GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / net / ethernet / toshiba / tc35815.c
1 /*
2  * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
3  *
4  * Based on skelton.c by Donald Becker.
5  *
6  * This driver is a replacement of older and less maintained version.
7  * This is a header of the older version:
8  *      -----<snip>-----
9  *      Copyright 2001 MontaVista Software Inc.
10  *      Author: MontaVista Software, Inc.
11  *              ahennessy@mvista.com
12  *      Copyright (C) 2000-2001 Toshiba Corporation
13  *      static const char *version =
14  *              "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
15  *      -----<snip>-----
16  *
17  * This file is subject to the terms and conditions of the GNU General Public
18  * License.  See the file "COPYING" in the main directory of this archive
19  * for more details.
20  *
21  * (C) Copyright TOSHIBA CORPORATION 2004-2005
22  * All Rights Reserved.
23  */
24
25 #define DRV_VERSION     "1.39"
26 static const char version[] = "tc35815.c:v" DRV_VERSION "\n";
27 #define MODNAME                 "tc35815"
28
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/fcntl.h>
33 #include <linux/interrupt.h>
34 #include <linux/ioport.h>
35 #include <linux/in.h>
36 #include <linux/if_vlan.h>
37 #include <linux/slab.h>
38 #include <linux/string.h>
39 #include <linux/spinlock.h>
40 #include <linux/errno.h>
41 #include <linux/netdevice.h>
42 #include <linux/etherdevice.h>
43 #include <linux/skbuff.h>
44 #include <linux/delay.h>
45 #include <linux/pci.h>
46 #include <linux/phy.h>
47 #include <linux/workqueue.h>
48 #include <linux/platform_device.h>
49 #include <linux/prefetch.h>
50 #include <asm/io.h>
51 #include <asm/byteorder.h>
52
53 enum tc35815_chiptype {
54         TC35815CF = 0,
55         TC35815_NWU,
56         TC35815_TX4939,
57 };
58
59 /* indexed by tc35815_chiptype, above */
60 static const struct {
61         const char *name;
62 } chip_info[] = {
63         { "TOSHIBA TC35815CF 10/100BaseTX" },
64         { "TOSHIBA TC35815 with Wake on LAN" },
65         { "TOSHIBA TC35815/TX4939" },
66 };
67
68 static const struct pci_device_id tc35815_pci_tbl[] = {
69         {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
70         {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
71         {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
72         {0,}
73 };
74 MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
75
76 /* see MODULE_PARM_DESC */
77 static struct tc35815_options {
78         int speed;
79         int duplex;
80 } options;
81
82 /*
83  * Registers
84  */
85 struct tc35815_regs {
86         __u32 DMA_Ctl;          /* 0x00 */
87         __u32 TxFrmPtr;
88         __u32 TxThrsh;
89         __u32 TxPollCtr;
90         __u32 BLFrmPtr;
91         __u32 RxFragSize;
92         __u32 Int_En;
93         __u32 FDA_Bas;
94         __u32 FDA_Lim;          /* 0x20 */
95         __u32 Int_Src;
96         __u32 unused0[2];
97         __u32 PauseCnt;
98         __u32 RemPauCnt;
99         __u32 TxCtlFrmStat;
100         __u32 unused1;
101         __u32 MAC_Ctl;          /* 0x40 */
102         __u32 CAM_Ctl;
103         __u32 Tx_Ctl;
104         __u32 Tx_Stat;
105         __u32 Rx_Ctl;
106         __u32 Rx_Stat;
107         __u32 MD_Data;
108         __u32 MD_CA;
109         __u32 CAM_Adr;          /* 0x60 */
110         __u32 CAM_Data;
111         __u32 CAM_Ena;
112         __u32 PROM_Ctl;
113         __u32 PROM_Data;
114         __u32 Algn_Cnt;
115         __u32 CRC_Cnt;
116         __u32 Miss_Cnt;
117 };
118
119 /*
120  * Bit assignments
121  */
122 /* DMA_Ctl bit assign ------------------------------------------------------- */
123 #define DMA_RxAlign            0x00c00000 /* 1:Reception Alignment           */
124 #define DMA_RxAlign_1          0x00400000
125 #define DMA_RxAlign_2          0x00800000
126 #define DMA_RxAlign_3          0x00c00000
127 #define DMA_M66EnStat          0x00080000 /* 1:66MHz Enable State            */
128 #define DMA_IntMask            0x00040000 /* 1:Interrupt mask                */
129 #define DMA_SWIntReq           0x00020000 /* 1:Software Interrupt request    */
130 #define DMA_TxWakeUp           0x00010000 /* 1:Transmit Wake Up              */
131 #define DMA_RxBigE             0x00008000 /* 1:Receive Big Endian            */
132 #define DMA_TxBigE             0x00004000 /* 1:Transmit Big Endian           */
133 #define DMA_TestMode           0x00002000 /* 1:Test Mode                     */
134 #define DMA_PowrMgmnt          0x00001000 /* 1:Power Management              */
135 #define DMA_DmBurst_Mask       0x000001fc /* DMA Burst size                  */
136
137 /* RxFragSize bit assign ---------------------------------------------------- */
138 #define RxFrag_EnPack          0x00008000 /* 1:Enable Packing                */
139 #define RxFrag_MinFragMask     0x00000ffc /* Minimum Fragment                */
140
141 /* MAC_Ctl bit assign ------------------------------------------------------- */
142 #define MAC_Link10             0x00008000 /* 1:Link Status 10Mbits           */
143 #define MAC_EnMissRoll         0x00002000 /* 1:Enable Missed Roll            */
144 #define MAC_MissRoll           0x00000400 /* 1:Missed Roll                   */
145 #define MAC_Loop10             0x00000080 /* 1:Loop 10 Mbps                  */
146 #define MAC_Conn_Auto          0x00000000 /*00:Connection mode (Automatic)   */
147 #define MAC_Conn_10M           0x00000020 /*01:                (10Mbps endec)*/
148 #define MAC_Conn_Mll           0x00000040 /*10:                (Mll clock)   */
149 #define MAC_MacLoop            0x00000010 /* 1:MAC Loopback                  */
150 #define MAC_FullDup            0x00000008 /* 1:Full Duplex 0:Half Duplex     */
151 #define MAC_Reset              0x00000004 /* 1:Software Reset                */
152 #define MAC_HaltImm            0x00000002 /* 1:Halt Immediate                */
153 #define MAC_HaltReq            0x00000001 /* 1:Halt request                  */
154
155 /* PROM_Ctl bit assign ------------------------------------------------------ */
156 #define PROM_Busy              0x00008000 /* 1:Busy (Start Operation)        */
157 #define PROM_Read              0x00004000 /*10:Read operation                */
158 #define PROM_Write             0x00002000 /*01:Write operation               */
159 #define PROM_Erase             0x00006000 /*11:Erase operation               */
160                                           /*00:Enable or Disable Writting,   */
161                                           /*      as specified in PROM_Addr. */
162 #define PROM_Addr_Ena          0x00000030 /*11xxxx:PROM Write enable         */
163                                           /*00xxxx:           disable        */
164
165 /* CAM_Ctl bit assign ------------------------------------------------------- */
166 #define CAM_CompEn             0x00000010 /* 1:CAM Compare Enable            */
167 #define CAM_NegCAM             0x00000008 /* 1:Reject packets CAM recognizes,*/
168                                           /*                    accept other */
169 #define CAM_BroadAcc           0x00000004 /* 1:Broadcast assept              */
170 #define CAM_GroupAcc           0x00000002 /* 1:Multicast assept              */
171 #define CAM_StationAcc         0x00000001 /* 1:unicast accept                */
172
173 /* CAM_Ena bit assign ------------------------------------------------------- */
174 #define CAM_ENTRY_MAX                  21   /* CAM Data entry max count      */
175 #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits)  */
176 #define CAM_Ena_Bit(index)      (1 << (index))
177 #define CAM_ENTRY_DESTINATION   0
178 #define CAM_ENTRY_SOURCE        1
179 #define CAM_ENTRY_MACCTL        20
180
181 /* Tx_Ctl bit assign -------------------------------------------------------- */
182 #define Tx_En                  0x00000001 /* 1:Transmit enable               */
183 #define Tx_TxHalt              0x00000002 /* 1:Transmit Halt Request         */
184 #define Tx_NoPad               0x00000004 /* 1:Suppress Padding              */
185 #define Tx_NoCRC               0x00000008 /* 1:Suppress Padding              */
186 #define Tx_FBack               0x00000010 /* 1:Fast Back-off                 */
187 #define Tx_EnUnder             0x00000100 /* 1:Enable Underrun               */
188 #define Tx_EnExDefer           0x00000200 /* 1:Enable Excessive Deferral     */
189 #define Tx_EnLCarr             0x00000400 /* 1:Enable Lost Carrier           */
190 #define Tx_EnExColl            0x00000800 /* 1:Enable Excessive Collision    */
191 #define Tx_EnLateColl          0x00001000 /* 1:Enable Late Collision         */
192 #define Tx_EnTxPar             0x00002000 /* 1:Enable Transmit Parity        */
193 #define Tx_EnComp              0x00004000 /* 1:Enable Completion             */
194
195 /* Tx_Stat bit assign ------------------------------------------------------- */
196 #define Tx_TxColl_MASK         0x0000000F /* Tx Collision Count              */
197 #define Tx_ExColl              0x00000010 /* Excessive Collision             */
198 #define Tx_TXDefer             0x00000020 /* Transmit Defered                */
199 #define Tx_Paused              0x00000040 /* Transmit Paused                 */
200 #define Tx_IntTx               0x00000080 /* Interrupt on Tx                 */
201 #define Tx_Under               0x00000100 /* Underrun                        */
202 #define Tx_Defer               0x00000200 /* Deferral                        */
203 #define Tx_NCarr               0x00000400 /* No Carrier                      */
204 #define Tx_10Stat              0x00000800 /* 10Mbps Status                   */
205 #define Tx_LateColl            0x00001000 /* Late Collision                  */
206 #define Tx_TxPar               0x00002000 /* Tx Parity Error                 */
207 #define Tx_Comp                0x00004000 /* Completion                      */
208 #define Tx_Halted              0x00008000 /* Tx Halted                       */
209 #define Tx_SQErr               0x00010000 /* Signal Quality Error(SQE)       */
210
211 /* Rx_Ctl bit assign -------------------------------------------------------- */
