GNU Linux-libre 6.8.9-gnu
[releases.git] / drivers / net / ethernet / ti / netcp_core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Keystone NetCP Core driver
4  *
5  * Copyright (C) 2014 Texas Instruments Incorporated
6  * Authors:     Sandeep Nair <sandeep_n@ti.com>
7  *              Sandeep Paulraj <s-paulraj@ti.com>
8  *              Cyril Chemparathy <cyril@ti.com>
9  *              Santosh Shilimkar <santosh.shilimkar@ti.com>
10  *              Murali Karicheri <m-karicheri2@ti.com>
11  *              Wingman Kwok <w-kwok2@ti.com>
12  */
13
14 #include <linux/io.h>
15 #include <linux/module.h>
16 #include <linux/of_net.h>
17 #include <linux/of_address.h>
18 #include <linux/if_vlan.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/platform_device.h>
21 #include <linux/soc/ti/knav_qmss.h>
22 #include <linux/soc/ti/knav_dma.h>
23
24 #include "netcp.h"
25
26 #define NETCP_SOP_OFFSET        (NET_IP_ALIGN + NET_SKB_PAD)
27 #define NETCP_TX_TIMEOUT        (5 * HZ)
28 #define NETCP_PACKET_SIZE       (ETH_FRAME_LEN + ETH_FCS_LEN)
29 #define NETCP_MIN_PACKET_SIZE   ETH_ZLEN
30 #define NETCP_MAX_MCAST_ADDR    16
31
32 #define NETCP_EFUSE_REG_INDEX   0
33
34 #define NETCP_MOD_PROBE_SKIPPED 1
35 #define NETCP_MOD_PROBE_FAILED  2
36
37 #define NETCP_DEBUG (NETIF_MSG_HW       | NETIF_MSG_WOL         |       \
38                     NETIF_MSG_DRV       | NETIF_MSG_LINK        |       \
39                     NETIF_MSG_IFUP      | NETIF_MSG_INTR        |       \
40                     NETIF_MSG_PROBE     | NETIF_MSG_TIMER       |       \
41                     NETIF_MSG_IFDOWN    | NETIF_MSG_RX_ERR      |       \
42                     NETIF_MSG_TX_ERR    | NETIF_MSG_TX_DONE     |       \
43                     NETIF_MSG_PKTDATA   | NETIF_MSG_TX_QUEUED   |       \
44                     NETIF_MSG_RX_STATUS)
45
46 #define NETCP_EFUSE_ADDR_SWAP   2
47
48 #define knav_queue_get_id(q)    knav_queue_device_control(q, \
49                                 KNAV_QUEUE_GET_ID, (unsigned long)NULL)
50
51 #define knav_queue_enable_notify(q) knav_queue_device_control(q,        \
52                                         KNAV_QUEUE_ENABLE_NOTIFY,       \
53                                         (unsigned long)NULL)
54
55 #define knav_queue_disable_notify(q) knav_queue_device_control(q,       \
56                                         KNAV_QUEUE_DISABLE_NOTIFY,      \
57                                         (unsigned long)NULL)
58
59 #define knav_queue_get_count(q) knav_queue_device_control(q, \
60                                 KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
61
62 #define for_each_netcp_module(module)                   \
63         list_for_each_entry(module, &netcp_modules, module_list)
64
65 #define for_each_netcp_device_module(netcp_device, inst_modpriv) \
66         list_for_each_entry(inst_modpriv, \
67                 &((netcp_device)->modpriv_head), inst_list)
68
69 #define for_each_module(netcp, intf_modpriv)                    \
70         list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
71
72 /* Module management structures */
73 struct netcp_device {
74         struct list_head        device_list;
75         struct list_head        interface_head;
76         struct list_head        modpriv_head;
77         struct device           *device;
78 };
79
80 struct netcp_inst_modpriv {
81         struct netcp_device     *netcp_device;
82         struct netcp_module     *netcp_module;
83         struct list_head        inst_list;
84         void                    *module_priv;
85 };
86
87 struct netcp_intf_modpriv {
88         struct netcp_intf       *netcp_priv;
89         struct netcp_module     *netcp_module;
90         struct list_head        intf_list;
91         void                    *module_priv;
92 };
93
94 struct netcp_tx_cb {
95         void    *ts_context;
96         void    (*txtstamp)(void *context, struct sk_buff *skb);
97 };
98
99 static LIST_HEAD(netcp_devices);
100 static LIST_HEAD(netcp_modules);
101 static DEFINE_MUTEX(netcp_modules_lock);
102
103 static int netcp_debug_level = -1;
104 module_param(netcp_debug_level, int, 0);
105 MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
106
107 /* Helper functions - Get/Set */
108 static void get_pkt_info(dma_addr_t *buff, u32 *buff_len, dma_addr_t *ndesc,
109                          struct knav_dma_desc *desc)
110 {
111         *buff_len = le32_to_cpu(desc->buff_len);
112         *buff = le32_to_cpu(desc->buff);
113         *ndesc = le32_to_cpu(desc->next_desc);
114 }
115
116 static void get_desc_info(u32 *desc_info, u32 *pkt_info,
117                           struct knav_dma_desc *desc)
118 {
119         *desc_info = le32_to_cpu(desc->desc_info);
120         *pkt_info = le32_to_cpu(desc->packet_info);
121 }
122
123 static u32 get_sw_data(int index, struct knav_dma_desc *desc)
124 {
125         /* No Endian conversion needed as this data is untouched by hw */
126         return desc->sw_data[index];
127 }
128
129 /* use these macros to get sw data */
130 #define GET_SW_DATA0(desc) get_sw_data(0, desc)
131 #define GET_SW_DATA1(desc) get_sw_data(1, desc)
132 #define GET_SW_DATA2(desc) get_sw_data(2, desc)
133 #define GET_SW_DATA3(desc) get_sw_data(3, desc)
134
135 static void get_org_pkt_info(dma_addr_t *buff, u32 *buff_len,
136                              struct knav_dma_desc *desc)
137 {
138         *buff = le32_to_cpu(desc->orig_buff);
139         *buff_len = le32_to_cpu(desc->orig_len);
140 }
141
142 static void get_words(dma_addr_t *words, int num_words, __le32 *desc)
143 {
144         int i;
145
146         for (i = 0; i < num_words; i++)
147                 words[i] = le32_to_cpu(desc[i]);
148 }
149
150 static void set_pkt_info(dma_addr_t buff, u32 buff_len, u32 ndesc,
151                          struct knav_dma_desc *desc)
152 {
153         desc->buff_len = cpu_to_le32(buff_len);
154         desc->buff = cpu_to_le32(buff);
155         desc->next_desc = cpu_to_le32(ndesc);
156 }
157
158 static void set_desc_info(u32 desc_info, u32 pkt_info,
159                           struct knav_dma_desc *desc)
160 {
161         desc->desc_info = cpu_to_le32(desc_info);
162         desc->packet_info = cpu_to_le32(pkt_info);
163 }
164
165 static void set_sw_data(int index, u32 data, struct knav_dma_desc *desc)
166 {
167         /* No Endian conversion needed as this data is untouched by hw */
168         desc->sw_data[index] = data;
169 }
170
171 /* use these macros to set sw data */
172 #define SET_SW_DATA0(data, desc) set_sw_data(0, data, desc)
173 #define SET_SW_DATA1(data, desc) set_sw_data(1, data, desc)
174 #define SET_SW_DATA2(data, desc) set_sw_data(2, data, desc)
175 #define SET_SW_DATA3(data, desc) set_sw_data(3, data, desc)
176
177 static void set_org_pkt_info(dma_addr_t buff, u32 buff_len,
178                              struct knav_dma_desc *desc)
179 {
180         desc->orig_buff = cpu_to_le32(buff);
181         desc->orig_len = cpu_to_le32(buff_len);
182 }
183
184 static void set_words(u32 *words, int num_words, __le32 *desc)
185 {
186         int i;
187
188         for (i = 0; i < num_words; i++)
189                 desc[i] = cpu_to_le32(words[i]);
190 }
191
192 /* Read the e-fuse value as 32 bit values to be endian independent */
193 static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap)
194 {
195         unsigned int addr0, addr1;
196
197         addr1 = readl(efuse_mac + 4);
198         addr0 = readl(efuse_mac);
199
200         switch (swap) {
201         case NETCP_EFUSE_ADDR_SWAP:
202                 addr0 = addr1;
203                 addr1 = readl(efuse_mac);
204                 break;
205         default:
206                 break;
207         }
208
209         x[0] = (addr1 & 0x0000ff00) >> 8;
210         x[1] = addr1 & 0x000000ff;
211         x[2] = (addr0 & 0xff000000) >> 24;
212         x[3] = (addr0 & 0x00ff0000) >> 16;
213         x[4] = (addr0 & 0x0000ff00) >> 8;
214         x[5] = addr0 & 0x000000ff;
215
216         return 0;
217 }
218
219 /* Module management routines */
220 static int netcp_register_interface(struct netcp_intf *netcp)
221 {
222         int ret;
223
224         ret = register_netdev(netcp->ndev);
225         if (!ret)
226                 netcp->netdev_registered = true;
227         return ret;
228 }
229
230 static int netcp_module_probe(struct netcp_device *netcp_device,
231                               struct netcp_module *module)
232 {
233         struct device *dev = netcp_device->device;
234         struct device_node *devices, *interface, *node = dev->of_node;
235         struct device_node *child;
236         struct netcp_inst_modpriv *inst_modpriv;
237         struct netcp_intf *netcp_intf;
238         struct netcp_module *tmp;
239         bool primary_module_registered = false;
240         int ret;
241
242         /* Find this module in the sub-tree for this device */
243         devices = of_get_child_by_name(node, "netcp-devices");
244         if (!devices) {
245                 dev_err(dev, "could not find netcp-devices node\n");
246                 return NETCP_MOD_PROBE_SKIPPED;
247         }
248
249         for_each_available_child_of_node(devices, child) {
250                 const char *name;
251                 char node_name[32];
252
253                 if (of_property_read_string(child, "label", &name) < 0) {
254                         snprintf(node_name, sizeof(node_name), "%pOFn", child);
255                         name = node_name;
256                 }
257                 if (!strcasecmp(module->name, name))
258                         break;
259         }
260
261         of_node_put(devices);
262         /* If module not used for this device, skip it */
263         if (!child) {
264                 dev_warn(dev, "module(%s) not used for device\n", module->name);
265                 return NETCP_MOD_PROBE_SKIPPED;
266         }
267
268         inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
269         if (!inst_modpriv) {
270                 of_node_put(child);
271                 return -ENOMEM;
272         }
273
274         inst_modpriv->netcp_device = netcp_device;
275         inst_modpriv->netcp_module = module;
276         list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
277
278         ret = module->probe(netcp_device, dev, child,
279                             &inst_modpriv->module_priv);
280         of_node_put(child);
281         if (ret) {
282                 dev_err(dev, "Probe of module(%s) failed with %d\n",
283                         module->name, ret);
284                 list_del(&inst_modpriv->inst_list);
285                 devm_kfree(dev, inst_modpriv);
286                 return NETCP_MOD_PROBE_FAILED;
287         }
288
289         /* Attach modules only if the primary module is probed */
290         for_each_netcp_module(tmp) {
291                 if (tmp->primary)
292                         primary_module_registered = true;
293         }
294
295         if (!primary_module_registered)
296                 return 0;
297
298         /* Attach module to interfaces */
299         list_for_each_entry(netcp_intf, &netcp_device->interface_head,
300                             interface_list) {
301                 struct netcp_intf_modpriv *intf_modpriv;
302
303                 intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
