GNU Linux-libre 4.9.333-gnu1
[releases.git] / drivers / net / ethernet / sfc / falcon.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "farch_regs.h"
24 #include "io.h"
25 #include "phy.h"
26 #include "workarounds.h"
27 #include "selftest.h"
28 #include "mdio_10g.h"
29
30 /* Hardware control for SFC4000 (aka Falcon). */
31
32 /**************************************************************************
33  *
34  * NIC stats
35  *
36  **************************************************************************
37  */
38
39 #define FALCON_MAC_STATS_SIZE 0x100
40
41 #define XgRxOctets_offset 0x0
42 #define XgRxOctets_WIDTH 48
43 #define XgRxOctetsOK_offset 0x8
44 #define XgRxOctetsOK_WIDTH 48
45 #define XgRxPkts_offset 0x10
46 #define XgRxPkts_WIDTH 32
47 #define XgRxPktsOK_offset 0x14
48 #define XgRxPktsOK_WIDTH 32
49 #define XgRxBroadcastPkts_offset 0x18
50 #define XgRxBroadcastPkts_WIDTH 32
51 #define XgRxMulticastPkts_offset 0x1C
52 #define XgRxMulticastPkts_WIDTH 32
53 #define XgRxUnicastPkts_offset 0x20
54 #define XgRxUnicastPkts_WIDTH 32
55 #define XgRxUndersizePkts_offset 0x24
56 #define XgRxUndersizePkts_WIDTH 32
57 #define XgRxOversizePkts_offset 0x28
58 #define XgRxOversizePkts_WIDTH 32
59 #define XgRxJabberPkts_offset 0x2C
60 #define XgRxJabberPkts_WIDTH 32
61 #define XgRxUndersizeFCSerrorPkts_offset 0x30
62 #define XgRxUndersizeFCSerrorPkts_WIDTH 32
63 #define XgRxDropEvents_offset 0x34
64 #define XgRxDropEvents_WIDTH 32
65 #define XgRxFCSerrorPkts_offset 0x38
66 #define XgRxFCSerrorPkts_WIDTH 32
67 #define XgRxAlignError_offset 0x3C
68 #define XgRxAlignError_WIDTH 32
69 #define XgRxSymbolError_offset 0x40
70 #define XgRxSymbolError_WIDTH 32
71 #define XgRxInternalMACError_offset 0x44
72 #define XgRxInternalMACError_WIDTH 32
73 #define XgRxControlPkts_offset 0x48
74 #define XgRxControlPkts_WIDTH 32
75 #define XgRxPausePkts_offset 0x4C
76 #define XgRxPausePkts_WIDTH 32
77 #define XgRxPkts64Octets_offset 0x50
78 #define XgRxPkts64Octets_WIDTH 32
79 #define XgRxPkts65to127Octets_offset 0x54
80 #define XgRxPkts65to127Octets_WIDTH 32
81 #define XgRxPkts128to255Octets_offset 0x58
82 #define XgRxPkts128to255Octets_WIDTH 32
83 #define XgRxPkts256to511Octets_offset 0x5C
84 #define XgRxPkts256to511Octets_WIDTH 32
85 #define XgRxPkts512to1023Octets_offset 0x60
86 #define XgRxPkts512to1023Octets_WIDTH 32
87 #define XgRxPkts1024to15xxOctets_offset 0x64
88 #define XgRxPkts1024to15xxOctets_WIDTH 32
89 #define XgRxPkts15xxtoMaxOctets_offset 0x68
90 #define XgRxPkts15xxtoMaxOctets_WIDTH 32
91 #define XgRxLengthError_offset 0x6C
92 #define XgRxLengthError_WIDTH 32
93 #define XgTxPkts_offset 0x80
94 #define XgTxPkts_WIDTH 32
95 #define XgTxOctets_offset 0x88
96 #define XgTxOctets_WIDTH 48
97 #define XgTxMulticastPkts_offset 0x90
98 #define XgTxMulticastPkts_WIDTH 32
99 #define XgTxBroadcastPkts_offset 0x94
100 #define XgTxBroadcastPkts_WIDTH 32
101 #define XgTxUnicastPkts_offset 0x98
102 #define XgTxUnicastPkts_WIDTH 32
103 #define XgTxControlPkts_offset 0x9C
104 #define XgTxControlPkts_WIDTH 32
105 #define XgTxPausePkts_offset 0xA0
106 #define XgTxPausePkts_WIDTH 32
107 #define XgTxPkts64Octets_offset 0xA4
108 #define XgTxPkts64Octets_WIDTH 32
109 #define XgTxPkts65to127Octets_offset 0xA8
110 #define XgTxPkts65to127Octets_WIDTH 32
111 #define XgTxPkts128to255Octets_offset 0xAC
112 #define XgTxPkts128to255Octets_WIDTH 32
113 #define XgTxPkts256to511Octets_offset 0xB0
114 #define XgTxPkts256to511Octets_WIDTH 32
115 #define XgTxPkts512to1023Octets_offset 0xB4
116 #define XgTxPkts512to1023Octets_WIDTH 32
117 #define XgTxPkts1024to15xxOctets_offset 0xB8
118 #define XgTxPkts1024to15xxOctets_WIDTH 32
119 #define XgTxPkts1519toMaxOctets_offset 0xBC
120 #define XgTxPkts1519toMaxOctets_WIDTH 32
121 #define XgTxUndersizePkts_offset 0xC0
122 #define XgTxUndersizePkts_WIDTH 32
123 #define XgTxOversizePkts_offset 0xC4
124 #define XgTxOversizePkts_WIDTH 32
125 #define XgTxNonTcpUdpPkt_offset 0xC8
126 #define XgTxNonTcpUdpPkt_WIDTH 16
127 #define XgTxMacSrcErrPkt_offset 0xCC
128 #define XgTxMacSrcErrPkt_WIDTH 16
129 #define XgTxIpSrcErrPkt_offset 0xD0
130 #define XgTxIpSrcErrPkt_WIDTH 16
131 #define XgDmaDone_offset 0xD4
132 #define XgDmaDone_WIDTH 32
133
134 #define FALCON_XMAC_STATS_DMA_FLAG(efx)                         \
135         (*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
136
137 #define FALCON_DMA_STAT(ext_name, hw_name)                              \
138         [FALCON_STAT_ ## ext_name] =                                    \
139         { #ext_name,                                                    \
140           /* 48-bit stats are zero-padded to 64 on DMA */               \
141           hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH,     \
142           hw_name ## _ ## offset }
143 #define FALCON_OTHER_STAT(ext_name)                                     \
144         [FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
145 #define GENERIC_SW_STAT(ext_name)                               \
146         [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
147
148 static const struct efx_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = {
149         FALCON_DMA_STAT(tx_bytes, XgTxOctets),
150         FALCON_DMA_STAT(tx_packets, XgTxPkts),
151         FALCON_DMA_STAT(tx_pause, XgTxPausePkts),
152         FALCON_DMA_STAT(tx_control, XgTxControlPkts),
153         FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts),
154         FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts),
155         FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts),
156         FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts),
157         FALCON_DMA_STAT(tx_64, XgTxPkts64Octets),
158         FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets),
159         FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets),
160         FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets),
161         FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets),
162         FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets),
163         FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets),
164         FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts),
165         FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt),
166         FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt),
167         FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt),
168         FALCON_DMA_STAT(rx_bytes, XgRxOctets),
169         FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK),
170         FALCON_OTHER_STAT(rx_bad_bytes),
171         FALCON_DMA_STAT(rx_packets, XgRxPkts),
172         FALCON_DMA_STAT(rx_good, XgRxPktsOK),
173         FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts),
174         FALCON_DMA_STAT(rx_pause, XgRxPausePkts),
175         FALCON_DMA_STAT(rx_control, XgRxControlPkts),
176         FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts),
177         FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts),
178         FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts),
179         FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts),
180         FALCON_DMA_STAT(rx_64, XgRxPkts64Octets),
181         FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets),
182         FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets),
183         FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets),
184         FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets),
185         FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets),
186         FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets),
187         FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts),
188         FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts),
189         FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts),
190         FALCON_DMA_STAT(rx_overflow, XgRxDropEvents),
191         FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError),
192         FALCON_DMA_STAT(rx_align_error, XgRxAlignError),
193         FALCON_DMA_STAT(rx_length_error, XgRxLengthError),
194         FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError),
195         FALCON_OTHER_STAT(rx_nodesc_drop_cnt),
196         GENERIC_SW_STAT(rx_nodesc_trunc),
197         GENERIC_SW_STAT(rx_noskb_drops),
198 };
199 static const unsigned long falcon_stat_mask[] = {
200         [0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL,
201 };
202
203 /**************************************************************************
204  *
205  * Basic SPI command set and bit definitions
206  *
207  *************************************************************************/
208
209 #define SPI_WRSR 0x01           /* Write status register */
210 #define SPI_WRITE 0x02          /* Write data to memory array */
211 #define SPI_READ 0x03           /* Read data from memory array */
212 #define SPI_WRDI 0x04           /* Reset write enable latch */
213 #define SPI_RDSR 0x05           /* Read status register */
214 #define SPI_WREN 0x06           /* Set write enable latch */
215 #define SPI_SST_EWSR 0x50       /* SST: Enable write to status register */
216
217 #define SPI_STATUS_WPEN 0x80    /* Write-protect pin enabled */
218 #define SPI_STATUS_BP2 0x10     /* Block protection bit 2 */
219 #define SPI_STATUS_BP1 0x08     /* Block protection bit 1 */
220 #define SPI_STATUS_BP0 0x04     /* Block protection bit 0 */
221 #define SPI_STATUS_WEN 0x02     /* State of the write enable latch */
222 #define SPI_STATUS_NRDY 0x01    /* Device busy flag */
223
224 /**************************************************************************
225  *
226  * Non-volatile memory layout
227  *
228  **************************************************************************
229  */
230
231 /* SFC4000 flash is partitioned into:
232  *     0-0x400       chip and board config (see struct falcon_nvconfig)
233  *     0x400-0x8000  unused (or may contain VPD if EEPROM not present)
234  *     0x8000-end    boot code (mapped to PCI expansion ROM)
235  * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
236  * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
237  *     0-0x400       chip and board config
238  *     configurable  VPD
239  *     0x800-0x1800  boot config
240  * Aside from the chip and board config, all of these are optional and may
241  * be absent or truncated depending on the devices used.
