GNU Linux-libre 4.14.332-gnu1
[releases.git] / drivers / net / ethernet / sfc / tx_tso.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2015 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include <linux/moduleparam.h>
21 #include <linux/cache.h>
22 #include "net_driver.h"
23 #include "efx.h"
24 #include "io.h"
25 #include "nic.h"
26 #include "tx.h"
27 #include "workarounds.h"
28 #include "ef10_regs.h"
29
30 /* Efx legacy TCP segmentation acceleration.
31  *
32  * Utilises firmware support to go faster than GSO (but not as fast as TSOv2).
33  *
34  * Requires TX checksum offload support.
35  */
36
37 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
38
39 /**
40  * struct tso_state - TSO state for an SKB
41  * @out_len: Remaining length in current segment
42  * @seqnum: Current sequence number
43  * @ipv4_id: Current IPv4 ID, host endian
44  * @packet_space: Remaining space in current packet
45  * @dma_addr: DMA address of current position
46  * @in_len: Remaining length in current SKB fragment
47  * @unmap_len: Length of SKB fragment
48  * @unmap_addr: DMA address of SKB fragment
49  * @protocol: Network protocol (after any VLAN header)
50  * @ip_off: Offset of IP header
51  * @tcp_off: Offset of TCP header
52  * @header_len: Number of bytes of header
53  * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
54  * @header_dma_addr: Header DMA address
55  * @header_unmap_len: Header DMA mapped length
56  *
57  * The state used during segmentation.  It is put into this data structure
58  * just to make it easy to pass into inline functions.
59  */
60 struct tso_state {
61         /* Output position */
62         unsigned int out_len;
63         unsigned int seqnum;
64         u16 ipv4_id;
65         unsigned int packet_space;
66
67         /* Input position */
68         dma_addr_t dma_addr;
69         unsigned int in_len;
70         unsigned int unmap_len;
71         dma_addr_t unmap_addr;
72
73         __be16 protocol;
74         unsigned int ip_off;
75         unsigned int tcp_off;
76         unsigned int header_len;
77         unsigned int ip_base_len;
78         dma_addr_t header_dma_addr;
79         unsigned int header_unmap_len;
80 };
81
82 static inline void prefetch_ptr(struct efx_tx_queue *tx_queue)
83 {
84         unsigned int insert_ptr = efx_tx_queue_get_insert_index(tx_queue);
85         char *ptr;
86
87         ptr = (char *) (tx_queue->buffer + insert_ptr);
88         prefetch(ptr);
89         prefetch(ptr + 0x80);
90
91         ptr = (char *) (((efx_qword_t *)tx_queue->txd.buf.addr) + insert_ptr);
92         prefetch(ptr);
93         prefetch(ptr + 0x80);
94 }
95
96 /**
97  * efx_tx_queue_insert - push descriptors onto the TX queue
98  * @tx_queue:           Efx TX queue
99  * @dma_addr:           DMA address of fragment
100  * @len:                Length of fragment
101  * @final_buffer:       The final buffer inserted into the queue
102  *
103  * Push descriptors onto the TX queue.
104  */
105 static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
106                                 dma_addr_t dma_addr, unsigned int len,
107                                 struct efx_tx_buffer **final_buffer)
108 {
109         struct efx_tx_buffer *buffer;
110         unsigned int dma_len;
111
112         EFX_WARN_ON_ONCE_PARANOID(len <= 0);
113
114         while (1) {
115                 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
116                 ++tx_queue->insert_count;
117
118                 EFX_WARN_ON_ONCE_PARANOID(tx_queue->insert_count -
119                                           tx_queue->read_count >=
120                                           tx_queue->efx->txq_entries);
121
122                 buffer->dma_addr = dma_addr;
123
124                 dma_len = tx_queue->efx->type->tx_limit_len(tx_queue,
125                                 dma_addr, len);
126
127                 /* If there's space for everything this is our last buffer. */
128                 if (dma_len >= len)
129                         break;
130
131                 buffer->len = dma_len;
132                 buffer->flags = EFX_TX_BUF_CONT;
133                 dma_addr += dma_len;
134                 len -= dma_len;
135         }
136
137         EFX_WARN_ON_ONCE_PARANOID(!len);
138         buffer->len = len;
139         *final_buffer = buffer;
140 }
141
142 /*
143  * Verify that our various assumptions about sk_buffs and the conditions
144  * under which TSO will be attempted hold true.  Return the protocol number.
