GNU Linux-libre 4.19.263-gnu1
[releases.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
1 /* QLogic qede NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/crash_dump.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/version.h>
36 #include <linux/device.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/errno.h>
41 #include <linux/list.h>
42 #include <linux/string.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/interrupt.h>
45 #include <asm/byteorder.h>
46 #include <asm/param.h>
47 #include <linux/io.h>
48 #include <linux/netdev_features.h>
49 #include <linux/udp.h>
50 #include <linux/tcp.h>
51 #include <net/udp_tunnel.h>
52 #include <linux/ip.h>
53 #include <net/ipv6.h>
54 #include <net/tcp.h>
55 #include <linux/if_ether.h>
56 #include <linux/if_vlan.h>
57 #include <linux/pkt_sched.h>
58 #include <linux/ethtool.h>
59 #include <linux/in.h>
60 #include <linux/random.h>
61 #include <net/ip6_checksum.h>
62 #include <linux/bitops.h>
63 #include <linux/vmalloc.h>
64 #include "qede.h"
65 #include "qede_ptp.h"
66
67 static char version[] =
68         "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
69
70 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
71 MODULE_LICENSE("GPL");
72 MODULE_VERSION(DRV_MODULE_VERSION);
73
74 static uint debug;
75 module_param(debug, uint, 0);
76 MODULE_PARM_DESC(debug, " Default debug msglevel");
77
78 static const struct qed_eth_ops *qed_ops;
79
80 #define CHIP_NUM_57980S_40              0x1634
81 #define CHIP_NUM_57980S_10              0x1666
82 #define CHIP_NUM_57980S_MF              0x1636
83 #define CHIP_NUM_57980S_100             0x1644
84 #define CHIP_NUM_57980S_50              0x1654
85 #define CHIP_NUM_57980S_25              0x1656
86 #define CHIP_NUM_57980S_IOV             0x1664
87 #define CHIP_NUM_AH                     0x8070
88 #define CHIP_NUM_AH_IOV                 0x8090
89
90 #ifndef PCI_DEVICE_ID_NX2_57980E
91 #define PCI_DEVICE_ID_57980S_40         CHIP_NUM_57980S_40
92 #define PCI_DEVICE_ID_57980S_10         CHIP_NUM_57980S_10
93 #define PCI_DEVICE_ID_57980S_MF         CHIP_NUM_57980S_MF
94 #define PCI_DEVICE_ID_57980S_100        CHIP_NUM_57980S_100
95 #define PCI_DEVICE_ID_57980S_50         CHIP_NUM_57980S_50
96 #define PCI_DEVICE_ID_57980S_25         CHIP_NUM_57980S_25
97 #define PCI_DEVICE_ID_57980S_IOV        CHIP_NUM_57980S_IOV
98 #define PCI_DEVICE_ID_AH                CHIP_NUM_AH
99 #define PCI_DEVICE_ID_AH_IOV            CHIP_NUM_AH_IOV
100
101 #endif
102
103 enum qede_pci_private {
104         QEDE_PRIVATE_PF,
105         QEDE_PRIVATE_VF
106 };
107
108 static const struct pci_device_id qede_pci_tbl[] = {
109         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
110         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
111         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
112         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
113         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
114         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
115 #ifdef CONFIG_QED_SRIOV
116         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
117 #endif
118         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
119 #ifdef CONFIG_QED_SRIOV
120         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
121 #endif
122         { 0 }
123 };
124
125 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
126
127 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
128
129 #define TX_TIMEOUT              (5 * HZ)
130
131 /* Utilize last protocol index for XDP */
132 #define XDP_PI  11
133
134 static void qede_remove(struct pci_dev *pdev);
135 static void qede_shutdown(struct pci_dev *pdev);
136 static void qede_link_update(void *dev, struct qed_link_output *link);
137 static void qede_get_eth_tlv_data(void *edev, void *data);
138 static void qede_get_generic_tlv_data(void *edev,
139                                       struct qed_generic_tlvs *data);
140
141 /* The qede lock is used to protect driver state change and driver flows that
142  * are not reentrant.
143  */
144 void __qede_lock(struct qede_dev *edev)
145 {
146         mutex_lock(&edev->qede_lock);
147 }
148
149 void __qede_unlock(struct qede_dev *edev)
150 {
151         mutex_unlock(&edev->qede_lock);
152 }
153
154 #ifdef CONFIG_QED_SRIOV
155 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
156                             __be16 vlan_proto)
157 {
158         struct qede_dev *edev = netdev_priv(ndev);
159
160         if (vlan > 4095) {
161                 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
162                 return -EINVAL;
163         }
164
165         if (vlan_proto != htons(ETH_P_8021Q))
166                 return -EPROTONOSUPPORT;
167
168         DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
169                    vlan, vf);
170
171         return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
172 }
173
174 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
175 {
176         struct qede_dev *edev = netdev_priv(ndev);
177
178         DP_VERBOSE(edev, QED_MSG_IOV,
179                    "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
180                    mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
181
182         if (!is_valid_ether_addr(mac)) {
183                 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
184                 return -EINVAL;
185         }
186
187         return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
188 }
189
190 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
191 {
192         struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
193         struct qed_dev_info *qed_info = &edev->dev_info.common;
194         struct qed_update_vport_params *vport_params;
195         int rc;
196
197         vport_params = vzalloc(sizeof(*vport_params));
198         if (!vport_params)
199                 return -ENOMEM;
200         DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
201
202         rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
203
204         /* Enable/Disable Tx switching for PF */
205         if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
206             !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
207                 vport_params->vport_id = 0;
208                 vport_params->update_tx_switching_flg = 1;
209                 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
210                 edev->ops->vport_update(edev->cdev, vport_params);
211         }
212
213         vfree(vport_params);
214         return rc;
215 }
216 #endif
217
218 static struct pci_driver qede_pci_driver = {
219         .name = "qede",
220         .id_table = qede_pci_tbl,
221         .probe = qede_probe,
222         .remove = qede_remove,
223         .shutdown = qede_shutdown,
224 #ifdef CONFIG_QED_SRIOV
225         .sriov_configure = qede_sriov_configure,
226 #endif
227 };
228
229 static struct qed_eth_cb_ops qede_ll_ops = {
230         {
231 #ifdef CONFIG_RFS_ACCEL
232                 .arfs_filter_op = qede_arfs_filter_op,
233 #endif
234                 .link_update = qede_link_update,
235                 .get_generic_tlv_data = qede_get_generic_tlv_data,
236                 .get_protocol_tlv_data = qede_get_eth_tlv_data,
237         },
238         .force_mac = qede_force_mac,
239         .ports_update = qede_udp_ports_update,
240 };
241
242 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
243                              void *ptr)
244 {
245         struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
246         struct ethtool_drvinfo drvinfo;
247         struct qede_dev *edev;
248
249         if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
250                 goto done;
251
252         /* Check whether this is a qede device */
253         if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
254                 goto done;
255
256         memset(&drvinfo, 0, sizeof(drvinfo));
257         ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
258         if (strcmp(drvinfo.driver, "qede"))
259                 goto done;
260         edev = netdev_priv(ndev);
261
262         switch (event) {
263         case NETDEV_CHANGENAME:
264                 /* Notify qed of the name change */
265                 if (!edev->ops || !edev->ops->common)
266                         goto done;
267                 edev->ops->common->set_name(edev->cdev, edev->ndev->name);
268                 break;
269         case NETDEV_CHANGEADDR:
270                 edev = netdev_priv(ndev);
271                 qede_rdma_event_changeaddr(edev);
272                 break;
273         }
274
275 done:
276         return NOTIFY_DONE;
277 }
278
279 static struct notifier_block qede_netdev_notifier = {
280         .notifier_call = qede_netdev_event,
281 };
282
283 static
284 int __init qede_init(void)
285 {
286         int ret;
287
288         pr_info("qede_init: %s\n", version);
289
290         qed_ops = qed_get_eth_ops();
291         if (!qed_ops) {
292                 pr_notice("Failed to get qed ethtool operations\n");
293                 return -EINVAL;
294         }
295
296         /* Must register notifier before pci ops, since we might miss
297          * interface rename after pci probe and netdev registration.