242  */
243 #define FALCON_NVCONFIG_END 0x400U
244 #define FALCON_FLASH_BOOTCODE_START 0x8000U
245 #define FALCON_EEPROM_BOOTCONFIG_START 0x800U
246 #define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
247
248 /* Board configuration v2 (v1 is obsolete; later versions are compatible) */
249 struct falcon_nvconfig_board_v2 {
250         __le16 nports;
251         u8 port0_phy_addr;
252         u8 port0_phy_type;
253         u8 port1_phy_addr;
254         u8 port1_phy_type;
255         __le16 asic_sub_revision;
256         __le16 board_revision;
257 } __packed;
258
259 /* Board configuration v3 extra information */
260 struct falcon_nvconfig_board_v3 {
261         __le32 spi_device_type[2];
262 } __packed;
263
264 /* Bit numbers for spi_device_type */
265 #define SPI_DEV_TYPE_SIZE_LBN 0
266 #define SPI_DEV_TYPE_SIZE_WIDTH 5
267 #define SPI_DEV_TYPE_ADDR_LEN_LBN 6
268 #define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
269 #define SPI_DEV_TYPE_ERASE_CMD_LBN 8
270 #define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
271 #define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
272 #define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
273 #define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
274 #define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
275 #define SPI_DEV_TYPE_FIELD(type, field)                                 \
276         (((type) >> EFX_LOW_BIT(field)) & EFX_MASK32(EFX_WIDTH(field)))
277
278 #define FALCON_NVCONFIG_OFFSET 0x300
279
280 #define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
281 struct falcon_nvconfig {
282         efx_oword_t ee_vpd_cfg_reg;                     /* 0x300 */
283         u8 mac_address[2][8];                   /* 0x310 */
284         efx_oword_t pcie_sd_ctl0123_reg;                /* 0x320 */
285         efx_oword_t pcie_sd_ctl45_reg;                  /* 0x330 */
286         efx_oword_t pcie_pcs_ctl_stat_reg;              /* 0x340 */
287         efx_oword_t hw_init_reg;                        /* 0x350 */
288         efx_oword_t nic_stat_reg;                       /* 0x360 */
289         efx_oword_t glb_ctl_reg;                        /* 0x370 */
290         efx_oword_t srm_cfg_reg;                        /* 0x380 */
291         efx_oword_t spare_reg;                          /* 0x390 */
292         __le16 board_magic_num;                 /* 0x3A0 */
293         __le16 board_struct_ver;
294         __le16 board_checksum;
295         struct falcon_nvconfig_board_v2 board_v2;
296         efx_oword_t ee_base_page_reg;                   /* 0x3B0 */
297         struct falcon_nvconfig_board_v3 board_v3;       /* 0x3C0 */
298 } __packed;
299
300 /*************************************************************************/
301
302 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method);
303 static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx);
304
305 static const unsigned int
306 /* "Large" EEPROM device: Atmel AT25640 or similar
307  * 8 KB, 16-bit address, 32 B write block */
308 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
309                      | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
310                      | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
311 /* Default flash device: Atmel AT25F1024
312  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
313 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
314                       | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
315                       | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
316                       | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
317                       | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
318
319 /**************************************************************************
320  *
321  * I2C bus - this is a bit-bashing interface using GPIO pins
322  * Note that it uses the output enables to tristate the outputs
323  * SDA is the data pin and SCL is the clock
324  *
325  **************************************************************************
326  */
327 static void falcon_setsda(void *data, int state)
328 {
329         struct efx_nic *efx = (struct efx_nic *)data;
330         efx_oword_t reg;
331
332         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
333         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
334         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
335 }
336
337 static void falcon_setscl(void *data, int state)
338 {
339         struct efx_nic *efx = (struct efx_nic *)data;
340         efx_oword_t reg;
341
342         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
343         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
344         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
345 }
346
347 static int falcon_getsda(void *data)
348 {
349         struct efx_nic *efx = (struct efx_nic *)data;
350         efx_oword_t reg;
351
352         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
353         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
354 }
355
356 static int falcon_getscl(void *data)
357 {
358         struct efx_nic *efx = (struct efx_nic *)data;
359         efx_oword_t reg;
360
361         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
362         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
363 }
364
365 static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
366         .setsda         = falcon_setsda,
367         .setscl         = falcon_setscl,
368         .getsda         = falcon_getsda,
369         .getscl         = falcon_getscl,
370         .udelay         = 5,
371         /* Wait up to 50 ms for slave to let us pull SCL high */
372         .timeout        = DIV_ROUND_UP(HZ, 20),
373 };
374
375 static void falcon_push_irq_moderation(struct efx_channel *channel)
376 {
377         efx_dword_t timer_cmd;
378         struct efx_nic *efx = channel->efx;
379
380         /* Set timer register */
381         if (channel->irq_moderation_us) {
382                 unsigned int ticks;
383
384                 ticks = efx_usecs_to_ticks(efx, channel->irq_moderation_us);
385                 EFX_POPULATE_DWORD_2(timer_cmd,
386                                      FRF_AB_TC_TIMER_MODE,
387                                      FFE_BB_TIMER_MODE_INT_HLDOFF,
388                                      FRF_AB_TC_TIMER_VAL,
389                                      ticks - 1);
390         } else {
391                 EFX_POPULATE_DWORD_2(timer_cmd,
392                                      FRF_AB_TC_TIMER_MODE,
393                                      FFE_BB_TIMER_MODE_DIS,
394                                      FRF_AB_TC_TIMER_VAL, 0);
395         }
396         BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
397         efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
398                                channel->channel);
399 }
400
401 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
402
403 static void falcon_prepare_flush(struct efx_nic *efx)
404 {
405         falcon_deconfigure_mac_wrapper(efx);
406
407         /* Wait for the tx and rx fifo's to get to the next packet boundary
408          * (~1ms without back-pressure), then to drain the remainder of the
409          * fifo's at data path speeds (negligible), with a healthy margin. */
410         msleep(10);
411 }
412
413 /* Acknowledge a legacy interrupt from Falcon
414  *
415  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
416  *
417  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
418  * BIU. Interrupt acknowledge is read sensitive so must write instead
419  * (then read to ensure the BIU collector is flushed)
420  *
421  * NB most hardware supports MSI interrupts
422  */
423 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
424 {
425         efx_dword_t reg;
426
427         EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
428         efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
429         efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
430 }
431
432 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
433 {
434         struct efx_nic *efx = dev_id;
435         efx_oword_t *int_ker = efx->irq_status.addr;
436         int syserr;
437         int queues;
438
439         /* Check to see if this is our interrupt.  If it isn't, we
440          * exit without having touched the hardware.
441          */
442         if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
443                 netif_vdbg(efx, intr, efx->net_dev,
444                            "IRQ %d on CPU %d not for me\n", irq,
445                            raw_smp_processor_id());
446                 return IRQ_NONE;
447         }
448         efx->last_irq_cpu = raw_smp_processor_id();
449         netif_vdbg(efx, intr, efx->net_dev,
450                    "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
451                    irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
452
453         if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
454                 return IRQ_HANDLED;
455
456         /* Check to see if we have a serious error condition */
457         syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
458         if (unlikely(syserr))
459                 return efx_farch_fatal_interrupt(efx);
460
461         /* Determine interrupting queues, clear interrupt status
462          * register and acknowledge the device interrupt.
463          */
464         BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
465         queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
466         EFX_ZERO_OWORD(*int_ker);
467         wmb(); /* Ensure the vector is cleared before interrupt ack */
468         falcon_irq_ack_a1(efx);
469
470         if (queues & 1)
471                 efx_schedule_channel_irq(efx_get_channel(efx, 0));
472         if (queues & 2)
473                 efx_schedule_channel_irq(efx_get_channel(efx, 1));
474         return IRQ_HANDLED;
475 }
476
477 /**************************************************************************
478  *
479  * RSS
480  *
481  **************************************************************************
482  */
483 static int dummy_rx_push_rss_config(struct efx_nic *efx, bool user,
484                                     const u32 *rx_indir_table)
485 {
486         (void) efx;
487         (void) user;
488         (void) rx_indir_table;
489         return -ENOSYS;
490 }
491
492 static int falcon_b0_rx_push_rss_config(struct efx_nic *efx, bool user,
493                                         const u32 *rx_indir_table)
494 {
495         efx_oword_t temp;
496
497         (void) user;
498         /* Set hash key for IPv4 */
499         memcpy(&temp, efx->rx_hash_key, sizeof(temp));
500         efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
501
502         memcpy(efx->rx_indir_table, rx_indir_table,
503                sizeof(efx->rx_indir_table));
504         efx_farch_rx_push_indir_table(efx);
505         return 0;
506 }
507
508 /**************************************************************************
509  *
510  * EEPROM/flash
511  *
512  **************************************************************************
513  */
514
515 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
516
517 static int falcon_spi_poll(struct efx_nic *efx)
518 {
519         efx_oword_t reg;
520         efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
521         return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
522 }
523
524 /* Wait for SPI command completion */
525 static int falcon_spi_wait(struct efx_nic *efx)
526 {
527         /* Most commands will finish quickly, so we start polling at
528          * very short intervals.  Sometimes the command may have to
529          * wait for VPD or expansion ROM access outside of our
530          * control, so we allow up to 100 ms. */
531         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
532         int i;
533
534         for (i = 0; i < 10; i++) {
535                 if (!falcon_spi_poll(efx))
536                         return 0;
537                 udelay(10);
538         }
539
540         for (;;) {
541                 if (!falcon_spi_poll(efx))
542                         return 0;
543                 if (time_after_eq(jiffies, timeout)) {
544                         netif_err(efx, hw, efx->net_dev,
545                                   "timed out waiting for SPI\n");
546                         return -ETIMEDOUT;
547                 }
548                 schedule_timeout_uninterruptible(1);
549         }
550 }
551
552 static int
553 falcon_spi_cmd(struct efx_nic *efx, const struct falcon_spi_device *spi,
554                unsigned int command, int address,
555                const void *in, void *out, size_t len)
556 {
557         bool addressed = (address >= 0);
558         bool reading = (out != NULL);
559         efx_oword_t reg;
560         int rc;
561
562         /* Input validation */
563         if (len > FALCON_SPI_MAX_LEN)
564                 return -EINVAL;
565
566         /* Check that previous command is not still running */
567         rc = falcon_spi_poll(efx);
568         if (rc)
569                 return rc;
570
571         /* Program address register, if we have an address */
572         if (addressed) {
573                 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
574                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
575         }
576
577         /* Program data register, if we have data */
578         if (in != NULL) {
579                 memcpy(&reg, in, len);
580                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
581         }
582
583         /* Issue read/write command */
584         EFX_POPULATE_OWORD_7(reg,
585                              FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
586                              FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
587                              FRF_AB_EE_SPI_HCMD_DABCNT, len,
588                              FRF_AB_EE_SPI_HCMD_READ, reading,
589                              FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
590                              FRF_AB_EE_SPI_HCMD_ADBCNT,
591                              (addressed ? spi->addr_len : 0),
592                              FRF_AB_EE_SPI_HCMD_ENC, command);
593         efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
594
595         /* Wait for read/write to complete */
596         rc = falcon_spi_wait(efx);
597         if (rc)
598                 return rc;
599
600         /* Read data */
601         if (out != NULL) {
602                 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
603                 memcpy(out, &reg, len);
604         }
605
606         return 0;
607 }
608
609 static inline u8
610 falcon_spi_munge_command(const struct falcon_spi_device *spi,
611                          const u8 command, const unsigned int address)
612 {
613         return command | (((address >> 8) & spi->munge_address) << 3);
614 }
615
616 static int
617 falcon_spi_read(struct efx_nic *efx, const struct falcon_spi_device *spi,
618                 loff_t start, size_t len, size_t *retlen, u8 *buffer)
619 {
620         size_t block_len, pos = 0;
621         unsigned int command;
622         int rc = 0;
623
624         while (pos < len) {
625                 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
626
627                 command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
628                 rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
629                                     buffer + pos, block_len);
630                 if (rc)
631                         break;
632                 pos += block_len;
633
634                 /* Avoid locking up the system */
635                 cond_resched();
636                 if (signal_pending(current)) {
637                         rc = -EINTR;
638                         break;
639                 }
640         }
641
642         if (retlen)
643                 *retlen = pos;
644         return rc;
645 }
646
647 #ifdef CONFIG_SFC_MTD
648
649 struct falcon_mtd_partition {
650         struct efx_mtd_partition common;
651         const struct falcon_spi_device *spi;
652         size_t offset;
653 };
654
655 #define to_falcon_mtd_partition(mtd)                            \
656         container_of(mtd, struct falcon_mtd_partition, common.mtd)
657
658 static size_t
659 falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start)
660 {
661         return min(FALCON_SPI_MAX_LEN,
662                    (spi->block_size - (start & (spi->block_size - 1))));
663 }
664
665 /* Wait up to 10 ms for buffered write completion */
666 static int
667 falcon_spi_wait_write(struct efx_nic *efx, const struct falcon_spi_device *spi)
668 {
669         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
670         u8 status;
671         int rc;
672
673         for (;;) {
674                 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
675                                     &status, sizeof(status));
676                 if (rc)
677                         return rc;
678                 if (!(status & SPI_STATUS_NRDY))
679                         return 0;
680                 if (time_after_eq(jiffies, timeout)) {
681                         netif_err(efx, hw, efx->net_dev,
682                                   "SPI write timeout on device %d"
683                                   " last status=0x%02x\n",
684                                   spi->device_id, status);
685                         return -ETIMEDOUT;
686                 }
687                 schedule_timeout_uninterruptible(1);
688         }
689 }
690
691 static int
692 falcon_spi_write(struct efx_nic *efx, const struct falcon_spi_device *spi,
693                  loff_t start, size_t len, size_t *retlen, const u8 *buffer)
694 {
695         u8 verify_buffer[FALCON_SPI_MAX_LEN];
696         size_t block_len, pos = 0;
697         unsigned int command;
698         int rc = 0;
699
700         while (pos < len) {
701                 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
702                 if (rc)
703                         break;
704
705                 block_len = min(len - pos,
706                                 falcon_spi_write_limit(spi, start + pos));
707                 command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos);
708                 rc = falcon_spi_cmd(efx, spi, command, start + pos,
709                                     buffer + pos, NULL, block_len);
710                 if (rc)
711                         break;
712
713                 rc = falcon_spi_wait_write(efx, spi);
714                 if (rc)
715                         break;
716
717                 command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
718                 rc = falcon_spi_cmd(efx, spi, command, start + pos,
719                                     NULL, verify_buffer, block_len);
720                 if (memcmp(verify_buffer, buffer + pos, block_len)) {
721                         rc = -EIO;
722                         break;
723                 }
724
725                 pos += block_len;
726
727                 /* Avoid locking up the system */
728                 cond_resched();
729                 if (signal_pending(current)) {
730                         rc = -EINTR;
731                         break;
732                 }
733         }
734
735         if (retlen)
736                 *retlen = pos;
737         return rc;
738 }
739
740 static int
741 falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible)
742 {
743         const struct falcon_spi_device *spi = part->spi;
744         struct efx_nic *efx = part->common.mtd.priv;
745         u8 status;
746         int rc, i;
747
748         /* Wait up to 4s for flash/EEPROM to finish a slow operation. */
749         for (i = 0; i < 40; i++) {
750                 __set_current_state(uninterruptible ?
