GNU Linux-libre 6.8.7-gnu
[releases.git] / drivers / net / ethernet / toshiba / tc35815.c
1 /*
2  * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
3  *
4  * Based on skelton.c by Donald Becker.
5  *
6  * This driver is a replacement of older and less maintained version.
7  * This is a header of the older version:
8  *      -----<snip>-----
9  *      Copyright 2001 MontaVista Software Inc.
10  *      Author: MontaVista Software, Inc.
11  *              ahennessy@mvista.com
12  *      Copyright (C) 2000-2001 Toshiba Corporation
13  *      static const char *version =
14  *              "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
15  *      -----<snip>-----
16  *
17  * This file is subject to the terms and conditions of the GNU General Public
18  * License.  See the file "COPYING" in the main directory of this archive
19  * for more details.
20  *
21  * (C) Copyright TOSHIBA CORPORATION 2004-2005
22  * All Rights Reserved.
23  */
24
25 #define DRV_VERSION     "1.39"
26 static const char version[] = "tc35815.c:v" DRV_VERSION "\n";
27 #define MODNAME                 "tc35815"
28
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/fcntl.h>
33 #include <linux/interrupt.h>
34 #include <linux/ioport.h>
35 #include <linux/in.h>
36 #include <linux/if_vlan.h>
37 #include <linux/slab.h>
38 #include <linux/string.h>
39 #include <linux/spinlock.h>
40 #include <linux/errno.h>
41 #include <linux/netdevice.h>
42 #include <linux/etherdevice.h>
43 #include <linux/skbuff.h>
44 #include <linux/delay.h>
45 #include <linux/pci.h>
46 #include <linux/phy.h>
47 #include <linux/workqueue.h>
48 #include <linux/platform_device.h>
49 #include <linux/prefetch.h>
50 #include <asm/io.h>
51 #include <asm/byteorder.h>
52
53 enum tc35815_chiptype {
54         TC35815CF = 0,
55         TC35815_NWU,
56         TC35815_TX4939,
57 };
58
59 /* indexed by tc35815_chiptype, above */
60 static const struct {
61         const char *name;
62 } chip_info[] = {
63         { "TOSHIBA TC35815CF 10/100BaseTX" },
64         { "TOSHIBA TC35815 with Wake on LAN" },
65         { "TOSHIBA TC35815/TX4939" },
66 };
67
68 static const struct pci_device_id tc35815_pci_tbl[] = {
69         {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
70         {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
71         {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
72         {0,}
73 };
74 MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
75
76 /* see MODULE_PARM_DESC */
77 static struct tc35815_options {
78         int speed;
79         int duplex;
80 } options;
81
82 /*
83  * Registers
84  */
85 struct tc35815_regs {
86         __u32 DMA_Ctl;          /* 0x00 */
87         __u32 TxFrmPtr;
88         __u32 TxThrsh;
89         __u32 TxPollCtr;
90         __u32 BLFrmPtr;
91         __u32 RxFragSize;
92         __u32 Int_En;
93         __u32 FDA_Bas;
94         __u32 FDA_Lim;          /* 0x20 */
95         __u32 Int_Src;
96         __u32 unused0[2];
97         __u32 PauseCnt;
98         __u32 RemPauCnt;
99         __u32 TxCtlFrmStat;
100         __u32 unused1;
101         __u32 MAC_Ctl;          /* 0x40 */
102         __u32 CAM_Ctl;
103         __u32 Tx_Ctl;
104         __u32 Tx_Stat;
105         __u32 Rx_Ctl;
106         __u32 Rx_Stat;
107         __u32 MD_Data;
108         __u32 MD_CA;
109         __u32 CAM_Adr;          /* 0x60 */
110         __u32 CAM_Data;
111         __u32 CAM_Ena;
112         __u32 PROM_Ctl;
113         __u32 PROM_Data;
114         __u32 Algn_Cnt;
115         __u32 CRC_Cnt;
116         __u32 Miss_Cnt;
117 };
118
119 /*
120  * Bit assignments
121  */
122 /* DMA_Ctl bit assign ------------------------------------------------------- */
123 #define DMA_RxAlign            0x00c00000 /* 1:Reception Alignment           */
124 #define DMA_RxAlign_1          0x00400000
125 #define DMA_RxAlign_2          0x00800000
126 #define DMA_RxAlign_3          0x00c00000
127 #define DMA_M66EnStat          0x00080000 /* 1:66MHz Enable State            */
128 #define DMA_IntMask            0x00040000 /* 1:Interrupt mask                */
129 #define DMA_SWIntReq           0x00020000 /* 1:Software Interrupt request    */
130 #define DMA_TxWakeUp           0x00010000 /* 1:Transmit Wake Up              */
131 #define DMA_RxBigE             0x00008000 /* 1:Receive Big Endian            */
132 #define DMA_TxBigE             0x00004000 /* 1:Transmit Big Endian           */
133 #define DMA_TestMode           0x00002000 /* 1:Test Mode                     */
134 #define DMA_PowrMgmnt          0x00001000 /* 1:Power Management              */
135 #define DMA_DmBurst_Mask       0x000001fc /* DMA Burst size                  */
136
137 /* RxFragSize bit assign ---------------------------------------------------- */
138 #define RxFrag_EnPack          0x00008000 /* 1:Enable Packing                */
139 #define RxFrag_MinFragMask     0x00000ffc /* Minimum Fragment                */
140
141 /* MAC_Ctl bit assign ------------------------------------------------------- */
142 #define MAC_Link10             0x00008000 /* 1:Link Status 10Mbits           */
143 #define MAC_EnMissRoll         0x00002000 /* 1:Enable Missed Roll            */
144 #define MAC_MissRoll           0x00000400 /* 1:Missed Roll                   */
145 #define MAC_Loop10             0x00000080 /* 1:Loop 10 Mbps                  */
146 #define MAC_Conn_Auto          0x00000000 /*00:Connection mode (Automatic)   */
147 #define MAC_Conn_10M           0x00000020 /*01:                (10Mbps endec)*/
148 #define MAC_Conn_Mll           0x00000040 /*10:                (Mll clock)   */
149 #define MAC_MacLoop            0x00000010 /* 1:MAC Loopback                  */
150 #define MAC_FullDup            0x00000008 /* 1:Full Duplex 0:Half Duplex     */
151 #define MAC_Reset              0x00000004 /* 1:Software Reset                */
152 #define MAC_HaltImm            0x00000002 /* 1:Halt Immediate                */
153 #define MAC_HaltReq            0x00000001 /* 1:Halt request                  */
154
155 /* PROM_Ctl bit assign ------------------------------------------------------ */
156 #define PROM_Busy              0x00008000 /* 1:Busy (Start Operation)        */
157 #define PROM_Read              0x00004000 /*10:Read operation                */
158 #define PROM_Write             0x00002000 /*01:Write operation               */
159 #define PROM_Erase             0x00006000 /*11:Erase operation               */
160                                           /*00:Enable or Disable Writting,   */
161                                           /*      as specified in PROM_Addr. */
162 #define PROM_Addr_Ena          0x00000030 /*11xxxx:PROM Write enable         */
163                                           /*00xxxx:           disable        */
164
165 /* CAM_Ctl bit assign ------------------------------------------------------- */
166 #define CAM_CompEn             0x00000010 /* 1:CAM Compare Enable            */
167 #define CAM_NegCAM             0x00000008 /* 1:Reject packets CAM recognizes,*/
168                                           /*                    accept other */
169 #define CAM_BroadAcc           0x00000004 /* 1:Broadcast assept              */
170 #define CAM_GroupAcc           0x00000002 /* 1:Multicast assept              */
171 #define CAM_StationAcc         0x00000001 /* 1:unicast accept                */
172
173 /* CAM_Ena bit assign ------------------------------------------------------- */
174 #define CAM_ENTRY_MAX                  21   /* CAM Data entry max count      */
175 #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits)  */
176 #define CAM_Ena_Bit(index)      (1 << (index))
177 #define CAM_ENTRY_DESTINATION   0
178 #define CAM_ENTRY_SOURCE        1
179 #define CAM_ENTRY_MACCTL        20
180
181 /* Tx_Ctl bit assign -------------------------------------------------------- */
182 #define Tx_En                  0x00000001 /* 1:Transmit enable               */
183 #define Tx_TxHalt              0x00000002 /* 1:Transmit Halt Request         */
184 #define Tx_NoPad               0x00000004 /* 1:Suppress Padding              */
185 #define Tx_NoCRC               0x00000008 /* 1:Suppress Padding              */
186 #define Tx_FBack               0x00000010 /* 1:Fast Back-off                 */
187 #define Tx_EnUnder             0x00000100 /* 1:Enable Underrun               */
188 #define Tx_EnExDefer           0x00000200 /* 1:Enable Excessive Deferral     */
189 #define Tx_EnLCarr             0x00000400 /* 1:Enable Lost Carrier           */
190 #define Tx_EnExColl            0x00000800 /* 1:Enable Excessive Collision    */
191 #define Tx_EnLateColl          0x00001000 /* 1:Enable Late Collision         */
192 #define Tx_EnTxPar             0x00002000 /* 1:Enable Transmit Parity        */
193 #define Tx_EnComp              0x00004000 /* 1:Enable Completion             */
194
195 /* Tx_Stat bit assign ------------------------------------------------------- */
196 #define Tx_TxColl_MASK         0x0000000F /* Tx Collision Count              */
197 #define Tx_ExColl              0x00000010 /* Excessive Collision             */
198 #define Tx_TXDefer             0x00000020 /* Transmit Defered                */
199 #define Tx_Paused              0x00000040 /* Transmit Paused                 */
200 #define Tx_IntTx               0x00000080 /* Interrupt on Tx                 */
201 #define Tx_Under               0x00000100 /* Underrun                        */
202 #define Tx_Defer               0x00000200 /* Deferral                        */
203 #define Tx_NCarr               0x00000400 /* No Carrier                      */
204 #define Tx_10Stat              0x00000800 /* 10Mbps Status                   */
205 #define Tx_LateColl            0x00001000 /* Late Collision                  */
206 #define Tx_TxPar               0x00002000 /* Tx Parity Error                 */
207 #define Tx_Comp                0x00004000 /* Completion                      */
208 #define Tx_Halted              0x00008000 /* Tx Halted                       */
209 #define Tx_SQErr               0x00010000 /* Signal Quality Error(SQE)       */
210
211 /* Rx_Ctl bit assign -------------------------------------------------------- */
