GNU Linux-libre 4.9-gnu1
[releases.git] / drivers / net / ethernet / sfc / tx.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include <linux/cache.h>
21 #include "net_driver.h"
22 #include "efx.h"
23 #include "io.h"
24 #include "nic.h"
25 #include "workarounds.h"
26 #include "ef10_regs.h"
27
28 #ifdef EFX_USE_PIO
29
30 #define EFX_PIOBUF_SIZE_MAX ER_DZ_TX_PIOBUF_SIZE
31 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
32 unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
33
34 #endif /* EFX_USE_PIO */
35
36 static inline unsigned int
37 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
38 {
39         return tx_queue->insert_count & tx_queue->ptr_mask;
40 }
41
42 static inline struct efx_tx_buffer *
43 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
44 {
45         return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
46 }
47
48 static inline struct efx_tx_buffer *
49 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
50 {
51         struct efx_tx_buffer *buffer =
52                 __efx_tx_queue_get_insert_buffer(tx_queue);
53
54         EFX_BUG_ON_PARANOID(buffer->len);
55         EFX_BUG_ON_PARANOID(buffer->flags);
56         EFX_BUG_ON_PARANOID(buffer->unmap_len);
57
58         return buffer;
59 }
60
61 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
62                                struct efx_tx_buffer *buffer,
63                                unsigned int *pkts_compl,
64                                unsigned int *bytes_compl)
65 {
66         if (buffer->unmap_len) {
67                 struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
68                 dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
69                 if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
70                         dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
71                                          DMA_TO_DEVICE);
72                 else
73                         dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
74                                        DMA_TO_DEVICE);
75                 buffer->unmap_len = 0;
76         }
77
78         if (buffer->flags & EFX_TX_BUF_SKB) {
79                 (*pkts_compl)++;
80                 (*bytes_compl) += buffer->skb->len;
81                 dev_consume_skb_any((struct sk_buff *)buffer->skb);
82                 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
83                            "TX queue %d transmission id %x complete\n",
84                            tx_queue->queue, tx_queue->read_count);
85         } else if (buffer->flags & EFX_TX_BUF_HEAP) {
86                 kfree(buffer->heap_buf);
87         }
88
89         buffer->len = 0;
90         buffer->flags = 0;
91 }
92
93 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
94                                struct sk_buff *skb);
95
96 static inline unsigned
97 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
98 {
99         /* Depending on the NIC revision, we can use descriptor
100          * lengths up to 8K or 8K-1.  However, since PCI Express
101          * devices must split read requests at 4K boundaries, there is
102          * little benefit from using descriptors that cross those
103          * boundaries and we keep things simple by not doing so.
104          */
105         unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
106
107         /* Work around hardware bug for unaligned buffers. */
108         if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
109                 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
110
111         return len;
112 }
113
114 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
115 {
116         /* Header and payload descriptor for each output segment, plus
117          * one for every input fragment boundary within a segment
118          */
119         unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
120
121         /* Possibly one more per segment for the alignment workaround,
122          * or for option descriptors
123          */
124         if (EFX_WORKAROUND_5391(efx) || efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
125                 max_descs += EFX_TSO_MAX_SEGS;
126
127         /* Possibly more for PCIe page boundaries within input fragments */
128         if (PAGE_SIZE > EFX_PAGE_SIZE)
129                 max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
130                                    DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
131
132         return max_descs;
133 }
134
135 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
136 {
137         /* We need to consider both queues that the net core sees as one */
138         struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
139         struct efx_nic *efx = txq1->efx;
140         unsigned int fill_level;
141
142         fill_level = max(txq1->insert_count - txq1->old_read_count,
143                          txq2->insert_count - txq2->old_read_count);
144         if (likely(fill_level < efx->txq_stop_thresh))
145                 return;
146
147         /* We used the stale old_read_count above, which gives us a
148          * pessimistic estimate of the fill level (which may even
149          * validly be >= efx->txq_entries).  Now try again using
150          * read_count (more likely to be a cache miss).
151          *
152          * If we read read_count and then conditionally stop the
153          * queue, it is possible for the completion path to race with
154          * us and complete all outstanding descriptors in the middle,
155          * after which there will be no more completions to wake it.
156          * Therefore we stop the queue first, then read read_count
157          * (with a memory barrier to ensure the ordering), then
158          * restart the queue if the fill level turns out to be low
159          * enough.
160          */
161         netif_tx_stop_queue(txq1->core_txq);
162         smp_mb();
163         txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
164         txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
165
166         fill_level = max(txq1->insert_count - txq1->old_read_count,
167                          txq2->insert_count - txq2->old_read_count);
168         EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
169         if (likely(fill_level < efx->txq_stop_thresh)) {
170                 smp_mb();
171                 if (likely(!efx->loopback_selftest))
172                         netif_tx_start_queue(txq1->core_txq);
173         }
174 }
175
176 #ifdef EFX_USE_PIO
177
178 struct efx_short_copy_buffer {
179         int used;
180         u8 buf[L1_CACHE_BYTES];
181 };
182
183 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
184  * Advances piobuf pointer. Leaves additional data in the copy buffer.
185  */
186 static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
187                                     u8 *data, int len,
188                                     struct efx_short_copy_buffer *copy_buf)
189 {
190         int block_len = len & ~(sizeof(copy_buf->buf) - 1);
191
192         __iowrite64_copy(*piobuf, data, block_len >> 3);
193         *piobuf += block_len;
194         len -= block_len;
195
196         if (len) {
197                 data += block_len;
198                 BUG_ON(copy_buf->used);
199                 BUG_ON(len > sizeof(copy_buf->buf));
200                 memcpy(copy_buf->buf, data, len);
201                 copy_buf->used = len;
202         }
203 }
204
205 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
206  * Advances piobuf pointer. Leaves additional data in the copy buffer.
