GNU Linux-libre 6.8.9-gnu
[releases.git] / drivers / net / ethernet / sun / cassini.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3  *
4  * Copyright (C) 2004 Sun Microsystems Inc.
5  * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
6  *
7  * This driver uses the sungem driver (c) David Miller
8  * (davem@redhat.com) as its basis.
9  *
10  * The cassini chip has a number of features that distinguish it from
11  * the gem chip:
12  *  4 transmit descriptor rings that are used for either QoS (VLAN) or
13  *      load balancing (non-VLAN mode)
14  *  batching of multiple packets
15  *  multiple CPU dispatching
16  *  page-based RX descriptor engine with separate completion rings
17  *  Gigabit support (GMII and PCS interface)
18  *  MIF link up/down detection works
19  *
20  * RX is handled by page sized buffers that are attached as fragments to
21  * the skb. here's what's done:
22  *  -- driver allocates pages at a time and keeps reference counts
23  *     on them.
24  *  -- the upper protocol layers assume that the header is in the skb
25  *     itself. as a result, cassini will copy a small amount (64 bytes)
26  *     to make them happy.
27  *  -- driver appends the rest of the data pages as frags to skbuffs
28  *     and increments the reference count
29  *  -- on page reclamation, the driver swaps the page with a spare page.
30  *     if that page is still in use, it frees its reference to that page,
31  *     and allocates a new page for use. otherwise, it just recycles the
32  *     page.
33  *
34  * NOTE: cassini can parse the header. however, it's not worth it
35  *       as long as the network stack requires a header copy.
36  *
37  * TX has 4 queues. currently these queues are used in a round-robin
38  * fashion for load balancing. They can also be used for QoS. for that
39  * to work, however, QoS information needs to be exposed down to the driver
40  * level so that subqueues get targeted to particular transmit rings.
41  * alternatively, the queues can be configured via use of the all-purpose
42  * ioctl.
43  *
44  * RX DATA: the rx completion ring has all the info, but the rx desc
45  * ring has all of the data. RX can conceivably come in under multiple
46  * interrupts, but the INT# assignment needs to be set up properly by
47  * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
48  * that. also, the two descriptor rings are designed to distinguish between
49  * encrypted and non-encrypted packets, but we use them for buffering
50  * instead.
51  *
52  * by default, the selective clear mask is set up to process rx packets.
53  */
54
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56
57 #include <linux/module.h>
58 #include <linux/kernel.h>
59 #include <linux/types.h>
60 #include <linux/compiler.h>
61 #include <linux/slab.h>
62 #include <linux/delay.h>
63 #include <linux/init.h>
64 #include <linux/interrupt.h>
65 #include <linux/vmalloc.h>
66 #include <linux/ioport.h>
67 #include <linux/pci.h>
68 #include <linux/mm.h>
69 #include <linux/highmem.h>
70 #include <linux/list.h>
71 #include <linux/dma-mapping.h>
72
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/ethtool.h>
77 #include <linux/crc32.h>
78 #include <linux/random.h>
79 #include <linux/mii.h>
80 #include <linux/ip.h>
81 #include <linux/tcp.h>
82 #include <linux/mutex.h>
83 #include <linux/firmware.h>
84
85 #include <net/checksum.h>
86
87 #include <linux/atomic.h>
88 #include <asm/io.h>
89 #include <asm/byteorder.h>
90 #include <linux/uaccess.h>
91 #include <linux/jiffies.h>
92
93 #define CAS_NCPUS            num_online_cpus()
94
95 #define cas_skb_release(x)  netif_rx(x)
96
97 /* select which firmware to use */
98 #define USE_HP_WORKAROUND
99 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
100 #define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
101
102 #include "cassini.h"
103
104 #define USE_TX_COMPWB      /* use completion writeback registers */
105 #define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
106 #define USE_RX_BLANK       /* hw interrupt mitigation */
107 #undef USE_ENTROPY_DEV     /* don't test for entropy device */
108
109 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
110  * also, we need to make cp->lock finer-grained.
111  */
112 #undef  USE_PCI_INTB
113 #undef  USE_PCI_INTC
114 #undef  USE_PCI_INTD
115 #undef  USE_QOS
116
117 #undef  USE_VPD_DEBUG       /* debug vpd information if defined */
118
119 /* rx processing options */
120 #define USE_PAGE_ORDER      /* specify to allocate large rx pages */
121 #define RX_DONT_BATCH  0    /* if 1, don't batch flows */
122 #define RX_COPY_ALWAYS 0    /* if 0, use frags */
123 #define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
124 #undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
125
126 #define DRV_MODULE_NAME         "cassini"
127 #define DRV_MODULE_VERSION      "1.6"
128 #define DRV_MODULE_RELDATE      "21 May 2008"
129
130 #define CAS_DEF_MSG_ENABLE        \
131         (NETIF_MSG_DRV          | \
132          NETIF_MSG_PROBE        | \
133          NETIF_MSG_LINK         | \
134          NETIF_MSG_TIMER        | \
135          NETIF_MSG_IFDOWN       | \
136          NETIF_MSG_IFUP         | \
137          NETIF_MSG_RX_ERR       | \
138          NETIF_MSG_TX_ERR)
139
140 /* length of time before we decide the hardware is borked,
141  * and dev->tx_timeout() should be called to fix the problem
142  */
143 #define CAS_TX_TIMEOUT                  (HZ)
144 #define CAS_LINK_TIMEOUT                (22*HZ/10)
145 #define CAS_LINK_FAST_TIMEOUT           (1)
146
147 /* timeout values for state changing. these specify the number
148  * of 10us delays to be used before giving up.
149  */
150 #define STOP_TRIES_PHY 1000
151 #define STOP_TRIES     5000
152
153 /* specify a minimum frame size to deal with some fifo issues
154  * max mtu == 2 * page size - ethernet header - 64 - swivel =
155  *            2 * page_size - 0x50
156  */
157 #define CAS_MIN_FRAME                   97
158 #define CAS_1000MB_MIN_FRAME            255
159 #define CAS_MIN_MTU                     60
160 #define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
161
162 #if 1
163 /*
164  * Eliminate these and use separate atomic counters for each, to
165  * avoid a race condition.
166  */
167 #else
168 #define CAS_RESET_MTU                   1
169 #define CAS_RESET_ALL                   2
170 #define CAS_RESET_SPARE                 3
171 #endif
172
173 static char version[] =
174         DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
175
176 static int cassini_debug = -1;  /* -1 == use CAS_DEF_MSG_ENABLE as value */
177 static int link_mode;
178
179 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
180 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
181 MODULE_LICENSE("GPL");
182 /*(DEBLOBBED)*/
183 module_param(cassini_debug, int, 0);
184 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
185 module_param(link_mode, int, 0);
186 MODULE_PARM_DESC(link_mode, "default link mode");
187
188 /*
189  * Work around for a PCS bug in which the link goes down due to the chip
190  * being confused and never showing a link status of "up."
191  */
192 #define DEFAULT_LINKDOWN_TIMEOUT 5
193 /*
194  * Value in seconds, for user input.
195  */
196 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
197 module_param(linkdown_timeout, int, 0);
198 MODULE_PARM_DESC(linkdown_timeout,
199 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
200
201 /*
202  * value in 'ticks' (units used by jiffies). Set when we init the
203  * module because 'HZ' in actually a function call on some flavors of
204  * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
205  */
206 static int link_transition_timeout;
207
208
209
210 static u16 link_modes[] = {
211         BMCR_ANENABLE,                   /* 0 : autoneg */
212         0,                               /* 1 : 10bt half duplex */
213         BMCR_SPEED100,                   /* 2 : 100bt half duplex */
214         BMCR_FULLDPLX,                   /* 3 : 10bt full duplex */
215         BMCR_SPEED100|BMCR_FULLDPLX,     /* 4 : 100bt full duplex */
216         CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
217 };
218
219 static const struct pci_device_id cas_pci_tbl[] = {
220         { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
221           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
222         { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
223           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
224         { 0, }
225 };
226
227 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
228
229 static void cas_set_link_modes(struct cas *cp);
230
231 static inline void cas_lock_tx(struct cas *cp)
232 {
233         int i;
234
235         for (i = 0; i < N_TX_RINGS; i++)
236                 spin_lock_nested(&cp->tx_lock[i], i);
237 }
238
239 /* WTZ: QA was finding deadlock problems with the previous
240  * versions after long test runs with multiple cards per machine.
241  * See if replacing cas_lock_all with safer versions helps. The
242  * symptoms QA is reporting match those we'd expect if interrupts
243  * aren't being properly restored, and we fixed a previous deadlock
244  * with similar symptoms by using save/restore versions in other
245  * places.
246  */
247 #define cas_lock_all_save(cp, flags) \
248 do { \
249         struct cas *xxxcp = (cp); \
250         spin_lock_irqsave(&xxxcp->lock, flags); \
251         cas_lock_tx(xxxcp); \
252 } while (0)
253
254 static inline void cas_unlock_tx(struct cas *cp)
255 {
256         int i;
257
258         for (i = N_TX_RINGS; i > 0; i--)
259                 spin_unlock(&cp->tx_lock[i - 1]);
260 }
261
262 #define cas_unlock_all_restore(cp, flags) \
263 do { \
264         struct cas *xxxcp = (cp); \
265         cas_unlock_tx(xxxcp); \
266         spin_unlock_irqrestore(&xxxcp->lock, flags); \
267 } while (0)
268
269 static void cas_disable_irq(struct cas *cp, const int ring)
270 {
271         /* Make sure we won't get any more interrupts */
272         if (ring == 0) {
273                 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
274                 return;
275         }
276
277         /* disable completion interrupts and selectively mask */
278         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
279                 switch (ring) {
280 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
281 #ifdef USE_PCI_INTB
282                 case 1:
283 #endif
284 #ifdef USE_PCI_INTC
285                 case 2:
286 #endif
287 #ifdef USE_PCI_INTD
288                 case 3:
289 #endif
290                         writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
291                                cp->regs + REG_PLUS_INTRN_MASK(ring));
292                         break;
293 #endif
294                 default:
295                         writel(INTRN_MASK_CLEAR_ALL, cp->regs +
296                                REG_PLUS_INTRN_MASK(ring));
297                         break;
298                 }
299         }
300 }
301
302 static inline void cas_mask_intr(struct cas *cp)
303 {
304         int i;
305
306         for (i = 0; i < N_RX_COMP_RINGS; i++)
307                 cas_disable_irq(cp, i);
308 }
309
310 static void cas_enable_irq(struct cas *cp, const int ring)
311 {
312         if (ring == 0) { /* all but TX_DONE */
313                 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
314                 return;
315         }
316
317         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
318                 switch (ring) {
319 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
320 #ifdef USE_PCI_INTB
321                 case 1:
322 #endif
323 #ifdef USE_PCI_INTC
324                 case 2:
325 #endif
326 #ifdef USE_PCI_INTD
327                 case 3:
328 #endif
329                         writel(INTRN_MASK_RX_EN, cp->regs +
330                                REG_PLUS_INTRN_MASK(ring));
331                         break;
332 #endif
333                 default:
334                         break;
335                 }
336         }
337 }
338
339 static inline void cas_unmask_intr(struct cas *cp)
340 {
341         int i;
342
343         for (i = 0; i < N_RX_COMP_RINGS; i++)
344                 cas_enable_irq(cp, i);
345 }
346
347 static inline void cas_entropy_gather(struct cas *cp)
348 {
349 #ifdef USE_ENTROPY_DEV
350         if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
351                 return;
352
353         batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
354                             readl(cp->regs + REG_ENTROPY_IV),
355                             sizeof(uint64_t)*8);
356 #endif
357 }
358
359 static inline void cas_entropy_reset(struct cas *cp)
360 {
361 #ifdef USE_ENTROPY_DEV
362         if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
363                 return;
364
365         writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
366                cp->regs + REG_BIM_LOCAL_DEV_EN);
367         writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
368         writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
369
370         /* if we read back 0x0, we don't have an entropy device */
371         if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
372                 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
373 #endif
374 }
375
376 /* access to the phy. the following assumes that we've initialized the MIF to
377  * be in frame rather than bit-bang mode
378  */
379 static u16 cas_phy_read(struct cas *cp, int reg)
380 {
381         u32 cmd;
382         int limit = STOP_TRIES_PHY;
383
384         cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
385         cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
386         cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
387         cmd |= MIF_FRAME_TURN_AROUND_MSB;
388         writel(cmd, cp->regs + REG_MIF_FRAME);
389
390         /* poll for completion */
391         while (limit-- > 0) {
392                 udelay(10);
393                 cmd = readl(cp->regs + REG_MIF_FRAME);
394                 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
395                         return cmd & MIF_FRAME_DATA_MASK;
396         }
397         return 0xFFFF; /* -1 */
398 }
399
400 static int cas_phy_write(struct cas *cp, int reg, u16 val)
401 {
402         int limit = STOP_TRIES_PHY;
403         u32 cmd;
404
405         cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
406         cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
407         cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
408         cmd |= MIF_FRAME_TURN_AROUND_MSB;
409         cmd |= val & MIF_FRAME_DATA_MASK;
410         writel(cmd, cp->regs + REG_MIF_FRAME);
411
412         /* poll for completion */
413         while (limit-- > 0) {
414                 udelay(10);
415                 cmd = readl(cp->regs + REG_MIF_FRAME);
416                 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
417                         return 0;
418         }
419         return -1;
420 }
421
422 static void cas_phy_powerup(struct cas *cp)
423 {
424         u16 ctl = cas_phy_read(cp, MII_BMCR);
425
426         if ((ctl & BMCR_PDOWN) == 0)
427                 return;
428         ctl &= ~BMCR_PDOWN;
429         cas_phy_write(cp, MII_BMCR, ctl);
430 }
431
432 static void cas_phy_powerdown(struct cas *cp)
433 {
434         u16 ctl = cas_phy_read(cp, MII_BMCR);
435
436         if (ctl & BMCR_PDOWN)
437                 return;
438         ctl |= BMCR_PDOWN;
439         cas_phy_write(cp, MII_BMCR, ctl);
440 }
441
442 /* cp->lock held. note: the last put_page will free the buffer */
443 static int cas_page_free(struct cas *cp, cas_page_t *page)
444 {
445         dma_unmap_page(&cp->pdev->dev, page->dma_addr, cp->page_size,
446                        DMA_FROM_DEVICE);
447         __free_pages(page->buffer, cp->page_order);
448         kfree(page);
449         return 0;
450 }
451
452 #ifdef RX_COUNT_BUFFERS
453 #define RX_USED_ADD(x, y)       ((x)->used += (y))
454 #define RX_USED_SET(x, y)       ((x)->used  = (y))
455 #else
456 #define RX_USED_ADD(x, y) do { } while(0)
457 #define RX_USED_SET(x, y) do { } while(0)
458 #endif
459
460 /* local page allocation routines for the receive buffers. jumbo pages
461  * require at least 8K contiguous and 8K aligned buffers.
462  */
463 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
464 {
465         cas_page_t *page;
466
467         page = kmalloc(sizeof(cas_page_t), flags);
468         if (!page)
469                 return NULL;
470
471         INIT_LIST_HEAD(&page->list);
472         RX_USED_SET(page, 0);
473         page->buffer = alloc_pages(flags, cp->page_order);
474         if (!page->buffer)
475                 goto page_err;
476         page->dma_addr = dma_map_page(&cp->pdev->dev, page->buffer, 0,
477                                       cp->page_size, DMA_FROM_DEVICE);
478         return page;
479
480 page_err:
481         kfree(page);
482         return NULL;
483 }
484
485 /* initialize spare pool of rx buffers, but allocate during the open */
486 static void cas_spare_init(struct cas *cp)
487 {
488         spin_lock(&cp->rx_inuse_lock);
489         INIT_LIST_HEAD(&cp->rx_inuse_list);
490         spin_unlock(&cp->rx_inuse_lock);
491
492         spin_lock(&cp->rx_spare_lock);
493         INIT_LIST_HEAD(&cp->rx_spare_list);
494         cp->rx_spares_needed = RX_SPARE_COUNT;
495         spin_unlock(&cp->rx_spare_lock);
496 }
497
498 /* used on close. free all the spare buffers. */
499 static void cas_spare_free(struct cas *cp)
500 {
501         struct list_head list, *elem, *tmp;
502
503         /* free spare buffers */
504         INIT_LIST_HEAD(&list);
505         spin_lock(&cp->rx_spare_lock);
506         list_splice_init(&cp->rx_spare_list, &list);
507         spin_unlock(&cp->rx_spare_lock);
508         list_for_each_safe(elem, tmp, &list) {
509                 cas_page_free(cp, list_entry(elem, cas_page_t, list));
510         }
511
512         INIT_LIST_HEAD(&list);
513 #if 1
514         /*
515          * Looks like Adrian had protected this with a different
516          * lock than used everywhere else to manipulate this list.
517          */
518         spin_lock(&cp->rx_inuse_lock);
519         list_splice_init(&cp->rx_inuse_list, &list);
520         spin_unlock(&cp->rx_inuse_lock);
521 #else
522         spin_lock(&cp->rx_spare_lock);
523         list_splice_init(&cp->rx_inuse_list, &list);
524         spin_unlock(&cp->rx_spare_lock);
525 #endif
526         list_for_each_safe(elem, tmp, &list) {
527                 cas_page_free(cp, list_entry(elem, cas_page_t, list));
528         }
529 }
530
531 /* replenish spares if needed */
532 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
533 {
534         struct list_head list, *elem, *tmp;
535         int needed, i;
536
537         /* check inuse list. if we don't need any more free buffers,
538          * just free it
539          */
540
541         /* make a local copy of the list */
542         INIT_LIST_HEAD(&list);
543         spin_lock(&cp->rx_inuse_lock);
544         list_splice_init(&cp->rx_inuse_list, &list);
545         spin_unlock(&cp->rx_inuse_lock);
546
547         list_for_each_safe(elem, tmp, &list) {
548                 cas_page_t *page = list_entry(elem, cas_page_t, list);
549
550                 /*
551                  * With the lockless pagecache, cassini buffering scheme gets
552                  * slightly less accurate: we might find that a page has an
553                  * elevated reference count here, due to a speculative ref,
554                  * and skip it as in-use. Ideally we would be able to reclaim
555                  * it. However this would be such a rare case, it doesn't
556                  * matter too much as we should pick it up the next time round.
557                  *
558                  * Importantly, if we find that the page has a refcount of 1
559                  * here (our refcount), then we know it is definitely not inuse
560                  * so we can reuse it.
561                  */
562                 if (page_count(page->buffer) > 1)
563                         continue;
564
565                 list_del(elem);
566                 spin_lock(&cp->rx_spare_lock);
567                 if (cp->rx_spares_needed > 0) {
568                         list_add(elem, &cp->rx_spare_list);
569                         cp->rx_spares_needed--;
570                         spin_unlock(&cp->rx_spare_lock);
571                 } else {
572                         spin_unlock(&cp->rx_spare_lock);
573                         cas_page_free(cp, page);
574                 }
575         }
576
577         /* put any inuse buffers back on the list */
578         if (!list_empty(&list)) {
579                 spin_lock(&cp->rx_inuse_lock);
580                 list_splice(&list, &cp->rx_inuse_list);
581                 spin_unlock(&cp->rx_inuse_lock);
582         }
583
584         spin_lock(&cp->rx_spare_lock);
585         needed = cp->rx_spares_needed;
586         spin_unlock(&cp->rx_spare_lock);
587         if (!needed)
588                 return;
589
590         /* we still need spares, so try to allocate some */
591         INIT_LIST_HEAD(&list);
592         i = 0;
593         while (i < needed) {
594                 cas_page_t *spare = cas_page_alloc(cp, flags);
595                 if (!spare)
596                         break;
597                 list_add(&spare->list, &list);
598                 i++;
599         }
600
601         spin_lock(&cp->rx_spare_lock);
602         list_splice(&list, &cp->rx_spare_list);
603         cp->rx_spares_needed -= i;
604         spin_unlock(&cp->rx_spare_lock);
605 }
606
607 /* pull a page from the list. */
608 static cas_page_t *cas_page_dequeue(struct cas *cp)
609 {
610         struct list_head *entry;
611         int recover;
612
613         spin_lock(&cp->rx_spare_lock);
614         if (list_empty(&cp->rx_spare_list)) {
615                 /* try to do a quick recovery */
616                 spin_unlock(&cp->rx_spare_lock);
617                 cas_spare_recover(cp, GFP_ATOMIC);
618                 spin_lock(&cp->rx_spare_lock);
619                 if (list_empty(&cp->rx_spare_list)) {
620                         netif_err(cp, rx_err, cp->dev,
621                                   "no spare buffers available\n");
622                         spin_unlock(&cp->rx_spare_lock);
623                         return NULL;
624                 }
625         }
626
627         entry = cp->rx_spare_list.next;
628         list_del(entry);
629         recover = ++cp->rx_spares_needed;
630         spin_unlock(&cp->rx_spare_lock);
631
632         /* trigger the timer to do the recovery */
633         if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
634 #if 1
635                 atomic_inc(&cp->reset_task_pending);
636                 atomic_inc(&cp->reset_task_pending_spare);
637                 schedule_work(&cp->reset_task);
638 #else
639                 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
640                 schedule_work(&cp->reset_task);
641 #endif
642         }
643         return list_entry(entry, cas_page_t, list);
644 }
645
646
647 static void cas_mif_poll(struct cas *cp, const int enable)
648 {
649         u32 cfg;
650
651         cfg  = readl(cp->regs + REG_MIF_CFG);
652         cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
653
654         if (cp->phy_type & CAS_PHY_MII_MDIO1)
655                 cfg |= MIF_CFG_PHY_SELECT;
656
657         /* poll and interrupt on link status change. */
658         if (enable) {
659                 cfg |= MIF_CFG_POLL_EN;
660                 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
661                 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
662         }
663         writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
664                cp->regs + REG_MIF_MASK);
665         writel(cfg, cp->regs + REG_MIF_CFG);
666 }
667
668 /* Must be invoked under cp->lock */
669 static void cas_begin_auto_negotiation(struct cas *cp,
670                                        const struct ethtool_link_ksettings *ep)
671 {
672         u16 ctl;
673 #if 1
674         int lcntl;
675         int changed = 0;
676         int oldstate = cp->lstate;
677         int link_was_not_down = !(oldstate == link_down);
678 #endif
679         /* Setup link parameters */
680         if (!ep)
681                 goto start_aneg;
682         lcntl = cp->link_cntl;
683         if (ep->base.autoneg == AUTONEG_ENABLE) {
684                 cp->link_cntl = BMCR_ANENABLE;
685         } else {
686                 u32 speed = ep->base.speed;
687                 cp->link_cntl = 0;
688                 if (speed == SPEED_100)
689                         cp->link_cntl |= BMCR_SPEED100;
690                 else if (speed == SPEED_1000)
691                         cp->link_cntl |= CAS_BMCR_SPEED1000;
692                 if (ep->base.duplex == DUPLEX_FULL)
693                         cp->link_cntl |= BMCR_FULLDPLX;
694         }
695 #if 1
696         changed = (lcntl != cp->link_cntl);
697 #endif
698 start_aneg:
699         if (cp->lstate == link_up) {
700                 netdev_info(cp->dev, "PCS link down\n");
701         } else {
702                 if (changed) {
703                         netdev_info(cp->dev, "link configuration changed\n");
704                 }
705         }
706         cp->lstate = link_down;
707         cp->link_transition = LINK_TRANSITION_LINK_DOWN;
708         if (!cp->hw_running)
709                 return;
710 #if 1
711         /*
712          * WTZ: If the old state was link_up, we turn off the carrier
713          * to replicate everything we do elsewhere on a link-down
714          * event when we were already in a link-up state..
