GNU Linux-libre 4.9.328-gnu1
[releases.git] / drivers / net / ethernet / sfc / tx.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include <linux/cache.h>
21 #include "net_driver.h"
22 #include "efx.h"
23 #include "io.h"
24 #include "nic.h"
25 #include "workarounds.h"
26 #include "ef10_regs.h"
27
28 #ifdef EFX_USE_PIO
29
30 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
31 unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
32
33 #endif /* EFX_USE_PIO */
34
35 static inline unsigned int
36 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
37 {
38         return tx_queue->insert_count & tx_queue->ptr_mask;
39 }
40
41 static inline struct efx_tx_buffer *
42 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
43 {
44         return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
45 }
46
47 static inline struct efx_tx_buffer *
48 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
49 {
50         struct efx_tx_buffer *buffer =
51                 __efx_tx_queue_get_insert_buffer(tx_queue);
52
53         EFX_BUG_ON_PARANOID(buffer->len);
54         EFX_BUG_ON_PARANOID(buffer->flags);
55         EFX_BUG_ON_PARANOID(buffer->unmap_len);
56
57         return buffer;
58 }
59
60 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
61                                struct efx_tx_buffer *buffer,
62                                unsigned int *pkts_compl,
63                                unsigned int *bytes_compl)
64 {
65         if (buffer->unmap_len) {
66                 struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
67                 dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
68                 if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
69                         dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
70                                          DMA_TO_DEVICE);
71                 else
72                         dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
73                                        DMA_TO_DEVICE);
74                 buffer->unmap_len = 0;
75         }
76
77         if (buffer->flags & EFX_TX_BUF_SKB) {
78                 (*pkts_compl)++;
79                 (*bytes_compl) += buffer->skb->len;
80                 dev_consume_skb_any((struct sk_buff *)buffer->skb);
81                 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
82                            "TX queue %d transmission id %x complete\n",
83                            tx_queue->queue, tx_queue->read_count);
84         } else if (buffer->flags & EFX_TX_BUF_HEAP) {
85                 kfree(buffer->heap_buf);
86         }
87
88         buffer->len = 0;
89         buffer->flags = 0;
90 }
91
92 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
93                                struct sk_buff *skb);
94
95 static inline unsigned
96 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
97 {
98         /* Depending on the NIC revision, we can use descriptor
99          * lengths up to 8K or 8K-1.  However, since PCI Express
100          * devices must split read requests at 4K boundaries, there is
101          * little benefit from using descriptors that cross those
102          * boundaries and we keep things simple by not doing so.
103          */
104         unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
105
106         /* Work around hardware bug for unaligned buffers. */
107         if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
108                 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
109
110         return len;
111 }
112
113 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
114 {
115         /* Header and payload descriptor for each output segment, plus
116          * one for every input fragment boundary within a segment
117          */
118         unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
119
120         /* Possibly one more per segment for the alignment workaround,
121          * or for option descriptors
122          */
123         if (EFX_WORKAROUND_5391(efx) || efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
124                 max_descs += EFX_TSO_MAX_SEGS;
125
126         /* Possibly more for PCIe page boundaries within input fragments */
127         if (PAGE_SIZE > EFX_PAGE_SIZE)
128                 max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
129                                    DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
130
131         return max_descs;
132 }
133
134 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
135 {
136         /* We need to consider both queues that the net core sees as one */
137         struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
138         struct efx_nic *efx = txq1->efx;
139         unsigned int fill_level;
140
141         fill_level = max(txq1->insert_count - txq1->old_read_count,
142                          txq2->insert_count - txq2->old_read_count);
143         if (likely(fill_level < efx->txq_stop_thresh))
144                 return;
145
146         /* We used the stale old_read_count above, which gives us a
147          * pessimistic estimate of the fill level (which may even
148          * validly be >= efx->txq_entries).  Now try again using
149          * read_count (more likely to be a cache miss).
150          *
151          * If we read read_count and then conditionally stop the
152          * queue, it is possible for the completion path to race with
153          * us and complete all outstanding descriptors in the middle,
154          * after which there will be no more completions to wake it.
155          * Therefore we stop the queue first, then read read_count
156          * (with a memory barrier to ensure the ordering), then
157          * restart the queue if the fill level turns out to be low
158          * enough.
159          */
160         netif_tx_stop_queue(txq1->core_txq);
161         smp_mb();
162         txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
163         txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
164
165         fill_level = max(txq1->insert_count - txq1->old_read_count,
166                          txq2->insert_count - txq2->old_read_count);
167         EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
168         if (likely(fill_level < efx->txq_stop_thresh)) {
169                 smp_mb();
170                 if (likely(!efx->loopback_selftest))
171                         netif_tx_start_queue(txq1->core_txq);
172         }
173 }
174
175 #ifdef EFX_USE_PIO
176
177 struct efx_short_copy_buffer {
178         int used;
179         u8 buf[L1_CACHE_BYTES];
180 };
181
182 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
183  * Advances piobuf pointer. Leaves additional data in the copy buffer.
184  */
185 static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
186                                     u8 *data, int len,
187                                     struct efx_short_copy_buffer *copy_buf)
188 {
189         int block_len = len & ~(sizeof(copy_buf->buf) - 1);
190
191         __iowrite64_copy(*piobuf, data, block_len >> 3);
192         *piobuf += block_len;
193         len -= block_len;
194
195         if (len) {
196                 data += block_len;
197                 BUG_ON(copy_buf->used);
198                 BUG_ON(len > sizeof(copy_buf->buf));
199                 memcpy(copy_buf->buf, data, len);
200                 copy_buf->used = len;
201         }
202 }
203
204 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
205  * Advances piobuf pointer. Leaves additional data in the copy buffer.