207  */
208 static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
209                                        u8 *data, int len,
210                                        struct efx_short_copy_buffer *copy_buf)
211 {
212         if (copy_buf->used) {
213                 /* if the copy buffer is partially full, fill it up and write */
214                 int copy_to_buf =
215                         min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
216
217                 memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
218                 copy_buf->used += copy_to_buf;
219
220                 /* if we didn't fill it up then we're done for now */
221                 if (copy_buf->used < sizeof(copy_buf->buf))
222                         return;
223
224                 __iowrite64_copy(*piobuf, copy_buf->buf,
225                                  sizeof(copy_buf->buf) >> 3);
226                 *piobuf += sizeof(copy_buf->buf);
227                 data += copy_to_buf;
228                 len -= copy_to_buf;
229                 copy_buf->used = 0;
230         }
231
232         efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
233 }
234
235 static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
236                                   struct efx_short_copy_buffer *copy_buf)
237 {
238         /* if there's anything in it, write the whole buffer, including junk */
239         if (copy_buf->used)
240                 __iowrite64_copy(piobuf, copy_buf->buf,
241                                  sizeof(copy_buf->buf) >> 3);
242 }
243
244 /* Traverse skb structure and copy fragments in to PIO buffer.
245  * Advances piobuf pointer.
246  */
247 static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
248                                      u8 __iomem **piobuf,
249                                      struct efx_short_copy_buffer *copy_buf)
250 {
251         int i;
252
253         efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
254                                 copy_buf);
255
256         for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
257                 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
258                 u8 *vaddr;
259
260                 vaddr = kmap_atomic(skb_frag_page(f));
261
262                 efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
263                                            skb_frag_size(f), copy_buf);
264                 kunmap_atomic(vaddr);
265         }
266
267         EFX_BUG_ON_PARANOID(skb_shinfo(skb)->frag_list);
268 }
269
270 static struct efx_tx_buffer *
271 efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
272 {
273         struct efx_tx_buffer *buffer =
274                 efx_tx_queue_get_insert_buffer(tx_queue);
275         u8 __iomem *piobuf = tx_queue->piobuf;
276
277         /* Copy to PIO buffer. Ensure the writes are padded to the end
278          * of a cache line, as this is required for write-combining to be
279          * effective on at least x86.
280          */
281
282         if (skb_shinfo(skb)->nr_frags) {
283                 /* The size of the copy buffer will ensure all writes
284                  * are the size of a cache line.
285                  */
286                 struct efx_short_copy_buffer copy_buf;
287
288                 copy_buf.used = 0;
289
290                 efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
291                                          &piobuf, &copy_buf);
292                 efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
293         } else {
294                 /* Pad the write to the size of a cache line.
295                  * We can do this because we know the skb_shared_info sruct is
296                  * after the source, and the destination buffer is big enough.
297                  */
298                 BUILD_BUG_ON(L1_CACHE_BYTES >
299                              SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
300                 __iowrite64_copy(tx_queue->piobuf, skb->data,
301                                  ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
302         }
303
304         EFX_POPULATE_QWORD_5(buffer->option,
305                              ESF_DZ_TX_DESC_IS_OPT, 1,
306                              ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
307                              ESF_DZ_TX_PIO_CONT, 0,
308                              ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
309                              ESF_DZ_TX_PIO_BUF_ADDR,
310                              tx_queue->piobuf_offset);
311         ++tx_queue->pio_packets;
312         ++tx_queue->insert_count;
313         return buffer;
314 }
315 #endif /* EFX_USE_PIO */
316
317 /*
318  * Add a socket buffer to a TX queue
319  *
320  * This maps all fragments of a socket buffer for DMA and adds them to
321  * the TX queue.  The queue's insert pointer will be incremented by
322  * the number of fragments in the socket buffer.
323  *
324  * If any DMA mapping fails, any mapped fragments will be unmapped,
325  * the queue's insert pointer will be restored to its original value.
326  *
327  * This function is split out from efx_hard_start_xmit to allow the
328  * loopback test to direct packets via specific TX queues.
329  *
330  * Returns NETDEV_TX_OK.
331  * You must hold netif_tx_lock() to call this function.
332  */
333 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
334 {
335         struct efx_nic *efx = tx_queue->efx;
336         struct device *dma_dev = &efx->pci_dev->dev;
337         struct efx_tx_buffer *buffer;
338         unsigned int old_insert_count = tx_queue->insert_count;
339         skb_frag_t *fragment;
340         unsigned int len, unmap_len = 0;
341         dma_addr_t dma_addr, unmap_addr = 0;
342         unsigned int dma_len;
343         unsigned short dma_flags;
344         int i = 0;
345
346         if (skb_shinfo(skb)->gso_size)
347                 return efx_enqueue_skb_tso(tx_queue, skb);
348
349         /* Get size of the initial fragment */
350         len = skb_headlen(skb);
351
352         /* Pad if necessary */
353         if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
354                 EFX_BUG_ON_PARANOID(skb->data_len);
355                 len = 32 + 1;
356                 if (skb_pad(skb, len - skb->len))
357                         return NETDEV_TX_OK;
358         }
359
360         /* Consider using PIO for short packets */
361 #ifdef EFX_USE_PIO
362         if (skb->len <= efx_piobuf_size && !skb->xmit_more &&
363             efx_nic_may_tx_pio(tx_queue)) {
364                 buffer = efx_enqueue_skb_pio(tx_queue, skb);
365                 dma_flags = EFX_TX_BUF_OPTION;
366                 goto finish_packet;
367         }
368 #endif
369
370         /* Map for DMA.  Use dma_map_single rather than dma_map_page
371          * since this is more efficient on machines with sparse
372          * memory.