298          */
299         ret = register_netdevice_notifier(&qede_netdev_notifier);
300         if (ret) {
301                 pr_notice("Failed to register netdevice_notifier\n");
302                 qed_put_eth_ops();
303                 return -EINVAL;
304         }
305
306         ret = pci_register_driver(&qede_pci_driver);
307         if (ret) {
308                 pr_notice("Failed to register driver\n");
309                 unregister_netdevice_notifier(&qede_netdev_notifier);
310                 qed_put_eth_ops();
311                 return -EINVAL;
312         }
313
314         return 0;
315 }
316
317 static void __exit qede_cleanup(void)
318 {
319         if (debug & QED_LOG_INFO_MASK)
320                 pr_info("qede_cleanup called\n");
321
322         unregister_netdevice_notifier(&qede_netdev_notifier);
323         pci_unregister_driver(&qede_pci_driver);
324         qed_put_eth_ops();
325 }
326
327 module_init(qede_init);
328 module_exit(qede_cleanup);
329
330 static int qede_open(struct net_device *ndev);
331 static int qede_close(struct net_device *ndev);
332
333 void qede_fill_by_demand_stats(struct qede_dev *edev)
334 {
335         struct qede_stats_common *p_common = &edev->stats.common;
336         struct qed_eth_stats stats;
337
338         edev->ops->get_vport_stats(edev->cdev, &stats);
339
340         p_common->no_buff_discards = stats.common.no_buff_discards;
341         p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
342         p_common->ttl0_discard = stats.common.ttl0_discard;
343         p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
344         p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
345         p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
346         p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
347         p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
348         p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
349         p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
350         p_common->mac_filter_discards = stats.common.mac_filter_discards;
351         p_common->gft_filter_drop = stats.common.gft_filter_drop;
352
353         p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
354         p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
355         p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
356         p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
357         p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
358         p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
359         p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
360         p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
361         p_common->coalesced_events = stats.common.tpa_coalesced_events;
362         p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
363         p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
364         p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
365
366         p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
367         p_common->rx_65_to_127_byte_packets =
368             stats.common.rx_65_to_127_byte_packets;
369         p_common->rx_128_to_255_byte_packets =
370             stats.common.rx_128_to_255_byte_packets;
371         p_common->rx_256_to_511_byte_packets =
372             stats.common.rx_256_to_511_byte_packets;
373         p_common->rx_512_to_1023_byte_packets =
374             stats.common.rx_512_to_1023_byte_packets;
375         p_common->rx_1024_to_1518_byte_packets =
376             stats.common.rx_1024_to_1518_byte_packets;
377         p_common->rx_crc_errors = stats.common.rx_crc_errors;
378         p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
379         p_common->rx_pause_frames = stats.common.rx_pause_frames;
380         p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
381         p_common->rx_align_errors = stats.common.rx_align_errors;
382         p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
383         p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
384         p_common->rx_jabbers = stats.common.rx_jabbers;
385         p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
386         p_common->rx_fragments = stats.common.rx_fragments;
387         p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
388         p_common->tx_65_to_127_byte_packets =
389             stats.common.tx_65_to_127_byte_packets;
390         p_common->tx_128_to_255_byte_packets =
391             stats.common.tx_128_to_255_byte_packets;
392         p_common->tx_256_to_511_byte_packets =
393             stats.common.tx_256_to_511_byte_packets;
394         p_common->tx_512_to_1023_byte_packets =
395             stats.common.tx_512_to_1023_byte_packets;
396         p_common->tx_1024_to_1518_byte_packets =
397             stats.common.tx_1024_to_1518_byte_packets;
398         p_common->tx_pause_frames = stats.common.tx_pause_frames;
399         p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
400         p_common->brb_truncates = stats.common.brb_truncates;
401         p_common->brb_discards = stats.common.brb_discards;
402         p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
403         p_common->link_change_count = stats.common.link_change_count;
404
405         if (QEDE_IS_BB(edev)) {
406                 struct qede_stats_bb *p_bb = &edev->stats.bb;
407
408                 p_bb->rx_1519_to_1522_byte_packets =
409                     stats.bb.rx_1519_to_1522_byte_packets;
410                 p_bb->rx_1519_to_2047_byte_packets =
411                     stats.bb.rx_1519_to_2047_byte_packets;
412                 p_bb->rx_2048_to_4095_byte_packets =
413                     stats.bb.rx_2048_to_4095_byte_packets;
414                 p_bb->rx_4096_to_9216_byte_packets =
415                     stats.bb.rx_4096_to_9216_byte_packets;
416                 p_bb->rx_9217_to_16383_byte_packets =
417                     stats.bb.rx_9217_to_16383_byte_packets;
418                 p_bb->tx_1519_to_2047_byte_packets =
419                     stats.bb.tx_1519_to_2047_byte_packets;
420                 p_bb->tx_2048_to_4095_byte_packets =
421                     stats.bb.tx_2048_to_4095_byte_packets;
422                 p_bb->tx_4096_to_9216_byte_packets =
423                     stats.bb.tx_4096_to_9216_byte_packets;
424                 p_bb->tx_9217_to_16383_byte_packets =
425                     stats.bb.tx_9217_to_16383_byte_packets;
426                 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
427                 p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
428         } else {
429                 struct qede_stats_ah *p_ah = &edev->stats.ah;
430
431                 p_ah->rx_1519_to_max_byte_packets =
432                     stats.ah.rx_1519_to_max_byte_packets;
433                 p_ah->tx_1519_to_max_byte_packets =
434                     stats.ah.tx_1519_to_max_byte_packets;
435         }
436 }
437
438 static void qede_get_stats64(struct net_device *dev,
439                              struct rtnl_link_stats64 *stats)
440 {
441         struct qede_dev *edev = netdev_priv(dev);
442         struct qede_stats_common *p_common;
443
444         qede_fill_by_demand_stats(edev);
445         p_common = &edev->stats.common;
446
447         stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
448                             p_common->rx_bcast_pkts;
449         stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
450                             p_common->tx_bcast_pkts;
451
452         stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
453                           p_common->rx_bcast_bytes;
454         stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
455                           p_common->tx_bcast_bytes;
456
457         stats->tx_errors = p_common->tx_err_drop_pkts;
458         stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
459
460         stats->rx_fifo_errors = p_common->no_buff_discards;
461
462         if (QEDE_IS_BB(edev))
463                 stats->collisions = edev->stats.bb.tx_total_collisions;
464         stats->rx_crc_errors = p_common->rx_crc_errors;
465         stats->rx_frame_errors = p_common->rx_align_errors;
466 }
467
468 #ifdef CONFIG_QED_SRIOV
469 static int qede_get_vf_config(struct net_device *dev, int vfidx,
470                               struct ifla_vf_info *ivi)
471 {
472         struct qede_dev *edev = netdev_priv(dev);
473
474         if (!edev->ops)
475                 return -EINVAL;
476
477         return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
478 }
479
480 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
481                             int min_tx_rate, int max_tx_rate)
482 {
483         struct qede_dev *edev = netdev_priv(dev);
484
485         return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
486                                         max_tx_rate);
487 }
488
489 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
490 {
491         struct qede_dev *edev = netdev_priv(dev);
492
493         if (!edev->ops)
494                 return -EINVAL;
495
496         return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
497 }
498
499 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
500                                   int link_state)
501 {
502         struct qede_dev *edev = netdev_priv(dev);
503
504         if (!edev->ops)
505                 return -EINVAL;
506
507         return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
508 }
509
510 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
511 {
512         struct qede_dev *edev = netdev_priv(dev);
513
514         if (!edev->ops)
515                 return -EINVAL;
516
517         return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
518 }
519 #endif
520
521 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
522 {
523         struct qede_dev *edev = netdev_priv(dev);
524
525         if (!netif_running(dev))
526                 return -EAGAIN;
527
528         switch (cmd) {
529         case SIOCSHWTSTAMP:
530                 return qede_ptp_hw_ts(edev, ifr);
531         default:
532                 DP_VERBOSE(edev, QED_MSG_DEBUG,
533                            "default IOCTL cmd 0x%x\n", cmd);
534                 return -EOPNOTSUPP;
535         }
536
537         return 0;
538 }
539
540 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
541 {
542         struct qede_dev *edev = netdev_priv(ndev);
543         int cos, count, offset;
544
545         if (num_tc > edev->dev_info.num_tc)
546                 return -EINVAL;
547
548         netdev_reset_tc(ndev);
549         netdev_set_num_tc(ndev, num_tc);
550
551         for_each_cos_in_txq(edev, cos) {
552                 count = QEDE_TSS_COUNT(edev);
553                 offset = cos * QEDE_TSS_COUNT(edev);
554                 netdev_set_tc_queue(ndev, cos, count, offset);
555         }
556
557         return 0;
558 }
559
560 static int
561 qede_set_flower(struct qede_dev *edev, struct tc_cls_flower_offload *f,
562                 __be16 proto)
563 {
564         switch (f->command) {
565         case TC_CLSFLOWER_REPLACE:
566                 return qede_add_tc_flower_fltr(edev, proto, f);
567         case TC_CLSFLOWER_DESTROY:
568                 return qede_delete_flow_filter(edev, f->cookie);
569         default:
570                 return -EOPNOTSUPP;
571         }
572 }
573
574 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
575                                   void *cb_priv)
576 {
577         struct tc_cls_flower_offload *f;
578         struct qede_dev *edev = cb_priv;
579
580         if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
581                 return -EOPNOTSUPP;
582
583         switch (type) {
584         case TC_SETUP_CLSFLOWER:
585                 f = type_data;
586                 return qede_set_flower(edev, f, f->common.protocol);
587         default:
588                 return -EOPNOTSUPP;
589         }
590 }
591
592 static int qede_setup_tc_block(struct qede_dev *edev,
593                                struct tc_block_offload *f)
594 {
595         if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
596                 return -EOPNOTSUPP;
597
598         switch (f->command) {
599         case TC_BLOCK_BIND:
600                 return tcf_block_cb_register(f->block,
601                                              qede_setup_tc_block_cb,
602                                              edev, edev, f->extack);
603         case TC_BLOCK_UNBIND:
604                 tcf_block_cb_unregister(f->block, qede_setup_tc_block_cb, edev);
605                 return 0;
