GNU Linux-libre 5.19-rc6-gnu
[releases.git] / drivers / net / ethernet / sun / cassini.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3  *
4  * Copyright (C) 2004 Sun Microsystems Inc.
5  * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
6  *
7  * This driver uses the sungem driver (c) David Miller
8  * (davem@redhat.com) as its basis.
9  *
10  * The cassini chip has a number of features that distinguish it from
11  * the gem chip:
12  *  4 transmit descriptor rings that are used for either QoS (VLAN) or
13  *      load balancing (non-VLAN mode)
14  *  batching of multiple packets
15  *  multiple CPU dispatching
16  *  page-based RX descriptor engine with separate completion rings
17  *  Gigabit support (GMII and PCS interface)
18  *  MIF link up/down detection works
19  *
20  * RX is handled by page sized buffers that are attached as fragments to
21  * the skb. here's what's done:
22  *  -- driver allocates pages at a time and keeps reference counts
23  *     on them.
24  *  -- the upper protocol layers assume that the header is in the skb
25  *     itself. as a result, cassini will copy a small amount (64 bytes)
26  *     to make them happy.
27  *  -- driver appends the rest of the data pages as frags to skbuffs
28  *     and increments the reference count
29  *  -- on page reclamation, the driver swaps the page with a spare page.
30  *     if that page is still in use, it frees its reference to that page,
31  *     and allocates a new page for use. otherwise, it just recycles the
32  *     the page.
33  *
34  * NOTE: cassini can parse the header. however, it's not worth it
35  *       as long as the network stack requires a header copy.
36  *
37  * TX has 4 queues. currently these queues are used in a round-robin
38  * fashion for load balancing. They can also be used for QoS. for that
39  * to work, however, QoS information needs to be exposed down to the driver
40  * level so that subqueues get targeted to particular transmit rings.
41  * alternatively, the queues can be configured via use of the all-purpose
42  * ioctl.
43  *
44  * RX DATA: the rx completion ring has all the info, but the rx desc
45  * ring has all of the data. RX can conceivably come in under multiple
46  * interrupts, but the INT# assignment needs to be set up properly by
47  * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
48  * that. also, the two descriptor rings are designed to distinguish between
49  * encrypted and non-encrypted packets, but we use them for buffering
50  * instead.
51  *
52  * by default, the selective clear mask is set up to process rx packets.
53  */
54
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56
57 #include <linux/module.h>
58 #include <linux/kernel.h>
59 #include <linux/types.h>
60 #include <linux/compiler.h>
61 #include <linux/slab.h>
62 #include <linux/delay.h>
63 #include <linux/init.h>
64 #include <linux/interrupt.h>
65 #include <linux/vmalloc.h>
66 #include <linux/ioport.h>
67 #include <linux/pci.h>
68 #include <linux/mm.h>
69 #include <linux/highmem.h>
70 #include <linux/list.h>
71 #include <linux/dma-mapping.h>
72
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/ethtool.h>
77 #include <linux/crc32.h>
78 #include <linux/random.h>
79 #include <linux/mii.h>
80 #include <linux/ip.h>
81 #include <linux/tcp.h>
82 #include <linux/mutex.h>
83 #include <linux/firmware.h>
84
85 #include <net/checksum.h>
86
87 #include <linux/atomic.h>
88 #include <asm/io.h>
89 #include <asm/byteorder.h>
90 #include <linux/uaccess.h>
91 #include <linux/jiffies.h>
92
93 #define cas_page_map(x)      kmap_atomic((x))
94 #define cas_page_unmap(x)    kunmap_atomic((x))
95 #define CAS_NCPUS            num_online_cpus()
96
97 #define cas_skb_release(x)  netif_rx(x)
98
99 /* select which firmware to use */
100 #define USE_HP_WORKAROUND
101 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
102 #define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
103
104 #include "cassini.h"
105
106 #define USE_TX_COMPWB      /* use completion writeback registers */
107 #define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
108 #define USE_RX_BLANK       /* hw interrupt mitigation */
109 #undef USE_ENTROPY_DEV     /* don't test for entropy device */
110
111 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
112  * also, we need to make cp->lock finer-grained.
113  */
114 #undef  USE_PCI_INTB
115 #undef  USE_PCI_INTC
116 #undef  USE_PCI_INTD
117 #undef  USE_QOS
118
119 #undef  USE_VPD_DEBUG       /* debug vpd information if defined */
120
121 /* rx processing options */
122 #define USE_PAGE_ORDER      /* specify to allocate large rx pages */
123 #define RX_DONT_BATCH  0    /* if 1, don't batch flows */
124 #define RX_COPY_ALWAYS 0    /* if 0, use frags */
125 #define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
126 #undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
127
128 #define DRV_MODULE_NAME         "cassini"
129 #define DRV_MODULE_VERSION      "1.6"
130 #define DRV_MODULE_RELDATE      "21 May 2008"
131
132 #define CAS_DEF_MSG_ENABLE        \
133         (NETIF_MSG_DRV          | \
134          NETIF_MSG_PROBE        | \
135          NETIF_MSG_LINK         | \
136          NETIF_MSG_TIMER        | \
137          NETIF_MSG_IFDOWN       | \
138          NETIF_MSG_IFUP         | \
139          NETIF_MSG_RX_ERR       | \
140          NETIF_MSG_TX_ERR)
141
142 /* length of time before we decide the hardware is borked,
143  * and dev->tx_timeout() should be called to fix the problem
144  */
145 #define CAS_TX_TIMEOUT                  (HZ)
146 #define CAS_LINK_TIMEOUT                (22*HZ/10)
147 #define CAS_LINK_FAST_TIMEOUT           (1)
148
149 /* timeout values for state changing. these specify the number
150  * of 10us delays to be used before giving up.
151  */
152 #define STOP_TRIES_PHY 1000
153 #define STOP_TRIES     5000
154
155 /* specify a minimum frame size to deal with some fifo issues
156  * max mtu == 2 * page size - ethernet header - 64 - swivel =
157  *            2 * page_size - 0x50
158  */
159 #define CAS_MIN_FRAME                   97
160 #define CAS_1000MB_MIN_FRAME            255
161 #define CAS_MIN_MTU                     60
162 #define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
163
164 #if 1
165 /*
166  * Eliminate these and use separate atomic counters for each, to
167  * avoid a race condition.
168  */
169 #else
170 #define CAS_RESET_MTU                   1
171 #define CAS_RESET_ALL                   2
172 #define CAS_RESET_SPARE                 3
173 #endif
174
175 static char version[] =
176         DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
177
178 static int cassini_debug = -1;  /* -1 == use CAS_DEF_MSG_ENABLE as value */
179 static int link_mode;
180
181 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
182 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
183 MODULE_LICENSE("GPL");
184 /*(DEBLOBBED)*/
185 module_param(cassini_debug, int, 0);
186 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
187 module_param(link_mode, int, 0);
188 MODULE_PARM_DESC(link_mode, "default link mode");
189
190 /*
191  * Work around for a PCS bug in which the link goes down due to the chip
192  * being confused and never showing a link status of "up."
193  */
194 #define DEFAULT_LINKDOWN_TIMEOUT 5
195 /*
196  * Value in seconds, for user input.
197  */
198 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
199 module_param(linkdown_timeout, int, 0);
200 MODULE_PARM_DESC(linkdown_timeout,
201 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
202
203 /*
204  * value in 'ticks' (units used by jiffies). Set when we init the
205  * module because 'HZ' in actually a function call on some flavors of
206  * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
207  */
208 static int link_transition_timeout;
209
210
211
212 static u16 link_modes[] = {
213         BMCR_ANENABLE,                   /* 0 : autoneg */
214         0,                               /* 1 : 10bt half duplex */
215         BMCR_SPEED100,                   /* 2 : 100bt half duplex */
216         BMCR_FULLDPLX,                   /* 3 : 10bt full duplex */
217         BMCR_SPEED100|BMCR_FULLDPLX,     /* 4 : 100bt full duplex */
218         CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
219 };
220
221 static const struct pci_device_id cas_pci_tbl[] = {
222         { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
223           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
224         { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
225           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
226         { 0, }
227 };
228
229 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
230
231 static void cas_set_link_modes(struct cas *cp);
232
233 static inline void cas_lock_tx(struct cas *cp)
234 {
235         int i;
236
237         for (i = 0; i < N_TX_RINGS; i++)
238                 spin_lock_nested(&cp->tx_lock[i], i);
239 }
240
241 /* WTZ: QA was finding deadlock problems with the previous
242  * versions after long test runs with multiple cards per machine.
243  * See if replacing cas_lock_all with safer versions helps. The
244  * symptoms QA is reporting match those we'd expect if interrupts
245  * aren't being properly restored, and we fixed a previous deadlock
246  * with similar symptoms by using save/restore versions in other
247  * places.
248  */
249 #define cas_lock_all_save(cp, flags) \
250 do { \
251         struct cas *xxxcp = (cp); \
252         spin_lock_irqsave(&xxxcp->lock, flags); \
253         cas_lock_tx(xxxcp); \
254 } while (0)
255
256 static inline void cas_unlock_tx(struct cas *cp)
257 {
258         int i;
259
260         for (i = N_TX_RINGS; i > 0; i--)
261                 spin_unlock(&cp->tx_lock[i - 1]);
262 }
263
264 #define cas_unlock_all_restore(cp, flags) \
265 do { \
266         struct cas *xxxcp = (cp); \
267         cas_unlock_tx(xxxcp); \
268         spin_unlock_irqrestore(&xxxcp->lock, flags); \
269 } while (0)
270
271 static void cas_disable_irq(struct cas *cp, const int ring)
272 {
273         /* Make sure we won't get any more interrupts */
274         if (ring == 0) {
275                 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
276                 return;
277         }
278
279         /* disable completion interrupts and selectively mask */
280         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
281                 switch (ring) {
282 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
283 #ifdef USE_PCI_INTB
284                 case 1:
285 #endif
286 #ifdef USE_PCI_INTC
287                 case 2:
288 #endif
289 #ifdef USE_PCI_INTD
290                 case 3:
291 #endif
292                         writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
293                                cp->regs + REG_PLUS_INTRN_MASK(ring));
294                         break;
295 #endif
296                 default:
297                         writel(INTRN_MASK_CLEAR_ALL, cp->regs +
298                                REG_PLUS_INTRN_MASK(ring));
299                         break;
300                 }
301         }
302 }
303
304 static inline void cas_mask_intr(struct cas *cp)
305 {
306         int i;
307
308         for (i = 0; i < N_RX_COMP_RINGS; i++)
309                 cas_disable_irq(cp, i);
310 }
311
312 static void cas_enable_irq(struct cas *cp, const int ring)
313 {
314         if (ring == 0) { /* all but TX_DONE */
315                 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
316                 return;
317         }
318
319         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
320                 switch (ring) {
321 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
322 #ifdef USE_PCI_INTB
323                 case 1:
324 #endif
325 #ifdef USE_PCI_INTC
326                 case 2:
327 #endif
328 #ifdef USE_PCI_INTD
329                 case 3:
330 #endif
331                         writel(INTRN_MASK_RX_EN, cp->regs +
332                                REG_PLUS_INTRN_MASK(ring));
333                         break;
334 #endif
335                 default:
336                         break;
337                 }
338         }
339 }
340
341 static inline void cas_unmask_intr(struct cas *cp)
342 {
343         int i;
344
345         for (i = 0; i < N_RX_COMP_RINGS; i++)
346                 cas_enable_irq(cp, i);
347 }
348
349 static inline void cas_entropy_gather(struct cas *cp)
350 {
351 #ifdef USE_ENTROPY_DEV
352         if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
353                 return;
354
355         batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
356                             readl(cp->regs + REG_ENTROPY_IV),
357                             sizeof(uint64_t)*8);
358 #endif
359 }
360
361 static inline void cas_entropy_reset(struct cas *cp)
362 {
363 #ifdef USE_ENTROPY_DEV
364         if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
365                 return;
366
367         writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
368                cp->regs + REG_BIM_LOCAL_DEV_EN);
369         writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
370         writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
371
372         /* if we read back 0x0, we don't have an entropy device */
373         if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
374                 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
375 #endif
376 }
377
378 /* access to the phy. the following assumes that we've initialized the MIF to
379  * be in frame rather than bit-bang mode
380  */
381 static u16 cas_phy_read(struct cas *cp, int reg)
382 {
383         u32 cmd;
384         int limit = STOP_TRIES_PHY;
385
386         cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
387         cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
388         cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
389         cmd |= MIF_FRAME_TURN_AROUND_MSB;
390         writel(cmd, cp->regs + REG_MIF_FRAME);
391
392         /* poll for completion */
393         while (limit-- > 0) {
394                 udelay(10);
395                 cmd = readl(cp->regs + REG_MIF_FRAME);
396                 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
397                         return cmd & MIF_FRAME_DATA_MASK;
398         }
399         return 0xFFFF; /* -1 */
400 }
401
402 static int cas_phy_write(struct cas *cp, int reg, u16 val)
403 {
404         int limit = STOP_TRIES_PHY;
405         u32 cmd;
406
407         cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
408         cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
409         cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
410         cmd |= MIF_FRAME_TURN_AROUND_MSB;
411         cmd |= val & MIF_FRAME_DATA_MASK;
412         writel(cmd, cp->regs + REG_MIF_FRAME);
413
414         /* poll for completion */
415         while (limit-- > 0) {
416                 udelay(10);
417                 cmd = readl(cp->regs + REG_MIF_FRAME);
418                 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
419                         return 0;
420         }
421         return -1;
422 }
423
424 static void cas_phy_powerup(struct cas *cp)
425 {
426         u16 ctl = cas_phy_read(cp, MII_BMCR);
427
428         if ((ctl & BMCR_PDOWN) == 0)
429                 return;
430         ctl &= ~BMCR_PDOWN;
431         cas_phy_write(cp, MII_BMCR, ctl);
432 }
433
434 static void cas_phy_powerdown(struct cas *cp)
435 {
436         u16 ctl = cas_phy_read(cp, MII_BMCR);
437
438         if (ctl & BMCR_PDOWN)
439                 return;
440         ctl |= BMCR_PDOWN;
441         cas_phy_write(cp, MII_BMCR, ctl);
442 }
443
444 /* cp->lock held. note: the last put_page will free the buffer */
445 static int cas_page_free(struct cas *cp, cas_page_t *page)
446 {
447         dma_unmap_page(&cp->pdev->dev, page->dma_addr, cp->page_size,
448                        DMA_FROM_DEVICE);
449         __free_pages(page->buffer, cp->page_order);
450         kfree(page);
451         return 0;
452 }
453
454 #ifdef RX_COUNT_BUFFERS
455 #define RX_USED_ADD(x, y)       ((x)->used += (y))
456 #define RX_USED_SET(x, y)       ((x)->used  = (y))
457 #else
458 #define RX_USED_ADD(x, y) do { } while(0)
459 #define RX_USED_SET(x, y) do { } while(0)
460 #endif
461
462 /* local page allocation routines for the receive buffers. jumbo pages
463  * require at least 8K contiguous and 8K aligned buffers.
464  */
465 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
466 {
467         cas_page_t *page;
468
469         page = kmalloc(sizeof(cas_page_t), flags);
470         if (!page)
471                 return NULL;
472
473         INIT_LIST_HEAD(&page->list);
474         RX_USED_SET(page, 0);
475         page->buffer = alloc_pages(flags, cp->page_order);
476         if (!page->buffer)
477                 goto page_err;
478         page->dma_addr = dma_map_page(&cp->pdev->dev, page->buffer, 0,
479                                       cp->page_size, DMA_FROM_DEVICE);
480         return page;
481
482 page_err:
483         kfree(page);
484         return NULL;
485 }
486
487 /* initialize spare pool of rx buffers, but allocate during the open */
488 static void cas_spare_init(struct cas *cp)
489 {
490         spin_lock(&cp->rx_inuse_lock);
491         INIT_LIST_HEAD(&cp->rx_inuse_list);
492         spin_unlock(&cp->rx_inuse_lock);
493
494         spin_lock(&cp->rx_spare_lock);
495         INIT_LIST_HEAD(&cp->rx_spare_list);
496         cp->rx_spares_needed = RX_SPARE_COUNT;
497         spin_unlock(&cp->rx_spare_lock);
498 }
499
500 /* used on close. free all the spare buffers. */
501 static void cas_spare_free(struct cas *cp)
502 {
503         struct list_head list, *elem, *tmp;
504
505         /* free spare buffers */
506         INIT_LIST_HEAD(&list);
507         spin_lock(&cp->rx_spare_lock);
508         list_splice_init(&cp->rx_spare_list, &list);
509         spin_unlock(&cp->rx_spare_lock);
510         list_for_each_safe(elem, tmp, &list) {
511                 cas_page_free(cp, list_entry(elem, cas_page_t, list));
512         }
513
514         INIT_LIST_HEAD(&list);
515 #if 1
516         /*
517          * Looks like Adrian had protected this with a different
518          * lock than used everywhere else to manipulate this list.
519          */
520         spin_lock(&cp->rx_inuse_lock);
521         list_splice_init(&cp->rx_inuse_list, &list);
522         spin_unlock(&cp->rx_inuse_lock);
523 #else
524         spin_lock(&cp->rx_spare_lock);
525         list_splice_init(&cp->rx_inuse_list, &list);
526         spin_unlock(&cp->rx_spare_lock);
527 #endif
528         list_for_each_safe(elem, tmp, &list) {
529                 cas_page_free(cp, list_entry(elem, cas_page_t, list));
530         }
531 }
532
533 /* replenish spares if needed */
534 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
535 {
536         struct list_head list, *elem, *tmp;
537         int needed, i;
538
539         /* check inuse list. if we don't need any more free buffers,
540          * just free it
541          */
542
543         /* make a local copy of the list */
544         INIT_LIST_HEAD(&list);
545         spin_lock(&cp->rx_inuse_lock);
546         list_splice_init(&cp->rx_inuse_list, &list);
547         spin_unlock(&cp->rx_inuse_lock);
548
549         list_for_each_safe(elem, tmp, &list) {
550                 cas_page_t *page = list_entry(elem, cas_page_t, list);
551
552                 /*
553                  * With the lockless pagecache, cassini buffering scheme gets
554                  * slightly less accurate: we might find that a page has an
555                  * elevated reference count here, due to a speculative ref,
556                  * and skip it as in-use. Ideally we would be able to reclaim
557                  * it. However this would be such a rare case, it doesn't
558                  * matter too much as we should pick it up the next time round.
559                  *
560                  * Importantly, if we find that the page has a refcount of 1
561                  * here (our refcount), then we know it is definitely not inuse
562                  * so we can reuse it.
563                  */
564                 if (page_count(page->buffer) > 1)
565                         continue;
566
567                 list_del(elem);
568                 spin_lock(&cp->rx_spare_lock);
569                 if (cp->rx_spares_needed > 0) {
570                         list_add(elem, &cp->rx_spare_list);
571                         cp->rx_spares_needed--;
572                         spin_unlock(&cp->rx_spare_lock);
573                 } else {
574                         spin_unlock(&cp->rx_spare_lock);
575                         cas_page_free(cp, page);
576                 }
577         }
578
579         /* put any inuse buffers back on the list */
580         if (!list_empty(&list)) {
581                 spin_lock(&cp->rx_inuse_lock);
582                 list_splice(&list, &cp->rx_inuse_list);
583                 spin_unlock(&cp->rx_inuse_lock);
584         }
585
586         spin_lock(&cp->rx_spare_lock);
587         needed = cp->rx_spares_needed;
588         spin_unlock(&cp->rx_spare_lock);
589         if (!needed)
590                 return;
591
592         /* we still need spares, so try to allocate some */
593         INIT_LIST_HEAD(&list);
594         i = 0;
595         while (i < needed) {
596                 cas_page_t *spare = cas_page_alloc(cp, flags);
597                 if (!spare)
598                         break;
599                 list_add(&spare->list, &list);
600                 i++;
601         }
602
603         spin_lock(&cp->rx_spare_lock);
604         list_splice(&list, &cp->rx_spare_list);
605         cp->rx_spares_needed -= i;
606         spin_unlock(&cp->rx_spare_lock);
607 }
608
609 /* pull a page from the list. */
610 static cas_page_t *cas_page_dequeue(struct cas *cp)
611 {
612         struct list_head *entry;
613         int recover;
614
615         spin_lock(&cp->rx_spare_lock);
616         if (list_empty(&cp->rx_spare_list)) {
617                 /* try to do a quick recovery */
618                 spin_unlock(&cp->rx_spare_lock);
619                 cas_spare_recover(cp, GFP_ATOMIC);
620                 spin_lock(&cp->rx_spare_lock);
621                 if (list_empty(&cp->rx_spare_list)) {
622                         netif_err(cp, rx_err, cp->dev,
623                                   "no spare buffers available\n");
624                         spin_unlock(&cp->rx_spare_lock);
625                         return NULL;
626                 }
627         }
628
629         entry = cp->rx_spare_list.next;
630         list_del(entry);
631         recover = ++cp->rx_spares_needed;
632         spin_unlock(&cp->rx_spare_lock);
633
634         /* trigger the timer to do the recovery */
635         if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
636 #if 1
637                 atomic_inc(&cp->reset_task_pending);
638                 atomic_inc(&cp->reset_task_pending_spare);
639                 schedule_work(&cp->reset_task);
640 #else
641                 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
642                 schedule_work(&cp->reset_task);
643 #endif
644         }
645         return list_entry(entry, cas_page_t, list);
646 }
647
648
649 static void cas_mif_poll(struct cas *cp, const int enable)
650 {
651         u32 cfg;
652
653         cfg  = readl(cp->regs + REG_MIF_CFG);
654         cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
655
656         if (cp->phy_type & CAS_PHY_MII_MDIO1)
657                 cfg |= MIF_CFG_PHY_SELECT;
658
659         /* poll and interrupt on link status change. */
660         if (enable) {
661                 cfg |= MIF_CFG_POLL_EN;
662                 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
663                 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
664         }
665         writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
666                cp->regs + REG_MIF_MASK);
667         writel(cfg, cp->regs + REG_MIF_CFG);
668 }
669
670 /* Must be invoked under cp->lock */
671 static void cas_begin_auto_negotiation(struct cas *cp,
672                                        const struct ethtool_link_ksettings *ep)
673 {
674         u16 ctl;
675 #if 1
676         int lcntl;
677         int changed = 0;
678         int oldstate = cp->lstate;
679         int link_was_not_down = !(oldstate == link_down);
680 #endif
681         /* Setup link parameters */
682         if (!ep)
683                 goto start_aneg;
684         lcntl = cp->link_cntl;
685         if (ep->base.autoneg == AUTONEG_ENABLE) {
686                 cp->link_cntl = BMCR_ANENABLE;
687         } else {
688                 u32 speed = ep->base.speed;
689                 cp->link_cntl = 0;
690                 if (speed == SPEED_100)
691                         cp->link_cntl |= BMCR_SPEED100;
692                 else if (speed == SPEED_1000)
693                         cp->link_cntl |= CAS_BMCR_SPEED1000;
694                 if (ep->base.duplex == DUPLEX_FULL)
695                         cp->link_cntl |= BMCR_FULLDPLX;
696         }
697 #if 1
698         changed = (lcntl != cp->link_cntl);
699 #endif
700 start_aneg:
701         if (cp->lstate == link_up) {
702                 netdev_info(cp->dev, "PCS link down\n");
703         } else {
704                 if (changed) {
705                         netdev_info(cp->dev, "link configuration changed\n");
706                 }
707         }
708         cp->lstate = link_down;
709         cp->link_transition = LINK_TRANSITION_LINK_DOWN;
710         if (!cp->hw_running)
711                 return;
712 #if 1
713         /*
714          * WTZ: If the old state was link_up, we turn off the carrier
715          * to replicate everything we do elsewhere on a link-down
716          * event when we were already in a link-up state..