373          */
374         dma_flags = EFX_TX_BUF_MAP_SINGLE;
375         dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
376
377         /* Process all fragments */
378         while (1) {
379                 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
380                         goto dma_err;
381
382                 /* Store fields for marking in the per-fragment final
383                  * descriptor */
384                 unmap_len = len;
385                 unmap_addr = dma_addr;
386
387                 /* Add to TX queue, splitting across DMA boundaries */
388                 do {
389                         buffer = efx_tx_queue_get_insert_buffer(tx_queue);
390
391                         dma_len = efx_max_tx_len(efx, dma_addr);
392                         if (likely(dma_len >= len))
393                                 dma_len = len;
394
395                         /* Fill out per descriptor fields */
396                         buffer->len = dma_len;
397                         buffer->dma_addr = dma_addr;
398                         buffer->flags = EFX_TX_BUF_CONT;
399                         len -= dma_len;
400                         dma_addr += dma_len;
401                         ++tx_queue->insert_count;
402                 } while (len);
403
404                 /* Transfer ownership of the unmapping to the final buffer */
405                 buffer->flags = EFX_TX_BUF_CONT | dma_flags;
406                 buffer->unmap_len = unmap_len;
407                 buffer->dma_offset = buffer->dma_addr - unmap_addr;
408                 unmap_len = 0;
409
410                 /* Get address and size of next fragment */
411                 if (i >= skb_shinfo(skb)->nr_frags)
412                         break;
413                 fragment = &skb_shinfo(skb)->frags[i];
414                 len = skb_frag_size(fragment);
415                 i++;
416                 /* Map for DMA */
417                 dma_flags = 0;
418                 dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
419                                             DMA_TO_DEVICE);
420         }
421
422         /* Transfer ownership of the skb to the final buffer */
423 #ifdef EFX_USE_PIO
424 finish_packet:
425 #endif
426         buffer->skb = skb;
427         buffer->flags = EFX_TX_BUF_SKB | dma_flags;
428
429         netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
430
431         efx_tx_maybe_stop_queue(tx_queue);
432
433         /* Pass off to hardware */
434         if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq)) {
435                 struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
436
437                 /* There could be packets left on the partner queue if those
438                  * SKBs had skb->xmit_more set. If we do not push those they
439                  * could be left for a long time and cause a netdev watchdog.
440                  */
441                 if (txq2->xmit_more_available)
442                         efx_nic_push_buffers(txq2);
443
444                 efx_nic_push_buffers(tx_queue);
445         } else {
446                 tx_queue->xmit_more_available = skb->xmit_more;
447         }
448
449         tx_queue->tx_packets++;
450
451         return NETDEV_TX_OK;
452
453  dma_err:
454         netif_err(efx, tx_err, efx->net_dev,
455                   " TX queue %d could not map skb with %d bytes %d "
456                   "fragments for DMA\n", tx_queue->queue, skb->len,
457                   skb_shinfo(skb)->nr_frags + 1);
458
459         /* Mark the packet as transmitted, and free the SKB ourselves */
460         dev_kfree_skb_any(skb);
461
462         /* Work backwards until we hit the original insert pointer value */
463         while (tx_queue->insert_count != old_insert_count) {
464                 unsigned int pkts_compl = 0, bytes_compl = 0;
465                 --tx_queue->insert_count;
466                 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
467                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
468         }
469
470         /* Free the fragment we were mid-way through pushing */
471         if (unmap_len) {
472                 if (dma_flags & EFX_TX_BUF_MAP_SINGLE)
473                         dma_unmap_single(dma_dev, unmap_addr, unmap_len,
474                                          DMA_TO_DEVICE);
475                 else
476                         dma_unmap_page(dma_dev, unmap_addr, unmap_len,
477                                        DMA_TO_DEVICE);
478         }
479
480         return NETDEV_TX_OK;
481 }
482
483 /* Remove packets from the TX queue
484  *
485  * This removes packets from the TX queue, up to and including the
486  * specified index.
487  */
488 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
489                                 unsigned int index,
490                                 unsigned int *pkts_compl,
491                                 unsigned int *bytes_compl)
492 {
493         struct efx_nic *efx = tx_queue->efx;
494         unsigned int stop_index, read_ptr;
495
496         stop_index = (index + 1) & tx_queue->ptr_mask;
497         read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
498
499         while (read_ptr != stop_index) {
500                 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
501
502                 if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
503                     unlikely(buffer->len == 0)) {
504                         netif_err(efx, tx_err, efx->net_dev,
505                                   "TX queue %d spurious TX completion id %x\n",
506                                   tx_queue->queue, read_ptr);
507                         efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
508                         return;
509                 }
510
511                 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
512
513                 ++tx_queue->read_count;
514                 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
515         }
516 }
517
518 /* Initiate a packet transmission.  We use one channel per CPU
519  * (sharing when we have more CPUs than channels).  On Falcon, the TX
520  * completion events will be directed back to the CPU that transmitted
521  * the packet, which should be cache-efficient.
522  *
523  * Context: non-blocking.
524  * Note that returning anything other than NETDEV_TX_OK will cause the
525  * OS to free the skb.