606         default:
607                 return -EOPNOTSUPP;
608         }
609 }
610
611 static int
612 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
613                       void *type_data)
614 {
615         struct qede_dev *edev = netdev_priv(dev);
616         struct tc_mqprio_qopt *mqprio;
617
618         switch (type) {
619         case TC_SETUP_BLOCK:
620                 return qede_setup_tc_block(edev, type_data);
621         case TC_SETUP_QDISC_MQPRIO:
622                 mqprio = type_data;
623
624                 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
625                 return qede_setup_tc(dev, mqprio->num_tc);
626         default:
627                 return -EOPNOTSUPP;
628         }
629 }
630
631 static const struct net_device_ops qede_netdev_ops = {
632         .ndo_open = qede_open,
633         .ndo_stop = qede_close,
634         .ndo_start_xmit = qede_start_xmit,
635         .ndo_select_queue = qede_select_queue,
636         .ndo_set_rx_mode = qede_set_rx_mode,
637         .ndo_set_mac_address = qede_set_mac_addr,
638         .ndo_validate_addr = eth_validate_addr,
639         .ndo_change_mtu = qede_change_mtu,
640         .ndo_do_ioctl = qede_ioctl,
641 #ifdef CONFIG_QED_SRIOV
642         .ndo_set_vf_mac = qede_set_vf_mac,
643         .ndo_set_vf_vlan = qede_set_vf_vlan,
644         .ndo_set_vf_trust = qede_set_vf_trust,
645 #endif
646         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
647         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
648         .ndo_fix_features = qede_fix_features,
649         .ndo_set_features = qede_set_features,
650         .ndo_get_stats64 = qede_get_stats64,
651 #ifdef CONFIG_QED_SRIOV
652         .ndo_set_vf_link_state = qede_set_vf_link_state,
653         .ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
654         .ndo_get_vf_config = qede_get_vf_config,
655         .ndo_set_vf_rate = qede_set_vf_rate,
656 #endif
657         .ndo_udp_tunnel_add = qede_udp_tunnel_add,
658         .ndo_udp_tunnel_del = qede_udp_tunnel_del,
659         .ndo_features_check = qede_features_check,
660         .ndo_bpf = qede_xdp,
661 #ifdef CONFIG_RFS_ACCEL
662         .ndo_rx_flow_steer = qede_rx_flow_steer,
663 #endif
664         .ndo_setup_tc = qede_setup_tc_offload,
665 };
666
667 static const struct net_device_ops qede_netdev_vf_ops = {
668         .ndo_open = qede_open,
669         .ndo_stop = qede_close,
670         .ndo_start_xmit = qede_start_xmit,
671         .ndo_select_queue = qede_select_queue,
672         .ndo_set_rx_mode = qede_set_rx_mode,
673         .ndo_set_mac_address = qede_set_mac_addr,
674         .ndo_validate_addr = eth_validate_addr,
675         .ndo_change_mtu = qede_change_mtu,
676         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
677         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
678         .ndo_fix_features = qede_fix_features,
679         .ndo_set_features = qede_set_features,
680         .ndo_get_stats64 = qede_get_stats64,
681         .ndo_udp_tunnel_add = qede_udp_tunnel_add,
682         .ndo_udp_tunnel_del = qede_udp_tunnel_del,
683         .ndo_features_check = qede_features_check,
684 };
685
686 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
687         .ndo_open = qede_open,
688         .ndo_stop = qede_close,
689         .ndo_start_xmit = qede_start_xmit,
690         .ndo_select_queue = qede_select_queue,
691         .ndo_set_rx_mode = qede_set_rx_mode,
692         .ndo_set_mac_address = qede_set_mac_addr,
693         .ndo_validate_addr = eth_validate_addr,
694         .ndo_change_mtu = qede_change_mtu,
695         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
696         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
697         .ndo_fix_features = qede_fix_features,
698         .ndo_set_features = qede_set_features,
699         .ndo_get_stats64 = qede_get_stats64,
700         .ndo_udp_tunnel_add = qede_udp_tunnel_add,
701         .ndo_udp_tunnel_del = qede_udp_tunnel_del,
702         .ndo_features_check = qede_features_check,
703         .ndo_bpf = qede_xdp,
704 };
705
706 /* -------------------------------------------------------------------------
707  * START OF PROBE / REMOVE
708  * -------------------------------------------------------------------------
709  */
710
711 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
712                                             struct pci_dev *pdev,
713                                             struct qed_dev_eth_info *info,
714                                             u32 dp_module, u8 dp_level)
715 {
716         struct net_device *ndev;
717         struct qede_dev *edev;
718
719         ndev = alloc_etherdev_mqs(sizeof(*edev),
720                                   info->num_queues * info->num_tc,
721                                   info->num_queues);
722         if (!ndev) {
723                 pr_err("etherdev allocation failed\n");
724                 return NULL;
725         }
726
727         edev = netdev_priv(ndev);
728         edev->ndev = ndev;
729         edev->cdev = cdev;
730         edev->pdev = pdev;
731         edev->dp_module = dp_module;
732         edev->dp_level = dp_level;
733         edev->ops = qed_ops;
734
735         if (is_kdump_kernel()) {
736                 edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
737                 edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
738         } else {
739                 edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
740                 edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
741         }
742
743         DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
744                 info->num_queues, info->num_queues);
745
746         SET_NETDEV_DEV(ndev, &pdev->dev);
747
748         memset(&edev->stats, 0, sizeof(edev->stats));
749         memcpy(&edev->dev_info, info, sizeof(*info));
750
751         /* As ethtool doesn't have the ability to show WoL behavior as
752          * 'default', if device supports it declare it's enabled.
753          */
754         if (edev->dev_info.common.wol_support)
755                 edev->wol_enabled = true;
756
757         INIT_LIST_HEAD(&edev->vlan_list);
758
759         return edev;
760 }
761
762 static void qede_init_ndev(struct qede_dev *edev)
763 {
764         struct net_device *ndev = edev->ndev;
765         struct pci_dev *pdev = edev->pdev;
766         bool udp_tunnel_enable = false;
767         netdev_features_t hw_features;
768
769         pci_set_drvdata(pdev, ndev);
770
771         ndev->mem_start = edev->dev_info.common.pci_mem_start;
772         ndev->base_addr = ndev->mem_start;
773         ndev->mem_end = edev->dev_info.common.pci_mem_end;
774         ndev->irq = edev->dev_info.common.pci_irq;
775
776         ndev->watchdog_timeo = TX_TIMEOUT;
777
778         if (IS_VF(edev)) {
779                 if (edev->dev_info.xdp_supported)
780                         ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
781                 else
782                         ndev->netdev_ops = &qede_netdev_vf_ops;
783         } else {
784                 ndev->netdev_ops = &qede_netdev_ops;
785         }
786
787         qede_set_ethtool_ops(ndev);
788
789         ndev->priv_flags |= IFF_UNICAST_FLT;
790
791         /* user-changeble features */
792         hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
793                       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
794                       NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
795
796         if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
797                 hw_features |= NETIF_F_NTUPLE;
798
799         if (edev->dev_info.common.vxlan_enable ||
800             edev->dev_info.common.geneve_enable)
801                 udp_tunnel_enable = true;
802
803         if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
804                 hw_features |= NETIF_F_TSO_ECN;
805                 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
806                                         NETIF_F_SG | NETIF_F_TSO |
807                                         NETIF_F_TSO_ECN | NETIF_F_TSO6 |
808                                         NETIF_F_RXCSUM;
809         }
810
811         if (udp_tunnel_enable) {
812                 hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
813                                 NETIF_F_GSO_UDP_TUNNEL_CSUM);
814                 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
815                                           NETIF_F_GSO_UDP_TUNNEL_CSUM);
816         }
817
818         if (edev->dev_info.common.gre_enable) {
819                 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
820                 ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
821                                           NETIF_F_GSO_GRE_CSUM);
822         }
823
824         ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
825                               NETIF_F_HIGHDMA;
826         ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
827                          NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
828                          NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
829
830         ndev->hw_features = hw_features;
831
832         /* MTU range: 46 - 9600 */
833         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
834         ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
835
836         /* Set network device HW mac */
837         ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
838
839         ndev->mtu = edev->dev_info.common.mtu;
840 }
841
842 /* This function converts from 32b param to two params of level and module
843  * Input 32b decoding:
844  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
845  * 'happy' flow, e.g. memory allocation failed.
846  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
847  * and provide important parameters.
848  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
849  * module. VERBOSE prints are for tracking the specific flow in low level.
850  *
851  * Notice that the level should be that of the lowest required logs.
852  */
853 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
854 {
855         *p_dp_level = QED_LEVEL_NOTICE;
856         *p_dp_module = 0;
857
858         if (debug & QED_LOG_VERBOSE_MASK) {
859                 *p_dp_level = QED_LEVEL_VERBOSE;
860                 *p_dp_module = (debug & 0x3FFFFFFF);
861         } else if (debug & QED_LOG_INFO_MASK) {
862                 *p_dp_level = QED_LEVEL_INFO;
863         } else if (debug & QED_LOG_NOTICE_MASK) {
864                 *p_dp_level = QED_LEVEL_NOTICE;
865         }
866 }
867
868 static void qede_free_fp_array(struct qede_dev *edev)
869 {
870         if (edev->fp_array) {
871                 struct qede_fastpath *fp;
872                 int i;
873
874                 for_each_queue(i) {
875                         fp = &edev->fp_array[i];
876
877                         kfree(fp->sb_info);
878                         /* Handle mem alloc failure case where qede_init_fp
879                          * didn't register xdp_rxq_info yet.
880                          * Implicit only (fp->type & QEDE_FASTPATH_RX)
881                          */
882                         if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
883                                 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
884                         kfree(fp->rxq);
885                         kfree(fp->xdp_tx);
886                         kfree(fp->txq);
887                 }
888                 kfree(edev->fp_array);
889         }
890
891         edev->num_queues = 0;
892         edev->fp_num_tx = 0;
893         edev->fp_num_rx = 0;
894 }
895
896 static int qede_alloc_fp_array(struct qede_dev *edev)
897 {
898         u8 fp_combined, fp_rx = edev->fp_num_rx;
899         struct qede_fastpath *fp;
900         int i;
901
902         edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
903                                  sizeof(*edev->fp_array), GFP_KERNEL);
904         if (!edev->fp_array) {
905                 DP_NOTICE(edev, "fp array allocation failed\n");
906                 goto err;
907         }
908
909         fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
910
911         /* Allocate the FP elements for Rx queues followed by combined and then
912          * the Tx. This ordering should be maintained so that the respective
913          * queues (Rx or Tx) will be together in the fastpath array and the
914          * associated ids will be sequential.