715          */
716         if (oldstate == link_up)
717                 netif_carrier_off(cp->dev);
718         if (changed  && link_was_not_down) {
719                 /*
720                  * WTZ: This branch will simply schedule a full reset after
721                  * we explicitly changed link modes in an ioctl. See if this
722                  * fixes the link-problems we were having for forced mode.
723                  */
724                 atomic_inc(&cp->reset_task_pending);
725                 atomic_inc(&cp->reset_task_pending_all);
726                 schedule_work(&cp->reset_task);
727                 cp->timer_ticks = 0;
728                 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
729                 return;
730         }
731 #endif
732         if (cp->phy_type & CAS_PHY_SERDES) {
733                 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
734
735                 if (cp->link_cntl & BMCR_ANENABLE) {
736                         val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
737                         cp->lstate = link_aneg;
738                 } else {
739                         if (cp->link_cntl & BMCR_FULLDPLX)
740                                 val |= PCS_MII_CTRL_DUPLEX;
741                         val &= ~PCS_MII_AUTONEG_EN;
742                         cp->lstate = link_force_ok;
743                 }
744                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
745                 writel(val, cp->regs + REG_PCS_MII_CTRL);
746
747         } else {
748                 cas_mif_poll(cp, 0);
749                 ctl = cas_phy_read(cp, MII_BMCR);
750                 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
751                          CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
752                 ctl |= cp->link_cntl;
753                 if (ctl & BMCR_ANENABLE) {
754                         ctl |= BMCR_ANRESTART;
755                         cp->lstate = link_aneg;
756                 } else {
757                         cp->lstate = link_force_ok;
758                 }
759                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
760                 cas_phy_write(cp, MII_BMCR, ctl);
761                 cas_mif_poll(cp, 1);
762         }
763
764         cp->timer_ticks = 0;
765         mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
766 }
767
768 /* Must be invoked under cp->lock. */
769 static int cas_reset_mii_phy(struct cas *cp)
770 {
771         int limit = STOP_TRIES_PHY;
772         u16 val;
773
774         cas_phy_write(cp, MII_BMCR, BMCR_RESET);
775         udelay(100);
776         while (--limit) {
777                 val = cas_phy_read(cp, MII_BMCR);
778                 if ((val & BMCR_RESET) == 0)
779                         break;
780                 udelay(10);
781         }
782         return limit <= 0;
783 }
784
785 static void cas_saturn_firmware_init(struct cas *cp)
786 {
787         const struct firmware *fw;
788         const char fw_name[] = "/*(DEBLOBBED)*/";
789         int err;
790
791         if (PHY_NS_DP83065 != cp->phy_id)
792                 return;
793
794         err = reject_firmware(&fw, fw_name, &cp->pdev->dev);
795         if (err) {
796                 pr_err("Failed to load firmware \"%s\"\n",
797                        fw_name);
798                 return;
799         }
800         if (fw->size < 2) {
801                 pr_err("bogus length %zu in \"%s\"\n",
802                        fw->size, fw_name);
803                 goto out;
804         }
805         cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
806         cp->fw_size = fw->size - 2;
807         cp->fw_data = vmalloc(cp->fw_size);
808         if (!cp->fw_data)
809                 goto out;
810         memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
811 out:
812         release_firmware(fw);
813 }
814
815 static void cas_saturn_firmware_load(struct cas *cp)
816 {
817         int i;
818
819         if (!cp->fw_data)
820                 return;
821
822         cas_phy_powerdown(cp);
823
824         /* expanded memory access mode */
825         cas_phy_write(cp, DP83065_MII_MEM, 0x0);
826
827         /* pointer configuration for new firmware */
828         cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
829         cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
830         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
831         cas_phy_write(cp, DP83065_MII_REGD, 0x82);
832         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
833         cas_phy_write(cp, DP83065_MII_REGD, 0x0);
834         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
835         cas_phy_write(cp, DP83065_MII_REGD, 0x39);
836
837         /* download new firmware */
838         cas_phy_write(cp, DP83065_MII_MEM, 0x1);
839         cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
840         for (i = 0; i < cp->fw_size; i++)
841                 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
842
843         /* enable firmware */
844         cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
845         cas_phy_write(cp, DP83065_MII_REGD, 0x1);
846 }
847
848
849 /* phy initialization */
850 static void cas_phy_init(struct cas *cp)
851 {
852         u16 val;
853
854         /* if we're in MII/GMII mode, set up phy */
855         if (CAS_PHY_MII(cp->phy_type)) {
856                 writel(PCS_DATAPATH_MODE_MII,
857                        cp->regs + REG_PCS_DATAPATH_MODE);
858
859                 cas_mif_poll(cp, 0);
860                 cas_reset_mii_phy(cp); /* take out of isolate mode */
861
862                 if (PHY_LUCENT_B0 == cp->phy_id) {
863                         /* workaround link up/down issue with lucent */
864                         cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
865                         cas_phy_write(cp, MII_BMCR, 0x00f1);
866                         cas_phy_write(cp, LUCENT_MII_REG, 0x0);
867
868                 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
869                         /* workarounds for broadcom phy */
870                         cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
871                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
872                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
873                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
874                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
875                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
876                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
877                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
878                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
879                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
880                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
881
882                 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
883                         val = cas_phy_read(cp, BROADCOM_MII_REG4);
884                         val = cas_phy_read(cp, BROADCOM_MII_REG4);
885                         if (val & 0x0080) {
886                                 /* link workaround */
887                                 cas_phy_write(cp, BROADCOM_MII_REG4,
888                                               val & ~0x0080);
889                         }
890
891                 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
892                         writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
893                                SATURN_PCFG_FSI : 0x0,
894                                cp->regs + REG_SATURN_PCFG);
895
896                         /* load firmware to address 10Mbps auto-negotiation
897                          * issue. NOTE: this will need to be changed if the
898                          * default firmware gets fixed.
899                          */
900                         if (PHY_NS_DP83065 == cp->phy_id) {
901                                 cas_saturn_firmware_load(cp);
902                         }
903                         cas_phy_powerup(cp);
904                 }
905
906                 /* advertise capabilities */
907                 val = cas_phy_read(cp, MII_BMCR);
908                 val &= ~BMCR_ANENABLE;
909                 cas_phy_write(cp, MII_BMCR, val);
910                 udelay(10);
911
912                 cas_phy_write(cp, MII_ADVERTISE,
913                               cas_phy_read(cp, MII_ADVERTISE) |
914                               (ADVERTISE_10HALF | ADVERTISE_10FULL |
915                                ADVERTISE_100HALF | ADVERTISE_100FULL |
916                                CAS_ADVERTISE_PAUSE |
917                                CAS_ADVERTISE_ASYM_PAUSE));
918
919                 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
920                         /* make sure that we don't advertise half
921                          * duplex to avoid a chip issue
922                          */
923                         val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
924                         val &= ~CAS_ADVERTISE_1000HALF;
925                         val |= CAS_ADVERTISE_1000FULL;
926                         cas_phy_write(cp, CAS_MII_1000_CTRL, val);
927                 }
928
929         } else {
930                 /* reset pcs for serdes */
931                 u32 val;
932                 int limit;
933
934                 writel(PCS_DATAPATH_MODE_SERDES,
935                        cp->regs + REG_PCS_DATAPATH_MODE);
936
937                 /* enable serdes pins on saturn */
938                 if (cp->cas_flags & CAS_FLAG_SATURN)
939                         writel(0, cp->regs + REG_SATURN_PCFG);
940
941                 /* Reset PCS unit. */
942                 val = readl(cp->regs + REG_PCS_MII_CTRL);
943                 val |= PCS_MII_RESET;
944                 writel(val, cp->regs + REG_PCS_MII_CTRL);
945
946                 limit = STOP_TRIES;
947                 while (--limit > 0) {
948                         udelay(10);
949                         if ((readl(cp->regs + REG_PCS_MII_CTRL) &
950                              PCS_MII_RESET) == 0)
951                                 break;
952                 }
953                 if (limit <= 0)
954                         netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
955                                     readl(cp->regs + REG_PCS_STATE_MACHINE));
956
957                 /* Make sure PCS is disabled while changing advertisement
958                  * configuration.
959                  */
960                 writel(0x0, cp->regs + REG_PCS_CFG);
961
962                 /* Advertise all capabilities except half-duplex. */
963                 val  = readl(cp->regs + REG_PCS_MII_ADVERT);
964                 val &= ~PCS_MII_ADVERT_HD;
965                 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
966                         PCS_MII_ADVERT_ASYM_PAUSE);
967                 writel(val, cp->regs + REG_PCS_MII_ADVERT);
968
969                 /* enable PCS */
970                 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
971
972                 /* pcs workaround: enable sync detect */
973                 writel(PCS_SERDES_CTRL_SYNCD_EN,
974                        cp->regs + REG_PCS_SERDES_CTRL);
975         }
976 }
977
978
979 static int cas_pcs_link_check(struct cas *cp)
980 {
981         u32 stat, state_machine;
982         int retval = 0;
983
984         /* The link status bit latches on zero, so you must
985          * read it twice in such a case to see a transition
986          * to the link being up.
987          */
988         stat = readl(cp->regs + REG_PCS_MII_STATUS);
989         if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
990                 stat = readl(cp->regs + REG_PCS_MII_STATUS);
991
992         /* The remote-fault indication is only valid
993          * when autoneg has completed.
994          */
995         if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
996                      PCS_MII_STATUS_REMOTE_FAULT)) ==
997             (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
998                 netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
999
1000         /* work around link detection issue by querying the PCS state
1001          * machine directly.
1002          */
1003         state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1004         if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1005                 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1006         } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1007                 stat |= PCS_MII_STATUS_LINK_STATUS;
1008         }
1009
1010         if (stat & PCS_MII_STATUS_LINK_STATUS) {
1011                 if (cp->lstate != link_up) {
1012                         if (cp->opened) {
1013                                 cp->lstate = link_up;
1014                                 cp->link_transition = LINK_TRANSITION_LINK_UP;
1015
1016                                 cas_set_link_modes(cp);
1017                                 netif_carrier_on(cp->dev);
1018                         }
1019                 }
1020         } else if (cp->lstate == link_up) {
1021                 cp->lstate = link_down;
1022                 if (link_transition_timeout != 0 &&
1023                     cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1024                     !cp->link_transition_jiffies_valid) {
1025                         /*
1026                          * force a reset, as a workaround for the
1027                          * link-failure problem. May want to move this to a
1028                          * point a bit earlier in the sequence. If we had
1029                          * generated a reset a short time ago, we'll wait for
1030                          * the link timer to check the status until a
1031                          * timer expires (link_transistion_jiffies_valid is
1032                          * true when the timer is running.)  Instead of using
1033                          * a system timer, we just do a check whenever the
1034                          * link timer is running - this clears the flag after
1035                          * a suitable delay.
1036                          */
1037                         retval = 1;
1038                         cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1039                         cp->link_transition_jiffies = jiffies;
1040                         cp->link_transition_jiffies_valid = 1;
1041                 } else {
1042                         cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1043                 }
1044                 netif_carrier_off(cp->dev);
1045                 if (cp->opened)
1046                         netif_info(cp, link, cp->dev, "PCS link down\n");
1047
1048                 /* Cassini only: if you force a mode, there can be
1049                  * sync problems on link down. to fix that, the following
1050                  * things need to be checked:
1051                  * 1) read serialink state register
1052                  * 2) read pcs status register to verify link down.
1053                  * 3) if link down and serial link == 0x03, then you need
1054                  *    to global reset the chip.
1055                  */
1056                 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1057                         /* should check to see if we're in a forced mode */
1058                         stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1059                         if (stat == 0x03)
1060                                 return 1;
1061                 }
1062         } else if (cp->lstate == link_down) {
1063                 if (link_transition_timeout != 0 &&
1064                     cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1065                     !cp->link_transition_jiffies_valid) {
1066                         /* force a reset, as a workaround for the
1067                          * link-failure problem.  May want to move
1068                          * this to a point a bit earlier in the
1069                          * sequence.
1070                          */
1071                         retval = 1;
1072                         cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1073                         cp->link_transition_jiffies = jiffies;
1074                         cp->link_transition_jiffies_valid = 1;
1075                 } else {
1076                         cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1077                 }
1078         }
1079
1080         return retval;
1081 }
1082
1083 static int cas_pcs_interrupt(struct net_device *dev,
1084                              struct cas *cp, u32 status)
1085 {
1086         u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1087
1088         if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1089                 return 0;
1090         return cas_pcs_link_check(cp);
1091 }
1092
1093 static int cas_txmac_interrupt(struct net_device *dev,
1094                                struct cas *cp, u32 status)
1095 {
1096         u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1097
1098         if (!txmac_stat)
1099                 return 0;
1100
1101         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1102                      "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1103
1104         /* Defer timer expiration is quite normal,
1105          * don't even log the event.
1106          */
1107         if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1108             !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1109                 return 0;
1110
1111         spin_lock(&cp->stat_lock[0]);
1112         if (txmac_stat & MAC_TX_UNDERRUN) {
1113                 netdev_err(dev, "TX MAC xmit underrun\n");
1114                 cp->net_stats[0].tx_fifo_errors++;
1115         }
1116
1117         if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1118                 netdev_err(dev, "TX MAC max packet size error\n");
1119                 cp->net_stats[0].tx_errors++;
1120         }
1121
1122         /* The rest are all cases of one of the 16-bit TX
1123          * counters expiring.
1124          */
1125         if (txmac_stat & MAC_TX_COLL_NORMAL)
1126                 cp->net_stats[0].collisions += 0x10000;
1127
1128         if (txmac_stat & MAC_TX_COLL_EXCESS) {
1129                 cp->net_stats[0].tx_aborted_errors += 0x10000;
1130                 cp->net_stats[0].collisions += 0x10000;
1131         }
1132
1133         if (txmac_stat & MAC_TX_COLL_LATE) {
1134                 cp->net_stats[0].tx_aborted_errors += 0x10000;
1135                 cp->net_stats[0].collisions += 0x10000;
1136         }
1137         spin_unlock(&cp->stat_lock[0]);
1138
1139         /* We do not keep track of MAC_TX_COLL_FIRST and
1140          * MAC_TX_PEAK_ATTEMPTS events.
1141          */
1142         return 0;
1143 }
1144
1145 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1146 {
1147         cas_hp_inst_t *inst;
1148         u32 val;
1149         int i;
1150
1151         i = 0;
1152         while ((inst = firmware) && inst->note) {
1153                 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1154
1155                 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1156                 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1157                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1158
1159                 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1160                 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1161                 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1162                 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1163                 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1164                 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1165                 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1166                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1167
1168                 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1169                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1170                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1171                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1172                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1173                 ++firmware;
1174                 ++i;
1175         }
1176 }
1177
1178 static void cas_init_rx_dma(struct cas *cp)
1179 {
1180         u64 desc_dma = cp->block_dvma;
1181         u32 val;
1182         int i, size;
1183
1184         /* rx free descriptors */
1185         val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1186         val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1187         val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1188         if ((N_RX_DESC_RINGS > 1) &&
1189             (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1190                 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1191         writel(val, cp->regs + REG_RX_CFG);
1192
1193         val = (unsigned long) cp->init_rxds[0] -
1194                 (unsigned long) cp->init_block;
1195         writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1196         writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1197         writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1198
1199         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1200                 /* rx desc 2 is for IPSEC packets. however,
1201                  * we don't it that for that purpose.
1202                  */
1203                 val = (unsigned long) cp->init_rxds[1] -
1204                         (unsigned long) cp->init_block;
1205                 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1206                 writel((desc_dma + val) & 0xffffffff, cp->regs +
1207                        REG_PLUS_RX_DB1_LOW);
1208                 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1209                        REG_PLUS_RX_KICK1);
1210         }
1211
1212         /* rx completion registers */
1213         val = (unsigned long) cp->init_rxcs[0] -
1214                 (unsigned long) cp->init_block;
1215         writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1216         writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1217
1218         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1219                 /* rx comp 2-4 */
1220                 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1221                         val = (unsigned long) cp->init_rxcs[i] -
1222                                 (unsigned long) cp->init_block;
1223                         writel((desc_dma + val) >> 32, cp->regs +
1224                                REG_PLUS_RX_CBN_HI(i));
1225                         writel((desc_dma + val) & 0xffffffff, cp->regs +
1226                                REG_PLUS_RX_CBN_LOW(i));
1227                 }
1228         }
1229
1230         /* read selective clear regs to prevent spurious interrupts
1231          * on reset because complete == kick.
1232          * selective clear set up to prevent interrupts on resets
1233          */
1234         readl(cp->regs + REG_INTR_STATUS_ALIAS);
1235         writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1236
1237         /* set up pause thresholds */
1238         val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1239                         cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1240         val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1241                         cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1242         writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1243
1244         /* zero out dma reassembly buffers */
1245         for (i = 0; i < 64; i++) {
1246                 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1247                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1248                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1249                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1250         }
1251
1252         /* make sure address register is 0 for normal operation */
1253         writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1254         writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1255
1256         /* interrupt mitigation */
1257 #ifdef USE_RX_BLANK
1258         val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1259         val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1260         writel(val, cp->regs + REG_RX_BLANK);
1261 #else
1262         writel(0x0, cp->regs + REG_RX_BLANK);
1263 #endif
1264
1265         /* interrupt generation as a function of low water marks for
1266          * free desc and completion entries. these are used to trigger
1267          * housekeeping for rx descs. we don't use the free interrupt
1268          * as it's not very useful
1269          */
1270         /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1271         val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1272         writel(val, cp->regs + REG_RX_AE_THRESH);
1273         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1274                 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1275                 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1276         }
1277
1278         /* Random early detect registers. useful for congestion avoidance.
1279          * this should be tunable.
1280          */
1281         writel(0x0, cp->regs + REG_RX_RED);
1282
1283         /* receive page sizes. default == 2K (0x800) */
1284         val = 0;
1285         if (cp->page_size == 0x1000)
1286                 val = 0x1;
1287         else if (cp->page_size == 0x2000)
1288                 val = 0x2;
1289         else if (cp->page_size == 0x4000)
1290                 val = 0x3;
1291
1292         /* round mtu + offset. constrain to page size. */
1293         size = cp->dev->mtu + 64;
1294         if (size > cp->page_size)
1295                 size = cp->page_size;
1296
1297         if (size <= 0x400)
1298                 i = 0x0;
1299         else if (size <= 0x800)
1300                 i = 0x1;
1301         else if (size <= 0x1000)
1302                 i = 0x2;
1303         else
1304                 i = 0x3;
1305
1306         cp->mtu_stride = 1 << (i + 10);
1307         val  = CAS_BASE(RX_PAGE_SIZE, val);
1308         val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1309         val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1310         val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1311         writel(val, cp->regs + REG_RX_PAGE_SIZE);
1312
1313         /* enable the header parser if desired */
1314         if (&CAS_HP_FIRMWARE[0] == &cas_prog_null[0])
1315                 return;
1316
1317         val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1318         val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1319         val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1320         writel(val, cp->regs + REG_HP_CFG);
1321 }
1322
1323 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1324 {
1325         memset(rxc, 0, sizeof(*rxc));
1326         rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1327 }
1328
1329 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1330  * flipping is protected by the fact that the chip will not
1331  * hand back the same page index while it's being processed.