206  */
207 static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
208                                        u8 *data, int len,
209                                        struct efx_short_copy_buffer *copy_buf)
210 {
211         if (copy_buf->used) {
212                 /* if the copy buffer is partially full, fill it up and write */
213                 int copy_to_buf =
214                         min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
215
216                 memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
217                 copy_buf->used += copy_to_buf;
218
219                 /* if we didn't fill it up then we're done for now */
220                 if (copy_buf->used < sizeof(copy_buf->buf))
221                         return;
222
223                 __iowrite64_copy(*piobuf, copy_buf->buf,
224                                  sizeof(copy_buf->buf) >> 3);
225                 *piobuf += sizeof(copy_buf->buf);
226                 data += copy_to_buf;
227                 len -= copy_to_buf;
228                 copy_buf->used = 0;
229         }
230
231         efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
232 }
233
234 static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
235                                   struct efx_short_copy_buffer *copy_buf)
236 {
237         /* if there's anything in it, write the whole buffer, including junk */
238         if (copy_buf->used)
239                 __iowrite64_copy(piobuf, copy_buf->buf,
240                                  sizeof(copy_buf->buf) >> 3);
241 }
242
243 /* Traverse skb structure and copy fragments in to PIO buffer.
244  * Advances piobuf pointer.
245  */
246 static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
247                                      u8 __iomem **piobuf,
248                                      struct efx_short_copy_buffer *copy_buf)
249 {
250         int i;
251
252         efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
253                                 copy_buf);
254
255         for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
256                 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
257                 u8 *vaddr;
258
259                 vaddr = kmap_atomic(skb_frag_page(f));
260
261                 efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
262                                            skb_frag_size(f), copy_buf);
263                 kunmap_atomic(vaddr);
264         }
265
266         EFX_BUG_ON_PARANOID(skb_shinfo(skb)->frag_list);
267 }
268
269 static struct efx_tx_buffer *
270 efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
271 {
272         struct efx_tx_buffer *buffer =
273                 efx_tx_queue_get_insert_buffer(tx_queue);
274         u8 __iomem *piobuf = tx_queue->piobuf;
275
276         /* Copy to PIO buffer. Ensure the writes are padded to the end
277          * of a cache line, as this is required for write-combining to be
278          * effective on at least x86.
279          */
280
281         if (skb_shinfo(skb)->nr_frags) {
282                 /* The size of the copy buffer will ensure all writes
283                  * are the size of a cache line.
284                  */
285                 struct efx_short_copy_buffer copy_buf;
286
287                 copy_buf.used = 0;
288
289                 efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
290                                          &piobuf, &copy_buf);
291                 efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
292         } else {
293                 /* Pad the write to the size of a cache line.
294                  * We can do this because we know the skb_shared_info sruct is
295                  * after the source, and the destination buffer is big enough.
296                  */
297                 BUILD_BUG_ON(L1_CACHE_BYTES >
298                              SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
299                 __iowrite64_copy(tx_queue->piobuf, skb->data,
300                                  ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
301         }
302
303         EFX_POPULATE_QWORD_5(buffer->option,
304                              ESF_DZ_TX_DESC_IS_OPT, 1,
305                              ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
306                              ESF_DZ_TX_PIO_CONT, 0,
307                              ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
308                              ESF_DZ_TX_PIO_BUF_ADDR,
309                              tx_queue->piobuf_offset);
310         ++tx_queue->pio_packets;
311         ++tx_queue->insert_count;
312         return buffer;
313 }
314 #endif /* EFX_USE_PIO */
315
316 /*
317  * Add a socket buffer to a TX queue
318  *
319  * This maps all fragments of a socket buffer for DMA and adds them to
320  * the TX queue.  The queue's insert pointer will be incremented by
321  * the number of fragments in the socket buffer.
322  *
323  * If any DMA mapping fails, any mapped fragments will be unmapped,
324  * the queue's insert pointer will be restored to its original value.
325  *
326  * This function is split out from efx_hard_start_xmit to allow the
327  * loopback test to direct packets via specific TX queues.
328  *
329  * Returns NETDEV_TX_OK.
330  * You must hold netif_tx_lock() to call this function.
331  */
332 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
333 {
334         struct efx_nic *efx = tx_queue->efx;
335         struct device *dma_dev = &efx->pci_dev->dev;
336         struct efx_tx_buffer *buffer;
337         unsigned int old_insert_count = tx_queue->insert_count;
338         skb_frag_t *fragment;
339         unsigned int len, unmap_len = 0;
340         dma_addr_t dma_addr, unmap_addr = 0;
341         unsigned int dma_len;
342         unsigned short dma_flags;
343         int i = 0;
344
345         if (skb_shinfo(skb)->gso_size)
346                 return efx_enqueue_skb_tso(tx_queue, skb);
347
348         /* Get size of the initial fragment */
349         len = skb_headlen(skb);
350
351         /* Pad if necessary */
352         if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
353                 EFX_BUG_ON_PARANOID(skb->data_len);
354                 len = 32 + 1;
355                 if (skb_pad(skb, len - skb->len))
356                         return NETDEV_TX_OK;
357         }
358
359         /* Consider using PIO for short packets */
360 #ifdef EFX_USE_PIO
361         if (skb->len <= efx_piobuf_size && !skb->xmit_more &&
362             efx_nic_may_tx_pio(tx_queue)) {
363                 buffer = efx_enqueue_skb_pio(tx_queue, skb);
364                 dma_flags = EFX_TX_BUF_OPTION;
365                 goto finish_packet;
366         }
367 #endif
368
369         /* Map for DMA.  Use dma_map_single rather than dma_map_page
370          * since this is more efficient on machines with sparse
371          * memory.
