GNU Linux-libre 4.9.333-gnu1
[releases.git] / drivers / net / ethernet / tundra / tsi108_eth.c
1 /*******************************************************************************
2
3   Copyright(c) 2006 Tundra Semiconductor Corporation.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of the GNU General Public License as published by the Free
7   Software Foundation; either version 2 of the License, or (at your option)
8   any later version.
9
10   This program is distributed in the hope that it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc., 59
17   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 *******************************************************************************/
20
21 /* This driver is based on the driver code originally developed
22  * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
23  * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
24  *
25  * Currently changes from original version are:
26  * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
27  * - modifications to handle two ports independently and support for
28  *   additional PHY devices (alexandre.bounine@tundra.com)
29  * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
30  *
31  */
32
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/interrupt.h>
36 #include <linux/net.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/ethtool.h>
40 #include <linux/skbuff.h>
41 #include <linux/spinlock.h>
42 #include <linux/delay.h>
43 #include <linux/crc32.h>
44 #include <linux/mii.h>
45 #include <linux/device.h>
46 #include <linux/pci.h>
47 #include <linux/rtnetlink.h>
48 #include <linux/timer.h>
49 #include <linux/platform_device.h>
50 #include <linux/gfp.h>
51
52 #include <asm/io.h>
53 #include <asm/tsi108.h>
54
55 #include "tsi108_eth.h"
56
57 #define MII_READ_DELAY 10000    /* max link wait time in msec */
58
59 #define TSI108_RXRING_LEN     256
60
61 /* NOTE: The driver currently does not support receiving packets
62  * larger than the buffer size, so don't decrease this (unless you
63  * want to add such support).
64  */
65 #define TSI108_RXBUF_SIZE     1536
66
67 #define TSI108_TXRING_LEN     256
68
69 #define TSI108_TX_INT_FREQ    64
70
71 /* Check the phy status every half a second. */
72 #define CHECK_PHY_INTERVAL (HZ/2)
73
74 static int tsi108_init_one(struct platform_device *pdev);
75 static int tsi108_ether_remove(struct platform_device *pdev);
76
77 struct tsi108_prv_data {
78         void  __iomem *regs;    /* Base of normal regs */
79         void  __iomem *phyregs; /* Base of register bank used for PHY access */
80
81         struct net_device *dev;
82         struct napi_struct napi;
83
84         unsigned int phy;               /* Index of PHY for this interface */
85         unsigned int irq_num;
86         unsigned int id;
87         unsigned int phy_type;
88
89         struct timer_list timer;/* Timer that triggers the check phy function */
90         unsigned int rxtail;    /* Next entry in rxring to read */
91         unsigned int rxhead;    /* Next entry in rxring to give a new buffer */
92         unsigned int rxfree;    /* Number of free, allocated RX buffers */
93
94         unsigned int rxpending; /* Non-zero if there are still descriptors
95                                  * to be processed from a previous descriptor
96                                  * interrupt condition that has been cleared */
97
98         unsigned int txtail;    /* Next TX descriptor to check status on */
99         unsigned int txhead;    /* Next TX descriptor to use */
100
101         /* Number of free TX descriptors.  This could be calculated from
102          * rxhead and rxtail if one descriptor were left unused to disambiguate
103          * full and empty conditions, but it's simpler to just keep track
104          * explicitly. */
105
106         unsigned int txfree;
107
108         unsigned int phy_ok;            /* The PHY is currently powered on. */
109
110         /* PHY status (duplex is 1 for half, 2 for full,
111          * so that the default 0 indicates that neither has
112          * yet been configured). */
113
114         unsigned int link_up;
115         unsigned int speed;
116         unsigned int duplex;
117
118         tx_desc *txring;
119         rx_desc *rxring;
120         struct sk_buff *txskbs[TSI108_TXRING_LEN];
121         struct sk_buff *rxskbs[TSI108_RXRING_LEN];
122
123         dma_addr_t txdma, rxdma;
124
125         /* txlock nests in misclock and phy_lock */
126
127         spinlock_t txlock, misclock;
128
129         /* stats is used to hold the upper bits of each hardware counter,
130          * and tmpstats is used to hold the full values for returning
131          * to the caller of get_stats().  They must be separate in case
132          * an overflow interrupt occurs before the stats are consumed.
133          */
134
135         struct net_device_stats stats;
136         struct net_device_stats tmpstats;
137
138         /* These stats are kept separate in hardware, thus require individual
139          * fields for handling carry.  They are combined in get_stats.
140          */
141
142         unsigned long rx_fcs;   /* Add to rx_frame_errors */
143         unsigned long rx_short_fcs;     /* Add to rx_frame_errors */
144         unsigned long rx_long_fcs;      /* Add to rx_frame_errors */
145         unsigned long rx_underruns;     /* Add to rx_length_errors */
146         unsigned long rx_overruns;      /* Add to rx_length_errors */
147
148         unsigned long tx_coll_abort;    /* Add to tx_aborted_errors/collisions */
149         unsigned long tx_pause_drop;    /* Add to tx_aborted_errors */
150
151         unsigned long mc_hash[16];
152         u32 msg_enable;                 /* debug message level */
153         struct mii_if_info mii_if;
154         unsigned int init_media;
155 };
156
157 /* Structure for a device driver */
158
159 static struct platform_driver tsi_eth_driver = {
160         .probe = tsi108_init_one,
161         .remove = tsi108_ether_remove,
162         .driver = {
163                 .name = "tsi-ethernet",
164         },
165 };
166
167 static void tsi108_timed_checker(unsigned long dev_ptr);
168
169 #ifdef DEBUG
170 static void dump_eth_one(struct net_device *dev)
171 {
172         struct tsi108_prv_data *data = netdev_priv(dev);
173
174         printk("Dumping %s...\n", dev->name);
175         printk("intstat %x intmask %x phy_ok %d"
176                " link %d speed %d duplex %d\n",
177                TSI_READ(TSI108_EC_INTSTAT),
178                TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
179                data->link_up, data->speed, data->duplex);
180
181         printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
182                data->txhead, data->txtail, data->txfree,
183                TSI_READ(TSI108_EC_TXSTAT),
184                TSI_READ(TSI108_EC_TXESTAT),
185                TSI_READ(TSI108_EC_TXERR));
186
187         printk("RX: head %d, tail %d, free %d, stat %x,"
188                " estat %x, err %x, pending %d\n\n",
189                data->rxhead, data->rxtail, data->rxfree,
190                TSI_READ(TSI108_EC_RXSTAT),
191                TSI_READ(TSI108_EC_RXESTAT),
192                TSI_READ(TSI108_EC_RXERR), data->rxpending);
193 }
194 #endif
195
196 /* Synchronization is needed between the thread and up/down events.
197  * Note that the PHY is accessed through the same registers for both
198  * interfaces, so this can't be made interface-specific.
