GNU Linux-libre 6.8.9-gnu
[releases.git] / drivers / net / ethernet / tundra / tsi108_eth.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
3
4   Copyright(c) 2006 Tundra Semiconductor Corporation.
5
6
7 *******************************************************************************/
8
9 /* This driver is based on the driver code originally developed
10  * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
11  * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
12  *
13  * Currently changes from original version are:
14  * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
15  * - modifications to handle two ports independently and support for
16  *   additional PHY devices (alexandre.bounine@tundra.com)
17  * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
18  *
19  */
20
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/interrupt.h>
24 #include <linux/net.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/ethtool.h>
28 #include <linux/skbuff.h>
29 #include <linux/spinlock.h>
30 #include <linux/delay.h>
31 #include <linux/crc32.h>
32 #include <linux/mii.h>
33 #include <linux/device.h>
34 #include <linux/pci.h>
35 #include <linux/rtnetlink.h>
36 #include <linux/timer.h>
37 #include <linux/platform_device.h>
38 #include <linux/gfp.h>
39
40 #include <asm/io.h>
41 #include <asm/tsi108.h>
42
43 #include "tsi108_eth.h"
44
45 #define MII_READ_DELAY 10000    /* max link wait time in msec */
46
47 #define TSI108_RXRING_LEN     256
48
49 /* NOTE: The driver currently does not support receiving packets
50  * larger than the buffer size, so don't decrease this (unless you
51  * want to add such support).
52  */
53 #define TSI108_RXBUF_SIZE     1536
54
55 #define TSI108_TXRING_LEN     256
56
57 #define TSI108_TX_INT_FREQ    64
58
59 /* Check the phy status every half a second. */
60 #define CHECK_PHY_INTERVAL (HZ/2)
61
62 struct tsi108_prv_data {
63         void  __iomem *regs;    /* Base of normal regs */
64         void  __iomem *phyregs; /* Base of register bank used for PHY access */
65
66         struct net_device *dev;
67         struct napi_struct napi;
68
69         unsigned int phy;               /* Index of PHY for this interface */
70         unsigned int irq_num;
71         unsigned int id;
72         unsigned int phy_type;
73
74         struct timer_list timer;/* Timer that triggers the check phy function */
75         unsigned int rxtail;    /* Next entry in rxring to read */
76         unsigned int rxhead;    /* Next entry in rxring to give a new buffer */
77         unsigned int rxfree;    /* Number of free, allocated RX buffers */
78
79         unsigned int rxpending; /* Non-zero if there are still descriptors
80                                  * to be processed from a previous descriptor
81                                  * interrupt condition that has been cleared */
82
83         unsigned int txtail;    /* Next TX descriptor to check status on */
84         unsigned int txhead;    /* Next TX descriptor to use */
85
86         /* Number of free TX descriptors.  This could be calculated from
87          * rxhead and rxtail if one descriptor were left unused to disambiguate
88          * full and empty conditions, but it's simpler to just keep track
89          * explicitly. */
90
91         unsigned int txfree;
92
93         unsigned int phy_ok;            /* The PHY is currently powered on. */
94
95         /* PHY status (duplex is 1 for half, 2 for full,
96          * so that the default 0 indicates that neither has
97          * yet been configured). */
98
99         unsigned int link_up;
100         unsigned int speed;
101         unsigned int duplex;
102
103         tx_desc *txring;
104         rx_desc *rxring;
105         struct sk_buff *txskbs[TSI108_TXRING_LEN];
106         struct sk_buff *rxskbs[TSI108_RXRING_LEN];
107
108         dma_addr_t txdma, rxdma;
109
110         /* txlock nests in misclock and phy_lock */
111
112         spinlock_t txlock, misclock;
113
114         /* stats is used to hold the upper bits of each hardware counter,
115          * and tmpstats is used to hold the full values for returning
116          * to the caller of get_stats().  They must be separate in case
117          * an overflow interrupt occurs before the stats are consumed.
118          */
119
120         struct net_device_stats stats;
121         struct net_device_stats tmpstats;
122
123         /* These stats are kept separate in hardware, thus require individual
124          * fields for handling carry.  They are combined in get_stats.
125          */
126
127         unsigned long rx_fcs;   /* Add to rx_frame_errors */
128         unsigned long rx_short_fcs;     /* Add to rx_frame_errors */
129         unsigned long rx_long_fcs;      /* Add to rx_frame_errors */
130         unsigned long rx_underruns;     /* Add to rx_length_errors */
131         unsigned long rx_overruns;      /* Add to rx_length_errors */
132
133         unsigned long tx_coll_abort;    /* Add to tx_aborted_errors/collisions */
134         unsigned long tx_pause_drop;    /* Add to tx_aborted_errors */
135
136         unsigned long mc_hash[16];
137         u32 msg_enable;                 /* debug message level */
138         struct mii_if_info mii_if;
139         unsigned int init_media;
140
141         struct platform_device *pdev;
142 };
143
144 static void tsi108_timed_checker(struct timer_list *t);
145
146 #ifdef DEBUG
147 static void dump_eth_one(struct net_device *dev)
148 {
149         struct tsi108_prv_data *data = netdev_priv(dev);
150
151         printk("Dumping %s...\n", dev->name);
152         printk("intstat %x intmask %x phy_ok %d"
153                " link %d speed %d duplex %d\n",
154                TSI_READ(TSI108_EC_INTSTAT),
155                TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
156                data->link_up, data->speed, data->duplex);
157
158         printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
159                data->txhead, data->txtail, data->txfree,
160                TSI_READ(TSI108_EC_TXSTAT),
161                TSI_READ(TSI108_EC_TXESTAT),
162                TSI_READ(TSI108_EC_TXERR));
163
164         printk("RX: head %d, tail %d, free %d, stat %x,"
165                " estat %x, err %x, pending %d\n\n",
166                data->rxhead, data->rxtail, data->rxfree,
167                TSI_READ(TSI108_EC_RXSTAT),
168                TSI_READ(TSI108_EC_RXESTAT),
169                TSI_READ(TSI108_EC_RXERR), data->rxpending);
170 }
171 #endif
172
173 /* Synchronization is needed between the thread and up/down events.
174  * Note that the PHY is accessed through the same registers for both
175  * interfaces, so this can't be made interface-specific.