212 #define Rx_EnGood              0x00004000 /* 1:Enable Good                   */
213 #define Rx_EnRxPar             0x00002000 /* 1:Enable Receive Parity         */
214 #define Rx_EnLongErr           0x00000800 /* 1:Enable Long Error             */
215 #define Rx_EnOver              0x00000400 /* 1:Enable OverFlow               */
216 #define Rx_EnCRCErr            0x00000200 /* 1:Enable CRC Error              */
217 #define Rx_EnAlign             0x00000100 /* 1:Enable Alignment              */
218 #define Rx_IgnoreCRC           0x00000040 /* 1:Ignore CRC Value              */
219 #define Rx_StripCRC            0x00000010 /* 1:Strip CRC Value               */
220 #define Rx_ShortEn             0x00000008 /* 1:Short Enable                  */
221 #define Rx_LongEn              0x00000004 /* 1:Long Enable                   */
222 #define Rx_RxHalt              0x00000002 /* 1:Receive Halt Request          */
223 #define Rx_RxEn                0x00000001 /* 1:Receive Intrrupt Enable       */
224
225 /* Rx_Stat bit assign ------------------------------------------------------- */
226 #define Rx_Halted              0x00008000 /* Rx Halted                       */
227 #define Rx_Good                0x00004000 /* Rx Good                         */
228 #define Rx_RxPar               0x00002000 /* Rx Parity Error                 */
229 #define Rx_TypePkt             0x00001000 /* Rx Type Packet                  */
230 #define Rx_LongErr             0x00000800 /* Rx Long Error                   */
231 #define Rx_Over                0x00000400 /* Rx Overflow                     */
232 #define Rx_CRCErr              0x00000200 /* Rx CRC Error                    */
233 #define Rx_Align               0x00000100 /* Rx Alignment Error              */
234 #define Rx_10Stat              0x00000080 /* Rx 10Mbps Status                */
235 #define Rx_IntRx               0x00000040 /* Rx Interrupt                    */
236 #define Rx_CtlRecd             0x00000020 /* Rx Control Receive              */
237 #define Rx_InLenErr            0x00000010 /* Rx In Range Frame Length Error  */
238
239 #define Rx_Stat_Mask           0x0000FFF0 /* Rx All Status Mask              */
240
241 /* Int_En bit assign -------------------------------------------------------- */
242 #define Int_NRAbtEn            0x00000800 /* 1:Non-recoverable Abort Enable  */
243 #define Int_TxCtlCmpEn         0x00000400 /* 1:Transmit Ctl Complete Enable  */
244 #define Int_DmParErrEn         0x00000200 /* 1:DMA Parity Error Enable       */
245 #define Int_DParDEn            0x00000100 /* 1:Data Parity Error Enable      */
246 #define Int_EarNotEn           0x00000080 /* 1:Early Notify Enable           */
247 #define Int_DParErrEn          0x00000040 /* 1:Detected Parity Error Enable  */
248 #define Int_SSysErrEn          0x00000020 /* 1:Signalled System Error Enable */
249 #define Int_RMasAbtEn          0x00000010 /* 1:Received Master Abort Enable  */
250 #define Int_RTargAbtEn         0x00000008 /* 1:Received Target Abort Enable  */
251 #define Int_STargAbtEn         0x00000004 /* 1:Signalled Target Abort Enable */
252 #define Int_BLExEn             0x00000002 /* 1:Buffer List Exhausted Enable  */
253 #define Int_FDAExEn            0x00000001 /* 1:Free Descriptor Area          */
254                                           /*               Exhausted Enable  */
255
256 /* Int_Src bit assign ------------------------------------------------------- */
257 #define Int_NRabt              0x00004000 /* 1:Non Recoverable error         */
258 #define Int_DmParErrStat       0x00002000 /* 1:DMA Parity Error & Clear      */
259 #define Int_BLEx               0x00001000 /* 1:Buffer List Empty & Clear     */
260 #define Int_FDAEx              0x00000800 /* 1:FDA Empty & Clear             */
261 #define Int_IntNRAbt           0x00000400 /* 1:Non Recoverable Abort         */
262 #define Int_IntCmp             0x00000200 /* 1:MAC control packet complete   */
263 #define Int_IntExBD            0x00000100 /* 1:Interrupt Extra BD & Clear    */
264 #define Int_DmParErr           0x00000080 /* 1:DMA Parity Error & Clear      */
265 #define Int_IntEarNot          0x00000040 /* 1:Receive Data write & Clear    */
266 #define Int_SWInt              0x00000020 /* 1:Software request & Clear      */
267 #define Int_IntBLEx            0x00000010 /* 1:Buffer List Empty & Clear     */
268 #define Int_IntFDAEx           0x00000008 /* 1:FDA Empty & Clear             */
269 #define Int_IntPCI             0x00000004 /* 1:PCI controller & Clear        */
270 #define Int_IntMacRx           0x00000002 /* 1:Rx controller & Clear         */
271 #define Int_IntMacTx           0x00000001 /* 1:Tx controller & Clear         */
272
273 /* MD_CA bit assign --------------------------------------------------------- */
274 #define MD_CA_PreSup           0x00001000 /* 1:Preamble Suppress                     */
275 #define MD_CA_Busy             0x00000800 /* 1:Busy (Start Operation)        */
276 #define MD_CA_Wr               0x00000400 /* 1:Write 0:Read                  */
277
278
279 /*
280  * Descriptors
281  */
282
283 /* Frame descriptor */
284 struct FDesc {
285         volatile __u32 FDNext;
286         volatile __u32 FDSystem;
287         volatile __u32 FDStat;
288         volatile __u32 FDCtl;
289 };
290
291 /* Buffer descriptor */
292 struct BDesc {
293         volatile __u32 BuffData;
294         volatile __u32 BDCtl;
295 };
296
297 #define FD_ALIGN        16
298
299 /* Frame Descriptor bit assign ---------------------------------------------- */
300 #define FD_FDLength_MASK       0x0000FFFF /* Length MASK                     */
301 #define FD_BDCnt_MASK          0x001F0000 /* BD count MASK in FD             */
302 #define FD_FrmOpt_MASK         0x7C000000 /* Frame option MASK               */
303 #define FD_FrmOpt_BigEndian    0x40000000 /* Tx/Rx */
304 #define FD_FrmOpt_IntTx        0x20000000 /* Tx only */
305 #define FD_FrmOpt_NoCRC        0x10000000 /* Tx only */
306 #define FD_FrmOpt_NoPadding    0x08000000 /* Tx only */
307 #define FD_FrmOpt_Packing      0x04000000 /* Rx only */
308 #define FD_CownsFD             0x80000000 /* FD Controller owner bit         */
309 #define FD_Next_EOL            0x00000001 /* FD EOL indicator                */
310 #define FD_BDCnt_SHIFT         16
311
312 /* Buffer Descriptor bit assign --------------------------------------------- */
313 #define BD_BuffLength_MASK     0x0000FFFF /* Receive Data Size               */
314 #define BD_RxBDID_MASK         0x00FF0000 /* BD ID Number MASK               */
315 #define BD_RxBDSeqN_MASK       0x7F000000 /* Rx BD Sequence Number           */
316 #define BD_CownsBD             0x80000000 /* BD Controller owner bit         */
317 #define BD_RxBDID_SHIFT        16
318 #define BD_RxBDSeqN_SHIFT      24
319
320
321 /* Some useful constants. */
322
323 #define TX_CTL_CMD      (Tx_EnTxPar | Tx_EnLateColl | \
324         Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
325         Tx_En)  /* maybe  0x7b01 */
326 /* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
327 #define RX_CTL_CMD      (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
328         | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
329 #define INT_EN_CMD  (Int_NRAbtEn | \
330         Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
331         Int_SSysErrEn  | Int_RMasAbtEn | Int_RTargAbtEn | \
332         Int_STargAbtEn | \
333         Int_BLExEn  | Int_FDAExEn) /* maybe 0xb7f*/
334 #define DMA_CTL_CMD     DMA_BURST_SIZE
335 #define HAVE_DMA_RXALIGN(lp)    likely((lp)->chiptype != TC35815CF)
336
337 /* Tuning parameters */
338 #define DMA_BURST_SIZE  32
339 #define TX_THRESHOLD    1024
340 /* used threshold with packet max byte for low pci transfer ability.*/
341 #define TX_THRESHOLD_MAX 1536
342 /* setting threshold max value when overrun error occurred this count. */
343 #define TX_THRESHOLD_KEEP_LIMIT 10
344
345 /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
346 #define FD_PAGE_NUM 4
347 #define RX_BUF_NUM      128     /* < 256 */
348 #define RX_FD_NUM       256     /* >= 32 */
349 #define TX_FD_NUM       128
350 #if RX_CTL_CMD & Rx_LongEn
351 #define RX_BUF_SIZE     PAGE_SIZE
352 #elif RX_CTL_CMD & Rx_StripCRC
353 #define RX_BUF_SIZE     \
354         L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
355 #else
356 #define RX_BUF_SIZE     \
357         L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
358 #endif
359 #define RX_FD_RESERVE   (2 / 2) /* max 2 BD per RxFD */
360 #define NAPI_WEIGHT     16
361
362 struct TxFD {
363         struct FDesc fd;
364         struct BDesc bd;
365         struct BDesc unused;
366 };
367
368 struct RxFD {
369         struct FDesc fd;
370         struct BDesc bd[];      /* variable length */
371 };
372
373 struct FrFD {
374         struct FDesc fd;
375         struct BDesc bd[RX_BUF_NUM];
376 };
377
378
379 #define tc_readl(addr)  ioread32(addr)
380 #define tc_writel(d, addr)      iowrite32(d, addr)
381
382 #define TC35815_TX_TIMEOUT  msecs_to_jiffies(400)
383
384 /* Information that need to be kept for each controller. */
385 struct tc35815_local {
386         struct pci_dev *pci_dev;
387
388         struct net_device *dev;
389         struct napi_struct napi;
390
391         /* statistics */
392         struct {
393                 int max_tx_qlen;
394                 int tx_ints;
395                 int rx_ints;
396                 int tx_underrun;
397         } lstats;
398
399         /* Tx control lock.  This protects the transmit buffer ring
400          * state along with the "tx full" state of the driver.  This
401          * means all netif_queue flow control actions are protected
402          * by this lock as well.
403          */
404         spinlock_t lock;
405         spinlock_t rx_lock;
406
407         struct mii_bus *mii_bus;
408         int duplex;
409         int speed;
410         int link;
411         struct work_struct restart_work;
412
413         /*
414          * Transmitting: Batch Mode.
415          *      1 BD in 1 TxFD.
416          * Receiving: Non-Packing Mode.
417          *      1 circular FD for Free Buffer List.