199  */
200
201 static DEFINE_SPINLOCK(phy_lock);
202
203 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
204 {
205         unsigned i;
206
207         TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
208                                 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
209                                 (reg << TSI108_MAC_MII_ADDR_REG));
210         TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
211         TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
212         for (i = 0; i < 100; i++) {
213                 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
214                       (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
215                         break;
216                 udelay(10);
217         }
218
219         if (i == 100)
220                 return 0xffff;
221         else
222                 return TSI_READ_PHY(TSI108_MAC_MII_DATAIN);
223 }
224
225 static void tsi108_write_mii(struct tsi108_prv_data *data,
226                                 int reg, u16 val)
227 {
228         unsigned i = 100;
229         TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
230                                 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
231                                 (reg << TSI108_MAC_MII_ADDR_REG));
232         TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
233         while (i--) {
234                 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
235                         TSI108_MAC_MII_IND_BUSY))
236                         break;
237                 udelay(10);
238         }
239 }
240
241 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
242 {
243         struct tsi108_prv_data *data = netdev_priv(dev);
244         return tsi108_read_mii(data, reg);
245 }
246
247 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
248 {
249         struct tsi108_prv_data *data = netdev_priv(dev);
250         tsi108_write_mii(data, reg, val);
251 }
252
253 static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
254                                         int reg, u16 val)
255 {
256         unsigned i = 1000;
257         TSI_WRITE(TSI108_MAC_MII_ADDR,
258                              (0x1e << TSI108_MAC_MII_ADDR_PHY)
259                              | (reg << TSI108_MAC_MII_ADDR_REG));
260         TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
261         while(i--) {
262                 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
263                         return;
264                 udelay(10);
265         }
266         printk(KERN_ERR "%s function time out\n", __func__);
267 }
268
269 static int mii_speed(struct mii_if_info *mii)
270 {
271         int advert, lpa, val, media;
272         int lpa2 = 0;
273         int speed;
274
275         if (!mii_link_ok(mii))
276                 return 0;
277
278         val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
279         if ((val & BMSR_ANEGCOMPLETE) == 0)
280                 return 0;
281
282         advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
283         lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
284         media = mii_nway_result(advert & lpa);
285
286         if (mii->supports_gmii)
287                 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
288
289         speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
290                         (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
291         return speed;
292 }
293
294 static void tsi108_check_phy(struct net_device *dev)
295 {
296         struct tsi108_prv_data *data = netdev_priv(dev);
297         u32 mac_cfg2_reg, portctrl_reg;
298         u32 duplex;
299         u32 speed;
300         unsigned long flags;
301
302         spin_lock_irqsave(&phy_lock, flags);
303
304         if (!data->phy_ok)
305                 goto out;
306
307         duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
308         data->init_media = 0;
309
310         if (netif_carrier_ok(dev)) {
311
312                 speed = mii_speed(&data->mii_if);
313
314                 if ((speed != data->speed) || duplex) {
315
316                         mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
317                         portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
318
319                         mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
320
321                         if (speed == 1000) {
322                                 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
323                                 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
324                         } else {
325                                 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
326                                 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
327                         }
328
329                         data->speed = speed;
330
331                         if (data->mii_if.full_duplex) {
332                                 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
333                                 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
334                                 data->duplex = 2;
335                         } else {
336                                 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
337                                 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
338                                 data->duplex = 1;
339                         }
340
341                         TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
342                         TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
343                 }
344
345                 if (data->link_up == 0) {
346                         /* The manual says it can take 3-4 usecs for the speed change
347                          * to take effect.
348                          */
349                         udelay(5);
350
351                         spin_lock(&data->txlock);
352                         if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
353                                 netif_wake_queue(dev);
354
355                         data->link_up = 1;
356                         spin_unlock(&data->txlock);
357                 }
358         } else {
359                 if (data->link_up == 1) {
360                         netif_stop_queue(dev);
361                         data->link_up = 0;
362                         printk(KERN_NOTICE "%s : link is down\n", dev->name);
363                 }
364
365                 goto out;
366         }
367
368
369 out:
370         spin_unlock_irqrestore(&phy_lock, flags);
371 }
372
373 static inline void
374 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
375                       unsigned long *upper)
376 {
377         if (carry & carry_bit)
378                 *upper += carry_shift;
379 }
380
381 static void tsi108_stat_carry(struct net_device *dev)
382 {
383         struct tsi108_prv_data *data = netdev_priv(dev);
384         unsigned long flags;
385         u32 carry1, carry2;
386
387         spin_lock_irqsave(&data->misclock, flags);
388
389         carry1 = TSI_READ(TSI108_STAT_CARRY1);
390         carry2 = TSI_READ(TSI108_STAT_CARRY2);
391
392         TSI_WRITE(TSI108_STAT_CARRY1, carry1);
393         TSI_WRITE(TSI108_STAT_CARRY2, carry2);
394
395         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
396                               TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
397
398         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
399                               TSI108_STAT_RXPKTS_CARRY,
400                               &data->stats.rx_packets);
401
402         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
403                               TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
404
405         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
406                               TSI108_STAT_RXMCAST_CARRY,
407                               &data->stats.multicast);
408
409         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
410                               TSI108_STAT_RXALIGN_CARRY,
411                               &data->stats.rx_frame_errors);
412
413         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
414                               TSI108_STAT_RXLENGTH_CARRY,
415                               &data->stats.rx_length_errors);
416
417         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
418                               TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
419
420         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
421                               TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
422
423         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
424                               TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
425
426         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
427                               TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
428
429         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
430                               TSI108_STAT_RXDROP_CARRY,
431                               &data->stats.rx_missed_errors);
432
433         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
434                               TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
435
436         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
437                               TSI108_STAT_TXPKTS_CARRY,
438                               &data->stats.tx_packets);
439
440         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
441                               TSI108_STAT_TXEXDEF_CARRY,
442                               &data->stats.tx_aborted_errors);
443
444         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
445                               TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
446
447         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
448                               TSI108_STAT_TXTCOL_CARRY,
449                               &data->stats.collisions);
450
451         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
452                               TSI108_STAT_TXPAUSEDROP_CARRY,
453                               &data->tx_pause_drop);
454
455         spin_unlock_irqrestore(&data->misclock, flags);
456 }
457
458 /* Read a stat counter atomically with respect to carries.
459  * data->misclock must be held.
460  */
461 static inline unsigned long
462 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
463                  int carry_shift, unsigned long *upper)
464 {
465         int carryreg;
466         unsigned long val;
467
468         if (reg < 0xb0)
469                 carryreg = TSI108_STAT_CARRY1;
470         else
471                 carryreg = TSI108_STAT_CARRY2;
472
473       again:
474         val = TSI_READ(reg) | *upper;
475
476         /* Check to see if it overflowed, but the interrupt hasn't
477          * been serviced yet.  If so, handle the carry here, and
478          * try again.