176  */
177
178 static DEFINE_SPINLOCK(phy_lock);
179
180 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
181 {
182         unsigned i;
183
184         TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
185                                 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
186                                 (reg << TSI108_MAC_MII_ADDR_REG));
187         TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
188         TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
189         for (i = 0; i < 100; i++) {
190                 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
191                       (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
192                         break;
193                 udelay(10);
194         }
195
196         if (i == 100)
197                 return 0xffff;
198         else
199                 return TSI_READ_PHY(TSI108_MAC_MII_DATAIN);
200 }
201
202 static void tsi108_write_mii(struct tsi108_prv_data *data,
203                                 int reg, u16 val)
204 {
205         unsigned i = 100;
206         TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
207                                 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
208                                 (reg << TSI108_MAC_MII_ADDR_REG));
209         TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
210         while (i--) {
211                 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
212                         TSI108_MAC_MII_IND_BUSY))
213                         break;
214                 udelay(10);
215         }
216 }
217
218 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
219 {
220         struct tsi108_prv_data *data = netdev_priv(dev);
221         return tsi108_read_mii(data, reg);
222 }
223
224 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
225 {
226         struct tsi108_prv_data *data = netdev_priv(dev);
227         tsi108_write_mii(data, reg, val);
228 }
229
230 static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
231                                         int reg, u16 val)
232 {
233         unsigned i = 1000;
234         TSI_WRITE(TSI108_MAC_MII_ADDR,
235                              (0x1e << TSI108_MAC_MII_ADDR_PHY)
236                              | (reg << TSI108_MAC_MII_ADDR_REG));
237         TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
238         while(i--) {
239                 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
240                         return;
241                 udelay(10);
242         }
243         printk(KERN_ERR "%s function time out\n", __func__);
244 }
245
246 static int mii_speed(struct mii_if_info *mii)
247 {
248         int advert, lpa, val, media;
249         int lpa2 = 0;
250         int speed;
251
252         if (!mii_link_ok(mii))
253                 return 0;
254
255         val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
256         if ((val & BMSR_ANEGCOMPLETE) == 0)
257                 return 0;
258
259         advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
260         lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
261         media = mii_nway_result(advert & lpa);
262
263         if (mii->supports_gmii)
264                 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
265
266         speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
267                         (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
268         return speed;
269 }
270
271 static void tsi108_check_phy(struct net_device *dev)
272 {
273         struct tsi108_prv_data *data = netdev_priv(dev);
274         u32 mac_cfg2_reg, portctrl_reg;
275         u32 duplex;
276         u32 speed;
277         unsigned long flags;
278
279         spin_lock_irqsave(&phy_lock, flags);
280
281         if (!data->phy_ok)
282                 goto out;
283
284         duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
285         data->init_media = 0;
286
287         if (netif_carrier_ok(dev)) {
288
289                 speed = mii_speed(&data->mii_if);
290
291                 if ((speed != data->speed) || duplex) {
292
293                         mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
294                         portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
295
296                         mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
297
298                         if (speed == 1000) {
299                                 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
300                                 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
301                         } else {
302                                 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
303                                 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
304                         }
305
306                         data->speed = speed;
307
308                         if (data->mii_if.full_duplex) {
309                                 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
310                                 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
311                                 data->duplex = 2;
312                         } else {
313                                 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
314                                 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
315                                 data->duplex = 1;
316                         }
317
318                         TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
319                         TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
320                 }
321
322                 if (data->link_up == 0) {
323                         /* The manual says it can take 3-4 usecs for the speed change
324                          * to take effect.
325                          */
326                         udelay(5);
327
328                         spin_lock(&data->txlock);
329                         if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
330                                 netif_wake_queue(dev);
331
332                         data->link_up = 1;
333                         spin_unlock(&data->txlock);
334                 }
335         } else {
336                 if (data->link_up == 1) {
337                         netif_stop_queue(dev);
338                         data->link_up = 0;
339                         printk(KERN_NOTICE "%s : link is down\n", dev->name);
340                 }
341
342                 goto out;
343         }
344
345
346 out:
347         spin_unlock_irqrestore(&phy_lock, flags);
348 }
349
350 static inline void
351 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
352                       unsigned long *upper)
353 {
354         if (carry & carry_bit)
355                 *upper += carry_shift;
356 }
357
358 static void tsi108_stat_carry(struct net_device *dev)
359 {
360         struct tsi108_prv_data *data = netdev_priv(dev);
361         unsigned long flags;
362         u32 carry1, carry2;
363
364         spin_lock_irqsave(&data->misclock, flags);
365
366         carry1 = TSI_READ(TSI108_STAT_CARRY1);
367         carry2 = TSI_READ(TSI108_STAT_CARRY2);
368
369         TSI_WRITE(TSI108_STAT_CARRY1, carry1);
370         TSI_WRITE(TSI108_STAT_CARRY2, carry2);
371
372         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
373                               TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
374
375         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
376                               TSI108_STAT_RXPKTS_CARRY,
377                               &data->stats.rx_packets);
378
379         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
380                               TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
381
382         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
383                               TSI108_STAT_RXMCAST_CARRY,
384                               &data->stats.multicast);
385
386         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
387                               TSI108_STAT_RXALIGN_CARRY,
388                               &data->stats.rx_frame_errors);
389
390         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
391                               TSI108_STAT_RXLENGTH_CARRY,
392                               &data->stats.rx_length_errors);
393
394         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
395                               TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
396
397         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
398                               TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
399
400         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
401                               TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
402
403         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
404                               TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
405
406         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
407                               TSI108_STAT_RXDROP_CARRY,
408                               &data->stats.rx_missed_errors);
409
410         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
411                               TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
412
413         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
414                               TSI108_STAT_TXPKTS_CARRY,
415                               &data->stats.tx_packets);
416
417         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
418                               TSI108_STAT_TXEXDEF_CARRY,
419                               &data->stats.tx_aborted_errors);
420
421         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
422                               TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
423
424         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
425                               TSI108_STAT_TXTCOL_CARRY,
426                               &data->stats.collisions);
427
428         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
429                               TSI108_STAT_TXPAUSEDROP_CARRY,
430                               &data->tx_pause_drop);
431
432         spin_unlock_irqrestore(&data->misclock, flags);
433 }
434
435 /* Read a stat counter atomically with respect to carries.
436  * data->misclock must be held.
437  */
438 static inline unsigned long
439 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
440                  int carry_shift, unsigned long *upper)
441 {
442         int carryreg;
443         unsigned long val;
444
445         if (reg < 0xb0)
446                 carryreg = TSI108_STAT_CARRY1;
447         else
448                 carryreg = TSI108_STAT_CARRY2;
449
450       again:
451         val = TSI_READ(reg) | *upper;
452
453         /* Check to see if it overflowed, but the interrupt hasn't
454          * been serviced yet.  If so, handle the carry here, and
455          * try again.