145  */
146 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
147 {
148         __be16 protocol = skb->protocol;
149
150         EFX_WARN_ON_ONCE_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
151                                   protocol);
152         if (protocol == htons(ETH_P_8021Q)) {
153                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
154
155                 protocol = veh->h_vlan_encapsulated_proto;
156         }
157
158         if (protocol == htons(ETH_P_IP)) {
159                 EFX_WARN_ON_ONCE_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
160         } else {
161                 EFX_WARN_ON_ONCE_PARANOID(protocol != htons(ETH_P_IPV6));
162                 EFX_WARN_ON_ONCE_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
163         }
164         EFX_WARN_ON_ONCE_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data) +
165                                    (tcp_hdr(skb)->doff << 2u)) >
166                                   skb_headlen(skb));
167
168         return protocol;
169 }
170
171 /* Parse the SKB header and initialise state. */
172 static int tso_start(struct tso_state *st, struct efx_nic *efx,
173                      struct efx_tx_queue *tx_queue,
174                      const struct sk_buff *skb)
175 {
176         struct device *dma_dev = &efx->pci_dev->dev;
177         unsigned int header_len, in_len;
178         dma_addr_t dma_addr;
179
180         st->ip_off = skb_network_header(skb) - skb->data;
181         st->tcp_off = skb_transport_header(skb) - skb->data;
182         header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
183         in_len = skb_headlen(skb) - header_len;
184         st->header_len = header_len;
185         st->in_len = in_len;
186         if (st->protocol == htons(ETH_P_IP)) {
187                 st->ip_base_len = st->header_len - st->ip_off;
188                 st->ipv4_id = ntohs(ip_hdr(skb)->id);
189         } else {
190                 st->ip_base_len = st->header_len - st->tcp_off;
191                 st->ipv4_id = 0;
192         }
193         st->seqnum = ntohl(tcp_hdr(skb)->seq);
194
195         EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->urg);
196         EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->syn);
197         EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->rst);
198
199         st->out_len = skb->len - header_len;
200
201         dma_addr = dma_map_single(dma_dev, skb->data,
202                                   skb_headlen(skb), DMA_TO_DEVICE);
203         st->header_dma_addr = dma_addr;
204         st->header_unmap_len = skb_headlen(skb);
205         st->dma_addr = dma_addr + header_len;
206         st->unmap_len = 0;
207
208         return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
209 }
210
211 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
212                             skb_frag_t *frag)
213 {
214         st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
215                                           skb_frag_size(frag), DMA_TO_DEVICE);
216         if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
217                 st->unmap_len = skb_frag_size(frag);
218                 st->in_len = skb_frag_size(frag);
219                 st->dma_addr = st->unmap_addr;
220                 return 0;
221         }
222         return -ENOMEM;
223 }
224
225
226 /**
227  * tso_fill_packet_with_fragment - form descriptors for the current fragment
228  * @tx_queue:           Efx TX queue
229  * @skb:                Socket buffer
230  * @st:                 TSO state
231  *
232  * Form descriptors for the current fragment, until we reach the end
233  * of fragment or end-of-packet.
234  */
235 static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
236                                           const struct sk_buff *skb,
237                                           struct tso_state *st)
238 {
239         struct efx_tx_buffer *buffer;
240         int n;
241
242         if (st->in_len == 0)
243                 return;
244         if (st->packet_space == 0)
245                 return;
246
247         EFX_WARN_ON_ONCE_PARANOID(st->in_len <= 0);
248         EFX_WARN_ON_ONCE_PARANOID(st->packet_space <= 0);
249
250         n = min(st->in_len, st->packet_space);
251
252         st->packet_space -= n;
253         st->out_len -= n;
254         st->in_len -= n;
255
256         efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
257
258         if (st->out_len == 0) {
259                 /* Transfer ownership of the skb */
260                 buffer->skb = skb;
261                 buffer->flags = EFX_TX_BUF_SKB;
262         } else if (st->packet_space != 0) {
263                 buffer->flags = EFX_TX_BUF_CONT;
264         }
265
266         if (st->in_len == 0) {
267                 /* Transfer ownership of the DMA mapping */
268                 buffer->unmap_len = st->unmap_len;
269                 buffer->dma_offset = buffer->unmap_len - buffer->len;
270                 st->unmap_len = 0;
271         }
272
273         st->dma_addr += n;
274 }
275
276
277 #define TCP_FLAGS_OFFSET 13
278
279 /**
280  * tso_start_new_packet - generate a new header and prepare for the new packet
281  * @tx_queue:           Efx TX queue
282  * @skb:                Socket buffer
283  * @st:                 TSO state
284  *
285  * Generate a new header and prepare for the new packet.  Return 0 on
286  * success, or -%ENOMEM if failed to alloc header, or other negative error.