304                                             GFP_KERNEL);
305                 if (!intf_modpriv)
306                         return -ENOMEM;
307
308                 interface = of_parse_phandle(netcp_intf->node_interface,
309                                              module->name, 0);
310
311                 if (!interface) {
312                         devm_kfree(dev, intf_modpriv);
313                         continue;
314                 }
315
316                 intf_modpriv->netcp_priv = netcp_intf;
317                 intf_modpriv->netcp_module = module;
318                 list_add_tail(&intf_modpriv->intf_list,
319                               &netcp_intf->module_head);
320
321                 ret = module->attach(inst_modpriv->module_priv,
322                                      netcp_intf->ndev, interface,
323                                      &intf_modpriv->module_priv);
324                 of_node_put(interface);
325                 if (ret) {
326                         dev_dbg(dev, "Attach of module %s declined with %d\n",
327                                 module->name, ret);
328                         list_del(&intf_modpriv->intf_list);
329                         devm_kfree(dev, intf_modpriv);
330                         continue;
331                 }
332         }
333
334         /* Now register the interface with netdev */
335         list_for_each_entry(netcp_intf,
336                             &netcp_device->interface_head,
337                             interface_list) {
338                 /* If interface not registered then register now */
339                 if (!netcp_intf->netdev_registered) {
340                         ret = netcp_register_interface(netcp_intf);
341                         if (ret)
342                                 return -ENODEV;
343                 }
344         }
345         return 0;
346 }
347
348 int netcp_register_module(struct netcp_module *module)
349 {
350         struct netcp_device *netcp_device;
351         struct netcp_module *tmp;
352         int ret;
353
354         if (!module->name) {
355                 WARN(1, "error registering netcp module: no name\n");
356                 return -EINVAL;
357         }
358
359         if (!module->probe) {
360                 WARN(1, "error registering netcp module: no probe\n");
361                 return -EINVAL;
362         }
363
364         mutex_lock(&netcp_modules_lock);
365
366         for_each_netcp_module(tmp) {
367                 if (!strcasecmp(tmp->name, module->name)) {
368                         mutex_unlock(&netcp_modules_lock);
369                         return -EEXIST;
370                 }
371         }
372         list_add_tail(&module->module_list, &netcp_modules);
373
374         list_for_each_entry(netcp_device, &netcp_devices, device_list) {
375                 ret = netcp_module_probe(netcp_device, module);
376                 if (ret < 0)
377                         goto fail;
378         }
379         mutex_unlock(&netcp_modules_lock);
380         return 0;
381
382 fail:
383         mutex_unlock(&netcp_modules_lock);
384         netcp_unregister_module(module);
385         return ret;
386 }
387 EXPORT_SYMBOL_GPL(netcp_register_module);
388
389 static void netcp_release_module(struct netcp_device *netcp_device,
390                                  struct netcp_module *module)
391 {
392         struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
393         struct netcp_intf *netcp_intf, *netcp_tmp;
394         struct device *dev = netcp_device->device;
395
396         /* Release the module from each interface */
397         list_for_each_entry_safe(netcp_intf, netcp_tmp,
398                                  &netcp_device->interface_head,
399                                  interface_list) {
400                 struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
401
402                 list_for_each_entry_safe(intf_modpriv, intf_tmp,
403                                          &netcp_intf->module_head,
404                                          intf_list) {
405                         if (intf_modpriv->netcp_module == module) {
406                                 module->release(intf_modpriv->module_priv);
407                                 list_del(&intf_modpriv->intf_list);
408                                 devm_kfree(dev, intf_modpriv);
409                                 break;
410                         }
411                 }
412         }
413
414         /* Remove the module from each instance */
415         list_for_each_entry_safe(inst_modpriv, inst_tmp,
416                                  &netcp_device->modpriv_head, inst_list) {
417                 if (inst_modpriv->netcp_module == module) {
418                         module->remove(netcp_device,
419                                        inst_modpriv->module_priv);
420                         list_del(&inst_modpriv->inst_list);
421                         devm_kfree(dev, inst_modpriv);
422                         break;
423                 }
424         }
425 }
426
427 void netcp_unregister_module(struct netcp_module *module)
428 {
429         struct netcp_device *netcp_device;
430         struct netcp_module *module_tmp;
431
432         mutex_lock(&netcp_modules_lock);
433
434         list_for_each_entry(netcp_device, &netcp_devices, device_list) {
435                 netcp_release_module(netcp_device, module);
436         }
437
438         /* Remove the module from the module list */
439         for_each_netcp_module(module_tmp) {
440                 if (module == module_tmp) {
441                         list_del(&module->module_list);
442                         break;
443                 }
444         }
445
446         mutex_unlock(&netcp_modules_lock);
447 }
448 EXPORT_SYMBOL_GPL(netcp_unregister_module);
449
450 void *netcp_module_get_intf_data(struct netcp_module *module,
451                                  struct netcp_intf *intf)
452 {
453         struct netcp_intf_modpriv *intf_modpriv;
454
455         list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
456                 if (intf_modpriv->netcp_module == module)
457                         return intf_modpriv->module_priv;
458         return NULL;
459 }
460 EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
461
462 /* Module TX and RX Hook management */
463 struct netcp_hook_list {
464         struct list_head         list;
465         netcp_hook_rtn          *hook_rtn;
466         void                    *hook_data;
467         int                      order;
468 };
469
470 int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
471                           netcp_hook_rtn *hook_rtn, void *hook_data)
472 {
473         struct netcp_hook_list *entry;
474         struct netcp_hook_list *next;
475         unsigned long flags;
476
477         entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
478         if (!entry)
479                 return -ENOMEM;
480
481         entry->hook_rtn  = hook_rtn;
482         entry->hook_data = hook_data;
483         entry->order     = order;
484
485         spin_lock_irqsave(&netcp_priv->lock, flags);
486         list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
487                 if (next->order > order)
488                         break;
489         }
490         __list_add(&entry->list, next->list.prev, &next->list);
491         spin_unlock_irqrestore(&netcp_priv->lock, flags);
492
493         return 0;
494 }
495 EXPORT_SYMBOL_GPL(netcp_register_txhook);
496
497 int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
498                             netcp_hook_rtn *hook_rtn, void *hook_data)
499 {
500         struct netcp_hook_list *next, *n;
501         unsigned long flags;
502
503         spin_lock_irqsave(&netcp_priv->lock, flags);
504         list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
505                 if ((next->order     == order) &&
506                     (next->hook_rtn  == hook_rtn) &&
507                     (next->hook_data == hook_data)) {
508                         list_del(&next->list);
509                         spin_unlock_irqrestore(&netcp_priv->lock, flags);
510                         devm_kfree(netcp_priv->dev, next);
511                         return 0;
512                 }
513         }
514         spin_unlock_irqrestore(&netcp_priv->lock, flags);
515         return -ENOENT;
516 }
517 EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
518
519 int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
520                           netcp_hook_rtn *hook_rtn, void *hook_data)
521 {
522         struct netcp_hook_list *entry;
523         struct netcp_hook_list *next;
524         unsigned long flags;
525
526         entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
527         if (!entry)
528                 return -ENOMEM;
529
530         entry->hook_rtn  = hook_rtn;
531         entry->hook_data = hook_data;
532         entry->order     = order;
533
534         spin_lock_irqsave(&netcp_priv->lock, flags);
535         list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
536                 if (next->order > order)
537                         break;
538         }
539         __list_add(&entry->list, next->list.prev, &next->list);
540         spin_unlock_irqrestore(&netcp_priv->lock, flags);
541
542         return 0;
543 }
544 EXPORT_SYMBOL_GPL(netcp_register_rxhook);
545
546 int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
547                             netcp_hook_rtn *hook_rtn, void *hook_data)
548 {
549         struct netcp_hook_list *next, *n;
550         unsigned long flags;
551
552         spin_lock_irqsave(&netcp_priv->lock, flags);
553         list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
554                 if ((next->order     == order) &&
555                     (next->hook_rtn  == hook_rtn) &&
556                     (next->hook_data == hook_data)) {
557                         list_del(&next->list);
558                         spin_unlock_irqrestore(&netcp_priv->lock, flags);
559                         devm_kfree(netcp_priv->dev, next);
560                         return 0;
561                 }
562         }
563         spin_unlock_irqrestore(&netcp_priv->lock, flags);
564
565         return -ENOENT;
566 }
567 EXPORT_SYMBOL_GPL(netcp_unregister_rxhook);
568
569 static void netcp_frag_free(bool is_frag, void *ptr)
570 {
571         if (is_frag)
572                 skb_free_frag(ptr);
573         else
574                 kfree(ptr);
575 }
576
577 static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
578                                      struct knav_dma_desc *desc)
579 {
580         struct knav_dma_desc *ndesc;
581         dma_addr_t dma_desc, dma_buf;
582         unsigned int buf_len, dma_sz = sizeof(*ndesc);
583         void *buf_ptr;
584         u32 tmp;
585
586         get_words(&dma_desc, 1, &desc->next_desc);
587
588         while (dma_desc) {
589                 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
590                 if (unlikely(!ndesc)) {
591                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
592                         break;
593                 }
594                 get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