915          */
916         for_each_queue(i) {
917                 fp = &edev->fp_array[i];
918
919                 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
920                 if (!fp->sb_info) {
921                         DP_NOTICE(edev, "sb info struct allocation failed\n");
922                         goto err;
923                 }
924
925                 if (fp_rx) {
926                         fp->type = QEDE_FASTPATH_RX;
927                         fp_rx--;
928                 } else if (fp_combined) {
929                         fp->type = QEDE_FASTPATH_COMBINED;
930                         fp_combined--;
931                 } else {
932                         fp->type = QEDE_FASTPATH_TX;
933                 }
934
935                 if (fp->type & QEDE_FASTPATH_TX) {
936                         fp->txq = kcalloc(edev->dev_info.num_tc,
937                                           sizeof(*fp->txq), GFP_KERNEL);
938                         if (!fp->txq)
939                                 goto err;
940                 }
941
942                 if (fp->type & QEDE_FASTPATH_RX) {
943                         fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
944                         if (!fp->rxq)
945                                 goto err;
946
947                         if (edev->xdp_prog) {
948                                 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
949                                                      GFP_KERNEL);
950                                 if (!fp->xdp_tx)
951                                         goto err;
952                                 fp->type |= QEDE_FASTPATH_XDP;
953                         }
954                 }
955         }
956
957         return 0;
958 err:
959         qede_free_fp_array(edev);
960         return -ENOMEM;
961 }
962
963 static void qede_sp_task(struct work_struct *work)
964 {
965         struct qede_dev *edev = container_of(work, struct qede_dev,
966                                              sp_task.work);
967
968         __qede_lock(edev);
969
970         if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
971                 if (edev->state == QEDE_STATE_OPEN)
972                         qede_config_rx_mode(edev->ndev);
973
974 #ifdef CONFIG_RFS_ACCEL
975         if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
976                 if (edev->state == QEDE_STATE_OPEN)
977                         qede_process_arfs_filters(edev, false);
978         }
979 #endif
980         __qede_unlock(edev);
981 }
982
983 static void qede_update_pf_params(struct qed_dev *cdev)
984 {
985         struct qed_pf_params pf_params;
986         u16 num_cons;
987
988         /* 64 rx + 64 tx + 64 XDP */
989         memset(&pf_params, 0, sizeof(struct qed_pf_params));
990
991         /* 1 rx + 1 xdp + max tx cos */
992         num_cons = QED_MIN_L2_CONS;
993
994         pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
995
996         /* Same for VFs - make sure they'll have sufficient connections
997          * to support XDP Tx queues.
998          */
999         pf_params.eth_pf_params.num_vf_cons = 48;
1000
1001         pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1002         qed_ops->common->update_pf_params(cdev, &pf_params);
1003 }
1004
1005 #define QEDE_FW_VER_STR_SIZE    80
1006
1007 static void qede_log_probe(struct qede_dev *edev)
1008 {
1009         struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1010         u8 buf[QEDE_FW_VER_STR_SIZE];
1011         size_t left_size;
1012
1013         snprintf(buf, QEDE_FW_VER_STR_SIZE,
1014                  "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1015                  p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1016                  p_dev_info->fw_eng,
1017                  (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1018                  QED_MFW_VERSION_3_OFFSET,
1019                  (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1020                  QED_MFW_VERSION_2_OFFSET,
1021                  (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1022                  QED_MFW_VERSION_1_OFFSET,
1023                  (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1024                  QED_MFW_VERSION_0_OFFSET);
1025
1026         left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1027         if (p_dev_info->mbi_version && left_size)
1028                 snprintf(buf + strlen(buf), left_size,
1029                          " [MBI %d.%d.%d]",
1030                          (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1031                          QED_MBI_VERSION_2_OFFSET,
1032                          (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1033                          QED_MBI_VERSION_1_OFFSET,
1034                          (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1035                          QED_MBI_VERSION_0_OFFSET);
1036
1037         pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1038                 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1039                 buf, edev->ndev->name);
1040 }
1041
1042 enum qede_probe_mode {
1043         QEDE_PROBE_NORMAL,
1044 };
1045
1046 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1047                         bool is_vf, enum qede_probe_mode mode)
1048 {
1049         struct qed_probe_params probe_params;
1050         struct qed_slowpath_params sp_params;
1051         struct qed_dev_eth_info dev_info;
1052         struct qede_dev *edev;
1053         struct qed_dev *cdev;
1054         int rc;
1055
1056         if (unlikely(dp_level & QED_LEVEL_INFO))
1057                 pr_notice("Starting qede probe\n");
1058
1059         memset(&probe_params, 0, sizeof(probe_params));
1060         probe_params.protocol = QED_PROTOCOL_ETH;
1061         probe_params.dp_module = dp_module;
1062         probe_params.dp_level = dp_level;
1063         probe_params.is_vf = is_vf;
1064         cdev = qed_ops->common->probe(pdev, &probe_params);
1065         if (!cdev) {
1066                 rc = -ENODEV;
1067                 goto err0;
1068         }
1069
1070         qede_update_pf_params(cdev);
1071
1072         /* Start the Slowpath-process */
1073         memset(&sp_params, 0, sizeof(sp_params));
1074         sp_params.int_mode = QED_INT_MODE_MSIX;
1075         sp_params.drv_major = QEDE_MAJOR_VERSION;
1076         sp_params.drv_minor = QEDE_MINOR_VERSION;
1077         sp_params.drv_rev = QEDE_REVISION_VERSION;
1078         sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
1079         strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1080         rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1081         if (rc) {
1082                 pr_notice("Cannot start slowpath\n");
1083                 goto err1;
1084         }
1085
1086         /* Learn information crucial for qede to progress */
1087         rc = qed_ops->fill_dev_info(cdev, &dev_info);
1088         if (rc)
1089                 goto err2;
1090
1091         edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1092                                    dp_level);
1093         if (!edev) {
1094                 rc = -ENOMEM;
1095                 goto err2;
1096         }
1097
1098         if (is_vf)
1099                 edev->flags |= QEDE_FLAG_IS_VF;
1100
1101         qede_init_ndev(edev);
1102
1103         rc = qede_rdma_dev_add(edev);
1104         if (rc)
1105                 goto err3;
1106
1107         /* Prepare the lock prior to the registration of the netdev,
1108          * as once it's registered we might reach flows requiring it
1109          * [it's even possible to reach a flow needing it directly
1110          * from there, although it's unlikely].
1111          */
1112         INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1113         mutex_init(&edev->qede_lock);
1114         rc = register_netdev(edev->ndev);
1115         if (rc) {
1116                 DP_NOTICE(edev, "Cannot register net-device\n");
1117                 goto err4;
1118         }
1119
1120         edev->ops->common->set_name(cdev, edev->ndev->name);
1121
1122         /* PTP not supported on VFs */
1123         if (!is_vf)
1124                 qede_ptp_enable(edev, true);
1125
1126         edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1127
1128 #ifdef CONFIG_DCB
1129         if (!IS_VF(edev))
1130                 qede_set_dcbnl_ops(edev->ndev);
1131 #endif
1132
1133         edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1134
1135         qede_log_probe(edev);
1136         return 0;
1137
1138 err4:
1139         qede_rdma_dev_remove(edev);
1140 err3:
1141         free_netdev(edev->ndev);
1142 err2:
1143         qed_ops->common->slowpath_stop(cdev);
1144 err1:
1145         qed_ops->common->remove(cdev);
1146 err0:
1147         return rc;
1148 }
1149
1150 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1151 {
1152         bool is_vf = false;
1153         u32 dp_module = 0;
1154         u8 dp_level = 0;
1155
1156         switch ((enum qede_pci_private)id->driver_data) {
1157         case QEDE_PRIVATE_VF:
1158                 if (debug & QED_LOG_VERBOSE_MASK)
1159                         dev_err(&pdev->dev, "Probing a VF\n");
1160                 is_vf = true;
1161                 break;
1162         default:
1163                 if (debug & QED_LOG_VERBOSE_MASK)
1164                         dev_err(&pdev->dev, "Probing a PF\n");
1165         }
1166
1167         qede_config_debug(debug, &dp_module, &dp_level);
1168
1169         return __qede_probe(pdev, dp_module, dp_level, is_vf,
1170                             QEDE_PROBE_NORMAL);
1171 }
1172
1173 enum qede_remove_mode {
1174         QEDE_REMOVE_NORMAL,
1175 };
1176
1177 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1178 {
1179         struct net_device *ndev = pci_get_drvdata(pdev);
1180         struct qede_dev *edev;
1181         struct qed_dev *cdev;
1182
1183         if (!ndev) {
1184                 dev_info(&pdev->dev, "Device has already been removed\n");
1185                 return;
1186         }
1187
1188         edev = netdev_priv(ndev);
1189         cdev = edev->cdev;
1190
1191         DP_INFO(edev, "Starting qede_remove\n");
1192
1193         qede_rdma_dev_remove(edev);
1194         unregister_netdev(ndev);
1195         cancel_delayed_work_sync(&edev->sp_task);
1196
1197         qede_ptp_disable(edev);
1198
1199         edev->ops->common->set_power_state(cdev, PCI_D0);
1200
1201         pci_set_drvdata(pdev, NULL);
1202
1203         /* Use global ops since we've freed edev */
1204         qed_ops->common->slowpath_stop(cdev);
1205         if (system_state == SYSTEM_POWER_OFF)
1206                 return;
1207         qed_ops->common->remove(cdev);
1208
1209         /* Since this can happen out-of-sync with other flows,
1210          * don't release the netdevice until after slowpath stop
1211          * has been called to guarantee various other contexts
1212          * [e.g., QED register callbacks] won't break anything when
1213          * accessing the netdevice.