418          *      RX_BUF_NUM BD in Free Buffer FD.
419          *      One Free Buffer BD has ETH_FRAME_LEN data buffer.
420          */
421         void *fd_buf;   /* for TxFD, RxFD, FrFD */
422         dma_addr_t fd_buf_dma;
423         struct TxFD *tfd_base;
424         unsigned int tfd_start;
425         unsigned int tfd_end;
426         struct RxFD *rfd_base;
427         struct RxFD *rfd_limit;
428         struct RxFD *rfd_cur;
429         struct FrFD *fbl_ptr;
430         unsigned int fbl_count;
431         struct {
432                 struct sk_buff *skb;
433                 dma_addr_t skb_dma;
434         } tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
435         u32 msg_enable;
436         enum tc35815_chiptype chiptype;
437 };
438
439 static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
440 {
441         return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
442 }
443 #ifdef DEBUG
444 static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
445 {
446         return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
447 }
448 #endif
449 static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
450                                        struct pci_dev *hwdev,
451                                        dma_addr_t *dma_handle)
452 {
453         struct sk_buff *skb;
454         skb = netdev_alloc_skb(dev, RX_BUF_SIZE);
455         if (!skb)
456                 return NULL;
457         *dma_handle = dma_map_single(&hwdev->dev, skb->data, RX_BUF_SIZE,
458                                      DMA_FROM_DEVICE);
459         if (dma_mapping_error(&hwdev->dev, *dma_handle)) {
460                 dev_kfree_skb_any(skb);
461                 return NULL;
462         }
463         skb_reserve(skb, 2);    /* make IP header 4byte aligned */
464         return skb;
465 }
466
467 static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
468 {
469         dma_unmap_single(&hwdev->dev, dma_handle, RX_BUF_SIZE,
470                          DMA_FROM_DEVICE);
471         dev_kfree_skb_any(skb);
472 }
473
474 /* Index to functions, as function prototypes. */
475
476 static int      tc35815_open(struct net_device *dev);
477 static netdev_tx_t      tc35815_send_packet(struct sk_buff *skb,
478                                             struct net_device *dev);
479 static irqreturn_t      tc35815_interrupt(int irq, void *dev_id);
480 static int      tc35815_rx(struct net_device *dev, int limit);
481 static int      tc35815_poll(struct napi_struct *napi, int budget);
482 static void     tc35815_txdone(struct net_device *dev);
483 static int      tc35815_close(struct net_device *dev);
484 static struct   net_device_stats *tc35815_get_stats(struct net_device *dev);
485 static void     tc35815_set_multicast_list(struct net_device *dev);
486 static void     tc35815_tx_timeout(struct net_device *dev, unsigned int txqueue);
487 #ifdef CONFIG_NET_POLL_CONTROLLER
488 static void     tc35815_poll_controller(struct net_device *dev);
489 #endif
490 static const struct ethtool_ops tc35815_ethtool_ops;
491
492 /* Example routines you must write ;->. */
493 static void     tc35815_chip_reset(struct net_device *dev);
494 static void     tc35815_chip_init(struct net_device *dev);
495
496 #ifdef DEBUG
497 static void     panic_queues(struct net_device *dev);
498 #endif
499
500 static void tc35815_restart_work(struct work_struct *work);
501
502 static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
503 {
504         struct net_device *dev = bus->priv;
505         struct tc35815_regs __iomem *tr =
506                 (struct tc35815_regs __iomem *)dev->base_addr;
507         unsigned long timeout = jiffies + HZ;
508
509         tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
510         udelay(12); /* it takes 32 x 400ns at least */
511         while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
512                 if (time_after(jiffies, timeout))
513                         return -EIO;
514                 cpu_relax();
515         }
516         return tc_readl(&tr->MD_Data) & 0xffff;
517 }
518
519 static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
520 {
521         struct net_device *dev = bus->priv;
522         struct tc35815_regs __iomem *tr =
523                 (struct tc35815_regs __iomem *)dev->base_addr;
524         unsigned long timeout = jiffies + HZ;
525
526         tc_writel(val, &tr->MD_Data);
527         tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
528                   &tr->MD_CA);
529         udelay(12); /* it takes 32 x 400ns at least */
530         while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
531                 if (time_after(jiffies, timeout))
532                         return -EIO;
533                 cpu_relax();
534         }
535         return 0;
536 }
537
538 static void tc_handle_link_change(struct net_device *dev)
539 {
540         struct tc35815_local *lp = netdev_priv(dev);
541         struct phy_device *phydev = dev->phydev;
542         unsigned long flags;
543         int status_change = 0;
544
545         spin_lock_irqsave(&lp->lock, flags);
546         if (phydev->link &&
547             (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
548                 struct tc35815_regs __iomem *tr =
549                         (struct tc35815_regs __iomem *)dev->base_addr;
550                 u32 reg;
551
552                 reg = tc_readl(&tr->MAC_Ctl);
553                 reg |= MAC_HaltReq;
554                 tc_writel(reg, &tr->MAC_Ctl);
555                 if (phydev->duplex == DUPLEX_FULL)
556                         reg |= MAC_FullDup;
557                 else
558                         reg &= ~MAC_FullDup;
559                 tc_writel(reg, &tr->MAC_Ctl);
560                 reg &= ~MAC_HaltReq;
561                 tc_writel(reg, &tr->MAC_Ctl);
562
563                 /*
564                  * TX4939 PCFG.SPEEDn bit will be changed on
565                  * NETDEV_CHANGE event.
566                  */
567                 /*
568                  * WORKAROUND: enable LostCrS only if half duplex
569                  * operation.
570                  * (TX4939 does not have EnLCarr)
571                  */
572                 if (phydev->duplex == DUPLEX_HALF &&
573                     lp->chiptype != TC35815_TX4939)
574                         tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
575                                   &tr->Tx_Ctl);
576
577                 lp->speed = phydev->speed;
578                 lp->duplex = phydev->duplex;
579                 status_change = 1;
580         }
581
582         if (phydev->link != lp->link) {
583                 if (phydev->link) {
584                         /* delayed promiscuous enabling */
585                         if (dev->flags & IFF_PROMISC)
586                                 tc35815_set_multicast_list(dev);
587                 } else {
588                         lp->speed = 0;
589                         lp->duplex = -1;
590                 }
591                 lp->link = phydev->link;
592
593                 status_change = 1;
594         }
595         spin_unlock_irqrestore(&lp->lock, flags);
596
597         if (status_change && netif_msg_link(lp)) {
598                 phy_print_status(phydev);
599                 pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
600                          dev->name,
601                          phy_read(phydev, MII_BMCR),
602                          phy_read(phydev, MII_BMSR),
603                          phy_read(phydev, MII_LPA));
604         }
605 }
606
607 static int tc_mii_probe(struct net_device *dev)
608 {
609         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
610         struct tc35815_local *lp = netdev_priv(dev);
611         struct phy_device *phydev;
612
613         phydev = phy_find_first(lp->mii_bus);
614         if (!phydev) {
615                 printk(KERN_ERR "%s: no PHY found\n", dev->name);
616                 return -ENODEV;
617         }
618
619         /* attach the mac to the phy */
620         phydev = phy_connect(dev, phydev_name(phydev),
621                              &tc_handle_link_change,
622                              lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
623         if (IS_ERR(phydev)) {
624                 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
625                 return PTR_ERR(phydev);
626         }
627
628         phy_attached_info(phydev);
629
630         /* mask with MAC supported features */
631         phy_set_max_speed(phydev, SPEED_100);
632         if (options.speed == 10) {
633                 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
634                 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
635         } else if (options.speed == 100) {
636                 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, mask);
637                 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, mask);
638         }
639         if (options.duplex == 1) {
640                 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, mask);
641                 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
642         } else if (options.duplex == 2) {
643                 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, mask);
644                 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
645         }
646         linkmode_andnot(phydev->supported, phydev->supported, mask);
647         linkmode_copy(phydev->advertising, phydev->supported);
648
649         lp->link = 0;
650         lp->speed = 0;
651         lp->duplex = -1;
652
653         return 0;
654 }
655
656 static int tc_mii_init(struct net_device *dev)
657 {
658         struct tc35815_local *lp = netdev_priv(dev);
659         int err;
660
661         lp->mii_bus = mdiobus_alloc();
662         if (lp->mii_bus == NULL) {
663                 err = -ENOMEM;
664                 goto err_out;
665         }
666
667         lp->mii_bus->name = "tc35815_mii_bus";
668         lp->mii_bus->read = tc_mdio_read;
669         lp->mii_bus->write = tc_mdio_write;
670         snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x",
671                  (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
672         lp->mii_bus->priv = dev;
673         lp->mii_bus->parent = &lp->pci_dev->dev;
674         err = mdiobus_register(lp->mii_bus);
675         if (err)
676                 goto err_out_free_mii_bus;
677         err = tc_mii_probe(dev);
678         if (err)
679                 goto err_out_unregister_bus;
680         return 0;
681
682 err_out_unregister_bus:
683         mdiobus_unregister(lp->mii_bus);
684 err_out_free_mii_bus:
685         mdiobus_free(lp->mii_bus);
686 err_out:
687         return err;
688 }
689
690 #ifdef CONFIG_CPU_TX49XX
691 /*
692  * Find a platform_device providing a MAC address.  The platform code
693  * should provide a "tc35815-mac" device with a MAC address in its
694  * platform_data.