1332  */
1333 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1334 {
1335         cas_page_t *page = cp->rx_pages[1][index];
1336         cas_page_t *new;
1337
1338         if (page_count(page->buffer) == 1)
1339                 return page;
1340
1341         new = cas_page_dequeue(cp);
1342         if (new) {
1343                 spin_lock(&cp->rx_inuse_lock);
1344                 list_add(&page->list, &cp->rx_inuse_list);
1345                 spin_unlock(&cp->rx_inuse_lock);
1346         }
1347         return new;
1348 }
1349
1350 /* this needs to be changed if we actually use the ENC RX DESC ring */
1351 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1352                                  const int index)
1353 {
1354         cas_page_t **page0 = cp->rx_pages[0];
1355         cas_page_t **page1 = cp->rx_pages[1];
1356
1357         /* swap if buffer is in use */
1358         if (page_count(page0[index]->buffer) > 1) {
1359                 cas_page_t *new = cas_page_spare(cp, index);
1360                 if (new) {
1361                         page1[index] = page0[index];
1362                         page0[index] = new;
1363                 }
1364         }
1365         RX_USED_SET(page0[index], 0);
1366         return page0[index];
1367 }
1368
1369 static void cas_clean_rxds(struct cas *cp)
1370 {
1371         /* only clean ring 0 as ring 1 is used for spare buffers */
1372         struct cas_rx_desc *rxd = cp->init_rxds[0];
1373         int i, size;
1374
1375         /* release all rx flows */
1376         for (i = 0; i < N_RX_FLOWS; i++) {
1377                 struct sk_buff *skb;
1378                 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1379                         cas_skb_release(skb);
1380                 }
1381         }
1382
1383         /* initialize descriptors */
1384         size = RX_DESC_RINGN_SIZE(0);
1385         for (i = 0; i < size; i++) {
1386                 cas_page_t *page = cas_page_swap(cp, 0, i);
1387                 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1388                 rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1389                                             CAS_BASE(RX_INDEX_RING, 0));
1390         }
1391
1392         cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
1393         cp->rx_last[0] = 0;
1394         cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1395 }
1396
1397 static void cas_clean_rxcs(struct cas *cp)
1398 {
1399         int i, j;
1400
1401         /* take ownership of rx comp descriptors */
1402         memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1403         memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1404         for (i = 0; i < N_RX_COMP_RINGS; i++) {
1405                 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1406                 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1407                         cas_rxc_init(rxc + j);
1408                 }
1409         }
1410 }
1411
1412 #if 0
1413 /* When we get a RX fifo overflow, the RX unit is probably hung
1414  * so we do the following.
1415  *
1416  * If any part of the reset goes wrong, we return 1 and that causes the
1417  * whole chip to be reset.
1418  */
1419 static int cas_rxmac_reset(struct cas *cp)
1420 {
1421         struct net_device *dev = cp->dev;
1422         int limit;
1423         u32 val;
1424
1425         /* First, reset MAC RX. */
1426         writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1427         for (limit = 0; limit < STOP_TRIES; limit++) {
1428                 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1429                         break;
1430                 udelay(10);
1431         }
1432         if (limit == STOP_TRIES) {
1433                 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1434                 return 1;
1435         }
1436
1437         /* Second, disable RX DMA. */
1438         writel(0, cp->regs + REG_RX_CFG);
1439         for (limit = 0; limit < STOP_TRIES; limit++) {
1440                 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1441                         break;
1442                 udelay(10);
1443         }
1444         if (limit == STOP_TRIES) {
1445                 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1446                 return 1;
1447         }
1448
1449         mdelay(5);
1450
1451         /* Execute RX reset command. */
1452         writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1453         for (limit = 0; limit < STOP_TRIES; limit++) {
1454                 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1455                         break;
1456                 udelay(10);
1457         }
1458         if (limit == STOP_TRIES) {
1459                 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1460                 return 1;
1461         }
1462
1463         /* reset driver rx state */
1464         cas_clean_rxds(cp);
1465         cas_clean_rxcs(cp);
1466
1467         /* Now, reprogram the rest of RX unit. */
1468         cas_init_rx_dma(cp);
1469
1470         /* re-enable */
1471         val = readl(cp->regs + REG_RX_CFG);
1472         writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1473         writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1474         val = readl(cp->regs + REG_MAC_RX_CFG);
1475         writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1476         return 0;
1477 }
1478 #endif
1479
1480 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1481                                u32 status)
1482 {
1483         u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1484
1485         if (!stat)
1486                 return 0;
1487
1488         netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1489
1490         /* these are all rollovers */
1491         spin_lock(&cp->stat_lock[0]);
1492         if (stat & MAC_RX_ALIGN_ERR)
1493                 cp->net_stats[0].rx_frame_errors += 0x10000;
1494
1495         if (stat & MAC_RX_CRC_ERR)
1496                 cp->net_stats[0].rx_crc_errors += 0x10000;
1497
1498         if (stat & MAC_RX_LEN_ERR)
1499                 cp->net_stats[0].rx_length_errors += 0x10000;
1500
1501         if (stat & MAC_RX_OVERFLOW) {
1502                 cp->net_stats[0].rx_over_errors++;
1503                 cp->net_stats[0].rx_fifo_errors++;
1504         }
1505
1506         /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1507          * events.
1508          */
1509         spin_unlock(&cp->stat_lock[0]);
1510         return 0;
1511 }
1512
1513 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1514                              u32 status)
1515 {
1516         u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1517
1518         if (!stat)
1519                 return 0;
1520
1521         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1522                      "mac interrupt, stat: 0x%x\n", stat);
1523
1524         /* This interrupt is just for pause frame and pause
1525          * tracking.  It is useful for diagnostics and debug
1526          * but probably by default we will mask these events.
1527          */
1528         if (stat & MAC_CTRL_PAUSE_STATE)
1529                 cp->pause_entered++;
1530
1531         if (stat & MAC_CTRL_PAUSE_RECEIVED)
1532                 cp->pause_last_time_recvd = (stat >> 16);
1533
1534         return 0;
1535 }
1536
1537
1538 /* Must be invoked under cp->lock. */
1539 static inline int cas_mdio_link_not_up(struct cas *cp)
1540 {
1541         u16 val;
1542
1543         switch (cp->lstate) {
1544         case link_force_ret:
1545                 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1546                 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1547                 cp->timer_ticks = 5;
1548                 cp->lstate = link_force_ok;
1549                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1550                 break;
1551
1552         case link_aneg:
1553                 val = cas_phy_read(cp, MII_BMCR);
1554
1555                 /* Try forced modes. we try things in the following order:
1556                  * 1000 full -> 100 full/half -> 10 half
1557                  */
1558                 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1559                 val |= BMCR_FULLDPLX;
1560                 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1561                         CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1562                 cas_phy_write(cp, MII_BMCR, val);
1563                 cp->timer_ticks = 5;
1564                 cp->lstate = link_force_try;
1565                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1566                 break;
1567
1568         case link_force_try:
1569                 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1570                 val = cas_phy_read(cp, MII_BMCR);
1571                 cp->timer_ticks = 5;
1572                 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1573                         val &= ~CAS_BMCR_SPEED1000;
1574                         val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1575                         cas_phy_write(cp, MII_BMCR, val);
1576                         break;
1577                 }
1578
1579                 if (val & BMCR_SPEED100) {
1580                         if (val & BMCR_FULLDPLX) /* fd failed */
1581                                 val &= ~BMCR_FULLDPLX;
1582                         else { /* 100Mbps failed */
1583                                 val &= ~BMCR_SPEED100;
1584                         }
1585                         cas_phy_write(cp, MII_BMCR, val);
1586                         break;
1587                 }
1588                 break;
1589         default:
1590                 break;
1591         }
1592         return 0;
1593 }
1594
1595
1596 /* must be invoked with cp->lock held */
1597 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1598 {
1599         int restart;
1600
1601         if (bmsr & BMSR_LSTATUS) {
1602                 /* Ok, here we got a link. If we had it due to a forced
1603                  * fallback, and we were configured for autoneg, we
1604                  * retry a short autoneg pass. If you know your hub is
1605                  * broken, use ethtool ;)
1606                  */
1607                 if ((cp->lstate == link_force_try) &&
1608                     (cp->link_cntl & BMCR_ANENABLE)) {
1609                         cp->lstate = link_force_ret;
1610                         cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1611                         cas_mif_poll(cp, 0);
1612                         cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1613                         cp->timer_ticks = 5;
1614                         if (cp->opened)
1615                                 netif_info(cp, link, cp->dev,
1616                                            "Got link after fallback, retrying autoneg once...\n");
1617                         cas_phy_write(cp, MII_BMCR,
1618                                       cp->link_fcntl | BMCR_ANENABLE |
1619                                       BMCR_ANRESTART);
1620                         cas_mif_poll(cp, 1);
1621
1622                 } else if (cp->lstate != link_up) {
1623                         cp->lstate = link_up;
1624                         cp->link_transition = LINK_TRANSITION_LINK_UP;
1625
1626                         if (cp->opened) {
1627                                 cas_set_link_modes(cp);
1628                                 netif_carrier_on(cp->dev);
1629                         }
1630                 }
1631                 return 0;
1632         }
1633
1634         /* link not up. if the link was previously up, we restart the
1635          * whole process
1636          */
1637         restart = 0;
1638         if (cp->lstate == link_up) {
1639                 cp->lstate = link_down;
1640                 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1641
1642                 netif_carrier_off(cp->dev);
1643                 if (cp->opened)
1644                         netif_info(cp, link, cp->dev, "Link down\n");
1645                 restart = 1;
1646
1647         } else if (++cp->timer_ticks > 10)
1648                 cas_mdio_link_not_up(cp);
1649
1650         return restart;
1651 }
1652
1653 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1654                              u32 status)
1655 {
1656         u32 stat = readl(cp->regs + REG_MIF_STATUS);
1657         u16 bmsr;
1658
1659         /* check for a link change */
1660         if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1661                 return 0;
1662
1663         bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1664         return cas_mii_link_check(cp, bmsr);
1665 }
1666
1667 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1668                              u32 status)
1669 {
1670         u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1671
1672         if (!stat)
1673                 return 0;
1674
1675         netdev_err(dev, "PCI error [%04x:%04x]",
1676                    stat, readl(cp->regs + REG_BIM_DIAG));
1677
1678         /* cassini+ has this reserved */
1679         if ((stat & PCI_ERR_BADACK) &&
1680             ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1681                 pr_cont(" <No ACK64# during ABS64 cycle>");
1682
1683         if (stat & PCI_ERR_DTRTO)
1684                 pr_cont(" <Delayed transaction timeout>");
1685         if (stat & PCI_ERR_OTHER)
1686                 pr_cont(" <other>");
1687         if (stat & PCI_ERR_BIM_DMA_WRITE)
1688                 pr_cont(" <BIM DMA 0 write req>");
1689         if (stat & PCI_ERR_BIM_DMA_READ)
1690                 pr_cont(" <BIM DMA 0 read req>");
1691         pr_cont("\n");
1692
1693         if (stat & PCI_ERR_OTHER) {
1694                 int pci_errs;
1695
1696                 /* Interrogate PCI config space for the
1697                  * true cause.
1698                  */
1699                 pci_errs = pci_status_get_and_clear_errors(cp->pdev);
1700
1701                 netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
1702                 if (pci_errs & PCI_STATUS_PARITY)
1703                         netdev_err(dev, "PCI parity error detected\n");
1704                 if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
1705                         netdev_err(dev, "PCI target abort\n");
1706                 if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
1707                         netdev_err(dev, "PCI master acks target abort\n");
1708                 if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
1709                         netdev_err(dev, "PCI master abort\n");
1710                 if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
1711                         netdev_err(dev, "PCI system error SERR#\n");
1712                 if (pci_errs & PCI_STATUS_DETECTED_PARITY)
1713                         netdev_err(dev, "PCI parity error\n");
1714         }
1715
1716         /* For all PCI errors, we should reset the chip. */
1717         return 1;
1718 }
1719
1720 /* All non-normal interrupt conditions get serviced here.
1721  * Returns non-zero if we should just exit the interrupt
1722  * handler right now (ie. if we reset the card which invalidates
1723  * all of the other original irq status bits).
1724  */
1725 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1726                             u32 status)
1727 {
1728         if (status & INTR_RX_TAG_ERROR) {
1729                 /* corrupt RX tag framing */
1730                 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1731                              "corrupt rx tag framing\n");
1732                 spin_lock(&cp->stat_lock[0]);
1733                 cp->net_stats[0].rx_errors++;
1734                 spin_unlock(&cp->stat_lock[0]);
1735                 goto do_reset;
1736         }
1737
1738         if (status & INTR_RX_LEN_MISMATCH) {
1739                 /* length mismatch. */
1740                 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1741                              "length mismatch for rx frame\n");
1742                 spin_lock(&cp->stat_lock[0]);
1743                 cp->net_stats[0].rx_errors++;
1744                 spin_unlock(&cp->stat_lock[0]);
1745                 goto do_reset;
1746         }
1747
1748         if (status & INTR_PCS_STATUS) {
1749                 if (cas_pcs_interrupt(dev, cp, status))
1750                         goto do_reset;
1751         }
1752
1753         if (status & INTR_TX_MAC_STATUS) {
1754                 if (cas_txmac_interrupt(dev, cp, status))
1755                         goto do_reset;
1756         }
1757
1758         if (status & INTR_RX_MAC_STATUS) {
1759                 if (cas_rxmac_interrupt(dev, cp, status))
1760                         goto do_reset;
1761         }
1762
1763         if (status & INTR_MAC_CTRL_STATUS) {
1764                 if (cas_mac_interrupt(dev, cp, status))
1765                         goto do_reset;
1766         }
1767
1768         if (status & INTR_MIF_STATUS) {
1769                 if (cas_mif_interrupt(dev, cp, status))
1770                         goto do_reset;
1771         }
1772
1773         if (status & INTR_PCI_ERROR_STATUS) {
1774                 if (cas_pci_interrupt(dev, cp, status))
1775                         goto do_reset;
1776         }
1777         return 0;
1778
1779 do_reset:
1780 #if 1
1781         atomic_inc(&cp->reset_task_pending);
1782         atomic_inc(&cp->reset_task_pending_all);
1783         netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1784         schedule_work(&cp->reset_task);
1785 #else
1786         atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1787         netdev_err(dev, "reset called in cas_abnormal_irq\n");
1788         schedule_work(&cp->reset_task);
1789 #endif
1790         return 1;
1791 }
1792
1793 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1794  *       determining whether to do a netif_stop/wakeup
1795  */
1796 #define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1797 #define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1798 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1799                                   const int len)
1800 {
1801         unsigned long off = addr + len;
1802
1803         if (CAS_TABORT(cp) == 1)
1804                 return 0;
1805         if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1806                 return 0;
1807         return TX_TARGET_ABORT_LEN;
1808 }
1809
1810 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1811 {
1812         struct cas_tx_desc *txds;
1813         struct sk_buff **skbs;
1814         struct net_device *dev = cp->dev;
1815         int entry, count;
1816
1817         spin_lock(&cp->tx_lock[ring]);
1818         txds = cp->init_txds[ring];
1819         skbs = cp->tx_skbs[ring];
1820         entry = cp->tx_old[ring];
1821
1822         count = TX_BUFF_COUNT(ring, entry, limit);
1823         while (entry != limit) {
1824                 struct sk_buff *skb = skbs[entry];
1825                 dma_addr_t daddr;
1826                 u32 dlen;
1827                 int frag;
1828
1829                 if (!skb) {
1830                         /* this should never occur */
1831                         entry = TX_DESC_NEXT(ring, entry);
1832                         continue;
1833                 }
1834
1835                 /* however, we might get only a partial skb release. */
1836                 count -= skb_shinfo(skb)->nr_frags +
1837                         + cp->tx_tiny_use[ring][entry].nbufs + 1;
1838                 if (count < 0)
1839                         break;
1840
1841                 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1842                              "tx[%d] done, slot %d\n", ring, entry);
1843
1844                 skbs[entry] = NULL;
1845                 cp->tx_tiny_use[ring][entry].nbufs = 0;
1846
1847                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1848                         struct cas_tx_desc *txd = txds + entry;
1849
1850                         daddr = le64_to_cpu(txd->buffer);
1851                         dlen = CAS_VAL(TX_DESC_BUFLEN,
1852                                        le64_to_cpu(txd->control));
1853                         dma_unmap_page(&cp->pdev->dev, daddr, dlen,
1854                                        DMA_TO_DEVICE);
1855                         entry = TX_DESC_NEXT(ring, entry);
1856
1857                         /* tiny buffer may follow */
1858                         if (cp->tx_tiny_use[ring][entry].used) {
1859                                 cp->tx_tiny_use[ring][entry].used = 0;
1860                                 entry = TX_DESC_NEXT(ring, entry);
1861                         }
1862                 }
1863
1864                 spin_lock(&cp->stat_lock[ring]);
1865                 cp->net_stats[ring].tx_packets++;
1866                 cp->net_stats[ring].tx_bytes += skb->len;
1867                 spin_unlock(&cp->stat_lock[ring]);
1868                 dev_consume_skb_irq(skb);
1869         }
1870         cp->tx_old[ring] = entry;
1871
1872         /* this is wrong for multiple tx rings. the net device needs
1873          * multiple queues for this to do the right thing.  we wait
1874          * for 2*packets to be available when using tiny buffers
1875          */
1876         if (netif_queue_stopped(dev) &&
1877             (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1878                 netif_wake_queue(dev);
1879         spin_unlock(&cp->tx_lock[ring]);
1880 }
1881
1882 static void cas_tx(struct net_device *dev, struct cas *cp,
1883                    u32 status)
1884 {
1885         int limit, ring;
1886 #ifdef USE_TX_COMPWB
1887         u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1888 #endif
1889         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1890                      "tx interrupt, status: 0x%x, %llx\n",
1891                      status, (unsigned long long)compwb);
1892         /* process all the rings */
1893         for (ring = 0; ring < N_TX_RINGS; ring++) {
1894 #ifdef USE_TX_COMPWB
1895                 /* use the completion writeback registers */
1896                 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1897                         CAS_VAL(TX_COMPWB_LSB, compwb);
1898                 compwb = TX_COMPWB_NEXT(compwb);
1899 #else
1900                 limit = readl(cp->regs + REG_TX_COMPN(ring));
1901 #endif
1902                 if (cp->tx_old[ring] != limit)
1903                         cas_tx_ringN(cp, ring, limit);
1904         }
1905 }
1906
1907
1908 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1909                               int entry, const u64 *words,
1910                               struct sk_buff **skbref)
1911 {
1912         int dlen, hlen, len, i, alloclen;
1913         int off, swivel = RX_SWIVEL_OFF_VAL;
1914         struct cas_page *page;
1915         struct sk_buff *skb;
1916         void *crcaddr;
1917         __sum16 csum;
1918         char *p;
1919
1920         hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1921         dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1922         len  = hlen + dlen;
1923
1924         if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1925                 alloclen = len;
1926         else
1927                 alloclen = max(hlen, RX_COPY_MIN);
1928
1929         skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
1930         if (skb == NULL)
1931                 return -1;
1932
1933         *skbref = skb;
1934         skb_reserve(skb, swivel);
1935
1936         p = skb->data;
1937         crcaddr = NULL;
1938         if (hlen) { /* always copy header pages */
1939                 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1940                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1941                 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1942                         swivel;
1943
1944                 i = hlen;
1945                 if (!dlen) /* attach FCS */
1946                         i += cp->crc_size;
1947                 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
1948                                         i, DMA_FROM_DEVICE);
1949                 memcpy(p, page_address(page->buffer) + off, i);
1950                 dma_sync_single_for_device(&cp->pdev->dev,
1951                                            page->dma_addr + off, i,
1952                                            DMA_FROM_DEVICE);
1953                 RX_USED_ADD(page, 0x100);
1954                 p += hlen;
1955                 swivel = 0;
1956         }
1957
1958
1959         if (alloclen < (hlen + dlen)) {
1960                 skb_frag_t *frag = skb_shinfo(skb)->frags;
1961
1962                 /* normal or jumbo packets. we use frags */
1963                 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
1964                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1965                 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
1966
1967                 hlen = min(cp->page_size - off, dlen);
1968                 if (hlen < 0) {
1969                         netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1970                                      "rx page overflow: %d\n", hlen);
1971                         dev_kfree_skb_irq(skb);
1972                         return -1;
1973                 }
1974                 i = hlen;
1975                 if (i == dlen)  /* attach FCS */
1976                         i += cp->crc_size;
1977                 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
1978                                         i, DMA_FROM_DEVICE);
1979
1980                 /* make sure we always copy a header */
1981                 swivel = 0;
1982                 if (p == (char *) skb->data) { /* not split */
1983                         memcpy(p, page_address(page->buffer) + off,
1984                                RX_COPY_MIN);
1985                         dma_sync_single_for_device(&cp->pdev->dev,
1986                                                    page->dma_addr + off, i,
1987                                                    DMA_FROM_DEVICE);
1988                         off += RX_COPY_MIN;
1989                         swivel = RX_COPY_MIN;
1990                         RX_USED_ADD(page, cp->mtu_stride);
1991                 } else {
1992                         RX_USED_ADD(page, hlen);
1993                 }
1994                 skb_put(skb, alloclen);
1995
1996                 skb_shinfo(skb)->nr_frags++;
1997                 skb->data_len += hlen - swivel;
1998                 skb->truesize += hlen - swivel;
1999                 skb->len      += hlen - swivel;
2000
2001                 skb_frag_fill_page_desc(frag, page->buffer, off, hlen - swivel);
2002                 __skb_frag_ref(frag);
2003
2004                 /* any more data? */
2005                 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2006                         hlen = dlen;
2007                         off = 0;
2008
2009                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2010                         page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2011                         dma_sync_single_for_cpu(&cp->pdev->dev,
2012                                                 page->dma_addr,
2013                                                 hlen + cp->crc_size,
2014                                                 DMA_FROM_DEVICE);
2015                         dma_sync_single_for_device(&cp->pdev->dev,
2016                                                    page->dma_addr,
2017                                                    hlen + cp->crc_size,
2018                                                    DMA_FROM_DEVICE);
2019
2020                         skb_shinfo(skb)->nr_frags++;
2021                         skb->data_len += hlen;
2022                         skb->len      += hlen;
2023                         frag++;
2024
2025                         skb_frag_fill_page_desc(frag, page->buffer, 0, hlen);
2026                         __skb_frag_ref(frag);
2027                         RX_USED_ADD(page, hlen + cp->crc_size);
2028                 }
2029
2030                 if (cp->crc_size)
2031                         crcaddr = page_address(page->buffer) + off + hlen;
2032
2033         } else {
2034                 /* copying packet */
2035                 if (!dlen)
2036                         goto end_copy_pkt;
2037
2038                 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2039                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2040                 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2041                 hlen = min(cp->page_size - off, dlen);
2042                 if (hlen < 0) {
2043                         netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2044                                      "rx page overflow: %d\n", hlen);
2045                         dev_kfree_skb_irq(skb);
2046                         return -1;
2047                 }
2048                 i = hlen;
2049                 if (i == dlen) /* attach FCS */
2050                         i += cp->crc_size;
2051                 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
2052                                         i, DMA_FROM_DEVICE);
2053                 memcpy(p, page_address(page->buffer) + off, i);
2054                 dma_sync_single_for_device(&cp->pdev->dev,
2055                                            page->dma_addr + off, i,
2056                                            DMA_FROM_DEVICE);
2057                 if (p == (char *) skb->data) /* not split */
2058                         RX_USED_ADD(page, cp->mtu_stride);
2059                 else
2060                         RX_USED_ADD(page, i);
2061
2062                 /* any more data? */
2063                 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2064                         p += hlen;
2065                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2066                         page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2067                         dma_sync_single_for_cpu(&cp->pdev->dev,
2068                                                 page->dma_addr,
2069                                                 dlen + cp->crc_size,
2070                                                 DMA_FROM_DEVICE);
2071                         memcpy(p, page_address(page->buffer), dlen + cp->crc_size);
2072                         dma_sync_single_for_device(&cp->pdev->dev,
2073                                                    page->dma_addr,
2074                                                    dlen + cp->crc_size,
2075                                                    DMA_FROM_DEVICE);
2076                         RX_USED_ADD(page, dlen + cp->crc_size);
2077                 }
2078 end_copy_pkt:
2079                 if (cp->crc_size)
2080                         crcaddr = skb->data + alloclen;
2081
2082                 skb_put(skb, alloclen);
2083         }
2084
2085         csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2086         if (cp->crc_size) {
2087                 /* checksum includes FCS. strip it out. */
2088                 csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2089                                               csum_unfold(csum)));
2090         }
2091         skb->protocol = eth_type_trans(skb, cp->dev);
2092         if (skb->protocol == htons(ETH_P_IP)) {
2093                 skb->csum = csum_unfold(~csum);
2094                 skb->ip_summed = CHECKSUM_COMPLETE;
2095         } else
2096                 skb_checksum_none_assert(skb);
2097         return len;
2098 }
2099
2100
2101 /* we can handle up to 64 rx flows at a time. we do the same thing
2102  * as nonreassm except that we batch up the buffers.