212 #define Rx_EnGood              0x00004000 /* 1:Enable Good                   */
213 #define Rx_EnRxPar             0x00002000 /* 1:Enable Receive Parity         */
214 #define Rx_EnLongErr           0x00000800 /* 1:Enable Long Error             */
215 #define Rx_EnOver              0x00000400 /* 1:Enable OverFlow               */
216 #define Rx_EnCRCErr            0x00000200 /* 1:Enable CRC Error              */
217 #define Rx_EnAlign             0x00000100 /* 1:Enable Alignment              */
218 #define Rx_IgnoreCRC           0x00000040 /* 1:Ignore CRC Value              */
219 #define Rx_StripCRC            0x00000010 /* 1:Strip CRC Value               */
220 #define Rx_ShortEn             0x00000008 /* 1:Short Enable                  */
221 #define Rx_LongEn              0x00000004 /* 1:Long Enable                   */
222 #define Rx_RxHalt              0x00000002 /* 1:Receive Halt Request          */
223 #define Rx_RxEn                0x00000001 /* 1:Receive Intrrupt Enable       */
224
225 /* Rx_Stat bit assign ------------------------------------------------------- */
226 #define Rx_Halted              0x00008000 /* Rx Halted                       */
227 #define Rx_Good                0x00004000 /* Rx Good                         */
228 #define Rx_RxPar               0x00002000 /* Rx Parity Error                 */
229 #define Rx_TypePkt             0x00001000 /* Rx Type Packet                  */
230 #define Rx_LongErr             0x00000800 /* Rx Long Error                   */
231 #define Rx_Over                0x00000400 /* Rx Overflow                     */
232 #define Rx_CRCErr              0x00000200 /* Rx CRC Error                    */
233 #define Rx_Align               0x00000100 /* Rx Alignment Error              */
234 #define Rx_10Stat              0x00000080 /* Rx 10Mbps Status                */
235 #define Rx_IntRx               0x00000040 /* Rx Interrupt                    */
236 #define Rx_CtlRecd             0x00000020 /* Rx Control Receive              */
237 #define Rx_InLenErr            0x00000010 /* Rx In Range Frame Length Error  */
238
239 #define Rx_Stat_Mask           0x0000FFF0 /* Rx All Status Mask              */
240
241 /* Int_En bit assign -------------------------------------------------------- */
242 #define Int_NRAbtEn            0x00000800 /* 1:Non-recoverable Abort Enable  */
243 #define Int_TxCtlCmpEn         0x00000400 /* 1:Transmit Ctl Complete Enable  */
244 #define Int_DmParErrEn         0x00000200 /* 1:DMA Parity Error Enable       */
245 #define Int_DParDEn            0x00000100 /* 1:Data Parity Error Enable      */
246 #define Int_EarNotEn           0x00000080 /* 1:Early Notify Enable           */
247 #define Int_DParErrEn          0x00000040 /* 1:Detected Parity Error Enable  */
248 #define Int_SSysErrEn          0x00000020 /* 1:Signalled System Error Enable */
249 #define Int_RMasAbtEn          0x00000010 /* 1:Received Master Abort Enable  */
250 #define Int_RTargAbtEn         0x00000008 /* 1:Received Target Abort Enable  */
251 #define Int_STargAbtEn         0x00000004 /* 1:Signalled Target Abort Enable */
252 #define Int_BLExEn             0x00000002 /* 1:Buffer List Exhausted Enable  */
253 #define Int_FDAExEn            0x00000001 /* 1:Free Descriptor Area          */
254                                           /*               Exhausted Enable  */
255
256 /* Int_Src bit assign ------------------------------------------------------- */
257 #define Int_NRabt              0x00004000 /* 1:Non Recoverable error         */
258 #define Int_DmParErrStat       0x00002000 /* 1:DMA Parity Error & Clear      */
259 #define Int_BLEx               0x00001000 /* 1:Buffer List Empty & Clear     */
260 #define Int_FDAEx              0x00000800 /* 1:FDA Empty & Clear             */
261 #define Int_IntNRAbt           0x00000400 /* 1:Non Recoverable Abort         */
262 #define Int_IntCmp             0x00000200 /* 1:MAC control packet complete   */
263 #define Int_IntExBD            0x00000100 /* 1:Interrupt Extra BD & Clear    */
264 #define Int_DmParErr           0x00000080 /* 1:DMA Parity Error & Clear      */
265 #define Int_IntEarNot          0x00000040 /* 1:Receive Data write & Clear    */
266 #define Int_SWInt              0x00000020 /* 1:Software request & Clear      */
267 #define Int_IntBLEx            0x00000010 /* 1:Buffer List Empty & Clear     */
268 #define Int_IntFDAEx           0x00000008 /* 1:FDA Empty & Clear             */
269 #define Int_IntPCI             0x00000004 /* 1:PCI controller & Clear        */
270 #define Int_IntMacRx           0x00000002 /* 1:Rx controller & Clear         */
271 #define Int_IntMacTx           0x00000001 /* 1:Tx controller & Clear         */
272
273 /* MD_CA bit assign --------------------------------------------------------- */
274 #define MD_CA_PreSup           0x00001000 /* 1:Preamble Suppress                     */
275 #define MD_CA_Busy             0x00000800 /* 1:Busy (Start Operation)        */
276 #define MD_CA_Wr               0x00000400 /* 1:Write 0:Read                  */
277
278
279 /*
280  * Descriptors
281  */
282
283 /* Frame descriptor */
284 struct FDesc {
285         volatile __u32 FDNext;
286         volatile __u32 FDSystem;
287         volatile __u32 FDStat;
288         volatile __u32 FDCtl;
289 };
290
291 /* Buffer descriptor */
292 struct BDesc {
293         volatile __u32 BuffData;
294         volatile __u32 BDCtl;
295 };
296
297 #define FD_ALIGN        16
298
299 /* Frame Descriptor bit assign ---------------------------------------------- */
300 #define FD_FDLength_MASK       0x0000FFFF /* Length MASK                     */
301 #define FD_BDCnt_MASK          0x001F0000 /* BD count MASK in FD             */
302 #define FD_FrmOpt_MASK         0x7C000000 /* Frame option MASK               */
303 #define FD_FrmOpt_BigEndian    0x40000000 /* Tx/Rx */
304 #define FD_FrmOpt_IntTx        0x20000000 /* Tx only */
305 #define FD_FrmOpt_NoCRC        0x10000000 /* Tx only */
306 #define FD_FrmOpt_NoPadding    0x08000000 /* Tx only */
307 #define FD_FrmOpt_Packing      0x04000000 /* Rx only */
308 #define FD_CownsFD             0x80000000 /* FD Controller owner bit         */
309 #define FD_Next_EOL            0x00000001 /* FD EOL indicator                */
310 #define FD_BDCnt_SHIFT         16
311
312 /* Buffer Descriptor bit assign --------------------------------------------- */
313 #define BD_BuffLength_MASK     0x0000FFFF /* Receive Data Size               */
314 #define BD_RxBDID_MASK         0x00FF0000 /* BD ID Number MASK               */
315 #define BD_RxBDSeqN_MASK       0x7F000000 /* Rx BD Sequence Number           */
316 #define BD_CownsBD             0x80000000 /* BD Controller owner bit         */
317 #define BD_RxBDID_SHIFT        16
318 #define BD_RxBDSeqN_SHIFT      24
319
320
321 /* Some useful constants. */
322
323 #define TX_CTL_CMD      (Tx_EnTxPar | Tx_EnLateColl | \
324         Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
325         Tx_En)  /* maybe  0x7b01 */
326 /* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
327 #define RX_CTL_CMD      (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
328         | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
329 #define INT_EN_CMD  (Int_NRAbtEn | \
330         Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
331         Int_SSysErrEn  | Int_RMasAbtEn | Int_RTargAbtEn | \
332         Int_STargAbtEn | \
333         Int_BLExEn  | Int_FDAExEn) /* maybe 0xb7f*/
334 #define DMA_CTL_CMD     DMA_BURST_SIZE
335 #define HAVE_DMA_RXALIGN(lp)    likely((lp)->chiptype != TC35815CF)
336
337 /* Tuning parameters */
338 #define DMA_BURST_SIZE  32
339 #define TX_THRESHOLD    1024
340 /* used threshold with packet max byte for low pci transfer ability.*/
341 #define TX_THRESHOLD_MAX 1536
342 /* setting threshold max value when overrun error occurred this count. */
343 #define TX_THRESHOLD_KEEP_LIMIT 10
344
345 /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
346 #define FD_PAGE_NUM 4
347 #define RX_BUF_NUM      128     /* < 256 */
348 #define RX_FD_NUM       256     /* >= 32 */
349 #define TX_FD_NUM       128
350 #if RX_CTL_CMD & Rx_LongEn
351 #define RX_BUF_SIZE     PAGE_SIZE
352 #elif RX_CTL_CMD & Rx_StripCRC
353 #define RX_BUF_SIZE     \
354         L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
355 #else
356 #define RX_BUF_SIZE     \
357         L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
358 #endif
359 #define RX_FD_RESERVE   (2 / 2) /* max 2 BD per RxFD */
360 #define NAPI_WEIGHT     16
361
362 struct TxFD {
363         struct FDesc fd;
364         struct BDesc bd;
365         struct BDesc unused;
366 };
367
368 struct RxFD {
369         struct FDesc fd;
370         struct BDesc bd[];      /* variable length */
371 };
372
373 struct FrFD {
374         struct FDesc fd;
375         struct BDesc bd[RX_BUF_NUM];
376 };
377
378
379 #define tc_readl(addr)  ioread32(addr)
380 #define tc_writel(d, addr)      iowrite32(d, addr)
381
382 #define TC35815_TX_TIMEOUT  msecs_to_jiffies(400)
383
384 /* Information that need to be kept for each controller. */
385 struct tc35815_local {
386         struct pci_dev *pci_dev;
387
388         struct net_device *dev;
389         struct napi_struct napi;
390
391         /* statistics */
392         struct {
393                 int max_tx_qlen;
394                 int tx_ints;
395                 int rx_ints;
396                 int tx_underrun;
397         } lstats;
398
399         /* Tx control lock.  This protects the transmit buffer ring
400          * state along with the "tx full" state of the driver.  This
401          * means all netif_queue flow control actions are protected
402          * by this lock as well.
403          */
404         spinlock_t lock;
405         spinlock_t rx_lock;
406
407         struct mii_bus *mii_bus;
408         int duplex;
409         int speed;
410         int link;
411         struct work_struct restart_work;
412
413         /*
414          * Transmitting: Batch Mode.
415          *      1 BD in 1 TxFD.
416          * Receiving: Non-Packing Mode.
417          *      1 circular FD for Free Buffer List.