695  */
696 static int tc35815_mac_match(struct device *dev, const void *data)
697 {
698         struct platform_device *plat_dev = to_platform_device(dev);
699         const struct pci_dev *pci_dev = data;
700         unsigned int id = pci_dev->irq;
701         return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
702 }
703
704 static int tc35815_read_plat_dev_addr(struct net_device *dev)
705 {
706         struct tc35815_local *lp = netdev_priv(dev);
707         struct device *pd = bus_find_device(&platform_bus_type, NULL,
708                                             lp->pci_dev, tc35815_mac_match);
709         if (pd) {
710                 if (pd->platform_data)
711                         memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN);
712                 put_device(pd);
713                 return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
714         }
715         return -ENODEV;
716 }
717 #else
718 static int tc35815_read_plat_dev_addr(struct net_device *dev)
719 {
720         return -ENODEV;
721 }
722 #endif
723
724 static int tc35815_init_dev_addr(struct net_device *dev)
725 {
726         struct tc35815_regs __iomem *tr =
727                 (struct tc35815_regs __iomem *)dev->base_addr;
728         int i;
729
730         while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
731                 ;
732         for (i = 0; i < 6; i += 2) {
733                 unsigned short data;
734                 tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
735                 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
736                         ;
737                 data = tc_readl(&tr->PROM_Data);
738                 dev->dev_addr[i] = data & 0xff;
739                 dev->dev_addr[i+1] = data >> 8;
740         }
741         if (!is_valid_ether_addr(dev->dev_addr))
742                 return tc35815_read_plat_dev_addr(dev);
743         return 0;
744 }
745
746 static const struct net_device_ops tc35815_netdev_ops = {
747         .ndo_open               = tc35815_open,
748         .ndo_stop               = tc35815_close,
749         .ndo_start_xmit         = tc35815_send_packet,
750         .ndo_get_stats          = tc35815_get_stats,
751         .ndo_set_rx_mode        = tc35815_set_multicast_list,
752         .ndo_tx_timeout         = tc35815_tx_timeout,
753         .ndo_do_ioctl           = phy_do_ioctl_running,
754         .ndo_validate_addr      = eth_validate_addr,
755         .ndo_set_mac_address    = eth_mac_addr,
756 #ifdef CONFIG_NET_POLL_CONTROLLER
757         .ndo_poll_controller    = tc35815_poll_controller,
758 #endif
759 };
760
761 static int tc35815_init_one(struct pci_dev *pdev,
762                             const struct pci_device_id *ent)
763 {
764         void __iomem *ioaddr = NULL;
765         struct net_device *dev;
766         struct tc35815_local *lp;
767         int rc;
768
769         static int printed_version;
770         if (!printed_version++) {
771                 printk(version);
772                 dev_printk(KERN_DEBUG, &pdev->dev,
773                            "speed:%d duplex:%d\n",
774                            options.speed, options.duplex);
775         }
776
777         if (!pdev->irq) {
778                 dev_warn(&pdev->dev, "no IRQ assigned.\n");
779                 return -ENODEV;
780         }
781
782         /* dev zeroed in alloc_etherdev */
783         dev = alloc_etherdev(sizeof(*lp));
784         if (dev == NULL)
785                 return -ENOMEM;
786
787         SET_NETDEV_DEV(dev, &pdev->dev);
788         lp = netdev_priv(dev);
789         lp->dev = dev;
790
791         /* enable device (incl. PCI PM wakeup), and bus-mastering */
792         rc = pcim_enable_device(pdev);
793         if (rc)
794                 goto err_out;
795         rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
796         if (rc)
797                 goto err_out;
798         pci_set_master(pdev);
799         ioaddr = pcim_iomap_table(pdev)[1];
800
801         /* Initialize the device structure. */
802         dev->netdev_ops = &tc35815_netdev_ops;
803         dev->ethtool_ops = &tc35815_ethtool_ops;
804         dev->watchdog_timeo = TC35815_TX_TIMEOUT;
805         netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
806
807         dev->irq = pdev->irq;
808         dev->base_addr = (unsigned long)ioaddr;
809
810         INIT_WORK(&lp->restart_work, tc35815_restart_work);
811         spin_lock_init(&lp->lock);
812         spin_lock_init(&lp->rx_lock);
813         lp->pci_dev = pdev;
814         lp->chiptype = ent->driver_data;
815
816         lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
817         pci_set_drvdata(pdev, dev);
818
819         /* Soft reset the chip. */
820         tc35815_chip_reset(dev);
821
822         /* Retrieve the ethernet address. */
823         if (tc35815_init_dev_addr(dev)) {
824                 dev_warn(&pdev->dev, "not valid ether addr\n");
825                 eth_hw_addr_random(dev);
826         }
827
828         rc = register_netdev(dev);
829         if (rc)
830                 goto err_out;
831
832         printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
833                 dev->name,
834                 chip_info[ent->driver_data].name,
835                 dev->base_addr,
836                 dev->dev_addr,
837                 dev->irq);
838
839         rc = tc_mii_init(dev);
840         if (rc)
841                 goto err_out_unregister;
842
843         return 0;
844
845 err_out_unregister:
846         unregister_netdev(dev);
847 err_out:
848         free_netdev(dev);
849         return rc;
850 }
851
852
853 static void tc35815_remove_one(struct pci_dev *pdev)
854 {
855         struct net_device *dev = pci_get_drvdata(pdev);
856         struct tc35815_local *lp = netdev_priv(dev);
857
858         phy_disconnect(dev->phydev);
859         mdiobus_unregister(lp->mii_bus);
860         mdiobus_free(lp->mii_bus);
861         unregister_netdev(dev);
862         free_netdev(dev);
863 }
864
865 static int
866 tc35815_init_queues(struct net_device *dev)
867 {
868         struct tc35815_local *lp = netdev_priv(dev);
869         int i;
870         unsigned long fd_addr;
871
872         if (!lp->fd_buf) {
873                 BUG_ON(sizeof(struct FDesc) +
874                        sizeof(struct BDesc) * RX_BUF_NUM +
875                        sizeof(struct FDesc) * RX_FD_NUM +
876                        sizeof(struct TxFD) * TX_FD_NUM >
877                        PAGE_SIZE * FD_PAGE_NUM);
878
879                 lp->fd_buf = dma_alloc_coherent(&lp->pci_dev->dev,
880                                                 PAGE_SIZE * FD_PAGE_NUM,
881                                                 &lp->fd_buf_dma, GFP_ATOMIC);
882                 if (!lp->fd_buf)
883                         return -ENOMEM;
884                 for (i = 0; i < RX_BUF_NUM; i++) {
885                         lp->rx_skbs[i].skb =
886                                 alloc_rxbuf_skb(dev, lp->pci_dev,
887                                                 &lp->rx_skbs[i].skb_dma);
888                         if (!lp->rx_skbs[i].skb) {
889                                 while (--i >= 0) {
890                                         free_rxbuf_skb(lp->pci_dev,
891                                                        lp->rx_skbs[i].skb,
892                                                        lp->rx_skbs[i].skb_dma);
893                                         lp->rx_skbs[i].skb = NULL;
894                                 }
895                                 dma_free_coherent(&lp->pci_dev->dev,
896                                                   PAGE_SIZE * FD_PAGE_NUM,
897                                                   lp->fd_buf, lp->fd_buf_dma);
898                                 lp->fd_buf = NULL;
899                                 return -ENOMEM;
900                         }
901                 }
902                 printk(KERN_DEBUG "%s: FD buf %p DataBuf",
903                        dev->name, lp->fd_buf);
904                 printk("\n");
905         } else {
906                 for (i = 0; i < FD_PAGE_NUM; i++)
907                         clear_page((void *)((unsigned long)lp->fd_buf +
908                                             i * PAGE_SIZE));
909         }
910         fd_addr = (unsigned long)lp->fd_buf;
911
912         /* Free Descriptors (for Receive) */
913         lp->rfd_base = (struct RxFD *)fd_addr;
914         fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
915         for (i = 0; i < RX_FD_NUM; i++)
916                 lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
917         lp->rfd_cur = lp->rfd_base;
918         lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
919
920         /* Transmit Descriptors */
921         lp->tfd_base = (struct TxFD *)fd_addr;
922         fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
923         for (i = 0; i < TX_FD_NUM; i++) {
924                 lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
925                 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
926                 lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
927         }
928         lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
929         lp->tfd_start = 0;
930         lp->tfd_end = 0;
931
932         /* Buffer List (for Receive) */
933         lp->fbl_ptr = (struct FrFD *)fd_addr;
934         lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
935         lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
936         /*
937          * move all allocated skbs to head of rx_skbs[] array.
938          * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
939          * tc35815_rx() had failed.
940          */
941         lp->fbl_count = 0;
942         for (i = 0; i < RX_BUF_NUM; i++) {
943                 if (lp->rx_skbs[i].skb) {
944                         if (i != lp->fbl_count) {
945                                 lp->rx_skbs[lp->fbl_count].skb =
946                                         lp->rx_skbs[i].skb;
947                                 lp->rx_skbs[lp->fbl_count].skb_dma =
948                                         lp->rx_skbs[i].skb_dma;
949                         }
950                         lp->fbl_count++;
951                 }
952         }
953         for (i = 0; i < RX_BUF_NUM; i++) {
954                 if (i >= lp->fbl_count) {
955                         lp->fbl_ptr->bd[i].BuffData = 0;
956                         lp->fbl_ptr->bd[i].BDCtl = 0;
957                         continue;
958                 }
959                 lp->fbl_ptr->bd[i].BuffData =
960                         cpu_to_le32(lp->rx_skbs[i].skb_dma);
961                 /* BDID is index of FrFD.bd[] */
962                 lp->fbl_ptr->bd[i].BDCtl =
963                         cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
964                                     RX_BUF_SIZE);
965         }
966
967         printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
968                dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
969         return 0;
970 }
971
972 static void
973 tc35815_clear_queues(struct net_device *dev)
974 {
975         struct tc35815_local *lp = netdev_priv(dev);
976         int i;
977
978         for (i = 0; i < TX_FD_NUM; i++) {
979                 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
980                 struct sk_buff *skb =
981                         fdsystem != 0xffffffff ?
982                         lp->tx_skbs[fdsystem].skb : NULL;
983 #ifdef DEBUG
984                 if (lp->tx_skbs[i].skb != skb) {
985                         printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
986                         panic_queues(dev);
987                 }
988 #else
989                 BUG_ON(lp->tx_skbs[i].skb != skb);
990 #endif
991                 if (skb) {
992                         dma_unmap_single(&lp->pci_dev->dev,
993                                          lp->tx_skbs[i].skb_dma, skb->len,
994                                          DMA_TO_DEVICE);
995                         lp->tx_skbs[i].skb = NULL;
996                         lp->tx_skbs[i].skb_dma = 0;
997                         dev_kfree_skb_any(skb);
998                 }
999                 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1000         }
1001
1002         tc35815_init_queues(dev);
1003 }
1004
1005 static void
1006 tc35815_free_queues(struct net_device *dev)
1007 {
1008         struct tc35815_local *lp = netdev_priv(dev);
1009         int i;
1010
1011         if (lp->tfd_base) {
1012                 for (i = 0; i < TX_FD_NUM; i++) {
1013                         u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1014                         struct sk_buff *skb =
1015                                 fdsystem != 0xffffffff ?