751                                     TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
752                 schedule_timeout(HZ / 10);
753                 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
754                                     &status, sizeof(status));
755                 if (rc)
756                         return rc;
757                 if (!(status & SPI_STATUS_NRDY))
758                         return 0;
759                 if (signal_pending(current))
760                         return -EINTR;
761         }
762         pr_err("%s: timed out waiting for %s\n",
763                part->common.name, part->common.dev_type_name);
764         return -ETIMEDOUT;
765 }
766
767 static int
768 falcon_spi_unlock(struct efx_nic *efx, const struct falcon_spi_device *spi)
769 {
770         const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
771                                 SPI_STATUS_BP0);
772         u8 status;
773         int rc;
774
775         rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
776                             &status, sizeof(status));
777         if (rc)
778                 return rc;
779
780         if (!(status & unlock_mask))
781                 return 0; /* already unlocked */
782
783         rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
784         if (rc)
785                 return rc;
786         rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
787         if (rc)
788                 return rc;
789
790         status &= ~unlock_mask;
791         rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
792                             NULL, sizeof(status));
793         if (rc)
794                 return rc;
795         rc = falcon_spi_wait_write(efx, spi);
796         if (rc)
797                 return rc;
798
799         return 0;
800 }
801
802 #define FALCON_SPI_VERIFY_BUF_LEN 16
803
804 static int
805 falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len)
806 {
807         const struct falcon_spi_device *spi = part->spi;
808         struct efx_nic *efx = part->common.mtd.priv;
809         unsigned pos, block_len;
810         u8 empty[FALCON_SPI_VERIFY_BUF_LEN];
811         u8 buffer[FALCON_SPI_VERIFY_BUF_LEN];
812         int rc;
813
814         if (len != spi->erase_size)
815                 return -EINVAL;
816
817         if (spi->erase_command == 0)
818                 return -EOPNOTSUPP;
819
820         rc = falcon_spi_unlock(efx, spi);
821         if (rc)
822                 return rc;
823         rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
824         if (rc)
825                 return rc;
826         rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
827                             NULL, 0);
828         if (rc)
829                 return rc;
830         rc = falcon_spi_slow_wait(part, false);
831
832         /* Verify the entire region has been wiped */
833         memset(empty, 0xff, sizeof(empty));
834         for (pos = 0; pos < len; pos += block_len) {
835                 block_len = min(len - pos, sizeof(buffer));
836                 rc = falcon_spi_read(efx, spi, start + pos, block_len,
837                                      NULL, buffer);
838                 if (rc)
839                         return rc;
840                 if (memcmp(empty, buffer, block_len))
841                         return -EIO;
842
843                 /* Avoid locking up the system */
844                 cond_resched();
845                 if (signal_pending(current))
846                         return -EINTR;
847         }
848
849         return rc;
850 }
851
852 static void falcon_mtd_rename(struct efx_mtd_partition *part)
853 {
854         struct efx_nic *efx = part->mtd.priv;
855
856         snprintf(part->name, sizeof(part->name), "%s %s",
857                  efx->name, part->type_name);
858 }
859
860 static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
861                            size_t len, size_t *retlen, u8 *buffer)
862 {
863         struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
864         struct efx_nic *efx = mtd->priv;
865         struct falcon_nic_data *nic_data = efx->nic_data;
866         int rc;
867
868         rc = mutex_lock_interruptible(&nic_data->spi_lock);
869         if (rc)
870                 return rc;
871         rc = falcon_spi_read(efx, part->spi, part->offset + start,
872                              len, retlen, buffer);
873         mutex_unlock(&nic_data->spi_lock);
874         return rc;
875 }
876
877 static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
878 {
879         struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
880         struct efx_nic *efx = mtd->priv;
881         struct falcon_nic_data *nic_data = efx->nic_data;
882         int rc;
883
884         rc = mutex_lock_interruptible(&nic_data->spi_lock);
885         if (rc)
886                 return rc;
887         rc = falcon_spi_erase(part, part->offset + start, len);
888         mutex_unlock(&nic_data->spi_lock);
889         return rc;
890 }
891
892 static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
893                             size_t len, size_t *retlen, const u8 *buffer)
894 {
895         struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
896         struct efx_nic *efx = mtd->priv;
897         struct falcon_nic_data *nic_data = efx->nic_data;
898         int rc;
899
900         rc = mutex_lock_interruptible(&nic_data->spi_lock);
901         if (rc)
902                 return rc;
903         rc = falcon_spi_write(efx, part->spi, part->offset + start,
904                               len, retlen, buffer);
905         mutex_unlock(&nic_data->spi_lock);
906         return rc;
907 }
908
909 static int falcon_mtd_sync(struct mtd_info *mtd)
910 {
911         struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
912         struct efx_nic *efx = mtd->priv;
913         struct falcon_nic_data *nic_data = efx->nic_data;
914         int rc;
915
916         mutex_lock(&nic_data->spi_lock);
917         rc = falcon_spi_slow_wait(part, true);
918         mutex_unlock(&nic_data->spi_lock);
919         return rc;
920 }
921
922 static int falcon_mtd_probe(struct efx_nic *efx)
923 {
924         struct falcon_nic_data *nic_data = efx->nic_data;
925         struct falcon_mtd_partition *parts;
926         struct falcon_spi_device *spi;
927         size_t n_parts;
928         int rc = -ENODEV;
929
930         ASSERT_RTNL();
931
932         /* Allocate space for maximum number of partitions */
933         parts = kcalloc(2, sizeof(*parts), GFP_KERNEL);
934         if (!parts)
935                 return -ENOMEM;
936         n_parts = 0;
937
938         spi = &nic_data->spi_flash;
939         if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) {
940                 parts[n_parts].spi = spi;
941                 parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START;
942                 parts[n_parts].common.dev_type_name = "flash";
943                 parts[n_parts].common.type_name = "sfc_flash_bootrom";
944                 parts[n_parts].common.mtd.type = MTD_NORFLASH;
945                 parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH;
946                 parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
947                 parts[n_parts].common.mtd.erasesize = spi->erase_size;
948                 n_parts++;
949         }
950
951         spi = &nic_data->spi_eeprom;
952         if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) {
953                 parts[n_parts].spi = spi;
954                 parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START;
955                 parts[n_parts].common.dev_type_name = "EEPROM";
956                 parts[n_parts].common.type_name = "sfc_bootconfig";
957                 parts[n_parts].common.mtd.type = MTD_RAM;
958                 parts[n_parts].common.mtd.flags = MTD_CAP_RAM;
959                 parts[n_parts].common.mtd.size =
960                         min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) -
961                         FALCON_EEPROM_BOOTCONFIG_START;
962                 parts[n_parts].common.mtd.erasesize = spi->erase_size;
963                 n_parts++;
964         }
965
966         rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
967         if (rc)
968                 kfree(parts);
969         return rc;
970 }
971
972 #endif /* CONFIG_SFC_MTD */
973
974 /**************************************************************************
975  *
976  * XMAC operations
977  *
978  **************************************************************************
979  */
980
981 /* Configure the XAUI driver that is an output from Falcon */
982 static void falcon_setup_xaui(struct efx_nic *efx)
983 {
984         efx_oword_t sdctl, txdrv;
985
986         /* Move the XAUI into low power, unless there is no PHY, in
987          * which case the XAUI will have to drive a cable. */
988         if (efx->phy_type == PHY_TYPE_NONE)
989                 return;
990
991         efx_reado(efx, &sdctl, FR_AB_XX_SD_CTL);
992         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
993         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
994         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
995         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
996         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
997         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
998         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
999         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
1000         efx_writeo(efx, &sdctl, FR_AB_XX_SD_CTL);
1001
1002         EFX_POPULATE_OWORD_8(txdrv,
1003                              FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF,
1004                              FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF,
1005                              FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF,
1006                              FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF,
1007                              FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF,
1008                              FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF,
1009                              FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF,
1010                              FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF);
1011         efx_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL);
1012 }
1013
1014 int falcon_reset_xaui(struct efx_nic *efx)
1015 {
1016         struct falcon_nic_data *nic_data = efx->nic_data;
1017         efx_oword_t reg;
1018         int count;
1019
1020         /* Don't fetch MAC statistics over an XMAC reset */
1021         WARN_ON(nic_data->stats_disable_count == 0);
1022
1023         /* Start reset sequence */
1024         EFX_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1);
1025         efx_writeo(efx, &reg, FR_AB_XX_PWR_RST);
1026
1027         /* Wait up to 10 ms for completion, then reinitialise */
1028         for (count = 0; count < 1000; count++) {
1029                 efx_reado(efx, &reg, FR_AB_XX_PWR_RST);
1030                 if (EFX_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 &&
1031                     EFX_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) {
1032                         falcon_setup_xaui(efx);
1033                         return 0;
1034                 }
1035                 udelay(10);
1036         }
1037         netif_err(efx, hw, efx->net_dev,
1038                   "timed out waiting for XAUI/XGXS reset\n");
1039         return -ETIMEDOUT;
1040 }
1041
1042 static void falcon_ack_status_intr(struct efx_nic *efx)
1043 {
1044         struct falcon_nic_data *nic_data = efx->nic_data;
1045         efx_oword_t reg;
1046
1047         if ((efx_nic_rev(efx) != EFX_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx))
1048                 return;
1049
1050         /* We expect xgmii faults if the wireside link is down */
1051         if (!efx->link_state.up)
1052                 return;
1053
1054         /* We can only use this interrupt to signal the negative edge of
1055          * xaui_align [we have to poll the positive edge]. */
1056         if (nic_data->xmac_poll_required)
1057                 return;
1058
1059         efx_reado(efx, &reg, FR_AB_XM_MGT_INT_MSK);
1060 }
1061
1062 static bool falcon_xgxs_link_ok(struct efx_nic *efx)
1063 {
1064         efx_oword_t reg;
1065         bool align_done, link_ok = false;
1066         int sync_status;
1067
1068         /* Read link status */
1069         efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1070
1071         align_done = EFX_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE);
1072         sync_status = EFX_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT);
1073         if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES))
1074                 link_ok = true;
1075
1076         /* Clear link status ready for next read */
1077         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES);
1078         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES);
1079         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES);
1080         efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1081
1082         return link_ok;
1083 }
1084
1085 static bool falcon_xmac_link_ok(struct efx_nic *efx)
1086 {
1087         /*
1088          * Check MAC's XGXS link status except when using XGMII loopback
1089          * which bypasses the XGXS block.
1090          * If possible, check PHY's XGXS link status except when using
1091          * MAC loopback.