1214          */
1215          free_netdev(ndev);
1216
1217         dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1218 }
1219
1220 static void qede_remove(struct pci_dev *pdev)
1221 {
1222         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1223 }
1224
1225 static void qede_shutdown(struct pci_dev *pdev)
1226 {
1227         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1228 }
1229
1230 /* -------------------------------------------------------------------------
1231  * START OF LOAD / UNLOAD
1232  * -------------------------------------------------------------------------
1233  */
1234
1235 static int qede_set_num_queues(struct qede_dev *edev)
1236 {
1237         int rc;
1238         u16 rss_num;
1239
1240         /* Setup queues according to possible resources*/
1241         if (edev->req_queues)
1242                 rss_num = edev->req_queues;
1243         else
1244                 rss_num = netif_get_num_default_rss_queues() *
1245                           edev->dev_info.common.num_hwfns;
1246
1247         rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1248
1249         rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1250         if (rc > 0) {
1251                 /* Managed to request interrupts for our queues */
1252                 edev->num_queues = rc;
1253                 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1254                         QEDE_QUEUE_CNT(edev), rss_num);
1255                 rc = 0;
1256         }
1257
1258         edev->fp_num_tx = edev->req_num_tx;
1259         edev->fp_num_rx = edev->req_num_rx;
1260
1261         return rc;
1262 }
1263
1264 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1265                              u16 sb_id)
1266 {
1267         if (sb_info->sb_virt) {
1268                 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id);
1269                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1270                                   (void *)sb_info->sb_virt, sb_info->sb_phys);
1271                 memset(sb_info, 0, sizeof(*sb_info));
1272         }
1273 }
1274
1275 /* This function allocates fast-path status block memory */
1276 static int qede_alloc_mem_sb(struct qede_dev *edev,
1277                              struct qed_sb_info *sb_info, u16 sb_id)
1278 {
1279         struct status_block_e4 *sb_virt;
1280         dma_addr_t sb_phys;
1281         int rc;
1282
1283         sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1284                                      sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1285         if (!sb_virt) {
1286                 DP_ERR(edev, "Status block allocation failed\n");
1287                 return -ENOMEM;
1288         }
1289
1290         rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1291                                         sb_virt, sb_phys, sb_id,
1292                                         QED_SB_TYPE_L2_QUEUE);
1293         if (rc) {
1294                 DP_ERR(edev, "Status block initialization failed\n");
1295                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1296                                   sb_virt, sb_phys);
1297                 return rc;
1298         }
1299
1300         return 0;
1301 }
1302
1303 static void qede_free_rx_buffers(struct qede_dev *edev,
1304                                  struct qede_rx_queue *rxq)
1305 {
1306         u16 i;
1307
1308         for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1309                 struct sw_rx_data *rx_buf;
1310                 struct page *data;
1311
1312                 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1313                 data = rx_buf->data;
1314
1315                 dma_unmap_page(&edev->pdev->dev,
1316                                rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1317
1318                 rx_buf->data = NULL;
1319                 __free_page(data);
1320         }
1321 }
1322
1323 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1324 {
1325         /* Free rx buffers */
1326         qede_free_rx_buffers(edev, rxq);
1327
1328         /* Free the parallel SW ring */
1329         kfree(rxq->sw_rx_ring);
1330
1331         /* Free the real RQ ring used by FW */
1332         edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1333         edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1334 }
1335
1336 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1337 {
1338         int i;
1339
1340         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1341                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1342
1343                 tpa_info->state = QEDE_AGG_STATE_NONE;
1344         }
1345 }
1346
1347 /* This function allocates all memory needed per Rx queue */
1348 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1349 {
1350         int i, rc, size;
1351
1352         rxq->num_rx_buffers = edev->q_num_rx_buffers;
1353
1354         rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1355
1356         rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1357         size = rxq->rx_headroom +
1358                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1359
1360         /* Make sure that the headroom and  payload fit in a single page */
1361         if (rxq->rx_buf_size + size > PAGE_SIZE)
1362                 rxq->rx_buf_size = PAGE_SIZE - size;
1363
1364         /* Segment size to spilt a page in multiple equal parts ,
1365          * unless XDP is used in which case we'd use the entire page.
1366          */
1367         if (!edev->xdp_prog) {
1368                 size = size + rxq->rx_buf_size;
1369                 rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1370         } else {
1371                 rxq->rx_buf_seg_size = PAGE_SIZE;
1372                 edev->ndev->features &= ~NETIF_F_GRO_HW;
1373         }
1374
1375         /* Allocate the parallel driver ring for Rx buffers */
1376         size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1377         rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1378         if (!rxq->sw_rx_ring) {
1379                 DP_ERR(edev, "Rx buffers ring allocation failed\n");
1380                 rc = -ENOMEM;
1381                 goto err;
1382         }
1383
1384         /* Allocate FW Rx ring  */
1385         rc = edev->ops->common->chain_alloc(edev->cdev,
1386                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1387                                             QED_CHAIN_MODE_NEXT_PTR,
1388                                             QED_CHAIN_CNT_TYPE_U16,
1389                                             RX_RING_SIZE,
1390                                             sizeof(struct eth_rx_bd),
1391                                             &rxq->rx_bd_ring, NULL);
1392         if (rc)
1393                 goto err;
1394
1395         /* Allocate FW completion ring */
1396         rc = edev->ops->common->chain_alloc(edev->cdev,
1397                                             QED_CHAIN_USE_TO_CONSUME,
1398                                             QED_CHAIN_MODE_PBL,
1399                                             QED_CHAIN_CNT_TYPE_U16,
1400                                             RX_RING_SIZE,
1401                                             sizeof(union eth_rx_cqe),
1402                                             &rxq->rx_comp_ring, NULL);
1403         if (rc)
1404                 goto err;
1405
1406         /* Allocate buffers for the Rx ring */
1407         rxq->filled_buffers = 0;
1408         for (i = 0; i < rxq->num_rx_buffers; i++) {
1409                 rc = qede_alloc_rx_buffer(rxq, false);
1410                 if (rc) {
1411                         DP_ERR(edev,
1412                                "Rx buffers allocation failed at index %d\n", i);
1413                         goto err;
1414                 }
1415         }
1416
1417         edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1418         if (!edev->gro_disable)
1419                 qede_set_tpa_param(rxq);
1420 err:
1421         return rc;
1422 }
1423
1424 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1425 {
1426         /* Free the parallel SW ring */
1427         if (txq->is_xdp)
1428                 kfree(txq->sw_tx_ring.xdp);
1429         else
1430                 kfree(txq->sw_tx_ring.skbs);
1431
1432         /* Free the real RQ ring used by FW */
1433         edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1434 }
1435
1436 /* This function allocates all memory needed per Tx queue */
1437 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1438 {
1439         union eth_tx_bd_types *p_virt;
1440         int size, rc;
1441
1442         txq->num_tx_buffers = edev->q_num_tx_buffers;
1443
1444         /* Allocate the parallel driver ring for Tx buffers */
1445         if (txq->is_xdp) {
1446                 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1447                 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1448                 if (!txq->sw_tx_ring.xdp)
1449                         goto err;
1450         } else {
1451                 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1452                 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1453                 if (!txq->sw_tx_ring.skbs)
1454                         goto err;
1455         }
1456
1457         rc = edev->ops->common->chain_alloc(edev->cdev,
1458                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1459                                             QED_CHAIN_MODE_PBL,
1460                                             QED_CHAIN_CNT_TYPE_U16,
1461                                             txq->num_tx_buffers,
1462                                             sizeof(*p_virt),
1463                                             &txq->tx_pbl, NULL);
1464         if (rc)
1465                 goto err;
1466
1467         return 0;
1468
1469 err:
1470         qede_free_mem_txq(edev, txq);
1471         return -ENOMEM;
1472 }
1473
1474 /* This function frees all memory of a single fp */
1475 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1476 {
1477         qede_free_mem_sb(edev, fp->sb_info, fp->id);
1478
1479         if (fp->type & QEDE_FASTPATH_RX)
1480                 qede_free_mem_rxq(edev, fp->rxq);
1481
1482         if (fp->type & QEDE_FASTPATH_XDP)
1483                 qede_free_mem_txq(edev, fp->xdp_tx);
1484
1485         if (fp->type & QEDE_FASTPATH_TX) {
1486                 int cos;
1487
1488                 for_each_cos_in_txq(edev, cos)
1489                         qede_free_mem_txq(edev, &fp->txq[cos]);
1490         }
1491 }
1492
1493 /* This function allocates all memory needed for a single fp (i.e. an entity
1494  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1495  */
1496 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1497 {
1498         int rc = 0;
1499
1500         rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1501         if (rc)
1502                 goto out;
1503
1504         if (fp->type & QEDE_FASTPATH_RX) {
1505                 rc = qede_alloc_mem_rxq(edev, fp->rxq);
1506                 if (rc)
1507                         goto out;
1508         }
1509
1510         if (fp->type & QEDE_FASTPATH_XDP) {