1016                                 lp->tx_skbs[fdsystem].skb : NULL;
1017 #ifdef DEBUG
1018                         if (lp->tx_skbs[i].skb != skb) {
1019                                 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1020                                 panic_queues(dev);
1021                         }
1022 #else
1023                         BUG_ON(lp->tx_skbs[i].skb != skb);
1024 #endif
1025                         if (skb) {
1026                                 dma_unmap_single(&lp->pci_dev->dev,
1027                                                  lp->tx_skbs[i].skb_dma,
1028                                                  skb->len, DMA_TO_DEVICE);
1029                                 dev_kfree_skb(skb);
1030                                 lp->tx_skbs[i].skb = NULL;
1031                                 lp->tx_skbs[i].skb_dma = 0;
1032                         }
1033                         lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1034                 }
1035         }
1036
1037         lp->rfd_base = NULL;
1038         lp->rfd_limit = NULL;
1039         lp->rfd_cur = NULL;
1040         lp->fbl_ptr = NULL;
1041
1042         for (i = 0; i < RX_BUF_NUM; i++) {
1043                 if (lp->rx_skbs[i].skb) {
1044                         free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
1045                                        lp->rx_skbs[i].skb_dma);
1046                         lp->rx_skbs[i].skb = NULL;
1047                 }
1048         }
1049         if (lp->fd_buf) {
1050                 dma_free_coherent(&lp->pci_dev->dev, PAGE_SIZE * FD_PAGE_NUM,
1051                                   lp->fd_buf, lp->fd_buf_dma);
1052                 lp->fd_buf = NULL;
1053         }
1054 }
1055
1056 static void
1057 dump_txfd(struct TxFD *fd)
1058 {
1059         printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
1060                le32_to_cpu(fd->fd.FDNext),
1061                le32_to_cpu(fd->fd.FDSystem),
1062                le32_to_cpu(fd->fd.FDStat),
1063                le32_to_cpu(fd->fd.FDCtl));
1064         printk("BD: ");
1065         printk(" %08x %08x",
1066                le32_to_cpu(fd->bd.BuffData),
1067                le32_to_cpu(fd->bd.BDCtl));
1068         printk("\n");
1069 }
1070
1071 static int
1072 dump_rxfd(struct RxFD *fd)
1073 {
1074         int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1075         if (bd_count > 8)
1076                 bd_count = 8;
1077         printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
1078                le32_to_cpu(fd->fd.FDNext),
1079                le32_to_cpu(fd->fd.FDSystem),
1080                le32_to_cpu(fd->fd.FDStat),
1081                le32_to_cpu(fd->fd.FDCtl));
1082         if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
1083                 return 0;
1084         printk("BD: ");
1085         for (i = 0; i < bd_count; i++)
1086                 printk(" %08x %08x",
1087                        le32_to_cpu(fd->bd[i].BuffData),
1088                        le32_to_cpu(fd->bd[i].BDCtl));
1089         printk("\n");
1090         return bd_count;
1091 }
1092
1093 #ifdef DEBUG
1094 static void
1095 dump_frfd(struct FrFD *fd)
1096 {
1097         int i;
1098         printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
1099                le32_to_cpu(fd->fd.FDNext),
1100                le32_to_cpu(fd->fd.FDSystem),
1101                le32_to_cpu(fd->fd.FDStat),
1102                le32_to_cpu(fd->fd.FDCtl));
1103         printk("BD: ");
1104         for (i = 0; i < RX_BUF_NUM; i++)
1105                 printk(" %08x %08x",
1106                        le32_to_cpu(fd->bd[i].BuffData),
1107                        le32_to_cpu(fd->bd[i].BDCtl));
1108         printk("\n");
1109 }
1110
1111 static void
1112 panic_queues(struct net_device *dev)
1113 {
1114         struct tc35815_local *lp = netdev_priv(dev);
1115         int i;
1116
1117         printk("TxFD base %p, start %u, end %u\n",
1118                lp->tfd_base, lp->tfd_start, lp->tfd_end);
1119         printk("RxFD base %p limit %p cur %p\n",
1120                lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
1121         printk("FrFD %p\n", lp->fbl_ptr);
1122         for (i = 0; i < TX_FD_NUM; i++)
1123                 dump_txfd(&lp->tfd_base[i]);
1124         for (i = 0; i < RX_FD_NUM; i++) {
1125                 int bd_count = dump_rxfd(&lp->rfd_base[i]);
1126                 i += (bd_count + 1) / 2;        /* skip BDs */
1127         }
1128         dump_frfd(lp->fbl_ptr);
1129         panic("%s: Illegal queue state.", dev->name);
1130 }
1131 #endif
1132
1133 static void print_eth(const u8 *add)
1134 {
1135         printk(KERN_DEBUG "print_eth(%p)\n", add);
1136         printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
1137                 add + 6, add, add[12], add[13]);
1138 }
1139
1140 static int tc35815_tx_full(struct net_device *dev)
1141 {
1142         struct tc35815_local *lp = netdev_priv(dev);
1143         return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end;
1144 }
1145
1146 static void tc35815_restart(struct net_device *dev)
1147 {
1148         struct tc35815_local *lp = netdev_priv(dev);
1149         int ret;
1150
1151         if (dev->phydev) {
1152                 ret = phy_init_hw(dev->phydev);
1153                 if (ret)
1154                         printk(KERN_ERR "%s: PHY init failed.\n", dev->name);
1155         }
1156
1157         spin_lock_bh(&lp->rx_lock);
1158         spin_lock_irq(&lp->lock);
1159         tc35815_chip_reset(dev);
1160         tc35815_clear_queues(dev);
1161         tc35815_chip_init(dev);
1162         /* Reconfigure CAM again since tc35815_chip_init() initialize it. */
1163         tc35815_set_multicast_list(dev);
1164         spin_unlock_irq(&lp->lock);
1165         spin_unlock_bh(&lp->rx_lock);
1166
1167         netif_wake_queue(dev);
1168 }
1169
1170 static void tc35815_restart_work(struct work_struct *work)
1171 {
1172         struct tc35815_local *lp =
1173                 container_of(work, struct tc35815_local, restart_work);
1174         struct net_device *dev = lp->dev;
1175
1176         tc35815_restart(dev);
1177 }
1178
1179 static void tc35815_schedule_restart(struct net_device *dev)
1180 {
1181         struct tc35815_local *lp = netdev_priv(dev);
1182         struct tc35815_regs __iomem *tr =
1183                 (struct tc35815_regs __iomem *)dev->base_addr;
1184         unsigned long flags;
1185
1186         /* disable interrupts */
1187         spin_lock_irqsave(&lp->lock, flags);
1188         tc_writel(0, &tr->Int_En);
1189         tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
1190         schedule_work(&lp->restart_work);
1191         spin_unlock_irqrestore(&lp->lock, flags);
1192 }
1193
1194 static void tc35815_tx_timeout(struct net_device *dev, unsigned int txqueue)
1195 {
1196         struct tc35815_regs __iomem *tr =
1197                 (struct tc35815_regs __iomem *)dev->base_addr;
1198
1199         printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
1200                dev->name, tc_readl(&tr->Tx_Stat));
1201
1202         /* Try to restart the adaptor. */
1203         tc35815_schedule_restart(dev);
1204         dev->stats.tx_errors++;
1205 }
1206
1207 /*
1208  * Open/initialize the controller. This is called (in the current kernel)
1209  * sometime after booting when the 'ifconfig' program is run.
1210  *
1211  * This routine should set everything up anew at each open, even
1212  * registers that "should" only need to be set once at boot, so that
1213  * there is non-reboot way to recover if something goes wrong.
1214  */
1215 static int
1216 tc35815_open(struct net_device *dev)
1217 {
1218         struct tc35815_local *lp = netdev_priv(dev);
1219
1220         /*
1221          * This is used if the interrupt line can turned off (shared).
1222          * See 3c503.c for an example of selecting the IRQ at config-time.
1223          */
1224         if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
1225                         dev->name, dev))
1226                 return -EAGAIN;
1227
1228         tc35815_chip_reset(dev);
1229
1230         if (tc35815_init_queues(dev) != 0) {
1231                 free_irq(dev->irq, dev);
1232                 return -EAGAIN;
1233         }
1234
1235         napi_enable(&lp->napi);
1236
1237         /* Reset the hardware here. Don't forget to set the station address. */
1238         spin_lock_irq(&lp->lock);
1239         tc35815_chip_init(dev);
1240         spin_unlock_irq(&lp->lock);
1241
1242         netif_carrier_off(dev);
1243         /* schedule a link state check */
1244         phy_start(dev->phydev);
1245
1246         /* We are now ready to accept transmit requeusts from
1247          * the queueing layer of the networking.
1248          */
1249         netif_start_queue(dev);
1250
1251         return 0;
1252 }
1253
1254 /* This will only be invoked if your driver is _not_ in XOFF state.
1255  * What this means is that you need not check it, and that this
1256  * invariant will hold if you make sure that the netif_*_queue()
1257  * calls are done at the proper times.
1258  */
1259 static netdev_tx_t
1260 tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
1261 {
1262         struct tc35815_local *lp = netdev_priv(dev);
1263         struct TxFD *txfd;
1264         unsigned long flags;
1265
1266         /* If some error occurs while trying to transmit this
1267          * packet, you should return '1' from this function.
1268          * In such a case you _may not_ do anything to the
1269          * SKB, it is still owned by the network queueing
1270          * layer when an error is returned.  This means you
1271          * may not modify any SKB fields, you may not free
1272          * the SKB, etc.
1273          */
1274
1275         /* This is the most common case for modern hardware.
1276          * The spinlock protects this code from the TX complete
1277          * hardware interrupt handler.  Queue flow control is
1278          * thus managed under this lock as well.
1279          */
1280         spin_lock_irqsave(&lp->lock, flags);
1281
1282         /* failsafe... (handle txdone now if half of FDs are used) */
1283         if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
1284             TX_FD_NUM / 2)
1285                 tc35815_txdone(dev);
1286
1287         if (netif_msg_pktdata(lp))
1288                 print_eth(skb->data);
1289 #ifdef DEBUG
1290         if (lp->tx_skbs[lp->tfd_start].skb) {
1291                 printk("%s: tx_skbs conflict.\n", dev->name);
1292                 panic_queues(dev);
1293         }
1294 #else
1295         BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
1296 #endif
1297         lp->tx_skbs[lp->tfd_start].skb = skb;
1298         lp->tx_skbs[lp->tfd_start].skb_dma = dma_map_single(&lp->pci_dev->dev,
1299                                                             skb->data,
1300                                                             skb->len,
1301                                                             DMA_TO_DEVICE);
1302
1303         /*add to ring */
1304         txfd = &lp->tfd_base[lp->tfd_start];
1305         txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
1306         txfd->bd.BDCtl = cpu_to_le32(skb->len);
1307         txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
1308         txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
1309
1310         if (lp->tfd_start == lp->tfd_end) {
1311                 struct tc35815_regs __iomem *tr =
1312                         (struct tc35815_regs __iomem *)dev->base_addr;
1313                 /* Start DMA Transmitter. */
1314                 txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1315                 txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1316                 if (netif_msg_tx_queued(lp)) {
1317                         printk("%s: starting TxFD.\n", dev->name);
1318                         dump_txfd(txfd);
1319                 }
1320                 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1321         } else {
1322                 txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
1323                 if (netif_msg_tx_queued(lp)) {
1324                         printk("%s: queueing TxFD.\n", dev->name);
1325                         dump_txfd(txfd);
1326                 }
1327         }
1328         lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
1329
1330         /* If we just used up the very last entry in the
1331          * TX ring on this device, tell the queueing
1332          * layer to send no more.