717          */
718         if (oldstate == link_up)
719                 netif_carrier_off(cp->dev);
720         if (changed  && link_was_not_down) {
721                 /*
722                  * WTZ: This branch will simply schedule a full reset after
723                  * we explicitly changed link modes in an ioctl. See if this
724                  * fixes the link-problems we were having for forced mode.
725                  */
726                 atomic_inc(&cp->reset_task_pending);
727                 atomic_inc(&cp->reset_task_pending_all);
728                 schedule_work(&cp->reset_task);
729                 cp->timer_ticks = 0;
730                 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
731                 return;
732         }
733 #endif
734         if (cp->phy_type & CAS_PHY_SERDES) {
735                 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
736
737                 if (cp->link_cntl & BMCR_ANENABLE) {
738                         val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
739                         cp->lstate = link_aneg;
740                 } else {
741                         if (cp->link_cntl & BMCR_FULLDPLX)
742                                 val |= PCS_MII_CTRL_DUPLEX;
743                         val &= ~PCS_MII_AUTONEG_EN;
744                         cp->lstate = link_force_ok;
745                 }
746                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
747                 writel(val, cp->regs + REG_PCS_MII_CTRL);
748
749         } else {
750                 cas_mif_poll(cp, 0);
751                 ctl = cas_phy_read(cp, MII_BMCR);
752                 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
753                          CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
754                 ctl |= cp->link_cntl;
755                 if (ctl & BMCR_ANENABLE) {
756                         ctl |= BMCR_ANRESTART;
757                         cp->lstate = link_aneg;
758                 } else {
759                         cp->lstate = link_force_ok;
760                 }
761                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
762                 cas_phy_write(cp, MII_BMCR, ctl);
763                 cas_mif_poll(cp, 1);
764         }
765
766         cp->timer_ticks = 0;
767         mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
768 }
769
770 /* Must be invoked under cp->lock. */
771 static int cas_reset_mii_phy(struct cas *cp)
772 {
773         int limit = STOP_TRIES_PHY;
774         u16 val;
775
776         cas_phy_write(cp, MII_BMCR, BMCR_RESET);
777         udelay(100);
778         while (--limit) {
779                 val = cas_phy_read(cp, MII_BMCR);
780                 if ((val & BMCR_RESET) == 0)
781                         break;
782                 udelay(10);
783         }
784         return limit <= 0;
785 }
786
787 static void cas_saturn_firmware_init(struct cas *cp)
788 {
789         const struct firmware *fw;
790         const char fw_name[] = "/*(DEBLOBBED)*/";
791         int err;
792
793         if (PHY_NS_DP83065 != cp->phy_id)
794                 return;
795
796         err = reject_firmware(&fw, fw_name, &cp->pdev->dev);
797         if (err) {
798                 pr_err("Failed to load firmware \"%s\"\n",
799                        fw_name);
800                 return;
801         }
802         if (fw->size < 2) {
803                 pr_err("bogus length %zu in \"%s\"\n",
804                        fw->size, fw_name);
805                 goto out;
806         }
807         cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
808         cp->fw_size = fw->size - 2;
809         cp->fw_data = vmalloc(cp->fw_size);
810         if (!cp->fw_data)
811                 goto out;
812         memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
813 out:
814         release_firmware(fw);
815 }
816
817 static void cas_saturn_firmware_load(struct cas *cp)
818 {
819         int i;
820
821         if (!cp->fw_data)
822                 return;
823
824         cas_phy_powerdown(cp);
825
826         /* expanded memory access mode */
827         cas_phy_write(cp, DP83065_MII_MEM, 0x0);
828
829         /* pointer configuration for new firmware */
830         cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
831         cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
832         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
833         cas_phy_write(cp, DP83065_MII_REGD, 0x82);
834         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
835         cas_phy_write(cp, DP83065_MII_REGD, 0x0);
836         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
837         cas_phy_write(cp, DP83065_MII_REGD, 0x39);
838
839         /* download new firmware */
840         cas_phy_write(cp, DP83065_MII_MEM, 0x1);
841         cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
842         for (i = 0; i < cp->fw_size; i++)
843                 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
844
845         /* enable firmware */
846         cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
847         cas_phy_write(cp, DP83065_MII_REGD, 0x1);
848 }
849
850
851 /* phy initialization */
852 static void cas_phy_init(struct cas *cp)
853 {
854         u16 val;
855
856         /* if we're in MII/GMII mode, set up phy */
857         if (CAS_PHY_MII(cp->phy_type)) {
858                 writel(PCS_DATAPATH_MODE_MII,
859                        cp->regs + REG_PCS_DATAPATH_MODE);
860
861                 cas_mif_poll(cp, 0);
862                 cas_reset_mii_phy(cp); /* take out of isolate mode */
863
864                 if (PHY_LUCENT_B0 == cp->phy_id) {
865                         /* workaround link up/down issue with lucent */
866                         cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
867                         cas_phy_write(cp, MII_BMCR, 0x00f1);
868                         cas_phy_write(cp, LUCENT_MII_REG, 0x0);
869
870                 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
871                         /* workarounds for broadcom phy */
872                         cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
873                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
874                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
875                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
876                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
877                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
878                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
879                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
880                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
881                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
882                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
883
884                 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
885                         val = cas_phy_read(cp, BROADCOM_MII_REG4);
886                         val = cas_phy_read(cp, BROADCOM_MII_REG4);
887                         if (val & 0x0080) {
888                                 /* link workaround */
889                                 cas_phy_write(cp, BROADCOM_MII_REG4,
890                                               val & ~0x0080);
891                         }
892
893                 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
894                         writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
895                                SATURN_PCFG_FSI : 0x0,
896                                cp->regs + REG_SATURN_PCFG);
897
898                         /* load firmware to address 10Mbps auto-negotiation
899                          * issue. NOTE: this will need to be changed if the
900                          * default firmware gets fixed.
901                          */
902                         if (PHY_NS_DP83065 == cp->phy_id) {
903                                 cas_saturn_firmware_load(cp);
904                         }
905                         cas_phy_powerup(cp);
906                 }
907
908                 /* advertise capabilities */
909                 val = cas_phy_read(cp, MII_BMCR);
910                 val &= ~BMCR_ANENABLE;
911                 cas_phy_write(cp, MII_BMCR, val);
912                 udelay(10);
913
914                 cas_phy_write(cp, MII_ADVERTISE,
915                               cas_phy_read(cp, MII_ADVERTISE) |
916                               (ADVERTISE_10HALF | ADVERTISE_10FULL |
917                                ADVERTISE_100HALF | ADVERTISE_100FULL |
918                                CAS_ADVERTISE_PAUSE |
919                                CAS_ADVERTISE_ASYM_PAUSE));
920
921                 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
922                         /* make sure that we don't advertise half
923                          * duplex to avoid a chip issue
924                          */
925                         val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
926                         val &= ~CAS_ADVERTISE_1000HALF;
927                         val |= CAS_ADVERTISE_1000FULL;
928                         cas_phy_write(cp, CAS_MII_1000_CTRL, val);
929                 }
930
931         } else {
932                 /* reset pcs for serdes */
933                 u32 val;
934                 int limit;
935
936                 writel(PCS_DATAPATH_MODE_SERDES,
937                        cp->regs + REG_PCS_DATAPATH_MODE);
938
939                 /* enable serdes pins on saturn */
940                 if (cp->cas_flags & CAS_FLAG_SATURN)
941                         writel(0, cp->regs + REG_SATURN_PCFG);
942
943                 /* Reset PCS unit. */
944                 val = readl(cp->regs + REG_PCS_MII_CTRL);
945                 val |= PCS_MII_RESET;
946                 writel(val, cp->regs + REG_PCS_MII_CTRL);
947
948                 limit = STOP_TRIES;
949                 while (--limit > 0) {
950                         udelay(10);
951                         if ((readl(cp->regs + REG_PCS_MII_CTRL) &
952                              PCS_MII_RESET) == 0)
953                                 break;
954                 }
955                 if (limit <= 0)
956                         netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
957                                     readl(cp->regs + REG_PCS_STATE_MACHINE));
958
959                 /* Make sure PCS is disabled while changing advertisement
960                  * configuration.
961                  */
962                 writel(0x0, cp->regs + REG_PCS_CFG);
963
964                 /* Advertise all capabilities except half-duplex. */
965                 val  = readl(cp->regs + REG_PCS_MII_ADVERT);
966                 val &= ~PCS_MII_ADVERT_HD;
967                 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
968                         PCS_MII_ADVERT_ASYM_PAUSE);
969                 writel(val, cp->regs + REG_PCS_MII_ADVERT);
970
971                 /* enable PCS */
972                 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
973
974                 /* pcs workaround: enable sync detect */
975                 writel(PCS_SERDES_CTRL_SYNCD_EN,
976                        cp->regs + REG_PCS_SERDES_CTRL);
977         }
978 }
979
980
981 static int cas_pcs_link_check(struct cas *cp)
982 {
983         u32 stat, state_machine;
984         int retval = 0;
985
986         /* The link status bit latches on zero, so you must
987          * read it twice in such a case to see a transition
988          * to the link being up.
989          */
990         stat = readl(cp->regs + REG_PCS_MII_STATUS);
991         if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
992                 stat = readl(cp->regs + REG_PCS_MII_STATUS);
993
994         /* The remote-fault indication is only valid
995          * when autoneg has completed.
996          */
997         if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
998                      PCS_MII_STATUS_REMOTE_FAULT)) ==
999             (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
1000                 netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1001
1002         /* work around link detection issue by querying the PCS state
1003          * machine directly.
1004          */
1005         state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1006         if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1007                 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1008         } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1009                 stat |= PCS_MII_STATUS_LINK_STATUS;
1010         }
1011
1012         if (stat & PCS_MII_STATUS_LINK_STATUS) {
1013                 if (cp->lstate != link_up) {
1014                         if (cp->opened) {
1015                                 cp->lstate = link_up;
1016                                 cp->link_transition = LINK_TRANSITION_LINK_UP;
1017
1018                                 cas_set_link_modes(cp);
1019                                 netif_carrier_on(cp->dev);
1020                         }
1021                 }
1022         } else if (cp->lstate == link_up) {
1023                 cp->lstate = link_down;
1024                 if (link_transition_timeout != 0 &&
1025                     cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1026                     !cp->link_transition_jiffies_valid) {
1027                         /*
1028                          * force a reset, as a workaround for the
1029                          * link-failure problem. May want to move this to a
1030                          * point a bit earlier in the sequence. If we had
1031                          * generated a reset a short time ago, we'll wait for
1032                          * the link timer to check the status until a
1033                          * timer expires (link_transistion_jiffies_valid is
1034                          * true when the timer is running.)  Instead of using
1035                          * a system timer, we just do a check whenever the
1036                          * link timer is running - this clears the flag after
1037                          * a suitable delay.
1038                          */
1039                         retval = 1;
1040                         cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1041                         cp->link_transition_jiffies = jiffies;
1042                         cp->link_transition_jiffies_valid = 1;
1043                 } else {
1044                         cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1045                 }
1046                 netif_carrier_off(cp->dev);
1047                 if (cp->opened)
1048                         netif_info(cp, link, cp->dev, "PCS link down\n");
1049
1050                 /* Cassini only: if you force a mode, there can be
1051                  * sync problems on link down. to fix that, the following
1052                  * things need to be checked:
1053                  * 1) read serialink state register
1054                  * 2) read pcs status register to verify link down.
1055                  * 3) if link down and serial link == 0x03, then you need
1056                  *    to global reset the chip.
1057                  */
1058                 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1059                         /* should check to see if we're in a forced mode */
1060                         stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1061                         if (stat == 0x03)
1062                                 return 1;
1063                 }
1064         } else if (cp->lstate == link_down) {
1065                 if (link_transition_timeout != 0 &&
1066                     cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1067                     !cp->link_transition_jiffies_valid) {
1068                         /* force a reset, as a workaround for the
1069                          * link-failure problem.  May want to move
1070                          * this to a point a bit earlier in the
1071                          * sequence.
1072                          */
1073                         retval = 1;
1074                         cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1075                         cp->link_transition_jiffies = jiffies;
1076                         cp->link_transition_jiffies_valid = 1;
1077                 } else {
1078                         cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1079                 }
1080         }
1081
1082         return retval;
1083 }
1084
1085 static int cas_pcs_interrupt(struct net_device *dev,
1086                              struct cas *cp, u32 status)
1087 {
1088         u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1089
1090         if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1091                 return 0;
1092         return cas_pcs_link_check(cp);
1093 }
1094
1095 static int cas_txmac_interrupt(struct net_device *dev,
1096                                struct cas *cp, u32 status)
1097 {
1098         u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1099
1100         if (!txmac_stat)
1101                 return 0;
1102
1103         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1104                      "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1105
1106         /* Defer timer expiration is quite normal,
1107          * don't even log the event.
1108          */
1109         if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1110             !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1111                 return 0;
1112
1113         spin_lock(&cp->stat_lock[0]);
1114         if (txmac_stat & MAC_TX_UNDERRUN) {
1115                 netdev_err(dev, "TX MAC xmit underrun\n");
1116                 cp->net_stats[0].tx_fifo_errors++;
1117         }
1118
1119         if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1120                 netdev_err(dev, "TX MAC max packet size error\n");
1121                 cp->net_stats[0].tx_errors++;
1122         }
1123
1124         /* The rest are all cases of one of the 16-bit TX
1125          * counters expiring.
1126          */
1127         if (txmac_stat & MAC_TX_COLL_NORMAL)
1128                 cp->net_stats[0].collisions += 0x10000;
1129
1130         if (txmac_stat & MAC_TX_COLL_EXCESS) {
1131                 cp->net_stats[0].tx_aborted_errors += 0x10000;
1132                 cp->net_stats[0].collisions += 0x10000;
1133         }
1134
1135         if (txmac_stat & MAC_TX_COLL_LATE) {
1136                 cp->net_stats[0].tx_aborted_errors += 0x10000;
1137                 cp->net_stats[0].collisions += 0x10000;
1138         }
1139         spin_unlock(&cp->stat_lock[0]);
1140
1141         /* We do not keep track of MAC_TX_COLL_FIRST and
1142          * MAC_TX_PEAK_ATTEMPTS events.
1143          */
1144         return 0;
1145 }
1146
1147 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1148 {
1149         cas_hp_inst_t *inst;
1150         u32 val;
1151         int i;
1152
1153         i = 0;
1154         while ((inst = firmware) && inst->note) {
1155                 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1156
1157                 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1158                 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1159                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1160
1161                 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1162                 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1163                 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1164                 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1165                 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1166                 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1167                 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1168                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1169
1170                 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1171                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1172                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1173                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1174                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1175                 ++firmware;
1176                 ++i;
1177         }
1178 }
1179
1180 static void cas_init_rx_dma(struct cas *cp)
1181 {
1182         u64 desc_dma = cp->block_dvma;
1183         u32 val;
1184         int i, size;
1185
1186         /* rx free descriptors */
1187         val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1188         val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1189         val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1190         if ((N_RX_DESC_RINGS > 1) &&
1191             (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1192                 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1193         writel(val, cp->regs + REG_RX_CFG);
1194
1195         val = (unsigned long) cp->init_rxds[0] -
1196                 (unsigned long) cp->init_block;
1197         writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1198         writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1199         writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1200
1201         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1202                 /* rx desc 2 is for IPSEC packets. however,
1203                  * we don't it that for that purpose.
1204                  */
1205                 val = (unsigned long) cp->init_rxds[1] -
1206                         (unsigned long) cp->init_block;
1207                 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1208                 writel((desc_dma + val) & 0xffffffff, cp->regs +
1209                        REG_PLUS_RX_DB1_LOW);
1210                 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1211                        REG_PLUS_RX_KICK1);
1212         }
1213
1214         /* rx completion registers */
1215         val = (unsigned long) cp->init_rxcs[0] -
1216                 (unsigned long) cp->init_block;
1217         writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1218         writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1219
1220         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1221                 /* rx comp 2-4 */
1222                 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1223                         val = (unsigned long) cp->init_rxcs[i] -
1224                                 (unsigned long) cp->init_block;
1225                         writel((desc_dma + val) >> 32, cp->regs +
1226                                REG_PLUS_RX_CBN_HI(i));
1227                         writel((desc_dma + val) & 0xffffffff, cp->regs +
1228                                REG_PLUS_RX_CBN_LOW(i));
1229                 }
1230         }
1231
1232         /* read selective clear regs to prevent spurious interrupts
1233          * on reset because complete == kick.
1234          * selective clear set up to prevent interrupts on resets
1235          */
1236         readl(cp->regs + REG_INTR_STATUS_ALIAS);
1237         writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1238
1239         /* set up pause thresholds */
1240         val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1241                         cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1242         val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1243                         cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1244         writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1245
1246         /* zero out dma reassembly buffers */
1247         for (i = 0; i < 64; i++) {
1248                 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1249                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1250                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1251                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1252         }
1253
1254         /* make sure address register is 0 for normal operation */
1255         writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1256         writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1257
1258         /* interrupt mitigation */
1259 #ifdef USE_RX_BLANK
1260         val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1261         val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1262         writel(val, cp->regs + REG_RX_BLANK);
1263 #else
1264         writel(0x0, cp->regs + REG_RX_BLANK);
1265 #endif
1266
1267         /* interrupt generation as a function of low water marks for
1268          * free desc and completion entries. these are used to trigger
1269          * housekeeping for rx descs. we don't use the free interrupt
1270          * as it's not very useful
1271          */
1272         /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1273         val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1274         writel(val, cp->regs + REG_RX_AE_THRESH);
1275         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1276                 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1277                 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1278         }
1279
1280         /* Random early detect registers. useful for congestion avoidance.
1281          * this should be tunable.
1282          */
1283         writel(0x0, cp->regs + REG_RX_RED);
1284
1285         /* receive page sizes. default == 2K (0x800) */
1286         val = 0;
1287         if (cp->page_size == 0x1000)
1288                 val = 0x1;
1289         else if (cp->page_size == 0x2000)
1290                 val = 0x2;
1291         else if (cp->page_size == 0x4000)
1292                 val = 0x3;
1293
1294         /* round mtu + offset. constrain to page size. */
1295         size = cp->dev->mtu + 64;
1296         if (size > cp->page_size)
1297                 size = cp->page_size;
1298
1299         if (size <= 0x400)
1300                 i = 0x0;
1301         else if (size <= 0x800)
1302                 i = 0x1;
1303         else if (size <= 0x1000)
1304                 i = 0x2;
1305         else
1306                 i = 0x3;
1307
1308         cp->mtu_stride = 1 << (i + 10);
1309         val  = CAS_BASE(RX_PAGE_SIZE, val);
1310         val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1311         val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1312         val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1313         writel(val, cp->regs + REG_RX_PAGE_SIZE);
1314
1315         /* enable the header parser if desired */
1316         if (&CAS_HP_FIRMWARE[0] == &cas_prog_null[0])
1317                 return;
1318
1319         val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1320         val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1321         val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1322         writel(val, cp->regs + REG_HP_CFG);
1323 }
1324
1325 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1326 {
1327         memset(rxc, 0, sizeof(*rxc));
1328         rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1329 }
1330
1331 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1332  * flipping is protected by the fact that the chip will not
1333  * hand back the same page index while it's being processed.