2103  * NOTE: we currently just treat each flow as a bunch of packets that
2104  *       we pass up. a better way would be to coalesce the packets
2105  *       into a jumbo packet. to do that, we need to do the following:
2106  *       1) the first packet will have a clean split between header and
2107  *          data. save both.
2108  *       2) each time the next flow packet comes in, extend the
2109  *          data length and merge the checksums.
2110  *       3) on flow release, fix up the header.
2111  *       4) make sure the higher layer doesn't care.
2112  * because packets get coalesced, we shouldn't run into fragment count
2113  * issues.
2114  */
2115 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2116                                    struct sk_buff *skb)
2117 {
2118         int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2119         struct sk_buff_head *flow = &cp->rx_flows[flowid];
2120
2121         /* this is protected at a higher layer, so no need to
2122          * do any additional locking here. stick the buffer
2123          * at the end.
2124          */
2125         __skb_queue_tail(flow, skb);
2126         if (words[0] & RX_COMP1_RELEASE_FLOW) {
2127                 while ((skb = __skb_dequeue(flow))) {
2128                         cas_skb_release(skb);
2129                 }
2130         }
2131 }
2132
2133 /* put rx descriptor back on ring. if a buffer is in use by a higher
2134  * layer, this will need to put in a replacement.
2135  */
2136 static void cas_post_page(struct cas *cp, const int ring, const int index)
2137 {
2138         cas_page_t *new;
2139         int entry;
2140
2141         entry = cp->rx_old[ring];
2142
2143         new = cas_page_swap(cp, ring, index);
2144         cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2145         cp->init_rxds[ring][entry].index  =
2146                 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2147                             CAS_BASE(RX_INDEX_RING, ring));
2148
2149         entry = RX_DESC_ENTRY(ring, entry + 1);
2150         cp->rx_old[ring] = entry;
2151
2152         if (entry % 4)
2153                 return;
2154
2155         if (ring == 0)
2156                 writel(entry, cp->regs + REG_RX_KICK);
2157         else if ((N_RX_DESC_RINGS > 1) &&
2158                  (cp->cas_flags & CAS_FLAG_REG_PLUS))
2159                 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2160 }
2161
2162
2163 /* only when things are bad */
2164 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2165 {
2166         unsigned int entry, last, count, released;
2167         int cluster;
2168         cas_page_t **page = cp->rx_pages[ring];
2169
2170         entry = cp->rx_old[ring];
2171
2172         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2173                      "rxd[%d] interrupt, done: %d\n", ring, entry);
2174
2175         cluster = -1;
2176         count = entry & 0x3;
2177         last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2178         released = 0;
2179         while (entry != last) {
2180                 /* make a new buffer if it's still in use */
2181                 if (page_count(page[entry]->buffer) > 1) {
2182                         cas_page_t *new = cas_page_dequeue(cp);
2183                         if (!new) {
2184                                 /* let the timer know that we need to
2185                                  * do this again
2186                                  */
2187                                 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2188                                 if (!timer_pending(&cp->link_timer))
2189                                         mod_timer(&cp->link_timer, jiffies +
2190                                                   CAS_LINK_FAST_TIMEOUT);
2191                                 cp->rx_old[ring]  = entry;
2192                                 cp->rx_last[ring] = num ? num - released : 0;
2193                                 return -ENOMEM;
2194                         }
2195                         spin_lock(&cp->rx_inuse_lock);
2196                         list_add(&page[entry]->list, &cp->rx_inuse_list);
2197                         spin_unlock(&cp->rx_inuse_lock);
2198                         cp->init_rxds[ring][entry].buffer =
2199                                 cpu_to_le64(new->dma_addr);
2200                         page[entry] = new;
2201
2202                 }
2203
2204                 if (++count == 4) {
2205                         cluster = entry;
2206                         count = 0;
2207                 }
2208                 released++;
2209                 entry = RX_DESC_ENTRY(ring, entry + 1);
2210         }
2211         cp->rx_old[ring] = entry;
2212
2213         if (cluster < 0)
2214                 return 0;
2215
2216         if (ring == 0)
2217                 writel(cluster, cp->regs + REG_RX_KICK);
2218         else if ((N_RX_DESC_RINGS > 1) &&
2219                  (cp->cas_flags & CAS_FLAG_REG_PLUS))
2220                 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2221         return 0;
2222 }
2223
2224
2225 /* process a completion ring. packets are set up in three basic ways:
2226  * small packets: should be copied header + data in single buffer.
2227  * large packets: header and data in a single buffer.
2228  * split packets: header in a separate buffer from data.
2229  *                data may be in multiple pages. data may be > 256
2230  *                bytes but in a single page.
2231  *
2232  * NOTE: RX page posting is done in this routine as well. while there's
2233  *       the capability of using multiple RX completion rings, it isn't
2234  *       really worthwhile due to the fact that the page posting will
2235  *       force serialization on the single descriptor ring.
2236  */
2237 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2238 {
2239         struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2240         int entry, drops;
2241         int npackets = 0;
2242
2243         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2244                      "rx[%d] interrupt, done: %d/%d\n",
2245                      ring,
2246                      readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2247
2248         entry = cp->rx_new[ring];
2249         drops = 0;
2250         while (1) {
2251                 struct cas_rx_comp *rxc = rxcs + entry;
2252                 struct sk_buff *skb;
2253                 int type, len;
2254                 u64 words[4];
2255                 int i, dring;
2256
2257                 words[0] = le64_to_cpu(rxc->word1);
2258                 words[1] = le64_to_cpu(rxc->word2);
2259                 words[2] = le64_to_cpu(rxc->word3);
2260                 words[3] = le64_to_cpu(rxc->word4);
2261
2262                 /* don't touch if still owned by hw */
2263                 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2264                 if (type == 0)
2265                         break;
2266
2267                 /* hw hasn't cleared the zero bit yet */
2268                 if (words[3] & RX_COMP4_ZERO) {
2269                         break;
2270                 }
2271
2272                 /* get info on the packet */
2273                 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2274                         spin_lock(&cp->stat_lock[ring]);
2275                         cp->net_stats[ring].rx_errors++;
2276                         if (words[3] & RX_COMP4_LEN_MISMATCH)
2277                                 cp->net_stats[ring].rx_length_errors++;
2278                         if (words[3] & RX_COMP4_BAD)
2279                                 cp->net_stats[ring].rx_crc_errors++;
2280                         spin_unlock(&cp->stat_lock[ring]);
2281
2282                         /* We'll just return it to Cassini. */
2283                 drop_it:
2284                         spin_lock(&cp->stat_lock[ring]);
2285                         ++cp->net_stats[ring].rx_dropped;
2286                         spin_unlock(&cp->stat_lock[ring]);
2287                         goto next;
2288                 }
2289
2290                 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2291                 if (len < 0) {
2292                         ++drops;
2293                         goto drop_it;
2294                 }
2295
2296                 /* see if it's a flow re-assembly or not. the driver
2297                  * itself handles release back up.
2298                  */
2299                 if (RX_DONT_BATCH || (type == 0x2)) {
2300                         /* non-reassm: these always get released */
2301                         cas_skb_release(skb);
2302                 } else {
2303                         cas_rx_flow_pkt(cp, words, skb);
2304                 }
2305
2306                 spin_lock(&cp->stat_lock[ring]);
2307                 cp->net_stats[ring].rx_packets++;
2308                 cp->net_stats[ring].rx_bytes += len;
2309                 spin_unlock(&cp->stat_lock[ring]);
2310
2311         next:
2312                 npackets++;
2313
2314                 /* should it be released? */
2315                 if (words[0] & RX_COMP1_RELEASE_HDR) {
2316                         i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2317                         dring = CAS_VAL(RX_INDEX_RING, i);
2318                         i = CAS_VAL(RX_INDEX_NUM, i);
2319                         cas_post_page(cp, dring, i);
2320                 }
2321
2322                 if (words[0] & RX_COMP1_RELEASE_DATA) {
2323                         i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2324                         dring = CAS_VAL(RX_INDEX_RING, i);
2325                         i = CAS_VAL(RX_INDEX_NUM, i);
2326                         cas_post_page(cp, dring, i);
2327                 }
2328
2329                 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2330                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2331                         dring = CAS_VAL(RX_INDEX_RING, i);
2332                         i = CAS_VAL(RX_INDEX_NUM, i);
2333                         cas_post_page(cp, dring, i);
2334                 }
2335
2336                 /* skip to the next entry */
2337                 entry = RX_COMP_ENTRY(ring, entry + 1 +
2338                                       CAS_VAL(RX_COMP1_SKIP, words[0]));
2339 #ifdef USE_NAPI
2340                 if (budget && (npackets >= budget))
2341                         break;
2342 #endif
2343         }
2344         cp->rx_new[ring] = entry;
2345
2346         if (drops)
2347                 netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2348         return npackets;
2349 }
2350
2351
2352 /* put completion entries back on the ring */
2353 static void cas_post_rxcs_ringN(struct net_device *dev,
2354                                 struct cas *cp, int ring)
2355 {
2356         struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2357         int last, entry;
2358
2359         last = cp->rx_cur[ring];
2360         entry = cp->rx_new[ring];
2361         netif_printk(cp, intr, KERN_DEBUG, dev,
2362                      "rxc[%d] interrupt, done: %d/%d\n",
2363                      ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2364
2365         /* zero and re-mark descriptors */
2366         while (last != entry) {
2367                 cas_rxc_init(rxc + last);
2368                 last = RX_COMP_ENTRY(ring, last + 1);
2369         }
2370         cp->rx_cur[ring] = last;
2371
2372         if (ring == 0)
2373                 writel(last, cp->regs + REG_RX_COMP_TAIL);
2374         else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2375                 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2376 }
2377
2378
2379
2380 /* cassini can use all four PCI interrupts for the completion ring.
2381  * rings 3 and 4 are identical
2382  */
2383 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2384 static inline void cas_handle_irqN(struct net_device *dev,
2385                                    struct cas *cp, const u32 status,
2386                                    const int ring)
2387 {
2388         if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2389                 cas_post_rxcs_ringN(dev, cp, ring);
2390 }
2391
2392 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2393 {
2394         struct net_device *dev = dev_id;
2395         struct cas *cp = netdev_priv(dev);
2396         unsigned long flags;
2397         int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2398         u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2399
2400         /* check for shared irq */
2401         if (status == 0)
2402                 return IRQ_NONE;
2403
2404         spin_lock_irqsave(&cp->lock, flags);
2405         if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2406 #ifdef USE_NAPI
2407                 cas_mask_intr(cp);
2408                 napi_schedule(&cp->napi);
2409 #else
2410                 cas_rx_ringN(cp, ring, 0);
2411 #endif
2412                 status &= ~INTR_RX_DONE_ALT;
2413         }
2414
2415         if (status)
2416                 cas_handle_irqN(dev, cp, status, ring);
2417         spin_unlock_irqrestore(&cp->lock, flags);
2418         return IRQ_HANDLED;
2419 }
2420 #endif
2421
2422 #ifdef USE_PCI_INTB
2423 /* everything but rx packets */
2424 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2425 {
2426         if (status & INTR_RX_BUF_UNAVAIL_1) {
2427                 /* Frame arrived, no free RX buffers available.
2428                  * NOTE: we can get this on a link transition. */
2429                 cas_post_rxds_ringN(cp, 1, 0);
2430                 spin_lock(&cp->stat_lock[1]);
2431                 cp->net_stats[1].rx_dropped++;
2432                 spin_unlock(&cp->stat_lock[1]);
2433         }
2434
2435         if (status & INTR_RX_BUF_AE_1)
2436                 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2437                                     RX_AE_FREEN_VAL(1));
2438
2439         if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2440                 cas_post_rxcs_ringN(cp, 1);
2441 }
2442
2443 /* ring 2 handles a few more events than 3 and 4 */
2444 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2445 {
2446         struct net_device *dev = dev_id;
2447         struct cas *cp = netdev_priv(dev);
2448         unsigned long flags;
2449         u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2450
2451         /* check for shared interrupt */
2452         if (status == 0)
2453                 return IRQ_NONE;
2454
2455         spin_lock_irqsave(&cp->lock, flags);
2456         if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2457 #ifdef USE_NAPI
2458                 cas_mask_intr(cp);
2459                 napi_schedule(&cp->napi);
2460 #else
2461                 cas_rx_ringN(cp, 1, 0);
2462 #endif
2463                 status &= ~INTR_RX_DONE_ALT;
2464         }
2465         if (status)
2466                 cas_handle_irq1(cp, status);
2467         spin_unlock_irqrestore(&cp->lock, flags);
2468         return IRQ_HANDLED;
2469 }
2470 #endif
2471
2472 static inline void cas_handle_irq(struct net_device *dev,
2473                                   struct cas *cp, const u32 status)
2474 {
2475         /* housekeeping interrupts */
2476         if (status & INTR_ERROR_MASK)
2477                 cas_abnormal_irq(dev, cp, status);
2478
2479         if (status & INTR_RX_BUF_UNAVAIL) {
2480                 /* Frame arrived, no free RX buffers available.
2481                  * NOTE: we can get this on a link transition.