526  */
527 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
528                                 struct net_device *net_dev)
529 {
530         struct efx_nic *efx = netdev_priv(net_dev);
531         struct efx_tx_queue *tx_queue;
532         unsigned index, type;
533
534         EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
535
536         /* PTP "event" packet */
537         if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
538             unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
539                 return efx_ptp_tx(efx, skb);
540         }
541
542         index = skb_get_queue_mapping(skb);
543         type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
544         if (index >= efx->n_tx_channels) {
545                 index -= efx->n_tx_channels;
546                 type |= EFX_TXQ_TYPE_HIGHPRI;
547         }
548         tx_queue = efx_get_tx_queue(efx, index, type);
549
550         return efx_enqueue_skb(tx_queue, skb);
551 }
552
553 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
554 {
555         struct efx_nic *efx = tx_queue->efx;
556
557         /* Must be inverse of queue lookup in efx_hard_start_xmit() */
558         tx_queue->core_txq =
559                 netdev_get_tx_queue(efx->net_dev,
560                                     tx_queue->queue / EFX_TXQ_TYPES +
561                                     ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
562                                      efx->n_tx_channels : 0));
563 }
564
565 int efx_setup_tc(struct net_device *net_dev, u32 handle, __be16 proto,
566                  struct tc_to_netdev *ntc)
567 {
568         struct efx_nic *efx = netdev_priv(net_dev);
569         struct efx_channel *channel;
570         struct efx_tx_queue *tx_queue;
571         unsigned tc, num_tc;
572         int rc;
573
574         if (ntc->type != TC_SETUP_MQPRIO)
575                 return -EINVAL;
576
577         num_tc = ntc->tc;
578
579         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
580                 return -EINVAL;
581
582         if (num_tc == net_dev->num_tc)
583                 return 0;
584
585         for (tc = 0; tc < num_tc; tc++) {
586                 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
587                 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
588         }
589
590         if (num_tc > net_dev->num_tc) {
591                 /* Initialise high-priority queues as necessary */
592                 efx_for_each_channel(channel, efx) {
593                         efx_for_each_possible_channel_tx_queue(tx_queue,
594                                                                channel) {
595                                 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
596                                         continue;
597                                 if (!tx_queue->buffer) {
598                                         rc = efx_probe_tx_queue(tx_queue);
599                                         if (rc)
600                                                 return rc;
601                                 }
602                                 if (!tx_queue->initialised)
603                                         efx_init_tx_queue(tx_queue);
604                                 efx_init_tx_queue_core_txq(tx_queue);
605                         }
606                 }
607         } else {
608                 /* Reduce number of classes before number of queues */
609                 net_dev->num_tc = num_tc;
610         }
611
612         rc = netif_set_real_num_tx_queues(net_dev,
613                                           max_t(int, num_tc, 1) *
614                                           efx->n_tx_channels);
615         if (rc)
616                 return rc;
617
618         /* Do not destroy high-priority queues when they become
619          * unused.  We would have to flush them first, and it is
620          * fairly difficult to flush a subset of TX queues.  Leave
621          * it to efx_fini_channels().
622          */
623
624         net_dev->num_tc = num_tc;
625         return 0;
626 }
627
628 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
629 {
630         unsigned fill_level;
631         struct efx_nic *efx = tx_queue->efx;
632         struct efx_tx_queue *txq2;
633         unsigned int pkts_compl = 0, bytes_compl = 0;
634
635         EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
636
637         efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
638         tx_queue->pkts_compl += pkts_compl;
639         tx_queue->bytes_compl += bytes_compl;
640
641         if (pkts_compl > 1)
642                 ++tx_queue->merge_events;
643
644         /* See if we need to restart the netif queue.  This memory
645          * barrier ensures that we write read_count (inside
646          * efx_dequeue_buffers()) before reading the queue status.
647          */
648         smp_mb();
649         if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
650             likely(efx->port_enabled) &&
651             likely(netif_device_present(efx->net_dev))) {
652                 txq2 = efx_tx_queue_partner(tx_queue);
653                 fill_level = max(tx_queue->insert_count - tx_queue->read_count,
654                                  txq2->insert_count - txq2->read_count);
655                 if (fill_level <= efx->txq_wake_thresh)
656                         netif_tx_wake_queue(tx_queue->core_txq);
657         }
658
659         /* Check whether the hardware queue is now empty */
660         if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
661                 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
662                 if (tx_queue->read_count == tx_queue->old_write_count) {
663                         smp_mb();
664                         tx_queue->empty_read_count =
665                                 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
666                 }
667         }
668 }
669
670 /* Size of page-based TSO header buffers.  Larger blocks must be
671  * allocated from the heap.
672  */
673 #define TSOH_STD_SIZE   128
674 #define TSOH_PER_PAGE   (PAGE_SIZE / TSOH_STD_SIZE)
675
676 /* At most half the descriptors in the queue at any time will refer to
677  * a TSO header buffer, since they must always be followed by a
678  * payload descriptor referring to an skb.