287  */
288 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
289                                 const struct sk_buff *skb,
290                                 struct tso_state *st)
291 {
292         struct efx_tx_buffer *buffer =
293                 efx_tx_queue_get_insert_buffer(tx_queue);
294         bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
295         u8 tcp_flags_mask, tcp_flags;
296
297         if (!is_last) {
298                 st->packet_space = skb_shinfo(skb)->gso_size;
299                 tcp_flags_mask = 0x09; /* mask out FIN and PSH */
300         } else {
301                 st->packet_space = st->out_len;
302                 tcp_flags_mask = 0x00;
303         }
304
305         if (WARN_ON(!st->header_unmap_len))
306                 return -EINVAL;
307         /* Send the original headers with a TSO option descriptor
308          * in front
309          */
310         tcp_flags = ((u8 *)tcp_hdr(skb))[TCP_FLAGS_OFFSET] & ~tcp_flags_mask;
311
312         buffer->flags = EFX_TX_BUF_OPTION;
313         buffer->len = 0;
314         buffer->unmap_len = 0;
315         EFX_POPULATE_QWORD_5(buffer->option,
316                              ESF_DZ_TX_DESC_IS_OPT, 1,
317                              ESF_DZ_TX_OPTION_TYPE,
318                              ESE_DZ_TX_OPTION_DESC_TSO,
319                              ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
320                              ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
321                              ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
322         ++tx_queue->insert_count;
323
324         /* We mapped the headers in tso_start().  Unmap them
325          * when the last segment is completed.
326          */
327         buffer = efx_tx_queue_get_insert_buffer(tx_queue);
328         buffer->dma_addr = st->header_dma_addr;
329         buffer->len = st->header_len;
330         if (is_last) {
331                 buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
332                 buffer->unmap_len = st->header_unmap_len;
333                 buffer->dma_offset = 0;
334                 /* Ensure we only unmap them once in case of a
335                  * later DMA mapping error and rollback
336                  */
337                 st->header_unmap_len = 0;
338         } else {
339                 buffer->flags = EFX_TX_BUF_CONT;
340                 buffer->unmap_len = 0;
341         }
342         ++tx_queue->insert_count;
343
344         st->seqnum += skb_shinfo(skb)->gso_size;
345
346         /* Linux leaves suitable gaps in the IP ID space for us to fill. */
347         ++st->ipv4_id;
348
349         return 0;
350 }
351
352 /**
353  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
354  * @tx_queue:           Efx TX queue
355  * @skb:                Socket buffer
356  * @data_mapped:        Did we map the data? Always set to true
357  *                      by this on success.
358  *
359  * Context: You must hold netif_tx_lock() to call this function.
360  *
361  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
362  * @skb was not enqueued.  @skb is consumed unless return value is
363  * %EINVAL.
364  */
365 int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
366                         struct sk_buff *skb,
367                         bool *data_mapped)
368 {
369         struct efx_nic *efx = tx_queue->efx;
370         int frag_i, rc;
371         struct tso_state state;
372
373         if (tx_queue->tso_version != 1)
374                 return -EINVAL;
375
376         prefetch(skb->data);
377
378         /* Find the packet protocol and sanity-check it */
379         state.protocol = efx_tso_check_protocol(skb);
380
381         EFX_WARN_ON_ONCE_PARANOID(tx_queue->write_count != tx_queue->insert_count);
382
383         rc = tso_start(&state, efx, tx_queue, skb);
384         if (rc)
385                 goto fail;
386
387         if (likely(state.in_len == 0)) {
388                 /* Grab the first payload fragment. */
389                 EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->nr_frags < 1);
390                 frag_i = 0;
391                 rc = tso_get_fragment(&state, efx,
392                                       skb_shinfo(skb)->frags + frag_i);
393                 if (rc)
394                         goto fail;
395         } else {
396                 /* Payload starts in the header area. */
397                 frag_i = -1;
398         }
399
400         rc = tso_start_new_packet(tx_queue, skb, &state);
401         if (rc)
402                 goto fail;
403
404         prefetch_ptr(tx_queue);
405
406         while (1) {
407                 tso_fill_packet_with_fragment(tx_queue, skb, &state);
408
409                 /* Move onto the next fragment? */
410                 if (state.in_len == 0) {
411                         if (++frag_i >= skb_shinfo(skb)->nr_frags)
412                                 /* End of payload reached. */
413                                 break;
414                         rc = tso_get_fragment(&state, efx,
415                                               skb_shinfo(skb)->frags + frag_i);
416                         if (rc)
417                                 goto fail;
418                 }
419
420                 /* Start at new packet? */
421                 if (state.packet_space == 0) {
422                         rc = tso_start_new_packet(tx_queue, skb, &state);
423                         if (rc)
424                                 goto fail;
425                 }
426         }
427
428         *data_mapped = true;
429
430         return 0;
431
432 fail:
433         if (rc == -ENOMEM)
434                 netif_err(efx, tx_err, efx->net_dev,
435                           "Out of memory for TSO headers, or DMA mapping error\n");
436         else
437                 netif_err(efx, tx_err, efx->net_dev, "TSO failed, rc = %d\n", rc);
438
439         /* Free the DMA mapping we were in the process of writing out */
440         if (state.unmap_len) {
441                 dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
442                                state.unmap_len, DMA_TO_DEVICE);
443         }
444
445         /* Free the header DMA mapping */
446         if (state.header_unmap_len)
447                 dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
448                                  state.header_unmap_len, DMA_TO_DEVICE);
449
450         return rc;
451 }