2482                  */
2483                 cas_post_rxds_ringN(cp, 0, 0);
2484                 spin_lock(&cp->stat_lock[0]);
2485                 cp->net_stats[0].rx_dropped++;
2486                 spin_unlock(&cp->stat_lock[0]);
2487         } else if (status & INTR_RX_BUF_AE) {
2488                 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2489                                     RX_AE_FREEN_VAL(0));
2490         }
2491
2492         if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2493                 cas_post_rxcs_ringN(dev, cp, 0);
2494 }
2495
2496 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2497 {
2498         struct net_device *dev = dev_id;
2499         struct cas *cp = netdev_priv(dev);
2500         unsigned long flags;
2501         u32 status = readl(cp->regs + REG_INTR_STATUS);
2502
2503         if (status == 0)
2504                 return IRQ_NONE;
2505
2506         spin_lock_irqsave(&cp->lock, flags);
2507         if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2508                 cas_tx(dev, cp, status);
2509                 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2510         }
2511
2512         if (status & INTR_RX_DONE) {
2513 #ifdef USE_NAPI
2514                 cas_mask_intr(cp);
2515                 napi_schedule(&cp->napi);
2516 #else
2517                 cas_rx_ringN(cp, 0, 0);
2518 #endif
2519                 status &= ~INTR_RX_DONE;
2520         }
2521
2522         if (status)
2523                 cas_handle_irq(dev, cp, status);
2524         spin_unlock_irqrestore(&cp->lock, flags);
2525         return IRQ_HANDLED;
2526 }
2527
2528
2529 #ifdef USE_NAPI
2530 static int cas_poll(struct napi_struct *napi, int budget)
2531 {
2532         struct cas *cp = container_of(napi, struct cas, napi);
2533         struct net_device *dev = cp->dev;
2534         int i, enable_intr, credits;
2535         u32 status = readl(cp->regs + REG_INTR_STATUS);
2536         unsigned long flags;
2537
2538         spin_lock_irqsave(&cp->lock, flags);
2539         cas_tx(dev, cp, status);
2540         spin_unlock_irqrestore(&cp->lock, flags);
2541
2542         /* NAPI rx packets. we spread the credits across all of the
2543          * rxc rings
2544          *
2545          * to make sure we're fair with the work we loop through each
2546          * ring N_RX_COMP_RING times with a request of
2547          * budget / N_RX_COMP_RINGS
2548          */
2549         enable_intr = 1;
2550         credits = 0;
2551         for (i = 0; i < N_RX_COMP_RINGS; i++) {
2552                 int j;
2553                 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2554                         credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2555                         if (credits >= budget) {
2556                                 enable_intr = 0;
2557                                 goto rx_comp;
2558                         }
2559                 }
2560         }
2561
2562 rx_comp:
2563         /* final rx completion */
2564         spin_lock_irqsave(&cp->lock, flags);
2565         if (status)
2566                 cas_handle_irq(dev, cp, status);
2567
2568 #ifdef USE_PCI_INTB
2569         if (N_RX_COMP_RINGS > 1) {
2570                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2571                 if (status)
2572                         cas_handle_irq1(dev, cp, status);
2573         }
2574 #endif
2575
2576 #ifdef USE_PCI_INTC
2577         if (N_RX_COMP_RINGS > 2) {
2578                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2579                 if (status)
2580                         cas_handle_irqN(dev, cp, status, 2);
2581         }
2582 #endif
2583
2584 #ifdef USE_PCI_INTD
2585         if (N_RX_COMP_RINGS > 3) {
2586                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2587                 if (status)
2588                         cas_handle_irqN(dev, cp, status, 3);
2589         }
2590 #endif
2591         spin_unlock_irqrestore(&cp->lock, flags);
2592         if (enable_intr) {
2593                 napi_complete(napi);
2594                 cas_unmask_intr(cp);
2595         }
2596         return credits;
2597 }
2598 #endif
2599
2600 #ifdef CONFIG_NET_POLL_CONTROLLER
2601 static void cas_netpoll(struct net_device *dev)
2602 {
2603         struct cas *cp = netdev_priv(dev);
2604
2605         cas_disable_irq(cp, 0);
2606         cas_interrupt(cp->pdev->irq, dev);
2607         cas_enable_irq(cp, 0);
2608
2609 #ifdef USE_PCI_INTB
2610         if (N_RX_COMP_RINGS > 1) {
2611                 /* cas_interrupt1(); */
2612         }
2613 #endif
2614 #ifdef USE_PCI_INTC
2615         if (N_RX_COMP_RINGS > 2) {
2616                 /* cas_interruptN(); */
2617         }
2618 #endif
2619 #ifdef USE_PCI_INTD
2620         if (N_RX_COMP_RINGS > 3) {
2621                 /* cas_interruptN(); */
2622         }
2623 #endif
2624 }
2625 #endif
2626
2627 static void cas_tx_timeout(struct net_device *dev, unsigned int txqueue)
2628 {
2629         struct cas *cp = netdev_priv(dev);
2630
2631         netdev_err(dev, "transmit timed out, resetting\n");
2632         if (!cp->hw_running) {
2633                 netdev_err(dev, "hrm.. hw not running!\n");
2634                 return;
2635         }
2636
2637         netdev_err(dev, "MIF_STATE[%08x]\n",
2638                    readl(cp->regs + REG_MIF_STATE_MACHINE));
2639
2640         netdev_err(dev, "MAC_STATE[%08x]\n",
2641                    readl(cp->regs + REG_MAC_STATE_MACHINE));
2642
2643         netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2644                    readl(cp->regs + REG_TX_CFG),
2645                    readl(cp->regs + REG_MAC_TX_STATUS),
2646                    readl(cp->regs + REG_MAC_TX_CFG),
2647                    readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2648                    readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2649                    readl(cp->regs + REG_TX_FIFO_READ_PTR),
2650                    readl(cp->regs + REG_TX_SM_1),
2651                    readl(cp->regs + REG_TX_SM_2));
2652
2653         netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2654                    readl(cp->regs + REG_RX_CFG),
2655                    readl(cp->regs + REG_MAC_RX_STATUS),
2656                    readl(cp->regs + REG_MAC_RX_CFG));
2657
2658         netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2659                    readl(cp->regs + REG_HP_STATE_MACHINE),
2660                    readl(cp->regs + REG_HP_STATUS0),
2661                    readl(cp->regs + REG_HP_STATUS1),
2662                    readl(cp->regs + REG_HP_STATUS2));
2663
2664 #if 1
2665         atomic_inc(&cp->reset_task_pending);
2666         atomic_inc(&cp->reset_task_pending_all);
2667         schedule_work(&cp->reset_task);
2668 #else
2669         atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2670         schedule_work(&cp->reset_task);
2671 #endif
2672 }
2673
2674 static inline int cas_intme(int ring, int entry)
2675 {
2676         /* Algorithm: IRQ every 1/2 of descriptors. */
2677         if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2678                 return 1;
2679         return 0;
2680 }
2681
2682
2683 static void cas_write_txd(struct cas *cp, int ring, int entry,
2684                           dma_addr_t mapping, int len, u64 ctrl, int last)
2685 {
2686         struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2687
2688         ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2689         if (cas_intme(ring, entry))
2690                 ctrl |= TX_DESC_INTME;
2691         if (last)
2692                 ctrl |= TX_DESC_EOF;
2693         txd->control = cpu_to_le64(ctrl);
2694         txd->buffer = cpu_to_le64(mapping);
2695 }
2696
2697 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2698                                 const int entry)
2699 {
2700         return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2701 }
2702
2703 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2704                                      const int entry, const int tentry)
2705 {
2706         cp->tx_tiny_use[ring][tentry].nbufs++;
2707         cp->tx_tiny_use[ring][entry].used = 1;
2708         return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2709 }
2710
2711 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2712                                     struct sk_buff *skb)
2713 {
2714         struct net_device *dev = cp->dev;
2715         int entry, nr_frags, frag, tabort, tentry;
2716         dma_addr_t mapping;
2717         unsigned long flags;
2718         u64 ctrl;
2719         u32 len;
2720
2721         spin_lock_irqsave(&cp->tx_lock[ring], flags);
2722
2723         /* This is a hard error, log it. */
2724         if (TX_BUFFS_AVAIL(cp, ring) <=
2725             CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2726                 netif_stop_queue(dev);
2727                 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2728                 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2729                 return 1;
2730         }
2731
2732         ctrl = 0;
2733         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2734                 const u64 csum_start_off = skb_checksum_start_offset(skb);
2735                 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2736
2737                 ctrl =  TX_DESC_CSUM_EN |
2738                         CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2739                         CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2740         }
2741
2742         entry = cp->tx_new[ring];
2743         cp->tx_skbs[ring][entry] = skb;
2744
2745         nr_frags = skb_shinfo(skb)->nr_frags;
2746         len = skb_headlen(skb);
2747         mapping = dma_map_page(&cp->pdev->dev, virt_to_page(skb->data),
2748                                offset_in_page(skb->data), len, DMA_TO_DEVICE);
2749
2750         tentry = entry;
2751         tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2752         if (unlikely(tabort)) {
2753                 /* NOTE: len is always >  tabort */
2754                 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2755                               ctrl | TX_DESC_SOF, 0);
2756                 entry = TX_DESC_NEXT(ring, entry);
2757
2758                 skb_copy_from_linear_data_offset(skb, len - tabort,
2759                               tx_tiny_buf(cp, ring, entry), tabort);
2760                 mapping = tx_tiny_map(cp, ring, entry, tentry);
2761                 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2762                               (nr_frags == 0));
2763         } else {
2764                 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2765                               TX_DESC_SOF, (nr_frags == 0));
2766         }
2767         entry = TX_DESC_NEXT(ring, entry);
2768
2769         for (frag = 0; frag < nr_frags; frag++) {
2770                 const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2771
2772                 len = skb_frag_size(fragp);
2773                 mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2774                                            DMA_TO_DEVICE);
2775
2776                 tabort = cas_calc_tabort(cp, skb_frag_off(fragp), len);
2777                 if (unlikely(tabort)) {
2778                         /* NOTE: len is always > tabort */
2779                         cas_write_txd(cp, ring, entry, mapping, len - tabort,
2780                                       ctrl, 0);
2781                         entry = TX_DESC_NEXT(ring, entry);
2782                         memcpy_from_page(tx_tiny_buf(cp, ring, entry),
2783                                          skb_frag_page(fragp),
2784                                          skb_frag_off(fragp) + len - tabort,
2785                                          tabort);
2786                         mapping = tx_tiny_map(cp, ring, entry, tentry);
2787                         len     = tabort;
2788                 }
2789
2790                 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2791                               (frag + 1 == nr_frags));
2792                 entry = TX_DESC_NEXT(ring, entry);
2793         }
2794
2795         cp->tx_new[ring] = entry;
2796         if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2797                 netif_stop_queue(dev);
2798
2799         netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2800                      "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2801                      ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2802         writel(entry, cp->regs + REG_TX_KICKN(ring));
2803         spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2804         return 0;
2805 }
2806
2807 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2808 {
2809         struct cas *cp = netdev_priv(dev);
2810
2811         /* this is only used as a load-balancing hint, so it doesn't
2812          * need to be SMP safe
2813          */
2814         static int ring;
2815
2816         if (skb_padto(skb, cp->min_frame_size))
2817                 return NETDEV_TX_OK;
2818
2819         /* XXX: we need some higher-level QoS hooks to steer packets to
2820          *      individual queues.
2821          */
2822         if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2823                 return NETDEV_TX_BUSY;
2824         return NETDEV_TX_OK;
2825 }
2826
2827 static void cas_init_tx_dma(struct cas *cp)
2828 {
2829         u64 desc_dma = cp->block_dvma;
2830         unsigned long off;
2831         u32 val;
2832         int i;
2833
2834         /* set up tx completion writeback registers. must be 8-byte aligned */
2835 #ifdef USE_TX_COMPWB
2836         off = offsetof(struct cas_init_block, tx_compwb);
2837         writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2838         writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2839 #endif
2840
2841         /* enable completion writebacks, enable paced mode,
2842          * disable read pipe, and disable pre-interrupt compwbs
2843          */
2844         val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2845                 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2846                 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2847                 TX_CFG_INTR_COMPWB_DIS;
2848
2849         /* write out tx ring info and tx desc bases */
2850         for (i = 0; i < MAX_TX_RINGS; i++) {
2851                 off = (unsigned long) cp->init_txds[i] -
2852                         (unsigned long) cp->init_block;
2853
2854                 val |= CAS_TX_RINGN_BASE(i);
2855                 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2856                 writel((desc_dma + off) & 0xffffffff, cp->regs +
2857                        REG_TX_DBN_LOW(i));
2858                 /* don't zero out the kick register here as the system
2859                  * will wedge
2860                  */
2861         }
2862         writel(val, cp->regs + REG_TX_CFG);
2863
2864         /* program max burst sizes. these numbers should be different
2865          * if doing QoS.
2866          */
2867 #ifdef USE_QOS
2868         writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2869         writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2870         writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2871         writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2872 #else
2873         writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2874         writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2875         writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2876         writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2877 #endif
2878 }
2879
2880 /* Must be invoked under cp->lock. */
2881 static inline void cas_init_dma(struct cas *cp)
2882 {
2883         cas_init_tx_dma(cp);
2884         cas_init_rx_dma(cp);
2885 }
2886
2887 static void cas_process_mc_list(struct cas *cp)
2888 {
2889         u16 hash_table[16];
2890         u32 crc;
2891         struct netdev_hw_addr *ha;
2892         int i = 1;
2893
2894         memset(hash_table, 0, sizeof(hash_table));
2895         netdev_for_each_mc_addr(ha, cp->dev) {
2896                 if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2897                         /* use the alternate mac address registers for the
2898                          * first 15 multicast addresses
2899                          */
2900                         writel((ha->addr[4] << 8) | ha->addr[5],
2901                                cp->regs + REG_MAC_ADDRN(i*3 + 0));
2902                         writel((ha->addr[2] << 8) | ha->addr[3],
2903                                cp->regs + REG_MAC_ADDRN(i*3 + 1));
2904                         writel((ha->addr[0] << 8) | ha->addr[1],
2905                                cp->regs + REG_MAC_ADDRN(i*3 + 2));
2906                         i++;
2907                 }
2908                 else {
2909                         /* use hw hash table for the next series of
2910                          * multicast addresses
2911                          */
2912                         crc = ether_crc_le(ETH_ALEN, ha->addr);
2913                         crc >>= 24;
2914                         hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2915                 }
2916         }
2917         for (i = 0; i < 16; i++)
2918                 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2919 }
2920
2921 /* Must be invoked under cp->lock. */
2922 static u32 cas_setup_multicast(struct cas *cp)
2923 {
2924         u32 rxcfg = 0;
2925         int i;
2926
2927         if (cp->dev->flags & IFF_PROMISC) {
2928                 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2929
2930         } else if (cp->dev->flags & IFF_ALLMULTI) {
2931                 for (i=0; i < 16; i++)
2932                         writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2933                 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2934
2935         } else {
2936                 cas_process_mc_list(cp);
2937                 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2938         }
2939
2940         return rxcfg;
2941 }
2942
2943 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
2944 static void cas_clear_mac_err(struct cas *cp)
2945 {
2946         writel(0, cp->regs + REG_MAC_COLL_NORMAL);
2947         writel(0, cp->regs + REG_MAC_COLL_FIRST);
2948         writel(0, cp->regs + REG_MAC_COLL_EXCESS);
2949         writel(0, cp->regs + REG_MAC_COLL_LATE);
2950         writel(0, cp->regs + REG_MAC_TIMER_DEFER);
2951         writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
2952         writel(0, cp->regs + REG_MAC_RECV_FRAME);
2953         writel(0, cp->regs + REG_MAC_LEN_ERR);
2954         writel(0, cp->regs + REG_MAC_ALIGN_ERR);
2955         writel(0, cp->regs + REG_MAC_FCS_ERR);
2956         writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
2957 }
2958
2959
2960 static void cas_mac_reset(struct cas *cp)
2961 {
2962         int i;
2963
2964         /* do both TX and RX reset */
2965         writel(0x1, cp->regs + REG_MAC_TX_RESET);
2966         writel(0x1, cp->regs + REG_MAC_RX_RESET);
2967
2968         /* wait for TX */
2969         i = STOP_TRIES;
2970         while (i-- > 0) {
2971                 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
2972                         break;
2973                 udelay(10);
2974         }
2975
2976         /* wait for RX */
2977         i = STOP_TRIES;
2978         while (i-- > 0) {
2979                 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
2980                         break;
2981                 udelay(10);
2982         }
2983
2984         if (readl(cp->regs + REG_MAC_TX_RESET) |
2985             readl(cp->regs + REG_MAC_RX_RESET))
2986                 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
2987                            readl(cp->regs + REG_MAC_TX_RESET),
2988                            readl(cp->regs + REG_MAC_RX_RESET),
2989                            readl(cp->regs + REG_MAC_STATE_MACHINE));
2990 }
2991
2992
2993 /* Must be invoked under cp->lock. */
2994 static void cas_init_mac(struct cas *cp)
2995 {
2996         const unsigned char *e = &cp->dev->dev_addr[0];
2997         int i;
2998         cas_mac_reset(cp);
2999
3000         /* setup core arbitration weight register */
3001         writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3002
3003 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3004         /* set the infinite burst register for chips that don't have
3005          * pci issues.
3006          */
3007         if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3008                 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3009 #endif
3010
3011         writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3012
3013         writel(0x00, cp->regs + REG_MAC_IPG0);
3014         writel(0x08, cp->regs + REG_MAC_IPG1);
3015         writel(0x04, cp->regs + REG_MAC_IPG2);
3016
3017         /* change later for 802.3z */
3018         writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3019
3020         /* min frame + FCS */
3021         writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3022
3023         /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3024          * specify the maximum frame size to prevent RX tag errors on
3025          * oversized frames.
3026          */
3027         writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3028                CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3029                         (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3030                cp->regs + REG_MAC_FRAMESIZE_MAX);
3031
3032         /* NOTE: crc_size is used as a surrogate for half-duplex.
3033          * workaround saturn half-duplex issue by increasing preamble
3034          * size to 65 bytes.
3035          */
3036         if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3037                 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3038         else
3039                 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3040         writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3041         writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3042         writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3043
3044         writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3045
3046         writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3047         writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3048         writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3049         writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3050         writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3051
3052         /* setup mac address in perfect filter array */
3053         for (i = 0; i < 45; i++)
3054                 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3055
3056         writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3057         writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3058         writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3059
3060         writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3061         writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3062         writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3063
3064         cp->mac_rx_cfg = cas_setup_multicast(cp);
3065
3066         spin_lock(&cp->stat_lock[N_TX_RINGS]);
3067         cas_clear_mac_err(cp);
3068         spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3069
3070         /* Setup MAC interrupts.  We want to get all of the interesting
3071          * counter expiration events, but we do not want to hear about
3072          * normal rx/tx as the DMA engine tells us that.
3073          */
3074         writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3075         writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3076
3077         /* Don't enable even the PAUSE interrupts for now, we
3078          * make no use of those events other than to record them.
3079          */
3080         writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3081 }
3082
3083 /* Must be invoked under cp->lock. */
3084 static void cas_init_pause_thresholds(struct cas *cp)
3085 {
3086         /* Calculate pause thresholds.  Setting the OFF threshold to the
3087          * full RX fifo size effectively disables PAUSE generation
3088          */
3089         if (cp->rx_fifo_size <= (2 * 1024)) {
3090                 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3091         } else {
3092                 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3093                 if (max_frame * 3 > cp->rx_fifo_size) {
3094                         cp->rx_pause_off = 7104;
3095                         cp->rx_pause_on  = 960;
3096                 } else {
3097                         int off = (cp->rx_fifo_size - (max_frame * 2));
3098                         int on = off - max_frame;
3099                         cp->rx_pause_off = off;
3100                         cp->rx_pause_on = on;
3101                 }
3102         }
3103 }
3104
3105 static int cas_vpd_match(const void __iomem *p, const char *str)
3106 {
3107         int len = strlen(str) + 1;
3108         int i;
3109
3110         for (i = 0; i < len; i++) {
3111                 if (readb(p + i) != str[i])
3112                         return 0;
3113         }
3114         return 1;
3115 }
3116
3117
3118 /* get the mac address by reading the vpd information in the rom.
3119  * also get the phy type and determine if there's an entropy generator.
3120  * NOTE: this is a bit convoluted for the following reasons:
3121  *  1) vpd info has order-dependent mac addresses for multinic cards
3122  *  2) the only way to determine the nic order is to use the slot
3123  *     number.
3124  *  3) fiber cards don't have bridges, so their slot numbers don't
3125  *     mean anything.
3126  *  4) we don't actually know we have a fiber card until after
3127  *     the mac addresses are parsed.
3128  */
3129 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3130                             const int offset)
3131 {
3132         void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3133         void __iomem *base, *kstart;
3134         int i, len;
3135         int found = 0;
3136 #define VPD_FOUND_MAC        0x01
3137 #define VPD_FOUND_PHY        0x02
3138
3139         int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3140         int mac_off  = 0;
3141
3142 #if defined(CONFIG_SPARC)
3143         const unsigned char *addr;
3144 #endif
3145
3146         /* give us access to the PROM */
3147         writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3148                cp->regs + REG_BIM_LOCAL_DEV_EN);
3149
3150         /* check for an expansion rom */
3151         if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3152                 goto use_random_mac_addr;
3153
3154         /* search for beginning of vpd */
3155         base = NULL;
3156         for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3157                 /* check for PCIR */
3158                 if ((readb(p + i + 0) == 0x50) &&
3159                     (readb(p + i + 1) == 0x43) &&
3160                     (readb(p + i + 2) == 0x49) &&
3161                     (readb(p + i + 3) == 0x52)) {
3162                         base = p + (readb(p + i + 8) |
3163                                     (readb(p + i + 9) << 8));
3164                         break;
3165                 }
3166         }
3167
3168         if (!base || (readb(base) != 0x82))
3169                 goto use_random_mac_addr;
3170
3171         i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3172         while (i < EXPANSION_ROM_SIZE) {
3173                 if (readb(base + i) != 0x90) /* no vpd found */
3174                         goto use_random_mac_addr;
3175
3176                 /* found a vpd field */
3177                 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3178
3179                 /* extract keywords */
3180                 kstart = base + i + 3;
3181                 p = kstart;
3182                 while ((p - kstart) < len) {
3183                         int klen = readb(p + 2);
3184                         int j;
3185                         char type;
3186
3187                         p += 3;
3188
3189                         /* look for the following things:
3190                          * -- correct length == 29
3191                          * 3 (type) + 2 (size) +
3192                          * 18 (strlen("local-mac-address") + 1) +
3193                          * 6 (mac addr)
3194                          * -- VPD Instance 'I'
3195                          * -- VPD Type Bytes 'B'
3196                          * -- VPD data length == 6
3197                          * -- property string == local-mac-address
3198                          *
3199                          * -- correct length == 24
3200                          * 3 (type) + 2 (size) +
3201                          * 12 (strlen("entropy-dev") + 1) +
3202                          * 7 (strlen("vms110") + 1)
3203                          * -- VPD Instance 'I'
3204                          * -- VPD Type String 'B'
3205                          * -- VPD data length == 7
3206                          * -- property string == entropy-dev
3207                          *
3208                          * -- correct length == 18
3209                          * 3 (type) + 2 (size) +
3210                          * 9 (strlen("phy-type") + 1) +
3211                          * 4 (strlen("pcs") + 1)
3212                          * -- VPD Instance 'I'
3213                          * -- VPD Type String 'S'
3214                          * -- VPD data length == 4
3215                          * -- property string == phy-type
3216                          *
3217                          * -- correct length == 23
3218                          * 3 (type) + 2 (size) +
3219                          * 14 (strlen("phy-interface") + 1) +
3220                          * 4 (strlen("pcs") + 1)
3221                          * -- VPD Instance 'I'
3222                          * -- VPD Type String 'S'
3223                          * -- VPD data length == 4
3224                          * -- property string == phy-interface
3225                          */
3226                         if (readb(p) != 'I')
3227                                 goto next;
3228
3229                         /* finally, check string and length */
3230                         type = readb(p + 3);
3231                         if (type == 'B') {
3232                                 if ((klen == 29) && readb(p + 4) == 6 &&
3233                                     cas_vpd_match(p + 5,
3234                                                   "local-mac-address")) {
3235                                         if (mac_off++ > offset)
3236                                                 goto next;
3237
3238                                         /* set mac address */
3239                                         for (j = 0; j < 6; j++)
3240                                                 dev_addr[j] =
3241                                                         readb(p + 23 + j);
3242                                         goto found_mac;
3243                                 }
3244                         }
3245
3246                         if (type != 'S')
3247                                 goto next;
3248
3249 #ifdef USE_ENTROPY_DEV
3250                         if ((klen == 24) &&
3251                             cas_vpd_match(p + 5, "entropy-dev") &&
3252                             cas_vpd_match(p + 17, "vms110")) {
3253                                 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3254                                 goto next;
3255                         }
3256 #endif
3257
3258                         if (found & VPD_FOUND_PHY)
3259                                 goto next;
3260
3261                         if ((klen == 18) && readb(p + 4) == 4 &&
3262                             cas_vpd_match(p + 5, "phy-type")) {
3263                                 if (cas_vpd_match(p + 14, "pcs")) {
3264                                         phy_type = CAS_PHY_SERDES;
3265                                         goto found_phy;
3266                                 }
3267                         }
3268
3269                         if ((klen == 23) && readb(p + 4) == 4 &&
3270                             cas_vpd_match(p + 5, "phy-interface")) {
3271                                 if (cas_vpd_match(p + 19, "pcs")) {
3272                                         phy_type = CAS_PHY_SERDES;
3273                                         goto found_phy;
3274                                 }
3275                         }
3276 found_mac:
3277                         found |= VPD_FOUND_MAC;
3278                         goto next;
3279
3280 found_phy:
3281                         found |= VPD_FOUND_PHY;
3282
3283 next:
3284                         p += klen;
3285                 }
3286                 i += len + 3;
3287         }
3288
3289 use_random_mac_addr:
3290         if (found & VPD_FOUND_MAC)
3291                 goto done;
3292
3293 #if defined(CONFIG_SPARC)
3294         addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3295         if (addr != NULL) {
3296                 memcpy(dev_addr, addr, ETH_ALEN);
3297                 goto done;
3298         }
3299 #endif
3300
3301         /* Sun MAC prefix then 3 random bytes. */
3302         pr_info("MAC address not found in ROM VPD\n");
3303         dev_addr[0] = 0x08;
3304         dev_addr[1] = 0x00;
3305         dev_addr[2] = 0x20;
3306         get_random_bytes(dev_addr + 3, 3);
3307
3308 done:
3309         writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3310         return phy_type;
3311 }
3312
3313 /* check pci invariants */
3314 static void cas_check_pci_invariants(struct cas *cp)
3315 {
3316         struct pci_dev *pdev = cp->pdev;
3317
3318         cp->cas_flags = 0;
3319         if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3320             (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3321                 if (pdev->revision >= CAS_ID_REVPLUS)
3322                         cp->cas_flags |= CAS_FLAG_REG_PLUS;
3323                 if (pdev->revision < CAS_ID_REVPLUS02u)
3324                         cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3325
3326                 /* Original Cassini supports HW CSUM, but it's not
3327                  * enabled by default as it can trigger TX hangs.