679  */
680 static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue)
681 {
682         return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE);
683 }
684
685 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
686 {
687         struct efx_nic *efx = tx_queue->efx;
688         unsigned int entries;
689         int rc;
690
691         /* Create the smallest power-of-two aligned ring */
692         entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
693         EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
694         tx_queue->ptr_mask = entries - 1;
695
696         netif_dbg(efx, probe, efx->net_dev,
697                   "creating TX queue %d size %#x mask %#x\n",
698                   tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
699
700         /* Allocate software ring */
701         tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
702                                    GFP_KERNEL);
703         if (!tx_queue->buffer)
704                 return -ENOMEM;
705
706         if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) {
707                 tx_queue->tsoh_page =
708                         kcalloc(efx_tsoh_page_count(tx_queue),
709                                 sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL);
710                 if (!tx_queue->tsoh_page) {
711                         rc = -ENOMEM;
712                         goto fail1;
713                 }
714         }
715
716         /* Allocate hardware ring */
717         rc = efx_nic_probe_tx(tx_queue);
718         if (rc)
719                 goto fail2;
720
721         return 0;
722
723 fail2:
724         kfree(tx_queue->tsoh_page);
725         tx_queue->tsoh_page = NULL;
726 fail1:
727         kfree(tx_queue->buffer);
728         tx_queue->buffer = NULL;
729         return rc;
730 }
731
732 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
733 {
734         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
735                   "initialising TX queue %d\n", tx_queue->queue);
736
737         tx_queue->insert_count = 0;
738         tx_queue->write_count = 0;
739         tx_queue->old_write_count = 0;
740         tx_queue->read_count = 0;
741         tx_queue->old_read_count = 0;
742         tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
743         tx_queue->xmit_more_available = false;
744
745         /* Set up TX descriptor ring */
746         efx_nic_init_tx(tx_queue);
747
748         tx_queue->initialised = true;
749 }
750
751 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
752 {
753         struct efx_tx_buffer *buffer;
754
755         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
756                   "shutting down TX queue %d\n", tx_queue->queue);
757
758         if (!tx_queue->buffer)
759                 return;
760
761         /* Free any buffers left in the ring */
762         while (tx_queue->read_count != tx_queue->write_count) {
763                 unsigned int pkts_compl = 0, bytes_compl = 0;
764                 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
765                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
766
767                 ++tx_queue->read_count;
768         }
769         tx_queue->xmit_more_available = false;
770         netdev_tx_reset_queue(tx_queue->core_txq);
771 }
772
773 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
774 {
775         int i;
776
777         if (!tx_queue->buffer)
778                 return;
779
780         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
781                   "destroying TX queue %d\n", tx_queue->queue);
782         efx_nic_remove_tx(tx_queue);
783
784         if (tx_queue->tsoh_page) {
785                 for (i = 0; i < efx_tsoh_page_count(tx_queue); i++)
786                         efx_nic_free_buffer(tx_queue->efx,
787                                             &tx_queue->tsoh_page[i]);
788                 kfree(tx_queue->tsoh_page);
789                 tx_queue->tsoh_page = NULL;
790         }
791
792         kfree(tx_queue->buffer);
793         tx_queue->buffer = NULL;
794 }
795
796
797 /* Efx TCP segmentation acceleration.
798  *
799  * Why?  Because by doing it here in the driver we can go significantly
800  * faster than the GSO.
801  *
802  * Requires TX checksum offload support.
803  */
804
805 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
806
807 /**
808  * struct tso_state - TSO state for an SKB
809  * @out_len: Remaining length in current segment
810  * @seqnum: Current sequence number
811  * @ipv4_id: Current IPv4 ID, host endian
812  * @packet_space: Remaining space in current packet
813  * @dma_addr: DMA address of current position
814  * @in_len: Remaining length in current SKB fragment
815  * @unmap_len: Length of SKB fragment
816  * @unmap_addr: DMA address of SKB fragment
817  * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
818  * @protocol: Network protocol (after any VLAN header)
819  * @ip_off: Offset of IP header
820  * @tcp_off: Offset of TCP header
821  * @header_len: Number of bytes of header
822  * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
823  * @header_dma_addr: Header DMA address, when using option descriptors
824  * @header_unmap_len: Header DMA mapped length, or 0 if not using option
825  *      descriptors
826  *
827  * The state used during segmentation.  It is put into this data structure
828  * just to make it easy to pass into inline functions.
829  */
830 struct tso_state {
831         /* Output position */
832         unsigned out_len;
833         unsigned seqnum;
834         u16 ipv4_id;
835         unsigned packet_space;
836
837         /* Input position */
838         dma_addr_t dma_addr;
839         unsigned in_len;
840         unsigned unmap_len;
841         dma_addr_t unmap_addr;
842         unsigned short dma_flags;
843
844         __be16 protocol;
845         unsigned int ip_off;
846         unsigned int tcp_off;
847         unsigned header_len;
848         unsigned int ip_base_len;
849         dma_addr_t header_dma_addr;
850         unsigned int header_unmap_len;
851 };
852
853
854 /*
855  * Verify that our various assumptions about sk_buffs and the conditions
856  * under which TSO will be attempted hold true.  Return the protocol number.