1092          */
1093         return (efx->loopback_mode == LOOPBACK_XGMII ||
1094                 falcon_xgxs_link_ok(efx)) &&
1095                 (!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) ||
1096                  LOOPBACK_INTERNAL(efx) ||
1097                  efx_mdio_phyxgxs_lane_sync(efx));
1098 }
1099
1100 static void falcon_reconfigure_xmac_core(struct efx_nic *efx)
1101 {
1102         unsigned int max_frame_len;
1103         efx_oword_t reg;
1104         bool rx_fc = !!(efx->link_state.fc & EFX_FC_RX);
1105         bool tx_fc = !!(efx->link_state.fc & EFX_FC_TX);
1106
1107         /* Configure MAC  - cut-thru mode is hard wired on */
1108         EFX_POPULATE_OWORD_3(reg,
1109                              FRF_AB_XM_RX_JUMBO_MODE, 1,
1110                              FRF_AB_XM_TX_STAT_EN, 1,
1111                              FRF_AB_XM_RX_STAT_EN, 1);
1112         efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1113
1114         /* Configure TX */
1115         EFX_POPULATE_OWORD_6(reg,
1116                              FRF_AB_XM_TXEN, 1,
1117                              FRF_AB_XM_TX_PRMBL, 1,
1118                              FRF_AB_XM_AUTO_PAD, 1,
1119                              FRF_AB_XM_TXCRC, 1,
1120                              FRF_AB_XM_FCNTL, tx_fc,
1121                              FRF_AB_XM_IPG, 0x3);
1122         efx_writeo(efx, &reg, FR_AB_XM_TX_CFG);
1123
1124         /* Configure RX */
1125         EFX_POPULATE_OWORD_5(reg,
1126                              FRF_AB_XM_RXEN, 1,
1127                              FRF_AB_XM_AUTO_DEPAD, 0,
1128                              FRF_AB_XM_ACPT_ALL_MCAST, 1,
1129                              FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter,
1130                              FRF_AB_XM_PASS_CRC_ERR, 1);
1131         efx_writeo(efx, &reg, FR_AB_XM_RX_CFG);
1132
1133         /* Set frame length */
1134         max_frame_len = EFX_MAX_FRAME_LEN(efx->net_dev->mtu);
1135         EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len);
1136         efx_writeo(efx, &reg, FR_AB_XM_RX_PARAM);
1137         EFX_POPULATE_OWORD_2(reg,
1138                              FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len,
1139                              FRF_AB_XM_TX_JUMBO_MODE, 1);
1140         efx_writeo(efx, &reg, FR_AB_XM_TX_PARAM);
1141
1142         EFX_POPULATE_OWORD_2(reg,
1143                              FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */
1144                              FRF_AB_XM_DIS_FCNTL, !rx_fc);
1145         efx_writeo(efx, &reg, FR_AB_XM_FC);
1146
1147         /* Set MAC address */
1148         memcpy(&reg, &efx->net_dev->dev_addr[0], 4);
1149         efx_writeo(efx, &reg, FR_AB_XM_ADR_LO);
1150         memcpy(&reg, &efx->net_dev->dev_addr[4], 2);
1151         efx_writeo(efx, &reg, FR_AB_XM_ADR_HI);
1152 }
1153
1154 static void falcon_reconfigure_xgxs_core(struct efx_nic *efx)
1155 {
1156         efx_oword_t reg;
1157         bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS);
1158         bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI);
1159         bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII);
1160         bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback;
1161
1162         /* XGXS block is flaky and will need to be reset if moving
1163          * into our out of XGMII, XGXS or XAUI loopbacks. */
1164         efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1165         old_xgxs_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN);
1166         old_xgmii_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN);
1167
1168         efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1169         old_xaui_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_LPBKA);
1170
1171         /* The PHY driver may have turned XAUI off */
1172         if ((xgxs_loopback != old_xgxs_loopback) ||
1173             (xaui_loopback != old_xaui_loopback) ||
1174             (xgmii_loopback != old_xgmii_loopback))
1175                 falcon_reset_xaui(efx);
1176
1177         efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1178         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG,
1179                             (xgxs_loopback || xaui_loopback) ?
1180                             FFE_AB_XX_FORCE_SIG_ALL_LANES : 0);
1181         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback);
1182         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback);
1183         efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1184
1185         efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1186         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback);
1187         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback);
1188         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback);
1189         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback);
1190         efx_writeo(efx, &reg, FR_AB_XX_SD_CTL);
1191 }
1192
1193
1194 /* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
1195 static bool falcon_xmac_link_ok_retry(struct efx_nic *efx, int tries)
1196 {
1197         bool mac_up = falcon_xmac_link_ok(efx);
1198
1199         if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS ||
1200             efx_phy_mode_disabled(efx->phy_mode))
1201                 /* XAUI link is expected to be down */
1202                 return mac_up;
1203
1204         falcon_stop_nic_stats(efx);
1205
1206         while (!mac_up && tries) {
1207                 netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n");
1208                 falcon_reset_xaui(efx);
1209                 udelay(200);
1210
1211                 mac_up = falcon_xmac_link_ok(efx);
1212                 --tries;
1213         }
1214
1215         falcon_start_nic_stats(efx);
1216
1217         return mac_up;
1218 }
1219
1220 static bool falcon_xmac_check_fault(struct efx_nic *efx)
1221 {
1222         return !falcon_xmac_link_ok_retry(efx, 5);
1223 }
1224
1225 static int falcon_reconfigure_xmac(struct efx_nic *efx)
1226 {
1227         struct falcon_nic_data *nic_data = efx->nic_data;
1228
1229         efx_farch_filter_sync_rx_mode(efx);
1230
1231         falcon_reconfigure_xgxs_core(efx);
1232         falcon_reconfigure_xmac_core(efx);
1233
1234         falcon_reconfigure_mac_wrapper(efx);
1235
1236         nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5);
1237         falcon_ack_status_intr(efx);
1238
1239         return 0;
1240 }
1241
1242 static void falcon_poll_xmac(struct efx_nic *efx)
1243 {
1244         struct falcon_nic_data *nic_data = efx->nic_data;
1245
1246         /* We expect xgmii faults if the wireside link is down */
1247         if (!efx->link_state.up || !nic_data->xmac_poll_required)
1248                 return;
1249
1250         nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1);
1251         falcon_ack_status_intr(efx);
1252 }
1253
1254 /**************************************************************************
1255  *
1256  * MAC wrapper
1257  *
1258  **************************************************************************
1259  */
1260
1261 static void falcon_push_multicast_hash(struct efx_nic *efx)
1262 {
1263         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1264
1265         WARN_ON(!mutex_is_locked(&efx->mac_lock));
1266
1267         efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
1268         efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
1269 }
1270
1271 static void falcon_reset_macs(struct efx_nic *efx)
1272 {
1273         struct falcon_nic_data *nic_data = efx->nic_data;
1274         efx_oword_t reg, mac_ctrl;
1275         int count;
1276
1277         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
1278                 /* It's not safe to use GLB_CTL_REG to reset the
1279                  * macs, so instead use the internal MAC resets
1280                  */
1281                 EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1282                 efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1283
1284                 for (count = 0; count < 10000; count++) {
1285                         efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1286                         if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1287                             0)
1288                                 return;
1289                         udelay(10);
1290                 }
1291
1292                 netif_err(efx, hw, efx->net_dev,
1293                           "timed out waiting for XMAC core reset\n");
1294         }
1295
1296         /* Mac stats will fail whist the TX fifo is draining */
1297         WARN_ON(nic_data->stats_disable_count == 0);
1298
1299         efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1300         EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
1301         efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1302
1303         efx_reado(efx, &reg, FR_AB_GLB_CTL);
1304         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1305         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1306         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1307         efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1308
1309         count = 0;
1310         while (1) {
1311                 efx_reado(efx, &reg, FR_AB_GLB_CTL);
1312                 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1313                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1314                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1315                         netif_dbg(efx, hw, efx->net_dev,
1316                                   "Completed MAC reset after %d loops\n",
1317                                   count);
1318                         break;
1319                 }
1320                 if (count > 20) {
1321                         netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
1322                         break;
1323                 }
1324                 count++;
1325                 udelay(10);
1326         }
1327
1328         /* Ensure the correct MAC is selected before statistics
1329          * are re-enabled by the caller */
1330         efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1331
1332         falcon_setup_xaui(efx);
1333 }
1334
1335 static void falcon_drain_tx_fifo(struct efx_nic *efx)
1336 {
1337         efx_oword_t reg;
1338
1339         if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
1340             (efx->loopback_mode != LOOPBACK_NONE))
1341                 return;
1342
1343         efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1344         /* There is no point in draining more than once */
1345         if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1346                 return;
1347
1348         falcon_reset_macs(efx);
1349 }
1350
1351 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1352 {
1353         efx_oword_t reg;
1354
1355         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1356                 return;
1357
1358         /* Isolate the MAC -> RX */
1359         efx_reado(efx, &reg, FR_AZ_RX_CFG);
1360         EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1361         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1362
1363         /* Isolate TX -> MAC */
1364         falcon_drain_tx_fifo(efx);
1365 }
1366
1367 static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1368 {
1369         struct efx_link_state *link_state = &efx->link_state;
1370         efx_oword_t reg;
1371         int link_speed, isolate;
1372
1373         isolate = !!ACCESS_ONCE(efx->reset_pending);
1374
1375         switch (link_state->speed) {
1376         case 10000: link_speed = 3; break;
1377         case 1000:  link_speed = 2; break;
1378         case 100:   link_speed = 1; break;
1379         default:    link_speed = 0; break;
1380         }
1381
1382         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1383          * as advertised.  Disable to ensure packets are not
1384          * indefinitely held and TX queue can be flushed at any point
1385          * while the link is down. */
1386         EFX_POPULATE_OWORD_5(reg,
1387                              FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1388                              FRF_AB_MAC_BCAD_ACPT, 1,
1389                              FRF_AB_MAC_UC_PROM, !efx->unicast_filter,
1390                              FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1391                              FRF_AB_MAC_SPEED, link_speed);
1392         /* On B0, MAC backpressure can be disabled and packets get
1393          * discarded. */
1394         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1395                 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1396                                     !link_state->up || isolate);
1397         }
1398
1399         efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1400
1401         /* Restore the multicast hash registers. */
1402         falcon_push_multicast_hash(efx);
1403
1404         efx_reado(efx, &reg, FR_AZ_RX_CFG);
1405         /* Enable XOFF signal from RX FIFO (we enabled it during NIC
1406          * initialisation but it may read back as 0) */
1407         EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1408         /* Unisolate the MAC -> RX */
1409         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1410                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
1411         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1412 }
1413
1414 static void falcon_stats_request(struct efx_nic *efx)
1415 {
1416         struct falcon_nic_data *nic_data = efx->nic_data;
1417         efx_oword_t reg;
1418
1419         WARN_ON(nic_data->stats_pending);
1420         WARN_ON(nic_data->stats_disable_count);
1421
1422         FALCON_XMAC_STATS_DMA_FLAG(efx) = 0;
1423         nic_data->stats_pending = true;
1424         wmb(); /* ensure done flag is clear */
1425
1426         /* Initiate DMA transfer of stats */
1427         EFX_POPULATE_OWORD_2(reg,
1428                              FRF_AB_MAC_STAT_DMA_CMD, 1,
1429                              FRF_AB_MAC_STAT_DMA_ADR,
1430                              efx->stats_buffer.dma_addr);
1431         efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
1432
1433         mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
1434 }
1435
1436 static void falcon_stats_complete(struct efx_nic *efx)
1437 {
1438         struct falcon_nic_data *nic_data = efx->nic_data;
1439
1440         if (!nic_data->stats_pending)
1441                 return;
1442
1443         nic_data->stats_pending = false;
1444         if (FALCON_XMAC_STATS_DMA_FLAG(efx)) {
1445                 rmb(); /* read the done flag before the stats */
1446                 efx_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT,
1447                                      falcon_stat_mask, nic_data->stats,
1448                                      efx->stats_buffer.addr, true);
1449         } else {
1450                 netif_err(efx, hw, efx->net_dev,
1451                           "timed out waiting for statistics\n");
1452         }
1453 }
1454
1455 static void falcon_stats_timer_func(unsigned long context)
1456 {
1457         struct efx_nic *efx = (struct efx_nic *)context;
1458         struct falcon_nic_data *nic_data = efx->nic_data;
1459
1460         spin_lock(&efx->stats_lock);
1461
1462         falcon_stats_complete(efx);
1463         if (nic_data->stats_disable_count == 0)
1464                 falcon_stats_request(efx);
1465
1466         spin_unlock(&efx->stats_lock);
1467 }
1468
1469 static bool falcon_loopback_link_poll(struct efx_nic *efx)
1470 {
1471         struct efx_link_state old_state = efx->link_state;
1472
1473         WARN_ON(!mutex_is_locked(&efx->mac_lock));
1474         WARN_ON(!LOOPBACK_INTERNAL(efx));
1475
1476         efx->link_state.fd = true;
1477         efx->link_state.fc = efx->wanted_fc;
1478         efx->link_state.up = true;
1479         efx->link_state.speed = 10000;
1480
1481         return !efx_link_state_equal(&efx->link_state, &old_state);
1482 }
1483
1484 static int falcon_reconfigure_port(struct efx_nic *efx)
1485 {
1486         int rc;
1487
1488         WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
1489
1490         /* Poll the PHY link state *before* reconfiguring it. This means we
1491          * will pick up the correct speed (in loopback) to select the correct
1492          * MAC.
1493          */
1494         if (LOOPBACK_INTERNAL(efx))
1495                 falcon_loopback_link_poll(efx);
1496         else
1497                 efx->phy_op->poll(efx);
1498
1499         falcon_stop_nic_stats(efx);
1500         falcon_deconfigure_mac_wrapper(efx);
1501
1502         falcon_reset_macs(efx);
1503
1504         efx->phy_op->reconfigure(efx);
1505         rc = falcon_reconfigure_xmac(efx);
1506         BUG_ON(rc);
1507
1508         falcon_start_nic_stats(efx);
1509
1510         /* Synchronise efx->link_state with the kernel */
1511         efx_link_status_changed(efx);
1512
1513         return 0;
1514 }
1515
1516 /* TX flow control may automatically turn itself off if the link
1517  * partner (intermittently) stops responding to pause frames. There
1518  * isn't any indication that this has happened, so the best we do is
1519  * leave it up to the user to spot this and fix it by cycling transmit
1520  * flow control on this end.