1333          */
1334         if (tc35815_tx_full(dev)) {
1335                 if (netif_msg_tx_queued(lp))
1336                         printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
1337                 netif_stop_queue(dev);
1338         }
1339
1340         /* When the TX completion hw interrupt arrives, this
1341          * is when the transmit statistics are updated.
1342          */
1343
1344         spin_unlock_irqrestore(&lp->lock, flags);
1345         return NETDEV_TX_OK;
1346 }
1347
1348 #define FATAL_ERROR_INT \
1349         (Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
1350 static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
1351 {
1352         static int count;
1353         printk(KERN_WARNING "%s: Fatal Error Interrupt (%#x):",
1354                dev->name, status);
1355         if (status & Int_IntPCI)
1356                 printk(" IntPCI");
1357         if (status & Int_DmParErr)
1358                 printk(" DmParErr");
1359         if (status & Int_IntNRAbt)
1360                 printk(" IntNRAbt");
1361         printk("\n");
1362         if (count++ > 100)
1363                 panic("%s: Too many fatal errors.", dev->name);
1364         printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
1365         /* Try to restart the adaptor. */
1366         tc35815_schedule_restart(dev);
1367 }
1368
1369 static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
1370 {
1371         struct tc35815_local *lp = netdev_priv(dev);
1372         int ret = -1;
1373
1374         /* Fatal errors... */
1375         if (status & FATAL_ERROR_INT) {
1376                 tc35815_fatal_error_interrupt(dev, status);
1377                 return 0;
1378         }
1379         /* recoverable errors */
1380         if (status & Int_IntFDAEx) {
1381                 if (netif_msg_rx_err(lp))
1382                         dev_warn(&dev->dev,
1383                                  "Free Descriptor Area Exhausted (%#x).\n",
1384                                  status);
1385                 dev->stats.rx_dropped++;
1386                 ret = 0;
1387         }
1388         if (status & Int_IntBLEx) {
1389                 if (netif_msg_rx_err(lp))
1390                         dev_warn(&dev->dev,
1391                                  "Buffer List Exhausted (%#x).\n",
1392                                  status);
1393                 dev->stats.rx_dropped++;
1394                 ret = 0;
1395         }
1396         if (status & Int_IntExBD) {
1397                 if (netif_msg_rx_err(lp))
1398                         dev_warn(&dev->dev,
1399                                  "Excessive Buffer Descriptors (%#x).\n",
1400                                  status);
1401                 dev->stats.rx_length_errors++;
1402                 ret = 0;
1403         }
1404
1405         /* normal notification */
1406         if (status & Int_IntMacRx) {
1407                 /* Got a packet(s). */
1408                 ret = tc35815_rx(dev, limit);
1409                 lp->lstats.rx_ints++;
1410         }
1411         if (status & Int_IntMacTx) {
1412                 /* Transmit complete. */
1413                 lp->lstats.tx_ints++;
1414                 spin_lock_irq(&lp->lock);
1415                 tc35815_txdone(dev);
1416                 spin_unlock_irq(&lp->lock);
1417                 if (ret < 0)
1418                         ret = 0;
1419         }
1420         return ret;
1421 }
1422
1423 /*
1424  * The typical workload of the driver:
1425  * Handle the network interface interrupts.
1426  */
1427 static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
1428 {
1429         struct net_device *dev = dev_id;
1430         struct tc35815_local *lp = netdev_priv(dev);
1431         struct tc35815_regs __iomem *tr =
1432                 (struct tc35815_regs __iomem *)dev->base_addr;
1433         u32 dmactl = tc_readl(&tr->DMA_Ctl);
1434
1435         if (!(dmactl & DMA_IntMask)) {
1436                 /* disable interrupts */
1437                 tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
1438                 if (napi_schedule_prep(&lp->napi))
1439                         __napi_schedule(&lp->napi);
1440                 else {
1441                         printk(KERN_ERR "%s: interrupt taken in poll\n",
1442                                dev->name);
1443                         BUG();
1444                 }
1445                 (void)tc_readl(&tr->Int_Src);   /* flush */
1446                 return IRQ_HANDLED;
1447         }
1448         return IRQ_NONE;
1449 }
1450
1451 #ifdef CONFIG_NET_POLL_CONTROLLER
1452 static void tc35815_poll_controller(struct net_device *dev)
1453 {
1454         disable_irq(dev->irq);
1455         tc35815_interrupt(dev->irq, dev);
1456         enable_irq(dev->irq);
1457 }
1458 #endif
1459
1460 /* We have a good packet(s), get it/them out of the buffers. */
1461 static int
1462 tc35815_rx(struct net_device *dev, int limit)
1463 {
1464         struct tc35815_local *lp = netdev_priv(dev);
1465         unsigned int fdctl;
1466         int i;
1467         int received = 0;
1468
1469         while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
1470                 int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
1471                 int pkt_len = fdctl & FD_FDLength_MASK;
1472                 int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1473 #ifdef DEBUG
1474                 struct RxFD *next_rfd;
1475 #endif
1476 #if (RX_CTL_CMD & Rx_StripCRC) == 0
1477                 pkt_len -= ETH_FCS_LEN;
1478 #endif
1479
1480                 if (netif_msg_rx_status(lp))
1481                         dump_rxfd(lp->rfd_cur);
1482                 if (status & Rx_Good) {
1483                         struct sk_buff *skb;
1484                         unsigned char *data;
1485                         int cur_bd;
1486
1487                         if (--limit < 0)
1488                                 break;
1489                         BUG_ON(bd_count > 1);
1490                         cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
1491                                   & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1492 #ifdef DEBUG
1493                         if (cur_bd >= RX_BUF_NUM) {
1494                                 printk("%s: invalid BDID.\n", dev->name);
1495                                 panic_queues(dev);
1496                         }
1497                         BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
1498                                (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
1499                         if (!lp->rx_skbs[cur_bd].skb) {
1500                                 printk("%s: NULL skb.\n", dev->name);
1501                                 panic_queues(dev);
1502                         }
1503 #else
1504                         BUG_ON(cur_bd >= RX_BUF_NUM);
1505 #endif
1506                         skb = lp->rx_skbs[cur_bd].skb;
1507                         prefetch(skb->data);
1508                         lp->rx_skbs[cur_bd].skb = NULL;
1509                         dma_unmap_single(&lp->pci_dev->dev,
1510                                          lp->rx_skbs[cur_bd].skb_dma,
1511                                          RX_BUF_SIZE, DMA_FROM_DEVICE);
1512                         if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN != 0)
1513                                 memmove(skb->data, skb->data - NET_IP_ALIGN,
1514                                         pkt_len);
1515                         data = skb_put(skb, pkt_len);
1516                         if (netif_msg_pktdata(lp))
1517                                 print_eth(data);
1518                         skb->protocol = eth_type_trans(skb, dev);
1519                         netif_receive_skb(skb);
1520                         received++;
1521                         dev->stats.rx_packets++;
1522                         dev->stats.rx_bytes += pkt_len;
1523                 } else {
1524                         dev->stats.rx_errors++;
1525                         if (netif_msg_rx_err(lp))
1526                                 dev_info(&dev->dev, "Rx error (status %x)\n",
1527                                          status & Rx_Stat_Mask);
1528                         /* WORKAROUND: LongErr and CRCErr means Overflow. */
1529                         if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
1530                                 status &= ~(Rx_LongErr|Rx_CRCErr);
1531                                 status |= Rx_Over;
1532                         }
1533                         if (status & Rx_LongErr)
1534                                 dev->stats.rx_length_errors++;
1535                         if (status & Rx_Over)
1536                                 dev->stats.rx_fifo_errors++;
1537                         if (status & Rx_CRCErr)
1538                                 dev->stats.rx_crc_errors++;
1539                         if (status & Rx_Align)
1540                                 dev->stats.rx_frame_errors++;
1541                 }
1542
1543                 if (bd_count > 0) {
1544                         /* put Free Buffer back to controller */
1545                         int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
1546                         unsigned char id =
1547                                 (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1548 #ifdef DEBUG
1549                         if (id >= RX_BUF_NUM) {
1550                                 printk("%s: invalid BDID.\n", dev->name);
1551                                 panic_queues(dev);
1552                         }
1553 #else
1554                         BUG_ON(id >= RX_BUF_NUM);
1555 #endif
1556                         /* free old buffers */
1557                         lp->fbl_count--;
1558                         while (lp->fbl_count < RX_BUF_NUM)
1559                         {
1560                                 unsigned char curid =
1561                                         (id + 1 + lp->fbl_count) % RX_BUF_NUM;
1562                                 struct BDesc *bd = &lp->fbl_ptr->bd[curid];
1563 #ifdef DEBUG
1564                                 bdctl = le32_to_cpu(bd->BDCtl);
1565                                 if (bdctl & BD_CownsBD) {
1566                                         printk("%s: Freeing invalid BD.\n",
1567                                                dev->name);
1568                                         panic_queues(dev);
1569                                 }
1570 #endif
1571                                 /* pass BD to controller */
1572                                 if (!lp->rx_skbs[curid].skb) {
1573                                         lp->rx_skbs[curid].skb =
1574                                                 alloc_rxbuf_skb(dev,
1575                                                                 lp->pci_dev,
1576                                                                 &lp->rx_skbs[curid].skb_dma);
1577                                         if (!lp->rx_skbs[curid].skb)
1578                                                 break; /* try on next reception */
1579                                         bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
1580                                 }
1581                                 /* Note: BDLength was modified by chip. */
1582                                 bd->BDCtl = cpu_to_le32(BD_CownsBD |
1583                                                         (curid << BD_RxBDID_SHIFT) |
1584                                                         RX_BUF_SIZE);
1585                                 lp->fbl_count++;
1586                         }
1587                 }
1588
1589                 /* put RxFD back to controller */
1590 #ifdef DEBUG
1591                 next_rfd = fd_bus_to_virt(lp,
1592                                           le32_to_cpu(lp->rfd_cur->fd.FDNext));
1593                 if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
1594                         printk("%s: RxFD FDNext invalid.\n", dev->name);
1595                         panic_queues(dev);
1596                 }
1597 #endif
1598                 for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
1599                         /* pass FD to controller */
1600 #ifdef DEBUG
1601                         lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
1602 #else
1603                         lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
1604 #endif
1605                         lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