1334  */
1335 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1336 {
1337         cas_page_t *page = cp->rx_pages[1][index];
1338         cas_page_t *new;
1339
1340         if (page_count(page->buffer) == 1)
1341                 return page;
1342
1343         new = cas_page_dequeue(cp);
1344         if (new) {
1345                 spin_lock(&cp->rx_inuse_lock);
1346                 list_add(&page->list, &cp->rx_inuse_list);
1347                 spin_unlock(&cp->rx_inuse_lock);
1348         }
1349         return new;
1350 }
1351
1352 /* this needs to be changed if we actually use the ENC RX DESC ring */
1353 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1354                                  const int index)
1355 {
1356         cas_page_t **page0 = cp->rx_pages[0];
1357         cas_page_t **page1 = cp->rx_pages[1];
1358
1359         /* swap if buffer is in use */
1360         if (page_count(page0[index]->buffer) > 1) {
1361                 cas_page_t *new = cas_page_spare(cp, index);
1362                 if (new) {
1363                         page1[index] = page0[index];
1364                         page0[index] = new;
1365                 }
1366         }
1367         RX_USED_SET(page0[index], 0);
1368         return page0[index];
1369 }
1370
1371 static void cas_clean_rxds(struct cas *cp)
1372 {
1373         /* only clean ring 0 as ring 1 is used for spare buffers */
1374         struct cas_rx_desc *rxd = cp->init_rxds[0];
1375         int i, size;
1376
1377         /* release all rx flows */
1378         for (i = 0; i < N_RX_FLOWS; i++) {
1379                 struct sk_buff *skb;
1380                 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1381                         cas_skb_release(skb);
1382                 }
1383         }
1384
1385         /* initialize descriptors */
1386         size = RX_DESC_RINGN_SIZE(0);
1387         for (i = 0; i < size; i++) {
1388                 cas_page_t *page = cas_page_swap(cp, 0, i);
1389                 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1390                 rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1391                                             CAS_BASE(RX_INDEX_RING, 0));
1392         }
1393
1394         cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
1395         cp->rx_last[0] = 0;
1396         cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1397 }
1398
1399 static void cas_clean_rxcs(struct cas *cp)
1400 {
1401         int i, j;
1402
1403         /* take ownership of rx comp descriptors */
1404         memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1405         memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1406         for (i = 0; i < N_RX_COMP_RINGS; i++) {
1407                 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1408                 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1409                         cas_rxc_init(rxc + j);
1410                 }
1411         }
1412 }
1413
1414 #if 0
1415 /* When we get a RX fifo overflow, the RX unit is probably hung
1416  * so we do the following.
1417  *
1418  * If any part of the reset goes wrong, we return 1 and that causes the
1419  * whole chip to be reset.
1420  */
1421 static int cas_rxmac_reset(struct cas *cp)
1422 {
1423         struct net_device *dev = cp->dev;
1424         int limit;
1425         u32 val;
1426
1427         /* First, reset MAC RX. */
1428         writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1429         for (limit = 0; limit < STOP_TRIES; limit++) {
1430                 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1431                         break;
1432                 udelay(10);
1433         }
1434         if (limit == STOP_TRIES) {
1435                 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1436                 return 1;
1437         }
1438
1439         /* Second, disable RX DMA. */
1440         writel(0, cp->regs + REG_RX_CFG);
1441         for (limit = 0; limit < STOP_TRIES; limit++) {
1442                 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1443                         break;
1444                 udelay(10);
1445         }
1446         if (limit == STOP_TRIES) {
1447                 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1448                 return 1;
1449         }
1450
1451         mdelay(5);
1452
1453         /* Execute RX reset command. */
1454         writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1455         for (limit = 0; limit < STOP_TRIES; limit++) {
1456                 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1457                         break;
1458                 udelay(10);
1459         }
1460         if (limit == STOP_TRIES) {
1461                 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1462                 return 1;
1463         }
1464
1465         /* reset driver rx state */
1466         cas_clean_rxds(cp);
1467         cas_clean_rxcs(cp);
1468
1469         /* Now, reprogram the rest of RX unit. */
1470         cas_init_rx_dma(cp);
1471
1472         /* re-enable */
1473         val = readl(cp->regs + REG_RX_CFG);
1474         writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1475         writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1476         val = readl(cp->regs + REG_MAC_RX_CFG);
1477         writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1478         return 0;
1479 }
1480 #endif
1481
1482 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1483                                u32 status)
1484 {
1485         u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1486
1487         if (!stat)
1488                 return 0;
1489
1490         netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1491
1492         /* these are all rollovers */
1493         spin_lock(&cp->stat_lock[0]);
1494         if (stat & MAC_RX_ALIGN_ERR)
1495                 cp->net_stats[0].rx_frame_errors += 0x10000;
1496
1497         if (stat & MAC_RX_CRC_ERR)
1498                 cp->net_stats[0].rx_crc_errors += 0x10000;
1499
1500         if (stat & MAC_RX_LEN_ERR)
1501                 cp->net_stats[0].rx_length_errors += 0x10000;
1502
1503         if (stat & MAC_RX_OVERFLOW) {
1504                 cp->net_stats[0].rx_over_errors++;
1505                 cp->net_stats[0].rx_fifo_errors++;
1506         }
1507
1508         /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1509          * events.
1510          */
1511         spin_unlock(&cp->stat_lock[0]);
1512         return 0;
1513 }
1514
1515 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1516                              u32 status)
1517 {
1518         u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1519
1520         if (!stat)
1521                 return 0;
1522
1523         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1524                      "mac interrupt, stat: 0x%x\n", stat);
1525
1526         /* This interrupt is just for pause frame and pause
1527          * tracking.  It is useful for diagnostics and debug
1528          * but probably by default we will mask these events.
1529          */
1530         if (stat & MAC_CTRL_PAUSE_STATE)
1531                 cp->pause_entered++;
1532
1533         if (stat & MAC_CTRL_PAUSE_RECEIVED)
1534                 cp->pause_last_time_recvd = (stat >> 16);
1535
1536         return 0;
1537 }
1538
1539
1540 /* Must be invoked under cp->lock. */
1541 static inline int cas_mdio_link_not_up(struct cas *cp)
1542 {
1543         u16 val;
1544
1545         switch (cp->lstate) {
1546         case link_force_ret:
1547                 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1548                 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1549                 cp->timer_ticks = 5;
1550                 cp->lstate = link_force_ok;
1551                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1552                 break;
1553
1554         case link_aneg:
1555                 val = cas_phy_read(cp, MII_BMCR);
1556
1557                 /* Try forced modes. we try things in the following order:
1558                  * 1000 full -> 100 full/half -> 10 half
1559                  */
1560                 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1561                 val |= BMCR_FULLDPLX;
1562                 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1563                         CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1564                 cas_phy_write(cp, MII_BMCR, val);
1565                 cp->timer_ticks = 5;
1566                 cp->lstate = link_force_try;
1567                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1568                 break;
1569
1570         case link_force_try:
1571                 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1572                 val = cas_phy_read(cp, MII_BMCR);
1573                 cp->timer_ticks = 5;
1574                 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1575                         val &= ~CAS_BMCR_SPEED1000;
1576                         val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1577                         cas_phy_write(cp, MII_BMCR, val);
1578                         break;
1579                 }
1580
1581                 if (val & BMCR_SPEED100) {
1582                         if (val & BMCR_FULLDPLX) /* fd failed */
1583                                 val &= ~BMCR_FULLDPLX;
1584                         else { /* 100Mbps failed */
1585                                 val &= ~BMCR_SPEED100;
1586                         }
1587                         cas_phy_write(cp, MII_BMCR, val);
1588                         break;
1589                 }
1590                 break;
1591         default:
1592                 break;
1593         }
1594         return 0;
1595 }
1596
1597
1598 /* must be invoked with cp->lock held */
1599 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1600 {
1601         int restart;
1602
1603         if (bmsr & BMSR_LSTATUS) {
1604                 /* Ok, here we got a link. If we had it due to a forced
1605                  * fallback, and we were configured for autoneg, we
1606                  * retry a short autoneg pass. If you know your hub is
1607                  * broken, use ethtool ;)
1608                  */
1609                 if ((cp->lstate == link_force_try) &&
1610                     (cp->link_cntl & BMCR_ANENABLE)) {
1611                         cp->lstate = link_force_ret;
1612                         cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1613                         cas_mif_poll(cp, 0);
1614                         cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1615                         cp->timer_ticks = 5;
1616                         if (cp->opened)
1617                                 netif_info(cp, link, cp->dev,
1618                                            "Got link after fallback, retrying autoneg once...\n");
1619                         cas_phy_write(cp, MII_BMCR,
1620                                       cp->link_fcntl | BMCR_ANENABLE |
1621                                       BMCR_ANRESTART);
1622                         cas_mif_poll(cp, 1);
1623
1624                 } else if (cp->lstate != link_up) {
1625                         cp->lstate = link_up;
1626                         cp->link_transition = LINK_TRANSITION_LINK_UP;
1627
1628                         if (cp->opened) {
1629                                 cas_set_link_modes(cp);
1630                                 netif_carrier_on(cp->dev);
1631                         }
1632                 }
1633                 return 0;
1634         }
1635
1636         /* link not up. if the link was previously up, we restart the
1637          * whole process
1638          */
1639         restart = 0;
1640         if (cp->lstate == link_up) {
1641                 cp->lstate = link_down;
1642                 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1643
1644                 netif_carrier_off(cp->dev);
1645                 if (cp->opened)
1646                         netif_info(cp, link, cp->dev, "Link down\n");
1647                 restart = 1;
1648
1649         } else if (++cp->timer_ticks > 10)
1650                 cas_mdio_link_not_up(cp);
1651
1652         return restart;
1653 }
1654
1655 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1656                              u32 status)
1657 {
1658         u32 stat = readl(cp->regs + REG_MIF_STATUS);
1659         u16 bmsr;
1660
1661         /* check for a link change */
1662         if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1663                 return 0;
1664
1665         bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1666         return cas_mii_link_check(cp, bmsr);
1667 }
1668
1669 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1670                              u32 status)
1671 {
1672         u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1673
1674         if (!stat)
1675                 return 0;
1676
1677         netdev_err(dev, "PCI error [%04x:%04x]",
1678                    stat, readl(cp->regs + REG_BIM_DIAG));
1679
1680         /* cassini+ has this reserved */
1681         if ((stat & PCI_ERR_BADACK) &&
1682             ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1683                 pr_cont(" <No ACK64# during ABS64 cycle>");
1684
1685         if (stat & PCI_ERR_DTRTO)
1686                 pr_cont(" <Delayed transaction timeout>");
1687         if (stat & PCI_ERR_OTHER)
1688                 pr_cont(" <other>");
1689         if (stat & PCI_ERR_BIM_DMA_WRITE)
1690                 pr_cont(" <BIM DMA 0 write req>");
1691         if (stat & PCI_ERR_BIM_DMA_READ)
1692                 pr_cont(" <BIM DMA 0 read req>");
1693         pr_cont("\n");
1694
1695         if (stat & PCI_ERR_OTHER) {
1696                 int pci_errs;
1697
1698                 /* Interrogate PCI config space for the
1699                  * true cause.
1700                  */
1701                 pci_errs = pci_status_get_and_clear_errors(cp->pdev);
1702
1703                 netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
1704                 if (pci_errs & PCI_STATUS_PARITY)
1705                         netdev_err(dev, "PCI parity error detected\n");
1706                 if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
1707                         netdev_err(dev, "PCI target abort\n");
1708                 if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
1709                         netdev_err(dev, "PCI master acks target abort\n");
1710                 if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
1711                         netdev_err(dev, "PCI master abort\n");
1712                 if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
1713                         netdev_err(dev, "PCI system error SERR#\n");
1714                 if (pci_errs & PCI_STATUS_DETECTED_PARITY)
1715                         netdev_err(dev, "PCI parity error\n");
1716         }
1717
1718         /* For all PCI errors, we should reset the chip. */
1719         return 1;
1720 }
1721
1722 /* All non-normal interrupt conditions get serviced here.
1723  * Returns non-zero if we should just exit the interrupt
1724  * handler right now (ie. if we reset the card which invalidates
1725  * all of the other original irq status bits).
1726  */
1727 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1728                             u32 status)
1729 {
1730         if (status & INTR_RX_TAG_ERROR) {
1731                 /* corrupt RX tag framing */
1732                 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1733                              "corrupt rx tag framing\n");
1734                 spin_lock(&cp->stat_lock[0]);
1735                 cp->net_stats[0].rx_errors++;
1736                 spin_unlock(&cp->stat_lock[0]);
1737                 goto do_reset;
1738         }
1739
1740         if (status & INTR_RX_LEN_MISMATCH) {
1741                 /* length mismatch. */
1742                 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1743                              "length mismatch for rx frame\n");
1744                 spin_lock(&cp->stat_lock[0]);
1745                 cp->net_stats[0].rx_errors++;
1746                 spin_unlock(&cp->stat_lock[0]);
1747                 goto do_reset;
1748         }
1749
1750         if (status & INTR_PCS_STATUS) {
1751                 if (cas_pcs_interrupt(dev, cp, status))
1752                         goto do_reset;
1753         }
1754
1755         if (status & INTR_TX_MAC_STATUS) {
1756                 if (cas_txmac_interrupt(dev, cp, status))
1757                         goto do_reset;
1758         }
1759
1760         if (status & INTR_RX_MAC_STATUS) {
1761                 if (cas_rxmac_interrupt(dev, cp, status))
1762                         goto do_reset;
1763         }
1764
1765         if (status & INTR_MAC_CTRL_STATUS) {
1766                 if (cas_mac_interrupt(dev, cp, status))
1767                         goto do_reset;
1768         }
1769
1770         if (status & INTR_MIF_STATUS) {
1771                 if (cas_mif_interrupt(dev, cp, status))
1772                         goto do_reset;
1773         }
1774
1775         if (status & INTR_PCI_ERROR_STATUS) {
1776                 if (cas_pci_interrupt(dev, cp, status))
1777                         goto do_reset;
1778         }
1779         return 0;
1780
1781 do_reset:
1782 #if 1
1783         atomic_inc(&cp->reset_task_pending);
1784         atomic_inc(&cp->reset_task_pending_all);
1785         netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1786         schedule_work(&cp->reset_task);
1787 #else
1788         atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1789         netdev_err(dev, "reset called in cas_abnormal_irq\n");
1790         schedule_work(&cp->reset_task);
1791 #endif
1792         return 1;
1793 }
1794
1795 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1796  *       determining whether to do a netif_stop/wakeup
1797  */
1798 #define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1799 #define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1800 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1801                                   const int len)
1802 {
1803         unsigned long off = addr + len;
1804
1805         if (CAS_TABORT(cp) == 1)
1806                 return 0;
1807         if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1808                 return 0;
1809         return TX_TARGET_ABORT_LEN;
1810 }
1811
1812 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1813 {
1814         struct cas_tx_desc *txds;
1815         struct sk_buff **skbs;
1816         struct net_device *dev = cp->dev;
1817         int entry, count;
1818
1819         spin_lock(&cp->tx_lock[ring]);
1820         txds = cp->init_txds[ring];
1821         skbs = cp->tx_skbs[ring];
1822         entry = cp->tx_old[ring];
1823
1824         count = TX_BUFF_COUNT(ring, entry, limit);
1825         while (entry != limit) {
1826                 struct sk_buff *skb = skbs[entry];
1827                 dma_addr_t daddr;
1828                 u32 dlen;
1829                 int frag;
1830
1831                 if (!skb) {
1832                         /* this should never occur */
1833                         entry = TX_DESC_NEXT(ring, entry);
1834                         continue;
1835                 }
1836
1837                 /* however, we might get only a partial skb release. */
1838                 count -= skb_shinfo(skb)->nr_frags +
1839                         + cp->tx_tiny_use[ring][entry].nbufs + 1;
1840                 if (count < 0)
1841                         break;
1842
1843                 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1844                              "tx[%d] done, slot %d\n", ring, entry);
1845
1846                 skbs[entry] = NULL;
1847                 cp->tx_tiny_use[ring][entry].nbufs = 0;
1848
1849                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1850                         struct cas_tx_desc *txd = txds + entry;
1851
1852                         daddr = le64_to_cpu(txd->buffer);
1853                         dlen = CAS_VAL(TX_DESC_BUFLEN,
1854                                        le64_to_cpu(txd->control));
1855                         dma_unmap_page(&cp->pdev->dev, daddr, dlen,
1856                                        DMA_TO_DEVICE);
1857                         entry = TX_DESC_NEXT(ring, entry);
1858
1859                         /* tiny buffer may follow */
1860                         if (cp->tx_tiny_use[ring][entry].used) {
1861                                 cp->tx_tiny_use[ring][entry].used = 0;
1862                                 entry = TX_DESC_NEXT(ring, entry);
1863                         }
1864                 }
1865
1866                 spin_lock(&cp->stat_lock[ring]);
1867                 cp->net_stats[ring].tx_packets++;
1868                 cp->net_stats[ring].tx_bytes += skb->len;
1869                 spin_unlock(&cp->stat_lock[ring]);
1870                 dev_consume_skb_irq(skb);
1871         }
1872         cp->tx_old[ring] = entry;
1873
1874         /* this is wrong for multiple tx rings. the net device needs
1875          * multiple queues for this to do the right thing.  we wait
1876          * for 2*packets to be available when using tiny buffers
1877          */
1878         if (netif_queue_stopped(dev) &&
1879             (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1880                 netif_wake_queue(dev);
1881         spin_unlock(&cp->tx_lock[ring]);
1882 }
1883
1884 static void cas_tx(struct net_device *dev, struct cas *cp,
1885                    u32 status)
1886 {
1887         int limit, ring;
1888 #ifdef USE_TX_COMPWB
1889         u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1890 #endif
1891         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1892                      "tx interrupt, status: 0x%x, %llx\n",
1893                      status, (unsigned long long)compwb);
1894         /* process all the rings */
1895         for (ring = 0; ring < N_TX_RINGS; ring++) {
1896 #ifdef USE_TX_COMPWB
1897                 /* use the completion writeback registers */
1898                 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1899                         CAS_VAL(TX_COMPWB_LSB, compwb);
1900                 compwb = TX_COMPWB_NEXT(compwb);
1901 #else
1902                 limit = readl(cp->regs + REG_TX_COMPN(ring));
1903 #endif
1904                 if (cp->tx_old[ring] != limit)
1905                         cas_tx_ringN(cp, ring, limit);
1906         }
1907 }
1908
1909
1910 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1911                               int entry, const u64 *words,
1912                               struct sk_buff **skbref)
1913 {
1914         int dlen, hlen, len, i, alloclen;
1915         int off, swivel = RX_SWIVEL_OFF_VAL;
1916         struct cas_page *page;
1917         struct sk_buff *skb;
1918         void *addr, *crcaddr;
1919         __sum16 csum;
1920         char *p;
1921
1922         hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1923         dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1924         len  = hlen + dlen;
1925
1926         if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1927                 alloclen = len;
1928         else
1929                 alloclen = max(hlen, RX_COPY_MIN);
1930
1931         skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
1932         if (skb == NULL)
1933                 return -1;
1934
1935         *skbref = skb;
1936         skb_reserve(skb, swivel);
1937
1938         p = skb->data;
1939         addr = crcaddr = NULL;
1940         if (hlen) { /* always copy header pages */
1941                 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1942                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1943                 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1944                         swivel;
1945
1946                 i = hlen;
1947                 if (!dlen) /* attach FCS */
1948                         i += cp->crc_size;
1949                 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
1950                                         i, DMA_FROM_DEVICE);
1951                 addr = cas_page_map(page->buffer);
1952                 memcpy(p, addr + off, i);
1953                 dma_sync_single_for_device(&cp->pdev->dev,
1954                                            page->dma_addr + off, i,
1955                                            DMA_FROM_DEVICE);
1956                 cas_page_unmap(addr);
1957                 RX_USED_ADD(page, 0x100);
1958                 p += hlen;
1959                 swivel = 0;
1960         }
1961
1962
1963         if (alloclen < (hlen + dlen)) {
1964                 skb_frag_t *frag = skb_shinfo(skb)->frags;
1965
1966                 /* normal or jumbo packets. we use frags */
1967                 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
1968                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1969                 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
1970
1971                 hlen = min(cp->page_size - off, dlen);
1972                 if (hlen < 0) {
1973                         netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1974                                      "rx page overflow: %d\n", hlen);
1975                         dev_kfree_skb_irq(skb);
1976                         return -1;
1977                 }
1978                 i = hlen;
1979                 if (i == dlen)  /* attach FCS */
1980                         i += cp->crc_size;
1981                 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
1982                                         i, DMA_FROM_DEVICE);
1983
1984                 /* make sure we always copy a header */
1985                 swivel = 0;
1986                 if (p == (char *) skb->data) { /* not split */
1987                         addr = cas_page_map(page->buffer);
1988                         memcpy(p, addr + off, RX_COPY_MIN);
1989                         dma_sync_single_for_device(&cp->pdev->dev,
1990                                                    page->dma_addr + off, i,
1991                                                    DMA_FROM_DEVICE);
1992                         cas_page_unmap(addr);
1993                         off += RX_COPY_MIN;
1994                         swivel = RX_COPY_MIN;
1995                         RX_USED_ADD(page, cp->mtu_stride);
1996                 } else {
1997                         RX_USED_ADD(page, hlen);
1998                 }
1999                 skb_put(skb, alloclen);
2000
2001                 skb_shinfo(skb)->nr_frags++;
2002                 skb->data_len += hlen - swivel;
2003                 skb->truesize += hlen - swivel;
2004                 skb->len      += hlen - swivel;
2005
2006                 __skb_frag_set_page(frag, page->buffer);
2007                 __skb_frag_ref(frag);
2008                 skb_frag_off_set(frag, off);
2009                 skb_frag_size_set(frag, hlen - swivel);
2010
2011                 /* any more data? */
2012                 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2013                         hlen = dlen;
2014                         off = 0;
2015
2016                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2017                         page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2018                         dma_sync_single_for_cpu(&cp->pdev->dev,
2019                                                 page->dma_addr,
2020                                                 hlen + cp->crc_size,
2021                                                 DMA_FROM_DEVICE);
2022                         dma_sync_single_for_device(&cp->pdev->dev,
2023                                                    page->dma_addr,
2024                                                    hlen + cp->crc_size,
2025                                                    DMA_FROM_DEVICE);
2026
2027                         skb_shinfo(skb)->nr_frags++;
2028                         skb->data_len += hlen;
2029                         skb->len      += hlen;
2030                         frag++;
2031
2032                         __skb_frag_set_page(frag, page->buffer);
2033                         __skb_frag_ref(frag);
2034                         skb_frag_off_set(frag, 0);
2035                         skb_frag_size_set(frag, hlen);
2036                         RX_USED_ADD(page, hlen + cp->crc_size);
2037                 }
2038
2039                 if (cp->crc_size) {
2040                         addr = cas_page_map(page->buffer);
2041                         crcaddr  = addr + off + hlen;
2042                 }
2043
2044         } else {
2045                 /* copying packet */
2046                 if (!dlen)
2047                         goto end_copy_pkt;
2048
2049                 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2050                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2051                 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2052                 hlen = min(cp->page_size - off, dlen);
2053                 if (hlen < 0) {
2054                         netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2055                                      "rx page overflow: %d\n", hlen);
2056                         dev_kfree_skb_irq(skb);
2057                         return -1;
2058                 }
2059                 i = hlen;
2060                 if (i == dlen) /* attach FCS */
2061                         i += cp->crc_size;
2062                 dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
2063                                         i, DMA_FROM_DEVICE);
2064                 addr = cas_page_map(page->buffer);
2065                 memcpy(p, addr + off, i);
2066                 dma_sync_single_for_device(&cp->pdev->dev,
2067                                            page->dma_addr + off, i,
2068                                            DMA_FROM_DEVICE);
2069                 cas_page_unmap(addr);
2070                 if (p == (char *) skb->data) /* not split */
2071                         RX_USED_ADD(page, cp->mtu_stride);
2072                 else
2073                         RX_USED_ADD(page, i);
2074
2075                 /* any more data? */
2076                 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2077                         p += hlen;
2078                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2079                         page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2080                         dma_sync_single_for_cpu(&cp->pdev->dev,
2081                                                 page->dma_addr,
2082                                                 dlen + cp->crc_size,
2083                                                 DMA_FROM_DEVICE);
2084                         addr = cas_page_map(page->buffer);
2085                         memcpy(p, addr, dlen + cp->crc_size);
2086                         dma_sync_single_for_device(&cp->pdev->dev,
2087                                                    page->dma_addr,
2088                                                    dlen + cp->crc_size,
2089                                                    DMA_FROM_DEVICE);
2090                         cas_page_unmap(addr);
2091                         RX_USED_ADD(page, dlen + cp->crc_size);
2092                 }
2093 end_copy_pkt:
2094                 if (cp->crc_size) {
2095                         addr    = NULL;
2096                         crcaddr = skb->data + alloclen;
2097                 }
2098                 skb_put(skb, alloclen);
2099         }
2100
2101         csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2102         if (cp->crc_size) {
2103                 /* checksum includes FCS. strip it out. */
2104                 csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2105                                               csum_unfold(csum)));
2106                 if (addr)
2107                         cas_page_unmap(addr);
2108         }
2109         skb->protocol = eth_type_trans(skb, cp->dev);
2110         if (skb->protocol == htons(ETH_P_IP)) {
2111                 skb->csum = csum_unfold(~csum);
2112                 skb->ip_summed = CHECKSUM_COMPLETE;
2113         } else
2114                 skb_checksum_none_assert(skb);
2115         return len;
2116 }
2117
2118
2119 /* we can handle up to 64 rx flows at a time. we do the same thing
2120  * as nonreassm except that we batch up the buffers.