595                 /* warning!!!! We are retrieving the virtual ptr in the sw_data
596                  * field as a 32bit value. Will not work on 64bit machines
597                  */
598                 buf_ptr = (void *)GET_SW_DATA0(ndesc);
599                 buf_len = (int)GET_SW_DATA1(desc);
600                 dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
601                 __free_page(buf_ptr);
602                 knav_pool_desc_put(netcp->rx_pool, desc);
603         }
604         /* warning!!!! We are retrieving the virtual ptr in the sw_data
605          * field as a 32bit value. Will not work on 64bit machines
606          */
607         buf_ptr = (void *)GET_SW_DATA0(desc);
608         buf_len = (int)GET_SW_DATA1(desc);
609
610         if (buf_ptr)
611                 netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
612         knav_pool_desc_put(netcp->rx_pool, desc);
613 }
614
615 static void netcp_empty_rx_queue(struct netcp_intf *netcp)
616 {
617         struct netcp_stats *rx_stats = &netcp->stats;
618         struct knav_dma_desc *desc;
619         unsigned int dma_sz;
620         dma_addr_t dma;
621
622         for (; ;) {
623                 dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
624                 if (!dma)
625                         break;
626
627                 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
628                 if (unlikely(!desc)) {
629                         dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
630                                 __func__);
631                         rx_stats->rx_errors++;
632                         continue;
633                 }
634                 netcp_free_rx_desc_chain(netcp, desc);
635                 rx_stats->rx_dropped++;
636         }
637 }
638
639 static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
640 {
641         struct netcp_stats *rx_stats = &netcp->stats;
642         unsigned int dma_sz, buf_len, org_buf_len;
643         struct knav_dma_desc *desc, *ndesc;
644         unsigned int pkt_sz = 0, accum_sz;
645         struct netcp_hook_list *rx_hook;
646         dma_addr_t dma_desc, dma_buff;
647         struct netcp_packet p_info;
648         struct sk_buff *skb;
649         void *org_buf_ptr;
650         u32 tmp;
651
652         dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
653         if (!dma_desc)
654                 return -1;
655
656         desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
657         if (unlikely(!desc)) {
658                 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
659                 return 0;
660         }
661
662         get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
663         /* warning!!!! We are retrieving the virtual ptr in the sw_data
664          * field as a 32bit value. Will not work on 64bit machines
665          */
666         org_buf_ptr = (void *)GET_SW_DATA0(desc);
667         org_buf_len = (int)GET_SW_DATA1(desc);
668
669         if (unlikely(!org_buf_ptr)) {
670                 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
671                 goto free_desc;
672         }
673
674         pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
675         accum_sz = buf_len;
676         dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
677
678         /* Build a new sk_buff for the primary buffer */
679         skb = build_skb(org_buf_ptr, org_buf_len);
680         if (unlikely(!skb)) {
681                 dev_err(netcp->ndev_dev, "build_skb() failed\n");
682                 goto free_desc;
683         }
684
685         /* update data, tail and len */
686         skb_reserve(skb, NETCP_SOP_OFFSET);
687         __skb_put(skb, buf_len);
688
689         /* Fill in the page fragment list */
690         while (dma_desc) {
691                 struct page *page;
692
693                 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
694                 if (unlikely(!ndesc)) {
695                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
696                         goto free_desc;
697                 }
698
699                 get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
700                 /* warning!!!! We are retrieving the virtual ptr in the sw_data
701                  * field as a 32bit value. Will not work on 64bit machines
702                  */
703                 page = (struct page *)GET_SW_DATA0(ndesc);
704
705                 if (likely(dma_buff && buf_len && page)) {
706                         dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
707                                        DMA_FROM_DEVICE);
708                 } else {
709                         dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%pad), len(%d), page(%p)\n",
710                                 &dma_buff, buf_len, page);
711                         goto free_desc;
712                 }
713
714                 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
715                                 offset_in_page(dma_buff), buf_len, PAGE_SIZE);
716                 accum_sz += buf_len;
717
718                 /* Free the descriptor */
719                 knav_pool_desc_put(netcp->rx_pool, ndesc);
720         }
721
722         /* check for packet len and warn */
723         if (unlikely(pkt_sz != accum_sz))
724                 dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
725                         pkt_sz, accum_sz);
726
727         /* Newer version of the Ethernet switch can trim the Ethernet FCS
728          * from the packet and is indicated in hw_cap. So trim it only for
729          * older h/w
730          */
731         if (!(netcp->hw_cap & ETH_SW_CAN_REMOVE_ETH_FCS))
732                 __pskb_trim(skb, skb->len - ETH_FCS_LEN);
733
734         /* Call each of the RX hooks */
735         p_info.skb = skb;
736         skb->dev = netcp->ndev;
737         p_info.rxtstamp_complete = false;
738         get_desc_info(&tmp, &p_info.eflags, desc);
739         p_info.epib = desc->epib;
740         p_info.psdata = (u32 __force *)desc->psdata;
741         p_info.eflags = ((p_info.eflags >> KNAV_DMA_DESC_EFLAGS_SHIFT) &
742                          KNAV_DMA_DESC_EFLAGS_MASK);
743         list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
744                 int ret;
745
746                 ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
747                                         &p_info);
748                 if (unlikely(ret)) {
749                         dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
750                                 rx_hook->order, ret);
751                         /* Free the primary descriptor */
752                         rx_stats->rx_dropped++;
753                         knav_pool_desc_put(netcp->rx_pool, desc);
754                         dev_kfree_skb(skb);
755                         return 0;
756                 }
757         }
758         /* Free the primary descriptor */
759         knav_pool_desc_put(netcp->rx_pool, desc);
760
761         u64_stats_update_begin(&rx_stats->syncp_rx);
762         rx_stats->rx_packets++;
763         rx_stats->rx_bytes += skb->len;
764         u64_stats_update_end(&rx_stats->syncp_rx);
765
766         /* push skb up the stack */
767         skb->protocol = eth_type_trans(skb, netcp->ndev);
768         netif_receive_skb(skb);
769         return 0;
770
771 free_desc:
772         netcp_free_rx_desc_chain(netcp, desc);
773         rx_stats->rx_errors++;
774         return 0;
775 }
776
777 static int netcp_process_rx_packets(struct netcp_intf *netcp,
778                                     unsigned int budget)
779 {
780         int i;
781
782         for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
783                 ;
784         return i;
785 }
786
787 /* Release descriptors and attached buffers from Rx FDQ */
788 static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
789 {
790         struct knav_dma_desc *desc;
791         unsigned int buf_len, dma_sz;
792         dma_addr_t dma;
793         void *buf_ptr;
794
795         /* Allocate descriptor */
796         while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
797                 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
798                 if (unlikely(!desc)) {
799                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
800                         continue;
801                 }
802
803                 get_org_pkt_info(&dma, &buf_len, desc);
804                 /* warning!!!! We are retrieving the virtual ptr in the sw_data
805                  * field as a 32bit value. Will not work on 64bit machines
806                  */
807                 buf_ptr = (void *)GET_SW_DATA0(desc);
808
809                 if (unlikely(!dma)) {
810                         dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
811                         knav_pool_desc_put(netcp->rx_pool, desc);
812                         continue;
813                 }
814
815                 if (unlikely(!buf_ptr)) {
816                         dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
817                         knav_pool_desc_put(netcp->rx_pool, desc);
818                         continue;
819                 }
820
821                 if (fdq == 0) {
822                         dma_unmap_single(netcp->dev, dma, buf_len,
823                                          DMA_FROM_DEVICE);
824                         netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
825                 } else {
826                         dma_unmap_page(netcp->dev, dma, buf_len,
827                                        DMA_FROM_DEVICE);
828                         __free_page(buf_ptr);
829                 }
830
831                 knav_pool_desc_put(netcp->rx_pool, desc);
832         }
833 }
834
835 static void netcp_rxpool_free(struct netcp_intf *netcp)
836 {
837         int i;
838
839         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
840              !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
841                 netcp_free_rx_buf(netcp, i);
842
843         if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
844                 dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
845                         netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
846
847         knav_pool_destroy(netcp->rx_pool);
848         netcp->rx_pool = NULL;
849 }
850
851 static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
852 {
853         struct knav_dma_desc *hwdesc;
854         unsigned int buf_len, dma_sz;
855         u32 desc_info, pkt_info;
856         struct page *page;
857         dma_addr_t dma;
858         void *bufptr;
859         u32 sw_data[2];
860
861         /* Allocate descriptor */
862         hwdesc = knav_pool_desc_get(netcp->rx_pool);
863         if (IS_ERR_OR_NULL(hwdesc)) {
864                 dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
865                 return -ENOMEM;
866         }
867
868         if (likely(fdq == 0)) {
869                 unsigned int primary_buf_len;
870                 /* Allocate a primary receive queue entry */
871                 buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET;