418          *      RX_BUF_NUM BD in Free Buffer FD.
419          *      One Free Buffer BD has ETH_FRAME_LEN data buffer.
420          */
421         void *fd_buf;   /* for TxFD, RxFD, FrFD */
422         dma_addr_t fd_buf_dma;
423         struct TxFD *tfd_base;
424         unsigned int tfd_start;
425         unsigned int tfd_end;
426         struct RxFD *rfd_base;
427         struct RxFD *rfd_limit;
428         struct RxFD *rfd_cur;
429         struct FrFD *fbl_ptr;
430         unsigned int fbl_count;
431         struct {
432                 struct sk_buff *skb;
433                 dma_addr_t skb_dma;
434         } tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
435         u32 msg_enable;
436         enum tc35815_chiptype chiptype;
437 };
438
439 static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
440 {
441         return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
442 }
443 #ifdef DEBUG
444 static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
445 {
446         return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
447 }
448 #endif
449 static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
450                                        struct pci_dev *hwdev,
451                                        dma_addr_t *dma_handle)
452 {
453         struct sk_buff *skb;
454         skb = netdev_alloc_skb(dev, RX_BUF_SIZE);
455         if (!skb)
456                 return NULL;
457         *dma_handle = dma_map_single(&hwdev->dev, skb->data, RX_BUF_SIZE,
458                                      DMA_FROM_DEVICE);
459         if (dma_mapping_error(&hwdev->dev, *dma_handle)) {
460                 dev_kfree_skb_any(skb);
461                 return NULL;
462         }
463         skb_reserve(skb, 2);    /* make IP header 4byte aligned */
464         return skb;
465 }
466
467 static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
468 {
469         dma_unmap_single(&hwdev->dev, dma_handle, RX_BUF_SIZE,
470                          DMA_FROM_DEVICE);
471         dev_kfree_skb_any(skb);
472 }
473
474 /* Index to functions, as function prototypes. */
475
476 static int      tc35815_open(struct net_device *dev);
477 static netdev_tx_t      tc35815_send_packet(struct sk_buff *skb,
478                                             struct net_device *dev);
479 static irqreturn_t      tc35815_interrupt(int irq, void *dev_id);
480 static int      tc35815_rx(struct net_device *dev, int limit);
481 static int      tc35815_poll(struct napi_struct *napi, int budget);
482 static void     tc35815_txdone(struct net_device *dev);
483 static int      tc35815_close(struct net_device *dev);
484 static struct   net_device_stats *tc35815_get_stats(struct net_device *dev);
485 static void     tc35815_set_multicast_list(struct net_device *dev);
486 static void     tc35815_tx_timeout(struct net_device *dev, unsigned int txqueue);
487 #ifdef CONFIG_NET_POLL_CONTROLLER
488 static void     tc35815_poll_controller(struct net_device *dev);
489 #endif
490 static const struct ethtool_ops tc35815_ethtool_ops;
491
492 /* Example routines you must write ;->. */
493 static void     tc35815_chip_reset(struct net_device *dev);
494 static void     tc35815_chip_init(struct net_device *dev);
495
496 #ifdef DEBUG
497 static void     panic_queues(struct net_device *dev);
498 #endif
499
500 static void tc35815_restart_work(struct work_struct *work);
501
502 static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
503 {
504         struct net_device *dev = bus->priv;
505         struct tc35815_regs __iomem *tr =
506                 (struct tc35815_regs __iomem *)dev->base_addr;
507         unsigned long timeout = jiffies + HZ;
508
509         tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
510         udelay(12); /* it takes 32 x 400ns at least */
511         while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
512                 if (time_after(jiffies, timeout))
513                         return -EIO;
514                 cpu_relax();
515         }
516         return tc_readl(&tr->MD_Data) & 0xffff;
517 }
518
519 static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
520 {
521         struct net_device *dev = bus->priv;
522         struct tc35815_regs __iomem *tr =
523                 (struct tc35815_regs __iomem *)dev->base_addr;
524         unsigned long timeout = jiffies + HZ;
525
526         tc_writel(val, &tr->MD_Data);
527         tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
528                   &tr->MD_CA);
529         udelay(12); /* it takes 32 x 400ns at least */
530         while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
531                 if (time_after(jiffies, timeout))
532                         return -EIO;
533                 cpu_relax();
534         }
535         return 0;
536 }
537
538 static void tc_handle_link_change(struct net_device *dev)
539 {
540         struct tc35815_local *lp = netdev_priv(dev);
541         struct phy_device *phydev = dev->phydev;
542         unsigned long flags;
543         int status_change = 0;
544
545         spin_lock_irqsave(&lp->lock, flags);
546         if (phydev->link &&
547             (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
548                 struct tc35815_regs __iomem *tr =
549                         (struct tc35815_regs __iomem *)dev->base_addr;
550                 u32 reg;
551
552                 reg = tc_readl(&tr->MAC_Ctl);
553                 reg |= MAC_HaltReq;
554                 tc_writel(reg, &tr->MAC_Ctl);
555                 if (phydev->duplex == DUPLEX_FULL)
556                         reg |= MAC_FullDup;
557                 else
558                         reg &= ~MAC_FullDup;
559                 tc_writel(reg, &tr->MAC_Ctl);
560                 reg &= ~MAC_HaltReq;
561                 tc_writel(reg, &tr->MAC_Ctl);
562
563                 /*
564                  * TX4939 PCFG.SPEEDn bit will be changed on
565                  * NETDEV_CHANGE event.
566                  */
567                 /*
568                  * WORKAROUND: enable LostCrS only if half duplex
569                  * operation.
570                  * (TX4939 does not have EnLCarr)
571                  */
572                 if (phydev->duplex == DUPLEX_HALF &&
573                     lp->chiptype != TC35815_TX4939)
574                         tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
575                                   &tr->Tx_Ctl);
576
577                 lp->speed = phydev->speed;
578                 lp->duplex = phydev->duplex;
579                 status_change = 1;
580         }
581
582         if (phydev->link != lp->link) {
583                 if (phydev->link) {
584                         /* delayed promiscuous enabling */
585                         if (dev->flags & IFF_PROMISC)
586                                 tc35815_set_multicast_list(dev);
587                 } else {
588                         lp->speed = 0;
589                         lp->duplex = -1;
590                 }
591                 lp->link = phydev->link;
592
593                 status_change = 1;
594         }
595         spin_unlock_irqrestore(&lp->lock, flags);
596
597         if (status_change && netif_msg_link(lp)) {
598                 phy_print_status(phydev);
599                 pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
600                          dev->name,
601                          phy_read(phydev, MII_BMCR),
602                          phy_read(phydev, MII_BMSR),
603                          phy_read(phydev, MII_LPA));
604         }
605 }
606
607 static int tc_mii_probe(struct net_device *dev)
608 {
609         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
610         struct tc35815_local *lp = netdev_priv(dev);
611         struct phy_device *phydev;
612
613         phydev = phy_find_first(lp->mii_bus);
614         if (!phydev) {
615                 printk(KERN_ERR "%s: no PHY found\n", dev->name);
616                 return -ENODEV;
617         }
618
619         /* attach the mac to the phy */
620         phydev = phy_connect(dev, phydev_name(phydev),
621                              &tc_handle_link_change,
622                              lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
623         if (IS_ERR(phydev)) {
624                 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
625                 return PTR_ERR(phydev);
626         }
627
628         phy_attached_info(phydev);
629
630         /* mask with MAC supported features */
631         phy_set_max_speed(phydev, SPEED_100);
632         if (options.speed == 10) {
633                 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
634                 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
635         } else if (options.speed == 100) {
636                 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, mask);
637                 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, mask);
638         }
639         if (options.duplex == 1) {
640                 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, mask);
641                 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
642         } else if (options.duplex == 2) {
643                 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, mask);
644                 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
645         }
646         linkmode_andnot(phydev->supported, phydev->supported, mask);
647         linkmode_copy(phydev->advertising, phydev->supported);
648
649         lp->link = 0;
650         lp->speed = 0;
651         lp->duplex = -1;
652
653         return 0;
654 }
655
656 static int tc_mii_init(struct net_device *dev)
657 {
658         struct tc35815_local *lp = netdev_priv(dev);
659         int err;
660
661         lp->mii_bus = mdiobus_alloc();
662         if (lp->mii_bus == NULL) {
663                 err = -ENOMEM;
664                 goto err_out;
665         }
666
667         lp->mii_bus->name = "tc35815_mii_bus";
668         lp->mii_bus->read = tc_mdio_read;
669         lp->mii_bus->write = tc_mdio_write;
670         snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x", pci_dev_id(lp->pci_dev));
671         lp->mii_bus->priv = dev;
672         lp->mii_bus->parent = &lp->pci_dev->dev;
673         err = mdiobus_register(lp->mii_bus);
674         if (err)
675                 goto err_out_free_mii_bus;
676         err = tc_mii_probe(dev);
677         if (err)
678                 goto err_out_unregister_bus;
679         return 0;
680
681 err_out_unregister_bus:
682         mdiobus_unregister(lp->mii_bus);
683 err_out_free_mii_bus:
684         mdiobus_free(lp->mii_bus);
685 err_out:
686         return err;
687 }
688
689 #ifdef CONFIG_CPU_TX49XX
690 /*
691  * Find a platform_device providing a MAC address.  The platform code
692  * should provide a "tc35815-mac" device with a MAC address in its
693  * platform_data.