2121  * NOTE: we currently just treat each flow as a bunch of packets that
2122  *       we pass up. a better way would be to coalesce the packets
2123  *       into a jumbo packet. to do that, we need to do the following:
2124  *       1) the first packet will have a clean split between header and
2125  *          data. save both.
2126  *       2) each time the next flow packet comes in, extend the
2127  *          data length and merge the checksums.
2128  *       3) on flow release, fix up the header.
2129  *       4) make sure the higher layer doesn't care.
2130  * because packets get coalesced, we shouldn't run into fragment count
2131  * issues.
2132  */
2133 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2134                                    struct sk_buff *skb)
2135 {
2136         int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2137         struct sk_buff_head *flow = &cp->rx_flows[flowid];
2138
2139         /* this is protected at a higher layer, so no need to
2140          * do any additional locking here. stick the buffer
2141          * at the end.
2142          */
2143         __skb_queue_tail(flow, skb);
2144         if (words[0] & RX_COMP1_RELEASE_FLOW) {
2145                 while ((skb = __skb_dequeue(flow))) {
2146                         cas_skb_release(skb);
2147                 }
2148         }
2149 }
2150
2151 /* put rx descriptor back on ring. if a buffer is in use by a higher
2152  * layer, this will need to put in a replacement.
2153  */
2154 static void cas_post_page(struct cas *cp, const int ring, const int index)
2155 {
2156         cas_page_t *new;
2157         int entry;
2158
2159         entry = cp->rx_old[ring];
2160
2161         new = cas_page_swap(cp, ring, index);
2162         cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2163         cp->init_rxds[ring][entry].index  =
2164                 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2165                             CAS_BASE(RX_INDEX_RING, ring));
2166
2167         entry = RX_DESC_ENTRY(ring, entry + 1);
2168         cp->rx_old[ring] = entry;
2169
2170         if (entry % 4)
2171                 return;
2172
2173         if (ring == 0)
2174                 writel(entry, cp->regs + REG_RX_KICK);
2175         else if ((N_RX_DESC_RINGS > 1) &&
2176                  (cp->cas_flags & CAS_FLAG_REG_PLUS))
2177                 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2178 }
2179
2180
2181 /* only when things are bad */
2182 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2183 {
2184         unsigned int entry, last, count, released;
2185         int cluster;
2186         cas_page_t **page = cp->rx_pages[ring];
2187
2188         entry = cp->rx_old[ring];
2189
2190         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2191                      "rxd[%d] interrupt, done: %d\n", ring, entry);
2192
2193         cluster = -1;
2194         count = entry & 0x3;
2195         last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2196         released = 0;
2197         while (entry != last) {
2198                 /* make a new buffer if it's still in use */
2199                 if (page_count(page[entry]->buffer) > 1) {
2200                         cas_page_t *new = cas_page_dequeue(cp);
2201                         if (!new) {
2202                                 /* let the timer know that we need to
2203                                  * do this again
2204                                  */
2205                                 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2206                                 if (!timer_pending(&cp->link_timer))
2207                                         mod_timer(&cp->link_timer, jiffies +
2208                                                   CAS_LINK_FAST_TIMEOUT);
2209                                 cp->rx_old[ring]  = entry;
2210                                 cp->rx_last[ring] = num ? num - released : 0;
2211                                 return -ENOMEM;
2212                         }
2213                         spin_lock(&cp->rx_inuse_lock);
2214                         list_add(&page[entry]->list, &cp->rx_inuse_list);
2215                         spin_unlock(&cp->rx_inuse_lock);
2216                         cp->init_rxds[ring][entry].buffer =
2217                                 cpu_to_le64(new->dma_addr);
2218                         page[entry] = new;
2219
2220                 }
2221
2222                 if (++count == 4) {
2223                         cluster = entry;
2224                         count = 0;
2225                 }
2226                 released++;
2227                 entry = RX_DESC_ENTRY(ring, entry + 1);
2228         }
2229         cp->rx_old[ring] = entry;
2230
2231         if (cluster < 0)
2232                 return 0;
2233
2234         if (ring == 0)
2235                 writel(cluster, cp->regs + REG_RX_KICK);
2236         else if ((N_RX_DESC_RINGS > 1) &&
2237                  (cp->cas_flags & CAS_FLAG_REG_PLUS))
2238                 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2239         return 0;
2240 }
2241
2242
2243 /* process a completion ring. packets are set up in three basic ways:
2244  * small packets: should be copied header + data in single buffer.
2245  * large packets: header and data in a single buffer.
2246  * split packets: header in a separate buffer from data.
2247  *                data may be in multiple pages. data may be > 256
2248  *                bytes but in a single page.
2249  *
2250  * NOTE: RX page posting is done in this routine as well. while there's
2251  *       the capability of using multiple RX completion rings, it isn't
2252  *       really worthwhile due to the fact that the page posting will
2253  *       force serialization on the single descriptor ring.
2254  */
2255 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2256 {
2257         struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2258         int entry, drops;
2259         int npackets = 0;
2260
2261         netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2262                      "rx[%d] interrupt, done: %d/%d\n",
2263                      ring,
2264                      readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2265
2266         entry = cp->rx_new[ring];
2267         drops = 0;
2268         while (1) {
2269                 struct cas_rx_comp *rxc = rxcs + entry;
2270                 struct sk_buff *skb;
2271                 int type, len;
2272                 u64 words[4];
2273                 int i, dring;
2274
2275                 words[0] = le64_to_cpu(rxc->word1);
2276                 words[1] = le64_to_cpu(rxc->word2);
2277                 words[2] = le64_to_cpu(rxc->word3);
2278                 words[3] = le64_to_cpu(rxc->word4);
2279
2280                 /* don't touch if still owned by hw */
2281                 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2282                 if (type == 0)
2283                         break;
2284
2285                 /* hw hasn't cleared the zero bit yet */
2286                 if (words[3] & RX_COMP4_ZERO) {
2287                         break;
2288                 }
2289
2290                 /* get info on the packet */
2291                 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2292                         spin_lock(&cp->stat_lock[ring]);
2293                         cp->net_stats[ring].rx_errors++;
2294                         if (words[3] & RX_COMP4_LEN_MISMATCH)
2295                                 cp->net_stats[ring].rx_length_errors++;
2296                         if (words[3] & RX_COMP4_BAD)
2297                                 cp->net_stats[ring].rx_crc_errors++;
2298                         spin_unlock(&cp->stat_lock[ring]);
2299
2300                         /* We'll just return it to Cassini. */
2301                 drop_it:
2302                         spin_lock(&cp->stat_lock[ring]);
2303                         ++cp->net_stats[ring].rx_dropped;
2304                         spin_unlock(&cp->stat_lock[ring]);
2305                         goto next;
2306                 }
2307
2308                 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2309                 if (len < 0) {
2310                         ++drops;
2311                         goto drop_it;
2312                 }
2313
2314                 /* see if it's a flow re-assembly or not. the driver
2315                  * itself handles release back up.
2316                  */
2317                 if (RX_DONT_BATCH || (type == 0x2)) {
2318                         /* non-reassm: these always get released */
2319                         cas_skb_release(skb);
2320                 } else {
2321                         cas_rx_flow_pkt(cp, words, skb);
2322                 }
2323
2324                 spin_lock(&cp->stat_lock[ring]);
2325                 cp->net_stats[ring].rx_packets++;
2326                 cp->net_stats[ring].rx_bytes += len;
2327                 spin_unlock(&cp->stat_lock[ring]);
2328
2329         next:
2330                 npackets++;
2331
2332                 /* should it be released? */
2333                 if (words[0] & RX_COMP1_RELEASE_HDR) {
2334                         i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2335                         dring = CAS_VAL(RX_INDEX_RING, i);
2336                         i = CAS_VAL(RX_INDEX_NUM, i);
2337                         cas_post_page(cp, dring, i);
2338                 }
2339
2340                 if (words[0] & RX_COMP1_RELEASE_DATA) {
2341                         i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2342                         dring = CAS_VAL(RX_INDEX_RING, i);
2343                         i = CAS_VAL(RX_INDEX_NUM, i);
2344                         cas_post_page(cp, dring, i);
2345                 }
2346
2347                 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2348                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2349                         dring = CAS_VAL(RX_INDEX_RING, i);
2350                         i = CAS_VAL(RX_INDEX_NUM, i);
2351                         cas_post_page(cp, dring, i);
2352                 }
2353
2354                 /* skip to the next entry */
2355                 entry = RX_COMP_ENTRY(ring, entry + 1 +
2356                                       CAS_VAL(RX_COMP1_SKIP, words[0]));
2357 #ifdef USE_NAPI
2358                 if (budget && (npackets >= budget))
2359                         break;
2360 #endif
2361         }
2362         cp->rx_new[ring] = entry;
2363
2364         if (drops)
2365                 netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2366         return npackets;
2367 }
2368
2369
2370 /* put completion entries back on the ring */
2371 static void cas_post_rxcs_ringN(struct net_device *dev,
2372                                 struct cas *cp, int ring)
2373 {
2374         struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2375         int last, entry;
2376
2377         last = cp->rx_cur[ring];
2378         entry = cp->rx_new[ring];
2379         netif_printk(cp, intr, KERN_DEBUG, dev,
2380                      "rxc[%d] interrupt, done: %d/%d\n",
2381                      ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2382
2383         /* zero and re-mark descriptors */
2384         while (last != entry) {
2385                 cas_rxc_init(rxc + last);
2386                 last = RX_COMP_ENTRY(ring, last + 1);
2387         }
2388         cp->rx_cur[ring] = last;
2389
2390         if (ring == 0)
2391                 writel(last, cp->regs + REG_RX_COMP_TAIL);
2392         else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2393                 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2394 }
2395
2396
2397
2398 /* cassini can use all four PCI interrupts for the completion ring.
2399  * rings 3 and 4 are identical
2400  */
2401 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2402 static inline void cas_handle_irqN(struct net_device *dev,
2403                                    struct cas *cp, const u32 status,
2404                                    const int ring)
2405 {
2406         if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2407                 cas_post_rxcs_ringN(dev, cp, ring);
2408 }
2409
2410 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2411 {
2412         struct net_device *dev = dev_id;
2413         struct cas *cp = netdev_priv(dev);
2414         unsigned long flags;
2415         int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2416         u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2417
2418         /* check for shared irq */
2419         if (status == 0)
2420                 return IRQ_NONE;
2421
2422         spin_lock_irqsave(&cp->lock, flags);
2423         if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2424 #ifdef USE_NAPI
2425                 cas_mask_intr(cp);
2426                 napi_schedule(&cp->napi);
2427 #else
2428                 cas_rx_ringN(cp, ring, 0);
2429 #endif
2430                 status &= ~INTR_RX_DONE_ALT;
2431         }
2432
2433         if (status)
2434                 cas_handle_irqN(dev, cp, status, ring);
2435         spin_unlock_irqrestore(&cp->lock, flags);
2436         return IRQ_HANDLED;
2437 }
2438 #endif
2439
2440 #ifdef USE_PCI_INTB
2441 /* everything but rx packets */
2442 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2443 {
2444         if (status & INTR_RX_BUF_UNAVAIL_1) {
2445                 /* Frame arrived, no free RX buffers available.
2446                  * NOTE: we can get this on a link transition. */
2447                 cas_post_rxds_ringN(cp, 1, 0);
2448                 spin_lock(&cp->stat_lock[1]);
2449                 cp->net_stats[1].rx_dropped++;
2450                 spin_unlock(&cp->stat_lock[1]);
2451         }
2452
2453         if (status & INTR_RX_BUF_AE_1)
2454                 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2455                                     RX_AE_FREEN_VAL(1));
2456
2457         if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2458                 cas_post_rxcs_ringN(cp, 1);
2459 }
2460
2461 /* ring 2 handles a few more events than 3 and 4 */
2462 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2463 {
2464         struct net_device *dev = dev_id;
2465         struct cas *cp = netdev_priv(dev);
2466         unsigned long flags;
2467         u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2468
2469         /* check for shared interrupt */
2470         if (status == 0)
2471                 return IRQ_NONE;
2472
2473         spin_lock_irqsave(&cp->lock, flags);
2474         if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2475 #ifdef USE_NAPI
2476                 cas_mask_intr(cp);
2477                 napi_schedule(&cp->napi);
2478 #else
2479                 cas_rx_ringN(cp, 1, 0);
2480 #endif
2481                 status &= ~INTR_RX_DONE_ALT;
2482         }
2483         if (status)
2484                 cas_handle_irq1(cp, status);
2485         spin_unlock_irqrestore(&cp->lock, flags);
2486         return IRQ_HANDLED;
2487 }
2488 #endif
2489
2490 static inline void cas_handle_irq(struct net_device *dev,
2491                                   struct cas *cp, const u32 status)
2492 {
2493         /* housekeeping interrupts */
2494         if (status & INTR_ERROR_MASK)
2495                 cas_abnormal_irq(dev, cp, status);
2496
2497         if (status & INTR_RX_BUF_UNAVAIL) {
2498                 /* Frame arrived, no free RX buffers available.
2499                  * NOTE: we can get this on a link transition.