857  */
858 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
859 {
860         __be16 protocol = skb->protocol;
861
862         EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
863                             protocol);
864         if (protocol == htons(ETH_P_8021Q)) {
865                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
866                 protocol = veh->h_vlan_encapsulated_proto;
867         }
868
869         if (protocol == htons(ETH_P_IP)) {
870                 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
871         } else {
872                 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
873                 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
874         }
875         EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
876                              + (tcp_hdr(skb)->doff << 2u)) >
877                             skb_headlen(skb));
878
879         return protocol;
880 }
881
882 static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
883                                struct efx_tx_buffer *buffer, unsigned int len)
884 {
885         u8 *result;
886
887         EFX_BUG_ON_PARANOID(buffer->len);
888         EFX_BUG_ON_PARANOID(buffer->flags);
889         EFX_BUG_ON_PARANOID(buffer->unmap_len);
890
891         if (likely(len <= TSOH_STD_SIZE - NET_IP_ALIGN)) {
892                 unsigned index =
893                         (tx_queue->insert_count & tx_queue->ptr_mask) / 2;
894                 struct efx_buffer *page_buf =
895                         &tx_queue->tsoh_page[index / TSOH_PER_PAGE];
896                 unsigned offset =
897                         TSOH_STD_SIZE * (index % TSOH_PER_PAGE) + NET_IP_ALIGN;
898
899                 if (unlikely(!page_buf->addr) &&
900                     efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
901                                          GFP_ATOMIC))
902                         return NULL;
903
904                 result = (u8 *)page_buf->addr + offset;
905                 buffer->dma_addr = page_buf->dma_addr + offset;
906                 buffer->flags = EFX_TX_BUF_CONT;
907         } else {
908                 tx_queue->tso_long_headers++;
909
910                 buffer->heap_buf = kmalloc(NET_IP_ALIGN + len, GFP_ATOMIC);
911                 if (unlikely(!buffer->heap_buf))
912                         return NULL;
913                 result = (u8 *)buffer->heap_buf + NET_IP_ALIGN;
914                 buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
915         }
916
917         buffer->len = len;
918
919         return result;
920 }
921
922 /**
923  * efx_tx_queue_insert - push descriptors onto the TX queue
924  * @tx_queue:           Efx TX queue
925  * @dma_addr:           DMA address of fragment
926  * @len:                Length of fragment
927  * @final_buffer:       The final buffer inserted into the queue
928  *
929  * Push descriptors onto the TX queue.
930  */
931 static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
932                                 dma_addr_t dma_addr, unsigned len,
933                                 struct efx_tx_buffer **final_buffer)
934 {
935         struct efx_tx_buffer *buffer;
936         struct efx_nic *efx = tx_queue->efx;
937         unsigned dma_len;
938
939         EFX_BUG_ON_PARANOID(len <= 0);
940
941         while (1) {
942                 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
943                 ++tx_queue->insert_count;
944
945                 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
946                                     tx_queue->read_count >=
947                                     efx->txq_entries);
948
949                 buffer->dma_addr = dma_addr;
950
951                 dma_len = efx_max_tx_len(efx, dma_addr);
952
953                 /* If there is enough space to send then do so */
954                 if (dma_len >= len)
955                         break;
956
957                 buffer->len = dma_len;
958                 buffer->flags = EFX_TX_BUF_CONT;
959                 dma_addr += dma_len;
960                 len -= dma_len;
961         }
962
963         EFX_BUG_ON_PARANOID(!len);
964         buffer->len = len;
965         *final_buffer = buffer;
966 }
967
968
969 /*
970  * Put a TSO header into the TX queue.
971  *
972  * This is special-cased because we know that it is small enough to fit in
973  * a single fragment, and we know it doesn't cross a page boundary.  It
974  * also allows us to not worry about end-of-packet etc.
975  */
976 static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
977                               struct efx_tx_buffer *buffer, u8 *header)
978 {
979         if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
980                 buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
981                                                   header, buffer->len,
982                                                   DMA_TO_DEVICE);
983                 if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
984                                                buffer->dma_addr))) {
985                         kfree(buffer->heap_buf);
986                         buffer->len = 0;
987                         buffer->flags = 0;
988                         return -ENOMEM;
989                 }
990                 buffer->unmap_len = buffer->len;
991                 buffer->dma_offset = 0;
992                 buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
993         }
994
995         ++tx_queue->insert_count;
996         return 0;
997 }
998
999
1000 /* Remove buffers put into a tx_queue.  None of the buffers must have
1001  * an skb attached.
1002  */
1003 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
1004                                unsigned int insert_count)
1005 {
1006         struct efx_tx_buffer *buffer;
1007
1008         /* Work backwards until we hit the original insert pointer value */
1009         while (tx_queue->insert_count != insert_count) {
1010                 --tx_queue->insert_count;
1011                 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
1012                 efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
1013         }
1014 }
1015
1016
1017 /* Parse the SKB header and initialise state. */
1018 static int tso_start(struct tso_state *st, struct efx_nic *efx,
1019                      struct efx_tx_queue *tx_queue,
1020                      const struct sk_buff *skb)
1021 {
1022         struct device *dma_dev = &efx->pci_dev->dev;
1023         unsigned int header_len, in_len;
1024         bool use_opt_desc = false;
1025         dma_addr_t dma_addr;
1026
1027         if (tx_queue->tso_version == 1)
1028                 use_opt_desc = true;
1029
1030         st->ip_off = skb_network_header(skb) - skb->data;
1031         st->tcp_off = skb_transport_header(skb) - skb->data;
1032         header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
1033         in_len = skb_headlen(skb) - header_len;
1034         st->header_len = header_len;
1035         st->in_len = in_len;
1036         if (st->protocol == htons(ETH_P_IP)) {
1037                 st->ip_base_len = st->header_len - st->ip_off;
1038                 st->ipv4_id = ntohs(ip_hdr(skb)->id);
1039         } else {
1040                 st->ip_base_len = st->header_len - st->tcp_off;
1041                 st->ipv4_id = 0;
1042         }
1043         st->seqnum = ntohl(tcp_hdr(skb)->seq);
1044
1045         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