3328                  */
3329                 if (pdev->revision < CAS_ID_REV2)
3330                         cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3331         } else {
3332                 /* Only sun has original cassini chips.  */
3333                 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3334
3335                 /* We use a flag because the same phy might be externally
3336                  * connected.
3337                  */
3338                 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3339                     (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3340                         cp->cas_flags |= CAS_FLAG_SATURN;
3341         }
3342 }
3343
3344
3345 static int cas_check_invariants(struct cas *cp)
3346 {
3347         struct pci_dev *pdev = cp->pdev;
3348         u8 addr[ETH_ALEN];
3349         u32 cfg;
3350         int i;
3351
3352         /* get page size for rx buffers. */
3353         cp->page_order = 0;
3354 #ifdef USE_PAGE_ORDER
3355         if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3356                 /* see if we can allocate larger pages */
3357                 struct page *page = alloc_pages(GFP_ATOMIC,
3358                                                 CAS_JUMBO_PAGE_SHIFT -
3359                                                 PAGE_SHIFT);
3360                 if (page) {
3361                         __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3362                         cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3363                 } else {
3364                         printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3365                 }
3366         }
3367 #endif
3368         cp->page_size = (PAGE_SIZE << cp->page_order);
3369
3370         /* Fetch the FIFO configurations. */
3371         cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3372         cp->rx_fifo_size = RX_FIFO_SIZE;
3373
3374         /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3375          * they're both connected.
3376          */
3377         cp->phy_type = cas_get_vpd_info(cp, addr, PCI_SLOT(pdev->devfn));
3378         eth_hw_addr_set(cp->dev, addr);
3379         if (cp->phy_type & CAS_PHY_SERDES) {
3380                 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3381                 return 0; /* no more checking needed */
3382         }
3383
3384         /* MII */
3385         cfg = readl(cp->regs + REG_MIF_CFG);
3386         if (cfg & MIF_CFG_MDIO_1) {
3387                 cp->phy_type = CAS_PHY_MII_MDIO1;
3388         } else if (cfg & MIF_CFG_MDIO_0) {
3389                 cp->phy_type = CAS_PHY_MII_MDIO0;
3390         }
3391
3392         cas_mif_poll(cp, 0);
3393         writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3394
3395         for (i = 0; i < 32; i++) {
3396                 u32 phy_id;
3397                 int j;
3398
3399                 for (j = 0; j < 3; j++) {
3400                         cp->phy_addr = i;
3401                         phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3402                         phy_id |= cas_phy_read(cp, MII_PHYSID2);
3403                         if (phy_id && (phy_id != 0xFFFFFFFF)) {
3404                                 cp->phy_id = phy_id;
3405                                 goto done;
3406                         }
3407                 }
3408         }
3409         pr_err("MII phy did not respond [%08x]\n",
3410                readl(cp->regs + REG_MIF_STATE_MACHINE));
3411         return -1;
3412
3413 done:
3414         /* see if we can do gigabit */
3415         cfg = cas_phy_read(cp, MII_BMSR);
3416         if ((cfg & CAS_BMSR_1000_EXTEND) &&
3417             cas_phy_read(cp, CAS_MII_1000_EXTEND))
3418                 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3419         return 0;
3420 }
3421
3422 /* Must be invoked under cp->lock. */
3423 static inline void cas_start_dma(struct cas *cp)
3424 {
3425         int i;
3426         u32 val;
3427         int txfailed = 0;
3428
3429         /* enable dma */
3430         val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3431         writel(val, cp->regs + REG_TX_CFG);
3432         val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3433         writel(val, cp->regs + REG_RX_CFG);
3434
3435         /* enable the mac */
3436         val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3437         writel(val, cp->regs + REG_MAC_TX_CFG);
3438         val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3439         writel(val, cp->regs + REG_MAC_RX_CFG);
3440
3441         i = STOP_TRIES;
3442         while (i-- > 0) {
3443                 val = readl(cp->regs + REG_MAC_TX_CFG);
3444                 if ((val & MAC_TX_CFG_EN))
3445                         break;
3446                 udelay(10);
3447         }
3448         if (i < 0) txfailed = 1;
3449         i = STOP_TRIES;
3450         while (i-- > 0) {
3451                 val = readl(cp->regs + REG_MAC_RX_CFG);
3452                 if ((val & MAC_RX_CFG_EN)) {
3453                         if (txfailed) {
3454                                 netdev_err(cp->dev,
3455                                            "enabling mac failed [tx:%08x:%08x]\n",
3456                                            readl(cp->regs + REG_MIF_STATE_MACHINE),
3457                                            readl(cp->regs + REG_MAC_STATE_MACHINE));
3458                         }
3459                         goto enable_rx_done;
3460                 }
3461                 udelay(10);
3462         }
3463         netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3464                    (txfailed ? "tx,rx" : "rx"),
3465                    readl(cp->regs + REG_MIF_STATE_MACHINE),
3466                    readl(cp->regs + REG_MAC_STATE_MACHINE));
3467
3468 enable_rx_done:
3469         cas_unmask_intr(cp); /* enable interrupts */
3470         writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3471         writel(0, cp->regs + REG_RX_COMP_TAIL);
3472
3473         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3474                 if (N_RX_DESC_RINGS > 1)
3475                         writel(RX_DESC_RINGN_SIZE(1) - 4,
3476                                cp->regs + REG_PLUS_RX_KICK1);
3477         }
3478 }
3479
3480 /* Must be invoked under cp->lock. */
3481 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3482                                    int *pause)
3483 {
3484         u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3485         *fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3486         *pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3487         if (val & PCS_MII_LPA_ASYM_PAUSE)
3488                 *pause |= 0x10;
3489         *spd = 1000;
3490 }
3491
3492 /* Must be invoked under cp->lock. */
3493 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3494                                    int *pause)
3495 {
3496         u32 val;
3497
3498         *fd = 0;
3499         *spd = 10;
3500         *pause = 0;
3501
3502         /* use GMII registers */
3503         val = cas_phy_read(cp, MII_LPA);
3504         if (val & CAS_LPA_PAUSE)
3505                 *pause = 0x01;
3506
3507         if (val & CAS_LPA_ASYM_PAUSE)
3508                 *pause |= 0x10;
3509
3510         if (val & LPA_DUPLEX)
3511                 *fd = 1;
3512         if (val & LPA_100)
3513                 *spd = 100;
3514
3515         if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3516                 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3517                 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3518                         *spd = 1000;
3519                 if (val & CAS_LPA_1000FULL)
3520                         *fd = 1;
3521         }
3522 }
3523
3524 /* A link-up condition has occurred, initialize and enable the
3525  * rest of the chip.
3526  *
3527  * Must be invoked under cp->lock.
3528  */
3529 static void cas_set_link_modes(struct cas *cp)
3530 {
3531         u32 val;
3532         int full_duplex, speed, pause;
3533
3534         full_duplex = 0;
3535         speed = 10;
3536         pause = 0;
3537
3538         if (CAS_PHY_MII(cp->phy_type)) {
3539                 cas_mif_poll(cp, 0);
3540                 val = cas_phy_read(cp, MII_BMCR);
3541                 if (val & BMCR_ANENABLE) {
3542                         cas_read_mii_link_mode(cp, &full_duplex, &speed,
3543                                                &pause);
3544                 } else {
3545                         if (val & BMCR_FULLDPLX)
3546                                 full_duplex = 1;
3547
3548                         if (val & BMCR_SPEED100)
3549                                 speed = 100;
3550                         else if (val & CAS_BMCR_SPEED1000)
3551                                 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3552                                         1000 : 100;
3553                 }
3554                 cas_mif_poll(cp, 1);
3555
3556         } else {
3557                 val = readl(cp->regs + REG_PCS_MII_CTRL);
3558                 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3559                 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3560                         if (val & PCS_MII_CTRL_DUPLEX)
3561                                 full_duplex = 1;
3562                 }
3563         }
3564
3565         netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3566                    speed, full_duplex ? "full" : "half");
3567
3568         val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3569         if (CAS_PHY_MII(cp->phy_type)) {
3570                 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3571                 if (!full_duplex)
3572                         val |= MAC_XIF_DISABLE_ECHO;
3573         }
3574         if (full_duplex)
3575                 val |= MAC_XIF_FDPLX_LED;
3576         if (speed == 1000)
3577                 val |= MAC_XIF_GMII_MODE;
3578         writel(val, cp->regs + REG_MAC_XIF_CFG);
3579
3580         /* deal with carrier and collision detect. */
3581         val = MAC_TX_CFG_IPG_EN;
3582         if (full_duplex) {
3583                 val |= MAC_TX_CFG_IGNORE_CARRIER;
3584                 val |= MAC_TX_CFG_IGNORE_COLL;
3585         } else {
3586 #ifndef USE_CSMA_CD_PROTO
3587                 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3588                 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3589 #endif
3590         }
3591         /* val now set up for REG_MAC_TX_CFG */
3592
3593         /* If gigabit and half-duplex, enable carrier extension
3594          * mode.  increase slot time to 512 bytes as well.
3595          * else, disable it and make sure slot time is 64 bytes.
3596          * also activate checksum bug workaround
3597          */
3598         if ((speed == 1000) && !full_duplex) {
3599                 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3600                        cp->regs + REG_MAC_TX_CFG);
3601
3602                 val = readl(cp->regs + REG_MAC_RX_CFG);
3603                 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3604                 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3605                        cp->regs + REG_MAC_RX_CFG);
3606
3607                 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3608
3609                 cp->crc_size = 4;
3610                 /* minimum size gigabit frame at half duplex */
3611                 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3612
3613         } else {
3614                 writel(val, cp->regs + REG_MAC_TX_CFG);
3615
3616                 /* checksum bug workaround. don't strip FCS when in
3617                  * half-duplex mode
3618                  */
3619                 val = readl(cp->regs + REG_MAC_RX_CFG);
3620                 if (full_duplex) {
3621                         val |= MAC_RX_CFG_STRIP_FCS;
3622                         cp->crc_size = 0;
3623                         cp->min_frame_size = CAS_MIN_MTU;
3624                 } else {
3625                         val &= ~MAC_RX_CFG_STRIP_FCS;
3626                         cp->crc_size = 4;
3627                         cp->min_frame_size = CAS_MIN_FRAME;
3628                 }
3629                 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3630                        cp->regs + REG_MAC_RX_CFG);
3631                 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3632         }
3633
3634         if (netif_msg_link(cp)) {
3635                 if (pause & 0x01) {
3636                         netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3637                                     cp->rx_fifo_size,
3638                                     cp->rx_pause_off,
3639                                     cp->rx_pause_on);
3640                 } else if (pause & 0x10) {
3641                         netdev_info(cp->dev, "TX pause enabled\n");
3642                 } else {
3643                         netdev_info(cp->dev, "Pause is disabled\n");
3644                 }
3645         }
3646
3647         val = readl(cp->regs + REG_MAC_CTRL_CFG);
3648         val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3649         if (pause) { /* symmetric or asymmetric pause */
3650                 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3651                 if (pause & 0x01) { /* symmetric pause */
3652                         val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3653                 }
3654         }
3655         writel(val, cp->regs + REG_MAC_CTRL_CFG);
3656         cas_start_dma(cp);
3657 }
3658
3659 /* Must be invoked under cp->lock. */
3660 static void cas_init_hw(struct cas *cp, int restart_link)
3661 {
3662         if (restart_link)
3663                 cas_phy_init(cp);
3664
3665         cas_init_pause_thresholds(cp);
3666         cas_init_mac(cp);
3667         cas_init_dma(cp);
3668
3669         if (restart_link) {
3670                 /* Default aneg parameters */
3671                 cp->timer_ticks = 0;
3672                 cas_begin_auto_negotiation(cp, NULL);
3673         } else if (cp->lstate == link_up) {
3674                 cas_set_link_modes(cp);
3675                 netif_carrier_on(cp->dev);
3676         }
3677 }
3678
3679 /* Must be invoked under cp->lock. on earlier cassini boards,
3680  * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3681  * let it settle out, and then restore pci state.
3682  */
3683 static void cas_hard_reset(struct cas *cp)
3684 {
3685         writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3686         udelay(20);
3687         pci_restore_state(cp->pdev);
3688 }
3689
3690
3691 static void cas_global_reset(struct cas *cp, int blkflag)
3692 {
3693         int limit;
3694
3695         /* issue a global reset. don't use RSTOUT. */
3696         if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3697                 /* For PCS, when the blkflag is set, we should set the
3698                  * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3699                  * the last autonegotiation from being cleared.  We'll
3700                  * need some special handling if the chip is set into a
3701                  * loopback mode.
3702                  */
3703                 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3704                        cp->regs + REG_SW_RESET);
3705         } else {
3706                 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3707         }
3708
3709         /* need to wait at least 3ms before polling register */
3710         mdelay(3);
3711
3712         limit = STOP_TRIES;
3713         while (limit-- > 0) {
3714                 u32 val = readl(cp->regs + REG_SW_RESET);
3715                 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3716                         goto done;
3717                 udelay(10);
3718         }
3719         netdev_err(cp->dev, "sw reset failed\n");
3720
3721 done:
3722         /* enable various BIM interrupts */
3723         writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3724                BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3725
3726         /* clear out pci error status mask for handled errors.
3727          * we don't deal with DMA counter overflows as they happen
3728          * all the time.
3729          */
3730         writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3731                                PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3732                                PCI_ERR_BIM_DMA_READ), cp->regs +
3733                REG_PCI_ERR_STATUS_MASK);
3734
3735         /* set up for MII by default to address mac rx reset timeout
3736          * issue
3737          */
3738         writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3739 }
3740
3741 static void cas_reset(struct cas *cp, int blkflag)
3742 {
3743         u32 val;
3744
3745         cas_mask_intr(cp);
3746         cas_global_reset(cp, blkflag);
3747         cas_mac_reset(cp);
3748         cas_entropy_reset(cp);
3749
3750         /* disable dma engines. */
3751         val = readl(cp->regs + REG_TX_CFG);
3752         val &= ~TX_CFG_DMA_EN;
3753         writel(val, cp->regs + REG_TX_CFG);
3754
3755         val = readl(cp->regs + REG_RX_CFG);
3756         val &= ~RX_CFG_DMA_EN;
3757         writel(val, cp->regs + REG_RX_CFG);
3758
3759         /* program header parser */
3760         if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3761             (&CAS_HP_ALT_FIRMWARE[0] == &cas_prog_null[0])) {
3762                 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3763         } else {
3764                 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3765         }
3766
3767         /* clear out error registers */
3768         spin_lock(&cp->stat_lock[N_TX_RINGS]);
3769         cas_clear_mac_err(cp);
3770         spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3771 }
3772
3773 /* Shut down the chip, must be called with pm_mutex held.  */
3774 static void cas_shutdown(struct cas *cp)
3775 {
3776         unsigned long flags;
3777
3778         /* Make us not-running to avoid timers respawning */
3779         cp->hw_running = 0;
3780
3781         del_timer_sync(&cp->link_timer);
3782
3783         /* Stop the reset task */
3784 #if 0
3785         while (atomic_read(&cp->reset_task_pending_mtu) ||
3786                atomic_read(&cp->reset_task_pending_spare) ||
3787                atomic_read(&cp->reset_task_pending_all))
3788                 schedule();
3789
3790 #else
3791         while (atomic_read(&cp->reset_task_pending))
3792                 schedule();
3793 #endif
3794         /* Actually stop the chip */
3795         cas_lock_all_save(cp, flags);
3796         cas_reset(cp, 0);
3797         if (cp->cas_flags & CAS_FLAG_SATURN)
3798                 cas_phy_powerdown(cp);
3799         cas_unlock_all_restore(cp, flags);
3800 }
3801
3802 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3803 {
3804         struct cas *cp = netdev_priv(dev);
3805
3806         dev->mtu = new_mtu;
3807         if (!netif_running(dev) || !netif_device_present(dev))
3808                 return 0;
3809
3810         /* let the reset task handle it */
3811 #if 1
3812         atomic_inc(&cp->reset_task_pending);
3813         if ((cp->phy_type & CAS_PHY_SERDES)) {
3814                 atomic_inc(&cp->reset_task_pending_all);
3815         } else {
3816                 atomic_inc(&cp->reset_task_pending_mtu);
3817         }
3818         schedule_work(&cp->reset_task);
3819 #else
3820         atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3821                    CAS_RESET_ALL : CAS_RESET_MTU);
3822         pr_err("reset called in cas_change_mtu\n");
3823         schedule_work(&cp->reset_task);
3824 #endif
3825
3826         flush_work(&cp->reset_task);
3827         return 0;
3828 }
3829
3830 static void cas_clean_txd(struct cas *cp, int ring)
3831 {
3832         struct cas_tx_desc *txd = cp->init_txds[ring];
3833         struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3834         u64 daddr, dlen;
3835         int i, size;
3836
3837         size = TX_DESC_RINGN_SIZE(ring);
3838         for (i = 0; i < size; i++) {
3839                 int frag;
3840
3841                 if (skbs[i] == NULL)
3842                         continue;
3843
3844                 skb = skbs[i];
3845                 skbs[i] = NULL;
3846
3847                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3848                         int ent = i & (size - 1);
3849
3850                         /* first buffer is never a tiny buffer and so
3851                          * needs to be unmapped.
3852                          */
3853                         daddr = le64_to_cpu(txd[ent].buffer);
3854                         dlen  =  CAS_VAL(TX_DESC_BUFLEN,
3855                                          le64_to_cpu(txd[ent].control));
3856                         dma_unmap_page(&cp->pdev->dev, daddr, dlen,
3857                                        DMA_TO_DEVICE);
3858
3859                         if (frag != skb_shinfo(skb)->nr_frags) {
3860                                 i++;
3861
3862                                 /* next buffer might by a tiny buffer.
3863                                  * skip past it.
3864                                  */
3865                                 ent = i & (size - 1);
3866                                 if (cp->tx_tiny_use[ring][ent].used)
3867                                         i++;
3868                         }
3869                 }
3870                 dev_kfree_skb_any(skb);
3871         }
3872
3873         /* zero out tiny buf usage */
3874         memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3875 }
3876
3877 /* freed on close */
3878 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3879 {
3880         cas_page_t **page = cp->rx_pages[ring];
3881         int i, size;
3882
3883         size = RX_DESC_RINGN_SIZE(ring);
3884         for (i = 0; i < size; i++) {
3885                 if (page[i]) {
3886                         cas_page_free(cp, page[i]);
3887                         page[i] = NULL;
3888                 }
3889         }
3890 }
3891
3892 static void cas_free_rxds(struct cas *cp)
3893 {
3894         int i;
3895
3896         for (i = 0; i < N_RX_DESC_RINGS; i++)
3897                 cas_free_rx_desc(cp, i);
3898 }
3899
3900 /* Must be invoked under cp->lock. */
3901 static void cas_clean_rings(struct cas *cp)
3902 {
3903         int i;
3904
3905         /* need to clean all tx rings */
3906         memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3907         memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3908         for (i = 0; i < N_TX_RINGS; i++)
3909                 cas_clean_txd(cp, i);
3910
3911         /* zero out init block */
3912         memset(cp->init_block, 0, sizeof(struct cas_init_block));
3913         cas_clean_rxds(cp);
3914         cas_clean_rxcs(cp);
3915 }
3916
3917 /* allocated on open */
3918 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3919 {
3920         cas_page_t **page = cp->rx_pages[ring];
3921         int size, i = 0;
3922
3923         size = RX_DESC_RINGN_SIZE(ring);
3924         for (i = 0; i < size; i++) {
3925                 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3926                         return -1;
3927         }
3928         return 0;
3929 }
3930
3931 static int cas_alloc_rxds(struct cas *cp)
3932 {
3933         int i;
3934
3935         for (i = 0; i < N_RX_DESC_RINGS; i++) {
3936                 if (cas_alloc_rx_desc(cp, i) < 0) {
3937                         cas_free_rxds(cp);
3938                         return -1;
3939                 }
3940         }
3941         return 0;
3942 }
3943
3944 static void cas_reset_task(struct work_struct *work)
3945 {
3946         struct cas *cp = container_of(work, struct cas, reset_task);
3947 #if 0
3948         int pending = atomic_read(&cp->reset_task_pending);
3949 #else
3950         int pending_all = atomic_read(&cp->reset_task_pending_all);
3951         int pending_spare = atomic_read(&cp->reset_task_pending_spare);
3952         int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
3953
3954         if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
3955                 /* We can have more tasks scheduled than actually
3956                  * needed.
3957                  */
3958                 atomic_dec(&cp->reset_task_pending);
3959                 return;
3960         }
3961 #endif
3962         /* The link went down, we reset the ring, but keep
3963          * DMA stopped. Use this function for reset
3964          * on error as well.
3965          */
3966         if (cp->hw_running) {
3967                 unsigned long flags;
3968
3969                 /* Make sure we don't get interrupts or tx packets */
3970                 netif_device_detach(cp->dev);
3971                 cas_lock_all_save(cp, flags);
3972
3973                 if (cp->opened) {
3974                         /* We call cas_spare_recover when we call cas_open.
3975                          * but we do not initialize the lists cas_spare_recover
3976                          * uses until cas_open is called.