2500                  */
2501                 cas_post_rxds_ringN(cp, 0, 0);
2502                 spin_lock(&cp->stat_lock[0]);
2503                 cp->net_stats[0].rx_dropped++;
2504                 spin_unlock(&cp->stat_lock[0]);
2505         } else if (status & INTR_RX_BUF_AE) {
2506                 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2507                                     RX_AE_FREEN_VAL(0));
2508         }
2509
2510         if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2511                 cas_post_rxcs_ringN(dev, cp, 0);
2512 }
2513
2514 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2515 {
2516         struct net_device *dev = dev_id;
2517         struct cas *cp = netdev_priv(dev);
2518         unsigned long flags;
2519         u32 status = readl(cp->regs + REG_INTR_STATUS);
2520
2521         if (status == 0)
2522                 return IRQ_NONE;
2523
2524         spin_lock_irqsave(&cp->lock, flags);
2525         if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2526                 cas_tx(dev, cp, status);
2527                 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2528         }
2529
2530         if (status & INTR_RX_DONE) {
2531 #ifdef USE_NAPI
2532                 cas_mask_intr(cp);
2533                 napi_schedule(&cp->napi);
2534 #else
2535                 cas_rx_ringN(cp, 0, 0);
2536 #endif
2537                 status &= ~INTR_RX_DONE;
2538         }
2539
2540         if (status)
2541                 cas_handle_irq(dev, cp, status);
2542         spin_unlock_irqrestore(&cp->lock, flags);
2543         return IRQ_HANDLED;
2544 }
2545
2546
2547 #ifdef USE_NAPI
2548 static int cas_poll(struct napi_struct *napi, int budget)
2549 {
2550         struct cas *cp = container_of(napi, struct cas, napi);
2551         struct net_device *dev = cp->dev;
2552         int i, enable_intr, credits;
2553         u32 status = readl(cp->regs + REG_INTR_STATUS);
2554         unsigned long flags;
2555
2556         spin_lock_irqsave(&cp->lock, flags);
2557         cas_tx(dev, cp, status);
2558         spin_unlock_irqrestore(&cp->lock, flags);
2559
2560         /* NAPI rx packets. we spread the credits across all of the
2561          * rxc rings
2562          *
2563          * to make sure we're fair with the work we loop through each
2564          * ring N_RX_COMP_RING times with a request of
2565          * budget / N_RX_COMP_RINGS
2566          */
2567         enable_intr = 1;
2568         credits = 0;
2569         for (i = 0; i < N_RX_COMP_RINGS; i++) {
2570                 int j;
2571                 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2572                         credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2573                         if (credits >= budget) {
2574                                 enable_intr = 0;
2575                                 goto rx_comp;
2576                         }
2577                 }
2578         }
2579
2580 rx_comp:
2581         /* final rx completion */
2582         spin_lock_irqsave(&cp->lock, flags);
2583         if (status)
2584                 cas_handle_irq(dev, cp, status);
2585
2586 #ifdef USE_PCI_INTB
2587         if (N_RX_COMP_RINGS > 1) {
2588                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2589                 if (status)
2590                         cas_handle_irq1(dev, cp, status);
2591         }
2592 #endif
2593
2594 #ifdef USE_PCI_INTC
2595         if (N_RX_COMP_RINGS > 2) {
2596                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2597                 if (status)
2598                         cas_handle_irqN(dev, cp, status, 2);
2599         }
2600 #endif
2601
2602 #ifdef USE_PCI_INTD
2603         if (N_RX_COMP_RINGS > 3) {
2604                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2605                 if (status)
2606                         cas_handle_irqN(dev, cp, status, 3);
2607         }
2608 #endif
2609         spin_unlock_irqrestore(&cp->lock, flags);
2610         if (enable_intr) {
2611                 napi_complete(napi);
2612                 cas_unmask_intr(cp);
2613         }
2614         return credits;
2615 }
2616 #endif
2617
2618 #ifdef CONFIG_NET_POLL_CONTROLLER
2619 static void cas_netpoll(struct net_device *dev)
2620 {
2621         struct cas *cp = netdev_priv(dev);
2622
2623         cas_disable_irq(cp, 0);
2624         cas_interrupt(cp->pdev->irq, dev);
2625         cas_enable_irq(cp, 0);
2626
2627 #ifdef USE_PCI_INTB
2628         if (N_RX_COMP_RINGS > 1) {
2629                 /* cas_interrupt1(); */
2630         }
2631 #endif
2632 #ifdef USE_PCI_INTC
2633         if (N_RX_COMP_RINGS > 2) {
2634                 /* cas_interruptN(); */
2635         }
2636 #endif
2637 #ifdef USE_PCI_INTD
2638         if (N_RX_COMP_RINGS > 3) {
2639                 /* cas_interruptN(); */
2640         }
2641 #endif
2642 }
2643 #endif
2644
2645 static void cas_tx_timeout(struct net_device *dev, unsigned int txqueue)
2646 {
2647         struct cas *cp = netdev_priv(dev);
2648
2649         netdev_err(dev, "transmit timed out, resetting\n");
2650         if (!cp->hw_running) {
2651                 netdev_err(dev, "hrm.. hw not running!\n");
2652                 return;
2653         }
2654
2655         netdev_err(dev, "MIF_STATE[%08x]\n",
2656                    readl(cp->regs + REG_MIF_STATE_MACHINE));
2657
2658         netdev_err(dev, "MAC_STATE[%08x]\n",
2659                    readl(cp->regs + REG_MAC_STATE_MACHINE));
2660
2661         netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2662                    readl(cp->regs + REG_TX_CFG),
2663                    readl(cp->regs + REG_MAC_TX_STATUS),
2664                    readl(cp->regs + REG_MAC_TX_CFG),
2665                    readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2666                    readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2667                    readl(cp->regs + REG_TX_FIFO_READ_PTR),
2668                    readl(cp->regs + REG_TX_SM_1),
2669                    readl(cp->regs + REG_TX_SM_2));
2670
2671         netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2672                    readl(cp->regs + REG_RX_CFG),
2673                    readl(cp->regs + REG_MAC_RX_STATUS),
2674                    readl(cp->regs + REG_MAC_RX_CFG));
2675
2676         netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2677                    readl(cp->regs + REG_HP_STATE_MACHINE),
2678                    readl(cp->regs + REG_HP_STATUS0),
2679                    readl(cp->regs + REG_HP_STATUS1),
2680                    readl(cp->regs + REG_HP_STATUS2));
2681
2682 #if 1
2683         atomic_inc(&cp->reset_task_pending);
2684         atomic_inc(&cp->reset_task_pending_all);
2685         schedule_work(&cp->reset_task);
2686 #else
2687         atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2688         schedule_work(&cp->reset_task);
2689 #endif
2690 }
2691
2692 static inline int cas_intme(int ring, int entry)
2693 {
2694         /* Algorithm: IRQ every 1/2 of descriptors. */
2695         if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2696                 return 1;
2697         return 0;
2698 }
2699
2700
2701 static void cas_write_txd(struct cas *cp, int ring, int entry,
2702                           dma_addr_t mapping, int len, u64 ctrl, int last)
2703 {
2704         struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2705
2706         ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2707         if (cas_intme(ring, entry))
2708                 ctrl |= TX_DESC_INTME;
2709         if (last)
2710                 ctrl |= TX_DESC_EOF;
2711         txd->control = cpu_to_le64(ctrl);
2712         txd->buffer = cpu_to_le64(mapping);
2713 }
2714
2715 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2716                                 const int entry)
2717 {
2718         return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2719 }
2720
2721 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2722                                      const int entry, const int tentry)
2723 {
2724         cp->tx_tiny_use[ring][tentry].nbufs++;
2725         cp->tx_tiny_use[ring][entry].used = 1;
2726         return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2727 }
2728
2729 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2730                                     struct sk_buff *skb)
2731 {
2732         struct net_device *dev = cp->dev;
2733         int entry, nr_frags, frag, tabort, tentry;
2734         dma_addr_t mapping;
2735         unsigned long flags;
2736         u64 ctrl;
2737         u32 len;
2738
2739         spin_lock_irqsave(&cp->tx_lock[ring], flags);
2740
2741         /* This is a hard error, log it. */
2742         if (TX_BUFFS_AVAIL(cp, ring) <=
2743             CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2744                 netif_stop_queue(dev);
2745                 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2746                 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2747                 return 1;
2748         }
2749
2750         ctrl = 0;
2751         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2752                 const u64 csum_start_off = skb_checksum_start_offset(skb);
2753                 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2754
2755                 ctrl =  TX_DESC_CSUM_EN |
2756                         CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2757                         CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2758         }
2759
2760         entry = cp->tx_new[ring];
2761         cp->tx_skbs[ring][entry] = skb;
2762
2763         nr_frags = skb_shinfo(skb)->nr_frags;
2764         len = skb_headlen(skb);
2765         mapping = dma_map_page(&cp->pdev->dev, virt_to_page(skb->data),
2766                                offset_in_page(skb->data), len, DMA_TO_DEVICE);
2767
2768         tentry = entry;
2769         tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2770         if (unlikely(tabort)) {
2771                 /* NOTE: len is always >  tabort */
2772                 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2773                               ctrl | TX_DESC_SOF, 0);
2774                 entry = TX_DESC_NEXT(ring, entry);
2775
2776                 skb_copy_from_linear_data_offset(skb, len - tabort,
2777                               tx_tiny_buf(cp, ring, entry), tabort);
2778                 mapping = tx_tiny_map(cp, ring, entry, tentry);
2779                 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2780                               (nr_frags == 0));
2781         } else {
2782                 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2783                               TX_DESC_SOF, (nr_frags == 0));
2784         }
2785         entry = TX_DESC_NEXT(ring, entry);
2786
2787         for (frag = 0; frag < nr_frags; frag++) {
2788                 const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2789
2790                 len = skb_frag_size(fragp);
2791                 mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2792                                            DMA_TO_DEVICE);
2793
2794                 tabort = cas_calc_tabort(cp, skb_frag_off(fragp), len);
2795                 if (unlikely(tabort)) {
2796                         void *addr;
2797
2798                         /* NOTE: len is always > tabort */
2799                         cas_write_txd(cp, ring, entry, mapping, len - tabort,
2800                                       ctrl, 0);
2801                         entry = TX_DESC_NEXT(ring, entry);
2802
2803                         addr = cas_page_map(skb_frag_page(fragp));
2804                         memcpy(tx_tiny_buf(cp, ring, entry),
2805                                addr + skb_frag_off(fragp) + len - tabort,
2806                                tabort);
2807                         cas_page_unmap(addr);
2808                         mapping = tx_tiny_map(cp, ring, entry, tentry);
2809                         len     = tabort;
2810                 }
2811
2812                 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2813                               (frag + 1 == nr_frags));
2814                 entry = TX_DESC_NEXT(ring, entry);
2815         }
2816
2817         cp->tx_new[ring] = entry;
2818         if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2819                 netif_stop_queue(dev);
2820
2821         netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2822                      "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2823                      ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2824         writel(entry, cp->regs + REG_TX_KICKN(ring));
2825         spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2826         return 0;
2827 }
2828
2829 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2830 {
2831         struct cas *cp = netdev_priv(dev);
2832
2833         /* this is only used as a load-balancing hint, so it doesn't
2834          * need to be SMP safe
2835          */
2836         static int ring;
2837
2838         if (skb_padto(skb, cp->min_frame_size))
2839                 return NETDEV_TX_OK;
2840
2841         /* XXX: we need some higher-level QoS hooks to steer packets to
2842          *      individual queues.
2843          */
2844         if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2845                 return NETDEV_TX_BUSY;
2846         return NETDEV_TX_OK;
2847 }
2848
2849 static void cas_init_tx_dma(struct cas *cp)
2850 {
2851         u64 desc_dma = cp->block_dvma;
2852         unsigned long off;
2853         u32 val;
2854         int i;
2855
2856         /* set up tx completion writeback registers. must be 8-byte aligned */
2857 #ifdef USE_TX_COMPWB
2858         off = offsetof(struct cas_init_block, tx_compwb);
2859         writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2860         writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2861 #endif
2862
2863         /* enable completion writebacks, enable paced mode,
2864          * disable read pipe, and disable pre-interrupt compwbs
2865          */
2866         val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2867                 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2868                 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2869                 TX_CFG_INTR_COMPWB_DIS;
2870
2871         /* write out tx ring info and tx desc bases */
2872         for (i = 0; i < MAX_TX_RINGS; i++) {
2873                 off = (unsigned long) cp->init_txds[i] -
2874                         (unsigned long) cp->init_block;
2875
2876                 val |= CAS_TX_RINGN_BASE(i);
2877                 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2878                 writel((desc_dma + off) & 0xffffffff, cp->regs +
2879                        REG_TX_DBN_LOW(i));
2880                 /* don't zero out the kick register here as the system
2881                  * will wedge
2882                  */
2883         }
2884         writel(val, cp->regs + REG_TX_CFG);
2885
2886         /* program max burst sizes. these numbers should be different
2887          * if doing QoS.
2888          */
2889 #ifdef USE_QOS
2890         writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2891         writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2892         writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2893         writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2894 #else
2895         writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2896         writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2897         writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2898         writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2899 #endif
2900 }
2901
2902 /* Must be invoked under cp->lock. */
2903 static inline void cas_init_dma(struct cas *cp)
2904 {
2905         cas_init_tx_dma(cp);
2906         cas_init_rx_dma(cp);
2907 }
2908
2909 static void cas_process_mc_list(struct cas *cp)
2910 {
2911         u16 hash_table[16];
2912         u32 crc;
2913         struct netdev_hw_addr *ha;
2914         int i = 1;
2915
2916         memset(hash_table, 0, sizeof(hash_table));
2917         netdev_for_each_mc_addr(ha, cp->dev) {
2918                 if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2919                         /* use the alternate mac address registers for the
2920                          * first 15 multicast addresses
2921                          */
2922                         writel((ha->addr[4] << 8) | ha->addr[5],
2923                                cp->regs + REG_MAC_ADDRN(i*3 + 0));
2924                         writel((ha->addr[2] << 8) | ha->addr[3],
2925                                cp->regs + REG_MAC_ADDRN(i*3 + 1));
2926                         writel((ha->addr[0] << 8) | ha->addr[1],
2927                                cp->regs + REG_MAC_ADDRN(i*3 + 2));
2928                         i++;
2929                 }
2930                 else {
2931                         /* use hw hash table for the next series of
2932                          * multicast addresses
2933                          */
2934                         crc = ether_crc_le(ETH_ALEN, ha->addr);
2935                         crc >>= 24;
2936                         hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2937                 }
2938         }
2939         for (i = 0; i < 16; i++)
2940                 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2941 }
2942
2943 /* Must be invoked under cp->lock. */
2944 static u32 cas_setup_multicast(struct cas *cp)
2945 {
2946         u32 rxcfg = 0;
2947         int i;
2948
2949         if (cp->dev->flags & IFF_PROMISC) {
2950                 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2951
2952         } else if (cp->dev->flags & IFF_ALLMULTI) {
2953                 for (i=0; i < 16; i++)
2954                         writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2955                 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2956
2957         } else {
2958                 cas_process_mc_list(cp);
2959                 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2960         }
2961
2962         return rxcfg;
2963 }
2964
2965 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
2966 static void cas_clear_mac_err(struct cas *cp)
2967 {
2968         writel(0, cp->regs + REG_MAC_COLL_NORMAL);
2969         writel(0, cp->regs + REG_MAC_COLL_FIRST);
2970         writel(0, cp->regs + REG_MAC_COLL_EXCESS);
2971         writel(0, cp->regs + REG_MAC_COLL_LATE);
2972         writel(0, cp->regs + REG_MAC_TIMER_DEFER);
2973         writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
2974         writel(0, cp->regs + REG_MAC_RECV_FRAME);
2975         writel(0, cp->regs + REG_MAC_LEN_ERR);
2976         writel(0, cp->regs + REG_MAC_ALIGN_ERR);
2977         writel(0, cp->regs + REG_MAC_FCS_ERR);
2978         writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
2979 }
2980
2981
2982 static void cas_mac_reset(struct cas *cp)
2983 {
2984         int i;
2985
2986         /* do both TX and RX reset */
2987         writel(0x1, cp->regs + REG_MAC_TX_RESET);
2988         writel(0x1, cp->regs + REG_MAC_RX_RESET);
2989
2990         /* wait for TX */
2991         i = STOP_TRIES;
2992         while (i-- > 0) {
2993                 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
2994                         break;
2995                 udelay(10);
2996         }
2997
2998         /* wait for RX */
2999         i = STOP_TRIES;
3000         while (i-- > 0) {
3001                 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3002                         break;
3003                 udelay(10);
3004         }
3005
3006         if (readl(cp->regs + REG_MAC_TX_RESET) |
3007             readl(cp->regs + REG_MAC_RX_RESET))
3008                 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3009                            readl(cp->regs + REG_MAC_TX_RESET),
3010                            readl(cp->regs + REG_MAC_RX_RESET),
3011                            readl(cp->regs + REG_MAC_STATE_MACHINE));
3012 }
3013
3014
3015 /* Must be invoked under cp->lock. */
3016 static void cas_init_mac(struct cas *cp)
3017 {
3018         const unsigned char *e = &cp->dev->dev_addr[0];
3019         int i;
3020         cas_mac_reset(cp);
3021
3022         /* setup core arbitration weight register */
3023         writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3024
3025 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3026         /* set the infinite burst register for chips that don't have
3027          * pci issues.
3028          */
3029         if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3030                 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3031 #endif
3032
3033         writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3034
3035         writel(0x00, cp->regs + REG_MAC_IPG0);
3036         writel(0x08, cp->regs + REG_MAC_IPG1);
3037         writel(0x04, cp->regs + REG_MAC_IPG2);
3038
3039         /* change later for 802.3z */
3040         writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3041
3042         /* min frame + FCS */
3043         writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3044
3045         /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3046          * specify the maximum frame size to prevent RX tag errors on
3047          * oversized frames.
3048          */
3049         writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3050                CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3051                         (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3052                cp->regs + REG_MAC_FRAMESIZE_MAX);
3053
3054         /* NOTE: crc_size is used as a surrogate for half-duplex.
3055          * workaround saturn half-duplex issue by increasing preamble
3056          * size to 65 bytes.
3057          */
3058         if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3059                 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3060         else
3061                 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3062         writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3063         writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3064         writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3065
3066         writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3067
3068         writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3069         writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3070         writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3071         writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3072         writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3073
3074         /* setup mac address in perfect filter array */
3075         for (i = 0; i < 45; i++)
3076                 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3077
3078         writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3079         writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3080         writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3081
3082         writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3083         writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3084         writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3085
3086         cp->mac_rx_cfg = cas_setup_multicast(cp);
3087
3088         spin_lock(&cp->stat_lock[N_TX_RINGS]);
3089         cas_clear_mac_err(cp);
3090         spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3091
3092         /* Setup MAC interrupts.  We want to get all of the interesting
3093          * counter expiration events, but we do not want to hear about
3094          * normal rx/tx as the DMA engine tells us that.
3095          */
3096         writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3097         writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3098
3099         /* Don't enable even the PAUSE interrupts for now, we
3100          * make no use of those events other than to record them.
3101          */
3102         writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3103 }
3104
3105 /* Must be invoked under cp->lock. */
3106 static void cas_init_pause_thresholds(struct cas *cp)
3107 {
3108         /* Calculate pause thresholds.  Setting the OFF threshold to the
3109          * full RX fifo size effectively disables PAUSE generation
3110          */
3111         if (cp->rx_fifo_size <= (2 * 1024)) {
3112                 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3113         } else {
3114                 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3115                 if (max_frame * 3 > cp->rx_fifo_size) {
3116                         cp->rx_pause_off = 7104;
3117                         cp->rx_pause_on  = 960;
3118                 } else {
3119                         int off = (cp->rx_fifo_size - (max_frame * 2));
3120                         int on = off - max_frame;
3121                         cp->rx_pause_off = off;
3122                         cp->rx_pause_on = on;
3123                 }
3124         }
3125 }
3126
3127 static int cas_vpd_match(const void __iomem *p, const char *str)
3128 {
3129         int len = strlen(str) + 1;
3130         int i;
3131
3132         for (i = 0; i < len; i++) {
3133                 if (readb(p + i) != str[i])
3134                         return 0;
3135         }
3136         return 1;
3137 }
3138
3139
3140 /* get the mac address by reading the vpd information in the rom.
3141  * also get the phy type and determine if there's an entropy generator.
3142  * NOTE: this is a bit convoluted for the following reasons:
3143  *  1) vpd info has order-dependent mac addresses for multinic cards
3144  *  2) the only way to determine the nic order is to use the slot
3145  *     number.
3146  *  3) fiber cards don't have bridges, so their slot numbers don't
3147  *     mean anything.
3148  *  4) we don't actually know we have a fiber card until after
3149  *     the mac addresses are parsed.
3150  */
3151 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3152                             const int offset)
3153 {
3154         void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3155         void __iomem *base, *kstart;
3156         int i, len;
3157         int found = 0;
3158 #define VPD_FOUND_MAC        0x01
3159 #define VPD_FOUND_PHY        0x02
3160
3161         int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3162         int mac_off  = 0;
3163
3164 #if defined(CONFIG_SPARC)
3165         const unsigned char *addr;
3166 #endif
3167
3168         /* give us access to the PROM */
3169         writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3170                cp->regs + REG_BIM_LOCAL_DEV_EN);
3171
3172         /* check for an expansion rom */
3173         if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3174                 goto use_random_mac_addr;
3175
3176         /* search for beginning of vpd */
3177         base = NULL;
3178         for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3179                 /* check for PCIR */
3180                 if ((readb(p + i + 0) == 0x50) &&
3181                     (readb(p + i + 1) == 0x43) &&
3182                     (readb(p + i + 2) == 0x49) &&
3183                     (readb(p + i + 3) == 0x52)) {
3184                         base = p + (readb(p + i + 8) |
3185                                     (readb(p + i + 9) << 8));
3186                         break;
3187                 }
3188         }
3189
3190         if (!base || (readb(base) != 0x82))
3191                 goto use_random_mac_addr;
3192
3193         i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3194         while (i < EXPANSION_ROM_SIZE) {
3195                 if (readb(base + i) != 0x90) /* no vpd found */
3196                         goto use_random_mac_addr;
3197
3198                 /* found a vpd field */
3199                 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3200
3201                 /* extract keywords */
3202                 kstart = base + i + 3;
3203                 p = kstart;
3204                 while ((p - kstart) < len) {
3205                         int klen = readb(p + 2);
3206                         int j;
3207                         char type;
3208
3209                         p += 3;
3210
3211                         /* look for the following things:
3212                          * -- correct length == 29
3213                          * 3 (type) + 2 (size) +
3214                          * 18 (strlen("local-mac-address") + 1) +
3215                          * 6 (mac addr)
3216                          * -- VPD Instance 'I'
3217                          * -- VPD Type Bytes 'B'
3218                          * -- VPD data length == 6
3219                          * -- property string == local-mac-address
3220                          *
3221                          * -- correct length == 24
3222                          * 3 (type) + 2 (size) +
3223                          * 12 (strlen("entropy-dev") + 1) +
3224                          * 7 (strlen("vms110") + 1)
3225                          * -- VPD Instance 'I'
3226                          * -- VPD Type String 'B'
3227                          * -- VPD data length == 7
3228                          * -- property string == entropy-dev
3229                          *
3230                          * -- correct length == 18
3231                          * 3 (type) + 2 (size) +
3232                          * 9 (strlen("phy-type") + 1) +
3233                          * 4 (strlen("pcs") + 1)
3234                          * -- VPD Instance 'I'
3235                          * -- VPD Type String 'S'
3236                          * -- VPD data length == 4
3237                          * -- property string == phy-type
3238                          *
3239                          * -- correct length == 23
3240                          * 3 (type) + 2 (size) +
3241                          * 14 (strlen("phy-interface") + 1) +
3242                          * 4 (strlen("pcs") + 1)
3243                          * -- VPD Instance 'I'
3244                          * -- VPD Type String 'S'
3245                          * -- VPD data length == 4
3246                          * -- property string == phy-interface
3247                          */
3248                         if (readb(p) != 'I')
3249                                 goto next;
3250
3251                         /* finally, check string and length */
3252                         type = readb(p + 3);
3253                         if (type == 'B') {
3254                                 if ((klen == 29) && readb(p + 4) == 6 &&
3255                                     cas_vpd_match(p + 5,
3256                                                   "local-mac-address")) {
3257                                         if (mac_off++ > offset)
3258                                                 goto next;
3259
3260                                         /* set mac address */
3261                                         for (j = 0; j < 6; j++)
3262                                                 dev_addr[j] =
3263                                                         readb(p + 23 + j);
3264                                         goto found_mac;
3265                                 }
3266                         }
3267
3268                         if (type != 'S')
3269                                 goto next;
3270
3271 #ifdef USE_ENTROPY_DEV
3272                         if ((klen == 24) &&
3273                             cas_vpd_match(p + 5, "entropy-dev") &&
3274                             cas_vpd_match(p + 17, "vms110")) {
3275                                 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3276                                 goto next;
3277                         }
3278 #endif
3279
3280                         if (found & VPD_FOUND_PHY)
3281                                 goto next;
3282
3283                         if ((klen == 18) && readb(p + 4) == 4 &&
3284                             cas_vpd_match(p + 5, "phy-type")) {
3285                                 if (cas_vpd_match(p + 14, "pcs")) {
3286                                         phy_type = CAS_PHY_SERDES;
3287                                         goto found_phy;
3288                                 }
3289                         }
3290
3291                         if ((klen == 23) && readb(p + 4) == 4 &&
3292                             cas_vpd_match(p + 5, "phy-interface")) {
3293                                 if (cas_vpd_match(p + 19, "pcs")) {
3294                                         phy_type = CAS_PHY_SERDES;
3295                                         goto found_phy;
3296                                 }
3297                         }
3298 found_mac:
3299                         found |= VPD_FOUND_MAC;
3300                         goto next;
3301
3302 found_phy:
3303                         found |= VPD_FOUND_PHY;
3304
3305 next:
3306                         p += klen;
3307                 }
3308                 i += len + 3;
3309         }
3310
3311 use_random_mac_addr:
3312         if (found & VPD_FOUND_MAC)
3313                 goto done;
3314
3315 #if defined(CONFIG_SPARC)
3316         addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3317         if (addr != NULL) {
3318                 memcpy(dev_addr, addr, ETH_ALEN);
3319                 goto done;
3320         }
3321 #endif
3322
3323         /* Sun MAC prefix then 3 random bytes. */
3324         pr_info("MAC address not found in ROM VPD\n");
3325         dev_addr[0] = 0x08;
3326         dev_addr[1] = 0x00;
3327         dev_addr[2] = 0x20;
3328         get_random_bytes(dev_addr + 3, 3);
3329
3330 done:
3331         writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3332         return phy_type;
3333 }
3334
3335 /* check pci invariants */
3336 static void cas_check_pci_invariants(struct cas *cp)
3337 {
3338         struct pci_dev *pdev = cp->pdev;
3339
3340         cp->cas_flags = 0;
3341         if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3342             (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3343                 if (pdev->revision >= CAS_ID_REVPLUS)
3344                         cp->cas_flags |= CAS_FLAG_REG_PLUS;
3345                 if (pdev->revision < CAS_ID_REVPLUS02u)
3346                         cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3347
3348                 /* Original Cassini supports HW CSUM, but it's not
3349                  * enabled by default as it can trigger TX hangs.