694  */
695 static int tc35815_mac_match(struct device *dev, const void *data)
696 {
697         struct platform_device *plat_dev = to_platform_device(dev);
698         const struct pci_dev *pci_dev = data;
699         unsigned int id = pci_dev->irq;
700         return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
701 }
702
703 static int tc35815_read_plat_dev_addr(struct net_device *dev)
704 {
705         struct tc35815_local *lp = netdev_priv(dev);
706         struct device *pd = bus_find_device(&platform_bus_type, NULL,
707                                             lp->pci_dev, tc35815_mac_match);
708         if (pd) {
709                 if (pd->platform_data)
710                         eth_hw_addr_set(dev, pd->platform_data);
711                 put_device(pd);
712                 return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
713         }
714         return -ENODEV;
715 }
716 #else
717 static int tc35815_read_plat_dev_addr(struct net_device *dev)
718 {
719         return -ENODEV;
720 }
721 #endif
722
723 static int tc35815_init_dev_addr(struct net_device *dev)
724 {
725         struct tc35815_regs __iomem *tr =
726                 (struct tc35815_regs __iomem *)dev->base_addr;
727         u8 addr[ETH_ALEN];
728         int i;
729
730         while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
731                 ;
732         for (i = 0; i < 6; i += 2) {
733                 unsigned short data;
734                 tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
735                 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
736                         ;
737                 data = tc_readl(&tr->PROM_Data);
738                 addr[i] = data & 0xff;
739                 addr[i+1] = data >> 8;
740         }
741         eth_hw_addr_set(dev, addr);
742         if (!is_valid_ether_addr(dev->dev_addr))
743                 return tc35815_read_plat_dev_addr(dev);
744         return 0;
745 }
746
747 static const struct net_device_ops tc35815_netdev_ops = {
748         .ndo_open               = tc35815_open,
749         .ndo_stop               = tc35815_close,
750         .ndo_start_xmit         = tc35815_send_packet,
751         .ndo_get_stats          = tc35815_get_stats,
752         .ndo_set_rx_mode        = tc35815_set_multicast_list,
753         .ndo_tx_timeout         = tc35815_tx_timeout,
754         .ndo_eth_ioctl          = phy_do_ioctl_running,
755         .ndo_validate_addr      = eth_validate_addr,
756         .ndo_set_mac_address    = eth_mac_addr,
757 #ifdef CONFIG_NET_POLL_CONTROLLER
758         .ndo_poll_controller    = tc35815_poll_controller,
759 #endif
760 };
761
762 static int tc35815_init_one(struct pci_dev *pdev,
763                             const struct pci_device_id *ent)
764 {
765         void __iomem *ioaddr = NULL;
766         struct net_device *dev;
767         struct tc35815_local *lp;
768         int rc;
769
770         static int printed_version;
771         if (!printed_version++) {
772                 printk(version);
773                 dev_printk(KERN_DEBUG, &pdev->dev,
774                            "speed:%d duplex:%d\n",
775                            options.speed, options.duplex);
776         }
777
778         if (!pdev->irq) {
779                 dev_warn(&pdev->dev, "no IRQ assigned.\n");
780                 return -ENODEV;
781         }
782
783         /* dev zeroed in alloc_etherdev */
784         dev = alloc_etherdev(sizeof(*lp));
785         if (dev == NULL)
786                 return -ENOMEM;
787
788         SET_NETDEV_DEV(dev, &pdev->dev);
789         lp = netdev_priv(dev);
790         lp->dev = dev;
791
792         /* enable device (incl. PCI PM wakeup), and bus-mastering */
793         rc = pcim_enable_device(pdev);
794         if (rc)
795                 goto err_out;
796         rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
797         if (rc)
798                 goto err_out;
799         pci_set_master(pdev);
800         ioaddr = pcim_iomap_table(pdev)[1];
801
802         /* Initialize the device structure. */
803         dev->netdev_ops = &tc35815_netdev_ops;
804         dev->ethtool_ops = &tc35815_ethtool_ops;
805         dev->watchdog_timeo = TC35815_TX_TIMEOUT;
806         netif_napi_add_weight(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
807
808         dev->irq = pdev->irq;
809         dev->base_addr = (unsigned long)ioaddr;
810
811         INIT_WORK(&lp->restart_work, tc35815_restart_work);
812         spin_lock_init(&lp->lock);
813         spin_lock_init(&lp->rx_lock);
814         lp->pci_dev = pdev;
815         lp->chiptype = ent->driver_data;
816
817         lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
818         pci_set_drvdata(pdev, dev);
819
820         /* Soft reset the chip. */
821         tc35815_chip_reset(dev);
822
823         /* Retrieve the ethernet address. */
824         if (tc35815_init_dev_addr(dev)) {
825                 dev_warn(&pdev->dev, "not valid ether addr\n");
826                 eth_hw_addr_random(dev);
827         }
828
829         rc = register_netdev(dev);
830         if (rc)
831                 goto err_out;
832
833         printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
834                 dev->name,
835                 chip_info[ent->driver_data].name,
836                 dev->base_addr,
837                 dev->dev_addr,
838                 dev->irq);
839
840         rc = tc_mii_init(dev);
841         if (rc)
842                 goto err_out_unregister;
843
844         return 0;
845
846 err_out_unregister:
847         unregister_netdev(dev);
848 err_out:
849         free_netdev(dev);
850         return rc;
851 }
852
853
854 static void tc35815_remove_one(struct pci_dev *pdev)
855 {
856         struct net_device *dev = pci_get_drvdata(pdev);
857         struct tc35815_local *lp = netdev_priv(dev);
858
859         phy_disconnect(dev->phydev);
860         mdiobus_unregister(lp->mii_bus);
861         mdiobus_free(lp->mii_bus);
862         unregister_netdev(dev);
863         free_netdev(dev);
864 }
865
866 static int
867 tc35815_init_queues(struct net_device *dev)
868 {
869         struct tc35815_local *lp = netdev_priv(dev);
870         int i;
871         unsigned long fd_addr;
872
873         if (!lp->fd_buf) {
874                 BUG_ON(sizeof(struct FDesc) +
875                        sizeof(struct BDesc) * RX_BUF_NUM +
876                        sizeof(struct FDesc) * RX_FD_NUM +
877                        sizeof(struct TxFD) * TX_FD_NUM >
878                        PAGE_SIZE * FD_PAGE_NUM);
879
880                 lp->fd_buf = dma_alloc_coherent(&lp->pci_dev->dev,
881                                                 PAGE_SIZE * FD_PAGE_NUM,
882                                                 &lp->fd_buf_dma, GFP_ATOMIC);
883                 if (!lp->fd_buf)
884                         return -ENOMEM;
885                 for (i = 0; i < RX_BUF_NUM; i++) {
886                         lp->rx_skbs[i].skb =
887                                 alloc_rxbuf_skb(dev, lp->pci_dev,
888                                                 &lp->rx_skbs[i].skb_dma);
889                         if (!lp->rx_skbs[i].skb) {
890                                 while (--i >= 0) {
891                                         free_rxbuf_skb(lp->pci_dev,
892                                                        lp->rx_skbs[i].skb,
893                                                        lp->rx_skbs[i].skb_dma);
894                                         lp->rx_skbs[i].skb = NULL;
895                                 }
896                                 dma_free_coherent(&lp->pci_dev->dev,
897                                                   PAGE_SIZE * FD_PAGE_NUM,
898                                                   lp->fd_buf, lp->fd_buf_dma);
899                                 lp->fd_buf = NULL;
900                                 return -ENOMEM;
901                         }
902                 }
903                 printk(KERN_DEBUG "%s: FD buf %p DataBuf",
904                        dev->name, lp->fd_buf);
905                 printk("\n");
906         } else {
907                 for (i = 0; i < FD_PAGE_NUM; i++)
908                         clear_page((void *)((unsigned long)lp->fd_buf +
909                                             i * PAGE_SIZE));
910         }
911         fd_addr = (unsigned long)lp->fd_buf;
912
913         /* Free Descriptors (for Receive) */
914         lp->rfd_base = (struct RxFD *)fd_addr;
915         fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
916         for (i = 0; i < RX_FD_NUM; i++)
917                 lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
918         lp->rfd_cur = lp->rfd_base;
919         lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
920
921         /* Transmit Descriptors */
922         lp->tfd_base = (struct TxFD *)fd_addr;
923         fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
924         for (i = 0; i < TX_FD_NUM; i++) {
925                 lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
926                 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
927                 lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
928         }
929         lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
930         lp->tfd_start = 0;
931         lp->tfd_end = 0;
932
933         /* Buffer List (for Receive) */
934         lp->fbl_ptr = (struct FrFD *)fd_addr;
935         lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
936         lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
937         /*
938          * move all allocated skbs to head of rx_skbs[] array.
939          * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
940          * tc35815_rx() had failed.
941          */
942         lp->fbl_count = 0;
943         for (i = 0; i < RX_BUF_NUM; i++) {
944                 if (lp->rx_skbs[i].skb) {
945                         if (i != lp->fbl_count) {
946                                 lp->rx_skbs[lp->fbl_count].skb =
947                                         lp->rx_skbs[i].skb;
948                                 lp->rx_skbs[lp->fbl_count].skb_dma =
949                                         lp->rx_skbs[i].skb_dma;
950                         }
951                         lp->fbl_count++;
952                 }
953         }
954         for (i = 0; i < RX_BUF_NUM; i++) {
955                 if (i >= lp->fbl_count) {
956                         lp->fbl_ptr->bd[i].BuffData = 0;
957                         lp->fbl_ptr->bd[i].BDCtl = 0;
958                         continue;
959                 }
960                 lp->fbl_ptr->bd[i].BuffData =
961                         cpu_to_le32(lp->rx_skbs[i].skb_dma);
962                 /* BDID is index of FrFD.bd[] */
963                 lp->fbl_ptr->bd[i].BDCtl =
964                         cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
965                                     RX_BUF_SIZE);
966         }
967
968         printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
969                dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
970         return 0;
971 }
972
973 static void
974 tc35815_clear_queues(struct net_device *dev)
975 {
976         struct tc35815_local *lp = netdev_priv(dev);
977         int i;
978
979         for (i = 0; i < TX_FD_NUM; i++) {
980                 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
981                 struct sk_buff *skb =
982                         fdsystem != 0xffffffff ?
983                         lp->tx_skbs[fdsystem].skb : NULL;
984 #ifdef DEBUG
985                 if (lp->tx_skbs[i].skb != skb) {
986                         printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
987                         panic_queues(dev);
988                 }
989 #else
990                 BUG_ON(lp->tx_skbs[i].skb != skb);
991 #endif
992                 if (skb) {
993                         dma_unmap_single(&lp->pci_dev->dev,
994                                          lp->tx_skbs[i].skb_dma, skb->len,
995                                          DMA_TO_DEVICE);
996                         lp->tx_skbs[i].skb = NULL;
997                         lp->tx_skbs[i].skb_dma = 0;
998                         dev_kfree_skb_any(skb);
999                 }
1000                 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1001         }
1002
1003         tc35815_init_queues(dev);
1004 }
1005
1006 static void
1007 tc35815_free_queues(struct net_device *dev)
1008 {
1009         struct tc35815_local *lp = netdev_priv(dev);
1010         int i;
1011
1012         if (lp->tfd_base) {
1013                 for (i = 0; i < TX_FD_NUM; i++) {
1014                         u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1015                         struct sk_buff *skb =
1016                                 fdsystem != 0xffffffff ?