1521  */
1522
1523 static void falcon_a1_prepare_enable_fc_tx(struct efx_nic *efx)
1524 {
1525         /* Schedule a reset to recover */
1526         efx_schedule_reset(efx, RESET_TYPE_INVISIBLE);
1527 }
1528
1529 static void falcon_b0_prepare_enable_fc_tx(struct efx_nic *efx)
1530 {
1531         /* Recover by resetting the EM block */
1532         falcon_stop_nic_stats(efx);
1533         falcon_drain_tx_fifo(efx);
1534         falcon_reconfigure_xmac(efx);
1535         falcon_start_nic_stats(efx);
1536 }
1537
1538 /**************************************************************************
1539  *
1540  * PHY access via GMII
1541  *
1542  **************************************************************************
1543  */
1544
1545 /* Wait for GMII access to complete */
1546 static int falcon_gmii_wait(struct efx_nic *efx)
1547 {
1548         efx_oword_t md_stat;
1549         int count;
1550
1551         /* wait up to 50ms - taken max from datasheet */
1552         for (count = 0; count < 5000; count++) {
1553                 efx_reado(efx, &md_stat, FR_AB_MD_STAT);
1554                 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
1555                         if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
1556                             EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
1557                                 netif_err(efx, hw, efx->net_dev,
1558                                           "error from GMII access "
1559                                           EFX_OWORD_FMT"\n",
1560                                           EFX_OWORD_VAL(md_stat));
1561                                 return -EIO;
1562                         }
1563                         return 0;
1564                 }
1565                 udelay(10);
1566         }
1567         netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
1568         return -ETIMEDOUT;
1569 }
1570
1571 /* Write an MDIO register of a PHY connected to Falcon. */
1572 static int falcon_mdio_write(struct net_device *net_dev,
1573                              int prtad, int devad, u16 addr, u16 value)
1574 {
1575         struct efx_nic *efx = netdev_priv(net_dev);
1576         struct falcon_nic_data *nic_data = efx->nic_data;
1577         efx_oword_t reg;
1578         int rc;
1579
1580         netif_vdbg(efx, hw, efx->net_dev,
1581                    "writing MDIO %d register %d.%d with 0x%04x\n",
1582                     prtad, devad, addr, value);
1583
1584         mutex_lock(&nic_data->mdio_lock);
1585
1586         /* Check MDIO not currently being accessed */
1587         rc = falcon_gmii_wait(efx);
1588         if (rc)
1589                 goto out;
1590
1591         /* Write the address/ID register */
1592         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1593         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1594
1595         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1596                              FRF_AB_MD_DEV_ADR, devad);
1597         efx_writeo(efx, &reg, FR_AB_MD_ID);
1598
1599         /* Write data */
1600         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
1601         efx_writeo(efx, &reg, FR_AB_MD_TXD);
1602
1603         EFX_POPULATE_OWORD_2(reg,
1604                              FRF_AB_MD_WRC, 1,
1605                              FRF_AB_MD_GC, 0);
1606         efx_writeo(efx, &reg, FR_AB_MD_CS);
1607
1608         /* Wait for data to be written */
1609         rc = falcon_gmii_wait(efx);
1610         if (rc) {
1611                 /* Abort the write operation */
1612                 EFX_POPULATE_OWORD_2(reg,
1613                                      FRF_AB_MD_WRC, 0,
1614                                      FRF_AB_MD_GC, 1);
1615                 efx_writeo(efx, &reg, FR_AB_MD_CS);
1616                 udelay(10);
1617         }
1618
1619 out:
1620         mutex_unlock(&nic_data->mdio_lock);
1621         return rc;
1622 }
1623
1624 /* Read an MDIO register of a PHY connected to Falcon. */
1625 static int falcon_mdio_read(struct net_device *net_dev,
1626                             int prtad, int devad, u16 addr)
1627 {
1628         struct efx_nic *efx = netdev_priv(net_dev);
1629         struct falcon_nic_data *nic_data = efx->nic_data;
1630         efx_oword_t reg;
1631         int rc;
1632
1633         mutex_lock(&nic_data->mdio_lock);
1634
1635         /* Check MDIO not currently being accessed */
1636         rc = falcon_gmii_wait(efx);
1637         if (rc)
1638                 goto out;
1639
1640         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1641         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1642
1643         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1644                              FRF_AB_MD_DEV_ADR, devad);
1645         efx_writeo(efx, &reg, FR_AB_MD_ID);
1646
1647         /* Request data to be read */
1648         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
1649         efx_writeo(efx, &reg, FR_AB_MD_CS);
1650
1651         /* Wait for data to become available */
1652         rc = falcon_gmii_wait(efx);
1653         if (rc == 0) {
1654                 efx_reado(efx, &reg, FR_AB_MD_RXD);
1655                 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
1656                 netif_vdbg(efx, hw, efx->net_dev,
1657                            "read from MDIO %d register %d.%d, got %04x\n",
1658                            prtad, devad, addr, rc);
1659         } else {
1660                 /* Abort the read operation */
1661                 EFX_POPULATE_OWORD_2(reg,
1662                                      FRF_AB_MD_RIC, 0,
1663                                      FRF_AB_MD_GC, 1);
1664                 efx_writeo(efx, &reg, FR_AB_MD_CS);
1665
1666                 netif_dbg(efx, hw, efx->net_dev,
1667                           "read from MDIO %d register %d.%d, got error %d\n",
1668                           prtad, devad, addr, rc);
1669         }
1670
1671 out:
1672         mutex_unlock(&nic_data->mdio_lock);
1673         return rc;
1674 }
1675
1676 /* This call is responsible for hooking in the MAC and PHY operations */
1677 static int falcon_probe_port(struct efx_nic *efx)
1678 {
1679         struct falcon_nic_data *nic_data = efx->nic_data;
1680         int rc;
1681
1682         switch (efx->phy_type) {
1683         case PHY_TYPE_SFX7101:
1684                 efx->phy_op = &falcon_sfx7101_phy_ops;
1685                 break;
1686         case PHY_TYPE_QT2022C2:
1687         case PHY_TYPE_QT2025C:
1688                 efx->phy_op = &falcon_qt202x_phy_ops;
1689                 break;
1690         case PHY_TYPE_TXC43128:
1691                 efx->phy_op = &falcon_txc_phy_ops;
1692                 break;
1693         default:
1694                 netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
1695                           efx->phy_type);
1696                 return -ENODEV;
1697         }
1698
1699         /* Fill out MDIO structure and loopback modes */
1700         mutex_init(&nic_data->mdio_lock);
1701         efx->mdio.mdio_read = falcon_mdio_read;
1702         efx->mdio.mdio_write = falcon_mdio_write;
1703         rc = efx->phy_op->probe(efx);
1704         if (rc != 0)
1705                 return rc;
1706
1707         /* Initial assumption */
1708         efx->link_state.speed = 10000;
1709         efx->link_state.fd = true;
1710
1711         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
1712         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1713                 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
1714         else
1715                 efx->wanted_fc = EFX_FC_RX;
1716         if (efx->mdio.mmds & MDIO_DEVS_AN)
1717                 efx->wanted_fc |= EFX_FC_AUTO;
1718
1719         /* Allocate buffer for stats */
1720         rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
1721                                   FALCON_MAC_STATS_SIZE, GFP_KERNEL);
1722         if (rc)
1723                 return rc;
1724         netif_dbg(efx, probe, efx->net_dev,
1725                   "stats buffer at %llx (virt %p phys %llx)\n",
1726                   (u64)efx->stats_buffer.dma_addr,
1727                   efx->stats_buffer.addr,
1728                   (u64)virt_to_phys(efx->stats_buffer.addr));
1729
1730         return 0;
1731 }
1732
1733 static void falcon_remove_port(struct efx_nic *efx)
1734 {
1735         efx->phy_op->remove(efx);
1736         efx_nic_free_buffer(efx, &efx->stats_buffer);
1737 }
1738
1739 /* Global events are basically PHY events */
1740 static bool
1741 falcon_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
1742 {
1743         struct efx_nic *efx = channel->efx;
1744         struct falcon_nic_data *nic_data = efx->nic_data;
1745
1746         if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
1747             EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
1748             EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
1749                 /* Ignored */
1750                 return true;
1751
1752         if ((efx_nic_rev(efx) == EFX_REV_FALCON_B0) &&
1753             EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
1754                 nic_data->xmac_poll_required = true;
1755                 return true;
1756         }
1757
1758         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
1759             EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
1760             EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
1761                 netif_err(efx, rx_err, efx->net_dev,
1762                           "channel %d seen global RX_RESET event. Resetting.\n",
1763                           channel->channel);
1764
1765                 atomic_inc(&efx->rx_reset);
1766                 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
1767                                    RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1768                 return true;
1769         }
1770
1771         return false;
1772 }
1773
1774 /**************************************************************************
1775  *
1776  * Falcon test code
1777  *
1778  **************************************************************************/
1779
1780 static int
1781 falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
1782 {
1783         struct falcon_nic_data *nic_data = efx->nic_data;
1784         struct falcon_nvconfig *nvconfig;
1785         struct falcon_spi_device *spi;
1786         void *region;
1787         int rc, magic_num, struct_ver;
1788         __le16 *word, *limit;
1789         u32 csum;
1790
1791         if (falcon_spi_present(&nic_data->spi_flash))
1792                 spi = &nic_data->spi_flash;
1793         else if (falcon_spi_present(&nic_data->spi_eeprom))
1794                 spi = &nic_data->spi_eeprom;
1795         else
1796                 return -EINVAL;
1797
1798         region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
1799         if (!region)
1800                 return -ENOMEM;
1801         nvconfig = region + FALCON_NVCONFIG_OFFSET;
1802
1803         mutex_lock(&nic_data->spi_lock);
1804         rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
1805         mutex_unlock(&nic_data->spi_lock);
1806         if (rc) {
1807                 netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
1808                           falcon_spi_present(&nic_data->spi_flash) ?
1809                           "flash" : "EEPROM");
1810                 rc = -EIO;
1811                 goto out;
1812         }
1813
1814         magic_num = le16_to_cpu(nvconfig->board_magic_num);
1815         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
1816
1817         rc = -EINVAL;
1818         if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
1819                 netif_err(efx, hw, efx->net_dev,
1820                           "NVRAM bad magic 0x%x\n", magic_num);
1821                 goto out;
1822         }
1823         if (struct_ver < 2) {
1824                 netif_err(efx, hw, efx->net_dev,
1825                           "NVRAM has ancient version 0x%x\n", struct_ver);
1826                 goto out;
1827         } else if (struct_ver < 4) {
1828                 word = &nvconfig->board_magic_num;
1829                 limit = (__le16 *) (nvconfig + 1);
1830         } else {
1831                 word = region;
1832                 limit = region + FALCON_NVCONFIG_END;
1833         }
1834         for (csum = 0; word < limit; ++word)
1835                 csum += le16_to_cpu(*word);
1836
1837         if (~csum & 0xffff) {
1838                 netif_err(efx, hw, efx->net_dev,
1839                           "NVRAM has incorrect checksum\n");
1840                 goto out;
1841         }
1842
1843         rc = 0;
1844         if (nvconfig_out)
1845                 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
1846
1847  out:
1848         kfree(region);
1849         return rc;
1850 }
1851
1852 static int falcon_test_nvram(struct efx_nic *efx)
1853 {
1854         return falcon_read_nvram(efx, NULL);
1855 }
1856
1857 static const struct efx_farch_register_test falcon_b0_register_tests[] = {
1858         { FR_AZ_ADR_REGION,
1859           EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1860         { FR_AZ_RX_CFG,
1861           EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1862         { FR_AZ_TX_CFG,
1863           EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1864         { FR_AZ_TX_RESERVED,
1865           EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1866         { FR_AB_MAC_CTRL,
1867           EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1868         { FR_AZ_SRM_TX_DC_CFG,
1869           EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1870         { FR_AZ_RX_DC_CFG,
1871           EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1872         { FR_AZ_RX_DC_PF_WM,
1873           EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1874         { FR_BZ_DP_CTRL,
1875           EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1876         { FR_AB_GM_CFG2,
1877           EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1878         { FR_AB_GMF_CFG0,
1879           EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1880         { FR_AB_XM_GLB_CFG,
1881           EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1882         { FR_AB_XM_TX_CFG,
1883           EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1884         { FR_AB_XM_RX_CFG,
1885           EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1886         { FR_AB_XM_RX_PARAM,
1887           EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1888         { FR_AB_XM_FC,
1889           EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1890         { FR_AB_XM_ADR_LO,
1891           EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1892         { FR_AB_XX_SD_CTL,
1893           EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1894 };
1895
1896 static int
1897 falcon_b0_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
1898 {
1899         enum reset_type reset_method = RESET_TYPE_INVISIBLE;
1900         int rc, rc2;
1901
1902         mutex_lock(&efx->mac_lock);
1903         if (efx->loopback_modes) {
1904                 /* We need the 312 clock from the PHY to test the XMAC
1905                  * registers, so move into XGMII loopback if available */
1906                 if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
1907                         efx->loopback_mode = LOOPBACK_XGMII;
1908                 else
1909                         efx->loopback_mode = __ffs(efx->loopback_modes);
1910         }
1911         __efx_reconfigure_port(efx);
1912         mutex_unlock(&efx->mac_lock);
1913
1914         efx_reset_down(efx, reset_method);
1915
1916         tests->registers =
1917                 efx_farch_test_registers(efx, falcon_b0_register_tests,
1918                                          ARRAY_SIZE(falcon_b0_register_tests))
1919                 ? -1 : 1;
1920
1921         rc = falcon_reset_hw(efx, reset_method);
1922         rc2 = efx_reset_up(efx, reset_method, rc == 0);
1923         return rc ? rc : rc2;
1924 }
1925
1926 /**************************************************************************
1927  *
1928  * Device reset
1929  *
1930  **************************************************************************
1931  */
1932
1933 static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1934 {
1935         switch (reason) {
1936         case RESET_TYPE_RX_RECOVERY:
1937         case RESET_TYPE_DMA_ERROR:
1938         case RESET_TYPE_TX_SKIP:
1939                 /* These can occasionally occur due to hardware bugs.