3350                  */
3351                 if (pdev->revision < CAS_ID_REV2)
3352                         cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3353         } else {
3354                 /* Only sun has original cassini chips.  */
3355                 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3356
3357                 /* We use a flag because the same phy might be externally
3358                  * connected.
3359                  */
3360                 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3361                     (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3362                         cp->cas_flags |= CAS_FLAG_SATURN;
3363         }
3364 }
3365
3366
3367 static int cas_check_invariants(struct cas *cp)
3368 {
3369         struct pci_dev *pdev = cp->pdev;
3370         u8 addr[ETH_ALEN];
3371         u32 cfg;
3372         int i;
3373
3374         /* get page size for rx buffers. */
3375         cp->page_order = 0;
3376 #ifdef USE_PAGE_ORDER
3377         if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3378                 /* see if we can allocate larger pages */
3379                 struct page *page = alloc_pages(GFP_ATOMIC,
3380                                                 CAS_JUMBO_PAGE_SHIFT -
3381                                                 PAGE_SHIFT);
3382                 if (page) {
3383                         __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3384                         cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3385                 } else {
3386                         printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3387                 }
3388         }
3389 #endif
3390         cp->page_size = (PAGE_SIZE << cp->page_order);
3391
3392         /* Fetch the FIFO configurations. */
3393         cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3394         cp->rx_fifo_size = RX_FIFO_SIZE;
3395
3396         /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3397          * they're both connected.
3398          */
3399         cp->phy_type = cas_get_vpd_info(cp, addr, PCI_SLOT(pdev->devfn));
3400         eth_hw_addr_set(cp->dev, addr);
3401         if (cp->phy_type & CAS_PHY_SERDES) {
3402                 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3403                 return 0; /* no more checking needed */
3404         }
3405
3406         /* MII */
3407         cfg = readl(cp->regs + REG_MIF_CFG);
3408         if (cfg & MIF_CFG_MDIO_1) {
3409                 cp->phy_type = CAS_PHY_MII_MDIO1;
3410         } else if (cfg & MIF_CFG_MDIO_0) {
3411                 cp->phy_type = CAS_PHY_MII_MDIO0;
3412         }
3413
3414         cas_mif_poll(cp, 0);
3415         writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3416
3417         for (i = 0; i < 32; i++) {
3418                 u32 phy_id;
3419                 int j;
3420
3421                 for (j = 0; j < 3; j++) {
3422                         cp->phy_addr = i;
3423                         phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3424                         phy_id |= cas_phy_read(cp, MII_PHYSID2);
3425                         if (phy_id && (phy_id != 0xFFFFFFFF)) {
3426                                 cp->phy_id = phy_id;
3427                                 goto done;
3428                         }
3429                 }
3430         }
3431         pr_err("MII phy did not respond [%08x]\n",
3432                readl(cp->regs + REG_MIF_STATE_MACHINE));
3433         return -1;
3434
3435 done:
3436         /* see if we can do gigabit */
3437         cfg = cas_phy_read(cp, MII_BMSR);
3438         if ((cfg & CAS_BMSR_1000_EXTEND) &&
3439             cas_phy_read(cp, CAS_MII_1000_EXTEND))
3440                 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3441         return 0;
3442 }
3443
3444 /* Must be invoked under cp->lock. */
3445 static inline void cas_start_dma(struct cas *cp)
3446 {
3447         int i;
3448         u32 val;
3449         int txfailed = 0;
3450
3451         /* enable dma */
3452         val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3453         writel(val, cp->regs + REG_TX_CFG);
3454         val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3455         writel(val, cp->regs + REG_RX_CFG);
3456
3457         /* enable the mac */
3458         val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3459         writel(val, cp->regs + REG_MAC_TX_CFG);
3460         val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3461         writel(val, cp->regs + REG_MAC_RX_CFG);
3462
3463         i = STOP_TRIES;
3464         while (i-- > 0) {
3465                 val = readl(cp->regs + REG_MAC_TX_CFG);
3466                 if ((val & MAC_TX_CFG_EN))
3467                         break;
3468                 udelay(10);
3469         }
3470         if (i < 0) txfailed = 1;
3471         i = STOP_TRIES;
3472         while (i-- > 0) {
3473                 val = readl(cp->regs + REG_MAC_RX_CFG);
3474                 if ((val & MAC_RX_CFG_EN)) {
3475                         if (txfailed) {
3476                                 netdev_err(cp->dev,
3477                                            "enabling mac failed [tx:%08x:%08x]\n",
3478                                            readl(cp->regs + REG_MIF_STATE_MACHINE),
3479                                            readl(cp->regs + REG_MAC_STATE_MACHINE));
3480                         }
3481                         goto enable_rx_done;
3482                 }
3483                 udelay(10);
3484         }
3485         netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3486                    (txfailed ? "tx,rx" : "rx"),
3487                    readl(cp->regs + REG_MIF_STATE_MACHINE),
3488                    readl(cp->regs + REG_MAC_STATE_MACHINE));
3489
3490 enable_rx_done:
3491         cas_unmask_intr(cp); /* enable interrupts */
3492         writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3493         writel(0, cp->regs + REG_RX_COMP_TAIL);
3494
3495         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3496                 if (N_RX_DESC_RINGS > 1)
3497                         writel(RX_DESC_RINGN_SIZE(1) - 4,
3498                                cp->regs + REG_PLUS_RX_KICK1);
3499         }
3500 }
3501
3502 /* Must be invoked under cp->lock. */
3503 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3504                                    int *pause)
3505 {
3506         u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3507         *fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3508         *pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3509         if (val & PCS_MII_LPA_ASYM_PAUSE)
3510                 *pause |= 0x10;
3511         *spd = 1000;
3512 }
3513
3514 /* Must be invoked under cp->lock. */
3515 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3516                                    int *pause)
3517 {
3518         u32 val;
3519
3520         *fd = 0;
3521         *spd = 10;
3522         *pause = 0;
3523
3524         /* use GMII registers */
3525         val = cas_phy_read(cp, MII_LPA);
3526         if (val & CAS_LPA_PAUSE)
3527                 *pause = 0x01;
3528
3529         if (val & CAS_LPA_ASYM_PAUSE)
3530                 *pause |= 0x10;
3531
3532         if (val & LPA_DUPLEX)
3533                 *fd = 1;
3534         if (val & LPA_100)
3535                 *spd = 100;
3536
3537         if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3538                 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3539                 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3540                         *spd = 1000;
3541                 if (val & CAS_LPA_1000FULL)
3542                         *fd = 1;
3543         }
3544 }
3545
3546 /* A link-up condition has occurred, initialize and enable the
3547  * rest of the chip.
3548  *
3549  * Must be invoked under cp->lock.
3550  */
3551 static void cas_set_link_modes(struct cas *cp)
3552 {
3553         u32 val;
3554         int full_duplex, speed, pause;
3555
3556         full_duplex = 0;
3557         speed = 10;
3558         pause = 0;
3559
3560         if (CAS_PHY_MII(cp->phy_type)) {
3561                 cas_mif_poll(cp, 0);
3562                 val = cas_phy_read(cp, MII_BMCR);
3563                 if (val & BMCR_ANENABLE) {
3564                         cas_read_mii_link_mode(cp, &full_duplex, &speed,
3565                                                &pause);
3566                 } else {
3567                         if (val & BMCR_FULLDPLX)
3568                                 full_duplex = 1;
3569
3570                         if (val & BMCR_SPEED100)
3571                                 speed = 100;
3572                         else if (val & CAS_BMCR_SPEED1000)
3573                                 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3574                                         1000 : 100;
3575                 }
3576                 cas_mif_poll(cp, 1);
3577
3578         } else {
3579                 val = readl(cp->regs + REG_PCS_MII_CTRL);
3580                 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3581                 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3582                         if (val & PCS_MII_CTRL_DUPLEX)
3583                                 full_duplex = 1;
3584                 }
3585         }
3586
3587         netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3588                    speed, full_duplex ? "full" : "half");
3589
3590         val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3591         if (CAS_PHY_MII(cp->phy_type)) {
3592                 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3593                 if (!full_duplex)
3594                         val |= MAC_XIF_DISABLE_ECHO;
3595         }
3596         if (full_duplex)
3597                 val |= MAC_XIF_FDPLX_LED;
3598         if (speed == 1000)
3599                 val |= MAC_XIF_GMII_MODE;
3600         writel(val, cp->regs + REG_MAC_XIF_CFG);
3601
3602         /* deal with carrier and collision detect. */
3603         val = MAC_TX_CFG_IPG_EN;
3604         if (full_duplex) {
3605                 val |= MAC_TX_CFG_IGNORE_CARRIER;
3606                 val |= MAC_TX_CFG_IGNORE_COLL;
3607         } else {
3608 #ifndef USE_CSMA_CD_PROTO
3609                 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3610                 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3611 #endif
3612         }
3613         /* val now set up for REG_MAC_TX_CFG */
3614
3615         /* If gigabit and half-duplex, enable carrier extension
3616          * mode.  increase slot time to 512 bytes as well.
3617          * else, disable it and make sure slot time is 64 bytes.
3618          * also activate checksum bug workaround
3619          */
3620         if ((speed == 1000) && !full_duplex) {
3621                 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3622                        cp->regs + REG_MAC_TX_CFG);
3623
3624                 val = readl(cp->regs + REG_MAC_RX_CFG);
3625                 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3626                 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3627                        cp->regs + REG_MAC_RX_CFG);
3628
3629                 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3630
3631                 cp->crc_size = 4;
3632                 /* minimum size gigabit frame at half duplex */
3633                 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3634
3635         } else {
3636                 writel(val, cp->regs + REG_MAC_TX_CFG);
3637
3638                 /* checksum bug workaround. don't strip FCS when in
3639                  * half-duplex mode
3640                  */
3641                 val = readl(cp->regs + REG_MAC_RX_CFG);
3642                 if (full_duplex) {
3643                         val |= MAC_RX_CFG_STRIP_FCS;
3644                         cp->crc_size = 0;
3645                         cp->min_frame_size = CAS_MIN_MTU;
3646                 } else {
3647                         val &= ~MAC_RX_CFG_STRIP_FCS;
3648                         cp->crc_size = 4;
3649                         cp->min_frame_size = CAS_MIN_FRAME;
3650                 }
3651                 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3652                        cp->regs + REG_MAC_RX_CFG);
3653                 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3654         }
3655
3656         if (netif_msg_link(cp)) {
3657                 if (pause & 0x01) {
3658                         netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3659                                     cp->rx_fifo_size,
3660                                     cp->rx_pause_off,
3661                                     cp->rx_pause_on);
3662                 } else if (pause & 0x10) {
3663                         netdev_info(cp->dev, "TX pause enabled\n");
3664                 } else {
3665                         netdev_info(cp->dev, "Pause is disabled\n");
3666                 }
3667         }
3668
3669         val = readl(cp->regs + REG_MAC_CTRL_CFG);
3670         val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3671         if (pause) { /* symmetric or asymmetric pause */
3672                 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3673                 if (pause & 0x01) { /* symmetric pause */
3674                         val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3675                 }
3676         }
3677         writel(val, cp->regs + REG_MAC_CTRL_CFG);
3678         cas_start_dma(cp);
3679 }
3680
3681 /* Must be invoked under cp->lock. */
3682 static void cas_init_hw(struct cas *cp, int restart_link)
3683 {
3684         if (restart_link)
3685                 cas_phy_init(cp);
3686
3687         cas_init_pause_thresholds(cp);
3688         cas_init_mac(cp);
3689         cas_init_dma(cp);
3690
3691         if (restart_link) {
3692                 /* Default aneg parameters */
3693                 cp->timer_ticks = 0;
3694                 cas_begin_auto_negotiation(cp, NULL);
3695         } else if (cp->lstate == link_up) {
3696                 cas_set_link_modes(cp);
3697                 netif_carrier_on(cp->dev);
3698         }
3699 }
3700
3701 /* Must be invoked under cp->lock. on earlier cassini boards,
3702  * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3703  * let it settle out, and then restore pci state.
3704  */
3705 static void cas_hard_reset(struct cas *cp)
3706 {
3707         writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3708         udelay(20);
3709         pci_restore_state(cp->pdev);
3710 }
3711
3712
3713 static void cas_global_reset(struct cas *cp, int blkflag)
3714 {
3715         int limit;
3716
3717         /* issue a global reset. don't use RSTOUT. */
3718         if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3719                 /* For PCS, when the blkflag is set, we should set the
3720                  * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3721                  * the last autonegotiation from being cleared.  We'll
3722                  * need some special handling if the chip is set into a
3723                  * loopback mode.
3724                  */
3725                 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3726                        cp->regs + REG_SW_RESET);
3727         } else {
3728                 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3729         }
3730
3731         /* need to wait at least 3ms before polling register */
3732         mdelay(3);
3733
3734         limit = STOP_TRIES;
3735         while (limit-- > 0) {
3736                 u32 val = readl(cp->regs + REG_SW_RESET);
3737                 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3738                         goto done;
3739                 udelay(10);
3740         }
3741         netdev_err(cp->dev, "sw reset failed\n");
3742
3743 done:
3744         /* enable various BIM interrupts */
3745         writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3746                BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3747
3748         /* clear out pci error status mask for handled errors.
3749          * we don't deal with DMA counter overflows as they happen
3750          * all the time.
3751          */
3752         writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3753                                PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3754                                PCI_ERR_BIM_DMA_READ), cp->regs +
3755                REG_PCI_ERR_STATUS_MASK);
3756
3757         /* set up for MII by default to address mac rx reset timeout
3758          * issue
3759          */
3760         writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3761 }
3762
3763 static void cas_reset(struct cas *cp, int blkflag)
3764 {
3765         u32 val;
3766
3767         cas_mask_intr(cp);
3768         cas_global_reset(cp, blkflag);
3769         cas_mac_reset(cp);
3770         cas_entropy_reset(cp);
3771
3772         /* disable dma engines. */
3773         val = readl(cp->regs + REG_TX_CFG);
3774         val &= ~TX_CFG_DMA_EN;
3775         writel(val, cp->regs + REG_TX_CFG);
3776
3777         val = readl(cp->regs + REG_RX_CFG);
3778         val &= ~RX_CFG_DMA_EN;
3779         writel(val, cp->regs + REG_RX_CFG);
3780
3781         /* program header parser */
3782         if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3783             (&CAS_HP_ALT_FIRMWARE[0] == &cas_prog_null[0])) {
3784                 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3785         } else {
3786                 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3787         }
3788
3789         /* clear out error registers */
3790         spin_lock(&cp->stat_lock[N_TX_RINGS]);
3791         cas_clear_mac_err(cp);
3792         spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3793 }
3794
3795 /* Shut down the chip, must be called with pm_mutex held.  */
3796 static void cas_shutdown(struct cas *cp)
3797 {
3798         unsigned long flags;
3799
3800         /* Make us not-running to avoid timers respawning */
3801         cp->hw_running = 0;
3802
3803         del_timer_sync(&cp->link_timer);
3804
3805         /* Stop the reset task */
3806 #if 0
3807         while (atomic_read(&cp->reset_task_pending_mtu) ||
3808                atomic_read(&cp->reset_task_pending_spare) ||
3809                atomic_read(&cp->reset_task_pending_all))
3810                 schedule();
3811
3812 #else
3813         while (atomic_read(&cp->reset_task_pending))
3814                 schedule();
3815 #endif
3816         /* Actually stop the chip */
3817         cas_lock_all_save(cp, flags);
3818         cas_reset(cp, 0);
3819         if (cp->cas_flags & CAS_FLAG_SATURN)
3820                 cas_phy_powerdown(cp);
3821         cas_unlock_all_restore(cp, flags);
3822 }
3823
3824 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3825 {
3826         struct cas *cp = netdev_priv(dev);
3827
3828         dev->mtu = new_mtu;
3829         if (!netif_running(dev) || !netif_device_present(dev))
3830                 return 0;
3831
3832         /* let the reset task handle it */
3833 #if 1
3834         atomic_inc(&cp->reset_task_pending);
3835         if ((cp->phy_type & CAS_PHY_SERDES)) {
3836                 atomic_inc(&cp->reset_task_pending_all);
3837         } else {
3838                 atomic_inc(&cp->reset_task_pending_mtu);
3839         }
3840         schedule_work(&cp->reset_task);
3841 #else
3842         atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3843                    CAS_RESET_ALL : CAS_RESET_MTU);
3844         pr_err("reset called in cas_change_mtu\n");
3845         schedule_work(&cp->reset_task);
3846 #endif
3847
3848         flush_work(&cp->reset_task);
3849         return 0;
3850 }
3851
3852 static void cas_clean_txd(struct cas *cp, int ring)
3853 {
3854         struct cas_tx_desc *txd = cp->init_txds[ring];
3855         struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3856         u64 daddr, dlen;
3857         int i, size;
3858
3859         size = TX_DESC_RINGN_SIZE(ring);
3860         for (i = 0; i < size; i++) {
3861                 int frag;
3862
3863                 if (skbs[i] == NULL)
3864                         continue;
3865
3866                 skb = skbs[i];
3867                 skbs[i] = NULL;
3868
3869                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3870                         int ent = i & (size - 1);
3871
3872                         /* first buffer is never a tiny buffer and so
3873                          * needs to be unmapped.
3874                          */
3875                         daddr = le64_to_cpu(txd[ent].buffer);
3876                         dlen  =  CAS_VAL(TX_DESC_BUFLEN,
3877                                          le64_to_cpu(txd[ent].control));
3878                         dma_unmap_page(&cp->pdev->dev, daddr, dlen,
3879                                        DMA_TO_DEVICE);
3880
3881                         if (frag != skb_shinfo(skb)->nr_frags) {
3882                                 i++;
3883
3884                                 /* next buffer might by a tiny buffer.
3885                                  * skip past it.
3886                                  */
3887                                 ent = i & (size - 1);
3888                                 if (cp->tx_tiny_use[ring][ent].used)
3889                                         i++;
3890                         }
3891                 }
3892                 dev_kfree_skb_any(skb);
3893         }
3894
3895         /* zero out tiny buf usage */
3896         memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3897 }
3898
3899 /* freed on close */
3900 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3901 {
3902         cas_page_t **page = cp->rx_pages[ring];
3903         int i, size;
3904
3905         size = RX_DESC_RINGN_SIZE(ring);
3906         for (i = 0; i < size; i++) {
3907                 if (page[i]) {
3908                         cas_page_free(cp, page[i]);
3909                         page[i] = NULL;
3910                 }
3911         }
3912 }
3913
3914 static void cas_free_rxds(struct cas *cp)
3915 {
3916         int i;
3917
3918         for (i = 0; i < N_RX_DESC_RINGS; i++)
3919                 cas_free_rx_desc(cp, i);
3920 }
3921
3922 /* Must be invoked under cp->lock. */
3923 static void cas_clean_rings(struct cas *cp)
3924 {
3925         int i;
3926
3927         /* need to clean all tx rings */
3928         memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3929         memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3930         for (i = 0; i < N_TX_RINGS; i++)
3931                 cas_clean_txd(cp, i);
3932
3933         /* zero out init block */
3934         memset(cp->init_block, 0, sizeof(struct cas_init_block));
3935         cas_clean_rxds(cp);
3936         cas_clean_rxcs(cp);
3937 }
3938
3939 /* allocated on open */
3940 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3941 {
3942         cas_page_t **page = cp->rx_pages[ring];
3943         int size, i = 0;
3944
3945         size = RX_DESC_RINGN_SIZE(ring);
3946         for (i = 0; i < size; i++) {
3947                 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3948                         return -1;
3949         }
3950         return 0;
3951 }
3952
3953 static int cas_alloc_rxds(struct cas *cp)
3954 {
3955         int i;
3956
3957         for (i = 0; i < N_RX_DESC_RINGS; i++) {
3958                 if (cas_alloc_rx_desc(cp, i) < 0) {
3959                         cas_free_rxds(cp);
3960                         return -1;
3961                 }
3962         }
3963         return 0;
3964 }
3965
3966 static void cas_reset_task(struct work_struct *work)
3967 {
3968         struct cas *cp = container_of(work, struct cas, reset_task);
3969 #if 0
3970         int pending = atomic_read(&cp->reset_task_pending);
3971 #else
3972         int pending_all = atomic_read(&cp->reset_task_pending_all);
3973         int pending_spare = atomic_read(&cp->reset_task_pending_spare);
3974         int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
3975
3976         if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
3977                 /* We can have more tasks scheduled than actually
3978                  * needed.
3979                  */
3980                 atomic_dec(&cp->reset_task_pending);
3981                 return;
3982         }
3983 #endif
3984         /* The link went down, we reset the ring, but keep
3985          * DMA stopped. Use this function for reset
3986          * on error as well.