1511                 rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1512                 if (rc)
1513                         goto out;
1514         }
1515
1516         if (fp->type & QEDE_FASTPATH_TX) {
1517                 int cos;
1518
1519                 for_each_cos_in_txq(edev, cos) {
1520                         rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1521                         if (rc)
1522                                 goto out;
1523                 }
1524         }
1525
1526 out:
1527         return rc;
1528 }
1529
1530 static void qede_free_mem_load(struct qede_dev *edev)
1531 {
1532         int i;
1533
1534         for_each_queue(i) {
1535                 struct qede_fastpath *fp = &edev->fp_array[i];
1536
1537                 qede_free_mem_fp(edev, fp);
1538         }
1539 }
1540
1541 /* This function allocates all qede memory at NIC load. */
1542 static int qede_alloc_mem_load(struct qede_dev *edev)
1543 {
1544         int rc = 0, queue_id;
1545
1546         for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1547                 struct qede_fastpath *fp = &edev->fp_array[queue_id];
1548
1549                 rc = qede_alloc_mem_fp(edev, fp);
1550                 if (rc) {
1551                         DP_ERR(edev,
1552                                "Failed to allocate memory for fastpath - rss id = %d\n",
1553                                queue_id);
1554                         qede_free_mem_load(edev);
1555                         return rc;
1556                 }
1557         }
1558
1559         return 0;
1560 }
1561
1562 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1563 static void qede_init_fp(struct qede_dev *edev)
1564 {
1565         int queue_id, rxq_index = 0, txq_index = 0;
1566         struct qede_fastpath *fp;
1567
1568         for_each_queue(queue_id) {
1569                 fp = &edev->fp_array[queue_id];
1570
1571                 fp->edev = edev;
1572                 fp->id = queue_id;
1573
1574                 if (fp->type & QEDE_FASTPATH_XDP) {
1575                         fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1576                                                                 rxq_index);
1577                         fp->xdp_tx->is_xdp = 1;
1578                 }
1579
1580                 if (fp->type & QEDE_FASTPATH_RX) {
1581                         fp->rxq->rxq_id = rxq_index++;
1582
1583                         /* Determine how to map buffers for this queue */
1584                         if (fp->type & QEDE_FASTPATH_XDP)
1585                                 fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1586                         else
1587                                 fp->rxq->data_direction = DMA_FROM_DEVICE;
1588                         fp->rxq->dev = &edev->pdev->dev;
1589
1590                         /* Driver have no error path from here */
1591                         WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1592                                                  fp->rxq->rxq_id) < 0);
1593                 }
1594
1595                 if (fp->type & QEDE_FASTPATH_TX) {
1596                         int cos;
1597
1598                         for_each_cos_in_txq(edev, cos) {
1599                                 struct qede_tx_queue *txq = &fp->txq[cos];
1600                                 u16 ndev_tx_id;
1601
1602                                 txq->cos = cos;
1603                                 txq->index = txq_index;
1604                                 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1605                                 txq->ndev_txq_id = ndev_tx_id;
1606
1607                                 if (edev->dev_info.is_legacy)
1608                                         txq->is_legacy = 1;
1609                                 txq->dev = &edev->pdev->dev;
1610                         }
1611
1612                         txq_index++;
1613                 }
1614
1615                 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1616                          edev->ndev->name, queue_id);
1617         }
1618 }
1619
1620 static int qede_set_real_num_queues(struct qede_dev *edev)
1621 {
1622         int rc = 0;
1623
1624         rc = netif_set_real_num_tx_queues(edev->ndev,
1625                                           QEDE_TSS_COUNT(edev) *
1626                                           edev->dev_info.num_tc);
1627         if (rc) {
1628                 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1629                 return rc;
1630         }
1631
1632         rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1633         if (rc) {
1634                 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1635                 return rc;
1636         }
1637
1638         return 0;
1639 }
1640
1641 static void qede_napi_disable_remove(struct qede_dev *edev)
1642 {
1643         int i;
1644
1645         for_each_queue(i) {
1646                 napi_disable(&edev->fp_array[i].napi);
1647
1648                 netif_napi_del(&edev->fp_array[i].napi);
1649         }
1650 }
1651
1652 static void qede_napi_add_enable(struct qede_dev *edev)
1653 {
1654         int i;
1655
1656         /* Add NAPI objects */
1657         for_each_queue(i) {
1658                 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1659                                qede_poll, NAPI_POLL_WEIGHT);
1660                 napi_enable(&edev->fp_array[i].napi);
1661         }
1662 }
1663
1664 static void qede_sync_free_irqs(struct qede_dev *edev)
1665 {
1666         int i;
1667
1668         for (i = 0; i < edev->int_info.used_cnt; i++) {
1669                 if (edev->int_info.msix_cnt) {
1670                         synchronize_irq(edev->int_info.msix[i].vector);
1671                         free_irq(edev->int_info.msix[i].vector,
1672                                  &edev->fp_array[i]);
1673                 } else {
1674                         edev->ops->common->simd_handler_clean(edev->cdev, i);
1675                 }
1676         }
1677
1678         edev->int_info.used_cnt = 0;
1679         edev->int_info.msix_cnt = 0;
1680 }
1681
1682 static int qede_req_msix_irqs(struct qede_dev *edev)
1683 {
1684         int i, rc;
1685
1686         /* Sanitize number of interrupts == number of prepared RSS queues */
1687         if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1688                 DP_ERR(edev,
1689                        "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1690                        QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1691                 return -EINVAL;
1692         }
1693
1694         for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1695 #ifdef CONFIG_RFS_ACCEL
1696                 struct qede_fastpath *fp = &edev->fp_array[i];
1697
1698                 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1699                         rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1700                                               edev->int_info.msix[i].vector);
1701                         if (rc) {
1702                                 DP_ERR(edev, "Failed to add CPU rmap\n");
1703                                 qede_free_arfs(edev);
1704                         }
1705                 }
1706 #endif
1707                 rc = request_irq(edev->int_info.msix[i].vector,
1708                                  qede_msix_fp_int, 0, edev->fp_array[i].name,
1709                                  &edev->fp_array[i]);
1710                 if (rc) {
1711                         DP_ERR(edev, "Request fp %d irq failed\n", i);
1712                         qede_sync_free_irqs(edev);
1713                         return rc;
1714                 }
1715                 DP_VERBOSE(edev, NETIF_MSG_INTR,
1716                            "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1717                            edev->fp_array[i].name, i,
1718                            &edev->fp_array[i]);
1719                 edev->int_info.used_cnt++;
1720         }
1721
1722         return 0;
1723 }
1724
1725 static void qede_simd_fp_handler(void *cookie)
1726 {
1727         struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1728
1729         napi_schedule_irqoff(&fp->napi);
1730 }
1731
1732 static int qede_setup_irqs(struct qede_dev *edev)
1733 {
1734         int i, rc = 0;
1735
1736         /* Learn Interrupt configuration */
1737         rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1738         if (rc)
1739                 return rc;
1740
1741         if (edev->int_info.msix_cnt) {
1742                 rc = qede_req_msix_irqs(edev);
1743                 if (rc)
1744                         return rc;
1745                 edev->ndev->irq = edev->int_info.msix[0].vector;
1746         } else {
1747                 const struct qed_common_ops *ops;
1748
1749                 /* qed should learn receive the RSS ids and callbacks */
1750                 ops = edev->ops->common;
1751                 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1752                         ops->simd_handler_config(edev->cdev,
1753                                                  &edev->fp_array[i], i,
1754                                                  qede_simd_fp_handler);
1755                 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1756         }
1757         return 0;
1758 }
1759
1760 static int qede_drain_txq(struct qede_dev *edev,
1761                           struct qede_tx_queue *txq, bool allow_drain)
1762 {
1763         int rc, cnt = 1000;
1764
1765         while (txq->sw_tx_cons != txq->sw_tx_prod) {
1766                 if (!cnt) {
1767                         if (allow_drain) {
1768                                 DP_NOTICE(edev,
1769                                           "Tx queue[%d] is stuck, requesting MCP to drain\n",
1770                                           txq->index);
1771                                 rc = edev->ops->common->drain(edev->cdev);
1772                                 if (rc)
1773                                         return rc;
1774                                 return qede_drain_txq(edev, txq, false);
1775                         }
1776                         DP_NOTICE(edev,
1777                                   "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1778                                   txq->index, txq->sw_tx_prod,
1779                                   txq->sw_tx_cons);
1780                         return -ENODEV;
1781                 }
1782                 cnt--;
1783                 usleep_range(1000, 2000);
1784                 barrier();
1785         }
1786
1787         /* FW finished processing, wait for HW to transmit all tx packets */
1788         usleep_range(1000, 2000);
1789
1790         return 0;
1791 }
1792
1793 static int qede_stop_txq(struct qede_dev *edev,
1794                          struct qede_tx_queue *txq, int rss_id)
1795 {
1796         return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1797 }
1798
1799 static int qede_stop_queues(struct qede_dev *edev)
1800 {
1801         struct qed_update_vport_params *vport_update_params;
1802         struct qed_dev *cdev = edev->cdev;