456          */
457
458         if (unlikely(TSI_READ(carryreg) & carry_bit)) {
459                 *upper += carry_shift;
460                 TSI_WRITE(carryreg, carry_bit);
461                 goto again;
462         }
463
464         return val;
465 }
466
467 static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
468 {
469         unsigned long excol;
470
471         struct tsi108_prv_data *data = netdev_priv(dev);
472         spin_lock_irq(&data->misclock);
473
474         data->tmpstats.rx_packets =
475             tsi108_read_stat(data, TSI108_STAT_RXPKTS,
476                              TSI108_STAT_CARRY1_RXPKTS,
477                              TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
478
479         data->tmpstats.tx_packets =
480             tsi108_read_stat(data, TSI108_STAT_TXPKTS,
481                              TSI108_STAT_CARRY2_TXPKTS,
482                              TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
483
484         data->tmpstats.rx_bytes =
485             tsi108_read_stat(data, TSI108_STAT_RXBYTES,
486                              TSI108_STAT_CARRY1_RXBYTES,
487                              TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
488
489         data->tmpstats.tx_bytes =
490             tsi108_read_stat(data, TSI108_STAT_TXBYTES,
491                              TSI108_STAT_CARRY2_TXBYTES,
492                              TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
493
494         data->tmpstats.multicast =
495             tsi108_read_stat(data, TSI108_STAT_RXMCAST,
496                              TSI108_STAT_CARRY1_RXMCAST,
497                              TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
498
499         excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
500                                  TSI108_STAT_CARRY2_TXEXCOL,
501                                  TSI108_STAT_TXEXCOL_CARRY,
502                                  &data->tx_coll_abort);
503
504         data->tmpstats.collisions =
505             tsi108_read_stat(data, TSI108_STAT_TXTCOL,
506                              TSI108_STAT_CARRY2_TXTCOL,
507                              TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
508
509         data->tmpstats.collisions += excol;
510
511         data->tmpstats.rx_length_errors =
512             tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
513                              TSI108_STAT_CARRY1_RXLENGTH,
514                              TSI108_STAT_RXLENGTH_CARRY,
515                              &data->stats.rx_length_errors);
516
517         data->tmpstats.rx_length_errors +=
518             tsi108_read_stat(data, TSI108_STAT_RXRUNT,
519                              TSI108_STAT_CARRY1_RXRUNT,
520                              TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
521
522         data->tmpstats.rx_length_errors +=
523             tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
524                              TSI108_STAT_CARRY1_RXJUMBO,
525                              TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
526
527         data->tmpstats.rx_frame_errors =
528             tsi108_read_stat(data, TSI108_STAT_RXALIGN,
529                              TSI108_STAT_CARRY1_RXALIGN,
530                              TSI108_STAT_RXALIGN_CARRY,
531                              &data->stats.rx_frame_errors);
532
533         data->tmpstats.rx_frame_errors +=
534             tsi108_read_stat(data, TSI108_STAT_RXFCS,
535                              TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
536                              &data->rx_fcs);
537
538         data->tmpstats.rx_frame_errors +=
539             tsi108_read_stat(data, TSI108_STAT_RXFRAG,
540                              TSI108_STAT_CARRY1_RXFRAG,
541                              TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
542
543         data->tmpstats.rx_missed_errors =
544             tsi108_read_stat(data, TSI108_STAT_RXDROP,
545                              TSI108_STAT_CARRY1_RXDROP,
546                              TSI108_STAT_RXDROP_CARRY,
547                              &data->stats.rx_missed_errors);
548
549         /* These three are maintained by software. */
550         data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
551         data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
552
553         data->tmpstats.tx_aborted_errors =
554             tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
555                              TSI108_STAT_CARRY2_TXEXDEF,
556                              TSI108_STAT_TXEXDEF_CARRY,
557                              &data->stats.tx_aborted_errors);
558
559         data->tmpstats.tx_aborted_errors +=
560             tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
561                              TSI108_STAT_CARRY2_TXPAUSE,
562                              TSI108_STAT_TXPAUSEDROP_CARRY,
563                              &data->tx_pause_drop);
564
565         data->tmpstats.tx_aborted_errors += excol;
566
567         data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
568         data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
569             data->tmpstats.rx_crc_errors +
570             data->tmpstats.rx_frame_errors +
571             data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
572
573         spin_unlock_irq(&data->misclock);
574         return &data->tmpstats;
575 }
576
577 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
578 {
579         TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
580                              TSI108_EC_RXQ_PTRHIGH_VALID);
581
582         TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
583                              | TSI108_EC_RXCTRL_QUEUE0);
584 }
585
586 static void tsi108_restart_tx(struct tsi108_prv_data * data)
587 {
588         TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
589                              TSI108_EC_TXQ_PTRHIGH_VALID);
590
591         TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
592                              TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
593 }
594
595 /* txlock must be held by caller, with IRQs disabled, and
596  * with permission to re-enable them when the lock is dropped.
597  */
598 static void tsi108_complete_tx(struct net_device *dev)
599 {
600         struct tsi108_prv_data *data = netdev_priv(dev);
601         int tx;
602         struct sk_buff *skb;
603         int release = 0;
604
605         while (!data->txfree || data->txhead != data->txtail) {
606                 tx = data->txtail;
607
608                 if (data->txring[tx].misc & TSI108_TX_OWN)
609                         break;
610
611                 skb = data->txskbs[tx];
612
613                 if (!(data->txring[tx].misc & TSI108_TX_OK))
614                         printk("%s: bad tx packet, misc %x\n",
615                                dev->name, data->txring[tx].misc);
616
617                 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
618                 data->txfree++;
619
620                 if (data->txring[tx].misc & TSI108_TX_EOF) {
621                         dev_kfree_skb_any(skb);
622                         release++;
623                 }
624         }
625
626         if (release) {
627                 if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
628                         netif_wake_queue(dev);
629         }
630 }
631
632 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
633 {
634         struct tsi108_prv_data *data = netdev_priv(dev);
635         int frags = skb_shinfo(skb)->nr_frags + 1;
636         int i;
637
638         if (!data->phy_ok && net_ratelimit())
639                 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
640
641         if (!data->link_up) {
642                 printk(KERN_ERR "%s: Transmit while link is down!\n",
643                        dev->name);
644                 netif_stop_queue(dev);
645                 return NETDEV_TX_BUSY;
646         }
647
648         if (data->txfree < MAX_SKB_FRAGS + 1) {
649                 netif_stop_queue(dev);
650
651                 if (net_ratelimit())
652                         printk(KERN_ERR "%s: Transmit with full tx ring!\n",
653                                dev->name);
654                 return NETDEV_TX_BUSY;
655         }
656
657         if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
658                 netif_stop_queue(dev);
659         }
660
661         spin_lock_irq(&data->txlock);
662
663         for (i = 0; i < frags; i++) {
664                 int misc = 0;
665                 int tx = data->txhead;
666
667                 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
668                  * the interrupt bit.  TX descriptor-complete interrupts are
669                  * enabled when the queue fills up, and masked when there is
670                  * still free space.  This way, when saturating the outbound
671                  * link, the tx interrupts are kept to a reasonable level.
672                  * When the queue is not full, reclamation of skbs still occurs
673                  * as new packets are transmitted, or on a queue-empty
674                  * interrupt.