1017                                 lp->tx_skbs[fdsystem].skb : NULL;
1018 #ifdef DEBUG
1019                         if (lp->tx_skbs[i].skb != skb) {
1020                                 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1021                                 panic_queues(dev);
1022                         }
1023 #else
1024                         BUG_ON(lp->tx_skbs[i].skb != skb);
1025 #endif
1026                         if (skb) {
1027                                 dma_unmap_single(&lp->pci_dev->dev,
1028                                                  lp->tx_skbs[i].skb_dma,
1029                                                  skb->len, DMA_TO_DEVICE);
1030                                 dev_kfree_skb(skb);
1031                                 lp->tx_skbs[i].skb = NULL;
1032                                 lp->tx_skbs[i].skb_dma = 0;
1033                         }
1034                         lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1035                 }
1036         }
1037
1038         lp->rfd_base = NULL;
1039         lp->rfd_limit = NULL;
1040         lp->rfd_cur = NULL;
1041         lp->fbl_ptr = NULL;
1042
1043         for (i = 0; i < RX_BUF_NUM; i++) {
1044                 if (lp->rx_skbs[i].skb) {
1045                         free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
1046                                        lp->rx_skbs[i].skb_dma);
1047                         lp->rx_skbs[i].skb = NULL;
1048                 }
1049         }
1050         if (lp->fd_buf) {
1051                 dma_free_coherent(&lp->pci_dev->dev, PAGE_SIZE * FD_PAGE_NUM,
1052                                   lp->fd_buf, lp->fd_buf_dma);
1053                 lp->fd_buf = NULL;
1054         }
1055 }
1056
1057 static void
1058 dump_txfd(struct TxFD *fd)
1059 {
1060         printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
1061                le32_to_cpu(fd->fd.FDNext),
1062                le32_to_cpu(fd->fd.FDSystem),
1063                le32_to_cpu(fd->fd.FDStat),
1064                le32_to_cpu(fd->fd.FDCtl));
1065         printk("BD: ");
1066         printk(" %08x %08x",
1067                le32_to_cpu(fd->bd.BuffData),
1068                le32_to_cpu(fd->bd.BDCtl));
1069         printk("\n");
1070 }
1071
1072 static int
1073 dump_rxfd(struct RxFD *fd)
1074 {
1075         int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1076         if (bd_count > 8)
1077                 bd_count = 8;
1078         printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
1079                le32_to_cpu(fd->fd.FDNext),
1080                le32_to_cpu(fd->fd.FDSystem),
1081                le32_to_cpu(fd->fd.FDStat),
1082                le32_to_cpu(fd->fd.FDCtl));
1083         if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
1084                 return 0;
1085         printk("BD: ");
1086         for (i = 0; i < bd_count; i++)
1087                 printk(" %08x %08x",
1088                        le32_to_cpu(fd->bd[i].BuffData),
1089                        le32_to_cpu(fd->bd[i].BDCtl));
1090         printk("\n");
1091         return bd_count;
1092 }
1093
1094 #ifdef DEBUG
1095 static void
1096 dump_frfd(struct FrFD *fd)
1097 {
1098         int i;
1099         printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
1100                le32_to_cpu(fd->fd.FDNext),
1101                le32_to_cpu(fd->fd.FDSystem),
1102                le32_to_cpu(fd->fd.FDStat),
1103                le32_to_cpu(fd->fd.FDCtl));
1104         printk("BD: ");
1105         for (i = 0; i < RX_BUF_NUM; i++)
1106                 printk(" %08x %08x",
1107                        le32_to_cpu(fd->bd[i].BuffData),
1108                        le32_to_cpu(fd->bd[i].BDCtl));
1109         printk("\n");
1110 }
1111
1112 static void
1113 panic_queues(struct net_device *dev)
1114 {
1115         struct tc35815_local *lp = netdev_priv(dev);
1116         int i;
1117
1118         printk("TxFD base %p, start %u, end %u\n",
1119                lp->tfd_base, lp->tfd_start, lp->tfd_end);
1120         printk("RxFD base %p limit %p cur %p\n",
1121                lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
1122         printk("FrFD %p\n", lp->fbl_ptr);
1123         for (i = 0; i < TX_FD_NUM; i++)
1124                 dump_txfd(&lp->tfd_base[i]);
1125         for (i = 0; i < RX_FD_NUM; i++) {
1126                 int bd_count = dump_rxfd(&lp->rfd_base[i]);
1127                 i += (bd_count + 1) / 2;        /* skip BDs */
1128         }
1129         dump_frfd(lp->fbl_ptr);
1130         panic("%s: Illegal queue state.", dev->name);
1131 }
1132 #endif
1133
1134 static void print_eth(const u8 *add)
1135 {
1136         printk(KERN_DEBUG "print_eth(%p)\n", add);
1137         printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
1138                 add + 6, add, add[12], add[13]);
1139 }
1140
1141 static int tc35815_tx_full(struct net_device *dev)
1142 {
1143         struct tc35815_local *lp = netdev_priv(dev);
1144         return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end;
1145 }
1146
1147 static void tc35815_restart(struct net_device *dev)
1148 {
1149         struct tc35815_local *lp = netdev_priv(dev);
1150         int ret;
1151
1152         if (dev->phydev) {
1153                 ret = phy_init_hw(dev->phydev);
1154                 if (ret)
1155                         printk(KERN_ERR "%s: PHY init failed.\n", dev->name);
1156         }
1157
1158         spin_lock_bh(&lp->rx_lock);
1159         spin_lock_irq(&lp->lock);
1160         tc35815_chip_reset(dev);
1161         tc35815_clear_queues(dev);
1162         tc35815_chip_init(dev);
1163         /* Reconfigure CAM again since tc35815_chip_init() initialize it. */
1164         tc35815_set_multicast_list(dev);
1165         spin_unlock_irq(&lp->lock);
1166         spin_unlock_bh(&lp->rx_lock);
1167
1168         netif_wake_queue(dev);
1169 }
1170
1171 static void tc35815_restart_work(struct work_struct *work)
1172 {
1173         struct tc35815_local *lp =
1174                 container_of(work, struct tc35815_local, restart_work);
1175         struct net_device *dev = lp->dev;
1176
1177         tc35815_restart(dev);
1178 }
1179
1180 static void tc35815_schedule_restart(struct net_device *dev)
1181 {
1182         struct tc35815_local *lp = netdev_priv(dev);
1183         struct tc35815_regs __iomem *tr =
1184                 (struct tc35815_regs __iomem *)dev->base_addr;
1185         unsigned long flags;
1186
1187         /* disable interrupts */
1188         spin_lock_irqsave(&lp->lock, flags);
1189         tc_writel(0, &tr->Int_En);
1190         tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
1191         schedule_work(&lp->restart_work);
1192         spin_unlock_irqrestore(&lp->lock, flags);
1193 }
1194
1195 static void tc35815_tx_timeout(struct net_device *dev, unsigned int txqueue)
1196 {
1197         struct tc35815_regs __iomem *tr =
1198                 (struct tc35815_regs __iomem *)dev->base_addr;
1199
1200         printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
1201                dev->name, tc_readl(&tr->Tx_Stat));
1202
1203         /* Try to restart the adaptor. */
1204         tc35815_schedule_restart(dev);
1205         dev->stats.tx_errors++;
1206 }
1207
1208 /*
1209  * Open/initialize the controller. This is called (in the current kernel)
1210  * sometime after booting when the 'ifconfig' program is run.
1211  *
1212  * This routine should set everything up anew at each open, even
1213  * registers that "should" only need to be set once at boot, so that
1214  * there is non-reboot way to recover if something goes wrong.
1215  */
1216 static int
1217 tc35815_open(struct net_device *dev)
1218 {
1219         struct tc35815_local *lp = netdev_priv(dev);
1220
1221         /*
1222          * This is used if the interrupt line can turned off (shared).
1223          * See 3c503.c for an example of selecting the IRQ at config-time.
1224          */
1225         if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
1226                         dev->name, dev))
1227                 return -EAGAIN;
1228
1229         tc35815_chip_reset(dev);
1230
1231         if (tc35815_init_queues(dev) != 0) {
1232                 free_irq(dev->irq, dev);
1233                 return -EAGAIN;
1234         }
1235
1236         napi_enable(&lp->napi);
1237
1238         /* Reset the hardware here. Don't forget to set the station address. */
1239         spin_lock_irq(&lp->lock);
1240         tc35815_chip_init(dev);
1241         spin_unlock_irq(&lp->lock);
1242
1243         netif_carrier_off(dev);
1244         /* schedule a link state check */
1245         phy_start(dev->phydev);
1246
1247         /* We are now ready to accept transmit requeusts from
1248          * the queueing layer of the networking.
1249          */
1250         netif_start_queue(dev);
1251
1252         return 0;
1253 }
1254
1255 /* This will only be invoked if your driver is _not_ in XOFF state.
1256  * What this means is that you need not check it, and that this
1257  * invariant will hold if you make sure that the netif_*_queue()
1258  * calls are done at the proper times.
1259  */
1260 static netdev_tx_t
1261 tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
1262 {
1263         struct tc35815_local *lp = netdev_priv(dev);
1264         struct TxFD *txfd;
1265         unsigned long flags;
1266
1267         /* If some error occurs while trying to transmit this
1268          * packet, you should return '1' from this function.
1269          * In such a case you _may not_ do anything to the
1270          * SKB, it is still owned by the network queueing
1271          * layer when an error is returned.  This means you
1272          * may not modify any SKB fields, you may not free
1273          * the SKB, etc.
1274          */
1275
1276         /* This is the most common case for modern hardware.
1277          * The spinlock protects this code from the TX complete
1278          * hardware interrupt handler.  Queue flow control is
1279          * thus managed under this lock as well.
1280          */
1281         spin_lock_irqsave(&lp->lock, flags);
1282
1283         /* failsafe... (handle txdone now if half of FDs are used) */
1284         if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
1285             TX_FD_NUM / 2)
1286                 tc35815_txdone(dev);
1287
1288         if (netif_msg_pktdata(lp))
1289                 print_eth(skb->data);
1290 #ifdef DEBUG
1291         if (lp->tx_skbs[lp->tfd_start].skb) {
1292                 printk("%s: tx_skbs conflict.\n", dev->name);
1293                 panic_queues(dev);
1294         }
1295 #else
1296         BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
1297 #endif
1298         lp->tx_skbs[lp->tfd_start].skb = skb;
1299         lp->tx_skbs[lp->tfd_start].skb_dma = dma_map_single(&lp->pci_dev->dev,
1300                                                             skb->data,
1301                                                             skb->len,
1302                                                             DMA_TO_DEVICE);
1303
1304         /*add to ring */
1305         txfd = &lp->tfd_base[lp->tfd_start];
1306         txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
1307         txfd->bd.BDCtl = cpu_to_le32(skb->len);
1308         txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
1309         txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
1310
1311         if (lp->tfd_start == lp->tfd_end) {
1312                 struct tc35815_regs __iomem *tr =
1313                         (struct tc35815_regs __iomem *)dev->base_addr;
1314                 /* Start DMA Transmitter. */
1315                 txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1316                 txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1317                 if (netif_msg_tx_queued(lp)) {
1318                         printk("%s: starting TxFD.\n", dev->name);
1319                         dump_txfd(txfd);
1320                 }
1321                 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1322         } else {
1323                 txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
1324                 if (netif_msg_tx_queued(lp)) {
1325                         printk("%s: queueing TxFD.\n", dev->name);
1326                         dump_txfd(txfd);
1327                 }
1328         }
1329         lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
1330
1331         /* If we just used up the very last entry in the
1332          * TX ring on this device, tell the queueing
1333          * layer to send no more.