872                 primary_buf_len = SKB_DATA_ALIGN(buf_len) +
873                                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
874
875                 bufptr = netdev_alloc_frag(primary_buf_len);
876                 sw_data[1] = primary_buf_len;
877
878                 if (unlikely(!bufptr)) {
879                         dev_warn_ratelimited(netcp->ndev_dev,
880                                              "Primary RX buffer alloc failed\n");
881                         goto fail;
882                 }
883                 dma = dma_map_single(netcp->dev, bufptr, buf_len,
884                                      DMA_TO_DEVICE);
885                 if (unlikely(dma_mapping_error(netcp->dev, dma)))
886                         goto fail;
887
888                 /* warning!!!! We are saving the virtual ptr in the sw_data
889                  * field as a 32bit value. Will not work on 64bit machines
890                  */
891                 sw_data[0] = (u32)bufptr;
892         } else {
893                 /* Allocate a secondary receive queue entry */
894                 page = alloc_page(GFP_ATOMIC | GFP_DMA);
895                 if (unlikely(!page)) {
896                         dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
897                         goto fail;
898                 }
899                 buf_len = PAGE_SIZE;
900                 dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
901                 /* warning!!!! We are saving the virtual ptr in the sw_data
902                  * field as a 32bit value. Will not work on 64bit machines
903                  */
904                 sw_data[0] = (u32)page;
905                 sw_data[1] = 0;
906         }
907
908         desc_info =  KNAV_DMA_DESC_PS_INFO_IN_DESC;
909         desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
910         pkt_info =  KNAV_DMA_DESC_HAS_EPIB;
911         pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
912         pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
913                     KNAV_DMA_DESC_RETQ_SHIFT;
914         set_org_pkt_info(dma, buf_len, hwdesc);
915         SET_SW_DATA0(sw_data[0], hwdesc);
916         SET_SW_DATA1(sw_data[1], hwdesc);
917         set_desc_info(desc_info, pkt_info, hwdesc);
918
919         /* Push to FDQs */
920         knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
921                            &dma_sz);
922         knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
923         return 0;
924
925 fail:
926         knav_pool_desc_put(netcp->rx_pool, hwdesc);
927         return -ENOMEM;
928 }
929
930 /* Refill Rx FDQ with descriptors & attached buffers */
931 static void netcp_rxpool_refill(struct netcp_intf *netcp)
932 {
933         u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
934         int i, ret = 0;
935
936         /* Calculate the FDQ deficit and refill */
937         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
938                 fdq_deficit[i] = netcp->rx_queue_depths[i] -
939                                  knav_queue_get_count(netcp->rx_fdq[i]);
940
941                 while (fdq_deficit[i]-- && !ret)
942                         ret = netcp_allocate_rx_buf(netcp, i);
943         } /* end for fdqs */
944 }
945
946 /* NAPI poll */
947 static int netcp_rx_poll(struct napi_struct *napi, int budget)
948 {
949         struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
950                                                 rx_napi);
951         unsigned int packets;
952
953         packets = netcp_process_rx_packets(netcp, budget);
954
955         netcp_rxpool_refill(netcp);
956         if (packets < budget) {
957                 napi_complete_done(&netcp->rx_napi, packets);
958                 knav_queue_enable_notify(netcp->rx_queue);
959         }
960
961         return packets;
962 }
963
964 static void netcp_rx_notify(void *arg)
965 {
966         struct netcp_intf *netcp = arg;
967
968         knav_queue_disable_notify(netcp->rx_queue);
969         napi_schedule(&netcp->rx_napi);
970 }
971
972 static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
973                                      struct knav_dma_desc *desc,
974                                      unsigned int desc_sz)
975 {
976         struct knav_dma_desc *ndesc = desc;
977         dma_addr_t dma_desc, dma_buf;
978         unsigned int buf_len;
979
980         while (ndesc) {
981                 get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
982
983                 if (dma_buf && buf_len)
984                         dma_unmap_single(netcp->dev, dma_buf, buf_len,
985                                          DMA_TO_DEVICE);
986                 else
987                         dev_warn(netcp->ndev_dev, "bad Tx desc buf(%pad), len(%d)\n",
988                                  &dma_buf, buf_len);
989
990                 knav_pool_desc_put(netcp->tx_pool, ndesc);
991                 ndesc = NULL;
992                 if (dma_desc) {
993                         ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
994                                                      desc_sz);
995                         if (!ndesc)
996                                 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
997                 }
998         }
999 }
1000
1001 static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
1002                                           unsigned int budget)
1003 {
1004         struct netcp_stats *tx_stats = &netcp->stats;
1005         struct knav_dma_desc *desc;
1006         struct netcp_tx_cb *tx_cb;
1007         struct sk_buff *skb;
1008         unsigned int dma_sz;
1009         dma_addr_t dma;
1010         int pkts = 0;
1011
1012         while (budget--) {
1013                 dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
1014                 if (!dma)
1015                         break;
1016                 desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
1017                 if (unlikely(!desc)) {
1018                         dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
1019                         tx_stats->tx_errors++;
1020                         continue;
1021                 }
1022
1023                 /* warning!!!! We are retrieving the virtual ptr in the sw_data
1024                  * field as a 32bit value. Will not work on 64bit machines
1025                  */
1026                 skb = (struct sk_buff *)GET_SW_DATA0(desc);
1027                 netcp_free_tx_desc_chain(netcp, desc, dma_sz);
1028                 if (!skb) {
1029                         dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
1030                         tx_stats->tx_errors++;
1031                         continue;
1032                 }
1033
1034                 tx_cb = (struct netcp_tx_cb *)skb->cb;
1035                 if (tx_cb->txtstamp)
1036                         tx_cb->txtstamp(tx_cb->ts_context, skb);
1037
1038                 if (netif_subqueue_stopped(netcp->ndev, skb) &&
1039                     netif_running(netcp->ndev) &&
1040                     (knav_pool_count(netcp->tx_pool) >
1041                     netcp->tx_resume_threshold)) {
1042                         u16 subqueue = skb_get_queue_mapping(skb);
1043
1044                         netif_wake_subqueue(netcp->ndev, subqueue);
1045                 }
1046
1047                 u64_stats_update_begin(&tx_stats->syncp_tx);
1048                 tx_stats->tx_packets++;
1049                 tx_stats->tx_bytes += skb->len;
1050                 u64_stats_update_end(&tx_stats->syncp_tx);
1051                 dev_kfree_skb(skb);
1052                 pkts++;
1053         }
1054         return pkts;
1055 }
1056
1057 static int netcp_tx_poll(struct napi_struct *napi, int budget)
1058 {
1059         int packets;
1060         struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
1061                                                 tx_napi);
1062
1063         packets = netcp_process_tx_compl_packets(netcp, budget);
1064         if (packets < budget) {
1065                 napi_complete(&netcp->tx_napi);
1066                 knav_queue_enable_notify(netcp->tx_compl_q);
1067         }
1068
1069         return packets;
1070 }
1071
1072 static void netcp_tx_notify(void *arg)
1073 {
1074         struct netcp_intf *netcp = arg;
1075
1076         knav_queue_disable_notify(netcp->tx_compl_q);
1077         napi_schedule(&netcp->tx_napi);
1078 }
1079
1080 static struct knav_dma_desc*
1081 netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
1082 {
1083         struct knav_dma_desc *desc, *ndesc, *pdesc;
1084         unsigned int pkt_len = skb_headlen(skb);
1085         struct device *dev = netcp->dev;
1086         dma_addr_t dma_addr;
1087         unsigned int dma_sz;
1088         int i;
1089
1090         /* Map the linear buffer */
1091         dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
1092         if (unlikely(dma_mapping_error(dev, dma_addr))) {
1093                 dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
1094                 return NULL;
1095         }
1096
1097         desc = knav_pool_desc_get(netcp->tx_pool);
1098         if (IS_ERR_OR_NULL(desc)) {
1099                 dev_err(netcp->ndev_dev, "out of TX desc\n");
1100                 dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
1101                 return NULL;
1102         }
1103
1104         set_pkt_info(dma_addr, pkt_len, 0, desc);
1105         if (skb_is_nonlinear(skb)) {
1106                 prefetchw(skb_shinfo(skb));
1107         } else {
1108                 desc->next_desc = 0;
1109                 goto upd_pkt_len;
1110         }
1111
1112         pdesc = desc;
1113
1114         /* Handle the case where skb is fragmented in pages */
1115         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1116                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1117                 struct page *page = skb_frag_page(frag);
1118                 u32 page_offset = skb_frag_off(frag);
1119                 u32 buf_len = skb_frag_size(frag);
1120                 dma_addr_t desc_dma;
1121                 u32 desc_dma_32;
1122
1123                 dma_addr = dma_map_page(dev, page, page_offset, buf_len,
1124                                         DMA_TO_DEVICE);
1125                 if (unlikely(!dma_addr)) {
1126                         dev_err(netcp->ndev_dev, "Failed to map skb page\n");
1127                         goto free_descs;
1128                 }
1129
1130                 ndesc = knav_pool_desc_get(netcp->tx_pool);
1131                 if (IS_ERR_OR_NULL(ndesc)) {
1132                         dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
1133                         dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
1134                         goto free_descs;
1135                 }
1136
1137                 desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, ndesc);
1138                 set_pkt_info(dma_addr, buf_len, 0, ndesc);
1139                 desc_dma_32 = (u32)desc_dma;
1140                 set_words(&desc_dma_32, 1, &pdesc->next_desc);
1141                 pkt_len += buf_len;
1142                 if (pdesc != desc)
1143                         knav_pool_desc_map(netcp->tx_pool, pdesc,