1803         struct qede_fastpath *fp;
1804         int rc, i;
1805
1806         /* Disable the vport */
1807         vport_update_params = vzalloc(sizeof(*vport_update_params));
1808         if (!vport_update_params)
1809                 return -ENOMEM;
1810
1811         vport_update_params->vport_id = 0;
1812         vport_update_params->update_vport_active_flg = 1;
1813         vport_update_params->vport_active_flg = 0;
1814         vport_update_params->update_rss_flg = 0;
1815
1816         rc = edev->ops->vport_update(cdev, vport_update_params);
1817         vfree(vport_update_params);
1818
1819         if (rc) {
1820                 DP_ERR(edev, "Failed to update vport\n");
1821                 return rc;
1822         }
1823
1824         /* Flush Tx queues. If needed, request drain from MCP */
1825         for_each_queue(i) {
1826                 fp = &edev->fp_array[i];
1827
1828                 if (fp->type & QEDE_FASTPATH_TX) {
1829                         int cos;
1830
1831                         for_each_cos_in_txq(edev, cos) {
1832                                 rc = qede_drain_txq(edev, &fp->txq[cos], true);
1833                                 if (rc)
1834                                         return rc;
1835                         }
1836                 }
1837
1838                 if (fp->type & QEDE_FASTPATH_XDP) {
1839                         rc = qede_drain_txq(edev, fp->xdp_tx, true);
1840                         if (rc)
1841                                 return rc;
1842                 }
1843         }
1844
1845         /* Stop all Queues in reverse order */
1846         for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
1847                 fp = &edev->fp_array[i];
1848
1849                 /* Stop the Tx Queue(s) */
1850                 if (fp->type & QEDE_FASTPATH_TX) {
1851                         int cos;
1852
1853                         for_each_cos_in_txq(edev, cos) {
1854                                 rc = qede_stop_txq(edev, &fp->txq[cos], i);
1855                                 if (rc)
1856                                         return rc;
1857                         }
1858                 }
1859
1860                 /* Stop the Rx Queue */
1861                 if (fp->type & QEDE_FASTPATH_RX) {
1862                         rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
1863                         if (rc) {
1864                                 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
1865                                 return rc;
1866                         }
1867                 }
1868
1869                 /* Stop the XDP forwarding queue */
1870                 if (fp->type & QEDE_FASTPATH_XDP) {
1871                         rc = qede_stop_txq(edev, fp->xdp_tx, i);
1872                         if (rc)
1873                                 return rc;
1874
1875                         bpf_prog_put(fp->rxq->xdp_prog);
1876                 }
1877         }
1878
1879         /* Stop the vport */
1880         rc = edev->ops->vport_stop(cdev, 0);
1881         if (rc)
1882                 DP_ERR(edev, "Failed to stop VPORT\n");
1883
1884         return rc;
1885 }
1886
1887 static int qede_start_txq(struct qede_dev *edev,
1888                           struct qede_fastpath *fp,
1889                           struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
1890 {
1891         dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
1892         u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
1893         struct qed_queue_start_common_params params;
1894         struct qed_txq_start_ret_params ret_params;
1895         int rc;
1896
1897         memset(&params, 0, sizeof(params));
1898         memset(&ret_params, 0, sizeof(ret_params));
1899
1900         /* Let the XDP queue share the queue-zone with one of the regular txq.
1901          * We don't really care about its coalescing.
1902          */
1903         if (txq->is_xdp)
1904                 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
1905         else
1906                 params.queue_id = txq->index;
1907
1908         params.p_sb = fp->sb_info;
1909         params.sb_idx = sb_idx;
1910         params.tc = txq->cos;
1911
1912         rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
1913                                    page_cnt, &ret_params);
1914         if (rc) {
1915                 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
1916                 return rc;
1917         }
1918
1919         txq->doorbell_addr = ret_params.p_doorbell;
1920         txq->handle = ret_params.p_handle;
1921
1922         /* Determine the FW consumer address associated */
1923         txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
1924
1925         /* Prepare the doorbell parameters */
1926         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
1927         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
1928         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
1929                   DQ_XCM_ETH_TX_BD_PROD_CMD);
1930         txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
1931
1932         return rc;
1933 }
1934
1935 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
1936 {
1937         int vlan_removal_en = 1;
1938         struct qed_dev *cdev = edev->cdev;
1939         struct qed_dev_info *qed_info = &edev->dev_info.common;
1940         struct qed_update_vport_params *vport_update_params;
1941         struct qed_queue_start_common_params q_params;
1942         struct qed_start_vport_params start = {0};
1943         int rc, i;
1944
1945         if (!edev->num_queues) {
1946                 DP_ERR(edev,
1947                        "Cannot update V-VPORT as active as there are no Rx queues\n");
1948                 return -EINVAL;
1949         }
1950
1951         vport_update_params = vzalloc(sizeof(*vport_update_params));
1952         if (!vport_update_params)
1953                 return -ENOMEM;
1954
1955         start.handle_ptp_pkts = !!(edev->ptp);
1956         start.gro_enable = !edev->gro_disable;
1957         start.mtu = edev->ndev->mtu;
1958         start.vport_id = 0;
1959         start.drop_ttl0 = true;
1960         start.remove_inner_vlan = vlan_removal_en;
1961         start.clear_stats = clear_stats;
1962
1963         rc = edev->ops->vport_start(cdev, &start);
1964
1965         if (rc) {
1966                 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
1967                 goto out;
1968         }
1969
1970         DP_VERBOSE(edev, NETIF_MSG_IFUP,
1971                    "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
1972                    start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
1973
1974         for_each_queue(i) {
1975                 struct qede_fastpath *fp = &edev->fp_array[i];
1976                 dma_addr_t p_phys_table;
1977                 u32 page_cnt;
1978
1979                 if (fp->type & QEDE_FASTPATH_RX) {
1980                         struct qed_rxq_start_ret_params ret_params;
1981                         struct qede_rx_queue *rxq = fp->rxq;
1982                         __le16 *val;
1983
1984                         memset(&ret_params, 0, sizeof(ret_params));
1985                         memset(&q_params, 0, sizeof(q_params));
1986                         q_params.queue_id = rxq->rxq_id;
1987                         q_params.vport_id = 0;
1988                         q_params.p_sb = fp->sb_info;
1989                         q_params.sb_idx = RX_PI;
1990
1991                         p_phys_table =
1992                             qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
1993                         page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
1994
1995                         rc = edev->ops->q_rx_start(cdev, i, &q_params,
1996                                                    rxq->rx_buf_size,
1997                                                    rxq->rx_bd_ring.p_phys_addr,
1998                                                    p_phys_table,
1999                                                    page_cnt, &ret_params);
2000                         if (rc) {
2001                                 DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2002                                        rc);
2003                                 goto out;
2004                         }
2005
2006                         /* Use the return parameters */
2007                         rxq->hw_rxq_prod_addr = ret_params.p_prod;
2008                         rxq->handle = ret_params.p_handle;
2009
2010                         val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2011                         rxq->hw_cons_ptr = val;
2012
2013                         qede_update_rx_prod(edev, rxq);
2014                 }
2015
2016                 if (fp->type & QEDE_FASTPATH_XDP) {
2017                         rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2018                         if (rc)
2019                                 goto out;
2020
2021                         fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1);
2022                         if (IS_ERR(fp->rxq->xdp_prog)) {
2023                                 rc = PTR_ERR(fp->rxq->xdp_prog);
2024                                 fp->rxq->xdp_prog = NULL;
2025                                 goto out;
2026                         }
2027                 }
2028
2029                 if (fp->type & QEDE_FASTPATH_TX) {
2030                         int cos;
2031
2032                         for_each_cos_in_txq(edev, cos) {
2033                                 rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2034                                                     TX_PI(cos));
2035                                 if (rc)
2036                                         goto out;
2037                         }
2038                 }
2039         }
2040
2041         /* Prepare and send the vport enable */
2042         vport_update_params->vport_id = start.vport_id;
2043         vport_update_params->update_vport_active_flg = 1;
2044         vport_update_params->vport_active_flg = 1;
2045
2046         if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2047             qed_info->tx_switching) {
2048                 vport_update_params->update_tx_switching_flg = 1;
2049                 vport_update_params->tx_switching_flg = 1;
2050         }
2051
2052         qede_fill_rss_params(edev, &vport_update_params->rss_params,
2053                              &vport_update_params->update_rss_flg);
2054
2055         rc = edev->ops->vport_update(cdev, vport_update_params);
2056         if (rc)
2057                 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2058
2059 out:
2060         vfree(vport_update_params);
2061         return rc;
2062 }
2063
2064 enum qede_unload_mode {
2065         QEDE_UNLOAD_NORMAL,
2066 };
2067
2068 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2069                         bool is_locked)
2070 {
2071         struct qed_link_params link_params;
2072         int rc;
2073
2074         DP_INFO(edev, "Starting qede unload\n");
2075
2076         if (!is_locked)
2077                 __qede_lock(edev);
2078
2079         edev->state = QEDE_STATE_CLOSED;