372          */
373         dma_flags = EFX_TX_BUF_MAP_SINGLE;
374         dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
375
376         /* Process all fragments */
377         while (1) {
378                 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
379                         goto dma_err;
380
381                 /* Store fields for marking in the per-fragment final
382                  * descriptor */
383                 unmap_len = len;
384                 unmap_addr = dma_addr;
385
386                 /* Add to TX queue, splitting across DMA boundaries */
387                 do {
388                         buffer = efx_tx_queue_get_insert_buffer(tx_queue);
389
390                         dma_len = efx_max_tx_len(efx, dma_addr);
391                         if (likely(dma_len >= len))
392                                 dma_len = len;
393
394                         /* Fill out per descriptor fields */
395                         buffer->len = dma_len;
396                         buffer->dma_addr = dma_addr;
397                         buffer->flags = EFX_TX_BUF_CONT;
398                         len -= dma_len;
399                         dma_addr += dma_len;
400                         ++tx_queue->insert_count;
401                 } while (len);
402
403                 /* Transfer ownership of the unmapping to the final buffer */
404                 buffer->flags = EFX_TX_BUF_CONT | dma_flags;
405                 buffer->unmap_len = unmap_len;
406                 buffer->dma_offset = buffer->dma_addr - unmap_addr;
407                 unmap_len = 0;
408
409                 /* Get address and size of next fragment */
410                 if (i >= skb_shinfo(skb)->nr_frags)
411                         break;
412                 fragment = &skb_shinfo(skb)->frags[i];
413                 len = skb_frag_size(fragment);
414                 i++;
415                 /* Map for DMA */
416                 dma_flags = 0;
417                 dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
418                                             DMA_TO_DEVICE);
419         }
420
421         /* Transfer ownership of the skb to the final buffer */
422 #ifdef EFX_USE_PIO
423 finish_packet:
424 #endif
425         buffer->skb = skb;
426         buffer->flags = EFX_TX_BUF_SKB | dma_flags;
427
428         netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
429
430         efx_tx_maybe_stop_queue(tx_queue);
431
432         /* Pass off to hardware */
433         if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq)) {
434                 struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
435
436                 /* There could be packets left on the partner queue if those
437                  * SKBs had skb->xmit_more set. If we do not push those they
438                  * could be left for a long time and cause a netdev watchdog.
439                  */
440                 if (txq2->xmit_more_available)
441                         efx_nic_push_buffers(txq2);
442
443                 efx_nic_push_buffers(tx_queue);
444         } else {
445                 tx_queue->xmit_more_available = skb->xmit_more;
446         }
447
448         tx_queue->tx_packets++;
449
450         return NETDEV_TX_OK;
451
452  dma_err:
453         netif_err(efx, tx_err, efx->net_dev,
454                   " TX queue %d could not map skb with %d bytes %d "
455                   "fragments for DMA\n", tx_queue->queue, skb->len,
456                   skb_shinfo(skb)->nr_frags + 1);
457
458         /* Mark the packet as transmitted, and free the SKB ourselves */
459         dev_kfree_skb_any(skb);
460
461         /* Work backwards until we hit the original insert pointer value */
462         while (tx_queue->insert_count != old_insert_count) {
463                 unsigned int pkts_compl = 0, bytes_compl = 0;
464                 --tx_queue->insert_count;
465                 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
466                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
467         }
468
469         /* Free the fragment we were mid-way through pushing */
470         if (unmap_len) {
471                 if (dma_flags & EFX_TX_BUF_MAP_SINGLE)
472                         dma_unmap_single(dma_dev, unmap_addr, unmap_len,
473                                          DMA_TO_DEVICE);
474                 else
475                         dma_unmap_page(dma_dev, unmap_addr, unmap_len,
476                                        DMA_TO_DEVICE);
477         }
478
479         return NETDEV_TX_OK;
480 }
481
482 /* Remove packets from the TX queue
483  *
484  * This removes packets from the TX queue, up to and including the
485  * specified index.
486  */
487 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
488                                 unsigned int index,
489                                 unsigned int *pkts_compl,
490                                 unsigned int *bytes_compl)
491 {
492         struct efx_nic *efx = tx_queue->efx;
493         unsigned int stop_index, read_ptr;
494
495         stop_index = (index + 1) & tx_queue->ptr_mask;
496         read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
497
498         while (read_ptr != stop_index) {
499                 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
500
501                 if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
502                     unlikely(buffer->len == 0)) {
503                         netif_err(efx, tx_err, efx->net_dev,
504                                   "TX queue %d spurious TX completion id %x\n",
505                                   tx_queue->queue, read_ptr);
506                         efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
507                         return;
508                 }
509
510                 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
511
512                 ++tx_queue->read_count;
513                 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
514         }
515 }
516
517 /* Initiate a packet transmission.  We use one channel per CPU
518  * (sharing when we have more CPUs than channels).  On Falcon, the TX
519  * completion events will be directed back to the CPU that transmitted
520  * the packet, which should be cache-efficient.
521  *
522  * Context: non-blocking.
523  * Note that returning anything other than NETDEV_TX_OK will cause the
524  * OS to free the skb.