1144                                            sizeof(*pdesc), &desc_dma, &dma_sz);
1145                 pdesc = ndesc;
1146         }
1147         if (pdesc != desc)
1148                 knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
1149                                    &dma_addr, &dma_sz);
1150
1151         /* frag list based linkage is not supported for now. */
1152         if (skb_shinfo(skb)->frag_list) {
1153                 dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
1154                 goto free_descs;
1155         }
1156
1157 upd_pkt_len:
1158         WARN_ON(pkt_len != skb->len);
1159
1160         pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
1161         set_words(&pkt_len, 1, &desc->desc_info);
1162         return desc;
1163
1164 free_descs:
1165         netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1166         return NULL;
1167 }
1168
1169 static int netcp_tx_submit_skb(struct netcp_intf *netcp,
1170                                struct sk_buff *skb,
1171                                struct knav_dma_desc *desc)
1172 {
1173         struct netcp_tx_pipe *tx_pipe = NULL;
1174         struct netcp_hook_list *tx_hook;
1175         struct netcp_packet p_info;
1176         struct netcp_tx_cb *tx_cb;
1177         unsigned int dma_sz;
1178         dma_addr_t dma;
1179         u32 tmp = 0;
1180         int ret = 0;
1181
1182         p_info.netcp = netcp;
1183         p_info.skb = skb;
1184         p_info.tx_pipe = NULL;
1185         p_info.psdata_len = 0;
1186         p_info.ts_context = NULL;
1187         p_info.txtstamp = NULL;
1188         p_info.epib = desc->epib;
1189         p_info.psdata = (u32 __force *)desc->psdata;
1190         memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(__le32));
1191
1192         /* Find out where to inject the packet for transmission */
1193         list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
1194                 ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
1195                                         &p_info);
1196                 if (unlikely(ret != 0)) {
1197                         dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
1198                                 tx_hook->order, ret);
1199                         ret = (ret < 0) ? ret : NETDEV_TX_OK;
1200                         goto out;
1201                 }
1202         }
1203
1204         /* Make sure some TX hook claimed the packet */
1205         tx_pipe = p_info.tx_pipe;
1206         if (!tx_pipe) {
1207                 dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
1208                 ret = -ENXIO;
1209                 goto out;
1210         }
1211
1212         tx_cb = (struct netcp_tx_cb *)skb->cb;
1213         tx_cb->ts_context = p_info.ts_context;
1214         tx_cb->txtstamp = p_info.txtstamp;
1215
1216         /* update descriptor */
1217         if (p_info.psdata_len) {
1218                 /* psdata points to both native-endian and device-endian data */
1219                 __le32 *psdata = (void __force *)p_info.psdata;
1220
1221                 set_words((u32 *)psdata +
1222                           (KNAV_DMA_NUM_PS_WORDS - p_info.psdata_len),
1223                           p_info.psdata_len, psdata);
1224                 tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
1225                         KNAV_DMA_DESC_PSLEN_SHIFT;
1226         }
1227
1228         tmp |= KNAV_DMA_DESC_HAS_EPIB |
1229                 ((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1230                 KNAV_DMA_DESC_RETQ_SHIFT);
1231
1232         if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
1233                 tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
1234                         KNAV_DMA_DESC_PSFLAG_SHIFT);
1235         }
1236
1237         set_words(&tmp, 1, &desc->packet_info);
1238         /* warning!!!! We are saving the virtual ptr in the sw_data
1239          * field as a 32bit value. Will not work on 64bit machines
1240          */
1241         SET_SW_DATA0((u32)skb, desc);
1242
1243         if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
1244                 tmp = tx_pipe->switch_to_port;
1245                 set_words(&tmp, 1, &desc->tag_info);
1246         }
1247
1248         /* submit packet descriptor */
1249         ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
1250                                  &dma_sz);
1251         if (unlikely(ret)) {
1252                 dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
1253                 ret = -ENOMEM;
1254                 goto out;
1255         }
1256         skb_tx_timestamp(skb);
1257         knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
1258
1259 out:
1260         return ret;
1261 }
1262
1263 /* Submit the packet */
1264 static netdev_tx_t netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1265 {
1266         struct netcp_intf *netcp = netdev_priv(ndev);
1267         struct netcp_stats *tx_stats = &netcp->stats;
1268         int subqueue = skb_get_queue_mapping(skb);
1269         struct knav_dma_desc *desc;
1270         int desc_count, ret = 0;
1271
1272         if (unlikely(skb->len <= 0)) {
1273                 dev_kfree_skb(skb);
1274                 return NETDEV_TX_OK;
1275         }
1276
1277         if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
1278                 ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
1279                 if (ret < 0) {
1280                         /* If we get here, the skb has already been dropped */
1281                         dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
1282                                  ret);
1283                         tx_stats->tx_dropped++;
1284                         return ret;
1285                 }
1286                 skb->len = NETCP_MIN_PACKET_SIZE;
1287         }
1288
1289         desc = netcp_tx_map_skb(skb, netcp);
1290         if (unlikely(!desc)) {
1291                 netif_stop_subqueue(ndev, subqueue);
1292                 ret = -ENOBUFS;
1293                 goto drop;
1294         }
1295
1296         ret = netcp_tx_submit_skb(netcp, skb, desc);
1297         if (ret)
1298                 goto drop;
1299
1300         /* Check Tx pool count & stop subqueue if needed */
1301         desc_count = knav_pool_count(netcp->tx_pool);
1302         if (desc_count < netcp->tx_pause_threshold) {
1303                 dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
1304                 netif_stop_subqueue(ndev, subqueue);
1305         }
1306         return NETDEV_TX_OK;
1307
1308 drop:
1309         tx_stats->tx_dropped++;
1310         if (desc)
1311                 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1312         dev_kfree_skb(skb);
1313         return ret;
1314 }
1315
1316 int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
1317 {
1318         if (tx_pipe->dma_channel) {
1319                 knav_dma_close_channel(tx_pipe->dma_channel);
1320                 tx_pipe->dma_channel = NULL;
1321         }
1322         return 0;
1323 }
1324 EXPORT_SYMBOL_GPL(netcp_txpipe_close);
1325
1326 int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
1327 {
1328         struct device *dev = tx_pipe->netcp_device->device;
1329         struct knav_dma_cfg config;
1330         int ret = 0;
1331         u8 name[16];
1332
1333         memset(&config, 0, sizeof(config));
1334         config.direction = DMA_MEM_TO_DEV;
1335         config.u.tx.filt_einfo = false;
1336         config.u.tx.filt_pswords = false;
1337         config.u.tx.priority = DMA_PRIO_MED_L;
1338
1339         tx_pipe->dma_channel = knav_dma_open_channel(dev,
1340                                 tx_pipe->dma_chan_name, &config);
1341         if (IS_ERR(tx_pipe->dma_channel)) {
1342                 dev_err(dev, "failed opening tx chan(%s)\n",
1343                         tx_pipe->dma_chan_name);
1344                 ret = PTR_ERR(tx_pipe->dma_channel);
1345                 goto err;
1346         }
1347
1348         snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
1349         tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
1350                                              KNAV_QUEUE_SHARED);
1351         if (IS_ERR(tx_pipe->dma_queue)) {
1352                 dev_err(dev, "Could not open DMA queue for channel \"%s\": %pe\n",
1353                         name, tx_pipe->dma_queue);
1354                 ret = PTR_ERR(tx_pipe->dma_queue);
1355                 goto err;
1356         }
1357
1358         dev_dbg(dev, "opened tx pipe %s\n", name);
1359         return 0;
1360
1361 err:
1362         if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
1363                 knav_dma_close_channel(tx_pipe->dma_channel);
1364         tx_pipe->dma_channel = NULL;
1365         return ret;
1366 }
1367 EXPORT_SYMBOL_GPL(netcp_txpipe_open);
1368
1369 int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
1370                       struct netcp_device *netcp_device,
1371                       const char *dma_chan_name, unsigned int dma_queue_id)
1372 {
1373         memset(tx_pipe, 0, sizeof(*tx_pipe));
1374         tx_pipe->netcp_device = netcp_device;
1375         tx_pipe->dma_chan_name = dma_chan_name;
1376         tx_pipe->dma_queue_id = dma_queue_id;
1377         return 0;
1378 }
1379 EXPORT_SYMBOL_GPL(netcp_txpipe_init);
1380
1381 static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
1382                                           const u8 *addr,
1383                                           enum netcp_addr_type type)
1384 {
1385         struct netcp_addr *naddr;
1386
1387         list_for_each_entry(naddr, &netcp->addr_list, node) {
1388                 if (naddr->type != type)
1389                         continue;
1390                 if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
1391                         continue;
1392                 return naddr;
1393         }
1394
1395         return NULL;
1396 }
1397
1398 static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
1399                                          const u8 *addr,
1400                                          enum netcp_addr_type type)
1401 {
1402         struct netcp_addr *naddr;
1403
1404         naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
1405         if (!naddr)
1406                 return NULL;
1407
1408         naddr->type = type;
1409         naddr->flags = 0;
1410         naddr->netcp = netcp;
1411         if (addr)
1412                 ether_addr_copy(naddr->addr, addr);
1413         else
1414                 eth_zero_addr(naddr->addr);
1415         list_add_tail(&naddr->node, &netcp->addr_list);
1416
1417         return naddr;
1418 }
1419
1420 static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
1421 {
1422         list_del(&naddr->node);
1423         devm_kfree(netcp->dev, naddr);
1424 }
1425
1426 static void netcp_addr_clear_mark(struct netcp_intf *netcp)
1427 {
1428         struct netcp_addr *naddr;
1429
1430         list_for_each_entry(naddr, &netcp->addr_list, node)
1431                 naddr->flags = 0;
1432 }
1433
1434 static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
1435                                 enum netcp_addr_type type)
1436 {
1437         struct netcp_addr *naddr;