1046         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
1047         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
1048
1049         st->out_len = skb->len - header_len;
1050
1051         if (!use_opt_desc) {
1052                 st->header_unmap_len = 0;
1053
1054                 if (likely(in_len == 0)) {
1055                         st->dma_flags = 0;
1056                         st->unmap_len = 0;
1057                         return 0;
1058                 }
1059
1060                 dma_addr = dma_map_single(dma_dev, skb->data + header_len,
1061                                           in_len, DMA_TO_DEVICE);
1062                 st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
1063                 st->dma_addr = dma_addr;
1064                 st->unmap_addr = dma_addr;
1065                 st->unmap_len = in_len;
1066         } else {
1067                 dma_addr = dma_map_single(dma_dev, skb->data,
1068                                           skb_headlen(skb), DMA_TO_DEVICE);
1069                 st->header_dma_addr = dma_addr;
1070                 st->header_unmap_len = skb_headlen(skb);
1071                 st->dma_flags = 0;
1072                 st->dma_addr = dma_addr + header_len;
1073                 st->unmap_len = 0;
1074         }
1075
1076         return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
1077 }
1078
1079 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
1080                             skb_frag_t *frag)
1081 {
1082         st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
1083                                           skb_frag_size(frag), DMA_TO_DEVICE);
1084         if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
1085                 st->dma_flags = 0;
1086                 st->unmap_len = skb_frag_size(frag);
1087                 st->in_len = skb_frag_size(frag);
1088                 st->dma_addr = st->unmap_addr;
1089                 return 0;
1090         }
1091         return -ENOMEM;
1092 }
1093
1094
1095 /**
1096  * tso_fill_packet_with_fragment - form descriptors for the current fragment
1097  * @tx_queue:           Efx TX queue
1098  * @skb:                Socket buffer
1099  * @st:                 TSO state
1100  *
1101  * Form descriptors for the current fragment, until we reach the end
1102  * of fragment or end-of-packet.
1103  */
1104 static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
1105                                           const struct sk_buff *skb,
1106                                           struct tso_state *st)
1107 {
1108         struct efx_tx_buffer *buffer;
1109         int n;
1110
1111         if (st->in_len == 0)
1112                 return;
1113         if (st->packet_space == 0)
1114                 return;
1115
1116         EFX_BUG_ON_PARANOID(st->in_len <= 0);
1117         EFX_BUG_ON_PARANOID(st->packet_space <= 0);
1118
1119         n = min(st->in_len, st->packet_space);
1120
1121         st->packet_space -= n;
1122         st->out_len -= n;
1123         st->in_len -= n;
1124
1125         efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
1126
1127         if (st->out_len == 0) {
1128                 /* Transfer ownership of the skb */
1129                 buffer->skb = skb;
1130                 buffer->flags = EFX_TX_BUF_SKB;
1131         } else if (st->packet_space != 0) {
1132                 buffer->flags = EFX_TX_BUF_CONT;
1133         }
1134
1135         if (st->in_len == 0) {
1136                 /* Transfer ownership of the DMA mapping */
1137                 buffer->unmap_len = st->unmap_len;
1138                 buffer->dma_offset = buffer->unmap_len - buffer->len;
1139                 buffer->flags |= st->dma_flags;
1140                 st->unmap_len = 0;
1141         }
1142
1143         st->dma_addr += n;
1144 }
1145
1146
1147 /**
1148  * tso_start_new_packet - generate a new header and prepare for the new packet
1149  * @tx_queue:           Efx TX queue
1150  * @skb:                Socket buffer
1151  * @st:                 TSO state
1152  *
1153  * Generate a new header and prepare for the new packet.  Return 0 on
1154  * success, or -%ENOMEM if failed to alloc header.
1155  */
1156 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1157                                 const struct sk_buff *skb,
1158                                 struct tso_state *st)
1159 {
1160         struct efx_tx_buffer *buffer =
1161                 efx_tx_queue_get_insert_buffer(tx_queue);
1162         bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
1163         u8 tcp_flags_clear;
1164
1165         if (!is_last) {
1166                 st->packet_space = skb_shinfo(skb)->gso_size;
1167                 tcp_flags_clear = 0x09; /* mask out FIN and PSH */
1168         } else {
1169                 st->packet_space = st->out_len;
1170                 tcp_flags_clear = 0x00;
1171         }
1172
1173         if (!st->header_unmap_len) {
1174                 /* Allocate and insert a DMA-mapped header buffer. */
1175                 struct tcphdr *tsoh_th;
1176                 unsigned ip_length;
1177                 u8 *header;
1178                 int rc;
1179
1180                 header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
1181                 if (!header)
1182                         return -ENOMEM;
1183
1184                 tsoh_th = (struct tcphdr *)(header + st->tcp_off);
1185
1186                 /* Copy and update the headers. */
1187                 memcpy(header, skb->data, st->header_len);
1188
1189                 tsoh_th->seq = htonl(st->seqnum);
1190                 ((u8 *)tsoh_th)[13] &= ~tcp_flags_clear;
1191
1192                 ip_length = st->ip_base_len + st->packet_space;
1193
1194                 if (st->protocol == htons(ETH_P_IP)) {
1195                         struct iphdr *tsoh_iph =
1196                                 (struct iphdr *)(header + st->ip_off);
1197
1198                         tsoh_iph->tot_len = htons(ip_length);
1199                         tsoh_iph->id = htons(st->ipv4_id);
1200                 } else {
1201                         struct ipv6hdr *tsoh_iph =
1202                                 (struct ipv6hdr *)(header + st->ip_off);
1203
1204                         tsoh_iph->payload_len = htons(ip_length);
1205                 }
1206
1207                 rc = efx_tso_put_header(tx_queue, buffer, header);
1208                 if (unlikely(rc))
1209                         return rc;
1210         } else {
1211                 /* Send the original headers with a TSO option descriptor
1212                  * in front
1213                  */
1214                 u8 tcp_flags = ((u8 *)tcp_hdr(skb))[13] & ~tcp_flags_clear;
1215
1216                 buffer->flags = EFX_TX_BUF_OPTION;
1217                 buffer->len = 0;
1218                 buffer->unmap_len = 0;
1219                 EFX_POPULATE_QWORD_5(buffer->option,
1220                                      ESF_DZ_TX_DESC_IS_OPT, 1,
1221                                      ESF_DZ_TX_OPTION_TYPE,
1222                                      ESE_DZ_TX_OPTION_DESC_TSO,
1223                                      ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
1224                                      ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
1225                                      ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
1226                 ++tx_queue->insert_count;
1227
1228                 /* We mapped the headers in tso_start().  Unmap them
1229                  * when the last segment is completed.