1940                  * We try to reset without disrupting the link.
1941                  */
1942                 return RESET_TYPE_INVISIBLE;
1943         default:
1944                 return RESET_TYPE_ALL;
1945         }
1946 }
1947
1948 static int falcon_map_reset_flags(u32 *flags)
1949 {
1950         enum {
1951                 FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1952                                           ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1953                 FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1954                 FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1955         };
1956
1957         if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1958                 *flags &= ~FALCON_RESET_WORLD;
1959                 return RESET_TYPE_WORLD;
1960         }
1961
1962         if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1963                 *flags &= ~FALCON_RESET_ALL;
1964                 return RESET_TYPE_ALL;
1965         }
1966
1967         if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1968                 *flags &= ~FALCON_RESET_INVISIBLE;
1969                 return RESET_TYPE_INVISIBLE;
1970         }
1971
1972         return -EINVAL;
1973 }
1974
1975 /* Resets NIC to known state.  This routine must be called in process
1976  * context and is allowed to sleep. */
1977 static int __falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1978 {
1979         struct falcon_nic_data *nic_data = efx->nic_data;
1980         efx_oword_t glb_ctl_reg_ker;
1981         int rc;
1982
1983         netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1984                   RESET_TYPE(method));
1985
1986         /* Initiate device reset */
1987         if (method == RESET_TYPE_WORLD) {
1988                 rc = pci_save_state(efx->pci_dev);
1989                 if (rc) {
1990                         netif_err(efx, drv, efx->net_dev,
1991                                   "failed to backup PCI state of primary "
1992                                   "function prior to hardware reset\n");
1993                         goto fail1;
1994                 }
1995                 if (efx_nic_is_dual_func(efx)) {
1996                         rc = pci_save_state(nic_data->pci_dev2);
1997                         if (rc) {
1998                                 netif_err(efx, drv, efx->net_dev,
1999                                           "failed to backup PCI state of "
2000                                           "secondary function prior to "
2001                                           "hardware reset\n");
2002                                 goto fail2;
2003                         }
2004                 }
2005
2006                 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2007                                      FRF_AB_EXT_PHY_RST_DUR,
2008                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
2009                                      FRF_AB_SWRST, 1);
2010         } else {
2011                 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2012                                      /* exclude PHY from "invisible" reset */
2013                                      FRF_AB_EXT_PHY_RST_CTL,
2014                                      method == RESET_TYPE_INVISIBLE,
2015                                      /* exclude EEPROM/flash and PCIe */
2016                                      FRF_AB_PCIE_CORE_RST_CTL, 1,
2017                                      FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2018                                      FRF_AB_PCIE_SD_RST_CTL, 1,
2019                                      FRF_AB_EE_RST_CTL, 1,
2020                                      FRF_AB_EXT_PHY_RST_DUR,
2021                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
2022                                      FRF_AB_SWRST, 1);
2023         }
2024         efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2025
2026         netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
2027         schedule_timeout_uninterruptible(HZ / 20);
2028
2029         /* Restore PCI configuration if needed */
2030         if (method == RESET_TYPE_WORLD) {
2031                 if (efx_nic_is_dual_func(efx))
2032                         pci_restore_state(nic_data->pci_dev2);
2033                 pci_restore_state(efx->pci_dev);
2034                 netif_dbg(efx, drv, efx->net_dev,
2035                           "successfully restored PCI config\n");
2036         }
2037
2038         /* Assert that reset complete */
2039         efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2040         if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2041                 rc = -ETIMEDOUT;
2042                 netif_err(efx, hw, efx->net_dev,
2043                           "timed out waiting for hardware reset\n");
2044                 goto fail3;
2045         }
2046         netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
2047
2048         return 0;
2049
2050         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2051 fail2:
2052         pci_restore_state(efx->pci_dev);
2053 fail1:
2054 fail3:
2055         return rc;
2056 }
2057
2058 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2059 {
2060         struct falcon_nic_data *nic_data = efx->nic_data;
2061         int rc;
2062
2063         mutex_lock(&nic_data->spi_lock);
2064         rc = __falcon_reset_hw(efx, method);
2065         mutex_unlock(&nic_data->spi_lock);
2066
2067         return rc;
2068 }
2069
2070 static void falcon_monitor(struct efx_nic *efx)
2071 {
2072         bool link_changed;
2073         int rc;
2074
2075         BUG_ON(!mutex_is_locked(&efx->mac_lock));
2076
2077         rc = falcon_board(efx)->type->monitor(efx);
2078         if (rc) {
2079                 netif_err(efx, hw, efx->net_dev,
2080                           "Board sensor %s; shutting down PHY\n",
2081                           (rc == -ERANGE) ? "reported fault" : "failed");
2082                 efx->phy_mode |= PHY_MODE_LOW_POWER;
2083                 rc = __efx_reconfigure_port(efx);
2084                 WARN_ON(rc);
2085         }
2086
2087         if (LOOPBACK_INTERNAL(efx))
2088                 link_changed = falcon_loopback_link_poll(efx);
2089         else
2090                 link_changed = efx->phy_op->poll(efx);
2091
2092         if (link_changed) {
2093                 falcon_stop_nic_stats(efx);
2094                 falcon_deconfigure_mac_wrapper(efx);
2095
2096                 falcon_reset_macs(efx);
2097                 rc = falcon_reconfigure_xmac(efx);
2098                 BUG_ON(rc);
2099
2100                 falcon_start_nic_stats(efx);
2101
2102                 efx_link_status_changed(efx);
2103         }
2104
2105         falcon_poll_xmac(efx);
2106 }
2107
2108 /* Zeroes out the SRAM contents.  This routine must be called in
2109  * process context and is allowed to sleep.
2110  */
2111 static int falcon_reset_sram(struct efx_nic *efx)
2112 {
2113         efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2114         int count;
2115
2116         /* Set the SRAM wake/sleep GPIO appropriately. */
2117         efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2118         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2119         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2120         efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2121
2122         /* Initiate SRAM reset */
2123         EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2124                              FRF_AZ_SRM_INIT_EN, 1,
2125                              FRF_AZ_SRM_NB_SZ, 0);
2126         efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2127
2128         /* Wait for SRAM reset to complete */
2129         count = 0;
2130         do {
2131                 netif_dbg(efx, hw, efx->net_dev,
2132                           "waiting for SRAM reset (attempt %d)...\n", count);
2133
2134                 /* SRAM reset is slow; expect around 16ms */
2135                 schedule_timeout_uninterruptible(HZ / 50);
2136
2137                 /* Check for reset complete */
2138                 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2139                 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2140                         netif_dbg(efx, hw, efx->net_dev,
2141                                   "SRAM reset complete\n");
2142
2143                         return 0;
2144                 }
2145         } while (++count < 20); /* wait up to 0.4 sec */
2146
2147         netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
2148         return -ETIMEDOUT;
2149 }
2150
2151 static void falcon_spi_device_init(struct efx_nic *efx,
2152                                   struct falcon_spi_device *spi_device,
2153                                   unsigned int device_id, u32 device_type)
2154 {
2155         if (device_type != 0) {
2156                 spi_device->device_id = device_id;
2157                 spi_device->size =
2158                         1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2159                 spi_device->addr_len =
2160                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2161                 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2162                                              spi_device->addr_len == 1);
2163                 spi_device->erase_command =
2164                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2165                 spi_device->erase_size =
2166                         1 << SPI_DEV_TYPE_FIELD(device_type,
2167                                                 SPI_DEV_TYPE_ERASE_SIZE);
2168                 spi_device->block_size =
2169                         1 << SPI_DEV_TYPE_FIELD(device_type,
2170                                                 SPI_DEV_TYPE_BLOCK_SIZE);
2171         } else {
2172                 spi_device->size = 0;
2173         }
2174 }
2175
2176 /* Extract non-volatile configuration */
2177 static int falcon_probe_nvconfig(struct efx_nic *efx)
2178 {
2179         struct falcon_nic_data *nic_data = efx->nic_data;
2180         struct falcon_nvconfig *nvconfig;
2181         int rc;
2182
2183         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2184         if (!nvconfig)
2185                 return -ENOMEM;
2186
2187         rc = falcon_read_nvram(efx, nvconfig);
2188         if (rc)
2189                 goto out;
2190
2191         efx->phy_type = nvconfig->board_v2.port0_phy_type;
2192         efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
2193
2194         if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2195                 falcon_spi_device_init(
2196                         efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2197                         le32_to_cpu(nvconfig->board_v3
2198                                     .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
2199                 falcon_spi_device_init(
2200                         efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2201                         le32_to_cpu(nvconfig->board_v3
2202                                     .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
2203         }
2204
2205         /* Read the MAC addresses */
2206         ether_addr_copy(efx->net_dev->perm_addr, nvconfig->mac_address[0]);
2207
2208         netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
2209                   efx->phy_type, efx->mdio.prtad);
2210
2211         rc = falcon_probe_board(efx,
2212                                 le16_to_cpu(nvconfig->board_v2.board_revision));
2213 out:
2214         kfree(nvconfig);
2215         return rc;
2216 }
2217
2218 static int falcon_dimension_resources(struct efx_nic *efx)
2219 {
2220         efx->rx_dc_base = 0x20000;
2221         efx->tx_dc_base = 0x26000;
2222         return 0;
2223 }
2224
2225 /* Probe all SPI devices on the NIC */
2226 static void falcon_probe_spi_devices(struct efx_nic *efx)
2227 {
2228         struct falcon_nic_data *nic_data = efx->nic_data;
2229         efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2230         int boot_dev;
2231
2232         efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2233         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2234         efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2235
2236         if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2237                 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2238                             FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2239                 netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
2240                           boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
2241                           "flash" : "EEPROM");
2242         } else {
2243                 /* Disable VPD and set clock dividers to safe
2244                  * values for initial programming. */
2245                 boot_dev = -1;
2246                 netif_dbg(efx, probe, efx->net_dev,
2247                           "Booted from internal ASIC settings;"
2248                           " setting SPI config\n");
2249                 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2250                                      /* 125 MHz / 7 ~= 20 MHz */
2251                                      FRF_AB_EE_SF_CLOCK_DIV, 7,
2252                                      /* 125 MHz / 63 ~= 2 MHz */
2253                                      FRF_AB_EE_EE_CLOCK_DIV, 63);
2254                 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2255         }
2256
2257         mutex_init(&nic_data->spi_lock);
2258
2259         if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2260                 falcon_spi_device_init(efx, &nic_data->spi_flash,
2261                                        FFE_AB_SPI_DEVICE_FLASH,
2262                                        default_flash_type);
2263         if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2264                 falcon_spi_device_init(efx, &nic_data->spi_eeprom,
2265                                        FFE_AB_SPI_DEVICE_EEPROM,
2266                                        large_eeprom_type);
2267 }
2268
2269 static unsigned int falcon_a1_mem_map_size(struct efx_nic *efx)
2270 {
2271         return 0x20000;
2272 }
2273
2274 static unsigned int falcon_b0_mem_map_size(struct efx_nic *efx)
2275 {
2276         /* Map everything up to and including the RSS indirection table.