1334          */
1335         if (tc35815_tx_full(dev)) {
1336                 if (netif_msg_tx_queued(lp))
1337                         printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
1338                 netif_stop_queue(dev);
1339         }
1340
1341         /* When the TX completion hw interrupt arrives, this
1342          * is when the transmit statistics are updated.
1343          */
1344
1345         spin_unlock_irqrestore(&lp->lock, flags);
1346         return NETDEV_TX_OK;
1347 }
1348
1349 #define FATAL_ERROR_INT \
1350         (Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
1351 static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
1352 {
1353         static int count;
1354         printk(KERN_WARNING "%s: Fatal Error Interrupt (%#x):",
1355                dev->name, status);
1356         if (status & Int_IntPCI)
1357                 printk(" IntPCI");
1358         if (status & Int_DmParErr)
1359                 printk(" DmParErr");
1360         if (status & Int_IntNRAbt)
1361                 printk(" IntNRAbt");
1362         printk("\n");
1363         if (count++ > 100)
1364                 panic("%s: Too many fatal errors.", dev->name);
1365         printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
1366         /* Try to restart the adaptor. */
1367         tc35815_schedule_restart(dev);
1368 }
1369
1370 static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
1371 {
1372         struct tc35815_local *lp = netdev_priv(dev);
1373         int ret = -1;
1374
1375         /* Fatal errors... */
1376         if (status & FATAL_ERROR_INT) {
1377                 tc35815_fatal_error_interrupt(dev, status);
1378                 return 0;
1379         }
1380         /* recoverable errors */
1381         if (status & Int_IntFDAEx) {
1382                 if (netif_msg_rx_err(lp))
1383                         dev_warn(&dev->dev,
1384                                  "Free Descriptor Area Exhausted (%#x).\n",
1385                                  status);
1386                 dev->stats.rx_dropped++;
1387                 ret = 0;
1388         }
1389         if (status & Int_IntBLEx) {
1390                 if (netif_msg_rx_err(lp))
1391                         dev_warn(&dev->dev,
1392                                  "Buffer List Exhausted (%#x).\n",
1393                                  status);
1394                 dev->stats.rx_dropped++;
1395                 ret = 0;
1396         }
1397         if (status & Int_IntExBD) {
1398                 if (netif_msg_rx_err(lp))
1399                         dev_warn(&dev->dev,
1400                                  "Excessive Buffer Descriptors (%#x).\n",
1401                                  status);
1402                 dev->stats.rx_length_errors++;
1403                 ret = 0;
1404         }
1405
1406         /* normal notification */
1407         if (status & Int_IntMacRx) {
1408                 /* Got a packet(s). */
1409                 ret = tc35815_rx(dev, limit);
1410                 lp->lstats.rx_ints++;
1411         }
1412         if (status & Int_IntMacTx) {
1413                 /* Transmit complete. */
1414                 lp->lstats.tx_ints++;
1415                 spin_lock_irq(&lp->lock);
1416                 tc35815_txdone(dev);
1417                 spin_unlock_irq(&lp->lock);
1418                 if (ret < 0)
1419                         ret = 0;
1420         }
1421         return ret;
1422 }
1423
1424 /*
1425  * The typical workload of the driver:
1426  * Handle the network interface interrupts.
1427  */
1428 static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
1429 {
1430         struct net_device *dev = dev_id;
1431         struct tc35815_local *lp = netdev_priv(dev);
1432         struct tc35815_regs __iomem *tr =
1433                 (struct tc35815_regs __iomem *)dev->base_addr;
1434         u32 dmactl = tc_readl(&tr->DMA_Ctl);
1435
1436         if (!(dmactl & DMA_IntMask)) {
1437                 if (napi_schedule_prep(&lp->napi)) {
1438                         /* disable interrupts */
1439                         tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
1440                         __napi_schedule(&lp->napi);
1441                 }
1442                 (void)tc_readl(&tr->Int_Src);   /* flush */
1443                 return IRQ_HANDLED;
1444         }
1445         return IRQ_NONE;
1446 }
1447
1448 #ifdef CONFIG_NET_POLL_CONTROLLER
1449 static void tc35815_poll_controller(struct net_device *dev)
1450 {
1451         disable_irq(dev->irq);
1452         tc35815_interrupt(dev->irq, dev);
1453         enable_irq(dev->irq);
1454 }
1455 #endif
1456
1457 /* We have a good packet(s), get it/them out of the buffers. */
1458 static int
1459 tc35815_rx(struct net_device *dev, int limit)
1460 {
1461         struct tc35815_local *lp = netdev_priv(dev);
1462         unsigned int fdctl;
1463         int i;
1464         int received = 0;
1465
1466         while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
1467                 int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
1468                 int pkt_len = fdctl & FD_FDLength_MASK;
1469                 int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1470 #ifdef DEBUG
1471                 struct RxFD *next_rfd;
1472 #endif
1473 #if (RX_CTL_CMD & Rx_StripCRC) == 0
1474                 pkt_len -= ETH_FCS_LEN;
1475 #endif
1476
1477                 if (netif_msg_rx_status(lp))
1478                         dump_rxfd(lp->rfd_cur);
1479                 if (status & Rx_Good) {
1480                         struct sk_buff *skb;
1481                         unsigned char *data;
1482                         int cur_bd;
1483
1484                         if (--limit < 0)
1485                                 break;
1486                         BUG_ON(bd_count > 1);
1487                         cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
1488                                   & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1489 #ifdef DEBUG
1490                         if (cur_bd >= RX_BUF_NUM) {
1491                                 printk("%s: invalid BDID.\n", dev->name);
1492                                 panic_queues(dev);
1493                         }
1494                         BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
1495                                (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
1496                         if (!lp->rx_skbs[cur_bd].skb) {
1497                                 printk("%s: NULL skb.\n", dev->name);
1498                                 panic_queues(dev);
1499                         }
1500 #else
1501                         BUG_ON(cur_bd >= RX_BUF_NUM);
1502 #endif
1503                         skb = lp->rx_skbs[cur_bd].skb;
1504                         prefetch(skb->data);
1505                         lp->rx_skbs[cur_bd].skb = NULL;
1506                         dma_unmap_single(&lp->pci_dev->dev,
1507                                          lp->rx_skbs[cur_bd].skb_dma,
1508                                          RX_BUF_SIZE, DMA_FROM_DEVICE);
1509                         if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN != 0)
1510                                 memmove(skb->data, skb->data - NET_IP_ALIGN,
1511                                         pkt_len);
1512                         data = skb_put(skb, pkt_len);
1513                         if (netif_msg_pktdata(lp))
1514                                 print_eth(data);
1515                         skb->protocol = eth_type_trans(skb, dev);
1516                         netif_receive_skb(skb);
1517                         received++;
1518                         dev->stats.rx_packets++;
1519                         dev->stats.rx_bytes += pkt_len;
1520                 } else {
1521                         dev->stats.rx_errors++;
1522                         if (netif_msg_rx_err(lp))
1523                                 dev_info(&dev->dev, "Rx error (status %x)\n",
1524                                          status & Rx_Stat_Mask);
1525                         /* WORKAROUND: LongErr and CRCErr means Overflow. */
1526                         if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
1527                                 status &= ~(Rx_LongErr|Rx_CRCErr);
1528                                 status |= Rx_Over;
1529                         }
1530                         if (status & Rx_LongErr)
1531                                 dev->stats.rx_length_errors++;
1532                         if (status & Rx_Over)
1533                                 dev->stats.rx_fifo_errors++;
1534                         if (status & Rx_CRCErr)
1535                                 dev->stats.rx_crc_errors++;
1536                         if (status & Rx_Align)
1537                                 dev->stats.rx_frame_errors++;
1538                 }
1539
1540                 if (bd_count > 0) {
1541                         /* put Free Buffer back to controller */
1542                         int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
1543                         unsigned char id =
1544                                 (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1545 #ifdef DEBUG
1546                         if (id >= RX_BUF_NUM) {
1547                                 printk("%s: invalid BDID.\n", dev->name);
1548                                 panic_queues(dev);
1549                         }
1550 #else
1551                         BUG_ON(id >= RX_BUF_NUM);
1552 #endif
1553                         /* free old buffers */
1554                         lp->fbl_count--;
1555                         while (lp->fbl_count < RX_BUF_NUM)
1556                         {
1557                                 unsigned char curid =
1558                                         (id + 1 + lp->fbl_count) % RX_BUF_NUM;
1559                                 struct BDesc *bd = &lp->fbl_ptr->bd[curid];
1560 #ifdef DEBUG
1561                                 bdctl = le32_to_cpu(bd->BDCtl);
1562                                 if (bdctl & BD_CownsBD) {
1563                                         printk("%s: Freeing invalid BD.\n",
1564                                                dev->name);
1565                                         panic_queues(dev);
1566                                 }
1567 #endif
1568                                 /* pass BD to controller */
1569                                 if (!lp->rx_skbs[curid].skb) {
1570                                         lp->rx_skbs[curid].skb =
1571                                                 alloc_rxbuf_skb(dev,
1572                                                                 lp->pci_dev,
1573                                                                 &lp->rx_skbs[curid].skb_dma);
1574                                         if (!lp->rx_skbs[curid].skb)
1575                                                 break; /* try on next reception */
1576                                         bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
1577                                 }
1578                                 /* Note: BDLength was modified by chip. */
1579                                 bd->BDCtl = cpu_to_le32(BD_CownsBD |
1580                                                         (curid << BD_RxBDID_SHIFT) |
1581                                                         RX_BUF_SIZE);
1582                                 lp->fbl_count++;
1583                         }
1584                 }
1585
1586                 /* put RxFD back to controller */
1587 #ifdef DEBUG
1588                 next_rfd = fd_bus_to_virt(lp,
1589                                           le32_to_cpu(lp->rfd_cur->fd.FDNext));
1590                 if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
1591                         printk("%s: RxFD FDNext invalid.\n", dev->name);
1592                         panic_queues(dev);
1593                 }
1594 #endif
1595                 for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
1596                         /* pass FD to controller */
1597 #ifdef DEBUG
1598                         lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
1599 #else
1600                         lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
1601 #endif
1602                         lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
1603                         lp->rfd_cur++;
1604                 }
1605                 if (lp->rfd_cur > lp->rfd_limit)