525  */
526 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
527                                 struct net_device *net_dev)
528 {
529         struct efx_nic *efx = netdev_priv(net_dev);
530         struct efx_tx_queue *tx_queue;
531         unsigned index, type;
532
533         EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
534
535         /* PTP "event" packet */
536         if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
537             unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
538                 return efx_ptp_tx(efx, skb);
539         }
540
541         index = skb_get_queue_mapping(skb);
542         type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
543         if (index >= efx->n_tx_channels) {
544                 index -= efx->n_tx_channels;
545                 type |= EFX_TXQ_TYPE_HIGHPRI;
546         }
547         tx_queue = efx_get_tx_queue(efx, index, type);
548
549         return efx_enqueue_skb(tx_queue, skb);
550 }
551
552 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
553 {
554         struct efx_nic *efx = tx_queue->efx;
555
556         /* Must be inverse of queue lookup in efx_hard_start_xmit() */
557         tx_queue->core_txq =
558                 netdev_get_tx_queue(efx->net_dev,
559                                     tx_queue->queue / EFX_TXQ_TYPES +
560                                     ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
561                                      efx->n_tx_channels : 0));
562 }
563
564 int efx_setup_tc(struct net_device *net_dev, u32 handle, __be16 proto,
565                  struct tc_to_netdev *ntc)
566 {
567         struct efx_nic *efx = netdev_priv(net_dev);
568         struct efx_channel *channel;
569         struct efx_tx_queue *tx_queue;
570         unsigned tc, num_tc;
571         int rc;
572
573         if (ntc->type != TC_SETUP_MQPRIO)
574                 return -EINVAL;
575
576         num_tc = ntc->tc;
577
578         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
579                 return -EINVAL;
580
581         if (num_tc == net_dev->num_tc)
582                 return 0;
583
584         for (tc = 0; tc < num_tc; tc++) {
585                 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
586                 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
587         }
588
589         if (num_tc > net_dev->num_tc) {
590                 /* Initialise high-priority queues as necessary */
591                 efx_for_each_channel(channel, efx) {
592                         efx_for_each_possible_channel_tx_queue(tx_queue,
593                                                                channel) {
594                                 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
595                                         continue;
596                                 if (!tx_queue->buffer) {
597                                         rc = efx_probe_tx_queue(tx_queue);
598                                         if (rc)
599                                                 return rc;
600                                 }
601                                 if (!tx_queue->initialised)
602                                         efx_init_tx_queue(tx_queue);
603                                 efx_init_tx_queue_core_txq(tx_queue);
604                         }
605                 }
606         } else {
607                 /* Reduce number of classes before number of queues */
608                 net_dev->num_tc = num_tc;
609         }
610
611         rc = netif_set_real_num_tx_queues(net_dev,
612                                           max_t(int, num_tc, 1) *
613                                           efx->n_tx_channels);
614         if (rc)
615                 return rc;
616
617         /* Do not destroy high-priority queues when they become
618          * unused.  We would have to flush them first, and it is
619          * fairly difficult to flush a subset of TX queues.  Leave
620          * it to efx_fini_channels().
621          */
622
623         net_dev->num_tc = num_tc;
624         return 0;
625 }
626
627 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
628 {
629         unsigned fill_level;
630         struct efx_nic *efx = tx_queue->efx;
631         struct efx_tx_queue *txq2;
632         unsigned int pkts_compl = 0, bytes_compl = 0;
633
634         EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
635
636         efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
637         tx_queue->pkts_compl += pkts_compl;
638         tx_queue->bytes_compl += bytes_compl;
639
640         if (pkts_compl > 1)
641                 ++tx_queue->merge_events;
642
643         /* See if we need to restart the netif queue.  This memory
644          * barrier ensures that we write read_count (inside
645          * efx_dequeue_buffers()) before reading the queue status.
646          */
647         smp_mb();
648         if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
649             likely(efx->port_enabled) &&
650             likely(netif_device_present(efx->net_dev))) {
651                 txq2 = efx_tx_queue_partner(tx_queue);
652                 fill_level = max(tx_queue->insert_count - tx_queue->read_count,
653                                  txq2->insert_count - txq2->read_count);
654                 if (fill_level <= efx->txq_wake_thresh)
655                         netif_tx_wake_queue(tx_queue->core_txq);
656         }
657
658         /* Check whether the hardware queue is now empty */
659         if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
660                 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
661                 if (tx_queue->read_count == tx_queue->old_write_count) {
662                         smp_mb();
663                         tx_queue->empty_read_count =
664                                 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
665                 }
666         }
667 }
668
669 /* Size of page-based TSO header buffers.  Larger blocks must be
670  * allocated from the heap.
671  */
672 #define TSOH_STD_SIZE   128
673 #define TSOH_PER_PAGE   (PAGE_SIZE / TSOH_STD_SIZE)
674
675 /* At most half the descriptors in the queue at any time will refer to
676  * a TSO header buffer, since they must always be followed by a
677  * payload descriptor referring to an skb.