1606                         lp->rfd_cur++;
1607                 }
1608                 if (lp->rfd_cur > lp->rfd_limit)
1609                         lp->rfd_cur = lp->rfd_base;
1610 #ifdef DEBUG
1611                 if (lp->rfd_cur != next_rfd)
1612                         printk("rfd_cur = %p, next_rfd %p\n",
1613                                lp->rfd_cur, next_rfd);
1614 #endif
1615         }
1616
1617         return received;
1618 }
1619
1620 static int tc35815_poll(struct napi_struct *napi, int budget)
1621 {
1622         struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
1623         struct net_device *dev = lp->dev;
1624         struct tc35815_regs __iomem *tr =
1625                 (struct tc35815_regs __iomem *)dev->base_addr;
1626         int received = 0, handled;
1627         u32 status;
1628
1629         if (budget <= 0)
1630                 return received;
1631
1632         spin_lock(&lp->rx_lock);
1633         status = tc_readl(&tr->Int_Src);
1634         do {
1635                 /* BLEx, FDAEx will be cleared later */
1636                 tc_writel(status & ~(Int_BLEx | Int_FDAEx),
1637                           &tr->Int_Src);        /* write to clear */
1638
1639                 handled = tc35815_do_interrupt(dev, status, budget - received);
1640                 if (status & (Int_BLEx | Int_FDAEx))
1641                         tc_writel(status & (Int_BLEx | Int_FDAEx),
1642                                   &tr->Int_Src);
1643                 if (handled >= 0) {
1644                         received += handled;
1645                         if (received >= budget)
1646                                 break;
1647                 }
1648                 status = tc_readl(&tr->Int_Src);
1649         } while (status);
1650         spin_unlock(&lp->rx_lock);
1651
1652         if (received < budget) {
1653                 napi_complete_done(napi, received);
1654                 /* enable interrupts */
1655                 tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
1656         }
1657         return received;
1658 }
1659
1660 #define TX_STA_ERR      (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
1661
1662 static void
1663 tc35815_check_tx_stat(struct net_device *dev, int status)
1664 {
1665         struct tc35815_local *lp = netdev_priv(dev);
1666         const char *msg = NULL;
1667
1668         /* count collisions */
1669         if (status & Tx_ExColl)
1670                 dev->stats.collisions += 16;
1671         if (status & Tx_TxColl_MASK)
1672                 dev->stats.collisions += status & Tx_TxColl_MASK;
1673
1674         /* TX4939 does not have NCarr */
1675         if (lp->chiptype == TC35815_TX4939)
1676                 status &= ~Tx_NCarr;
1677         /* WORKAROUND: ignore LostCrS in full duplex operation */
1678         if (!lp->link || lp->duplex == DUPLEX_FULL)
1679                 status &= ~Tx_NCarr;
1680
1681         if (!(status & TX_STA_ERR)) {
1682                 /* no error. */
1683                 dev->stats.tx_packets++;
1684                 return;
1685         }
1686
1687         dev->stats.tx_errors++;
1688         if (status & Tx_ExColl) {
1689                 dev->stats.tx_aborted_errors++;
1690                 msg = "Excessive Collision.";
1691         }
1692         if (status & Tx_Under) {
1693                 dev->stats.tx_fifo_errors++;
1694                 msg = "Tx FIFO Underrun.";
1695                 if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
1696                         lp->lstats.tx_underrun++;
1697                         if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
1698                                 struct tc35815_regs __iomem *tr =
1699                                         (struct tc35815_regs __iomem *)dev->base_addr;
1700                                 tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
1701                                 msg = "Tx FIFO Underrun.Change Tx threshold to max.";
1702                         }
1703                 }
1704         }
1705         if (status & Tx_Defer) {
1706                 dev->stats.tx_fifo_errors++;
1707                 msg = "Excessive Deferral.";
1708         }
1709         if (status & Tx_NCarr) {
1710                 dev->stats.tx_carrier_errors++;
1711                 msg = "Lost Carrier Sense.";
1712         }
1713         if (status & Tx_LateColl) {
1714                 dev->stats.tx_aborted_errors++;
1715                 msg = "Late Collision.";
1716         }
1717         if (status & Tx_TxPar) {
1718                 dev->stats.tx_fifo_errors++;
1719                 msg = "Transmit Parity Error.";
1720         }
1721         if (status & Tx_SQErr) {
1722                 dev->stats.tx_heartbeat_errors++;
1723                 msg = "Signal Quality Error.";
1724         }
1725         if (msg && netif_msg_tx_err(lp))
1726                 printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
1727 }
1728
1729 /* This handles TX complete events posted by the device
1730  * via interrupts.
1731  */
1732 static void
1733 tc35815_txdone(struct net_device *dev)
1734 {
1735         struct tc35815_local *lp = netdev_priv(dev);
1736         struct TxFD *txfd;
1737         unsigned int fdctl;
1738
1739         txfd = &lp->tfd_base[lp->tfd_end];
1740         while (lp->tfd_start != lp->tfd_end &&
1741                !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
1742                 int status = le32_to_cpu(txfd->fd.FDStat);
1743                 struct sk_buff *skb;
1744                 unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
1745                 u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
1746
1747                 if (netif_msg_tx_done(lp)) {
1748                         printk("%s: complete TxFD.\n", dev->name);
1749                         dump_txfd(txfd);
1750                 }
1751                 tc35815_check_tx_stat(dev, status);
1752
1753                 skb = fdsystem != 0xffffffff ?
1754                         lp->tx_skbs[fdsystem].skb : NULL;
1755 #ifdef DEBUG
1756                 if (lp->tx_skbs[lp->tfd_end].skb != skb) {
1757                         printk("%s: tx_skbs mismatch.\n", dev->name);
1758                         panic_queues(dev);
1759                 }
1760 #else
1761                 BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
1762 #endif
1763                 if (skb) {
1764                         dev->stats.tx_bytes += skb->len;
1765                         dma_unmap_single(&lp->pci_dev->dev,
1766                                          lp->tx_skbs[lp->tfd_end].skb_dma,
1767                                          skb->len, DMA_TO_DEVICE);
1768                         lp->tx_skbs[lp->tfd_end].skb = NULL;
1769                         lp->tx_skbs[lp->tfd_end].skb_dma = 0;
1770                         dev_kfree_skb_any(skb);
1771                 }
1772                 txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
1773
1774                 lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
1775                 txfd = &lp->tfd_base[lp->tfd_end];
1776 #ifdef DEBUG
1777                 if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
1778                         printk("%s: TxFD FDNext invalid.\n", dev->name);
1779                         panic_queues(dev);
1780                 }
1781 #endif
1782                 if (fdnext & FD_Next_EOL) {
1783                         /* DMA Transmitter has been stopping... */
1784                         if (lp->tfd_end != lp->tfd_start) {
1785                                 struct tc35815_regs __iomem *tr =
1786                                         (struct tc35815_regs __iomem *)dev->base_addr;
1787                                 int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
1788                                 struct TxFD *txhead = &lp->tfd_base[head];
1789                                 int qlen = (lp->tfd_start + TX_FD_NUM
1790                                             - lp->tfd_end) % TX_FD_NUM;
1791
1792 #ifdef DEBUG
1793                                 if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
1794                                         printk("%s: TxFD FDCtl invalid.\n", dev->name);
1795                                         panic_queues(dev);
1796                                 }
1797 #endif
1798                                 /* log max queue length */
1799                                 if (lp->lstats.max_tx_qlen < qlen)
1800                                         lp->lstats.max_tx_qlen = qlen;
1801
1802
1803                                 /* start DMA Transmitter again */
1804                                 txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1805                                 txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1806                                 if (netif_msg_tx_queued(lp)) {
1807                                         printk("%s: start TxFD on queue.\n",
1808                                                dev->name);
1809                                         dump_txfd(txfd);
1810                                 }
1811                                 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1812                         }
1813                         break;
1814                 }
1815         }
1816
1817         /* If we had stopped the queue due to a "tx full"
1818          * condition, and space has now been made available,
1819          * wake up the queue.
1820          */
1821         if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
1822                 netif_wake_queue(dev);
1823 }
1824
1825 /* The inverse routine to tc35815_open(). */
1826 static int
1827 tc35815_close(struct net_device *dev)
1828 {
1829         struct tc35815_local *lp = netdev_priv(dev);
1830
1831         netif_stop_queue(dev);
1832         napi_disable(&lp->napi);
1833         if (dev->phydev)
1834                 phy_stop(dev->phydev);
1835         cancel_work_sync(&lp->restart_work);
1836
1837         /* Flush the Tx and disable Rx here. */
1838         tc35815_chip_reset(dev);
1839         free_irq(dev->irq, dev);
1840
1841         tc35815_free_queues(dev);
1842
1843         return 0;
1844
1845 }
1846
1847 /*
1848  * Get the current statistics.
1849  * This may be called with the card open or closed.
1850  */
1851 static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
1852 {
1853         struct tc35815_regs __iomem *tr =
1854                 (struct tc35815_regs __iomem *)dev->base_addr;
1855         if (netif_running(dev))
1856                 /* Update the statistics from the device registers. */
1857                 dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
1858
1859         return &dev->stats;
1860 }
1861
1862 static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr)
1863 {
1864         struct tc35815_local *lp = netdev_priv(dev);
1865         struct tc35815_regs __iomem *tr =
1866                 (struct tc35815_regs __iomem *)dev->base_addr;
1867         int cam_index = index * 6;
1868         u32 cam_data;
1869         u32 saved_addr;
1870
1871         saved_addr = tc_readl(&tr->CAM_Adr);
1872
1873         if (netif_msg_hw(lp))
1874                 printk(KERN_DEBUG "%s: CAM %d: %pM\n",
1875                         dev->name, index, addr);
1876         if (index & 1) {
1877                 /* read modify write */
1878                 tc_writel(cam_index - 2, &tr->CAM_Adr);
1879                 cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
1880                 cam_data |= addr[0] << 8 | addr[1];
1881                 tc_writel(cam_data, &tr->CAM_Data);
1882                 /* write whole word */
1883                 tc_writel(cam_index + 2, &tr->CAM_Adr);
1884                 cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
1885                 tc_writel(cam_data, &tr->CAM_Data);
1886         } else {
1887                 /* write whole word */
1888                 tc_writel(cam_index, &tr->CAM_Adr);
1889                 cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
1890                 tc_writel(cam_data, &tr->CAM_Data);
1891                 /* read modify write */
1892                 tc_writel(cam_index + 4, &tr->CAM_Adr);
1893                 cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
1894                 cam_data |= addr[4] << 24 | (addr[5] << 16);
1895                 tc_writel(cam_data, &tr->CAM_Data);
1896         }
1897
1898         tc_writel(saved_addr, &tr->CAM_Adr);
1899 }
1900
1901
1902 /*
1903  * Set or clear the multicast filter for this adaptor.