479          */
480
481         if (unlikely(TSI_READ(carryreg) & carry_bit)) {
482                 *upper += carry_shift;
483                 TSI_WRITE(carryreg, carry_bit);
484                 goto again;
485         }
486
487         return val;
488 }
489
490 static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
491 {
492         unsigned long excol;
493
494         struct tsi108_prv_data *data = netdev_priv(dev);
495         spin_lock_irq(&data->misclock);
496
497         data->tmpstats.rx_packets =
498             tsi108_read_stat(data, TSI108_STAT_RXPKTS,
499                              TSI108_STAT_CARRY1_RXPKTS,
500                              TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
501
502         data->tmpstats.tx_packets =
503             tsi108_read_stat(data, TSI108_STAT_TXPKTS,
504                              TSI108_STAT_CARRY2_TXPKTS,
505                              TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
506
507         data->tmpstats.rx_bytes =
508             tsi108_read_stat(data, TSI108_STAT_RXBYTES,
509                              TSI108_STAT_CARRY1_RXBYTES,
510                              TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
511
512         data->tmpstats.tx_bytes =
513             tsi108_read_stat(data, TSI108_STAT_TXBYTES,
514                              TSI108_STAT_CARRY2_TXBYTES,
515                              TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
516
517         data->tmpstats.multicast =
518             tsi108_read_stat(data, TSI108_STAT_RXMCAST,
519                              TSI108_STAT_CARRY1_RXMCAST,
520                              TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
521
522         excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
523                                  TSI108_STAT_CARRY2_TXEXCOL,
524                                  TSI108_STAT_TXEXCOL_CARRY,
525                                  &data->tx_coll_abort);
526
527         data->tmpstats.collisions =
528             tsi108_read_stat(data, TSI108_STAT_TXTCOL,
529                              TSI108_STAT_CARRY2_TXTCOL,
530                              TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
531
532         data->tmpstats.collisions += excol;
533
534         data->tmpstats.rx_length_errors =
535             tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
536                              TSI108_STAT_CARRY1_RXLENGTH,
537                              TSI108_STAT_RXLENGTH_CARRY,
538                              &data->stats.rx_length_errors);
539
540         data->tmpstats.rx_length_errors +=
541             tsi108_read_stat(data, TSI108_STAT_RXRUNT,
542                              TSI108_STAT_CARRY1_RXRUNT,
543                              TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
544
545         data->tmpstats.rx_length_errors +=
546             tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
547                              TSI108_STAT_CARRY1_RXJUMBO,
548                              TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
549
550         data->tmpstats.rx_frame_errors =
551             tsi108_read_stat(data, TSI108_STAT_RXALIGN,
552                              TSI108_STAT_CARRY1_RXALIGN,
553                              TSI108_STAT_RXALIGN_CARRY,
554                              &data->stats.rx_frame_errors);
555
556         data->tmpstats.rx_frame_errors +=
557             tsi108_read_stat(data, TSI108_STAT_RXFCS,
558                              TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
559                              &data->rx_fcs);
560
561         data->tmpstats.rx_frame_errors +=
562             tsi108_read_stat(data, TSI108_STAT_RXFRAG,
563                              TSI108_STAT_CARRY1_RXFRAG,
564                              TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
565
566         data->tmpstats.rx_missed_errors =
567             tsi108_read_stat(data, TSI108_STAT_RXDROP,
568                              TSI108_STAT_CARRY1_RXDROP,
569                              TSI108_STAT_RXDROP_CARRY,
570                              &data->stats.rx_missed_errors);
571
572         /* These three are maintained by software. */
573         data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
574         data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
575
576         data->tmpstats.tx_aborted_errors =
577             tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
578                              TSI108_STAT_CARRY2_TXEXDEF,
579                              TSI108_STAT_TXEXDEF_CARRY,
580                              &data->stats.tx_aborted_errors);
581
582         data->tmpstats.tx_aborted_errors +=
583             tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
584                              TSI108_STAT_CARRY2_TXPAUSE,
585                              TSI108_STAT_TXPAUSEDROP_CARRY,
586                              &data->tx_pause_drop);
587
588         data->tmpstats.tx_aborted_errors += excol;
589
590         data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
591         data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
592             data->tmpstats.rx_crc_errors +
593             data->tmpstats.rx_frame_errors +
594             data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
595
596         spin_unlock_irq(&data->misclock);
597         return &data->tmpstats;
598 }
599
600 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
601 {
602         TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
603                              TSI108_EC_RXQ_PTRHIGH_VALID);
604
605         TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
606                              | TSI108_EC_RXCTRL_QUEUE0);
607 }
608
609 static void tsi108_restart_tx(struct tsi108_prv_data * data)
610 {
611         TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
612                              TSI108_EC_TXQ_PTRHIGH_VALID);
613
614         TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
615                              TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
616 }
617
618 /* txlock must be held by caller, with IRQs disabled, and
619  * with permission to re-enable them when the lock is dropped.
620  */
621 static void tsi108_complete_tx(struct net_device *dev)
622 {
623         struct tsi108_prv_data *data = netdev_priv(dev);
624         int tx;
625         struct sk_buff *skb;
626         int release = 0;
627
628         while (!data->txfree || data->txhead != data->txtail) {
629                 tx = data->txtail;
630
631                 if (data->txring[tx].misc & TSI108_TX_OWN)
632                         break;
633
634                 skb = data->txskbs[tx];
635
636                 if (!(data->txring[tx].misc & TSI108_TX_OK))
637                         printk("%s: bad tx packet, misc %x\n",
638                                dev->name, data->txring[tx].misc);
639
640                 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
641                 data->txfree++;
642
643                 if (data->txring[tx].misc & TSI108_TX_EOF) {
644                         dev_kfree_skb_any(skb);
645                         release++;
646                 }
647         }
648
649         if (release) {
650                 if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
651                         netif_wake_queue(dev);
652         }
653 }
654
655 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
656 {
657         struct tsi108_prv_data *data = netdev_priv(dev);
658         int frags = skb_shinfo(skb)->nr_frags + 1;
659         int i;
660
661         if (!data->phy_ok && net_ratelimit())
662                 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
663
664         if (!data->link_up) {
665                 printk(KERN_ERR "%s: Transmit while link is down!\n",
666                        dev->name);
667                 netif_stop_queue(dev);
668                 return NETDEV_TX_BUSY;
669         }
670
671         if (data->txfree < MAX_SKB_FRAGS + 1) {
672                 netif_stop_queue(dev);
673
674                 if (net_ratelimit())
675                         printk(KERN_ERR "%s: Transmit with full tx ring!\n",
676                                dev->name);
677                 return NETDEV_TX_BUSY;
678         }
679
680         if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
681                 netif_stop_queue(dev);
682         }
683
684         spin_lock_irq(&data->txlock);
685
686         for (i = 0; i < frags; i++) {
687                 int misc = 0;
688                 int tx = data->txhead;
689
690                 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
691                  * the interrupt bit.  TX descriptor-complete interrupts are
692                  * enabled when the queue fills up, and masked when there is
693                  * still free space.  This way, when saturating the outbound
694                  * link, the tx interrupts are kept to a reasonable level.