678  */
679 static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue)
680 {
681         return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE);
682 }
683
684 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
685 {
686         struct efx_nic *efx = tx_queue->efx;
687         unsigned int entries;
688         int rc;
689
690         /* Create the smallest power-of-two aligned ring */
691         entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
692         EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
693         tx_queue->ptr_mask = entries - 1;
694
695         netif_dbg(efx, probe, efx->net_dev,
696                   "creating TX queue %d size %#x mask %#x\n",
697                   tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
698
699         /* Allocate software ring */
700         tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
701                                    GFP_KERNEL);
702         if (!tx_queue->buffer)
703                 return -ENOMEM;
704
705         if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) {
706                 tx_queue->tsoh_page =
707                         kcalloc(efx_tsoh_page_count(tx_queue),
708                                 sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL);
709                 if (!tx_queue->tsoh_page) {
710                         rc = -ENOMEM;
711                         goto fail1;
712                 }
713         }
714
715         /* Allocate hardware ring */
716         rc = efx_nic_probe_tx(tx_queue);
717         if (rc)
718                 goto fail2;
719
720         return 0;
721
722 fail2:
723         kfree(tx_queue->tsoh_page);
724         tx_queue->tsoh_page = NULL;
725 fail1:
726         kfree(tx_queue->buffer);
727         tx_queue->buffer = NULL;
728         return rc;
729 }
730
731 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
732 {
733         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
734                   "initialising TX queue %d\n", tx_queue->queue);
735
736         tx_queue->insert_count = 0;
737         tx_queue->write_count = 0;
738         tx_queue->old_write_count = 0;
739         tx_queue->read_count = 0;
740         tx_queue->old_read_count = 0;
741         tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
742         tx_queue->xmit_more_available = false;
743
744         /* Set up TX descriptor ring */
745         efx_nic_init_tx(tx_queue);
746
747         tx_queue->initialised = true;
748 }
749
750 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
751 {
752         struct efx_tx_buffer *buffer;
753
754         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
755                   "shutting down TX queue %d\n", tx_queue->queue);
756
757         if (!tx_queue->buffer)
758                 return;
759
760         /* Free any buffers left in the ring */
761         while (tx_queue->read_count != tx_queue->write_count) {
762                 unsigned int pkts_compl = 0, bytes_compl = 0;
763                 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
764                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
765
766                 ++tx_queue->read_count;
767         }
768         tx_queue->xmit_more_available = false;
769         netdev_tx_reset_queue(tx_queue->core_txq);
770 }
771
772 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
773 {
774         int i;
775
776         if (!tx_queue->buffer)
777                 return;
778
779         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
780                   "destroying TX queue %d\n", tx_queue->queue);
781         efx_nic_remove_tx(tx_queue);
782
783         if (tx_queue->tsoh_page) {
784                 for (i = 0; i < efx_tsoh_page_count(tx_queue); i++)
785                         efx_nic_free_buffer(tx_queue->efx,
786                                             &tx_queue->tsoh_page[i]);
787                 kfree(tx_queue->tsoh_page);
788                 tx_queue->tsoh_page = NULL;
789         }
790
791         kfree(tx_queue->buffer);
792         tx_queue->buffer = NULL;
793 }
794
795
796 /* Efx TCP segmentation acceleration.
797  *
798  * Why?  Because by doing it here in the driver we can go significantly
799  * faster than the GSO.
800  *
801  * Requires TX checksum offload support.
802  */
803
804 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
805
806 /**
807  * struct tso_state - TSO state for an SKB
808  * @out_len: Remaining length in current segment
809  * @seqnum: Current sequence number
810  * @ipv4_id: Current IPv4 ID, host endian
811  * @packet_space: Remaining space in current packet
812  * @dma_addr: DMA address of current position
813  * @in_len: Remaining length in current SKB fragment
814  * @unmap_len: Length of SKB fragment
815  * @unmap_addr: DMA address of SKB fragment
816  * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
817  * @protocol: Network protocol (after any VLAN header)
818  * @ip_off: Offset of IP header
819  * @tcp_off: Offset of TCP header
820  * @header_len: Number of bytes of header
821  * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
822  * @header_dma_addr: Header DMA address, when using option descriptors
823  * @header_unmap_len: Header DMA mapped length, or 0 if not using option
824  *      descriptors
825  *
826  * The state used during segmentation.  It is put into this data structure
827  * just to make it easy to pass into inline functions.
828  */
829 struct tso_state {
830         /* Output position */
831         unsigned out_len;
832         unsigned seqnum;
833         u16 ipv4_id;
834         unsigned packet_space;
835
836         /* Input position */
837         dma_addr_t dma_addr;
838         unsigned in_len;
839         unsigned unmap_len;
840         dma_addr_t unmap_addr;
841         unsigned short dma_flags;
842
843         __be16 protocol;
844         unsigned int ip_off;
845         unsigned int tcp_off;
846         unsigned header_len;
847         unsigned int ip_base_len;
848         dma_addr_t header_dma_addr;
849         unsigned int header_unmap_len;
850 };
851
852
853 /*
854  * Verify that our various assumptions about sk_buffs and the conditions
855  * under which TSO will be attempted hold true.  Return the protocol number.