675                  */
676
677                 if ((tx % TSI108_TX_INT_FREQ == 0) &&
678                     ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
679                         misc = TSI108_TX_INT;
680
681                 data->txskbs[tx] = skb;
682
683                 if (i == 0) {
684                         data->txring[tx].buf0 = dma_map_single(&data->pdev->dev,
685                                         skb->data, skb_headlen(skb),
686                                         DMA_TO_DEVICE);
687                         data->txring[tx].len = skb_headlen(skb);
688                         misc |= TSI108_TX_SOF;
689                 } else {
690                         const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
691
692                         data->txring[tx].buf0 =
693                                 skb_frag_dma_map(&data->pdev->dev, frag,
694                                                 0, skb_frag_size(frag),
695                                                 DMA_TO_DEVICE);
696                         data->txring[tx].len = skb_frag_size(frag);
697                 }
698
699                 if (i == frags - 1)
700                         misc |= TSI108_TX_EOF;
701
702                 if (netif_msg_pktdata(data)) {
703                         int i;
704                         printk("%s: Tx Frame contents (%d)\n", dev->name,
705                                skb->len);
706                         for (i = 0; i < skb->len; i++)
707                                 printk(" %2.2x", skb->data[i]);
708                         printk(".\n");
709                 }
710                 data->txring[tx].misc = misc | TSI108_TX_OWN;
711
712                 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
713                 data->txfree--;
714         }
715
716         tsi108_complete_tx(dev);
717
718         /* This must be done after the check for completed tx descriptors,
719          * so that the tail pointer is correct.
720          */
721
722         if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
723                 tsi108_restart_tx(data);
724
725         spin_unlock_irq(&data->txlock);
726         return NETDEV_TX_OK;
727 }
728
729 static int tsi108_complete_rx(struct net_device *dev, int budget)
730 {
731         struct tsi108_prv_data *data = netdev_priv(dev);
732         int done = 0;
733
734         while (data->rxfree && done != budget) {
735                 int rx = data->rxtail;
736                 struct sk_buff *skb;
737
738                 if (data->rxring[rx].misc & TSI108_RX_OWN)
739                         break;
740
741                 skb = data->rxskbs[rx];
742                 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
743                 data->rxfree--;
744                 done++;
745
746                 if (data->rxring[rx].misc & TSI108_RX_BAD) {
747                         spin_lock_irq(&data->misclock);
748
749                         if (data->rxring[rx].misc & TSI108_RX_CRC)
750                                 data->stats.rx_crc_errors++;
751                         if (data->rxring[rx].misc & TSI108_RX_OVER)
752                                 data->stats.rx_fifo_errors++;
753
754                         spin_unlock_irq(&data->misclock);
755
756                         dev_kfree_skb_any(skb);
757                         continue;
758                 }
759                 if (netif_msg_pktdata(data)) {
760                         int i;
761                         printk("%s: Rx Frame contents (%d)\n",
762                                dev->name, data->rxring[rx].len);
763                         for (i = 0; i < data->rxring[rx].len; i++)
764                                 printk(" %2.2x", skb->data[i]);
765                         printk(".\n");
766                 }
767
768                 skb_put(skb, data->rxring[rx].len);
769                 skb->protocol = eth_type_trans(skb, dev);
770                 netif_receive_skb(skb);
771         }
772
773         return done;
774 }
775
776 static int tsi108_refill_rx(struct net_device *dev, int budget)
777 {
778         struct tsi108_prv_data *data = netdev_priv(dev);
779         int done = 0;
780
781         while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
782                 int rx = data->rxhead;
783                 struct sk_buff *skb;
784
785                 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
786                 data->rxskbs[rx] = skb;
787                 if (!skb)
788                         break;
789
790                 data->rxring[rx].buf0 = dma_map_single(&data->pdev->dev,
791                                 skb->data, TSI108_RX_SKB_SIZE,
792                                 DMA_FROM_DEVICE);
793
794                 /* Sometimes the hardware sets blen to zero after packet
795                  * reception, even though the manual says that it's only ever
796                  * modified by the driver.
797                  */
798
799                 data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
800                 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
801
802                 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
803                 data->rxfree++;
804                 done++;
805         }
806
807         if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
808                            TSI108_EC_RXSTAT_QUEUE0))
809                 tsi108_restart_rx(data, dev);
810
811         return done;
812 }
813
814 static int tsi108_poll(struct napi_struct *napi, int budget)
815 {
816         struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
817         struct net_device *dev = data->dev;
818         u32 estat = TSI_READ(TSI108_EC_RXESTAT);
819         u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
820         int num_received = 0, num_filled = 0;
821
822         intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
823             TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
824
825         TSI_WRITE(TSI108_EC_RXESTAT, estat);
826         TSI_WRITE(TSI108_EC_INTSTAT, intstat);
827
828         if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
829                 num_received = tsi108_complete_rx(dev, budget);
830
831         /* This should normally fill no more slots than the number of
832          * packets received in tsi108_complete_rx().  The exception
833          * is when we previously ran out of memory for RX SKBs.  In that
834          * case, it's helpful to obey the budget, not only so that the
835          * CPU isn't hogged, but so that memory (which may still be low)
836          * is not hogged by one device.
837          *
838          * A work unit is considered to be two SKBs to allow us to catch
839          * up when the ring has shrunk due to out-of-memory but we're
840          * still removing the full budget's worth of packets each time.
841          */
842
843         if (data->rxfree < TSI108_RXRING_LEN)
844                 num_filled = tsi108_refill_rx(dev, budget * 2);
845
846         if (intstat & TSI108_INT_RXERROR) {
847                 u32 err = TSI_READ(TSI108_EC_RXERR);
848                 TSI_WRITE(TSI108_EC_RXERR, err);
849
850                 if (err) {
851                         if (net_ratelimit())
852                                 printk(KERN_DEBUG "%s: RX error %x\n",
853                                        dev->name, err);
854
855                         if (!(TSI_READ(TSI108_EC_RXSTAT) &
856                               TSI108_EC_RXSTAT_QUEUE0))
857                                 tsi108_restart_rx(data, dev);
858                 }
859         }
860
861         if (intstat & TSI108_INT_RXOVERRUN) {
862                 spin_lock_irq(&data->misclock);
863                 data->stats.rx_fifo_errors++;
864                 spin_unlock_irq(&data->misclock);
865         }
866
867         if (num_received < budget) {
868                 data->rxpending = 0;
869                 napi_complete_done(napi, num_received);
870
871                 TSI_WRITE(TSI108_EC_INTMASK,
872                                      TSI_READ(TSI108_EC_INTMASK)
873                                      & ~(TSI108_INT_RXQUEUE0
874                                          | TSI108_INT_RXTHRESH |
875                                          TSI108_INT_RXOVERRUN |
876                                          TSI108_INT_RXERROR |
877                                          TSI108_INT_RXWAIT));
878         } else {
879                 data->rxpending = 1;
880         }
881
882         return num_received;
883 }
884
885 static void tsi108_rx_int(struct net_device *dev)
886 {
887         struct tsi108_prv_data *data = netdev_priv(dev);
888
889         /* A race could cause dev to already be scheduled, so it's not an
890          * error if that happens (and interrupts shouldn't be re-masked,
891          * because that can cause harmful races, if poll has already
892          * unmasked them but not cleared LINK_STATE_SCHED).