1606                         lp->rfd_cur = lp->rfd_base;
1607 #ifdef DEBUG
1608                 if (lp->rfd_cur != next_rfd)
1609                         printk("rfd_cur = %p, next_rfd %p\n",
1610                                lp->rfd_cur, next_rfd);
1611 #endif
1612         }
1613
1614         return received;
1615 }
1616
1617 static int tc35815_poll(struct napi_struct *napi, int budget)
1618 {
1619         struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
1620         struct net_device *dev = lp->dev;
1621         struct tc35815_regs __iomem *tr =
1622                 (struct tc35815_regs __iomem *)dev->base_addr;
1623         int received = 0, handled;
1624         u32 status;
1625
1626         if (budget <= 0)
1627                 return received;
1628
1629         spin_lock(&lp->rx_lock);
1630         status = tc_readl(&tr->Int_Src);
1631         do {
1632                 /* BLEx, FDAEx will be cleared later */
1633                 tc_writel(status & ~(Int_BLEx | Int_FDAEx),
1634                           &tr->Int_Src);        /* write to clear */
1635
1636                 handled = tc35815_do_interrupt(dev, status, budget - received);
1637                 if (status & (Int_BLEx | Int_FDAEx))
1638                         tc_writel(status & (Int_BLEx | Int_FDAEx),
1639                                   &tr->Int_Src);
1640                 if (handled >= 0) {
1641                         received += handled;
1642                         if (received >= budget)
1643                                 break;
1644                 }
1645                 status = tc_readl(&tr->Int_Src);
1646         } while (status);
1647         spin_unlock(&lp->rx_lock);
1648
1649         if (received < budget) {
1650                 napi_complete_done(napi, received);
1651                 /* enable interrupts */
1652                 tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
1653         }
1654         return received;
1655 }
1656
1657 #define TX_STA_ERR      (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
1658
1659 static void
1660 tc35815_check_tx_stat(struct net_device *dev, int status)
1661 {
1662         struct tc35815_local *lp = netdev_priv(dev);
1663         const char *msg = NULL;
1664
1665         /* count collisions */
1666         if (status & Tx_ExColl)
1667                 dev->stats.collisions += 16;
1668         if (status & Tx_TxColl_MASK)
1669                 dev->stats.collisions += status & Tx_TxColl_MASK;
1670
1671         /* TX4939 does not have NCarr */
1672         if (lp->chiptype == TC35815_TX4939)
1673                 status &= ~Tx_NCarr;
1674         /* WORKAROUND: ignore LostCrS in full duplex operation */
1675         if (!lp->link || lp->duplex == DUPLEX_FULL)
1676                 status &= ~Tx_NCarr;
1677
1678         if (!(status & TX_STA_ERR)) {
1679                 /* no error. */
1680                 dev->stats.tx_packets++;
1681                 return;
1682         }
1683
1684         dev->stats.tx_errors++;
1685         if (status & Tx_ExColl) {
1686                 dev->stats.tx_aborted_errors++;
1687                 msg = "Excessive Collision.";
1688         }
1689         if (status & Tx_Under) {
1690                 dev->stats.tx_fifo_errors++;
1691                 msg = "Tx FIFO Underrun.";
1692                 if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
1693                         lp->lstats.tx_underrun++;
1694                         if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
1695                                 struct tc35815_regs __iomem *tr =
1696                                         (struct tc35815_regs __iomem *)dev->base_addr;
1697                                 tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
1698                                 msg = "Tx FIFO Underrun.Change Tx threshold to max.";
1699                         }
1700                 }
1701         }
1702         if (status & Tx_Defer) {
1703                 dev->stats.tx_fifo_errors++;
1704                 msg = "Excessive Deferral.";
1705         }
1706         if (status & Tx_NCarr) {
1707                 dev->stats.tx_carrier_errors++;
1708                 msg = "Lost Carrier Sense.";
1709         }
1710         if (status & Tx_LateColl) {
1711                 dev->stats.tx_aborted_errors++;
1712                 msg = "Late Collision.";
1713         }
1714         if (status & Tx_TxPar) {
1715                 dev->stats.tx_fifo_errors++;
1716                 msg = "Transmit Parity Error.";
1717         }
1718         if (status & Tx_SQErr) {
1719                 dev->stats.tx_heartbeat_errors++;
1720                 msg = "Signal Quality Error.";
1721         }
1722         if (msg && netif_msg_tx_err(lp))
1723                 printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
1724 }
1725
1726 /* This handles TX complete events posted by the device
1727  * via interrupts.
1728  */
1729 static void
1730 tc35815_txdone(struct net_device *dev)
1731 {
1732         struct tc35815_local *lp = netdev_priv(dev);
1733         struct TxFD *txfd;
1734         unsigned int fdctl;
1735
1736         txfd = &lp->tfd_base[lp->tfd_end];
1737         while (lp->tfd_start != lp->tfd_end &&
1738                !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
1739                 int status = le32_to_cpu(txfd->fd.FDStat);
1740                 struct sk_buff *skb;
1741                 unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
1742                 u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
1743
1744                 if (netif_msg_tx_done(lp)) {
1745                         printk("%s: complete TxFD.\n", dev->name);
1746                         dump_txfd(txfd);
1747                 }
1748                 tc35815_check_tx_stat(dev, status);
1749
1750                 skb = fdsystem != 0xffffffff ?
1751                         lp->tx_skbs[fdsystem].skb : NULL;
1752 #ifdef DEBUG
1753                 if (lp->tx_skbs[lp->tfd_end].skb != skb) {
1754                         printk("%s: tx_skbs mismatch.\n", dev->name);
1755                         panic_queues(dev);
1756                 }
1757 #else
1758                 BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
1759 #endif
1760                 if (skb) {
1761                         dev->stats.tx_bytes += skb->len;
1762                         dma_unmap_single(&lp->pci_dev->dev,
1763                                          lp->tx_skbs[lp->tfd_end].skb_dma,
1764                                          skb->len, DMA_TO_DEVICE);
1765                         lp->tx_skbs[lp->tfd_end].skb = NULL;
1766                         lp->tx_skbs[lp->tfd_end].skb_dma = 0;
1767                         dev_kfree_skb_any(skb);
1768                 }
1769                 txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
1770
1771                 lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
1772                 txfd = &lp->tfd_base[lp->tfd_end];
1773 #ifdef DEBUG
1774                 if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
1775                         printk("%s: TxFD FDNext invalid.\n", dev->name);
1776                         panic_queues(dev);
1777                 }
1778 #endif
1779                 if (fdnext & FD_Next_EOL) {
1780                         /* DMA Transmitter has been stopping... */
1781                         if (lp->tfd_end != lp->tfd_start) {
1782                                 struct tc35815_regs __iomem *tr =
1783                                         (struct tc35815_regs __iomem *)dev->base_addr;
1784                                 int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
1785                                 struct TxFD *txhead = &lp->tfd_base[head];
1786                                 int qlen = (lp->tfd_start + TX_FD_NUM
1787                                             - lp->tfd_end) % TX_FD_NUM;
1788
1789 #ifdef DEBUG
1790                                 if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
1791                                         printk("%s: TxFD FDCtl invalid.\n", dev->name);
1792                                         panic_queues(dev);
1793                                 }
1794 #endif
1795                                 /* log max queue length */
1796                                 if (lp->lstats.max_tx_qlen < qlen)
1797                                         lp->lstats.max_tx_qlen = qlen;
1798
1799
1800                                 /* start DMA Transmitter again */
1801                                 txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1802                                 txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1803                                 if (netif_msg_tx_queued(lp)) {
1804                                         printk("%s: start TxFD on queue.\n",
1805                                                dev->name);
1806                                         dump_txfd(txfd);
1807                                 }
1808                                 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1809                         }
1810                         break;
1811                 }
1812         }
1813
1814         /* If we had stopped the queue due to a "tx full"
1815          * condition, and space has now been made available,
1816          * wake up the queue.
1817          */
1818         if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
1819                 netif_wake_queue(dev);
1820 }
1821
1822 /* The inverse routine to tc35815_open(). */
1823 static int
1824 tc35815_close(struct net_device *dev)
1825 {
1826         struct tc35815_local *lp = netdev_priv(dev);
1827
1828         netif_stop_queue(dev);
1829         napi_disable(&lp->napi);
1830         if (dev->phydev)
1831                 phy_stop(dev->phydev);
1832         cancel_work_sync(&lp->restart_work);
1833
1834         /* Flush the Tx and disable Rx here. */
1835         tc35815_chip_reset(dev);
1836         free_irq(dev->irq, dev);
1837
1838         tc35815_free_queues(dev);
1839
1840         return 0;
1841
1842 }
1843
1844 /*
1845  * Get the current statistics.
1846  * This may be called with the card open or closed.
1847  */
1848 static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
1849 {
1850         struct tc35815_regs __iomem *tr =
1851                 (struct tc35815_regs __iomem *)dev->base_addr;
1852         if (netif_running(dev))
1853                 /* Update the statistics from the device registers. */
1854                 dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
1855
1856         return &dev->stats;
1857 }
1858
1859 static void tc35815_set_cam_entry(struct net_device *dev, int index,
1860                                   const unsigned char *addr)
1861 {
1862         struct tc35815_local *lp = netdev_priv(dev);
1863         struct tc35815_regs __iomem *tr =
1864                 (struct tc35815_regs __iomem *)dev->base_addr;
1865         int cam_index = index * 6;
1866         u32 cam_data;
1867         u32 saved_addr;
1868
1869         saved_addr = tc_readl(&tr->CAM_Adr);
1870
1871         if (netif_msg_hw(lp))
1872                 printk(KERN_DEBUG "%s: CAM %d: %pM\n",
1873                         dev->name, index, addr);
1874         if (index & 1) {
1875                 /* read modify write */
1876                 tc_writel(cam_index - 2, &tr->CAM_Adr);
1877                 cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
1878                 cam_data |= addr[0] << 8 | addr[1];
1879                 tc_writel(cam_data, &tr->CAM_Data);
1880                 /* write whole word */
1881                 tc_writel(cam_index + 2, &tr->CAM_Adr);
1882                 cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
1883                 tc_writel(cam_data, &tr->CAM_Data);
1884         } else {
1885                 /* write whole word */
1886                 tc_writel(cam_index, &tr->CAM_Adr);
1887                 cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
1888                 tc_writel(cam_data, &tr->CAM_Data);
1889                 /* read modify write */
1890                 tc_writel(cam_index + 4, &tr->CAM_Adr);
1891                 cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
1892                 cam_data |= addr[4] << 24 | (addr[5] << 16);
1893                 tc_writel(cam_data, &tr->CAM_Data);
1894         }
1895
1896         tc_writel(saved_addr, &tr->CAM_Adr);
1897 }
1898
1899
1900 /*
1901  * Set or clear the multicast filter for this adaptor.