856  */
857 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
858 {
859         __be16 protocol = skb->protocol;
860
861         EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
862                             protocol);
863         if (protocol == htons(ETH_P_8021Q)) {
864                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
865                 protocol = veh->h_vlan_encapsulated_proto;
866         }
867
868         if (protocol == htons(ETH_P_IP)) {
869                 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
870         } else {
871                 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
872                 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
873         }
874         EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
875                              + (tcp_hdr(skb)->doff << 2u)) >
876                             skb_headlen(skb));
877
878         return protocol;
879 }
880
881 static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
882                                struct efx_tx_buffer *buffer, unsigned int len)
883 {
884         u8 *result;
885
886         EFX_BUG_ON_PARANOID(buffer->len);
887         EFX_BUG_ON_PARANOID(buffer->flags);
888         EFX_BUG_ON_PARANOID(buffer->unmap_len);
889
890         if (likely(len <= TSOH_STD_SIZE - NET_IP_ALIGN)) {
891                 unsigned index =
892                         (tx_queue->insert_count & tx_queue->ptr_mask) / 2;
893                 struct efx_buffer *page_buf =
894                         &tx_queue->tsoh_page[index / TSOH_PER_PAGE];
895                 unsigned offset =
896                         TSOH_STD_SIZE * (index % TSOH_PER_PAGE) + NET_IP_ALIGN;
897
898                 if (unlikely(!page_buf->addr) &&
899                     efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
900                                          GFP_ATOMIC))
901                         return NULL;
902
903                 result = (u8 *)page_buf->addr + offset;
904                 buffer->dma_addr = page_buf->dma_addr + offset;
905                 buffer->flags = EFX_TX_BUF_CONT;
906         } else {
907                 tx_queue->tso_long_headers++;
908
909                 buffer->heap_buf = kmalloc(NET_IP_ALIGN + len, GFP_ATOMIC);
910                 if (unlikely(!buffer->heap_buf))
911                         return NULL;
912                 result = (u8 *)buffer->heap_buf + NET_IP_ALIGN;
913                 buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
914         }
915
916         buffer->len = len;
917
918         return result;
919 }
920
921 /**
922  * efx_tx_queue_insert - push descriptors onto the TX queue
923  * @tx_queue:           Efx TX queue
924  * @dma_addr:           DMA address of fragment
925  * @len:                Length of fragment
926  * @final_buffer:       The final buffer inserted into the queue
927  *
928  * Push descriptors onto the TX queue.
929  */
930 static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
931                                 dma_addr_t dma_addr, unsigned len,
932                                 struct efx_tx_buffer **final_buffer)
933 {
934         struct efx_tx_buffer *buffer;
935         struct efx_nic *efx = tx_queue->efx;
936         unsigned dma_len;
937
938         EFX_BUG_ON_PARANOID(len <= 0);
939
940         while (1) {
941                 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
942                 ++tx_queue->insert_count;
943
944                 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
945                                     tx_queue->read_count >=
946                                     efx->txq_entries);
947
948                 buffer->dma_addr = dma_addr;
949
950                 dma_len = efx_max_tx_len(efx, dma_addr);
951
952                 /* If there is enough space to send then do so */
953                 if (dma_len >= len)
954                         break;
955
956                 buffer->len = dma_len;
957                 buffer->flags = EFX_TX_BUF_CONT;
958                 dma_addr += dma_len;
959                 len -= dma_len;
960         }
961
962         EFX_BUG_ON_PARANOID(!len);
963         buffer->len = len;
964         *final_buffer = buffer;
965 }
966
967
968 /*
969  * Put a TSO header into the TX queue.
970  *
971  * This is special-cased because we know that it is small enough to fit in
972  * a single fragment, and we know it doesn't cross a page boundary.  It
973  * also allows us to not worry about end-of-packet etc.
974  */
975 static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
976                               struct efx_tx_buffer *buffer, u8 *header)
977 {
978         if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
979                 buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
980                                                   header, buffer->len,
981                                                   DMA_TO_DEVICE);
982                 if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
983                                                buffer->dma_addr))) {
984                         kfree(buffer->heap_buf);
985                         buffer->len = 0;
986                         buffer->flags = 0;
987                         return -ENOMEM;
988                 }
989                 buffer->unmap_len = buffer->len;
990                 buffer->dma_offset = 0;
991                 buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
992         }
993
994         ++tx_queue->insert_count;
995         return 0;
996 }
997
998
999 /* Remove buffers put into a tx_queue.  None of the buffers must have
1000  * an skb attached.
1001  */
1002 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
1003                                unsigned int insert_count)
1004 {
1005         struct efx_tx_buffer *buffer;
1006
1007         /* Work backwards until we hit the original insert pointer value */
1008         while (tx_queue->insert_count != insert_count) {
1009                 --tx_queue->insert_count;
1010                 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
1011                 efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
1012         }
1013 }
1014
1015
1016 /* Parse the SKB header and initialise state. */
1017 static int tso_start(struct tso_state *st, struct efx_nic *efx,
1018                      struct efx_tx_queue *tx_queue,
1019                      const struct sk_buff *skb)
1020 {
1021         struct device *dma_dev = &efx->pci_dev->dev;
1022         unsigned int header_len, in_len;
1023         bool use_opt_desc = false;
1024         dma_addr_t dma_addr;
1025
1026         if (tx_queue->tso_version == 1)
1027                 use_opt_desc = true;
1028
1029         st->ip_off = skb_network_header(skb) - skb->data;
1030         st->tcp_off = skb_transport_header(skb) - skb->data;
1031         header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
1032         in_len = skb_headlen(skb) - header_len;
1033         st->header_len = header_len;
1034         st->in_len = in_len;
1035         if (st->protocol == htons(ETH_P_IP)) {
1036                 st->ip_base_len = st->header_len - st->ip_off;
1037                 st->ipv4_id = ntohs(ip_hdr(skb)->id);
1038         } else {
1039                 st->ip_base_len = st->header_len - st->tcp_off;
1040                 st->ipv4_id = 0;
1041         }
1042         st->seqnum = ntohl(tcp_hdr(skb)->seq);
1043
1044         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
1045         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
1046         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
1047
1048         st->out_len = skb->len - header_len;
1049
1050         if (!use_opt_desc) {
1051                 st->header_unmap_len = 0;
1052
1053                 if (likely(in_len == 0)) {
1054                         st->dma_flags = 0;
1055                         st->unmap_len = 0;
1056                         return 0;
1057                 }
1058
1059                 dma_addr = dma_map_single(dma_dev, skb->data + header_len,
1060                                           in_len, DMA_TO_DEVICE);
1061                 st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
1062                 st->dma_addr = dma_addr;
1063                 st->unmap_addr = dma_addr;
1064                 st->unmap_len = in_len;
1065         } else {
1066                 dma_addr = dma_map_single(dma_dev, skb->data,
1067                                           skb_headlen(skb), DMA_TO_DEVICE);
1068                 st->header_dma_addr = dma_addr;
1069                 st->header_unmap_len = skb_headlen(skb);
1070                 st->dma_flags = 0;
1071                 st->dma_addr = dma_addr + header_len;
1072                 st->unmap_len = 0;
1073         }
1074
1075         return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
1076 }
1077
1078 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
1079                             skb_frag_t *frag)
1080 {
1081         st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
1082                                           skb_frag_size(frag), DMA_TO_DEVICE);
1083         if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
1084                 st->dma_flags = 0;
1085                 st->unmap_len = skb_frag_size(frag);
1086                 st->in_len = skb_frag_size(frag);
1087                 st->dma_addr = st->unmap_addr;
1088                 return 0;
1089         }
1090         return -ENOMEM;
1091 }
1092
1093
1094 /**
1095  * tso_fill_packet_with_fragment - form descriptors for the current fragment
1096  * @tx_queue:           Efx TX queue
1097  * @skb:                Socket buffer
1098  * @st:                 TSO state
1099  *
1100  * Form descriptors for the current fragment, until we reach the end
1101  * of fragment or end-of-packet.