695                  * When the queue is not full, reclamation of skbs still occurs
696                  * as new packets are transmitted, or on a queue-empty
697                  * interrupt.
698                  */
699
700                 if ((tx % TSI108_TX_INT_FREQ == 0) &&
701                     ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
702                         misc = TSI108_TX_INT;
703
704                 data->txskbs[tx] = skb;
705
706                 if (i == 0) {
707                         data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
708                                         skb_headlen(skb), DMA_TO_DEVICE);
709                         data->txring[tx].len = skb_headlen(skb);
710                         misc |= TSI108_TX_SOF;
711                 } else {
712                         const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
713
714                         data->txring[tx].buf0 = skb_frag_dma_map(NULL, frag,
715                                                                  0,
716                                                                  skb_frag_size(frag),
717                                                                  DMA_TO_DEVICE);
718                         data->txring[tx].len = skb_frag_size(frag);
719                 }
720
721                 if (i == frags - 1)
722                         misc |= TSI108_TX_EOF;
723
724                 if (netif_msg_pktdata(data)) {
725                         int i;
726                         printk("%s: Tx Frame contents (%d)\n", dev->name,
727                                skb->len);
728                         for (i = 0; i < skb->len; i++)
729                                 printk(" %2.2x", skb->data[i]);
730                         printk(".\n");
731                 }
732                 data->txring[tx].misc = misc | TSI108_TX_OWN;
733
734                 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
735                 data->txfree--;
736         }
737
738         tsi108_complete_tx(dev);
739
740         /* This must be done after the check for completed tx descriptors,
741          * so that the tail pointer is correct.
742          */
743
744         if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
745                 tsi108_restart_tx(data);
746
747         spin_unlock_irq(&data->txlock);
748         return NETDEV_TX_OK;
749 }
750
751 static int tsi108_complete_rx(struct net_device *dev, int budget)
752 {
753         struct tsi108_prv_data *data = netdev_priv(dev);
754         int done = 0;
755
756         while (data->rxfree && done != budget) {
757                 int rx = data->rxtail;
758                 struct sk_buff *skb;
759
760                 if (data->rxring[rx].misc & TSI108_RX_OWN)
761                         break;
762
763                 skb = data->rxskbs[rx];
764                 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
765                 data->rxfree--;
766                 done++;
767
768                 if (data->rxring[rx].misc & TSI108_RX_BAD) {
769                         spin_lock_irq(&data->misclock);
770
771                         if (data->rxring[rx].misc & TSI108_RX_CRC)
772                                 data->stats.rx_crc_errors++;
773                         if (data->rxring[rx].misc & TSI108_RX_OVER)
774                                 data->stats.rx_fifo_errors++;
775
776                         spin_unlock_irq(&data->misclock);
777
778                         dev_kfree_skb_any(skb);
779                         continue;
780                 }
781                 if (netif_msg_pktdata(data)) {
782                         int i;
783                         printk("%s: Rx Frame contents (%d)\n",
784                                dev->name, data->rxring[rx].len);
785                         for (i = 0; i < data->rxring[rx].len; i++)
786                                 printk(" %2.2x", skb->data[i]);
787                         printk(".\n");
788                 }
789
790                 skb_put(skb, data->rxring[rx].len);
791                 skb->protocol = eth_type_trans(skb, dev);
792                 netif_receive_skb(skb);
793         }
794
795         return done;
796 }
797
798 static int tsi108_refill_rx(struct net_device *dev, int budget)
799 {
800         struct tsi108_prv_data *data = netdev_priv(dev);
801         int done = 0;
802
803         while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
804                 int rx = data->rxhead;
805                 struct sk_buff *skb;
806
807                 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
808                 data->rxskbs[rx] = skb;
809                 if (!skb)
810                         break;
811
812                 data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
813                                                         TSI108_RX_SKB_SIZE,
814                                                         DMA_FROM_DEVICE);
815
816                 /* Sometimes the hardware sets blen to zero after packet
817                  * reception, even though the manual says that it's only ever
818                  * modified by the driver.
819                  */
820
821                 data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
822                 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
823
824                 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
825                 data->rxfree++;
826                 done++;
827         }
828
829         if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
830                            TSI108_EC_RXSTAT_QUEUE0))
831                 tsi108_restart_rx(data, dev);
832
833         return done;
834 }
835
836 static int tsi108_poll(struct napi_struct *napi, int budget)
837 {
838         struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
839         struct net_device *dev = data->dev;
840         u32 estat = TSI_READ(TSI108_EC_RXESTAT);
841         u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
842         int num_received = 0, num_filled = 0;
843
844         intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
845             TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
846
847         TSI_WRITE(TSI108_EC_RXESTAT, estat);
848         TSI_WRITE(TSI108_EC_INTSTAT, intstat);
849
850         if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
851                 num_received = tsi108_complete_rx(dev, budget);
852
853         /* This should normally fill no more slots than the number of
854          * packets received in tsi108_complete_rx().  The exception
855          * is when we previously ran out of memory for RX SKBs.  In that
856          * case, it's helpful to obey the budget, not only so that the
857          * CPU isn't hogged, but so that memory (which may still be low)
858          * is not hogged by one device.
859          *
860          * A work unit is considered to be two SKBs to allow us to catch
861          * up when the ring has shrunk due to out-of-memory but we're
862          * still removing the full budget's worth of packets each time.
863          */
864
865         if (data->rxfree < TSI108_RXRING_LEN)
866                 num_filled = tsi108_refill_rx(dev, budget * 2);
867
868         if (intstat & TSI108_INT_RXERROR) {
869                 u32 err = TSI_READ(TSI108_EC_RXERR);
870                 TSI_WRITE(TSI108_EC_RXERR, err);
871
872                 if (err) {
873                         if (net_ratelimit())
874                                 printk(KERN_DEBUG "%s: RX error %x\n",
875                                        dev->name, err);
876
877                         if (!(TSI_READ(TSI108_EC_RXSTAT) &
878                               TSI108_EC_RXSTAT_QUEUE0))
879                                 tsi108_restart_rx(data, dev);
880                 }
881         }
882
883         if (intstat & TSI108_INT_RXOVERRUN) {
884                 spin_lock_irq(&data->misclock);
885                 data->stats.rx_fifo_errors++;
886                 spin_unlock_irq(&data->misclock);
887         }
888
889         if (num_received < budget) {
890                 data->rxpending = 0;
891                 napi_complete(napi);
892
893                 TSI_WRITE(TSI108_EC_INTMASK,
894                                      TSI_READ(TSI108_EC_INTMASK)
895                                      & ~(TSI108_INT_RXQUEUE0
896                                          | TSI108_INT_RXTHRESH |
897                                          TSI108_INT_RXOVERRUN |
898                                          TSI108_INT_RXERROR |
899                                          TSI108_INT_RXWAIT));
900         } else {
901                 data->rxpending = 1;
902         }
903
904         return num_received;
905 }
906
907 static void tsi108_rx_int(struct net_device *dev)
908 {
909         struct tsi108_prv_data *data = netdev_priv(dev);
910
911         /* A race could cause dev to already be scheduled, so it's not an
912          * error if that happens (and interrupts shouldn't be re-masked,
913          * because that can cause harmful races, if poll has already
914          * unmasked them but not cleared LINK_STATE_SCHED).