893          *
894          * This can happen if this code races with tsi108_poll(), which masks
895          * the interrupts after tsi108_irq_one() read the mask, but before
896          * napi_schedule is called.  It could also happen due to calls
897          * from tsi108_check_rxring().
898          */
899
900         if (napi_schedule_prep(&data->napi)) {
901                 /* Mask, rather than ack, the receive interrupts.  The ack
902                  * will happen in tsi108_poll().
903                  */
904
905                 TSI_WRITE(TSI108_EC_INTMASK,
906                                      TSI_READ(TSI108_EC_INTMASK) |
907                                      TSI108_INT_RXQUEUE0
908                                      | TSI108_INT_RXTHRESH |
909                                      TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
910                                      TSI108_INT_RXWAIT);
911                 __napi_schedule(&data->napi);
912         } else {
913                 if (!netif_running(dev)) {
914                         /* This can happen if an interrupt occurs while the
915                          * interface is being brought down, as the START
916                          * bit is cleared before the stop function is called.
917                          *
918                          * In this case, the interrupts must be masked, or
919                          * they will continue indefinitely.
920                          *
921                          * There's a race here if the interface is brought down
922                          * and then up in rapid succession, as the device could
923                          * be made running after the above check and before
924                          * the masking below.  This will only happen if the IRQ
925                          * thread has a lower priority than the task brining
926                          * up the interface.  Fixing this race would likely
927                          * require changes in generic code.
928                          */
929
930                         TSI_WRITE(TSI108_EC_INTMASK,
931                                              TSI_READ
932                                              (TSI108_EC_INTMASK) |
933                                              TSI108_INT_RXQUEUE0 |
934                                              TSI108_INT_RXTHRESH |
935                                              TSI108_INT_RXOVERRUN |
936                                              TSI108_INT_RXERROR |
937                                              TSI108_INT_RXWAIT);
938                 }
939         }
940 }
941
942 /* If the RX ring has run out of memory, try periodically
943  * to allocate some more, as otherwise poll would never
944  * get called (apart from the initial end-of-queue condition).
945  *
946  * This is called once per second (by default) from the thread.
947  */
948
949 static void tsi108_check_rxring(struct net_device *dev)
950 {
951         struct tsi108_prv_data *data = netdev_priv(dev);
952
953         /* A poll is scheduled, as opposed to caling tsi108_refill_rx
954          * directly, so as to keep the receive path single-threaded
955          * (and thus not needing a lock).
956          */
957
958         if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
959                 tsi108_rx_int(dev);
960 }
961
962 static void tsi108_tx_int(struct net_device *dev)
963 {
964         struct tsi108_prv_data *data = netdev_priv(dev);
965         u32 estat = TSI_READ(TSI108_EC_TXESTAT);
966
967         TSI_WRITE(TSI108_EC_TXESTAT, estat);
968         TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
969                              TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
970         if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
971                 u32 err = TSI_READ(TSI108_EC_TXERR);
972                 TSI_WRITE(TSI108_EC_TXERR, err);
973
974                 if (err && net_ratelimit())
975                         printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
976         }
977
978         if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
979                 spin_lock(&data->txlock);
980                 tsi108_complete_tx(dev);
981                 spin_unlock(&data->txlock);
982         }
983 }
984
985
986 static irqreturn_t tsi108_irq(int irq, void *dev_id)
987 {
988         struct net_device *dev = dev_id;
989         struct tsi108_prv_data *data = netdev_priv(dev);
990         u32 stat = TSI_READ(TSI108_EC_INTSTAT);
991
992         if (!(stat & TSI108_INT_ANY))
993                 return IRQ_NONE;        /* Not our interrupt */
994
995         stat &= ~TSI_READ(TSI108_EC_INTMASK);
996
997         if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
998                     TSI108_INT_TXERROR))
999                 tsi108_tx_int(dev);
1000         if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1001                     TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1002                     TSI108_INT_RXERROR))
1003                 tsi108_rx_int(dev);
1004
1005         if (stat & TSI108_INT_SFN) {
1006                 if (net_ratelimit())
1007                         printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1008                 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1009         }
1010
1011         if (stat & TSI108_INT_STATCARRY) {
1012                 tsi108_stat_carry(dev);
1013                 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1014         }
1015
1016         return IRQ_HANDLED;
1017 }
1018
1019 static void tsi108_stop_ethernet(struct net_device *dev)
1020 {
1021         struct tsi108_prv_data *data = netdev_priv(dev);
1022         int i = 1000;
1023         /* Disable all TX and RX queues ... */
1024         TSI_WRITE(TSI108_EC_TXCTRL, 0);
1025         TSI_WRITE(TSI108_EC_RXCTRL, 0);
1026
1027         /* ...and wait for them to become idle */
1028         while(i--) {
1029                 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1030                         break;
1031                 udelay(10);
1032         }
1033         i = 1000;
1034         while(i--){
1035                 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1036                         return;
1037                 udelay(10);
1038         }
1039         printk(KERN_ERR "%s function time out\n", __func__);
1040 }
1041
1042 static void tsi108_reset_ether(struct tsi108_prv_data * data)
1043 {
1044         TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1045         udelay(100);
1046         TSI_WRITE(TSI108_MAC_CFG1, 0);
1047
1048         TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1049         udelay(100);
1050         TSI_WRITE(TSI108_EC_PORTCTRL,
1051                              TSI_READ(TSI108_EC_PORTCTRL) &
1052                              ~TSI108_EC_PORTCTRL_STATRST);
1053
1054         TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1055         udelay(100);
1056         TSI_WRITE(TSI108_EC_TXCFG,
1057                              TSI_READ(TSI108_EC_TXCFG) &
1058                              ~TSI108_EC_TXCFG_RST);
1059
1060         TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1061         udelay(100);
1062         TSI_WRITE(TSI108_EC_RXCFG,
1063                              TSI_READ(TSI108_EC_RXCFG) &
1064                              ~TSI108_EC_RXCFG_RST);
1065
1066         TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1067                              TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1068                              TSI108_MAC_MII_MGMT_RST);
1069         udelay(100);
1070         TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1071                              (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1072                              ~(TSI108_MAC_MII_MGMT_RST |
1073                                TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1074 }
1075
1076 static int tsi108_get_mac(struct net_device *dev)
1077 {
1078         struct tsi108_prv_data *data = netdev_priv(dev);
1079         u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1080         u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1081         u8 addr[ETH_ALEN];
1082
1083         /* Note that the octets are reversed from what the manual says,
1084          * producing an even weirder ordering...