2277          * The PCI core takes care of mapping the MSI-X tables.
2278          */
2279         return FR_BZ_RX_INDIRECTION_TBL +
2280                 FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS;
2281 }
2282
2283 static int falcon_probe_nic(struct efx_nic *efx)
2284 {
2285         struct falcon_nic_data *nic_data;
2286         struct falcon_board *board;
2287         int rc;
2288
2289         efx->primary = efx; /* only one usable function per controller */
2290
2291         /* Allocate storage for hardware specific data */
2292         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2293         if (!nic_data)
2294                 return -ENOMEM;
2295         efx->nic_data = nic_data;
2296
2297         rc = -ENODEV;
2298
2299         if (efx_farch_fpga_ver(efx) != 0) {
2300                 netif_err(efx, probe, efx->net_dev,
2301                           "Falcon FPGA not supported\n");
2302                 goto fail1;
2303         }
2304
2305         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2306                 efx_oword_t nic_stat;
2307                 struct pci_dev *dev;
2308                 u8 pci_rev = efx->pci_dev->revision;
2309
2310                 if ((pci_rev == 0xff) || (pci_rev == 0)) {
2311                         netif_err(efx, probe, efx->net_dev,
2312                                   "Falcon rev A0 not supported\n");
2313                         goto fail1;
2314                 }
2315                 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2316                 if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
2317                         netif_err(efx, probe, efx->net_dev,
2318                                   "Falcon rev A1 1G not supported\n");
2319                         goto fail1;
2320                 }
2321                 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2322                         netif_err(efx, probe, efx->net_dev,
2323                                   "Falcon rev A1 PCI-X not supported\n");
2324                         goto fail1;
2325                 }
2326
2327                 dev = pci_dev_get(efx->pci_dev);
2328                 while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
2329                                              PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
2330                                              dev))) {
2331                         if (dev->bus == efx->pci_dev->bus &&
2332                             dev->devfn == efx->pci_dev->devfn + 1) {
2333                                 nic_data->pci_dev2 = dev;
2334                                 break;
2335                         }
2336                 }
2337                 if (!nic_data->pci_dev2) {
2338                         netif_err(efx, probe, efx->net_dev,
2339                                   "failed to find secondary function\n");
2340                         rc = -ENODEV;
2341                         goto fail2;
2342                 }
2343         }
2344
2345         /* Now we can reset the NIC */
2346         rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
2347         if (rc) {
2348                 netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
2349                 goto fail3;
2350         }
2351
2352         /* Allocate memory for INT_KER */
2353         rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t),
2354                                   GFP_KERNEL);
2355         if (rc)
2356                 goto fail4;
2357         BUG_ON(efx->irq_status.dma_addr & 0x0f);
2358
2359         netif_dbg(efx, probe, efx->net_dev,
2360                   "INT_KER at %llx (virt %p phys %llx)\n",
2361                   (u64)efx->irq_status.dma_addr,
2362                   efx->irq_status.addr,
2363                   (u64)virt_to_phys(efx->irq_status.addr));
2364
2365         falcon_probe_spi_devices(efx);
2366
2367         /* Read in the non-volatile configuration */
2368         rc = falcon_probe_nvconfig(efx);
2369         if (rc) {
2370                 if (rc == -EINVAL)
2371                         netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
2372                 goto fail5;
2373         }
2374
2375         efx->max_channels = (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ? 4 :
2376                              EFX_MAX_CHANNELS);
2377         efx->max_tx_channels = efx->max_channels;
2378         efx->timer_quantum_ns = 4968; /* 621 cycles */
2379         efx->timer_max_ns = efx->type->timer_period_max *
2380                             efx->timer_quantum_ns;
2381
2382         /* Initialise I2C adapter */
2383         board = falcon_board(efx);
2384         board->i2c_adap.owner = THIS_MODULE;
2385         board->i2c_data = falcon_i2c_bit_operations;
2386         board->i2c_data.data = efx;
2387         board->i2c_adap.algo_data = &board->i2c_data;
2388         board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2389         strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2390                 sizeof(board->i2c_adap.name));
2391         rc = i2c_bit_add_bus(&board->i2c_adap);
2392         if (rc)
2393                 goto fail5;
2394
2395         rc = falcon_board(efx)->type->init(efx);
2396         if (rc) {
2397                 netif_err(efx, probe, efx->net_dev,
2398                           "failed to initialise board\n");
2399                 goto fail6;
2400         }
2401
2402         nic_data->stats_disable_count = 1;
2403         setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
2404                     (unsigned long)efx);
2405
2406         return 0;
2407
2408  fail6:
2409         i2c_del_adapter(&board->i2c_adap);
2410         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2411  fail5:
2412         efx_nic_free_buffer(efx, &efx->irq_status);
2413  fail4:
2414  fail3:
2415         if (nic_data->pci_dev2) {
2416                 pci_dev_put(nic_data->pci_dev2);
2417                 nic_data->pci_dev2 = NULL;
2418         }
2419  fail2:
2420  fail1:
2421         kfree(efx->nic_data);
2422         return rc;
2423 }
2424
2425 static void falcon_init_rx_cfg(struct efx_nic *efx)
2426 {
2427         /* RX control FIFO thresholds (32 entries) */
2428         const unsigned ctrl_xon_thr = 20;
2429         const unsigned ctrl_xoff_thr = 25;
2430         efx_oword_t reg;
2431
2432         efx_reado(efx, &reg, FR_AZ_RX_CFG);
2433         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2434                 /* Data FIFO size is 5.5K.  The RX DMA engine only
2435                  * supports scattering for user-mode queues, but will
2436                  * split DMA writes at intervals of RX_USR_BUF_SIZE
2437                  * (32-byte units) even for kernel-mode queues.  We
2438                  * set it to be so large that that never happens.
2439                  */
2440                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2441                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2442                                     (3 * 4096) >> 5);
2443                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
2444                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
2445                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2446                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2447         } else {
2448                 /* Data FIFO size is 80K; register fields moved */
2449                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2450                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2451                                     EFX_RX_USR_BUF_SIZE >> 5);
2452                 /* Send XON and XOFF at ~3 * max MTU away from empty/full */
2453                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
2454                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
2455                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2456                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2457                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2458
2459                 /* Enable hash insertion. This is broken for the
2460                  * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
2461                  * IPv4 hashes. */
2462                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
2463                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
2464                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
2465         }
2466         /* Always enable XOFF signal from RX FIFO.  We enable
2467          * or disable transmission of pause frames at the MAC. */
2468         EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
2469         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2470 }
2471
2472 /* This call performs hardware-specific global initialisation, such as
2473  * defining the descriptor cache sizes and number of RSS channels.
2474  * It does not set up any buffers, descriptor rings or event queues.
2475  */
2476 static int falcon_init_nic(struct efx_nic *efx)
2477 {
2478         efx_oword_t temp;
2479         int rc;
2480
2481         /* Use on-chip SRAM */
2482         efx_reado(efx, &temp, FR_AB_NIC_STAT);
2483         EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2484         efx_writeo(efx, &temp, FR_AB_NIC_STAT);
2485
2486         rc = falcon_reset_sram(efx);
2487         if (rc)
2488                 return rc;
2489
2490         /* Clear the parity enables on the TX data fifos as
2491          * they produce false parity errors because of timing issues
2492          */
2493         if (EFX_WORKAROUND_5129(efx)) {
2494                 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
2495                 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2496                 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2497         }
2498
2499         if (EFX_WORKAROUND_7244(efx)) {
2500                 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
2501                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
2502                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
2503                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
2504                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
2505                 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
2506         }
2507
2508         /* XXX This is documented only for Falcon A0/A1 */
2509         /* Setup RX.  Wait for descriptor is broken and must
2510          * be disabled.  RXDP recovery shouldn't be needed, but is.
2511          */
2512         efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
2513         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
2514         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
2515         if (EFX_WORKAROUND_5583(efx))
2516                 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
2517         efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
2518
2519         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2520          * descriptors (which is bad).
2521          */
2522         efx_reado(efx, &temp, FR_AZ_TX_CFG);
2523         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
2524         efx_writeo(efx, &temp, FR_AZ_TX_CFG);
2525
2526         falcon_init_rx_cfg(efx);
2527
2528         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2529                 falcon_b0_rx_push_rss_config(efx, false, efx->rx_indir_table);
2530
2531                 /* Set destination of both TX and RX Flush events */
2532                 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
2533                 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
2534         }
2535
2536         efx_farch_init_common(efx);
2537
2538         return 0;
2539 }
2540
2541 static void falcon_remove_nic(struct efx_nic *efx)
2542 {
2543         struct falcon_nic_data *nic_data = efx->nic_data;
2544         struct falcon_board *board = falcon_board(efx);
2545
2546         board->type->fini(efx);
2547
2548         /* Remove I2C adapter and clear it in preparation for a retry */
2549         i2c_del_adapter(&board->i2c_adap);
2550         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2551
2552         efx_nic_free_buffer(efx, &efx->irq_status);
2553
2554         __falcon_reset_hw(efx, RESET_TYPE_ALL);
2555
2556         /* Release the second function after the reset */
2557         if (nic_data->pci_dev2) {
2558                 pci_dev_put(nic_data->pci_dev2);
2559                 nic_data->pci_dev2 = NULL;
2560         }
2561
2562         /* Tear down the private nic state */
2563         kfree(efx->nic_data);
2564         efx->nic_data = NULL;
2565 }
2566
2567 static size_t falcon_describe_nic_stats(struct efx_nic *efx, u8 *names)
2568 {
2569         return efx_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT,
2570                                       falcon_stat_mask, names);
2571 }
2572
2573 static size_t falcon_update_nic_stats(struct efx_nic *efx, u64 *full_stats,
2574                                       struct rtnl_link_stats64 *core_stats)
2575 {
2576         struct falcon_nic_data *nic_data = efx->nic_data;
2577         u64 *stats = nic_data->stats;
2578         efx_oword_t cnt;
2579
2580         if (!nic_data->stats_disable_count) {
2581                 efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
2582                 stats[FALCON_STAT_rx_nodesc_drop_cnt] +=
2583                         EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
2584
2585                 if (nic_data->stats_pending &&
2586                     FALCON_XMAC_STATS_DMA_FLAG(efx)) {
2587                         nic_data->stats_pending = false;
2588                         rmb(); /* read the done flag before the stats */
2589                         efx_nic_update_stats(
2590                                 falcon_stat_desc, FALCON_STAT_COUNT,
2591                                 falcon_stat_mask,
2592                                 stats, efx->stats_buffer.addr, true);
2593                 }
2594
2595                 /* Update derived statistic */
2596                 efx_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes],
2597                                      stats[FALCON_STAT_rx_bytes] -
2598                                      stats[FALCON_STAT_rx_good_bytes] -
2599                                      stats[FALCON_STAT_rx_control] * 64);