3977                          */
3978                         cas_spare_recover(cp, GFP_ATOMIC);
3979                 }
3980 #if 1
3981                 /* test => only pending_spare set */
3982                 if (!pending_all && !pending_mtu)
3983                         goto done;
3984 #else
3985                 if (pending == CAS_RESET_SPARE)
3986                         goto done;
3987 #endif
3988                 /* when pending == CAS_RESET_ALL, the following
3989                  * call to cas_init_hw will restart auto negotiation.
3990                  * Setting the second argument of cas_reset to
3991                  * !(pending == CAS_RESET_ALL) will set this argument
3992                  * to 1 (avoiding reinitializing the PHY for the normal
3993                  * PCS case) when auto negotiation is not restarted.
3994                  */
3995 #if 1
3996                 cas_reset(cp, !(pending_all > 0));
3997                 if (cp->opened)
3998                         cas_clean_rings(cp);
3999                 cas_init_hw(cp, (pending_all > 0));
4000 #else
4001                 cas_reset(cp, !(pending == CAS_RESET_ALL));
4002                 if (cp->opened)
4003                         cas_clean_rings(cp);
4004                 cas_init_hw(cp, pending == CAS_RESET_ALL);
4005 #endif
4006
4007 done:
4008                 cas_unlock_all_restore(cp, flags);
4009                 netif_device_attach(cp->dev);
4010         }
4011 #if 1
4012         atomic_sub(pending_all, &cp->reset_task_pending_all);
4013         atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4014         atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4015         atomic_dec(&cp->reset_task_pending);
4016 #else
4017         atomic_set(&cp->reset_task_pending, 0);
4018 #endif
4019 }
4020
4021 static void cas_link_timer(struct timer_list *t)
4022 {
4023         struct cas *cp = from_timer(cp, t, link_timer);
4024         int mask, pending = 0, reset = 0;
4025         unsigned long flags;
4026
4027         if (link_transition_timeout != 0 &&
4028             cp->link_transition_jiffies_valid &&
4029             time_is_before_jiffies(cp->link_transition_jiffies +
4030               link_transition_timeout)) {
4031                 /* One-second counter so link-down workaround doesn't
4032                  * cause resets to occur so fast as to fool the switch
4033                  * into thinking the link is down.
4034                  */
4035                 cp->link_transition_jiffies_valid = 0;
4036         }
4037
4038         if (!cp->hw_running)
4039                 return;
4040
4041         spin_lock_irqsave(&cp->lock, flags);
4042         cas_lock_tx(cp);
4043         cas_entropy_gather(cp);
4044
4045         /* If the link task is still pending, we just
4046          * reschedule the link timer
4047          */
4048 #if 1
4049         if (atomic_read(&cp->reset_task_pending_all) ||
4050             atomic_read(&cp->reset_task_pending_spare) ||
4051             atomic_read(&cp->reset_task_pending_mtu))
4052                 goto done;
4053 #else
4054         if (atomic_read(&cp->reset_task_pending))
4055                 goto done;
4056 #endif
4057
4058         /* check for rx cleaning */
4059         if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4060                 int i, rmask;
4061
4062                 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4063                         rmask = CAS_FLAG_RXD_POST(i);
4064                         if ((mask & rmask) == 0)
4065                                 continue;
4066
4067                         /* post_rxds will do a mod_timer */
4068                         if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4069                                 pending = 1;
4070                                 continue;
4071                         }
4072                         cp->cas_flags &= ~rmask;
4073                 }
4074         }
4075
4076         if (CAS_PHY_MII(cp->phy_type)) {
4077                 u16 bmsr;
4078                 cas_mif_poll(cp, 0);
4079                 bmsr = cas_phy_read(cp, MII_BMSR);
4080                 /* WTZ: Solaris driver reads this twice, but that
4081                  * may be due to the PCS case and the use of a
4082                  * common implementation. Read it twice here to be
4083                  * safe.
4084                  */
4085                 bmsr = cas_phy_read(cp, MII_BMSR);
4086                 cas_mif_poll(cp, 1);
4087                 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4088                 reset = cas_mii_link_check(cp, bmsr);
4089         } else {
4090                 reset = cas_pcs_link_check(cp);
4091         }
4092
4093         if (reset)
4094                 goto done;
4095
4096         /* check for tx state machine confusion */
4097         if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4098                 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4099                 u32 wptr, rptr;
4100                 int tlm  = CAS_VAL(MAC_SM_TLM, val);
4101
4102                 if (((tlm == 0x5) || (tlm == 0x3)) &&
4103                     (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4104                         netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4105                                      "tx err: MAC_STATE[%08x]\n", val);
4106                         reset = 1;
4107                         goto done;
4108                 }
4109
4110                 val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4111                 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4112                 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4113                 if ((val == 0) && (wptr != rptr)) {
4114                         netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4115                                      "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4116                                      val, wptr, rptr);
4117                         reset = 1;
4118                 }
4119
4120                 if (reset)
4121                         cas_hard_reset(cp);
4122         }
4123
4124 done:
4125         if (reset) {
4126 #if 1
4127                 atomic_inc(&cp->reset_task_pending);
4128                 atomic_inc(&cp->reset_task_pending_all);
4129                 schedule_work(&cp->reset_task);
4130 #else
4131                 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4132                 pr_err("reset called in cas_link_timer\n");
4133                 schedule_work(&cp->reset_task);
4134 #endif
4135         }
4136
4137         if (!pending)
4138                 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4139         cas_unlock_tx(cp);
4140         spin_unlock_irqrestore(&cp->lock, flags);
4141 }
4142
4143 /* tiny buffers are used to avoid target abort issues with
4144  * older cassini's
4145  */
4146 static void cas_tx_tiny_free(struct cas *cp)
4147 {
4148         struct pci_dev *pdev = cp->pdev;
4149         int i;
4150
4151         for (i = 0; i < N_TX_RINGS; i++) {
4152                 if (!cp->tx_tiny_bufs[i])
4153                         continue;
4154
4155                 dma_free_coherent(&pdev->dev, TX_TINY_BUF_BLOCK,
4156                                   cp->tx_tiny_bufs[i], cp->tx_tiny_dvma[i]);
4157                 cp->tx_tiny_bufs[i] = NULL;
4158         }
4159 }
4160
4161 static int cas_tx_tiny_alloc(struct cas *cp)
4162 {
4163         struct pci_dev *pdev = cp->pdev;
4164         int i;
4165
4166         for (i = 0; i < N_TX_RINGS; i++) {
4167                 cp->tx_tiny_bufs[i] =
4168                         dma_alloc_coherent(&pdev->dev, TX_TINY_BUF_BLOCK,
4169                                            &cp->tx_tiny_dvma[i], GFP_KERNEL);
4170                 if (!cp->tx_tiny_bufs[i]) {
4171                         cas_tx_tiny_free(cp);
4172                         return -1;
4173                 }
4174         }
4175         return 0;
4176 }
4177
4178
4179 static int cas_open(struct net_device *dev)
4180 {
4181         struct cas *cp = netdev_priv(dev);
4182         int hw_was_up, err;
4183         unsigned long flags;
4184
4185         mutex_lock(&cp->pm_mutex);
4186
4187         hw_was_up = cp->hw_running;
4188
4189         /* The power-management mutex protects the hw_running
4190          * etc. state so it is safe to do this bit without cp->lock
4191          */
4192         if (!cp->hw_running) {
4193                 /* Reset the chip */
4194                 cas_lock_all_save(cp, flags);
4195                 /* We set the second arg to cas_reset to zero
4196                  * because cas_init_hw below will have its second
4197                  * argument set to non-zero, which will force
4198                  * autonegotiation to start.
4199                  */
4200                 cas_reset(cp, 0);
4201                 cp->hw_running = 1;
4202                 cas_unlock_all_restore(cp, flags);
4203         }
4204
4205         err = -ENOMEM;
4206         if (cas_tx_tiny_alloc(cp) < 0)
4207                 goto err_unlock;
4208
4209         /* alloc rx descriptors */
4210         if (cas_alloc_rxds(cp) < 0)
4211                 goto err_tx_tiny;
4212
4213         /* allocate spares */
4214         cas_spare_init(cp);
4215         cas_spare_recover(cp, GFP_KERNEL);
4216
4217         /* We can now request the interrupt as we know it's masked
4218          * on the controller. cassini+ has up to 4 interrupts
4219          * that can be used, but you need to do explicit pci interrupt
4220          * mapping to expose them
4221          */
4222         if (request_irq(cp->pdev->irq, cas_interrupt,
4223                         IRQF_SHARED, dev->name, (void *) dev)) {
4224                 netdev_err(cp->dev, "failed to request irq !\n");
4225                 err = -EAGAIN;
4226                 goto err_spare;
4227         }
4228
4229 #ifdef USE_NAPI
4230         napi_enable(&cp->napi);
4231 #endif
4232         /* init hw */
4233         cas_lock_all_save(cp, flags);
4234         cas_clean_rings(cp);
4235         cas_init_hw(cp, !hw_was_up);
4236         cp->opened = 1;
4237         cas_unlock_all_restore(cp, flags);
4238
4239         netif_start_queue(dev);
4240         mutex_unlock(&cp->pm_mutex);
4241         return 0;
4242
4243 err_spare:
4244         cas_spare_free(cp);
4245         cas_free_rxds(cp);
4246 err_tx_tiny:
4247         cas_tx_tiny_free(cp);
4248 err_unlock:
4249         mutex_unlock(&cp->pm_mutex);
4250         return err;
4251 }
4252
4253 static int cas_close(struct net_device *dev)
4254 {
4255         unsigned long flags;
4256         struct cas *cp = netdev_priv(dev);
4257
4258 #ifdef USE_NAPI
4259         napi_disable(&cp->napi);
4260 #endif
4261         /* Make sure we don't get distracted by suspend/resume */
4262         mutex_lock(&cp->pm_mutex);
4263
4264         netif_stop_queue(dev);
4265
4266         /* Stop traffic, mark us closed */
4267         cas_lock_all_save(cp, flags);
4268         cp->opened = 0;
4269         cas_reset(cp, 0);
4270         cas_phy_init(cp);
4271         cas_begin_auto_negotiation(cp, NULL);
4272         cas_clean_rings(cp);
4273         cas_unlock_all_restore(cp, flags);
4274
4275         free_irq(cp->pdev->irq, (void *) dev);
4276         cas_spare_free(cp);
4277         cas_free_rxds(cp);
4278         cas_tx_tiny_free(cp);
4279         mutex_unlock(&cp->pm_mutex);
4280         return 0;
4281 }
4282
4283 static struct {
4284         const char name[ETH_GSTRING_LEN];
4285 } ethtool_cassini_statnames[] = {
4286         {"collisions"},
4287         {"rx_bytes"},
4288         {"rx_crc_errors"},
4289         {"rx_dropped"},
4290         {"rx_errors"},
4291         {"rx_fifo_errors"},
4292         {"rx_frame_errors"},
4293         {"rx_length_errors"},
4294         {"rx_over_errors"},
4295         {"rx_packets"},
4296         {"tx_aborted_errors"},
4297         {"tx_bytes"},
4298         {"tx_dropped"},
4299         {"tx_errors"},
4300         {"tx_fifo_errors"},
4301         {"tx_packets"}
4302 };
4303 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4304
4305 static struct {
4306         const int offsets;      /* neg. values for 2nd arg to cas_read_phy */
4307 } ethtool_register_table[] = {
4308         {-MII_BMSR},
4309         {-MII_BMCR},
4310         {REG_CAWR},
4311         {REG_INF_BURST},
4312         {REG_BIM_CFG},
4313         {REG_RX_CFG},
4314         {REG_HP_CFG},
4315         {REG_MAC_TX_CFG},
4316         {REG_MAC_RX_CFG},
4317         {REG_MAC_CTRL_CFG},
4318         {REG_MAC_XIF_CFG},
4319         {REG_MIF_CFG},
4320         {REG_PCS_CFG},
4321         {REG_SATURN_PCFG},
4322         {REG_PCS_MII_STATUS},
4323         {REG_PCS_STATE_MACHINE},
4324         {REG_MAC_COLL_EXCESS},
4325         {REG_MAC_COLL_LATE}
4326 };
4327 #define CAS_REG_LEN     ARRAY_SIZE(ethtool_register_table)
4328 #define CAS_MAX_REGS    (sizeof (u32)*CAS_REG_LEN)
4329
4330 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4331 {
4332         u8 *p;
4333         int i;
4334         unsigned long flags;
4335
4336         spin_lock_irqsave(&cp->lock, flags);
4337         for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4338                 u16 hval;
4339                 u32 val;
4340                 if (ethtool_register_table[i].offsets < 0) {
4341                         hval = cas_phy_read(cp,
4342                                     -ethtool_register_table[i].offsets);
4343                         val = hval;
4344                 } else {
4345                         val= readl(cp->regs+ethtool_register_table[i].offsets);
4346                 }
4347                 memcpy(p, (u8 *)&val, sizeof(u32));
4348         }
4349         spin_unlock_irqrestore(&cp->lock, flags);
4350 }
4351
4352 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4353 {
4354         struct cas *cp = netdev_priv(dev);
4355         struct net_device_stats *stats = cp->net_stats;
4356         unsigned long flags;
4357         int i;
4358         unsigned long tmp;
4359
4360         /* we collate all of the stats into net_stats[N_TX_RING] */
4361         if (!cp->hw_running)
4362                 return stats + N_TX_RINGS;
4363
4364         /* collect outstanding stats */
4365         /* WTZ: the Cassini spec gives these as 16 bit counters but
4366          * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4367          * in case the chip somehow puts any garbage in the other bits.
4368          * Also, counter usage didn't seem to mach what Adrian did
4369          * in the parts of the code that set these quantities. Made
4370          * that consistent.
4371          */
4372         spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4373         stats[N_TX_RINGS].rx_crc_errors +=
4374           readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4375         stats[N_TX_RINGS].rx_frame_errors +=
4376                 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4377         stats[N_TX_RINGS].rx_length_errors +=
4378                 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4379 #if 1
4380         tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4381                 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4382         stats[N_TX_RINGS].tx_aborted_errors += tmp;
4383         stats[N_TX_RINGS].collisions +=
4384           tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4385 #else
4386         stats[N_TX_RINGS].tx_aborted_errors +=
4387                 readl(cp->regs + REG_MAC_COLL_EXCESS);
4388         stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4389                 readl(cp->regs + REG_MAC_COLL_LATE);
4390 #endif
4391         cas_clear_mac_err(cp);
4392
4393         /* saved bits that are unique to ring 0 */
4394         spin_lock(&cp->stat_lock[0]);
4395         stats[N_TX_RINGS].collisions        += stats[0].collisions;
4396         stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4397         stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4398         stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4399         stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4400         stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4401         spin_unlock(&cp->stat_lock[0]);
4402
4403         for (i = 0; i < N_TX_RINGS; i++) {
4404                 spin_lock(&cp->stat_lock[i]);
4405                 stats[N_TX_RINGS].rx_length_errors +=
4406                         stats[i].rx_length_errors;
4407                 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4408                 stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4409                 stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4410                 stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4411                 stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4412                 stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4413                 stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4414                 stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4415                 stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4416                 memset(stats + i, 0, sizeof(struct net_device_stats));
4417                 spin_unlock(&cp->stat_lock[i]);
4418         }
4419         spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4420         return stats + N_TX_RINGS;
4421 }
4422
4423
4424 static void cas_set_multicast(struct net_device *dev)
4425 {
4426         struct cas *cp = netdev_priv(dev);
4427         u32 rxcfg, rxcfg_new;
4428         unsigned long flags;
4429         int limit = STOP_TRIES;
4430
4431         if (!cp->hw_running)
4432                 return;
4433
4434         spin_lock_irqsave(&cp->lock, flags);
4435         rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4436
4437         /* disable RX MAC and wait for completion */
4438         writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4439         while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4440                 if (!limit--)
4441                         break;
4442                 udelay(10);
4443         }
4444
4445         /* disable hash filter and wait for completion */
4446         limit = STOP_TRIES;
4447         rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4448         writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4449         while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4450                 if (!limit--)
4451                         break;
4452                 udelay(10);
4453         }
4454
4455         /* program hash filters */
4456         cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4457         rxcfg |= rxcfg_new;
4458         writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4459         spin_unlock_irqrestore(&cp->lock, flags);
4460 }
4461
4462 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4463 {
4464         struct cas *cp = netdev_priv(dev);
4465         strscpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4466         strscpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4467         strscpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4468 }
4469
4470 static int cas_get_link_ksettings(struct net_device *dev,
4471                                   struct ethtool_link_ksettings *cmd)
4472 {
4473         struct cas *cp = netdev_priv(dev);
4474         u16 bmcr;
4475         int full_duplex, speed, pause;
4476         unsigned long flags;
4477         enum link_state linkstate = link_up;
4478         u32 supported, advertising;
4479
4480         advertising = 0;
4481         supported = SUPPORTED_Autoneg;
4482         if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4483                 supported |= SUPPORTED_1000baseT_Full;
4484                 advertising |= ADVERTISED_1000baseT_Full;
4485         }
4486
4487         /* Record PHY settings if HW is on. */
4488         spin_lock_irqsave(&cp->lock, flags);
4489         bmcr = 0;
4490         linkstate = cp->lstate;
4491         if (CAS_PHY_MII(cp->phy_type)) {
4492                 cmd->base.port = PORT_MII;
4493                 cmd->base.phy_address = cp->phy_addr;
4494                 advertising |= ADVERTISED_TP | ADVERTISED_MII |
4495                         ADVERTISED_10baseT_Half |
4496                         ADVERTISED_10baseT_Full |
4497                         ADVERTISED_100baseT_Half |
4498                         ADVERTISED_100baseT_Full;
4499
4500                 supported |=
4501                         (SUPPORTED_10baseT_Half |
4502                          SUPPORTED_10baseT_Full |
4503                          SUPPORTED_100baseT_Half |
4504                          SUPPORTED_100baseT_Full |
4505                          SUPPORTED_TP | SUPPORTED_MII);
4506
4507                 if (cp->hw_running) {
4508                         cas_mif_poll(cp, 0);
4509                         bmcr = cas_phy_read(cp, MII_BMCR);
4510                         cas_read_mii_link_mode(cp, &full_duplex,
4511                                                &speed, &pause);
4512                         cas_mif_poll(cp, 1);
4513                 }
4514
4515         } else {
4516                 cmd->base.port = PORT_FIBRE;
4517                 cmd->base.phy_address = 0;
4518                 supported   |= SUPPORTED_FIBRE;
4519                 advertising |= ADVERTISED_FIBRE;
4520
4521                 if (cp->hw_running) {
4522                         /* pcs uses the same bits as mii */
4523                         bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4524                         cas_read_pcs_link_mode(cp, &full_duplex,
4525                                                &speed, &pause);
4526                 }
4527         }
4528         spin_unlock_irqrestore(&cp->lock, flags);
4529
4530         if (bmcr & BMCR_ANENABLE) {
4531                 advertising |= ADVERTISED_Autoneg;
4532                 cmd->base.autoneg = AUTONEG_ENABLE;
4533                 cmd->base.speed =  ((speed == 10) ?
4534                                             SPEED_10 :
4535                                             ((speed == 1000) ?
4536                                              SPEED_1000 : SPEED_100));
4537                 cmd->base.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4538         } else {
4539                 cmd->base.autoneg = AUTONEG_DISABLE;
4540                 cmd->base.speed = ((bmcr & CAS_BMCR_SPEED1000) ?
4541                                             SPEED_1000 :
4542                                             ((bmcr & BMCR_SPEED100) ?
4543                                              SPEED_100 : SPEED_10));
4544                 cmd->base.duplex = (bmcr & BMCR_FULLDPLX) ?
4545                         DUPLEX_FULL : DUPLEX_HALF;
4546         }
4547         if (linkstate != link_up) {
4548                 /* Force these to "unknown" if the link is not up and
4549                  * autonogotiation in enabled. We can set the link
4550                  * speed to 0, but not cmd->duplex,
4551                  * because its legal values are 0 and 1.  Ethtool will
4552                  * print the value reported in parentheses after the
4553                  * word "Unknown" for unrecognized values.
4554                  *
4555                  * If in forced mode, we report the speed and duplex
4556                  * settings that we configured.
4557                  */
4558                 if (cp->link_cntl & BMCR_ANENABLE) {
4559                         cmd->base.speed = 0;
4560                         cmd->base.duplex = 0xff;
4561                 } else {
4562                         cmd->base.speed = SPEED_10;
4563                         if (cp->link_cntl & BMCR_SPEED100) {
4564                                 cmd->base.speed = SPEED_100;
4565                         } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4566                                 cmd->base.speed = SPEED_1000;
4567                         }
4568                         cmd->base.duplex = (cp->link_cntl & BMCR_FULLDPLX) ?