1102  */
1103 static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
1104                                           const struct sk_buff *skb,
1105                                           struct tso_state *st)
1106 {
1107         struct efx_tx_buffer *buffer;
1108         int n;
1109
1110         if (st->in_len == 0)
1111                 return;
1112         if (st->packet_space == 0)
1113                 return;
1114
1115         EFX_BUG_ON_PARANOID(st->in_len <= 0);
1116         EFX_BUG_ON_PARANOID(st->packet_space <= 0);
1117
1118         n = min(st->in_len, st->packet_space);
1119
1120         st->packet_space -= n;
1121         st->out_len -= n;
1122         st->in_len -= n;
1123
1124         efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
1125
1126         if (st->out_len == 0) {
1127                 /* Transfer ownership of the skb */
1128                 buffer->skb = skb;
1129                 buffer->flags = EFX_TX_BUF_SKB;
1130         } else if (st->packet_space != 0) {
1131                 buffer->flags = EFX_TX_BUF_CONT;
1132         }
1133
1134         if (st->in_len == 0) {
1135                 /* Transfer ownership of the DMA mapping */
1136                 buffer->unmap_len = st->unmap_len;
1137                 buffer->dma_offset = buffer->unmap_len - buffer->len;
1138                 buffer->flags |= st->dma_flags;
1139                 st->unmap_len = 0;
1140         }
1141
1142         st->dma_addr += n;
1143 }
1144
1145
1146 /**
1147  * tso_start_new_packet - generate a new header and prepare for the new packet
1148  * @tx_queue:           Efx TX queue
1149  * @skb:                Socket buffer
1150  * @st:                 TSO state
1151  *
1152  * Generate a new header and prepare for the new packet.  Return 0 on
1153  * success, or -%ENOMEM if failed to alloc header.
1154  */
1155 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1156                                 const struct sk_buff *skb,
1157                                 struct tso_state *st)
1158 {
1159         struct efx_tx_buffer *buffer =
1160                 efx_tx_queue_get_insert_buffer(tx_queue);
1161         bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
1162         u8 tcp_flags_clear;
1163
1164         if (!is_last) {
1165                 st->packet_space = skb_shinfo(skb)->gso_size;
1166                 tcp_flags_clear = 0x09; /* mask out FIN and PSH */
1167         } else {
1168                 st->packet_space = st->out_len;
1169                 tcp_flags_clear = 0x00;
1170         }
1171
1172         if (!st->header_unmap_len) {
1173                 /* Allocate and insert a DMA-mapped header buffer. */
1174                 struct tcphdr *tsoh_th;
1175                 unsigned ip_length;
1176                 u8 *header;
1177                 int rc;
1178
1179                 header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
1180                 if (!header)
1181                         return -ENOMEM;
1182
1183                 tsoh_th = (struct tcphdr *)(header + st->tcp_off);
1184
1185                 /* Copy and update the headers. */
1186                 memcpy(header, skb->data, st->header_len);
1187
1188                 tsoh_th->seq = htonl(st->seqnum);
1189                 ((u8 *)tsoh_th)[13] &= ~tcp_flags_clear;
1190
1191                 ip_length = st->ip_base_len + st->packet_space;
1192
1193                 if (st->protocol == htons(ETH_P_IP)) {
1194                         struct iphdr *tsoh_iph =
1195                                 (struct iphdr *)(header + st->ip_off);
1196
1197                         tsoh_iph->tot_len = htons(ip_length);
1198                         tsoh_iph->id = htons(st->ipv4_id);
1199                 } else {
1200                         struct ipv6hdr *tsoh_iph =
1201                                 (struct ipv6hdr *)(header + st->ip_off);
1202
1203                         tsoh_iph->payload_len = htons(ip_length);
1204                 }
1205
1206                 rc = efx_tso_put_header(tx_queue, buffer, header);
1207                 if (unlikely(rc))
1208                         return rc;
1209         } else {
1210                 /* Send the original headers with a TSO option descriptor
1211                  * in front
1212                  */
1213                 u8 tcp_flags = ((u8 *)tcp_hdr(skb))[13] & ~tcp_flags_clear;
1214
1215                 buffer->flags = EFX_TX_BUF_OPTION;
1216                 buffer->len = 0;
1217                 buffer->unmap_len = 0;
1218                 EFX_POPULATE_QWORD_5(buffer->option,
1219                                      ESF_DZ_TX_DESC_IS_OPT, 1,
1220                                      ESF_DZ_TX_OPTION_TYPE,
1221                                      ESE_DZ_TX_OPTION_DESC_TSO,
1222                                      ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
1223                                      ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
1224                                      ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
1225                 ++tx_queue->insert_count;
1226
1227                 /* We mapped the headers in tso_start().  Unmap them
1228                  * when the last segment is completed.