1904  * num_addrs == -1      Promiscuous mode, receive all packets
1905  * num_addrs == 0       Normal mode, clear multicast list
1906  * num_addrs > 0        Multicast mode, receive normal and MC packets,
1907  *                      and do best-effort filtering.
1908  */
1909 static void
1910 tc35815_set_multicast_list(struct net_device *dev)
1911 {
1912         struct tc35815_regs __iomem *tr =
1913                 (struct tc35815_regs __iomem *)dev->base_addr;
1914
1915         if (dev->flags & IFF_PROMISC) {
1916                 /* With some (all?) 100MHalf HUB, controller will hang
1917                  * if we enabled promiscuous mode before linkup... */
1918                 struct tc35815_local *lp = netdev_priv(dev);
1919
1920                 if (!lp->link)
1921                         return;
1922                 /* Enable promiscuous mode */
1923                 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
1924         } else if ((dev->flags & IFF_ALLMULTI) ||
1925                   netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
1926                 /* CAM 0, 1, 20 are reserved. */
1927                 /* Disable promiscuous mode, use normal mode. */
1928                 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
1929         } else if (!netdev_mc_empty(dev)) {
1930                 struct netdev_hw_addr *ha;
1931                 int i;
1932                 int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
1933
1934                 tc_writel(0, &tr->CAM_Ctl);
1935                 /* Walk the address list, and load the filter */
1936                 i = 0;
1937                 netdev_for_each_mc_addr(ha, dev) {
1938                         /* entry 0,1 is reserved. */
1939                         tc35815_set_cam_entry(dev, i + 2, ha->addr);
1940                         ena_bits |= CAM_Ena_Bit(i + 2);
1941                         i++;
1942                 }
1943                 tc_writel(ena_bits, &tr->CAM_Ena);
1944                 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1945         } else {
1946                 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
1947                 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1948         }
1949 }
1950
1951 static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1952 {
1953         struct tc35815_local *lp = netdev_priv(dev);
1954
1955         strlcpy(info->driver, MODNAME, sizeof(info->driver));
1956         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1957         strlcpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info));
1958 }
1959
1960 static u32 tc35815_get_msglevel(struct net_device *dev)
1961 {
1962         struct tc35815_local *lp = netdev_priv(dev);
1963         return lp->msg_enable;
1964 }
1965
1966 static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
1967 {
1968         struct tc35815_local *lp = netdev_priv(dev);
1969         lp->msg_enable = datum;
1970 }
1971
1972 static int tc35815_get_sset_count(struct net_device *dev, int sset)
1973 {
1974         struct tc35815_local *lp = netdev_priv(dev);
1975
1976         switch (sset) {
1977         case ETH_SS_STATS:
1978                 return sizeof(lp->lstats) / sizeof(int);
1979         default:
1980                 return -EOPNOTSUPP;
1981         }
1982 }
1983
1984 static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
1985 {
1986         struct tc35815_local *lp = netdev_priv(dev);
1987         data[0] = lp->lstats.max_tx_qlen;
1988         data[1] = lp->lstats.tx_ints;
1989         data[2] = lp->lstats.rx_ints;
1990         data[3] = lp->lstats.tx_underrun;
1991 }
1992
1993 static struct {
1994         const char str[ETH_GSTRING_LEN];
1995 } ethtool_stats_keys[] = {
1996         { "max_tx_qlen" },
1997         { "tx_ints" },
1998         { "rx_ints" },
1999         { "tx_underrun" },
2000 };
2001
2002 static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2003 {
2004         memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
2005 }
2006
2007 static const struct ethtool_ops tc35815_ethtool_ops = {
2008         .get_drvinfo            = tc35815_get_drvinfo,
2009         .get_link               = ethtool_op_get_link,
2010         .get_msglevel           = tc35815_get_msglevel,
2011         .set_msglevel           = tc35815_set_msglevel,
2012         .get_strings            = tc35815_get_strings,
2013         .get_sset_count         = tc35815_get_sset_count,
2014         .get_ethtool_stats      = tc35815_get_ethtool_stats,
2015         .get_link_ksettings = phy_ethtool_get_link_ksettings,
2016         .set_link_ksettings = phy_ethtool_set_link_ksettings,
2017 };
2018
2019 static void tc35815_chip_reset(struct net_device *dev)
2020 {
2021         struct tc35815_regs __iomem *tr =
2022                 (struct tc35815_regs __iomem *)dev->base_addr;
2023         int i;
2024         /* reset the controller */
2025         tc_writel(MAC_Reset, &tr->MAC_Ctl);
2026         udelay(4); /* 3200ns */
2027         i = 0;
2028         while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
2029                 if (i++ > 100) {
2030                         printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
2031                         break;
2032                 }
2033                 mdelay(1);
2034         }
2035         tc_writel(0, &tr->MAC_Ctl);
2036
2037         /* initialize registers to default value */
2038         tc_writel(0, &tr->DMA_Ctl);
2039         tc_writel(0, &tr->TxThrsh);
2040         tc_writel(0, &tr->TxPollCtr);
2041         tc_writel(0, &tr->RxFragSize);
2042         tc_writel(0, &tr->Int_En);
2043         tc_writel(0, &tr->FDA_Bas);
2044         tc_writel(0, &tr->FDA_Lim);
2045         tc_writel(0xffffffff, &tr->Int_Src);    /* Write 1 to clear */
2046         tc_writel(0, &tr->CAM_Ctl);
2047         tc_writel(0, &tr->Tx_Ctl);
2048         tc_writel(0, &tr->Rx_Ctl);
2049         tc_writel(0, &tr->CAM_Ena);
2050         (void)tc_readl(&tr->Miss_Cnt);  /* Read to clear */
2051
2052         /* initialize internal SRAM */
2053         tc_writel(DMA_TestMode, &tr->DMA_Ctl);
2054         for (i = 0; i < 0x1000; i += 4) {
2055                 tc_writel(i, &tr->CAM_Adr);
2056                 tc_writel(0, &tr->CAM_Data);
2057         }
2058         tc_writel(0, &tr->DMA_Ctl);
2059 }
2060
2061 static void tc35815_chip_init(struct net_device *dev)
2062 {
2063         struct tc35815_local *lp = netdev_priv(dev);
2064         struct tc35815_regs __iomem *tr =
2065                 (struct tc35815_regs __iomem *)dev->base_addr;
2066         unsigned long txctl = TX_CTL_CMD;
2067
2068         /* load station address to CAM */
2069         tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
2070
2071         /* Enable CAM (broadcast and unicast) */
2072         tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
2073         tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
2074
2075         /* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
2076         if (HAVE_DMA_RXALIGN(lp))
2077                 tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
2078         else
2079                 tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
2080         tc_writel(0, &tr->TxPollCtr);   /* Batch mode */
2081         tc_writel(TX_THRESHOLD, &tr->TxThrsh);
2082         tc_writel(INT_EN_CMD, &tr->Int_En);
2083
2084         /* set queues */
2085         tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
2086         tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
2087                   &tr->FDA_Lim);
2088         /*
2089          * Activation method:
2090          * First, enable the MAC Transmitter and the DMA Receive circuits.
2091          * Then enable the DMA Transmitter and the MAC Receive circuits.
2092          */
2093         tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr);      /* start DMA receiver */
2094         tc_writel(RX_CTL_CMD, &tr->Rx_Ctl);     /* start MAC receiver */
2095
2096         /* start MAC transmitter */
2097         /* TX4939 does not have EnLCarr */
2098         if (lp->chiptype == TC35815_TX4939)
2099                 txctl &= ~Tx_EnLCarr;
2100         /* WORKAROUND: ignore LostCrS in full duplex operation */
2101         if (!dev->phydev || !lp->link || lp->duplex == DUPLEX_FULL)
2102                 txctl &= ~Tx_EnLCarr;
2103         tc_writel(txctl, &tr->Tx_Ctl);
2104 }
2105
2106 #ifdef CONFIG_PM
2107 static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
2108 {
2109         struct net_device *dev = pci_get_drvdata(pdev);
2110         struct tc35815_local *lp = netdev_priv(dev);
2111         unsigned long flags;
2112
2113         pci_save_state(pdev);
2114         if (!netif_running(dev))
2115                 return 0;
2116         netif_device_detach(dev);
2117         if (dev->phydev)
2118                 phy_stop(dev->phydev);
2119         spin_lock_irqsave(&lp->lock, flags);
2120         tc35815_chip_reset(dev);
2121         spin_unlock_irqrestore(&lp->lock, flags);
2122         pci_set_power_state(pdev, PCI_D3hot);
2123         return 0;
2124 }
2125
2126 static int tc35815_resume(struct pci_dev *pdev)
2127 {
2128         struct net_device *dev = pci_get_drvdata(pdev);
2129
2130         pci_restore_state(pdev);
2131         if (!netif_running(dev))
2132                 return 0;
2133         pci_set_power_state(pdev, PCI_D0);
2134         tc35815_restart(dev);
2135         netif_carrier_off(dev);
2136         if (dev->phydev)
2137                 phy_start(dev->phydev);
2138         netif_device_attach(dev);
2139         return 0;
2140 }
2141 #endif /* CONFIG_PM */
2142
2143 static struct pci_driver tc35815_pci_driver = {
2144         .name           = MODNAME,
2145         .id_table       = tc35815_pci_tbl,
2146         .probe          = tc35815_init_one,
2147         .remove         = tc35815_remove_one,
2148 #ifdef CONFIG_PM
2149         .suspend        = tc35815_suspend,
2150         .resume         = tc35815_resume,
2151 #endif
2152 };
2153
2154 module_param_named(speed, options.speed, int, 0);
2155 MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
2156 module_param_named(duplex, options.duplex, int, 0);
2157 MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
2158
2159 module_pci_driver(tc35815_pci_driver);
2160 MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
2161 MODULE_LICENSE("GPL");