1438
1439         naddr = netcp_addr_find(netcp, addr, type);
1440         if (naddr) {
1441                 naddr->flags |= ADDR_VALID;
1442                 return;
1443         }
1444
1445         naddr = netcp_addr_add(netcp, addr, type);
1446         if (!WARN_ON(!naddr))
1447                 naddr->flags |= ADDR_NEW;
1448 }
1449
1450 static void netcp_addr_sweep_del(struct netcp_intf *netcp)
1451 {
1452         struct netcp_addr *naddr, *tmp;
1453         struct netcp_intf_modpriv *priv;
1454         struct netcp_module *module;
1455         int error;
1456
1457         list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1458                 if (naddr->flags & (ADDR_VALID | ADDR_NEW))
1459                         continue;
1460                 dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
1461                         naddr->addr, naddr->type);
1462                 for_each_module(netcp, priv) {
1463                         module = priv->netcp_module;
1464                         if (!module->del_addr)
1465                                 continue;
1466                         error = module->del_addr(priv->module_priv,
1467                                                  naddr);
1468                         WARN_ON(error);
1469                 }
1470                 netcp_addr_del(netcp, naddr);
1471         }
1472 }
1473
1474 static void netcp_addr_sweep_add(struct netcp_intf *netcp)
1475 {
1476         struct netcp_addr *naddr, *tmp;
1477         struct netcp_intf_modpriv *priv;
1478         struct netcp_module *module;
1479         int error;
1480
1481         list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1482                 if (!(naddr->flags & ADDR_NEW))
1483                         continue;
1484                 dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
1485                         naddr->addr, naddr->type);
1486
1487                 for_each_module(netcp, priv) {
1488                         module = priv->netcp_module;
1489                         if (!module->add_addr)
1490                                 continue;
1491                         error = module->add_addr(priv->module_priv, naddr);
1492                         WARN_ON(error);
1493                 }
1494         }
1495 }
1496
1497 static int netcp_set_promiscuous(struct netcp_intf *netcp, bool promisc)
1498 {
1499         struct netcp_intf_modpriv *priv;
1500         struct netcp_module *module;
1501         int error;
1502
1503         for_each_module(netcp, priv) {
1504                 module = priv->netcp_module;
1505                 if (!module->set_rx_mode)
1506                         continue;
1507
1508                 error = module->set_rx_mode(priv->module_priv, promisc);
1509                 if (error)
1510                         return error;
1511         }
1512         return 0;
1513 }
1514
1515 static void netcp_set_rx_mode(struct net_device *ndev)
1516 {
1517         struct netcp_intf *netcp = netdev_priv(ndev);
1518         struct netdev_hw_addr *ndev_addr;
1519         bool promisc;
1520
1521         promisc = (ndev->flags & IFF_PROMISC ||
1522                    ndev->flags & IFF_ALLMULTI ||
1523                    netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
1524
1525         spin_lock(&netcp->lock);
1526         /* first clear all marks */
1527         netcp_addr_clear_mark(netcp);
1528
1529         /* next add new entries, mark existing ones */
1530         netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
1531         for_each_dev_addr(ndev, ndev_addr)
1532                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
1533         netdev_for_each_uc_addr(ndev_addr, ndev)
1534                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
1535         netdev_for_each_mc_addr(ndev_addr, ndev)
1536                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
1537
1538         if (promisc)
1539                 netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
1540
1541         /* finally sweep and callout into modules */
1542         netcp_addr_sweep_del(netcp);
1543         netcp_addr_sweep_add(netcp);
1544         netcp_set_promiscuous(netcp, promisc);
1545         spin_unlock(&netcp->lock);
1546 }
1547
1548 static void netcp_free_navigator_resources(struct netcp_intf *netcp)
1549 {
1550         int i;
1551
1552         if (netcp->rx_channel) {
1553                 knav_dma_close_channel(netcp->rx_channel);
1554                 netcp->rx_channel = NULL;
1555         }
1556
1557         if (!IS_ERR_OR_NULL(netcp->rx_pool))
1558                 netcp_rxpool_free(netcp);
1559
1560         if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
1561                 knav_queue_close(netcp->rx_queue);
1562                 netcp->rx_queue = NULL;
1563         }
1564
1565         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1566              !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
1567                 knav_queue_close(netcp->rx_fdq[i]);
1568                 netcp->rx_fdq[i] = NULL;
1569         }
1570
1571         if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1572                 knav_queue_close(netcp->tx_compl_q);
1573                 netcp->tx_compl_q = NULL;
1574         }
1575
1576         if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
1577                 knav_pool_destroy(netcp->tx_pool);
1578                 netcp->tx_pool = NULL;
1579         }
1580 }
1581
1582 static int netcp_setup_navigator_resources(struct net_device *ndev)
1583 {
1584         struct netcp_intf *netcp = netdev_priv(ndev);
1585         struct knav_queue_notify_config notify_cfg;
1586         struct knav_dma_cfg config;
1587         u32 last_fdq = 0;
1588         u8 name[16];
1589         int ret;
1590         int i;
1591
1592         /* Create Rx/Tx descriptor pools */
1593         snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
1594         netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
1595                                                 netcp->rx_pool_region_id);
1596         if (IS_ERR_OR_NULL(netcp->rx_pool)) {
1597                 dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
1598                 ret = PTR_ERR(netcp->rx_pool);
1599                 goto fail;
1600         }
1601
1602         snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
1603         netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
1604                                                 netcp->tx_pool_region_id);
1605         if (IS_ERR_OR_NULL(netcp->tx_pool)) {
1606                 dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
1607                 ret = PTR_ERR(netcp->tx_pool);
1608                 goto fail;
1609         }
1610
1611         /* open Tx completion queue */
1612         snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
1613         netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
1614         if (IS_ERR(netcp->tx_compl_q)) {
1615                 ret = PTR_ERR(netcp->tx_compl_q);
1616                 goto fail;
1617         }
1618         netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
1619
1620         /* Set notification for Tx completion */
1621         notify_cfg.fn = netcp_tx_notify;
1622         notify_cfg.fn_arg = netcp;
1623         ret = knav_queue_device_control(netcp->tx_compl_q,
1624                                         KNAV_QUEUE_SET_NOTIFIER,
1625                                         (unsigned long)&notify_cfg);
1626         if (ret)
1627                 goto fail;
1628
1629         knav_queue_disable_notify(netcp->tx_compl_q);
1630
1631         /* open Rx completion queue */
1632         snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
1633         netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
1634         if (IS_ERR(netcp->rx_queue)) {
1635                 ret = PTR_ERR(netcp->rx_queue);
1636                 goto fail;
1637         }
1638         netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
1639
1640         /* Set notification for Rx completion */
1641         notify_cfg.fn = netcp_rx_notify;
1642         notify_cfg.fn_arg = netcp;
1643         ret = knav_queue_device_control(netcp->rx_queue,
1644                                         KNAV_QUEUE_SET_NOTIFIER,
1645                                         (unsigned long)&notify_cfg);
1646         if (ret)
1647                 goto fail;
1648
1649         knav_queue_disable_notify(netcp->rx_queue);
1650
1651         /* open Rx FDQs */
1652         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i];
1653              ++i) {
1654                 snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
1655                 netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
1656                 if (IS_ERR(netcp->rx_fdq[i])) {
1657                         ret = PTR_ERR(netcp->rx_fdq[i]);
1658                         goto fail;
1659                 }
1660         }
1661
1662         memset(&config, 0, sizeof(config));
1663         config.direction                = DMA_DEV_TO_MEM;
1664         config.u.rx.einfo_present       = true;
1665         config.u.rx.psinfo_present      = true;
1666         config.u.rx.err_mode            = DMA_DROP;
1667         config.u.rx.desc_type           = DMA_DESC_HOST;
1668         config.u.rx.psinfo_at_sop       = false;
1669         config.u.rx.sop_offset          = NETCP_SOP_OFFSET;
1670         config.u.rx.dst_q               = netcp->rx_queue_id;
1671         config.u.rx.thresh              = DMA_THRESH_NONE;
1672
1673         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
1674                 if (netcp->rx_fdq[i])
1675                         last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
1676                 config.u.rx.fdq[i] = last_fdq;
1677         }
1678
1679         netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
1680                                         netcp->dma_chan_name, &config);
1681         if (IS_ERR(netcp->rx_channel)) {
1682                 dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
1683                         netcp->dma_chan_name);
1684                 ret = PTR_ERR(netcp->rx_channel);
1685                 goto fail;
1686         }
1687
1688         dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
1689         return 0;
1690
1691 fail:
1692         netcp_free_navigator_resources(netcp);
1693         return ret;
1694 }
1695
1696 /* Open the device */
1697 static int netcp_ndo_open(struct net_device *ndev)
1698 {
1699         struct netcp_intf *netcp = netdev_priv(ndev);
1700         struct netcp_intf_modpriv *intf_modpriv;
1701         struct netcp_module *module;
1702         int ret;
1703
1704         netif_carrier_off(ndev);
1705         ret = netcp_setup_navigator_resources(ndev);
1706         if (ret) {
1707                 dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
1708                 goto fail;
1709         }
1710
1711         for_each_module(netcp, intf_modpriv) {
1712                 module = intf_modpriv->netcp_module;
1713                 if (module->open) {
1714                         ret = module->open(intf_modpriv->module_priv, ndev);
1715                         if (ret != 0) {