2600                 efx_update_sw_stats(efx, stats);
2601         }
2602
2603         if (full_stats)
2604                 memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT);
2605
2606         if (core_stats) {
2607                 core_stats->rx_packets = stats[FALCON_STAT_rx_packets];
2608                 core_stats->tx_packets = stats[FALCON_STAT_tx_packets];
2609                 core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes];
2610                 core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes];
2611                 core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt] +
2612                                          stats[GENERIC_STAT_rx_nodesc_trunc] +
2613                                          stats[GENERIC_STAT_rx_noskb_drops];
2614                 core_stats->multicast = stats[FALCON_STAT_rx_multicast];
2615                 core_stats->rx_length_errors =
2616                         stats[FALCON_STAT_rx_gtjumbo] +
2617                         stats[FALCON_STAT_rx_length_error];
2618                 core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad];
2619                 core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error];
2620                 core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow];
2621
2622                 core_stats->rx_errors = (core_stats->rx_length_errors +
2623                                          core_stats->rx_crc_errors +
2624                                          core_stats->rx_frame_errors +
2625                                          stats[FALCON_STAT_rx_symbol_error]);
2626         }
2627
2628         return FALCON_STAT_COUNT;
2629 }
2630
2631 void falcon_start_nic_stats(struct efx_nic *efx)
2632 {
2633         struct falcon_nic_data *nic_data = efx->nic_data;
2634
2635         spin_lock_bh(&efx->stats_lock);
2636         if (--nic_data->stats_disable_count == 0)
2637                 falcon_stats_request(efx);
2638         spin_unlock_bh(&efx->stats_lock);
2639 }
2640
2641 /* We don't acutally pull stats on falcon. Wait 10ms so that
2642  * they arrive when we call this just after start_stats
2643  */
2644 static void falcon_pull_nic_stats(struct efx_nic *efx)
2645 {
2646         msleep(10);
2647 }
2648
2649 void falcon_stop_nic_stats(struct efx_nic *efx)
2650 {
2651         struct falcon_nic_data *nic_data = efx->nic_data;
2652         int i;
2653
2654         might_sleep();
2655
2656         spin_lock_bh(&efx->stats_lock);
2657         ++nic_data->stats_disable_count;
2658         spin_unlock_bh(&efx->stats_lock);
2659
2660         del_timer_sync(&nic_data->stats_timer);
2661
2662         /* Wait enough time for the most recent transfer to
2663          * complete. */
2664         for (i = 0; i < 4 && nic_data->stats_pending; i++) {
2665                 if (FALCON_XMAC_STATS_DMA_FLAG(efx))
2666                         break;
2667                 msleep(1);
2668         }
2669
2670         spin_lock_bh(&efx->stats_lock);
2671         falcon_stats_complete(efx);
2672         spin_unlock_bh(&efx->stats_lock);
2673 }
2674
2675 static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
2676 {
2677         falcon_board(efx)->type->set_id_led(efx, mode);
2678 }
2679
2680 /**************************************************************************
2681  *
2682  * Wake on LAN
2683  *
2684  **************************************************************************
2685  */
2686
2687 static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2688 {
2689         wol->supported = 0;
2690         wol->wolopts = 0;
2691         memset(&wol->sopass, 0, sizeof(wol->sopass));
2692 }
2693
2694 static int falcon_set_wol(struct efx_nic *efx, u32 type)
2695 {
2696         if (type != 0)
2697                 return -EINVAL;
2698         return 0;
2699 }
2700
2701 /**************************************************************************
2702  *
2703  * Revision-dependent attributes used by efx.c and nic.c
2704  *
2705  **************************************************************************
2706  */
2707
2708 const struct efx_nic_type falcon_a1_nic_type = {
2709         .is_vf = false,
2710         .mem_bar = EFX_MEM_BAR,
2711         .mem_map_size = falcon_a1_mem_map_size,
2712         .probe = falcon_probe_nic,
2713         .remove = falcon_remove_nic,
2714         .init = falcon_init_nic,
2715         .dimension_resources = falcon_dimension_resources,
2716         .fini = falcon_irq_ack_a1,
2717         .monitor = falcon_monitor,
2718         .map_reset_reason = falcon_map_reset_reason,
2719         .map_reset_flags = falcon_map_reset_flags,
2720         .reset = falcon_reset_hw,
2721         .probe_port = falcon_probe_port,
2722         .remove_port = falcon_remove_port,
2723         .handle_global_event = falcon_handle_global_event,
2724         .fini_dmaq = efx_farch_fini_dmaq,
2725         .prepare_flush = falcon_prepare_flush,
2726         .finish_flush = efx_port_dummy_op_void,
2727         .prepare_flr = efx_port_dummy_op_void,
2728         .finish_flr = efx_farch_finish_flr,
2729         .describe_stats = falcon_describe_nic_stats,
2730         .update_stats = falcon_update_nic_stats,
2731         .start_stats = falcon_start_nic_stats,
2732         .pull_stats = falcon_pull_nic_stats,
2733         .stop_stats = falcon_stop_nic_stats,
2734         .set_id_led = falcon_set_id_led,
2735         .push_irq_moderation = falcon_push_irq_moderation,
2736         .reconfigure_port = falcon_reconfigure_port,
2737         .prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx,
2738         .reconfigure_mac = falcon_reconfigure_xmac,
2739         .check_mac_fault = falcon_xmac_check_fault,
2740         .get_wol = falcon_get_wol,
2741         .set_wol = falcon_set_wol,
2742         .resume_wol = efx_port_dummy_op_void,
2743         .test_nvram = falcon_test_nvram,
2744         .irq_enable_master = efx_farch_irq_enable_master,
2745         .irq_test_generate = efx_farch_irq_test_generate,
2746         .irq_disable_non_ev = efx_farch_irq_disable_master,
2747         .irq_handle_msi = efx_farch_msi_interrupt,
2748         .irq_handle_legacy = falcon_legacy_interrupt_a1,
2749         .tx_probe = efx_farch_tx_probe,
2750         .tx_init = efx_farch_tx_init,
2751         .tx_remove = efx_farch_tx_remove,
2752         .tx_write = efx_farch_tx_write,
2753         .rx_push_rss_config = dummy_rx_push_rss_config,
2754         .rx_probe = efx_farch_rx_probe,
2755         .rx_init = efx_farch_rx_init,
2756         .rx_remove = efx_farch_rx_remove,
2757         .rx_write = efx_farch_rx_write,
2758         .rx_defer_refill = efx_farch_rx_defer_refill,
2759         .ev_probe = efx_farch_ev_probe,
2760         .ev_init = efx_farch_ev_init,
2761         .ev_fini = efx_farch_ev_fini,
2762         .ev_remove = efx_farch_ev_remove,
2763         .ev_process = efx_farch_ev_process,
2764         .ev_read_ack = efx_farch_ev_read_ack,
2765         .ev_test_generate = efx_farch_ev_test_generate,
2766
2767         /* We don't expose the filter table on Falcon A1 as it is not
2768          * mapped into function 0, but these implementations still
2769          * work with a degenerate case of all tables set to size 0.
2770          */
2771         .filter_table_probe = efx_farch_filter_table_probe,
2772         .filter_table_restore = efx_farch_filter_table_restore,
2773         .filter_table_remove = efx_farch_filter_table_remove,
2774         .filter_insert = efx_farch_filter_insert,
2775         .filter_remove_safe = efx_farch_filter_remove_safe,
2776         .filter_get_safe = efx_farch_filter_get_safe,
2777         .filter_clear_rx = efx_farch_filter_clear_rx,
2778         .filter_count_rx_used = efx_farch_filter_count_rx_used,
2779         .filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2780         .filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2781
2782 #ifdef CONFIG_SFC_MTD
2783         .mtd_probe = falcon_mtd_probe,
2784         .mtd_rename = falcon_mtd_rename,
2785         .mtd_read = falcon_mtd_read,
2786         .mtd_erase = falcon_mtd_erase,
2787         .mtd_write = falcon_mtd_write,
2788         .mtd_sync = falcon_mtd_sync,
2789 #endif
2790
2791         .revision = EFX_REV_FALCON_A1,
2792         .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
2793         .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
2794         .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
2795         .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
2796         .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
2797         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2798         .rx_buffer_padding = 0x24,
2799         .can_rx_scatter = false,
2800         .max_interrupt_mode = EFX_INT_MODE_MSI,
2801         .timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2802         .offload_features = NETIF_F_IP_CSUM,
2803         .mcdi_max_ver = -1,
2804 #ifdef CONFIG_SFC_SRIOV
2805         .vswitching_probe = efx_port_dummy_op_int,
2806         .vswitching_restore = efx_port_dummy_op_int,
2807         .vswitching_remove = efx_port_dummy_op_void,
2808 #endif
2809 };
2810
2811 const struct efx_nic_type falcon_b0_nic_type = {
2812         .is_vf = false,
2813         .mem_bar = EFX_MEM_BAR,
2814         .mem_map_size = falcon_b0_mem_map_size,
2815         .probe = falcon_probe_nic,
2816         .remove = falcon_remove_nic,
2817         .init = falcon_init_nic,
2818         .dimension_resources = falcon_dimension_resources,
2819         .fini = efx_port_dummy_op_void,
2820         .monitor = falcon_monitor,
2821         .map_reset_reason = falcon_map_reset_reason,
2822         .map_reset_flags = falcon_map_reset_flags,
2823         .reset = falcon_reset_hw,
2824         .probe_port = falcon_probe_port,
2825         .remove_port = falcon_remove_port,
2826         .handle_global_event = falcon_handle_global_event,
2827         .fini_dmaq = efx_farch_fini_dmaq,
2828         .prepare_flush = falcon_prepare_flush,
2829         .finish_flush = efx_port_dummy_op_void,
2830         .prepare_flr = efx_port_dummy_op_void,
2831         .finish_flr = efx_farch_finish_flr,
2832         .describe_stats = falcon_describe_nic_stats,
2833         .update_stats = falcon_update_nic_stats,
2834         .start_stats = falcon_start_nic_stats,
2835         .pull_stats = falcon_pull_nic_stats,
2836         .stop_stats = falcon_stop_nic_stats,
2837         .set_id_led = falcon_set_id_led,
2838         .push_irq_moderation = falcon_push_irq_moderation,
2839         .reconfigure_port = falcon_reconfigure_port,
2840         .prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx,
2841         .reconfigure_mac = falcon_reconfigure_xmac,
2842         .check_mac_fault = falcon_xmac_check_fault,
2843         .get_wol = falcon_get_wol,
2844         .set_wol = falcon_set_wol,
2845         .resume_wol = efx_port_dummy_op_void,
2846         .test_chip = falcon_b0_test_chip,
2847         .test_nvram = falcon_test_nvram,
2848         .irq_enable_master = efx_farch_irq_enable_master,
2849         .irq_test_generate = efx_farch_irq_test_generate,
2850         .irq_disable_non_ev = efx_farch_irq_disable_master,
2851         .irq_handle_msi = efx_farch_msi_interrupt,
2852         .irq_handle_legacy = efx_farch_legacy_interrupt,
2853         .tx_probe = efx_farch_tx_probe,
2854         .tx_init = efx_farch_tx_init,
2855         .tx_remove = efx_farch_tx_remove,
2856         .tx_write = efx_farch_tx_write,
2857         .rx_push_rss_config = falcon_b0_rx_push_rss_config,
2858         .rx_probe = efx_farch_rx_probe,
2859         .rx_init = efx_farch_rx_init,
2860         .rx_remove = efx_farch_rx_remove,
2861         .rx_write = efx_farch_rx_write,
2862         .rx_defer_refill = efx_farch_rx_defer_refill,
2863         .ev_probe = efx_farch_ev_probe,
2864         .ev_init = efx_farch_ev_init,
2865         .ev_fini = efx_farch_ev_fini,
2866         .ev_remove = efx_farch_ev_remove,
2867         .ev_process = efx_farch_ev_process,
2868         .ev_read_ack = efx_farch_ev_read_ack,
2869         .ev_test_generate = efx_farch_ev_test_generate,
2870         .filter_table_probe = efx_farch_filter_table_probe,
2871         .filter_table_restore = efx_farch_filter_table_restore,
2872         .filter_table_remove = efx_farch_filter_table_remove,
2873         .filter_update_rx_scatter = efx_farch_filter_update_rx_scatter,
2874         .filter_insert = efx_farch_filter_insert,
2875         .filter_remove_safe = efx_farch_filter_remove_safe,
2876         .filter_get_safe = efx_farch_filter_get_safe,
2877         .filter_clear_rx = efx_farch_filter_clear_rx,
2878         .filter_count_rx_used = efx_farch_filter_count_rx_used,
2879         .filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2880         .filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2881 #ifdef CONFIG_RFS_ACCEL
2882         .filter_rfs_insert = efx_farch_filter_rfs_insert,
2883         .filter_rfs_expire_one = efx_farch_filter_rfs_expire_one,
2884 #endif
2885 #ifdef CONFIG_SFC_MTD
2886         .mtd_probe = falcon_mtd_probe,
2887         .mtd_rename = falcon_mtd_rename,
2888         .mtd_read = falcon_mtd_read,
2889         .mtd_erase = falcon_mtd_erase,
2890         .mtd_write = falcon_mtd_write,
2891         .mtd_sync = falcon_mtd_sync,
2892 #endif
2893
2894         .revision = EFX_REV_FALCON_B0,
2895         .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
2896         .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
2897         .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
2898         .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
2899         .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
2900         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2901         .rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
2902         .rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
2903         .rx_buffer_padding = 0,
2904         .can_rx_scatter = true,
2905         .max_interrupt_mode = EFX_INT_MODE_MSIX,
2906         .timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2907         .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
2908         .mcdi_max_ver = -1,
2909         .max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
2910 #ifdef CONFIG_SFC_SRIOV
2911         .vswitching_probe = efx_port_dummy_op_int,
2912         .vswitching_restore = efx_port_dummy_op_int,
2913         .vswitching_remove = efx_port_dummy_op_void,
2914 #endif
2915 };