1229                  */
1230                 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
1231                 buffer->dma_addr = st->header_dma_addr;
1232                 buffer->len = st->header_len;
1233                 if (is_last) {
1234                         buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
1235                         buffer->unmap_len = st->header_unmap_len;
1236                         buffer->dma_offset = 0;
1237                         /* Ensure we only unmap them once in case of a
1238                          * later DMA mapping error and rollback
1239                          */
1240                         st->header_unmap_len = 0;
1241                 } else {
1242                         buffer->flags = EFX_TX_BUF_CONT;
1243                         buffer->unmap_len = 0;
1244                 }
1245                 ++tx_queue->insert_count;
1246         }
1247
1248         st->seqnum += skb_shinfo(skb)->gso_size;
1249
1250         /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1251         ++st->ipv4_id;
1252
1253         ++tx_queue->tso_packets;
1254
1255         ++tx_queue->tx_packets;
1256
1257         return 0;
1258 }
1259
1260
1261 /**
1262  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1263  * @tx_queue:           Efx TX queue
1264  * @skb:                Socket buffer
1265  *
1266  * Context: You must hold netif_tx_lock() to call this function.
1267  *
1268  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1269  * @skb was not enqueued.  In all cases @skb is consumed.  Return
1270  * %NETDEV_TX_OK.
1271  */
1272 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1273                                struct sk_buff *skb)
1274 {
1275         struct efx_nic *efx = tx_queue->efx;
1276         unsigned int old_insert_count = tx_queue->insert_count;
1277         int frag_i, rc;
1278         struct tso_state state;
1279
1280         /* Find the packet protocol and sanity-check it */
1281         state.protocol = efx_tso_check_protocol(skb);
1282
1283         rc = tso_start(&state, efx, tx_queue, skb);
1284         if (rc)
1285                 goto mem_err;
1286
1287         if (likely(state.in_len == 0)) {
1288                 /* Grab the first payload fragment. */
1289                 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1290                 frag_i = 0;
1291                 rc = tso_get_fragment(&state, efx,
1292                                       skb_shinfo(skb)->frags + frag_i);
1293                 if (rc)
1294                         goto mem_err;
1295         } else {
1296                 /* Payload starts in the header area. */
1297                 frag_i = -1;
1298         }
1299
1300         if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1301                 goto mem_err;
1302
1303         while (1) {
1304                 tso_fill_packet_with_fragment(tx_queue, skb, &state);
1305
1306                 /* Move onto the next fragment? */
1307                 if (state.in_len == 0) {
1308                         if (++frag_i >= skb_shinfo(skb)->nr_frags)
1309                                 /* End of payload reached. */
1310                                 break;
1311                         rc = tso_get_fragment(&state, efx,
1312                                               skb_shinfo(skb)->frags + frag_i);
1313                         if (rc)
1314                                 goto mem_err;
1315                 }
1316
1317                 /* Start at new packet? */
1318                 if (state.packet_space == 0 &&
1319                     tso_start_new_packet(tx_queue, skb, &state) < 0)
1320                         goto mem_err;
1321         }
1322
1323         netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1324
1325         efx_tx_maybe_stop_queue(tx_queue);
1326
1327         /* Pass off to hardware */
1328         if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq)) {
1329                 struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
1330
1331                 /* There could be packets left on the partner queue if those
1332                  * SKBs had skb->xmit_more set. If we do not push those they
1333                  * could be left for a long time and cause a netdev watchdog.
1334                  */
1335                 if (txq2->xmit_more_available)
1336                         efx_nic_push_buffers(txq2);
1337
1338                 efx_nic_push_buffers(tx_queue);
1339         } else {
1340                 tx_queue->xmit_more_available = skb->xmit_more;
1341         }
1342
1343         tx_queue->tso_bursts++;
1344         return NETDEV_TX_OK;
1345
1346  mem_err:
1347         netif_err(efx, tx_err, efx->net_dev,
1348                   "Out of memory for TSO headers, or DMA mapping error\n");
1349         dev_kfree_skb_any(skb);
1350
1351         /* Free the DMA mapping we were in the process of writing out */
1352         if (state.unmap_len) {
1353                 if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
1354                         dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
1355                                          state.unmap_len, DMA_TO_DEVICE);
1356                 else
1357                         dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
1358                                        state.unmap_len, DMA_TO_DEVICE);
1359         }
1360
1361         /* Free the header DMA mapping, if using option descriptors */
1362         if (state.header_unmap_len)
1363                 dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
1364                                  state.header_unmap_len, DMA_TO_DEVICE);
1365
1366         efx_enqueue_unwind(tx_queue, old_insert_count);
1367         return NETDEV_TX_OK;
1368 }