1716                                 dev_err(netcp->ndev_dev, "module open failed\n");
1717                                 goto fail_open;
1718                         }
1719                 }
1720         }
1721
1722         napi_enable(&netcp->rx_napi);
1723         napi_enable(&netcp->tx_napi);
1724         knav_queue_enable_notify(netcp->tx_compl_q);
1725         knav_queue_enable_notify(netcp->rx_queue);
1726         netcp_rxpool_refill(netcp);
1727         netif_tx_wake_all_queues(ndev);
1728         dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
1729         return 0;
1730
1731 fail_open:
1732         for_each_module(netcp, intf_modpriv) {
1733                 module = intf_modpriv->netcp_module;
1734                 if (module->close)
1735                         module->close(intf_modpriv->module_priv, ndev);
1736         }
1737
1738 fail:
1739         netcp_free_navigator_resources(netcp);
1740         return ret;
1741 }
1742
1743 /* Close the device */
1744 static int netcp_ndo_stop(struct net_device *ndev)
1745 {
1746         struct netcp_intf *netcp = netdev_priv(ndev);
1747         struct netcp_intf_modpriv *intf_modpriv;
1748         struct netcp_module *module;
1749         int err = 0;
1750
1751         netif_tx_stop_all_queues(ndev);
1752         netif_carrier_off(ndev);
1753         netcp_addr_clear_mark(netcp);
1754         netcp_addr_sweep_del(netcp);
1755         knav_queue_disable_notify(netcp->rx_queue);
1756         knav_queue_disable_notify(netcp->tx_compl_q);
1757         napi_disable(&netcp->rx_napi);
1758         napi_disable(&netcp->tx_napi);
1759
1760         for_each_module(netcp, intf_modpriv) {
1761                 module = intf_modpriv->netcp_module;
1762                 if (module->close) {
1763                         err = module->close(intf_modpriv->module_priv, ndev);
1764                         if (err != 0)
1765                                 dev_err(netcp->ndev_dev, "Close failed\n");
1766                 }
1767         }
1768
1769         /* Recycle Rx descriptors from completion queue */
1770         netcp_empty_rx_queue(netcp);
1771
1772         /* Recycle Tx descriptors from completion queue */
1773         netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1774
1775         if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
1776                 dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
1777                         netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
1778
1779         netcp_free_navigator_resources(netcp);
1780         dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
1781         return 0;
1782 }
1783
1784 static int netcp_ndo_ioctl(struct net_device *ndev,
1785                            struct ifreq *req, int cmd)
1786 {
1787         struct netcp_intf *netcp = netdev_priv(ndev);
1788         struct netcp_intf_modpriv *intf_modpriv;
1789         struct netcp_module *module;
1790         int ret = -1, err = -EOPNOTSUPP;
1791
1792         if (!netif_running(ndev))
1793                 return -EINVAL;
1794
1795         for_each_module(netcp, intf_modpriv) {
1796                 module = intf_modpriv->netcp_module;
1797                 if (!module->ioctl)
1798                         continue;
1799
1800                 err = module->ioctl(intf_modpriv->module_priv, req, cmd);
1801                 if ((err < 0) && (err != -EOPNOTSUPP)) {
1802                         ret = err;
1803                         goto out;
1804                 }
1805                 if (err == 0)
1806                         ret = err;
1807         }
1808
1809 out:
1810         return (ret == 0) ? 0 : err;
1811 }
1812
1813 static void netcp_ndo_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1814 {
1815         struct netcp_intf *netcp = netdev_priv(ndev);
1816         unsigned int descs = knav_pool_count(netcp->tx_pool);
1817
1818         dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
1819         netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1820         netif_trans_update(ndev);
1821         netif_tx_wake_all_queues(ndev);
1822 }
1823
1824 static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
1825 {
1826         struct netcp_intf *netcp = netdev_priv(ndev);
1827         struct netcp_intf_modpriv *intf_modpriv;
1828         struct netcp_module *module;
1829         unsigned long flags;
1830         int err = 0;
1831
1832         dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
1833
1834         spin_lock_irqsave(&netcp->lock, flags);
1835         for_each_module(netcp, intf_modpriv) {
1836                 module = intf_modpriv->netcp_module;
1837                 if ((module->add_vid) && (vid != 0)) {
1838                         err = module->add_vid(intf_modpriv->module_priv, vid);
1839                         if (err != 0) {
1840                                 dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
1841                                         vid);
1842                                 break;
1843                         }
1844                 }
1845         }
1846         spin_unlock_irqrestore(&netcp->lock, flags);
1847
1848         return err;
1849 }
1850
1851 static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
1852 {
1853         struct netcp_intf *netcp = netdev_priv(ndev);
1854         struct netcp_intf_modpriv *intf_modpriv;
1855         struct netcp_module *module;
1856         unsigned long flags;
1857         int err = 0;
1858
1859         dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
1860
1861         spin_lock_irqsave(&netcp->lock, flags);
1862         for_each_module(netcp, intf_modpriv) {
1863                 module = intf_modpriv->netcp_module;
1864                 if (module->del_vid) {
1865                         err = module->del_vid(intf_modpriv->module_priv, vid);
1866                         if (err != 0) {
1867                                 dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
1868                                         vid);
1869                                 break;
1870                         }
1871                 }
1872         }
1873         spin_unlock_irqrestore(&netcp->lock, flags);
1874         return err;
1875 }
1876
1877 static int netcp_setup_tc(struct net_device *dev, enum tc_setup_type type,
1878                           void *type_data)
1879 {
1880         struct tc_mqprio_qopt *mqprio = type_data;
1881         u8 num_tc;
1882         int i;
1883
1884         /* setup tc must be called under rtnl lock */
1885         ASSERT_RTNL();
1886
1887         if (type != TC_SETUP_QDISC_MQPRIO)
1888                 return -EOPNOTSUPP;
1889
1890         mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
1891         num_tc = mqprio->num_tc;
1892
1893         /* Sanity-check the number of traffic classes requested */
1894         if ((dev->real_num_tx_queues <= 1) ||
1895             (dev->real_num_tx_queues < num_tc))
1896                 return -EINVAL;
1897
1898         /* Configure traffic class to queue mappings */
1899         if (num_tc) {
1900                 netdev_set_num_tc(dev, num_tc);
1901                 for (i = 0; i < num_tc; i++)
1902                         netdev_set_tc_queue(dev, i, 1, i);
1903         } else {
1904                 netdev_reset_tc(dev);
1905         }
1906
1907         return 0;
1908 }
1909
1910 static void
1911 netcp_get_stats(struct net_device *ndev, struct rtnl_link_stats64 *stats)
1912 {
1913         struct netcp_intf *netcp = netdev_priv(ndev);
1914         struct netcp_stats *p = &netcp->stats;
1915         u64 rxpackets, rxbytes, txpackets, txbytes;
1916         unsigned int start;
1917
1918         do {
1919                 start = u64_stats_fetch_begin(&p->syncp_rx);
1920                 rxpackets       = p->rx_packets;
1921                 rxbytes         = p->rx_bytes;
1922         } while (u64_stats_fetch_retry(&p->syncp_rx, start));
1923
1924         do {
1925                 start = u64_stats_fetch_begin(&p->syncp_tx);
1926                 txpackets       = p->tx_packets;
1927                 txbytes         = p->tx_bytes;
1928         } while (u64_stats_fetch_retry(&p->syncp_tx, start));
1929
1930         stats->rx_packets = rxpackets;
1931         stats->rx_bytes = rxbytes;
1932         stats->tx_packets = txpackets;
1933         stats->tx_bytes = txbytes;
1934
1935         /* The following are stored as 32 bit */
1936         stats->rx_errors = p->rx_errors;
1937         stats->rx_dropped = p->rx_dropped;
1938         stats->tx_dropped = p->tx_dropped;
1939 }
1940
1941 static const struct net_device_ops netcp_netdev_ops = {
1942         .ndo_open               = netcp_ndo_open,
1943         .ndo_stop               = netcp_ndo_stop,
1944         .ndo_start_xmit         = netcp_ndo_start_xmit,
1945         .ndo_set_rx_mode        = netcp_set_rx_mode,
1946         .ndo_eth_ioctl           = netcp_ndo_ioctl,
1947         .ndo_get_stats64        = netcp_get_stats,
1948         .ndo_set_mac_address    = eth_mac_addr,
1949         .ndo_validate_addr      = eth_validate_addr,
1950         .ndo_vlan_rx_add_vid    = netcp_rx_add_vid,
1951         .ndo_vlan_rx_kill_vid   = netcp_rx_kill_vid,
1952         .ndo_tx_timeout         = netcp_ndo_tx_timeout,
1953         .ndo_select_queue       = dev_pick_tx_zero,
1954         .ndo_setup_tc           = netcp_setup_tc,
1955 };
1956
1957 static int netcp_create_interface(struct netcp_device *netcp_device,
1958                                   struct device_node *node_interface)
1959 {
1960         struct device *dev = netcp_device->device;
1961         struct device_node *node = dev->of_node;
1962         struct netcp_intf *netcp;
1963         struct net_device *ndev;
1964         resource_size_t size;
1965         struct resource res;
1966         void __iomem *efuse = NULL;
1967         u32 efuse_mac = 0;
1968         u8 efuse_mac_addr[6];
1969         u32 temp[2];
1970         int ret = 0;
1971
1972         ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
1973         if (!ndev) {
1974                 dev_err(dev, "Error allocating netdev\n");
1975                 return -ENOMEM;
1976         }
1977
1978         ndev->features |= NETIF_F_SG;
1979         ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1980         ndev->hw_features = ndev->features;
1981         ndev->vlan_features |=  NETIF_F_SG;
1982
1983         /* MTU range: 68 - 9486 */
1984         ndev->min_mtu = ETH_MIN_MTU;
1985         ndev->max_mtu = NETCP_MAX_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1986
1987         netcp = netdev_priv(ndev);
1988         spin_lock_init(&netcp->lock);
1989         INIT_LIST_HEAD(&netcp->module_head);
1990         INIT_LIST_HEAD(&netcp->txhook_list_head);
1991         INIT_LIST_HEAD(&netcp->rxhook_list_head);
1992         INIT_LIST_HEAD(&netcp->addr_list);
1993         u64_stats_init(&netcp->stats.syncp_rx);
1994         u64_stats_init(&netcp->stats.syncp_tx);
1995         netcp->netcp_device = netcp_device;
1996         netcp->dev = netcp_device->device;
1997         netcp->ndev = ndev;
1998         netcp->ndev_dev  = &ndev->dev;
1999         netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
2000         netcp->tx_pause_threshold = MAX_SKB_FRAGS;
2001         netcp->tx_resume_threshold = netcp->tx_pause_threshold;