1085          */
1086         if (word2 == 0 && word1 == 0) {
1087                 addr[0] = 0x00;
1088                 addr[1] = 0x06;
1089                 addr[2] = 0xd2;
1090                 addr[3] = 0x00;
1091                 addr[4] = 0x00;
1092                 if (0x8 == data->phy)
1093                         addr[5] = 0x01;
1094                 else
1095                         addr[5] = 0x02;
1096                 eth_hw_addr_set(dev, addr);
1097
1098                 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1099
1100                 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1101                     (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1102
1103                 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1104                 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1105         } else {
1106                 addr[0] = (word2 >> 16) & 0xff;
1107                 addr[1] = (word2 >> 24) & 0xff;
1108                 addr[2] = (word1 >> 0) & 0xff;
1109                 addr[3] = (word1 >> 8) & 0xff;
1110                 addr[4] = (word1 >> 16) & 0xff;
1111                 addr[5] = (word1 >> 24) & 0xff;
1112                 eth_hw_addr_set(dev, addr);
1113         }
1114
1115         if (!is_valid_ether_addr(dev->dev_addr)) {
1116                 printk(KERN_ERR
1117                        "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1118                        dev->name, word1, word2);
1119                 return -EINVAL;
1120         }
1121
1122         return 0;
1123 }
1124
1125 static int tsi108_set_mac(struct net_device *dev, void *addr)
1126 {
1127         struct tsi108_prv_data *data = netdev_priv(dev);
1128         u32 word1, word2;
1129
1130         if (!is_valid_ether_addr(addr))
1131                 return -EADDRNOTAVAIL;
1132
1133         /* +2 is for the offset of the HW addr type */
1134         eth_hw_addr_set(dev, ((unsigned char *)addr) + 2);
1135
1136         word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1137
1138         word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1139             (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1140
1141         spin_lock_irq(&data->misclock);
1142         TSI_WRITE(TSI108_MAC_ADDR1, word1);
1143         TSI_WRITE(TSI108_MAC_ADDR2, word2);
1144         spin_lock(&data->txlock);
1145
1146         if (data->txfree && data->link_up)
1147                 netif_wake_queue(dev);
1148
1149         spin_unlock(&data->txlock);
1150         spin_unlock_irq(&data->misclock);
1151         return 0;
1152 }
1153
1154 /* Protected by dev->xmit_lock. */
1155 static void tsi108_set_rx_mode(struct net_device *dev)
1156 {
1157         struct tsi108_prv_data *data = netdev_priv(dev);
1158         u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1159
1160         if (dev->flags & IFF_PROMISC) {
1161                 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1162                 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1163                 goto out;
1164         }
1165
1166         rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1167
1168         if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
1169                 int i;
1170                 struct netdev_hw_addr *ha;
1171                 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1172
1173                 memset(data->mc_hash, 0, sizeof(data->mc_hash));
1174
1175                 netdev_for_each_mc_addr(ha, dev) {
1176                         u32 hash, crc;
1177
1178                         crc = ether_crc(6, ha->addr);
1179                         hash = crc >> 23;
1180                         __set_bit(hash, &data->mc_hash[0]);
1181                 }
1182
1183                 TSI_WRITE(TSI108_EC_HASHADDR,
1184                                      TSI108_EC_HASHADDR_AUTOINC |
1185                                      TSI108_EC_HASHADDR_MCAST);
1186
1187                 for (i = 0; i < 16; i++) {
1188                         /* The manual says that the hardware may drop
1189                          * back-to-back writes to the data register.
1190                          */
1191                         udelay(1);
1192                         TSI_WRITE(TSI108_EC_HASHDATA,
1193                                              data->mc_hash[i]);
1194                 }
1195         }
1196
1197       out:
1198         TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1199 }
1200
1201 static void tsi108_init_phy(struct net_device *dev)
1202 {
1203         struct tsi108_prv_data *data = netdev_priv(dev);
1204         u32 i = 0;
1205         u16 phyval = 0;
1206         unsigned long flags;
1207
1208         spin_lock_irqsave(&phy_lock, flags);
1209
1210         tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1211         while (--i) {
1212                 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1213                         break;
1214                 udelay(10);
1215         }
1216         if (i == 0)
1217                 printk(KERN_ERR "%s function time out\n", __func__);
1218
1219         if (data->phy_type == TSI108_PHY_BCM54XX) {
1220                 tsi108_write_mii(data, 0x09, 0x0300);
1221                 tsi108_write_mii(data, 0x10, 0x1020);
1222                 tsi108_write_mii(data, 0x1c, 0x8c00);
1223         }
1224
1225         tsi108_write_mii(data,
1226                          MII_BMCR,
1227                          BMCR_ANENABLE | BMCR_ANRESTART);
1228         while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1229                 cpu_relax();
1230
1231         /* Set G/MII mode and receive clock select in TBI control #2.  The
1232          * second port won't work if this isn't done, even though we don't
1233          * use TBI mode.
1234          */
1235
1236         tsi108_write_tbi(data, 0x11, 0x30);
1237
1238         /* FIXME: It seems to take more than 2 back-to-back reads to the
1239          * PHY_STAT register before the link up status bit is set.
1240          */
1241
1242         data->link_up = 0;
1243
1244         while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1245                  BMSR_LSTATUS)) {
1246                 if (i++ > (MII_READ_DELAY / 10)) {
1247                         break;
1248                 }
1249                 spin_unlock_irqrestore(&phy_lock, flags);
1250                 msleep(10);
1251                 spin_lock_irqsave(&phy_lock, flags);
1252         }
1253
1254         data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1255         printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1256         data->phy_ok = 1;
1257         data->init_media = 1;
1258         spin_unlock_irqrestore(&phy_lock, flags);
1259 }
1260
1261 static void tsi108_kill_phy(struct net_device *dev)
1262 {
1263         struct tsi108_prv_data *data = netdev_priv(dev);
1264         unsigned long flags;
1265
1266         spin_lock_irqsave(&phy_lock, flags);
1267         tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1268         data->phy_ok = 0;
1269         spin_unlock_irqrestore(&phy_lock, flags);
1270 }
1271
1272 static int tsi108_open(struct net_device *dev)
1273 {
1274         int i;
1275         struct tsi108_prv_data *data = netdev_priv(dev);
1276         unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1277         unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1278
1279         i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1280         if (i != 0) {
1281                 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1282                        data->id, data->irq_num);
1283                 return i;
1284         } else {
1285                 dev->irq = data->irq_num;
1286                 printk(KERN_NOTICE
1287                        "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1288                        data->id, dev->irq, dev->name);
1289         }
1290
1291         data->rxring = dma_alloc_coherent(&data->pdev->dev, rxring_size,
1292                                           &data->rxdma, GFP_KERNEL);
1293         if (!data->rxring) {
1294                 free_irq(data->irq_num, dev);
1295                 return -ENOMEM;
1296         }
1297
1298         data->txring = dma_alloc_coherent(&data->pdev->dev, txring_size,
1299                                           &data->txdma, GFP_KERNEL);
1300         if (!data->txring) {
1301                 free_irq(data->irq_num, dev);
1302                 dma_free_coherent(&data->pdev->dev, rxring_size, data->rxring,
1303                                     data->rxdma);
1304                 return -ENOMEM;
1305         }
1306
1307         for (i = 0; i < TSI108_RXRING_LEN; i++) {
1308                 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1309                 data->rxring[i].blen = TSI108_RXBUF_SIZE;
1310                 data->rxring[i].vlan = 0;
1311         }
1312
1313         data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1314
1315         data->rxtail = 0;
1316         data->rxhead = 0;
1317
1318         for (i = 0; i < TSI108_RXRING_LEN; i++) {
1319                 struct sk_buff *skb;
1320
1321                 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
1322                 if (!skb) {
1323                         /* Bah.  No memory for now, but maybe we'll get
1324                          * some more later.