915          *
916          * This can happen if this code races with tsi108_poll(), which masks
917          * the interrupts after tsi108_irq_one() read the mask, but before
918          * napi_schedule is called.  It could also happen due to calls
919          * from tsi108_check_rxring().
920          */
921
922         if (napi_schedule_prep(&data->napi)) {
923                 /* Mask, rather than ack, the receive interrupts.  The ack
924                  * will happen in tsi108_poll().
925                  */
926
927                 TSI_WRITE(TSI108_EC_INTMASK,
928                                      TSI_READ(TSI108_EC_INTMASK) |
929                                      TSI108_INT_RXQUEUE0
930                                      | TSI108_INT_RXTHRESH |
931                                      TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
932                                      TSI108_INT_RXWAIT);
933                 __napi_schedule(&data->napi);
934         } else {
935                 if (!netif_running(dev)) {
936                         /* This can happen if an interrupt occurs while the
937                          * interface is being brought down, as the START
938                          * bit is cleared before the stop function is called.
939                          *
940                          * In this case, the interrupts must be masked, or
941                          * they will continue indefinitely.
942                          *
943                          * There's a race here if the interface is brought down
944                          * and then up in rapid succession, as the device could
945                          * be made running after the above check and before
946                          * the masking below.  This will only happen if the IRQ
947                          * thread has a lower priority than the task brining
948                          * up the interface.  Fixing this race would likely
949                          * require changes in generic code.
950                          */
951
952                         TSI_WRITE(TSI108_EC_INTMASK,
953                                              TSI_READ
954                                              (TSI108_EC_INTMASK) |
955                                              TSI108_INT_RXQUEUE0 |
956                                              TSI108_INT_RXTHRESH |
957                                              TSI108_INT_RXOVERRUN |
958                                              TSI108_INT_RXERROR |
959                                              TSI108_INT_RXWAIT);
960                 }
961         }
962 }
963
964 /* If the RX ring has run out of memory, try periodically
965  * to allocate some more, as otherwise poll would never
966  * get called (apart from the initial end-of-queue condition).
967  *
968  * This is called once per second (by default) from the thread.
969  */
970
971 static void tsi108_check_rxring(struct net_device *dev)
972 {
973         struct tsi108_prv_data *data = netdev_priv(dev);
974
975         /* A poll is scheduled, as opposed to caling tsi108_refill_rx
976          * directly, so as to keep the receive path single-threaded
977          * (and thus not needing a lock).
978          */
979
980         if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
981                 tsi108_rx_int(dev);
982 }
983
984 static void tsi108_tx_int(struct net_device *dev)
985 {
986         struct tsi108_prv_data *data = netdev_priv(dev);
987         u32 estat = TSI_READ(TSI108_EC_TXESTAT);
988
989         TSI_WRITE(TSI108_EC_TXESTAT, estat);
990         TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
991                              TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
992         if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
993                 u32 err = TSI_READ(TSI108_EC_TXERR);
994                 TSI_WRITE(TSI108_EC_TXERR, err);
995
996                 if (err && net_ratelimit())
997                         printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
998         }
999
1000         if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
1001                 spin_lock(&data->txlock);
1002                 tsi108_complete_tx(dev);
1003                 spin_unlock(&data->txlock);
1004         }
1005 }
1006
1007
1008 static irqreturn_t tsi108_irq(int irq, void *dev_id)
1009 {
1010         struct net_device *dev = dev_id;
1011         struct tsi108_prv_data *data = netdev_priv(dev);
1012         u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1013
1014         if (!(stat & TSI108_INT_ANY))
1015                 return IRQ_NONE;        /* Not our interrupt */
1016
1017         stat &= ~TSI_READ(TSI108_EC_INTMASK);
1018
1019         if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1020                     TSI108_INT_TXERROR))
1021                 tsi108_tx_int(dev);
1022         if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1023                     TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1024                     TSI108_INT_RXERROR))
1025                 tsi108_rx_int(dev);
1026
1027         if (stat & TSI108_INT_SFN) {
1028                 if (net_ratelimit())
1029                         printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1030                 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1031         }
1032
1033         if (stat & TSI108_INT_STATCARRY) {
1034                 tsi108_stat_carry(dev);
1035                 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1036         }
1037
1038         return IRQ_HANDLED;
1039 }
1040
1041 static void tsi108_stop_ethernet(struct net_device *dev)
1042 {
1043         struct tsi108_prv_data *data = netdev_priv(dev);
1044         int i = 1000;
1045         /* Disable all TX and RX queues ... */
1046         TSI_WRITE(TSI108_EC_TXCTRL, 0);
1047         TSI_WRITE(TSI108_EC_RXCTRL, 0);
1048
1049         /* ...and wait for them to become idle */
1050         while(i--) {
1051                 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1052                         break;
1053                 udelay(10);
1054         }
1055         i = 1000;
1056         while(i--){
1057                 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1058                         return;
1059                 udelay(10);
1060         }
1061         printk(KERN_ERR "%s function time out\n", __func__);
1062 }
1063
1064 static void tsi108_reset_ether(struct tsi108_prv_data * data)
1065 {
1066         TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1067         udelay(100);
1068         TSI_WRITE(TSI108_MAC_CFG1, 0);
1069
1070         TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1071         udelay(100);
1072         TSI_WRITE(TSI108_EC_PORTCTRL,
1073                              TSI_READ(TSI108_EC_PORTCTRL) &
1074                              ~TSI108_EC_PORTCTRL_STATRST);
1075
1076         TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1077         udelay(100);
1078         TSI_WRITE(TSI108_EC_TXCFG,
1079                              TSI_READ(TSI108_EC_TXCFG) &
1080                              ~TSI108_EC_TXCFG_RST);
1081
1082         TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1083         udelay(100);
1084         TSI_WRITE(TSI108_EC_RXCFG,
1085                              TSI_READ(TSI108_EC_RXCFG) &
1086                              ~TSI108_EC_RXCFG_RST);
1087
1088         TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1089                              TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1090                              TSI108_MAC_MII_MGMT_RST);
1091         udelay(100);
1092         TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1093                              (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1094                              ~(TSI108_MAC_MII_MGMT_RST |
1095                                TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1096 }
1097
1098 static int tsi108_get_mac(struct net_device *dev)
1099 {
1100         struct tsi108_prv_data *data = netdev_priv(dev);
1101         u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1102         u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1103
1104         /* Note that the octets are reversed from what the manual says,
1105          * producing an even weirder ordering...