2002         netcp->node_interface = node_interface;
2003
2004         ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
2005         if (efuse_mac) {
2006                 if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
2007                         dev_err(dev, "could not find efuse-mac reg resource\n");
2008                         ret = -ENODEV;
2009                         goto quit;
2010                 }
2011                 size = resource_size(&res);
2012
2013                 if (!devm_request_mem_region(dev, res.start, size,
2014                                              dev_name(dev))) {
2015                         dev_err(dev, "could not reserve resource\n");
2016                         ret = -ENOMEM;
2017                         goto quit;
2018                 }
2019
2020                 efuse = devm_ioremap(dev, res.start, size);
2021                 if (!efuse) {
2022                         dev_err(dev, "could not map resource\n");
2023                         devm_release_mem_region(dev, res.start, size);
2024                         ret = -ENOMEM;
2025                         goto quit;
2026                 }
2027
2028                 emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac);
2029                 if (is_valid_ether_addr(efuse_mac_addr))
2030                         eth_hw_addr_set(ndev, efuse_mac_addr);
2031                 else
2032                         eth_hw_addr_random(ndev);
2033
2034                 devm_iounmap(dev, efuse);
2035                 devm_release_mem_region(dev, res.start, size);
2036         } else {
2037                 ret = of_get_ethdev_address(node_interface, ndev);
2038                 if (ret)
2039                         eth_hw_addr_random(ndev);
2040         }
2041
2042         ret = of_property_read_string(node_interface, "rx-channel",
2043                                       &netcp->dma_chan_name);
2044         if (ret < 0) {
2045                 dev_err(dev, "missing \"rx-channel\" parameter\n");
2046                 ret = -ENODEV;
2047                 goto quit;
2048         }
2049
2050         ret = of_property_read_u32(node_interface, "rx-queue",
2051                                    &netcp->rx_queue_id);
2052         if (ret < 0) {
2053                 dev_warn(dev, "missing \"rx-queue\" parameter\n");
2054                 netcp->rx_queue_id = KNAV_QUEUE_QPEND;
2055         }
2056
2057         ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
2058                                          netcp->rx_queue_depths,
2059                                          KNAV_DMA_FDQ_PER_CHAN);
2060         if (ret < 0) {
2061                 dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
2062                 netcp->rx_queue_depths[0] = 128;
2063         }
2064
2065         ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
2066         if (ret < 0) {
2067                 dev_err(dev, "missing \"rx-pool\" parameter\n");
2068                 ret = -ENODEV;
2069                 goto quit;
2070         }
2071         netcp->rx_pool_size = temp[0];
2072         netcp->rx_pool_region_id = temp[1];
2073
2074         ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
2075         if (ret < 0) {
2076                 dev_err(dev, "missing \"tx-pool\" parameter\n");
2077                 ret = -ENODEV;
2078                 goto quit;
2079         }
2080         netcp->tx_pool_size = temp[0];
2081         netcp->tx_pool_region_id = temp[1];
2082
2083         if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
2084                 dev_err(dev, "tx-pool size too small, must be at least %u\n",
2085                         (unsigned int)MAX_SKB_FRAGS);
2086                 ret = -ENODEV;
2087                 goto quit;
2088         }
2089
2090         ret = of_property_read_u32(node_interface, "tx-completion-queue",
2091                                    &netcp->tx_compl_qid);
2092         if (ret < 0) {
2093                 dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
2094                 netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
2095         }
2096
2097         /* NAPI register */
2098         netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll);
2099         netif_napi_add_tx(ndev, &netcp->tx_napi, netcp_tx_poll);
2100
2101         /* Register the network device */
2102         ndev->dev_id            = 0;
2103         ndev->watchdog_timeo    = NETCP_TX_TIMEOUT;
2104         ndev->netdev_ops        = &netcp_netdev_ops;
2105         SET_NETDEV_DEV(ndev, dev);
2106
2107         list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
2108         return 0;
2109
2110 quit:
2111         free_netdev(ndev);
2112         return ret;
2113 }
2114
2115 static void netcp_delete_interface(struct netcp_device *netcp_device,
2116                                    struct net_device *ndev)
2117 {
2118         struct netcp_intf_modpriv *intf_modpriv, *tmp;
2119         struct netcp_intf *netcp = netdev_priv(ndev);
2120         struct netcp_module *module;
2121
2122         dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
2123                 ndev->name);
2124
2125         /* Notify each of the modules that the interface is going away */
2126         list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
2127                                  intf_list) {
2128                 module = intf_modpriv->netcp_module;
2129                 dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
2130                         module->name);
2131                 if (module->release)
2132                         module->release(intf_modpriv->module_priv);
2133                 list_del(&intf_modpriv->intf_list);
2134         }
2135         WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
2136              ndev->name);
2137
2138         list_del(&netcp->interface_list);
2139
2140         of_node_put(netcp->node_interface);
2141         unregister_netdev(ndev);
2142         free_netdev(ndev);
2143 }
2144
2145 static int netcp_probe(struct platform_device *pdev)
2146 {
2147         struct device_node *node = pdev->dev.of_node;
2148         struct netcp_intf *netcp_intf, *netcp_tmp;
2149         struct device_node *child, *interfaces;
2150         struct netcp_device *netcp_device;
2151         struct device *dev = &pdev->dev;
2152         struct netcp_module *module;
2153         int ret;
2154
2155         if (!knav_dma_device_ready() ||
2156             !knav_qmss_device_ready())
2157                 return -EPROBE_DEFER;
2158
2159         if (!node) {
2160                 dev_err(dev, "could not find device info\n");
2161                 return -ENODEV;
2162         }
2163
2164         /* Allocate a new NETCP device instance */
2165         netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
2166         if (!netcp_device)
2167                 return -ENOMEM;
2168
2169         pm_runtime_enable(&pdev->dev);
2170         ret = pm_runtime_get_sync(&pdev->dev);
2171         if (ret < 0) {
2172                 dev_err(dev, "Failed to enable NETCP power-domain\n");
2173                 pm_runtime_disable(&pdev->dev);
2174                 return ret;
2175         }
2176
2177         /* Initialize the NETCP device instance */
2178         INIT_LIST_HEAD(&netcp_device->interface_head);
2179         INIT_LIST_HEAD(&netcp_device->modpriv_head);
2180         netcp_device->device = dev;
2181         platform_set_drvdata(pdev, netcp_device);
2182
2183         /* create interfaces */
2184         interfaces = of_get_child_by_name(node, "netcp-interfaces");
2185         if (!interfaces) {
2186                 dev_err(dev, "could not find netcp-interfaces node\n");
2187                 ret = -ENODEV;
2188                 goto probe_quit;
2189         }
2190
2191         for_each_available_child_of_node(interfaces, child) {
2192                 ret = netcp_create_interface(netcp_device, child);
2193                 if (ret) {
2194                         dev_err(dev, "could not create interface(%pOFn)\n",
2195                                 child);
2196                         goto probe_quit_interface;
2197                 }
2198         }
2199
2200         of_node_put(interfaces);
2201
2202         /* Add the device instance to the list */
2203         list_add_tail(&netcp_device->device_list, &netcp_devices);
2204
2205         /* Probe & attach any modules already registered */
2206         mutex_lock(&netcp_modules_lock);
2207         for_each_netcp_module(module) {
2208                 ret = netcp_module_probe(netcp_device, module);
2209                 if (ret < 0)
2210                         dev_err(dev, "module(%s) probe failed\n", module->name);
2211         }
2212         mutex_unlock(&netcp_modules_lock);
2213         return 0;
2214
2215 probe_quit_interface:
2216         list_for_each_entry_safe(netcp_intf, netcp_tmp,
2217                                  &netcp_device->interface_head,
2218                                  interface_list) {
2219                 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2220         }
2221
2222         of_node_put(interfaces);
2223
2224 probe_quit:
2225         pm_runtime_put_sync(&pdev->dev);
2226         pm_runtime_disable(&pdev->dev);
2227         platform_set_drvdata(pdev, NULL);
2228         return ret;
2229 }
2230
2231 static void netcp_remove(struct platform_device *pdev)
2232 {
2233         struct netcp_device *netcp_device = platform_get_drvdata(pdev);
2234         struct netcp_intf *netcp_intf, *netcp_tmp;
2235         struct netcp_inst_modpriv *inst_modpriv, *tmp;
2236         struct netcp_module *module;
2237
2238         list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
2239                                  inst_list) {
2240                 module = inst_modpriv->netcp_module;
2241                 dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
2242                 module->remove(netcp_device, inst_modpriv->module_priv);
2243                 list_del(&inst_modpriv->inst_list);
2244         }
2245
2246         /* now that all modules are removed, clean up the interfaces */
2247         list_for_each_entry_safe(netcp_intf, netcp_tmp,
2248                                  &netcp_device->interface_head,
2249                                  interface_list) {
2250                 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2251         }
2252
2253         WARN(!list_empty(&netcp_device->interface_head),
2254              "%s interface list not empty!\n", pdev->name);
2255
2256         pm_runtime_put_sync(&pdev->dev);
2257         pm_runtime_disable(&pdev->dev);
2258         platform_set_drvdata(pdev, NULL);
2259 }
2260
2261 static const struct of_device_id of_match[] = {
2262         { .compatible = "ti,netcp-1.0", },
2263         {},
2264 };
2265 MODULE_DEVICE_TABLE(of, of_match);
2266
2267 static struct platform_driver netcp_driver = {
2268         .driver = {
2269                 .name           = "netcp-1.0",
2270                 .of_match_table = of_match,
2271         },
2272         .probe = netcp_probe,
2273         .remove_new = netcp_remove,
2274 };
2275 module_platform_driver(netcp_driver);
2276
2277 MODULE_LICENSE("GPL v2");
2278 MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
2279 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");