1325                          * For now, we'll live with the smaller ring.
1326                          */
1327                         printk(KERN_WARNING
1328                                "%s: Could only allocate %d receive skb(s).\n",
1329                                dev->name, i);
1330                         data->rxhead = i;
1331                         break;
1332                 }
1333
1334                 data->rxskbs[i] = skb;
1335                 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1336                 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1337         }
1338
1339         data->rxfree = i;
1340         TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1341
1342         for (i = 0; i < TSI108_TXRING_LEN; i++) {
1343                 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1344                 data->txring[i].misc = 0;
1345         }
1346
1347         data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1348         data->txtail = 0;
1349         data->txhead = 0;
1350         data->txfree = TSI108_TXRING_LEN;
1351         TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1352         tsi108_init_phy(dev);
1353
1354         napi_enable(&data->napi);
1355
1356         timer_setup(&data->timer, tsi108_timed_checker, 0);
1357         mod_timer(&data->timer, jiffies + 1);
1358
1359         tsi108_restart_rx(data, dev);
1360
1361         TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1362
1363         TSI_WRITE(TSI108_EC_INTMASK,
1364                              ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1365                                TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1366                                TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1367                                TSI108_INT_SFN | TSI108_INT_STATCARRY));
1368
1369         TSI_WRITE(TSI108_MAC_CFG1,
1370                              TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1371         netif_start_queue(dev);
1372         return 0;
1373 }
1374
1375 static int tsi108_close(struct net_device *dev)
1376 {
1377         struct tsi108_prv_data *data = netdev_priv(dev);
1378
1379         netif_stop_queue(dev);
1380         napi_disable(&data->napi);
1381
1382         del_timer_sync(&data->timer);
1383
1384         tsi108_stop_ethernet(dev);
1385         tsi108_kill_phy(dev);
1386         TSI_WRITE(TSI108_EC_INTMASK, ~0);
1387         TSI_WRITE(TSI108_MAC_CFG1, 0);
1388
1389         /* Check for any pending TX packets, and drop them. */
1390
1391         while (!data->txfree || data->txhead != data->txtail) {
1392                 int tx = data->txtail;
1393                 struct sk_buff *skb;
1394                 skb = data->txskbs[tx];
1395                 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1396                 data->txfree++;
1397                 dev_kfree_skb(skb);
1398         }
1399
1400         free_irq(data->irq_num, dev);
1401
1402         /* Discard the RX ring. */
1403
1404         while (data->rxfree) {
1405                 int rx = data->rxtail;
1406                 struct sk_buff *skb;
1407
1408                 skb = data->rxskbs[rx];
1409                 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1410                 data->rxfree--;
1411                 dev_kfree_skb(skb);
1412         }
1413
1414         dma_free_coherent(&data->pdev->dev,
1415                             TSI108_RXRING_LEN * sizeof(rx_desc),
1416                             data->rxring, data->rxdma);
1417         dma_free_coherent(&data->pdev->dev,
1418                             TSI108_TXRING_LEN * sizeof(tx_desc),
1419                             data->txring, data->txdma);
1420
1421         return 0;
1422 }
1423
1424 static void tsi108_init_mac(struct net_device *dev)
1425 {
1426         struct tsi108_prv_data *data = netdev_priv(dev);
1427
1428         TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1429                              TSI108_MAC_CFG2_PADCRC);
1430
1431         TSI_WRITE(TSI108_EC_TXTHRESH,
1432                              (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1433                              (192 << TSI108_EC_TXTHRESH_STOPFILL));
1434
1435         TSI_WRITE(TSI108_STAT_CARRYMASK1,
1436                              ~(TSI108_STAT_CARRY1_RXBYTES |
1437                                TSI108_STAT_CARRY1_RXPKTS |
1438                                TSI108_STAT_CARRY1_RXFCS |
1439                                TSI108_STAT_CARRY1_RXMCAST |
1440                                TSI108_STAT_CARRY1_RXALIGN |
1441                                TSI108_STAT_CARRY1_RXLENGTH |
1442                                TSI108_STAT_CARRY1_RXRUNT |
1443                                TSI108_STAT_CARRY1_RXJUMBO |
1444                                TSI108_STAT_CARRY1_RXFRAG |
1445                                TSI108_STAT_CARRY1_RXJABBER |
1446                                TSI108_STAT_CARRY1_RXDROP));
1447
1448         TSI_WRITE(TSI108_STAT_CARRYMASK2,
1449                              ~(TSI108_STAT_CARRY2_TXBYTES |
1450                                TSI108_STAT_CARRY2_TXPKTS |
1451                                TSI108_STAT_CARRY2_TXEXDEF |
1452                                TSI108_STAT_CARRY2_TXEXCOL |
1453                                TSI108_STAT_CARRY2_TXTCOL |
1454                                TSI108_STAT_CARRY2_TXPAUSE));
1455
1456         TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1457         TSI_WRITE(TSI108_MAC_CFG1, 0);
1458
1459         TSI_WRITE(TSI108_EC_RXCFG,
1460                              TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1461
1462         TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1463                              TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1464                              TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1465                                                 TSI108_EC_TXQ_CFG_SFNPORT));
1466
1467         TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1468                              TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1469                              TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1470                                                 TSI108_EC_RXQ_CFG_SFNPORT));
1471
1472         TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1473                              TSI108_EC_TXQ_BUFCFG_BURST256 |
1474                              TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1475                                                 TSI108_EC_TXQ_BUFCFG_SFNPORT));
1476
1477         TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1478                              TSI108_EC_RXQ_BUFCFG_BURST256 |
1479                              TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1480                                                 TSI108_EC_RXQ_BUFCFG_SFNPORT));
1481
1482         TSI_WRITE(TSI108_EC_INTMASK, ~0);
1483 }
1484
1485 static int tsi108_get_link_ksettings(struct net_device *dev,
1486                                      struct ethtool_link_ksettings *cmd)