1106          */
1107         if (word2 == 0 && word1 == 0) {
1108                 dev->dev_addr[0] = 0x00;
1109                 dev->dev_addr[1] = 0x06;
1110                 dev->dev_addr[2] = 0xd2;
1111                 dev->dev_addr[3] = 0x00;
1112                 dev->dev_addr[4] = 0x00;
1113                 if (0x8 == data->phy)
1114                         dev->dev_addr[5] = 0x01;
1115                 else
1116                         dev->dev_addr[5] = 0x02;
1117
1118                 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1119
1120                 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1121                     (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1122
1123                 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1124                 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1125         } else {
1126                 dev->dev_addr[0] = (word2 >> 16) & 0xff;
1127                 dev->dev_addr[1] = (word2 >> 24) & 0xff;
1128                 dev->dev_addr[2] = (word1 >> 0) & 0xff;
1129                 dev->dev_addr[3] = (word1 >> 8) & 0xff;
1130                 dev->dev_addr[4] = (word1 >> 16) & 0xff;
1131                 dev->dev_addr[5] = (word1 >> 24) & 0xff;
1132         }
1133
1134         if (!is_valid_ether_addr(dev->dev_addr)) {
1135                 printk(KERN_ERR
1136                        "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1137                        dev->name, word1, word2);
1138                 return -EINVAL;
1139         }
1140
1141         return 0;
1142 }
1143
1144 static int tsi108_set_mac(struct net_device *dev, void *addr)
1145 {
1146         struct tsi108_prv_data *data = netdev_priv(dev);
1147         u32 word1, word2;
1148         int i;
1149
1150         if (!is_valid_ether_addr(addr))
1151                 return -EADDRNOTAVAIL;
1152
1153         for (i = 0; i < 6; i++)
1154                 /* +2 is for the offset of the HW addr type */
1155                 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1156
1157         word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1158
1159         word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1160             (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1161
1162         spin_lock_irq(&data->misclock);
1163         TSI_WRITE(TSI108_MAC_ADDR1, word1);
1164         TSI_WRITE(TSI108_MAC_ADDR2, word2);
1165         spin_lock(&data->txlock);
1166
1167         if (data->txfree && data->link_up)
1168                 netif_wake_queue(dev);
1169
1170         spin_unlock(&data->txlock);
1171         spin_unlock_irq(&data->misclock);
1172         return 0;
1173 }
1174
1175 /* Protected by dev->xmit_lock. */
1176 static void tsi108_set_rx_mode(struct net_device *dev)
1177 {
1178         struct tsi108_prv_data *data = netdev_priv(dev);
1179         u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1180
1181         if (dev->flags & IFF_PROMISC) {
1182                 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1183                 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1184                 goto out;
1185         }
1186
1187         rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1188
1189         if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
1190                 int i;
1191                 struct netdev_hw_addr *ha;
1192                 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1193
1194                 memset(data->mc_hash, 0, sizeof(data->mc_hash));
1195
1196                 netdev_for_each_mc_addr(ha, dev) {
1197                         u32 hash, crc;
1198
1199                         crc = ether_crc(6, ha->addr);
1200                         hash = crc >> 23;
1201                         __set_bit(hash, &data->mc_hash[0]);
1202                 }
1203
1204                 TSI_WRITE(TSI108_EC_HASHADDR,
1205                                      TSI108_EC_HASHADDR_AUTOINC |
1206                                      TSI108_EC_HASHADDR_MCAST);
1207
1208                 for (i = 0; i < 16; i++) {
1209                         /* The manual says that the hardware may drop
1210                          * back-to-back writes to the data register.
1211                          */
1212                         udelay(1);
1213                         TSI_WRITE(TSI108_EC_HASHDATA,
1214                                              data->mc_hash[i]);
1215                 }
1216         }
1217
1218       out:
1219         TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1220 }
1221
1222 static void tsi108_init_phy(struct net_device *dev)
1223 {
1224         struct tsi108_prv_data *data = netdev_priv(dev);
1225         u32 i = 0;
1226         u16 phyval = 0;
1227         unsigned long flags;
1228
1229         spin_lock_irqsave(&phy_lock, flags);
1230
1231         tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1232         while (--i) {
1233                 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1234                         break;
1235                 udelay(10);
1236         }
1237         if (i == 0)
1238                 printk(KERN_ERR "%s function time out\n", __func__);
1239
1240         if (data->phy_type == TSI108_PHY_BCM54XX) {
1241                 tsi108_write_mii(data, 0x09, 0x0300);
1242                 tsi108_write_mii(data, 0x10, 0x1020);
1243                 tsi108_write_mii(data, 0x1c, 0x8c00);
1244         }
1245
1246         tsi108_write_mii(data,
1247                          MII_BMCR,
1248                          BMCR_ANENABLE | BMCR_ANRESTART);
1249         while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1250                 cpu_relax();
1251
1252         /* Set G/MII mode and receive clock select in TBI control #2.  The
1253          * second port won't work if this isn't done, even though we don't
1254          * use TBI mode.
1255          */
1256
1257         tsi108_write_tbi(data, 0x11, 0x30);
1258
1259         /* FIXME: It seems to take more than 2 back-to-back reads to the
1260          * PHY_STAT register before the link up status bit is set.