3987          */
3988         if (cp->hw_running) {
3989                 unsigned long flags;
3990
3991                 /* Make sure we don't get interrupts or tx packets */
3992                 netif_device_detach(cp->dev);
3993                 cas_lock_all_save(cp, flags);
3994
3995                 if (cp->opened) {
3996                         /* We call cas_spare_recover when we call cas_open.
3997                          * but we do not initialize the lists cas_spare_recover
3998                          * uses until cas_open is called.
3999                          */
4000                         cas_spare_recover(cp, GFP_ATOMIC);
4001                 }
4002 #if 1
4003                 /* test => only pending_spare set */
4004                 if (!pending_all && !pending_mtu)
4005                         goto done;
4006 #else
4007                 if (pending == CAS_RESET_SPARE)
4008                         goto done;
4009 #endif
4010                 /* when pending == CAS_RESET_ALL, the following
4011                  * call to cas_init_hw will restart auto negotiation.
4012                  * Setting the second argument of cas_reset to
4013                  * !(pending == CAS_RESET_ALL) will set this argument
4014                  * to 1 (avoiding reinitializing the PHY for the normal
4015                  * PCS case) when auto negotiation is not restarted.
4016                  */
4017 #if 1
4018                 cas_reset(cp, !(pending_all > 0));
4019                 if (cp->opened)
4020                         cas_clean_rings(cp);
4021                 cas_init_hw(cp, (pending_all > 0));
4022 #else
4023                 cas_reset(cp, !(pending == CAS_RESET_ALL));
4024                 if (cp->opened)
4025                         cas_clean_rings(cp);
4026                 cas_init_hw(cp, pending == CAS_RESET_ALL);
4027 #endif
4028
4029 done:
4030                 cas_unlock_all_restore(cp, flags);
4031                 netif_device_attach(cp->dev);
4032         }
4033 #if 1
4034         atomic_sub(pending_all, &cp->reset_task_pending_all);
4035         atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4036         atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4037         atomic_dec(&cp->reset_task_pending);
4038 #else
4039         atomic_set(&cp->reset_task_pending, 0);
4040 #endif
4041 }
4042
4043 static void cas_link_timer(struct timer_list *t)
4044 {
4045         struct cas *cp = from_timer(cp, t, link_timer);
4046         int mask, pending = 0, reset = 0;
4047         unsigned long flags;
4048
4049         if (link_transition_timeout != 0 &&
4050             cp->link_transition_jiffies_valid &&
4051             time_is_before_jiffies(cp->link_transition_jiffies +
4052               link_transition_timeout)) {
4053                 /* One-second counter so link-down workaround doesn't
4054                  * cause resets to occur so fast as to fool the switch
4055                  * into thinking the link is down.
4056                  */
4057                 cp->link_transition_jiffies_valid = 0;
4058         }
4059
4060         if (!cp->hw_running)
4061                 return;
4062
4063         spin_lock_irqsave(&cp->lock, flags);
4064         cas_lock_tx(cp);
4065         cas_entropy_gather(cp);
4066
4067         /* If the link task is still pending, we just
4068          * reschedule the link timer
4069          */
4070 #if 1
4071         if (atomic_read(&cp->reset_task_pending_all) ||
4072             atomic_read(&cp->reset_task_pending_spare) ||
4073             atomic_read(&cp->reset_task_pending_mtu))
4074                 goto done;
4075 #else
4076         if (atomic_read(&cp->reset_task_pending))
4077                 goto done;
4078 #endif
4079
4080         /* check for rx cleaning */
4081         if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4082                 int i, rmask;
4083
4084                 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4085                         rmask = CAS_FLAG_RXD_POST(i);
4086                         if ((mask & rmask) == 0)
4087                                 continue;
4088
4089                         /* post_rxds will do a mod_timer */
4090                         if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4091                                 pending = 1;
4092                                 continue;
4093                         }
4094                         cp->cas_flags &= ~rmask;
4095                 }
4096         }
4097
4098         if (CAS_PHY_MII(cp->phy_type)) {
4099                 u16 bmsr;
4100                 cas_mif_poll(cp, 0);
4101                 bmsr = cas_phy_read(cp, MII_BMSR);
4102                 /* WTZ: Solaris driver reads this twice, but that
4103                  * may be due to the PCS case and the use of a
4104                  * common implementation. Read it twice here to be
4105                  * safe.
4106                  */
4107                 bmsr = cas_phy_read(cp, MII_BMSR);
4108                 cas_mif_poll(cp, 1);
4109                 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4110                 reset = cas_mii_link_check(cp, bmsr);
4111         } else {
4112                 reset = cas_pcs_link_check(cp);
4113         }
4114
4115         if (reset)
4116                 goto done;
4117
4118         /* check for tx state machine confusion */
4119         if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4120                 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4121                 u32 wptr, rptr;
4122                 int tlm  = CAS_VAL(MAC_SM_TLM, val);
4123
4124                 if (((tlm == 0x5) || (tlm == 0x3)) &&
4125                     (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4126                         netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4127                                      "tx err: MAC_STATE[%08x]\n", val);
4128                         reset = 1;
4129                         goto done;
4130                 }
4131
4132                 val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4133                 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4134                 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4135                 if ((val == 0) && (wptr != rptr)) {
4136                         netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4137                                      "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4138                                      val, wptr, rptr);
4139                         reset = 1;
4140                 }
4141
4142                 if (reset)
4143                         cas_hard_reset(cp);
4144         }
4145
4146 done:
4147         if (reset) {
4148 #if 1
4149                 atomic_inc(&cp->reset_task_pending);
4150                 atomic_inc(&cp->reset_task_pending_all);
4151                 schedule_work(&cp->reset_task);
4152 #else
4153                 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4154                 pr_err("reset called in cas_link_timer\n");
4155                 schedule_work(&cp->reset_task);
4156 #endif
4157         }
4158
4159         if (!pending)
4160                 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4161         cas_unlock_tx(cp);
4162         spin_unlock_irqrestore(&cp->lock, flags);
4163 }
4164
4165 /* tiny buffers are used to avoid target abort issues with
4166  * older cassini's
4167  */
4168 static void cas_tx_tiny_free(struct cas *cp)
4169 {
4170         struct pci_dev *pdev = cp->pdev;
4171         int i;
4172
4173         for (i = 0; i < N_TX_RINGS; i++) {
4174                 if (!cp->tx_tiny_bufs[i])
4175                         continue;
4176
4177                 dma_free_coherent(&pdev->dev, TX_TINY_BUF_BLOCK,
4178                                   cp->tx_tiny_bufs[i], cp->tx_tiny_dvma[i]);
4179                 cp->tx_tiny_bufs[i] = NULL;
4180         }
4181 }
4182
4183 static int cas_tx_tiny_alloc(struct cas *cp)
4184 {
4185         struct pci_dev *pdev = cp->pdev;
4186         int i;
4187
4188         for (i = 0; i < N_TX_RINGS; i++) {
4189                 cp->tx_tiny_bufs[i] =
4190                         dma_alloc_coherent(&pdev->dev, TX_TINY_BUF_BLOCK,
4191                                            &cp->tx_tiny_dvma[i], GFP_KERNEL);
4192                 if (!cp->tx_tiny_bufs[i]) {
4193                         cas_tx_tiny_free(cp);
4194                         return -1;
4195                 }
4196         }
4197         return 0;
4198 }
4199
4200
4201 static int cas_open(struct net_device *dev)
4202 {
4203         struct cas *cp = netdev_priv(dev);
4204         int hw_was_up, err;
4205         unsigned long flags;
4206
4207         mutex_lock(&cp->pm_mutex);
4208
4209         hw_was_up = cp->hw_running;
4210
4211         /* The power-management mutex protects the hw_running
4212          * etc. state so it is safe to do this bit without cp->lock
4213          */
4214         if (!cp->hw_running) {
4215                 /* Reset the chip */
4216                 cas_lock_all_save(cp, flags);
4217                 /* We set the second arg to cas_reset to zero
4218                  * because cas_init_hw below will have its second
4219                  * argument set to non-zero, which will force
4220                  * autonegotiation to start.
4221                  */
4222                 cas_reset(cp, 0);
4223                 cp->hw_running = 1;
4224                 cas_unlock_all_restore(cp, flags);
4225         }
4226
4227         err = -ENOMEM;
4228         if (cas_tx_tiny_alloc(cp) < 0)
4229                 goto err_unlock;
4230
4231         /* alloc rx descriptors */
4232         if (cas_alloc_rxds(cp) < 0)
4233                 goto err_tx_tiny;
4234
4235         /* allocate spares */
4236         cas_spare_init(cp);
4237         cas_spare_recover(cp, GFP_KERNEL);
4238
4239         /* We can now request the interrupt as we know it's masked
4240          * on the controller. cassini+ has up to 4 interrupts
4241          * that can be used, but you need to do explicit pci interrupt
4242          * mapping to expose them
4243          */
4244         if (request_irq(cp->pdev->irq, cas_interrupt,
4245                         IRQF_SHARED, dev->name, (void *) dev)) {
4246                 netdev_err(cp->dev, "failed to request irq !\n");
4247                 err = -EAGAIN;
4248                 goto err_spare;
4249         }
4250
4251 #ifdef USE_NAPI
4252         napi_enable(&cp->napi);
4253 #endif
4254         /* init hw */
4255         cas_lock_all_save(cp, flags);
4256         cas_clean_rings(cp);
4257         cas_init_hw(cp, !hw_was_up);
4258         cp->opened = 1;
4259         cas_unlock_all_restore(cp, flags);
4260
4261         netif_start_queue(dev);
4262         mutex_unlock(&cp->pm_mutex);
4263         return 0;
4264
4265 err_spare:
4266         cas_spare_free(cp);
4267         cas_free_rxds(cp);
4268 err_tx_tiny:
4269         cas_tx_tiny_free(cp);
4270 err_unlock:
4271         mutex_unlock(&cp->pm_mutex);
4272         return err;
4273 }
4274
4275 static int cas_close(struct net_device *dev)
4276 {
4277         unsigned long flags;
4278         struct cas *cp = netdev_priv(dev);
4279
4280 #ifdef USE_NAPI
4281         napi_disable(&cp->napi);
4282 #endif
4283         /* Make sure we don't get distracted by suspend/resume */
4284         mutex_lock(&cp->pm_mutex);
4285
4286         netif_stop_queue(dev);
4287
4288         /* Stop traffic, mark us closed */
4289         cas_lock_all_save(cp, flags);
4290         cp->opened = 0;
4291         cas_reset(cp, 0);
4292         cas_phy_init(cp);
4293         cas_begin_auto_negotiation(cp, NULL);
4294         cas_clean_rings(cp);
4295         cas_unlock_all_restore(cp, flags);
4296
4297         free_irq(cp->pdev->irq, (void *) dev);
4298         cas_spare_free(cp);
4299         cas_free_rxds(cp);
4300         cas_tx_tiny_free(cp);
4301         mutex_unlock(&cp->pm_mutex);
4302         return 0;
4303 }
4304
4305 static struct {
4306         const char name[ETH_GSTRING_LEN];
4307 } ethtool_cassini_statnames[] = {
4308         {"collisions"},
4309         {"rx_bytes"},
4310         {"rx_crc_errors"},
4311         {"rx_dropped"},
4312         {"rx_errors"},
4313         {"rx_fifo_errors"},
4314         {"rx_frame_errors"},
4315         {"rx_length_errors"},
4316         {"rx_over_errors"},
4317         {"rx_packets"},
4318         {"tx_aborted_errors"},
4319         {"tx_bytes"},
4320         {"tx_dropped"},
4321         {"tx_errors"},
4322         {"tx_fifo_errors"},
4323         {"tx_packets"}
4324 };
4325 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4326
4327 static struct {
4328         const int offsets;      /* neg. values for 2nd arg to cas_read_phy */
4329 } ethtool_register_table[] = {
4330         {-MII_BMSR},
4331         {-MII_BMCR},
4332         {REG_CAWR},
4333         {REG_INF_BURST},
4334         {REG_BIM_CFG},
4335         {REG_RX_CFG},
4336         {REG_HP_CFG},
4337         {REG_MAC_TX_CFG},
4338         {REG_MAC_RX_CFG},
4339         {REG_MAC_CTRL_CFG},
4340         {REG_MAC_XIF_CFG},
4341         {REG_MIF_CFG},
4342         {REG_PCS_CFG},
4343         {REG_SATURN_PCFG},
4344         {REG_PCS_MII_STATUS},
4345         {REG_PCS_STATE_MACHINE},
4346         {REG_MAC_COLL_EXCESS},
4347         {REG_MAC_COLL_LATE}
4348 };
4349 #define CAS_REG_LEN     ARRAY_SIZE(ethtool_register_table)
4350 #define CAS_MAX_REGS    (sizeof (u32)*CAS_REG_LEN)
4351
4352 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4353 {
4354         u8 *p;
4355         int i;
4356         unsigned long flags;
4357
4358         spin_lock_irqsave(&cp->lock, flags);
4359         for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4360                 u16 hval;
4361                 u32 val;
4362                 if (ethtool_register_table[i].offsets < 0) {
4363                         hval = cas_phy_read(cp,
4364                                     -ethtool_register_table[i].offsets);
4365                         val = hval;
4366                 } else {
4367                         val= readl(cp->regs+ethtool_register_table[i].offsets);
4368                 }
4369                 memcpy(p, (u8 *)&val, sizeof(u32));
4370         }
4371         spin_unlock_irqrestore(&cp->lock, flags);
4372 }
4373
4374 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4375 {
4376         struct cas *cp = netdev_priv(dev);
4377         struct net_device_stats *stats = cp->net_stats;
4378         unsigned long flags;
4379         int i;
4380         unsigned long tmp;
4381
4382         /* we collate all of the stats into net_stats[N_TX_RING] */
4383         if (!cp->hw_running)
4384                 return stats + N_TX_RINGS;
4385
4386         /* collect outstanding stats */
4387         /* WTZ: the Cassini spec gives these as 16 bit counters but
4388          * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4389          * in case the chip somehow puts any garbage in the other bits.
4390          * Also, counter usage didn't seem to mach what Adrian did
4391          * in the parts of the code that set these quantities. Made
4392          * that consistent.
4393          */
4394         spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4395         stats[N_TX_RINGS].rx_crc_errors +=
4396           readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4397         stats[N_TX_RINGS].rx_frame_errors +=
4398                 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4399         stats[N_TX_RINGS].rx_length_errors +=
4400                 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4401 #if 1
4402         tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4403                 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4404         stats[N_TX_RINGS].tx_aborted_errors += tmp;
4405         stats[N_TX_RINGS].collisions +=
4406           tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4407 #else
4408         stats[N_TX_RINGS].tx_aborted_errors +=
4409                 readl(cp->regs + REG_MAC_COLL_EXCESS);
4410         stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4411                 readl(cp->regs + REG_MAC_COLL_LATE);
4412 #endif
4413         cas_clear_mac_err(cp);
4414
4415         /* saved bits that are unique to ring 0 */
4416         spin_lock(&cp->stat_lock[0]);
4417         stats[N_TX_RINGS].collisions        += stats[0].collisions;
4418         stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4419         stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4420         stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4421         stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4422         stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4423         spin_unlock(&cp->stat_lock[0]);
4424
4425         for (i = 0; i < N_TX_RINGS; i++) {
4426                 spin_lock(&cp->stat_lock[i]);
4427                 stats[N_TX_RINGS].rx_length_errors +=
4428                         stats[i].rx_length_errors;
4429                 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4430                 stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4431                 stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4432                 stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4433                 stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4434                 stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4435                 stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4436                 stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4437                 stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4438                 memset(stats + i, 0, sizeof(struct net_device_stats));
4439                 spin_unlock(&cp->stat_lock[i]);
4440         }
4441         spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4442         return stats + N_TX_RINGS;
4443 }
4444
4445
4446 static void cas_set_multicast(struct net_device *dev)
4447 {
4448         struct cas *cp = netdev_priv(dev);
4449         u32 rxcfg, rxcfg_new;
4450         unsigned long flags;
4451         int limit = STOP_TRIES;
4452
4453         if (!cp->hw_running)
4454                 return;
4455
4456         spin_lock_irqsave(&cp->lock, flags);
4457         rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4458
4459         /* disable RX MAC and wait for completion */
4460         writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4461         while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4462                 if (!limit--)
4463                         break;
4464                 udelay(10);
4465         }
4466
4467         /* disable hash filter and wait for completion */
4468         limit = STOP_TRIES;
4469         rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4470         writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4471         while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4472                 if (!limit--)
4473                         break;
4474                 udelay(10);
4475         }
4476
4477         /* program hash filters */
4478         cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4479         rxcfg |= rxcfg_new;
4480         writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4481         spin_unlock_irqrestore(&cp->lock, flags);
4482 }
4483
4484 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4485 {
4486         struct cas *cp = netdev_priv(dev);
4487         strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4488         strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4489         strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4490 }
4491
4492 static int cas_get_link_ksettings(struct net_device *dev,
4493                                   struct ethtool_link_ksettings *cmd)
4494 {
4495         struct cas *cp = netdev_priv(dev);
4496         u16 bmcr;
4497         int full_duplex, speed, pause;
4498         unsigned long flags;
4499         enum link_state linkstate = link_up;
4500         u32 supported, advertising;
4501
4502         advertising = 0;
4503         supported = SUPPORTED_Autoneg;
4504         if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4505                 supported |= SUPPORTED_1000baseT_Full;
4506                 advertising |= ADVERTISED_1000baseT_Full;
4507         }
4508
4509         /* Record PHY settings if HW is on. */
4510         spin_lock_irqsave(&cp->lock, flags);
4511         bmcr = 0;
4512         linkstate = cp->lstate;
4513         if (CAS_PHY_MII(cp->phy_type)) {
4514                 cmd->base.port = PORT_MII;
4515                 cmd->base.phy_address = cp->phy_addr;
4516                 advertising |= ADVERTISED_TP | ADVERTISED_MII |
4517                         ADVERTISED_10baseT_Half |
4518                         ADVERTISED_10baseT_Full |
4519                         ADVERTISED_100baseT_Half |
4520                         ADVERTISED_100baseT_Full;
4521
4522                 supported |=
4523                         (SUPPORTED_10baseT_Half |
4524                          SUPPORTED_10baseT_Full |
4525                          SUPPORTED_100baseT_Half |
4526                          SUPPORTED_100baseT_Full |
4527                          SUPPORTED_TP | SUPPORTED_MII);
4528
4529                 if (cp->hw_running) {
4530                         cas_mif_poll(cp, 0);
4531                         bmcr = cas_phy_read(cp, MII_BMCR);
4532                         cas_read_mii_link_mode(cp, &full_duplex,
4533                                                &speed, &pause);
4534                         cas_mif_poll(cp, 1);
4535                 }
4536
4537         } else {
4538                 cmd->base.port = PORT_FIBRE;
4539                 cmd->base.phy_address = 0;
4540                 supported   |= SUPPORTED_FIBRE;
4541                 advertising |= ADVERTISED_FIBRE;
4542
4543                 if (cp->hw_running) {
4544                         /* pcs uses the same bits as mii */
4545                         bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4546                         cas_read_pcs_link_mode(cp, &full_duplex,
4547                                                &speed, &pause);
4548                 }
4549         }
4550         spin_unlock_irqrestore(&cp->lock, flags);
4551
4552         if (bmcr & BMCR_ANENABLE) {
4553                 advertising |= ADVERTISED_Autoneg;
4554                 cmd->base.autoneg = AUTONEG_ENABLE;
4555                 cmd->base.speed =  ((speed == 10) ?
4556                                             SPEED_10 :
4557                                             ((speed == 1000) ?
4558                                              SPEED_1000 : SPEED_100));
4559                 cmd->base.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4560         } else {
4561                 cmd->base.autoneg = AUTONEG_DISABLE;
4562                 cmd->base.speed = ((bmcr & CAS_BMCR_SPEED1000) ?
4563                                             SPEED_1000 :
4564                                             ((bmcr & BMCR_SPEED100) ?
4565                                              SPEED_100 : SPEED_10));
4566                 cmd->base.duplex = (bmcr & BMCR_FULLDPLX) ?
4567                         DUPLEX_FULL : DUPLEX_HALF;
4568         }
4569         if (linkstate != link_up) {
4570                 /* Force these to "unknown" if the link is not up and
4571                  * autonogotiation in enabled. We can set the link
4572                  * speed to 0, but not cmd->duplex,
4573                  * because its legal values are 0 and 1.  Ethtool will
4574                  * print the value reported in parentheses after the
4575                  * word "Unknown" for unrecognized values.
4576                  *
4577                  * If in forced mode, we report the speed and duplex
4578                  * settings that we configured.
4579                  */
4580                 if (cp->link_cntl & BMCR_ANENABLE) {
4581                         cmd->base.speed = 0;
4582                         cmd->base.duplex = 0xff;
4583                 } else {
4584                         cmd->base.speed = SPEED_10;
4585                         if (cp->link_cntl & BMCR_SPEED100) {
4586                                 cmd->base.speed = SPEED_100;
4587                         } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4588                                 cmd->base.speed = SPEED_1000;
4589                         }
4590                         cmd->base.duplex = (cp->link_cntl & BMCR_FULLDPLX) ?
