lawrence V. Stefani");
3865 MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
3866                    DRV_VERSION " " DRV_RELDATE);
3867 MODULE_LICENSE("GPL");