4569                                 DUPLEX_FULL : DUPLEX_HALF;
4570                 }
4571         }
4572
4573         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
4574                                                 supported);
4575         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
4576                                                 advertising);
4577
4578         return 0;
4579 }
4580
4581 static int cas_set_link_ksettings(struct net_device *dev,
4582                                   const struct ethtool_link_ksettings *cmd)
4583 {
4584         struct cas *cp = netdev_priv(dev);
4585         unsigned long flags;
4586         u32 speed = cmd->base.speed;
4587
4588         /* Verify the settings we care about. */
4589         if (cmd->base.autoneg != AUTONEG_ENABLE &&
4590             cmd->base.autoneg != AUTONEG_DISABLE)
4591                 return -EINVAL;
4592
4593         if (cmd->base.autoneg == AUTONEG_DISABLE &&
4594             ((speed != SPEED_1000 &&
4595               speed != SPEED_100 &&
4596               speed != SPEED_10) ||
4597              (cmd->base.duplex != DUPLEX_HALF &&
4598               cmd->base.duplex != DUPLEX_FULL)))
4599                 return -EINVAL;
4600
4601         /* Apply settings and restart link process. */
4602         spin_lock_irqsave(&cp->lock, flags);
4603         cas_begin_auto_negotiation(cp, cmd);
4604         spin_unlock_irqrestore(&cp->lock, flags);
4605         return 0;
4606 }
4607
4608 static int cas_nway_reset(struct net_device *dev)
4609 {
4610         struct cas *cp = netdev_priv(dev);
4611         unsigned long flags;
4612
4613         if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4614                 return -EINVAL;
4615
4616         /* Restart link process. */
4617         spin_lock_irqsave(&cp->lock, flags);
4618         cas_begin_auto_negotiation(cp, NULL);
4619         spin_unlock_irqrestore(&cp->lock, flags);
4620
4621         return 0;
4622 }
4623
4624 static u32 cas_get_link(struct net_device *dev)
4625 {
4626         struct cas *cp = netdev_priv(dev);
4627         return cp->lstate == link_up;
4628 }
4629
4630 static u32 cas_get_msglevel(struct net_device *dev)
4631 {
4632         struct cas *cp = netdev_priv(dev);
4633         return cp->msg_enable;
4634 }
4635
4636 static void cas_set_msglevel(struct net_device *dev, u32 value)
4637 {
4638         struct cas *cp = netdev_priv(dev);
4639         cp->msg_enable = value;
4640 }
4641
4642 static int cas_get_regs_len(struct net_device *dev)
4643 {
4644         struct cas *cp = netdev_priv(dev);
4645         return min_t(int, cp->casreg_len, CAS_MAX_REGS);
4646 }
4647
4648 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4649                              void *p)
4650 {
4651         struct cas *cp = netdev_priv(dev);
4652         regs->version = 0;
4653         /* cas_read_regs handles locks (cp->lock).  */
4654         cas_read_regs(cp, p, regs->len / sizeof(u32));
4655 }
4656
4657 static int cas_get_sset_count(struct net_device *dev, int sset)
4658 {
4659         switch (sset) {
4660         case ETH_SS_STATS:
4661                 return CAS_NUM_STAT_KEYS;
4662         default:
4663                 return -EOPNOTSUPP;
4664         }
4665 }
4666
4667 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4668 {
4669          memcpy(data, &ethtool_cassini_statnames,
4670                                          CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4671 }
4672
4673 static void cas_get_ethtool_stats(struct net_device *dev,
4674                                       struct ethtool_stats *estats, u64 *data)
4675 {
4676         struct cas *cp = netdev_priv(dev);
4677         struct net_device_stats *stats = cas_get_stats(cp->dev);
4678         int i = 0;
4679         data[i++] = stats->collisions;
4680         data[i++] = stats->rx_bytes;
4681         data[i++] = stats->rx_crc_errors;
4682         data[i++] = stats->rx_dropped;
4683         data[i++] = stats->rx_errors;
4684         data[i++] = stats->rx_fifo_errors;
4685         data[i++] = stats->rx_frame_errors;
4686         data[i++] = stats->rx_length_errors;
4687         data[i++] = stats->rx_over_errors;
4688         data[i++] = stats->rx_packets;
4689         data[i++] = stats->tx_aborted_errors;
4690         data[i++] = stats->tx_bytes;
4691         data[i++] = stats->tx_dropped;
4692         data[i++] = stats->tx_errors;
4693         data[i++] = stats->tx_fifo_errors;
4694         data[i++] = stats->tx_packets;
4695         BUG_ON(i != CAS_NUM_STAT_KEYS);
4696 }
4697
4698 static const struct ethtool_ops cas_ethtool_ops = {
4699         .get_drvinfo            = cas_get_drvinfo,
4700         .nway_reset             = cas_nway_reset,
4701         .get_link               = cas_get_link,
4702         .get_msglevel           = cas_get_msglevel,
4703         .set_msglevel           = cas_set_msglevel,
4704         .get_regs_len           = cas_get_regs_len,
4705         .get_regs               = cas_get_regs,
4706         .get_sset_count         = cas_get_sset_count,
4707         .get_strings            = cas_get_strings,
4708         .get_ethtool_stats      = cas_get_ethtool_stats,
4709         .get_link_ksettings     = cas_get_link_ksettings,
4710         .set_link_ksettings     = cas_set_link_ksettings,
4711 };
4712
4713 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4714 {
4715         struct cas *cp = netdev_priv(dev);
4716         struct mii_ioctl_data *data = if_mii(ifr);
4717         unsigned long flags;
4718         int rc = -EOPNOTSUPP;
4719
4720         /* Hold the PM mutex while doing ioctl's or we may collide
4721          * with open/close and power management and oops.
4722          */
4723         mutex_lock(&cp->pm_mutex);
4724         switch (cmd) {
4725         case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
4726                 data->phy_id = cp->phy_addr;
4727                 fallthrough;
4728
4729         case SIOCGMIIREG:               /* Read MII PHY register. */
4730                 spin_lock_irqsave(&cp->lock, flags);
4731                 cas_mif_poll(cp, 0);
4732                 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4733                 cas_mif_poll(cp, 1);
4734                 spin_unlock_irqrestore(&cp->lock, flags);
4735                 rc = 0;
4736                 break;
4737
4738         case SIOCSMIIREG:               /* Write MII PHY register. */
4739                 spin_lock_irqsave(&cp->lock, flags);
4740                 cas_mif_poll(cp, 0);
4741                 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4742                 cas_mif_poll(cp, 1);
4743                 spin_unlock_irqrestore(&cp->lock, flags);
4744                 break;
4745         default:
4746                 break;
4747         }
4748
4749         mutex_unlock(&cp->pm_mutex);
4750         return rc;
4751 }
4752
4753 /* When this chip sits underneath an Intel 31154 bridge, it is the
4754  * only subordinate device and we can tweak the bridge settings to
4755  * reflect that fact.
4756  */
4757 static void cas_program_bridge(struct pci_dev *cas_pdev)
4758 {
4759         struct pci_dev *pdev = cas_pdev->bus->self;
4760         u32 val;
4761
4762         if (!pdev)
4763                 return;
4764
4765         if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4766                 return;
4767
4768         /* Clear bit 10 (Bus Parking Control) in the Secondary
4769          * Arbiter Control/Status Register which lives at offset
4770          * 0x41.  Using a 32-bit word read/modify/write at 0x40
4771          * is much simpler so that's how we do this.
4772          */
4773         pci_read_config_dword(pdev, 0x40, &val);
4774         val &= ~0x00040000;
4775         pci_write_config_dword(pdev, 0x40, val);
4776
4777         /* Max out the Multi-Transaction Timer settings since
4778          * Cassini is the only device present.
4779          *
4780          * The register is 16-bit and lives at 0x50.  When the
4781          * settings are enabled, it extends the GRANT# signal
4782          * for a requestor after a transaction is complete.  This
4783          * allows the next request to run without first needing
4784          * to negotiate the GRANT# signal back.
4785          *
4786          * Bits 12:10 define the grant duration:
4787          *
4788          *      1       --      16 clocks
4789          *      2       --      32 clocks
4790          *      3       --      64 clocks
4791          *      4       --      128 clocks
4792          *      5       --      256 clocks
4793          *
4794          * All other values are illegal.
4795          *
4796          * Bits 09:00 define which REQ/GNT signal pairs get the
4797          * GRANT# signal treatment.  We set them all.
4798          */
4799         pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4800
4801         /* The Read Prefecth Policy register is 16-bit and sits at
4802          * offset 0x52.  It enables a "smart" pre-fetch policy.  We
4803          * enable it and max out all of the settings since only one
4804          * device is sitting underneath and thus bandwidth sharing is
4805          * not an issue.
4806          *
4807          * The register has several 3 bit fields, which indicates a
4808          * multiplier applied to the base amount of prefetching the
4809          * chip would do.  These fields are at:
4810          *
4811          *      15:13   ---     ReRead Primary Bus
4812          *      12:10   ---     FirstRead Primary Bus
4813          *      09:07   ---     ReRead Secondary Bus
4814          *      06:04   ---     FirstRead Secondary Bus
4815          *
4816          * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4817          * get enabled on.  Bit 3 is a grouped enabler which controls
4818          * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
4819          * the individual REQ/GNT pairs [2:0].
4820          */
4821         pci_write_config_word(pdev, 0x52,
4822                               (0x7 << 13) |
4823                               (0x7 << 10) |
4824                               (0x7 <<  7) |
4825                               (0x7 <<  4) |
4826                               (0xf <<  0));
4827
4828         /* Force cacheline size to 0x8 */
4829         pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4830
4831         /* Force latency timer to maximum setting so Cassini can
4832          * sit on the bus as long as it likes.
4833          */
4834         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4835 }
4836
4837 static const struct net_device_ops cas_netdev_ops = {
4838         .ndo_open               = cas_open,
4839         .ndo_stop               = cas_close,
4840         .ndo_start_xmit         = cas_start_xmit,
4841         .ndo_get_stats          = cas_get_stats,
4842         .ndo_set_rx_mode        = cas_set_multicast,
4843         .ndo_eth_ioctl          = cas_ioctl,
4844         .ndo_tx_timeout         = cas_tx_timeout,
4845         .ndo_change_mtu         = cas_change_mtu,
4846         .ndo_set_mac_address    = eth_mac_addr,
4847         .ndo_validate_addr      = eth_validate_addr,
4848 #ifdef CONFIG_NET_POLL_CONTROLLER
4849         .ndo_poll_controller    = cas_netpoll,
4850 #endif
4851 };
4852
4853 static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4854 {
4855         static int cas_version_printed = 0;
4856         unsigned long casreg_len;
4857         struct net_device *dev;
4858         struct cas *cp;
4859         u16 pci_cmd;
4860         int i, err;
4861         u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4862
4863         if (cas_version_printed++ == 0)
4864                 pr_info("%s", version);
4865
4866         err = pci_enable_device(pdev);
4867         if (err) {
4868                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4869                 return err;
4870         }
4871
4872         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4873                 dev_err(&pdev->dev, "Cannot find proper PCI device "
4874                        "base address, aborting\n");
4875                 err = -ENODEV;
4876                 goto err_out_disable_pdev;
4877         }
4878
4879         dev = alloc_etherdev(sizeof(*cp));
4880         if (!dev) {
4881                 err = -ENOMEM;
4882                 goto err_out_disable_pdev;
4883         }
4884         SET_NETDEV_DEV(dev, &pdev->dev);
4885
4886         err = pci_request_regions(pdev, dev->name);
4887         if (err) {
4888                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4889                 goto err_out_free_netdev;
4890         }
4891         pci_set_master(pdev);
4892
4893         /* we must always turn on parity response or else parity
4894          * doesn't get generated properly. disable SERR/PERR as well.
4895          * in addition, we want to turn MWI on.
4896          */
4897         pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4898         pci_cmd &= ~PCI_COMMAND_SERR;
4899         pci_cmd |= PCI_COMMAND_PARITY;
4900         pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4901         if (pci_try_set_mwi(pdev))
4902                 pr_warn("Could not enable MWI for %s\n", pci_name(pdev));
4903
4904         cas_program_bridge(pdev);
4905
4906         /*
4907          * On some architectures, the default cache line size set
4908          * by pci_try_set_mwi reduces perforamnce.  We have to increase
4909          * it for this case.  To start, we'll print some configuration
4910          * data.
4911          */
4912 #if 1
4913         pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4914                              &orig_cacheline_size);
4915         if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4916                 cas_cacheline_size =
4917                         (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4918                         CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4919                 if (pci_write_config_byte(pdev,
4920                                           PCI_CACHE_LINE_SIZE,
4921                                           cas_cacheline_size)) {
4922                         dev_err(&pdev->dev, "Could not set PCI cache "
4923                                "line size\n");
4924                         goto err_out_free_res;
4925                 }
4926         }
4927 #endif
4928
4929
4930         /* Configure DMA attributes. */
4931         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4932         if (err) {
4933                 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
4934                 goto err_out_free_res;
4935         }
4936
4937         casreg_len = pci_resource_len(pdev, 0);
4938
4939         cp = netdev_priv(dev);
4940         cp->pdev = pdev;
4941 #if 1
4942         /* A value of 0 indicates we never explicitly set it */
4943         cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
4944 #endif
4945         cp->dev = dev;
4946         cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
4947           cassini_debug;
4948
4949 #if defined(CONFIG_SPARC)
4950         cp->of_node = pci_device_to_OF_node(pdev);
4951 #endif
4952
4953         cp->link_transition = LINK_TRANSITION_UNKNOWN;
4954         cp->link_transition_jiffies_valid = 0;
4955
4956         spin_lock_init(&cp->lock);
4957         spin_lock_init(&cp->rx_inuse_lock);
4958         spin_lock_init(&cp->rx_spare_lock);
4959         for (i = 0; i < N_TX_RINGS; i++) {
4960                 spin_lock_init(&cp->stat_lock[i]);
4961                 spin_lock_init(&cp->tx_lock[i]);
4962         }
4963         spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
4964         mutex_init(&cp->pm_mutex);
4965
4966         timer_setup(&cp->link_timer, cas_link_timer, 0);
4967
4968 #if 1
4969         /* Just in case the implementation of atomic operations
4970          * change so that an explicit initialization is necessary.
4971          */
4972         atomic_set(&cp->reset_task_pending, 0);
4973         atomic_set(&cp->reset_task_pending_all, 0);
4974         atomic_set(&cp->reset_task_pending_spare, 0);
4975         atomic_set(&cp->reset_task_pending_mtu, 0);
4976 #endif
4977         INIT_WORK(&cp->reset_task, cas_reset_task);
4978
4979         /* Default link parameters */
4980         if (link_mode >= 0 && link_mode < 6)
4981                 cp->link_cntl = link_modes[link_mode];
4982         else
4983                 cp->link_cntl = BMCR_ANENABLE;
4984         cp->lstate = link_down;
4985         cp->link_transition = LINK_TRANSITION_LINK_DOWN;
4986         netif_carrier_off(cp->dev);
4987         cp->timer_ticks = 0;
4988
4989         /* give us access to cassini registers */
4990         cp->regs = pci_iomap(pdev, 0, casreg_len);
4991         if (!cp->regs) {
4992                 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
4993                 goto err_out_free_res;
4994         }
4995         cp->casreg_len = casreg_len;
4996
4997         pci_save_state(pdev);
4998         cas_check_pci_invariants(cp);
4999         cas_hard_reset(cp);
5000         cas_reset(cp, 0);
5001         if (cas_check_invariants(cp))
5002                 goto err_out_iounmap;
5003         if (cp->cas_flags & CAS_FLAG_SATURN)
5004                 cas_saturn_firmware_init(cp);
5005
5006         cp->init_block =
5007                 dma_alloc_coherent(&pdev->dev, sizeof(struct cas_init_block),
5008                                    &cp->block_dvma, GFP_KERNEL);
5009         if (!cp->init_block) {
5010                 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5011                 goto err_out_iounmap;
5012         }
5013
5014         for (i = 0; i < N_TX_RINGS; i++)
5015                 cp->init_txds[i] = cp->init_block->txds[i];
5016
5017         for (i = 0; i < N_RX_DESC_RINGS; i++)
5018                 cp->init_rxds[i] = cp->init_block->rxds[i];
5019
5020         for (i = 0; i < N_RX_COMP_RINGS; i++)
5021                 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5022
5023         for (i = 0; i < N_RX_FLOWS; i++)
5024                 skb_queue_head_init(&cp->rx_flows[i]);
5025
5026         dev->netdev_ops = &cas_netdev_ops;
5027         dev->ethtool_ops = &cas_ethtool_ops;
5028         dev->watchdog_timeo = CAS_TX_TIMEOUT;
5029
5030 #ifdef USE_NAPI
5031         netif_napi_add(dev, &cp->napi, cas_poll);
5032 #endif
5033         dev->irq = pdev->irq;
5034         dev->dma = 0;
5035
5036         /* Cassini features. */
5037         if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5038                 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5039
5040         dev->features |= NETIF_F_HIGHDMA;
5041
5042         /* MTU range: 60 - varies or 9000 */
5043         dev->min_mtu = CAS_MIN_MTU;
5044         dev->max_mtu = CAS_MAX_MTU;
5045
5046         if (register_netdev(dev)) {
5047                 dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5048                 goto err_out_free_consistent;
5049         }
5050
5051         i = readl(cp->regs + REG_BIM_CFG);
5052         netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5053                     (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5054                     (i & BIM_CFG_32BIT) ? "32" : "64",
5055                     (i & BIM_CFG_66MHZ) ? "66" : "33",
5056                     (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5057                     dev->dev_addr);
5058
5059         pci_set_drvdata(pdev, dev);
5060         cp->hw_running = 1;
5061         cas_entropy_reset(cp);
5062         cas_phy_init(cp);
5063         cas_begin_auto_negotiation(cp, NULL);
5064         return 0;
5065
5066 err_out_free_consistent:
5067         dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block),
5068                           cp->init_block, cp->block_dvma);
5069
5070 err_out_iounmap:
5071         mutex_lock(&cp->pm_mutex);
5072         if (cp->hw_running)
5073                 cas_shutdown(cp);
5074         mutex_unlock(&cp->pm_mutex);
5075
5076         vfree(cp->fw_data);
5077
5078         pci_iounmap(pdev, cp->regs);
5079
5080
5081 err_out_free_res:
5082         pci_release_regions(pdev);
5083
5084         /* Try to restore it in case the error occurred after we
5085          * set it.
5086          */
5087         pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5088
5089 err_out_free_netdev:
5090         free_netdev(dev);
5091
5092 err_out_disable_pdev:
5093         pci_disable_device(pdev);
5094         return -ENODEV;
5095 }
5096
5097 static void cas_remove_one(struct pci_dev *pdev)
5098 {
5099         struct net_device *dev = pci_get_drvdata(pdev);
5100         struct cas *cp;
5101         if (!dev)
5102                 return;
5103
5104         cp = netdev_priv(dev);
5105         unregister_netdev(dev);
5106
5107         vfree(cp->fw_data);
5108
5109         mutex_lock(&cp->pm_mutex);
5110         cancel_work_sync(&cp->reset_task);
5111         if (cp->hw_running)
5112                 cas_shutdown(cp);
5113         mutex_unlock(&cp->pm_mutex);
5114
5115 #if 1
5116         if (cp->orig_cacheline_size) {
5117                 /* Restore the cache line size if we had modified
5118                  * it.
5119                  */
5120                 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5121                                       cp->orig_cacheline_size);
5122         }
5123 #endif
5124         dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block),
5125                           cp->init_block, cp->block_dvma);
5126         pci_iounmap(pdev, cp->regs);
5127         free_netdev(dev);
5128         pci_release_regions(pdev);
5129         pci_disable_device(pdev);
5130 }
5131
5132 static int __maybe_unused cas_suspend(struct device *dev_d)
5133 {
5134         struct net_device *dev = dev_get_drvdata(dev_d);
5135         struct cas *cp = netdev_priv(dev);
5136         unsigned long flags;
5137
5138         mutex_lock(&cp->pm_mutex);
5139
5140         /* If the driver is opened, we stop the DMA */
5141         if (cp->opened) {
5142                 netif_device_detach(dev);
5143
5144                 cas_lock_all_save(cp, flags);
5145
5146                 /* We can set the second arg of cas_reset to 0
5147                  * because on resume, we'll call cas_init_hw with
5148                  * its second arg set so that autonegotiation is
5149                  * restarted.
5150                  */
5151                 cas_reset(cp, 0);
5152                 cas_clean_rings(cp);
5153                 cas_unlock_all_restore(cp, flags);
5154         }
5155
5156         if (cp->hw_running)
5157                 cas_shutdown(cp);
5158         mutex_unlock(&cp->pm_mutex);
5159
5160         return 0;
5161 }
5162
5163 static int __maybe_unused cas_resume(struct device *dev_d)
5164 {
5165         struct net_device *dev = dev_get_drvdata(dev_d);
5166         struct cas *cp = netdev_priv(dev);
5167
5168         netdev_info(dev, "resuming\n");
5169
5170         mutex_lock(&cp->pm_mutex);
5171         cas_hard_reset(cp);
5172         if (cp->opened) {
5173                 unsigned long flags;
5174                 cas_lock_all_save(cp, flags);
5175                 cas_reset(cp, 0);
5176                 cp->hw_running = 1;
5177                 cas_clean_rings(cp);
5178                 cas_init_hw(cp, 1);
5179                 cas_unlock_all_restore(cp, flags);
5180
5181                 netif_device_attach(dev);
5182         }
5183         mutex_unlock(&cp->pm_mutex);
5184         return 0;
5185 }
5186
5187 static SIMPLE_DEV_PM_OPS(cas_pm_ops, cas_suspend, cas_resume);
5188
5189 static struct pci_driver cas_driver = {
5190         .name           = DRV_MODULE_NAME,
5191         .id_table       = cas_pci_tbl,
5192         .probe          = cas_init_one,
5193         .remove         = cas_remove_one,
5194         .driver.pm      = &cas_pm_ops,
5195 };
5196
5197 static int __init cas_init(void)
5198 {
5199         if (linkdown_timeout > 0)
5200                 link_transition_timeout = linkdown_timeout * HZ;
5201         else
5202                 link_transition_timeout = 0;
5203
5204         return pci_register_driver(&cas_driver);
5205 }
5206
5207 static void __exit cas_cleanup(void)
5208 {
5209         pci_unregister_driver(&cas_driver);
5210 }
5211
5212 module_init(cas_init);
5213 module_exit(cas_cleanup);