4591                                 DUPLEX_FULL : DUPLEX_HALF;
4592                 }
4593         }
4594
4595         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
4596                                                 supported);
4597         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
4598                                                 advertising);
4599
4600         return 0;
4601 }
4602
4603 static int cas_set_link_ksettings(struct net_device *dev,
4604                                   const struct ethtool_link_ksettings *cmd)
4605 {
4606         struct cas *cp = netdev_priv(dev);
4607         unsigned long flags;
4608         u32 speed = cmd->base.speed;
4609
4610         /* Verify the settings we care about. */
4611         if (cmd->base.autoneg != AUTONEG_ENABLE &&
4612             cmd->base.autoneg != AUTONEG_DISABLE)
4613                 return -EINVAL;
4614
4615         if (cmd->base.autoneg == AUTONEG_DISABLE &&
4616             ((speed != SPEED_1000 &&
4617               speed != SPEED_100 &&
4618               speed != SPEED_10) ||
4619              (cmd->base.duplex != DUPLEX_HALF &&
4620               cmd->base.duplex != DUPLEX_FULL)))
4621                 return -EINVAL;
4622
4623         /* Apply settings and restart link process. */
4624         spin_lock_irqsave(&cp->lock, flags);
4625         cas_begin_auto_negotiation(cp, cmd);
4626         spin_unlock_irqrestore(&cp->lock, flags);
4627         return 0;
4628 }
4629
4630 static int cas_nway_reset(struct net_device *dev)
4631 {
4632         struct cas *cp = netdev_priv(dev);
4633         unsigned long flags;
4634
4635         if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4636                 return -EINVAL;
4637
4638         /* Restart link process. */
4639         spin_lock_irqsave(&cp->lock, flags);
4640         cas_begin_auto_negotiation(cp, NULL);
4641         spin_unlock_irqrestore(&cp->lock, flags);
4642
4643         return 0;
4644 }
4645
4646 static u32 cas_get_link(struct net_device *dev)
4647 {
4648         struct cas *cp = netdev_priv(dev);
4649         return cp->lstate == link_up;
4650 }
4651
4652 static u32 cas_get_msglevel(struct net_device *dev)
4653 {
4654         struct cas *cp = netdev_priv(dev);
4655         return cp->msg_enable;
4656 }
4657
4658 static void cas_set_msglevel(struct net_device *dev, u32 value)
4659 {
4660         struct cas *cp = netdev_priv(dev);
4661         cp->msg_enable = value;
4662 }
4663
4664 static int cas_get_regs_len(struct net_device *dev)
4665 {
4666         struct cas *cp = netdev_priv(dev);
4667         return min_t(int, cp->casreg_len, CAS_MAX_REGS);
4668 }
4669
4670 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4671                              void *p)
4672 {
4673         struct cas *cp = netdev_priv(dev);
4674         regs->version = 0;
4675         /* cas_read_regs handles locks (cp->lock).  */
4676         cas_read_regs(cp, p, regs->len / sizeof(u32));
4677 }
4678
4679 static int cas_get_sset_count(struct net_device *dev, int sset)
4680 {
4681         switch (sset) {
4682         case ETH_SS_STATS:
4683                 return CAS_NUM_STAT_KEYS;
4684         default:
4685                 return -EOPNOTSUPP;
4686         }
4687 }
4688
4689 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4690 {
4691          memcpy(data, &ethtool_cassini_statnames,
4692                                          CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4693 }
4694
4695 static void cas_get_ethtool_stats(struct net_device *dev,
4696                                       struct ethtool_stats *estats, u64 *data)
4697 {
4698         struct cas *cp = netdev_priv(dev);
4699         struct net_device_stats *stats = cas_get_stats(cp->dev);
4700         int i = 0;
4701         data[i++] = stats->collisions;
4702         data[i++] = stats->rx_bytes;
4703         data[i++] = stats->rx_crc_errors;
4704         data[i++] = stats->rx_dropped;
4705         data[i++] = stats->rx_errors;
4706         data[i++] = stats->rx_fifo_errors;
4707         data[i++] = stats->rx_frame_errors;
4708         data[i++] = stats->rx_length_errors;
4709         data[i++] = stats->rx_over_errors;
4710         data[i++] = stats->rx_packets;
4711         data[i++] = stats->tx_aborted_errors;
4712         data[i++] = stats->tx_bytes;
4713         data[i++] = stats->tx_dropped;
4714         data[i++] = stats->tx_errors;
4715         data[i++] = stats->tx_fifo_errors;
4716         data[i++] = stats->tx_packets;
4717         BUG_ON(i != CAS_NUM_STAT_KEYS);
4718 }
4719
4720 static const struct ethtool_ops cas_ethtool_ops = {
4721         .get_drvinfo            = cas_get_drvinfo,
4722         .nway_reset             = cas_nway_reset,
4723         .get_link               = cas_get_link,
4724         .get_msglevel           = cas_get_msglevel,
4725         .set_msglevel           = cas_set_msglevel,
4726         .get_regs_len           = cas_get_regs_len,
4727         .get_regs               = cas_get_regs,
4728         .get_sset_count         = cas_get_sset_count,
4729         .get_strings            = cas_get_strings,
4730         .get_ethtool_stats      = cas_get_ethtool_stats,
4731         .get_link_ksettings     = cas_get_link_ksettings,
4732         .set_link_ksettings     = cas_set_link_ksettings,
4733 };
4734
4735 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4736 {
4737         struct cas *cp = netdev_priv(dev);
4738         struct mii_ioctl_data *data = if_mii(ifr);
4739         unsigned long flags;
4740         int rc = -EOPNOTSUPP;
4741
4742         /* Hold the PM mutex while doing ioctl's or we may collide
4743          * with open/close and power management and oops.
4744          */
4745         mutex_lock(&cp->pm_mutex);
4746         switch (cmd) {
4747         case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
4748                 data->phy_id = cp->phy_addr;
4749                 fallthrough;
4750
4751         case SIOCGMIIREG:               /* Read MII PHY register. */
4752                 spin_lock_irqsave(&cp->lock, flags);
4753                 cas_mif_poll(cp, 0);
4754                 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4755                 cas_mif_poll(cp, 1);
4756                 spin_unlock_irqrestore(&cp->lock, flags);
4757                 rc = 0;
4758                 break;
4759
4760         case SIOCSMIIREG:               /* Write MII PHY register. */
4761                 spin_lock_irqsave(&cp->lock, flags);
4762                 cas_mif_poll(cp, 0);
4763                 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4764                 cas_mif_poll(cp, 1);
4765                 spin_unlock_irqrestore(&cp->lock, flags);
4766                 break;
4767         default:
4768                 break;
4769         }
4770
4771         mutex_unlock(&cp->pm_mutex);
4772         return rc;
4773 }
4774
4775 /* When this chip sits underneath an Intel 31154 bridge, it is the
4776  * only subordinate device and we can tweak the bridge settings to
4777  * reflect that fact.
4778  */
4779 static void cas_program_bridge(struct pci_dev *cas_pdev)
4780 {
4781         struct pci_dev *pdev = cas_pdev->bus->self;
4782         u32 val;
4783
4784         if (!pdev)
4785                 return;
4786
4787         if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4788                 return;
4789
4790         /* Clear bit 10 (Bus Parking Control) in the Secondary
4791          * Arbiter Control/Status Register which lives at offset
4792          * 0x41.  Using a 32-bit word read/modify/write at 0x40
4793          * is much simpler so that's how we do this.
4794          */
4795         pci_read_config_dword(pdev, 0x40, &val);
4796         val &= ~0x00040000;
4797         pci_write_config_dword(pdev, 0x40, val);
4798
4799         /* Max out the Multi-Transaction Timer settings since
4800          * Cassini is the only device present.
4801          *
4802          * The register is 16-bit and lives at 0x50.  When the
4803          * settings are enabled, it extends the GRANT# signal
4804          * for a requestor after a transaction is complete.  This
4805          * allows the next request to run without first needing
4806          * to negotiate the GRANT# signal back.
4807          *
4808          * Bits 12:10 define the grant duration:
4809          *
4810          *      1       --      16 clocks
4811          *      2       --      32 clocks
4812          *      3       --      64 clocks
4813          *      4       --      128 clocks
4814          *      5       --      256 clocks
4815          *
4816          * All other values are illegal.
4817          *
4818          * Bits 09:00 define which REQ/GNT signal pairs get the
4819          * GRANT# signal treatment.  We set them all.
4820          */
4821         pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4822
4823         /* The Read Prefecth Policy register is 16-bit and sits at
4824          * offset 0x52.  It enables a "smart" pre-fetch policy.  We
4825          * enable it and max out all of the settings since only one
4826          * device is sitting underneath and thus bandwidth sharing is
4827          * not an issue.
4828          *
4829          * The register has several 3 bit fields, which indicates a
4830          * multiplier applied to the base amount of prefetching the
4831          * chip would do.  These fields are at:
4832          *
4833          *      15:13   ---     ReRead Primary Bus
4834          *      12:10   ---     FirstRead Primary Bus
4835          *      09:07   ---     ReRead Secondary Bus
4836          *      06:04   ---     FirstRead Secondary Bus
4837          *
4838          * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4839          * get enabled on.  Bit 3 is a grouped enabler which controls
4840          * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
4841          * the individual REQ/GNT pairs [2:0].
4842          */
4843         pci_write_config_word(pdev, 0x52,
4844                               (0x7 << 13) |
4845                               (0x7 << 10) |
4846                               (0x7 <<  7) |
4847                               (0x7 <<  4) |
4848                               (0xf <<  0));
4849
4850         /* Force cacheline size to 0x8 */
4851         pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4852
4853         /* Force latency timer to maximum setting so Cassini can
4854          * sit on the bus as long as it likes.
4855          */
4856         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4857 }
4858
4859 static const struct net_device_ops cas_netdev_ops = {
4860         .ndo_open               = cas_open,
4861         .ndo_stop               = cas_close,
4862         .ndo_start_xmit         = cas_start_xmit,
4863         .ndo_get_stats          = cas_get_stats,
4864         .ndo_set_rx_mode        = cas_set_multicast,
4865         .ndo_eth_ioctl          = cas_ioctl,
4866         .ndo_tx_timeout         = cas_tx_timeout,
4867         .ndo_change_mtu         = cas_change_mtu,
4868         .ndo_set_mac_address    = eth_mac_addr,
4869         .ndo_validate_addr      = eth_validate_addr,
4870 #ifdef CONFIG_NET_POLL_CONTROLLER
4871         .ndo_poll_controller    = cas_netpoll,
4872 #endif
4873 };
4874
4875 static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4876 {
4877         static int cas_version_printed = 0;
4878         unsigned long casreg_len;
4879         struct net_device *dev;
4880         struct cas *cp;
4881         u16 pci_cmd;
4882         int i, err;
4883         u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4884
4885         if (cas_version_printed++ == 0)
4886                 pr_info("%s", version);
4887
4888         err = pci_enable_device(pdev);
4889         if (err) {
4890                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4891                 return err;
4892         }
4893
4894         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4895                 dev_err(&pdev->dev, "Cannot find proper PCI device "
4896                        "base address, aborting\n");
4897                 err = -ENODEV;
4898                 goto err_out_disable_pdev;
4899         }
4900
4901         dev = alloc_etherdev(sizeof(*cp));
4902         if (!dev) {
4903                 err = -ENOMEM;
4904                 goto err_out_disable_pdev;
4905         }
4906         SET_NETDEV_DEV(dev, &pdev->dev);
4907
4908         err = pci_request_regions(pdev, dev->name);
4909         if (err) {
4910                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4911                 goto err_out_free_netdev;
4912         }
4913         pci_set_master(pdev);
4914
4915         /* we must always turn on parity response or else parity
4916          * doesn't get generated properly. disable SERR/PERR as well.
4917          * in addition, we want to turn MWI on.
4918          */
4919         pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4920         pci_cmd &= ~PCI_COMMAND_SERR;
4921         pci_cmd |= PCI_COMMAND_PARITY;
4922         pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4923         if (pci_try_set_mwi(pdev))
4924                 pr_warn("Could not enable MWI for %s\n", pci_name(pdev));
4925
4926         cas_program_bridge(pdev);
4927
4928         /*
4929          * On some architectures, the default cache line size set
4930          * by pci_try_set_mwi reduces perforamnce.  We have to increase
4931          * it for this case.  To start, we'll print some configuration
4932          * data.
4933          */
4934 #if 1
4935         pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4936                              &orig_cacheline_size);
4937         if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4938                 cas_cacheline_size =
4939                         (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4940                         CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4941                 if (pci_write_config_byte(pdev,
4942                                           PCI_CACHE_LINE_SIZE,
4943                                           cas_cacheline_size)) {
4944                         dev_err(&pdev->dev, "Could not set PCI cache "
4945                                "line size\n");
4946                         goto err_out_free_res;
4947                 }
4948         }
4949 #endif
4950
4951
4952         /* Configure DMA attributes. */
4953         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4954         if (err) {
4955                 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
4956                 goto err_out_free_res;
4957         }
4958
4959         casreg_len = pci_resource_len(pdev, 0);
4960
4961         cp = netdev_priv(dev);
4962         cp->pdev = pdev;
4963 #if 1
4964         /* A value of 0 indicates we never explicitly set it */
4965         cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
4966 #endif
4967         cp->dev = dev;
4968         cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
4969           cassini_debug;
4970
4971 #if defined(CONFIG_SPARC)
4972         cp->of_node = pci_device_to_OF_node(pdev);
4973 #endif
4974
4975         cp->link_transition = LINK_TRANSITION_UNKNOWN;
4976         cp->link_transition_jiffies_valid = 0;
4977
4978         spin_lock_init(&cp->lock);
4979         spin_lock_init(&cp->rx_inuse_lock);
4980         spin_lock_init(&cp->rx_spare_lock);
4981         for (i = 0; i < N_TX_RINGS; i++) {
4982                 spin_lock_init(&cp->stat_lock[i]);
4983                 spin_lock_init(&cp->tx_lock[i]);
4984         }
4985         spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
4986         mutex_init(&cp->pm_mutex);
4987
4988         timer_setup(&cp->link_timer, cas_link_timer, 0);
4989
4990 #if 1
4991         /* Just in case the implementation of atomic operations
4992          * change so that an explicit initialization is necessary.
4993          */
4994         atomic_set(&cp->reset_task_pending, 0);
4995         atomic_set(&cp->reset_task_pending_all, 0);
4996         atomic_set(&cp->reset_task_pending_spare, 0);
4997         atomic_set(&cp->reset_task_pending_mtu, 0);
4998 #endif
4999         INIT_WORK(&cp->reset_task, cas_reset_task);
5000
5001         /* Default link parameters */
5002         if (link_mode >= 0 && link_mode < 6)
5003                 cp->link_cntl = link_modes[link_mode];
5004         else
5005                 cp->link_cntl = BMCR_ANENABLE;
5006         cp->lstate = link_down;
5007         cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5008         netif_carrier_off(cp->dev);
5009         cp->timer_ticks = 0;
5010
5011         /* give us access to cassini registers */
5012         cp->regs = pci_iomap(pdev, 0, casreg_len);
5013         if (!cp->regs) {
5014                 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5015                 goto err_out_free_res;
5016         }
5017         cp->casreg_len = casreg_len;
5018
5019         pci_save_state(pdev);
5020         cas_check_pci_invariants(cp);
5021         cas_hard_reset(cp);
5022         cas_reset(cp, 0);
5023         if (cas_check_invariants(cp))
5024                 goto err_out_iounmap;
5025         if (cp->cas_flags & CAS_FLAG_SATURN)
5026                 cas_saturn_firmware_init(cp);
5027
5028         cp->init_block =
5029                 dma_alloc_coherent(&pdev->dev, sizeof(struct cas_init_block),
5030                                    &cp->block_dvma, GFP_KERNEL);
5031         if (!cp->init_block) {
5032                 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5033                 goto err_out_iounmap;
5034         }
5035
5036         for (i = 0; i < N_TX_RINGS; i++)
5037                 cp->init_txds[i] = cp->init_block->txds[i];
5038
5039         for (i = 0; i < N_RX_DESC_RINGS; i++)
5040                 cp->init_rxds[i] = cp->init_block->rxds[i];
5041
5042         for (i = 0; i < N_RX_COMP_RINGS; i++)
5043                 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5044
5045         for (i = 0; i < N_RX_FLOWS; i++)
5046                 skb_queue_head_init(&cp->rx_flows[i]);
5047
5048         dev->netdev_ops = &cas_netdev_ops;
5049         dev->ethtool_ops = &cas_ethtool_ops;
5050         dev->watchdog_timeo = CAS_TX_TIMEOUT;
5051
5052 #ifdef USE_NAPI
5053         netif_napi_add(dev, &cp->napi, cas_poll, 64);
5054 #endif
5055         dev->irq = pdev->irq;
5056         dev->dma = 0;
5057
5058         /* Cassini features. */
5059         if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5060                 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5061
5062         dev->features |= NETIF_F_HIGHDMA;
5063
5064         /* MTU range: 60 - varies or 9000 */
5065         dev->min_mtu = CAS_MIN_MTU;
5066         dev->max_mtu = CAS_MAX_MTU;
5067
5068         if (register_netdev(dev)) {
5069                 dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5070                 goto err_out_free_consistent;
5071         }
5072
5073         i = readl(cp->regs + REG_BIM_CFG);
5074         netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5075                     (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5076                     (i & BIM_CFG_32BIT) ? "32" : "64",
5077                     (i & BIM_CFG_66MHZ) ? "66" : "33",
5078                     (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5079                     dev->dev_addr);
5080
5081         pci_set_drvdata(pdev, dev);
5082         cp->hw_running = 1;
5083         cas_entropy_reset(cp);
5084         cas_phy_init(cp);
5085         cas_begin_auto_negotiation(cp, NULL);
5086         return 0;
5087
5088 err_out_free_consistent:
5089         dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block),
5090                           cp->init_block, cp->block_dvma);
5091
5092 err_out_iounmap:
5093         mutex_lock(&cp->pm_mutex);
5094         if (cp->hw_running)
5095                 cas_shutdown(cp);
5096         mutex_unlock(&cp->pm_mutex);
5097
5098         pci_iounmap(pdev, cp->regs);
5099
5100
5101 err_out_free_res:
5102         pci_release_regions(pdev);
5103
5104         /* Try to restore it in case the error occurred after we
5105          * set it.
5106          */
5107         pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5108
5109 err_out_free_netdev:
5110         free_netdev(dev);
5111
5112 err_out_disable_pdev:
5113         pci_disable_device(pdev);
5114         return -ENODEV;
5115 }
5116
5117 static void cas_remove_one(struct pci_dev *pdev)
5118 {
5119         struct net_device *dev = pci_get_drvdata(pdev);
5120         struct cas *cp;
5121         if (!dev)
5122                 return;
5123
5124         cp = netdev_priv(dev);
5125         unregister_netdev(dev);
5126
5127         vfree(cp->fw_data);
5128
5129         mutex_lock(&cp->pm_mutex);
5130         cancel_work_sync(&cp->reset_task);
5131         if (cp->hw_running)
5132                 cas_shutdown(cp);
5133         mutex_unlock(&cp->pm_mutex);
5134
5135 #if 1
5136         if (cp->orig_cacheline_size) {
5137                 /* Restore the cache line size if we had modified
5138                  * it.
5139                  */
5140                 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5141                                       cp->orig_cacheline_size);
5142         }
5143 #endif
5144         dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block),
5145                           cp->init_block, cp->block_dvma);
5146         pci_iounmap(pdev, cp->regs);
5147         free_netdev(dev);
5148         pci_release_regions(pdev);
5149         pci_disable_device(pdev);
5150 }
5151
5152 static int __maybe_unused cas_suspend(struct device *dev_d)
5153 {
5154         struct net_device *dev = dev_get_drvdata(dev_d);
5155         struct cas *cp = netdev_priv(dev);
5156         unsigned long flags;
5157
5158         mutex_lock(&cp->pm_mutex);
5159
5160         /* If the driver is opened, we stop the DMA */
5161         if (cp->opened) {
5162                 netif_device_detach(dev);
5163
5164                 cas_lock_all_save(cp, flags);
5165
5166                 /* We can set the second arg of cas_reset to 0
5167                  * because on resume, we'll call cas_init_hw with
5168                  * its second arg set so that autonegotiation is
5169                  * restarted.
5170                  */
5171                 cas_reset(cp, 0);
5172                 cas_clean_rings(cp);
5173                 cas_unlock_all_restore(cp, flags);
5174         }
5175
5176         if (cp->hw_running)
5177                 cas_shutdown(cp);
5178         mutex_unlock(&cp->pm_mutex);
5179
5180         return 0;
5181 }
5182
5183 static int __maybe_unused cas_resume(struct device *dev_d)
5184 {
5185         struct net_device *dev = dev_get_drvdata(dev_d);
5186         struct cas *cp = netdev_priv(dev);
5187
5188         netdev_info(dev, "resuming\n");
5189
5190         mutex_lock(&cp->pm_mutex);
5191         cas_hard_reset(cp);
5192         if (cp->opened) {
5193                 unsigned long flags;
5194                 cas_lock_all_save(cp, flags);
5195                 cas_reset(cp, 0);
5196                 cp->hw_running = 1;
5197                 cas_clean_rings(cp);
5198                 cas_init_hw(cp, 1);
5199                 cas_unlock_all_restore(cp, flags);
5200
5201                 netif_device_attach(dev);
5202         }
5203         mutex_unlock(&cp->pm_mutex);
5204         return 0;
5205 }
5206
5207 static SIMPLE_DEV_PM_OPS(cas_pm_ops, cas_suspend, cas_resume);
5208
5209 static struct pci_driver cas_driver = {
5210         .name           = DRV_MODULE_NAME,
5211         .id_table       = cas_pci_tbl,
5212         .probe          = cas_init_one,
5213         .remove         = cas_remove_one,
5214         .driver.pm      = &cas_pm_ops,
5215 };
5216
5217 static int __init cas_init(void)
5218 {
5219         if (linkdown_timeout > 0)
5220                 link_transition_timeout = linkdown_timeout * HZ;
5221         else
5222                 link_transition_timeout = 0;
5223
5224         return pci_register_driver(&cas_driver);
5225 }
5226
5227 static void __exit cas_cleanup(void)
5228 {
5229         pci_unregister_driver(&cas_driver);
5230 }
5231
5232 module_init(cas_init);
5233 module_exit(cas_cleanup);