1230                  */
1231                 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
1232                 buffer->dma_addr = st->header_dma_addr;
1233                 buffer->len = st->header_len;
1234                 if (is_last) {
1235                         buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
1236                         buffer->unmap_len = st->header_unmap_len;
1237                         buffer->dma_offset = 0;
1238                         /* Ensure we only unmap them once in case of a
1239                          * later DMA mapping error and rollback
1240                          */
1241                         st->header_unmap_len = 0;
1242                 } else {
1243                         buffer->flags = EFX_TX_BUF_CONT;
1244                         buffer->unmap_len = 0;
1245                 }
1246                 ++tx_queue->insert_count;
1247         }
1248
1249         st->seqnum += skb_shinfo(skb)->gso_size;
1250
1251         /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1252         ++st->ipv4_id;
1253
1254         ++tx_queue->tso_packets;
1255
1256         ++tx_queue->tx_packets;
1257
1258         return 0;
1259 }
1260
1261
1262 /**
1263  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1264  * @tx_queue:           Efx TX queue
1265  * @skb:                Socket buffer
1266  *
1267  * Context: You must hold netif_tx_lock() to call this function.
1268  *
1269  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1270  * @skb was not enqueued.  In all cases @skb is consumed.  Return
1271  * %NETDEV_TX_OK.
1272  */
1273 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1274                                struct sk_buff *skb)
1275 {
1276         struct efx_nic *efx = tx_queue->efx;
1277         unsigned int old_insert_count = tx_queue->insert_count;
1278         int frag_i, rc;
1279         struct tso_state state;
1280
1281         /* Find the packet protocol and sanity-check it */
1282         state.protocol = efx_tso_check_protocol(skb);
1283
1284         rc = tso_start(&state, efx, tx_queue, skb);
1285         if (rc)
1286                 goto mem_err;
1287
1288         if (likely(state.in_len == 0)) {
1289                 /* Grab the first payload fragment. */
1290                 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1291                 frag_i = 0;
1292                 rc = tso_get_fragment(&state, efx,
1293                                       skb_shinfo(skb)->frags + frag_i);
1294                 if (rc)
1295                         goto mem_err;
1296         } else {
1297                 /* Payload starts in the header area. */
1298                 frag_i = -1;
1299         }
1300
1301         if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1302                 goto mem_err;
1303
1304         while (1) {
1305                 tso_fill_packet_with_fragment(tx_queue, skb, &state);
1306
1307                 /* Move onto the next fragment? */
1308                 if (state.in_len == 0) {
1309                         if (++frag_i >= skb_shinfo(skb)->nr_frags)
1310                                 /* End of payload reached. */
1311                                 break;
1312                         rc = tso_get_fragment(&state, efx,
1313                                               skb_shinfo(skb)->frags + frag_i);
1314                         if (rc)
1315                                 goto mem_err;
1316                 }
1317
1318                 /* Start at new packet? */
1319                 if (state.packet_space == 0 &&
1320                     tso_start_new_packet(tx_queue, skb, &state) < 0)
1321                         goto mem_err;
1322         }
1323
1324         netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1325
1326         efx_tx_maybe_stop_queue(tx_queue);
1327
1328         /* Pass off to hardware */
1329         if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq)) {
1330                 struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
1331
1332                 /* There could be packets left on the partner queue if those
1333                  * SKBs had skb->xmit_more set. If we do not push those they
1334                  * could be left for a long time and cause a netdev watchdog.
1335                  */
1336                 if (txq2->xmit_more_available)
1337                         efx_nic_push_buffers(txq2);
1338
1339                 efx_nic_push_buffers(tx_queue);
1340         } else {
1341                 tx_queue->xmit_more_available = skb->xmit_more;
1342         }
1343
1344         tx_queue->tso_bursts++;
1345         return NETDEV_TX_OK;
1346
1347  mem_err:
1348         netif_err(efx, tx_err, efx->net_dev,
1349                   "Out of memory for TSO headers, or DMA mapping error\n");
1350         dev_kfree_skb_any(skb);
1351
1352         /* Free the DMA mapping we were in the process of writing out */
1353         if (state.unmap_len) {
1354                 if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
1355                         dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
1356                                          state.unmap_len, DMA_TO_DEVICE);
1357                 else
1358                         dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
1359                                        state.unmap_len, DMA_TO_DEVICE);
1360         }
1361
1362         /* Free the header DMA mapping, if using option descriptors */
1363         if (state.header_unmap_len)
1364                 dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
1365                                  state.header_unmap_len, DMA_TO_DEVICE);
1366
1367         efx_enqueue_unwind(tx_queue, old_insert_count);
1368         return NETDEV_TX_OK;
1369 }