2080
2081         qede_rdma_dev_event_close(edev);
2082
2083         /* Close OS Tx */
2084         netif_tx_disable(edev->ndev);
2085         netif_carrier_off(edev->ndev);
2086
2087         /* Reset the link */
2088         memset(&link_params, 0, sizeof(link_params));
2089         link_params.link_up = false;
2090         edev->ops->common->set_link(edev->cdev, &link_params);
2091         rc = qede_stop_queues(edev);
2092         if (rc) {
2093                 qede_sync_free_irqs(edev);
2094                 goto out;
2095         }
2096
2097         DP_INFO(edev, "Stopped Queues\n");
2098
2099         qede_vlan_mark_nonconfigured(edev);
2100         edev->ops->fastpath_stop(edev->cdev);
2101
2102         if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2103                 qede_poll_for_freeing_arfs_filters(edev);
2104                 qede_free_arfs(edev);
2105         }
2106
2107         /* Release the interrupts */
2108         qede_sync_free_irqs(edev);
2109         edev->ops->common->set_fp_int(edev->cdev, 0);
2110
2111         qede_napi_disable_remove(edev);
2112
2113         qede_free_mem_load(edev);
2114         qede_free_fp_array(edev);
2115
2116 out:
2117         if (!is_locked)
2118                 __qede_unlock(edev);
2119         DP_INFO(edev, "Ending qede unload\n");
2120 }
2121
2122 enum qede_load_mode {
2123         QEDE_LOAD_NORMAL,
2124         QEDE_LOAD_RELOAD,
2125 };
2126
2127 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2128                      bool is_locked)
2129 {
2130         struct qed_link_params link_params;
2131         u8 num_tc;
2132         int rc;
2133
2134         DP_INFO(edev, "Starting qede load\n");
2135
2136         if (!is_locked)
2137                 __qede_lock(edev);
2138
2139         rc = qede_set_num_queues(edev);
2140         if (rc)
2141                 goto out;
2142
2143         rc = qede_alloc_fp_array(edev);
2144         if (rc)
2145                 goto out;
2146
2147         qede_init_fp(edev);
2148
2149         rc = qede_alloc_mem_load(edev);
2150         if (rc)
2151                 goto err1;
2152         DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2153                 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2154
2155         rc = qede_set_real_num_queues(edev);
2156         if (rc)
2157                 goto err2;
2158
2159         if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2160                 rc = qede_alloc_arfs(edev);
2161                 if (rc)
2162                         DP_NOTICE(edev, "aRFS memory allocation failed\n");
2163         }
2164
2165         qede_napi_add_enable(edev);
2166         DP_INFO(edev, "Napi added and enabled\n");
2167
2168         rc = qede_setup_irqs(edev);
2169         if (rc)
2170                 goto err3;
2171         DP_INFO(edev, "Setup IRQs succeeded\n");
2172
2173         rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2174         if (rc)
2175                 goto err4;
2176         DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2177
2178         num_tc = netdev_get_num_tc(edev->ndev);
2179         num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2180         qede_setup_tc(edev->ndev, num_tc);
2181
2182         /* Program un-configured VLANs */
2183         qede_configure_vlan_filters(edev);
2184
2185         /* Ask for link-up using current configuration */
2186         memset(&link_params, 0, sizeof(link_params));
2187         link_params.link_up = true;
2188         edev->ops->common->set_link(edev->cdev, &link_params);
2189
2190         edev->state = QEDE_STATE_OPEN;
2191
2192         DP_INFO(edev, "Ending successfully qede load\n");
2193
2194         goto out;
2195 err4:
2196         qede_sync_free_irqs(edev);
2197 err3:
2198         qede_napi_disable_remove(edev);
2199 err2:
2200         qede_free_mem_load(edev);
2201 err1:
2202         edev->ops->common->set_fp_int(edev->cdev, 0);
2203         qede_free_fp_array(edev);
2204         edev->num_queues = 0;
2205         edev->fp_num_tx = 0;
2206         edev->fp_num_rx = 0;
2207 out:
2208         if (!is_locked)
2209                 __qede_unlock(edev);
2210
2211         return rc;
2212 }
2213
2214 /* 'func' should be able to run between unload and reload assuming interface
2215  * is actually running, or afterwards in case it's currently DOWN.
2216  */
2217 void qede_reload(struct qede_dev *edev,
2218                  struct qede_reload_args *args, bool is_locked)
2219 {
2220         if (!is_locked)
2221                 __qede_lock(edev);
2222
2223         /* Since qede_lock is held, internal state wouldn't change even
2224          * if netdev state would start transitioning. Check whether current
2225          * internal configuration indicates device is up, then reload.
2226          */
2227         if (edev->state == QEDE_STATE_OPEN) {
2228                 qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2229                 if (args)
2230                         args->func(edev, args);
2231                 qede_load(edev, QEDE_LOAD_RELOAD, true);
2232
2233                 /* Since no one is going to do it for us, re-configure */
2234                 qede_config_rx_mode(edev->ndev);
2235         } else if (args) {
2236                 args->func(edev, args);
2237         }
2238
2239         if (!is_locked)
2240                 __qede_unlock(edev);
2241 }
2242
2243 /* called with rtnl_lock */
2244 static int qede_open(struct net_device *ndev)
2245 {
2246         struct qede_dev *edev = netdev_priv(ndev);
2247         int rc;
2248
2249         netif_carrier_off(ndev);
2250
2251         edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2252
2253         rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2254         if (rc)
2255                 return rc;
2256
2257         udp_tunnel_get_rx_info(ndev);
2258
2259         edev->ops->common->update_drv_state(edev->cdev, true);
2260
2261         return 0;
2262 }
2263
2264 static int qede_close(struct net_device *ndev)
2265 {
2266         struct qede_dev *edev = netdev_priv(ndev);
2267
2268         qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2269
2270         edev->ops->common->update_drv_state(edev->cdev, false);
2271
2272         return 0;
2273 }
2274
2275 static void qede_link_update(void *dev, struct qed_link_output *link)
2276 {
2277         struct qede_dev *edev = dev;
2278
2279         if (!netif_running(edev->ndev)) {
2280                 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
2281                 return;
2282         }
2283
2284         if (link->link_up) {
2285                 if (!netif_carrier_ok(edev->ndev)) {
2286                         DP_NOTICE(edev, "Link is up\n");
2287                         netif_tx_start_all_queues(edev->ndev);
2288                         netif_carrier_on(edev->ndev);
2289                         qede_rdma_dev_event_open(edev);
2290                 }
2291         } else {
2292                 if (netif_carrier_ok(edev->ndev)) {
2293                         DP_NOTICE(edev, "Link is down\n");
2294                         netif_tx_disable(edev->ndev);
2295                         netif_carrier_off(edev->ndev);
2296                         qede_rdma_dev_event_close(edev);
2297                 }
2298         }
2299 }
2300
2301 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2302 {
2303         struct netdev_queue *netdev_txq;
2304
2305         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2306         if (netif_xmit_stopped(netdev_txq))
2307                 return true;
2308
2309         return false;
2310 }
2311
2312 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2313 {
2314         struct qede_dev *edev = dev;
2315         struct netdev_hw_addr *ha;
2316         int i;
2317
2318         if (edev->ndev->features & NETIF_F_IP_CSUM)
2319                 data->feat_flags |= QED_TLV_IP_CSUM;
2320         if (edev->ndev->features & NETIF_F_TSO)
2321                 data->feat_flags |= QED_TLV_LSO;
2322
2323         ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2324         memset(data->mac[1], 0, ETH_ALEN);
2325         memset(data->mac[2], 0, ETH_ALEN);
2326         /* Copy the first two UC macs */
2327         netif_addr_lock_bh(edev->ndev);
2328         i = 1;
2329         netdev_for_each_uc_addr(ha, edev->ndev) {
2330                 ether_addr_copy(data->mac[i++], ha->addr);
2331                 if (i == QED_TLV_MAC_COUNT)
2332                         break;
2333         }
2334
2335         netif_addr_unlock_bh(edev->ndev);
2336 }
2337
2338 static void qede_get_eth_tlv_data(void *dev, void *data)
2339 {
2340         struct qed_mfw_tlv_eth *etlv = data;
2341         struct qede_dev *edev = dev;
2342         struct qede_fastpath *fp;
2343         int i;
2344
2345         etlv->lso_maxoff_size = 0XFFFF;
2346         etlv->lso_maxoff_size_set = true;
2347         etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2348         etlv->lso_minseg_size_set = true;
2349         etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2350         etlv->prom_mode_set = true;
2351         etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2352         etlv->tx_descr_size_set = true;
2353         etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2354         etlv->rx_descr_size_set = true;
2355         etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2356         etlv->iov_offload_set = true;
2357
2358         /* Fill information regarding queues; Should be done under the qede
2359          * lock to guarantee those don't change beneath our feet.
2360          */
2361         etlv->txqs_empty = true;
2362         etlv->rxqs_empty = true;
2363         etlv->num_txqs_full = 0;
2364         etlv->num_rxqs_full = 0;
2365
2366         __qede_lock(edev);
2367         for_each_queue(i) {
2368                 fp = &edev->fp_array[i];
2369                 if (fp->type & QEDE_FASTPATH_TX) {
2370                         struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2371
2372                         if (txq->sw_tx_cons != txq->sw_tx_prod)
2373                                 etlv->txqs_empty = false;
2374                         if (qede_is_txq_full(edev, txq))
2375                                 etlv->num_txqs_full++;
2376                 }
2377                 if (fp->type & QEDE_FASTPATH_RX) {
2378                         if (qede_has_rx_work(fp->rxq))
2379                                 etlv->rxqs_empty = false;
2380
2381                         /* This one is a bit tricky; Firmware might stop
2382                          * placing packets if ring is not yet full.
2383                          * Give an approximation.
2384                          */
2385                         if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2386                             qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2387                             RX_RING_SIZE - 100)
2388                                 etlv->num_rxqs_full++;
2389                 }
2390         }
2391         __qede_unlock(edev);
2392
2393         etlv->txqs_empty_set = true;
2394         etlv->rxqs_empty_set = true;
2395         etlv->num_txqs_full_set = true;
2396         etlv->num_rxqs_full_set = true;
2397 }