1487 {
1488         struct tsi108_prv_data *data = netdev_priv(dev);
1489         unsigned long flags;
1490
1491         spin_lock_irqsave(&data->txlock, flags);
1492         mii_ethtool_get_link_ksettings(&data->mii_if, cmd);
1493         spin_unlock_irqrestore(&data->txlock, flags);
1494
1495         return 0;
1496 }
1497
1498 static int tsi108_set_link_ksettings(struct net_device *dev,
1499                                      const struct ethtool_link_ksettings *cmd)
1500 {
1501         struct tsi108_prv_data *data = netdev_priv(dev);
1502         unsigned long flags;
1503         int rc;
1504
1505         spin_lock_irqsave(&data->txlock, flags);
1506         rc = mii_ethtool_set_link_ksettings(&data->mii_if, cmd);
1507         spin_unlock_irqrestore(&data->txlock, flags);
1508
1509         return rc;
1510 }
1511
1512 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1513 {
1514         struct tsi108_prv_data *data = netdev_priv(dev);
1515         if (!netif_running(dev))
1516                 return -EINVAL;
1517         return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1518 }
1519
1520 static const struct ethtool_ops tsi108_ethtool_ops = {
1521         .get_link       = ethtool_op_get_link,
1522         .get_link_ksettings     = tsi108_get_link_ksettings,
1523         .set_link_ksettings     = tsi108_set_link_ksettings,
1524 };
1525
1526 static const struct net_device_ops tsi108_netdev_ops = {
1527         .ndo_open               = tsi108_open,
1528         .ndo_stop               = tsi108_close,
1529         .ndo_start_xmit         = tsi108_send_packet,
1530         .ndo_set_rx_mode        = tsi108_set_rx_mode,
1531         .ndo_get_stats          = tsi108_get_stats,
1532         .ndo_eth_ioctl          = tsi108_do_ioctl,
1533         .ndo_set_mac_address    = tsi108_set_mac,
1534         .ndo_validate_addr      = eth_validate_addr,
1535 };
1536
1537 static int
1538 tsi108_init_one(struct platform_device *pdev)
1539 {
1540         struct net_device *dev = NULL;
1541         struct tsi108_prv_data *data = NULL;
1542         hw_info *einfo;
1543         int err = 0;
1544
1545         einfo = dev_get_platdata(&pdev->dev);
1546
1547         if (NULL == einfo) {
1548                 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1549                        pdev->id);
1550                 return -ENODEV;
1551         }
1552
1553         /* Create an ethernet device instance */
1554
1555         dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1556         if (!dev)
1557                 return -ENOMEM;
1558
1559         printk("tsi108_eth%d: probe...\n", pdev->id);
1560         data = netdev_priv(dev);
1561         data->dev = dev;
1562         data->pdev = pdev;
1563
1564         pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1565                         pdev->id, einfo->regs, einfo->phyregs,
1566                         einfo->phy, einfo->irq_num);
1567
1568         data->regs = ioremap(einfo->regs, 0x400);
1569         if (NULL == data->regs) {
1570                 err = -ENOMEM;
1571                 goto regs_fail;
1572         }
1573
1574         data->phyregs = ioremap(einfo->phyregs, 0x400);
1575         if (NULL == data->phyregs) {
1576                 err = -ENOMEM;
1577                 goto phyregs_fail;
1578         }
1579 /* MII setup */
1580         data->mii_if.dev = dev;
1581         data->mii_if.mdio_read = tsi108_mdio_read;
1582         data->mii_if.mdio_write = tsi108_mdio_write;
1583         data->mii_if.phy_id = einfo->phy;
1584         data->mii_if.phy_id_mask = 0x1f;
1585         data->mii_if.reg_num_mask = 0x1f;
1586
1587         data->phy = einfo->phy;
1588         data->phy_type = einfo->phy_type;
1589         data->irq_num = einfo->irq_num;
1590         data->id = pdev->id;
1591         netif_napi_add(dev, &data->napi, tsi108_poll);
1592         dev->netdev_ops = &tsi108_netdev_ops;
1593         dev->ethtool_ops = &tsi108_ethtool_ops;
1594
1595         /* Apparently, the Linux networking code won't use scatter-gather
1596          * if the hardware doesn't do checksums.  However, it's faster
1597          * to checksum in place and use SG, as (among other reasons)
1598          * the cache won't be dirtied (which then has to be flushed
1599          * before DMA).  The checksumming is done by the driver (via
1600          * a new function skb_csum_dev() in net/core/skbuff.c).
1601          */
1602
1603         dev->features = NETIF_F_HIGHDMA;
1604
1605         spin_lock_init(&data->txlock);
1606         spin_lock_init(&data->misclock);
1607
1608         tsi108_reset_ether(data);
1609         tsi108_kill_phy(dev);
1610
1611         if ((err = tsi108_get_mac(dev)) != 0) {
1612                 printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
1613                        dev->name);
1614                 goto register_fail;
1615         }
1616
1617         tsi108_init_mac(dev);
1618         err = register_netdev(dev);
1619         if (err) {
1620                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1621                                 dev->name);
1622                 goto register_fail;
1623         }
1624
1625         platform_set_drvdata(pdev, dev);
1626         printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1627                dev->name, dev->dev_addr);
1628 #ifdef DEBUG
1629         data->msg_enable = DEBUG;
1630         dump_eth_one(dev);
1631 #endif
1632
1633         return 0;
1634
1635 register_fail:
1636         iounmap(data->phyregs);
1637
1638 phyregs_fail:
1639         iounmap(data->regs);
1640
1641 regs_fail:
1642         free_netdev(dev);
1643         return err;
1644 }
1645
1646 /* There's no way to either get interrupts from the PHY when
1647  * something changes, or to have the Tsi108 automatically communicate
1648  * with the PHY to reconfigure itself.
1649  *
1650  * Thus, we have to do it using a timer.
1651  */
1652
1653 static void tsi108_timed_checker(struct timer_list *t)
1654 {
1655         struct tsi108_prv_data *data = from_timer(data, t, timer);
1656         struct net_device *dev = data->dev;
1657
1658         tsi108_check_phy(dev);
1659         tsi108_check_rxring(dev);
1660         mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1661 }
1662
1663 static void tsi108_ether_remove(struct platform_device *pdev)
1664 {
1665         struct net_device *dev = platform_get_drvdata(pdev);
1666         struct tsi108_prv_data *priv = netdev_priv(dev);
1667
1668         unregister_netdev(dev);
1669         tsi108_stop_ethernet(dev);
1670         iounmap(priv->regs);
1671         iounmap(priv->phyregs);
1672         free_netdev(dev);
1673 }
1674
1675 /* Structure for a device driver */
1676
1677 static struct platform_driver tsi_eth_driver = {
1678         .probe = tsi108_init_one,
1679         .remove_new = tsi108_ether_remove,
1680         .driver = {
1681                 .name = "tsi-ethernet",
1682         },
1683 };
1684 module_platform_driver(tsi_eth_driver);
1685
1686 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1687 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1688 MODULE_LICENSE("GPL");
1689 MODULE_ALIAS("platform:tsi-ethernet");