1261          */
1262
1263         data->link_up = 0;
1264
1265         while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1266                  BMSR_LSTATUS)) {
1267                 if (i++ > (MII_READ_DELAY / 10)) {
1268                         break;
1269                 }
1270                 spin_unlock_irqrestore(&phy_lock, flags);
1271                 msleep(10);
1272                 spin_lock_irqsave(&phy_lock, flags);
1273         }
1274
1275         data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1276         printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1277         data->phy_ok = 1;
1278         data->init_media = 1;
1279         spin_unlock_irqrestore(&phy_lock, flags);
1280 }
1281
1282 static void tsi108_kill_phy(struct net_device *dev)
1283 {
1284         struct tsi108_prv_data *data = netdev_priv(dev);
1285         unsigned long flags;
1286
1287         spin_lock_irqsave(&phy_lock, flags);
1288         tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1289         data->phy_ok = 0;
1290         spin_unlock_irqrestore(&phy_lock, flags);
1291 }
1292
1293 static int tsi108_open(struct net_device *dev)
1294 {
1295         int i;
1296         struct tsi108_prv_data *data = netdev_priv(dev);
1297         unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1298         unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1299
1300         i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1301         if (i != 0) {
1302                 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1303                        data->id, data->irq_num);
1304                 return i;
1305         } else {
1306                 dev->irq = data->irq_num;
1307                 printk(KERN_NOTICE
1308                        "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1309                        data->id, dev->irq, dev->name);
1310         }
1311
1312         data->rxring = dma_zalloc_coherent(NULL, rxring_size, &data->rxdma,
1313                                            GFP_KERNEL);
1314         if (!data->rxring)
1315                 return -ENOMEM;
1316
1317         data->txring = dma_zalloc_coherent(NULL, txring_size, &data->txdma,
1318                                            GFP_KERNEL);
1319         if (!data->txring) {
1320                 pci_free_consistent(NULL, rxring_size, data->rxring,
1321                                     data->rxdma);
1322                 return -ENOMEM;
1323         }
1324
1325         for (i = 0; i < TSI108_RXRING_LEN; i++) {
1326                 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1327                 data->rxring[i].blen = TSI108_RXBUF_SIZE;
1328                 data->rxring[i].vlan = 0;
1329         }
1330
1331         data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1332
1333         data->rxtail = 0;
1334         data->rxhead = 0;
1335
1336         for (i = 0; i < TSI108_RXRING_LEN; i++) {
1337                 struct sk_buff *skb;
1338
1339                 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
1340                 if (!skb) {
1341                         /* Bah.  No memory for now, but maybe we'll get
1342                          * some more later.
1343                          * For now, we'll live with the smaller ring.
1344                          */
1345                         printk(KERN_WARNING
1346                                "%s: Could only allocate %d receive skb(s).\n",
1347                                dev->name, i);
1348                         data->rxhead = i;
1349                         break;
1350                 }
1351
1352                 data->rxskbs[i] = skb;
1353                 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1354                 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1355         }
1356
1357         data->rxfree = i;
1358         TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1359
1360         for (i = 0; i < TSI108_TXRING_LEN; i++) {
1361                 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1362                 data->txring[i].misc = 0;
1363         }
1364
1365         data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1366         data->txtail = 0;
1367         data->txhead = 0;
1368         data->txfree = TSI108_TXRING_LEN;
1369         TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1370         tsi108_init_phy(dev);
1371
1372         napi_enable(&data->napi);
1373
1374         setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
1375         mod_timer(&data->timer, jiffies + 1);
1376
1377         tsi108_restart_rx(data, dev);
1378
1379         TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1380
1381         TSI_WRITE(TSI108_EC_INTMASK,
1382                              ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1383                                TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1384                                TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1385                                TSI108_INT_SFN | TSI108_INT_STATCARRY));
1386
1387         TSI_WRITE(TSI108_MAC_CFG1,
1388                              TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1389         netif_start_queue(dev);
1390         return 0;
1391 }
1392
1393 static int tsi108_close(struct net_device *dev)
1394 {
1395         struct tsi108_prv_data *data = netdev_priv(dev);
1396
1397         netif_stop_queue(dev);
1398         napi_disable(&data->napi);
1399
1400         del_timer_sync(&data->timer);
1401
1402         tsi108_stop_ethernet(dev);
1403         tsi108_kill_phy(dev);
1404         TSI_WRITE(TSI108_EC_INTMASK, ~0);
1405         TSI_WRITE(TSI108_MAC_CFG1, 0);
1406
1407         /* Check for any pending TX packets, and drop them. */
1408
1409         while (!data->txfree || data->txhead != data->txtail) {
1410                 int tx = data->txtail;
1411                 struct sk_buff *skb;
1412                 skb = data->txskbs[tx];
1413                 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1414                 data->txfree++;
1415                 dev_kfree_skb(skb);
1416         }
1417
1418         free_irq(data->irq_num, dev);
1419
1420         /* Discard the RX ring. */
1421
1422         while (data->rxfree) {
1423                 int rx = data->rxtail;
1424                 struct sk_buff *skb;
1425
1426                 skb = data->rxskbs[rx];
1427                 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1428                 data->rxfree--;
1429                 dev_kfree_skb(skb);
1430         }
1431
1432         dma_free_coherent(0,
1433                             TSI108_RXRING_LEN * sizeof(rx_desc),
1434                             data->rxring, data->rxdma);
1435         dma_free_coherent(0,
1436                             TSI108_TXRING_LEN * sizeof(tx_desc),
1437                             data->txring, data->txdma);
1438
1439         return 0;
1440 }
1441
1442 static void tsi108_init_mac(struct net_device *dev)
1443 {
1444         struct tsi108_prv_data *data = netdev_priv(dev);
1445
1446         TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1447                              TSI108_MAC_CFG2_PADCRC);
1448
1449         TSI_WRITE(TSI108_EC_TXTHRESH,
1450                              (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1451                              (192 << TSI108_EC_TXTHRESH_STOPFILL));
1452
1453         TSI_WRITE(TSI108_STAT_CARRYMASK1,
1454                              ~(TSI108_STAT_CARRY1_RXBYTES |
1455                                TSI108_STAT_CARRY1_RXPKTS |
1456                                TSI108_STAT_CARRY1_RXFCS |
1457                                TSI108_STAT_CARRY1_RXMCAST |
1458                                TSI108_STAT_CARRY1_RXALIGN |
1459                                TSI108_STAT_CARRY1_RXLENGTH |
1460                                TSI108_STAT_CARRY1_RXRUNT |
1461                                TSI108_STAT_CARRY1_RXJUMBO |
1462                                TSI108_STAT_CARRY1_RXFRAG |
1463                                TSI108_STAT_CARRY1_RXJABBER |
1464                                TSI108_STAT_CARRY1_RXDROP));
1465
1466         TSI_WRITE(TSI108_STAT_CARRYMASK2,
1467                              ~(TSI108_STAT_CARRY2_TXBYTES |
1468                                TSI108_STAT_CARRY2_TXPKTS |
1469                                TSI108_STAT_CARRY2_TXEXDEF |
1470                                TSI108_STAT_CARRY2_TXEXCOL |
1471                                TSI108_STAT_CARRY2_TXTCOL |