1902  * num_addrs == -1      Promiscuous mode, receive all packets
1903  * num_addrs == 0       Normal mode, clear multicast list
1904  * num_addrs > 0        Multicast mode, receive normal and MC packets,
1905  *                      and do best-effort filtering.
1906  */
1907 static void
1908 tc35815_set_multicast_list(struct net_device *dev)
1909 {
1910         struct tc35815_regs __iomem *tr =
1911                 (struct tc35815_regs __iomem *)dev->base_addr;
1912
1913         if (dev->flags & IFF_PROMISC) {
1914                 /* With some (all?) 100MHalf HUB, controller will hang
1915                  * if we enabled promiscuous mode before linkup...
1916                  */
1917                 struct tc35815_local *lp = netdev_priv(dev);
1918
1919                 if (!lp->link)
1920                         return;
1921                 /* Enable promiscuous mode */
1922                 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
1923         } else if ((dev->flags & IFF_ALLMULTI) ||
1924                   netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
1925                 /* CAM 0, 1, 20 are reserved. */
1926                 /* Disable promiscuous mode, use normal mode. */
1927                 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
1928         } else if (!netdev_mc_empty(dev)) {
1929                 struct netdev_hw_addr *ha;
1930                 int i;
1931                 int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
1932
1933                 tc_writel(0, &tr->CAM_Ctl);
1934                 /* Walk the address list, and load the filter */
1935                 i = 0;
1936                 netdev_for_each_mc_addr(ha, dev) {
1937                         /* entry 0,1 is reserved. */
1938                         tc35815_set_cam_entry(dev, i + 2, ha->addr);
1939                         ena_bits |= CAM_Ena_Bit(i + 2);
1940                         i++;
1941                 }
1942                 tc_writel(ena_bits, &tr->CAM_Ena);
1943                 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1944         } else {
1945                 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
1946                 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1947         }
1948 }
1949
1950 static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1951 {
1952         struct tc35815_local *lp = netdev_priv(dev);
1953
1954         strscpy(info->driver, MODNAME, sizeof(info->driver));
1955         strscpy(info->version, DRV_VERSION, sizeof(info->version));
1956         strscpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info));
1957 }
1958
1959 static u32 tc35815_get_msglevel(struct net_device *dev)
1960 {
1961         struct tc35815_local *lp = netdev_priv(dev);
1962         return lp->msg_enable;
1963 }
1964
1965 static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
1966 {
1967         struct tc35815_local *lp = netdev_priv(dev);
1968         lp->msg_enable = datum;
1969 }
1970
1971 static int tc35815_get_sset_count(struct net_device *dev, int sset)
1972 {
1973         struct tc35815_local *lp = netdev_priv(dev);
1974
1975         switch (sset) {
1976         case ETH_SS_STATS:
1977                 return sizeof(lp->lstats) / sizeof(int);
1978         default:
1979                 return -EOPNOTSUPP;
1980         }
1981 }
1982
1983 static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
1984 {
1985         struct tc35815_local *lp = netdev_priv(dev);
1986         data[0] = lp->lstats.max_tx_qlen;
1987         data[1] = lp->lstats.tx_ints;
1988         data[2] = lp->lstats.rx_ints;
1989         data[3] = lp->lstats.tx_underrun;
1990 }
1991
1992 static struct {
1993         const char str[ETH_GSTRING_LEN];
1994 } ethtool_stats_keys[] = {
1995         { "max_tx_qlen" },
1996         { "tx_ints" },
1997         { "rx_ints" },
1998         { "tx_underrun" },
1999 };
2000
2001 static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2002 {
2003         memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
2004 }
2005
2006 static const struct ethtool_ops tc35815_ethtool_ops = {
2007         .get_drvinfo            = tc35815_get_drvinfo,
2008         .get_link               = ethtool_op_get_link,
2009         .get_msglevel           = tc35815_get_msglevel,
2010         .set_msglevel           = tc35815_set_msglevel,
2011         .get_strings            = tc35815_get_strings,
2012         .get_sset_count         = tc35815_get_sset_count,
2013         .get_ethtool_stats      = tc35815_get_ethtool_stats,
2014         .get_link_ksettings = phy_ethtool_get_link_ksettings,
2015         .set_link_ksettings = phy_ethtool_set_link_ksettings,
2016 };
2017
2018 static void tc35815_chip_reset(struct net_device *dev)
2019 {
2020         struct tc35815_regs __iomem *tr =
2021                 (struct tc35815_regs __iomem *)dev->base_addr;
2022         int i;
2023         /* reset the controller */
2024         tc_writel(MAC_Reset, &tr->MAC_Ctl);
2025         udelay(4); /* 3200ns */
2026         i = 0;
2027         while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
2028                 if (i++ > 100) {
2029                         printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
2030                         break;
2031                 }
2032                 mdelay(1);
2033         }
2034         tc_writel(0, &tr->MAC_Ctl);
2035
2036         /* initialize registers to default value */
2037         tc_writel(0, &tr->DMA_Ctl);
2038         tc_writel(0, &tr->TxThrsh);
2039         tc_writel(0, &tr->TxPollCtr);
2040         tc_writel(0, &tr->RxFragSize);
2041         tc_writel(0, &tr->Int_En);
2042         tc_writel(0, &tr->FDA_Bas);
2043         tc_writel(0, &tr->FDA_Lim);
2044         tc_writel(0xffffffff, &tr->Int_Src);    /* Write 1 to clear */
2045         tc_writel(0, &tr->CAM_Ctl);
2046         tc_writel(0, &tr->Tx_Ctl);
2047         tc_writel(0, &tr->Rx_Ctl);
2048         tc_writel(0, &tr->CAM_Ena);
2049         (void)tc_readl(&tr->Miss_Cnt);  /* Read to clear */
2050
2051         /* initialize internal SRAM */
2052         tc_writel(DMA_TestMode, &tr->DMA_Ctl);
2053         for (i = 0; i < 0x1000; i += 4) {
2054                 tc_writel(i, &tr->CAM_Adr);
2055                 tc_writel(0, &tr->CAM_Data);
2056         }
2057         tc_writel(0, &tr->DMA_Ctl);
2058 }
2059
2060 static void tc35815_chip_init(struct net_device *dev)
2061 {
2062         struct tc35815_local *lp = netdev_priv(dev);
2063         struct tc35815_regs __iomem *tr =
2064                 (struct tc35815_regs __iomem *)dev->base_addr;
2065         unsigned long txctl = TX_CTL_CMD;
2066
2067         /* load station address to CAM */
2068         tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
2069
2070         /* Enable CAM (broadcast and unicast) */
2071         tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
2072         tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
2073
2074         /* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
2075         if (HAVE_DMA_RXALIGN(lp))
2076                 tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
2077         else
2078                 tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
2079         tc_writel(0, &tr->TxPollCtr);   /* Batch mode */
2080         tc_writel(TX_THRESHOLD, &tr->TxThrsh);
2081         tc_writel(INT_EN_CMD, &tr->Int_En);
2082
2083         /* set queues */
2084         tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
2085         tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
2086                   &tr->FDA_Lim);
2087         /*
2088          * Activation method:
2089          * First, enable the MAC Transmitter and the DMA Receive circuits.
2090          * Then enable the DMA Transmitter and the MAC Receive circuits.
2091          */
2092         tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr);      /* start DMA receiver */
2093         tc_writel(RX_CTL_CMD, &tr->Rx_Ctl);     /* start MAC receiver */
2094
2095         /* start MAC transmitter */
2096         /* TX4939 does not have EnLCarr */
2097         if (lp->chiptype == TC35815_TX4939)
2098                 txctl &= ~Tx_EnLCarr;
2099         /* WORKAROUND: ignore LostCrS in full duplex operation */
2100         if (!dev->phydev || !lp->link || lp->duplex == DUPLEX_FULL)
2101                 txctl &= ~Tx_EnLCarr;
2102         tc_writel(txctl, &tr->Tx_Ctl);
2103 }
2104
2105 #ifdef CONFIG_PM
2106 static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
2107 {
2108         struct net_device *dev = pci_get_drvdata(pdev);
2109         struct tc35815_local *lp = netdev_priv(dev);
2110         unsigned long flags;
2111
2112         pci_save_state(pdev);
2113         if (!netif_running(dev))
2114                 return 0;
2115         netif_device_detach(dev);
2116         if (dev->phydev)
2117                 phy_stop(dev->phydev);
2118         spin_lock_irqsave(&lp->lock, flags);
2119         tc35815_chip_reset(dev);
2120         spin_unlock_irqrestore(&lp->lock, flags);
2121         pci_set_power_state(pdev, PCI_D3hot);
2122         return 0;
2123 }
2124
2125 static int tc35815_resume(struct pci_dev *pdev)
2126 {
2127         struct net_device *dev = pci_get_drvdata(pdev);
2128
2129         pci_restore_state(pdev);
2130         if (!netif_running(dev))
2131                 return 0;
2132         pci_set_power_state(pdev, PCI_D0);
2133         tc35815_restart(dev);
2134         netif_carrier_off(dev);
2135         if (dev->phydev)
2136                 phy_start(dev->phydev);
2137         netif_device_attach(dev);
2138         return 0;
2139 }
2140 #endif /* CONFIG_PM */
2141
2142 static struct pci_driver tc35815_pci_driver = {
2143         .name           = MODNAME,
2144         .id_table       = tc35815_pci_tbl,
2145         .probe          = tc35815_init_one,
2146         .remove         = tc35815_remove_one,
2147 #ifdef CONFIG_PM
2148         .suspend        = tc35815_suspend,
2149         .resume         = tc35815_resume,
2150 #endif
2151 };
2152
2153 module_param_named(speed, options.speed, int, 0);
2154 MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
2155 module_param_named(duplex, options.duplex, int, 0);
2156 MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
2157
2158 module_pci_driver(tc35815_pci_driver);
2159 MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
2160 MODULE_LICENSE("GPL");