1472                                TSI108_STAT_CARRY2_TXPAUSE));
1473
1474         TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1475         TSI_WRITE(TSI108_MAC_CFG1, 0);
1476
1477         TSI_WRITE(TSI108_EC_RXCFG,
1478                              TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1479
1480         TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1481                              TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1482                              TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1483                                                 TSI108_EC_TXQ_CFG_SFNPORT));
1484
1485         TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1486                              TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1487                              TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1488                                                 TSI108_EC_RXQ_CFG_SFNPORT));
1489
1490         TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1491                              TSI108_EC_TXQ_BUFCFG_BURST256 |
1492                              TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1493                                                 TSI108_EC_TXQ_BUFCFG_SFNPORT));
1494
1495         TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1496                              TSI108_EC_RXQ_BUFCFG_BURST256 |
1497                              TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1498                                                 TSI108_EC_RXQ_BUFCFG_SFNPORT));
1499
1500         TSI_WRITE(TSI108_EC_INTMASK, ~0);
1501 }
1502
1503 static int tsi108_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1504 {
1505         struct tsi108_prv_data *data = netdev_priv(dev);
1506         unsigned long flags;
1507         int rc;
1508
1509         spin_lock_irqsave(&data->txlock, flags);
1510         rc = mii_ethtool_gset(&data->mii_if, cmd);
1511         spin_unlock_irqrestore(&data->txlock, flags);
1512
1513         return rc;
1514 }
1515
1516 static int tsi108_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1517 {
1518         struct tsi108_prv_data *data = netdev_priv(dev);
1519         unsigned long flags;
1520         int rc;
1521
1522         spin_lock_irqsave(&data->txlock, flags);
1523         rc = mii_ethtool_sset(&data->mii_if, cmd);
1524         spin_unlock_irqrestore(&data->txlock, flags);
1525
1526         return rc;
1527 }
1528
1529 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1530 {
1531         struct tsi108_prv_data *data = netdev_priv(dev);
1532         if (!netif_running(dev))
1533                 return -EINVAL;
1534         return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1535 }
1536
1537 static const struct ethtool_ops tsi108_ethtool_ops = {
1538         .get_link       = ethtool_op_get_link,
1539         .get_settings   = tsi108_get_settings,
1540         .set_settings   = tsi108_set_settings,
1541 };
1542
1543 static const struct net_device_ops tsi108_netdev_ops = {
1544         .ndo_open               = tsi108_open,
1545         .ndo_stop               = tsi108_close,
1546         .ndo_start_xmit         = tsi108_send_packet,
1547         .ndo_set_rx_mode        = tsi108_set_rx_mode,
1548         .ndo_get_stats          = tsi108_get_stats,
1549         .ndo_do_ioctl           = tsi108_do_ioctl,
1550         .ndo_set_mac_address    = tsi108_set_mac,
1551         .ndo_validate_addr      = eth_validate_addr,
1552         .ndo_change_mtu         = eth_change_mtu,
1553 };
1554
1555 static int
1556 tsi108_init_one(struct platform_device *pdev)
1557 {
1558         struct net_device *dev = NULL;
1559         struct tsi108_prv_data *data = NULL;
1560         hw_info *einfo;
1561         int err = 0;
1562
1563         einfo = dev_get_platdata(&pdev->dev);
1564
1565         if (NULL == einfo) {
1566                 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1567                        pdev->id);
1568                 return -ENODEV;
1569         }
1570
1571         /* Create an ethernet device instance */
1572
1573         dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1574         if (!dev)
1575                 return -ENOMEM;
1576
1577         printk("tsi108_eth%d: probe...\n", pdev->id);
1578         data = netdev_priv(dev);
1579         data->dev = dev;
1580
1581         pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1582                         pdev->id, einfo->regs, einfo->phyregs,
1583                         einfo->phy, einfo->irq_num);
1584
1585         data->regs = ioremap(einfo->regs, 0x400);
1586         if (NULL == data->regs) {
1587                 err = -ENOMEM;
1588                 goto regs_fail;
1589         }
1590
1591         data->phyregs = ioremap(einfo->phyregs, 0x400);
1592         if (NULL == data->phyregs) {
1593                 err = -ENOMEM;
1594                 goto phyregs_fail;
1595         }
1596 /* MII setup */
1597         data->mii_if.dev = dev;
1598         data->mii_if.mdio_read = tsi108_mdio_read;
1599         data->mii_if.mdio_write = tsi108_mdio_write;
1600         data->mii_if.phy_id = einfo->phy;
1601         data->mii_if.phy_id_mask = 0x1f;
1602         data->mii_if.reg_num_mask = 0x1f;
1603
1604         data->phy = einfo->phy;
1605         data->phy_type = einfo->phy_type;
1606         data->irq_num = einfo->irq_num;
1607         data->id = pdev->id;
1608         netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1609         dev->netdev_ops = &tsi108_netdev_ops;
1610         dev->ethtool_ops = &tsi108_ethtool_ops;
1611
1612         /* Apparently, the Linux networking code won't use scatter-gather
1613          * if the hardware doesn't do checksums.  However, it's faster
1614          * to checksum in place and use SG, as (among other reasons)
1615          * the cache won't be dirtied (which then has to be flushed
1616          * before DMA).  The checksumming is done by the driver (via
1617          * a new function skb_csum_dev() in net/core/skbuff.c).
1618          */
1619
1620         dev->features = NETIF_F_HIGHDMA;
1621
1622         spin_lock_init(&data->txlock);
1623         spin_lock_init(&data->misclock);
1624
1625         tsi108_reset_ether(data);
1626         tsi108_kill_phy(dev);
1627
1628         if ((err = tsi108_get_mac(dev)) != 0) {
1629                 printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
1630                        dev->name);
1631                 goto register_fail;
1632         }
1633
1634         tsi108_init_mac(dev);
1635         err = register_netdev(dev);
1636         if (err) {
1637                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1638                                 dev->name);
1639                 goto register_fail;
1640         }
1641
1642         platform_set_drvdata(pdev, dev);
1643         printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1644                dev->name, dev->dev_addr);
1645 #ifdef DEBUG
1646         data->msg_enable = DEBUG;
1647         dump_eth_one(dev);
1648 #endif
1649
1650         return 0;
1651
1652 register_fail:
1653         iounmap(data->phyregs);
1654
1655 phyregs_fail:
1656         iounmap(data->regs);
1657
1658 regs_fail:
1659         free_netdev(dev);
1660         return err;
1661 }
1662
1663 /* There's no way to either get interrupts from the PHY when
1664  * something changes, or to have the Tsi108 automatically communicate
1665  * with the PHY to reconfigure itself.
1666  *
1667  * Thus, we have to do it using a timer.
1668  */
1669
1670 static void tsi108_timed_checker(unsigned long dev_ptr)
1671 {
1672         struct net_device *dev = (struct net_device *)dev_ptr;
1673         struct tsi108_prv_data *data = netdev_priv(dev);
1674
1675         tsi108_check_phy(dev);
1676         tsi108_check_rxring(dev);
1677         mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1678 }
1679
1680 static int tsi108_ether_remove(struct platform_device *pdev)
1681 {
1682         struct net_device *dev = platform_get_drvdata(pdev);
1683         struct tsi108_prv_data *priv = netdev_priv(dev);
1684
1685         unregister_netdev(dev);
1686         tsi108_stop_ethernet(dev);
1687         iounmap(priv->regs);
1688         iounmap(priv->phyregs);
1689         free_netdev(dev);
1690
1691         return 0;
1692 }
1693 module_platform_driver(tsi_eth_driver);
1694
1695 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1696 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1697 MODULE_LICENSE("GPL");
1698 MODULE_ALIAS("platform:tsi-ethernet");