GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qede NIC Driver
3  * Copyright (c) 2015-2017  QLogic Corporation
4  * Copyright (c) 2019-2020 Marvell International Ltd.
5  */
6
7 #include <linux/crash_dump.h>
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/version.h>
11 #include <linux/device.h>
12 #include <linux/netdevice.h>
13 #include <linux/etherdevice.h>
14 #include <linux/skbuff.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/string.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/interrupt.h>
20 #include <asm/byteorder.h>
21 #include <asm/param.h>
22 #include <linux/io.h>
23 #include <linux/netdev_features.h>
24 #include <linux/udp.h>
25 #include <linux/tcp.h>
26 #include <net/udp_tunnel.h>
27 #include <linux/ip.h>
28 #include <net/ipv6.h>
29 #include <net/tcp.h>
30 #include <linux/if_ether.h>
31 #include <linux/if_vlan.h>
32 #include <linux/pkt_sched.h>
33 #include <linux/ethtool.h>
34 #include <linux/in.h>
35 #include <linux/random.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/bitops.h>
38 #include <linux/vmalloc.h>
39 #include <linux/aer.h>
40 #include "qede.h"
41 #include "qede_ptp.h"
42
43 static char version[] =
44         "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
45
46 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
47 MODULE_LICENSE("GPL");
48 MODULE_VERSION(DRV_MODULE_VERSION);
49
50 static uint debug;
51 module_param(debug, uint, 0);
52 MODULE_PARM_DESC(debug, " Default debug msglevel");
53
54 static const struct qed_eth_ops *qed_ops;
55
56 #define CHIP_NUM_57980S_40              0x1634
57 #define CHIP_NUM_57980S_10              0x1666
58 #define CHIP_NUM_57980S_MF              0x1636
59 #define CHIP_NUM_57980S_100             0x1644
60 #define CHIP_NUM_57980S_50              0x1654
61 #define CHIP_NUM_57980S_25              0x1656
62 #define CHIP_NUM_57980S_IOV             0x1664
63 #define CHIP_NUM_AH                     0x8070
64 #define CHIP_NUM_AH_IOV                 0x8090
65
66 #ifndef PCI_DEVICE_ID_NX2_57980E
67 #define PCI_DEVICE_ID_57980S_40         CHIP_NUM_57980S_40
68 #define PCI_DEVICE_ID_57980S_10         CHIP_NUM_57980S_10
69 #define PCI_DEVICE_ID_57980S_MF         CHIP_NUM_57980S_MF
70 #define PCI_DEVICE_ID_57980S_100        CHIP_NUM_57980S_100
71 #define PCI_DEVICE_ID_57980S_50         CHIP_NUM_57980S_50
72 #define PCI_DEVICE_ID_57980S_25         CHIP_NUM_57980S_25
73 #define PCI_DEVICE_ID_57980S_IOV        CHIP_NUM_57980S_IOV
74 #define PCI_DEVICE_ID_AH                CHIP_NUM_AH
75 #define PCI_DEVICE_ID_AH_IOV            CHIP_NUM_AH_IOV
76
77 #endif
78
79 enum qede_pci_private {
80         QEDE_PRIVATE_PF,
81         QEDE_PRIVATE_VF
82 };
83
84 static const struct pci_device_id qede_pci_tbl[] = {
85         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
86         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
87         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
88         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
89         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
90         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
91 #ifdef CONFIG_QED_SRIOV
92         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
93 #endif
94         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
95 #ifdef CONFIG_QED_SRIOV
96         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
97 #endif
98         { 0 }
99 };
100
101 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
102
103 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
104 static pci_ers_result_t
105 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
106
107 #define TX_TIMEOUT              (5 * HZ)
108
109 /* Utilize last protocol index for XDP */
110 #define XDP_PI  11
111
112 static void qede_remove(struct pci_dev *pdev);
113 static void qede_shutdown(struct pci_dev *pdev);
114 static void qede_link_update(void *dev, struct qed_link_output *link);
115 static void qede_schedule_recovery_handler(void *dev);
116 static void qede_recovery_handler(struct qede_dev *edev);
117 static void qede_schedule_hw_err_handler(void *dev,
118                                          enum qed_hw_err_type err_type);
119 static void qede_get_eth_tlv_data(void *edev, void *data);
120 static void qede_get_generic_tlv_data(void *edev,
121                                       struct qed_generic_tlvs *data);
122 static void qede_generic_hw_err_handler(struct qede_dev *edev);
123 #ifdef CONFIG_QED_SRIOV
124 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
125                             __be16 vlan_proto)
126 {
127         struct qede_dev *edev = netdev_priv(ndev);
128
129         if (vlan > 4095) {
130                 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
131                 return -EINVAL;
132         }
133
134         if (vlan_proto != htons(ETH_P_8021Q))
135                 return -EPROTONOSUPPORT;
136
137         DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
138                    vlan, vf);
139
140         return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
141 }
142
143 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
144 {
145         struct qede_dev *edev = netdev_priv(ndev);
146
147         DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx);
148
149         if (!is_valid_ether_addr(mac)) {
150                 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
151                 return -EINVAL;
152         }
153
154         return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
155 }
156
157 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
158 {
159         struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
160         struct qed_dev_info *qed_info = &edev->dev_info.common;
161         struct qed_update_vport_params *vport_params;
162         int rc;
163
164         vport_params = vzalloc(sizeof(*vport_params));
165         if (!vport_params)
166                 return -ENOMEM;
167         DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
168
169         rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
170
171         /* Enable/Disable Tx switching for PF */
172         if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
173             !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
174                 vport_params->vport_id = 0;
175                 vport_params->update_tx_switching_flg = 1;
176                 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
177                 edev->ops->vport_update(edev->cdev, vport_params);
178         }
179
180         vfree(vport_params);
181         return rc;
182 }
183 #endif
184
185 static const struct pci_error_handlers qede_err_handler = {
186         .error_detected = qede_io_error_detected,
187 };
188
189 static struct pci_driver qede_pci_driver = {
190         .name = "qede",
191         .id_table = qede_pci_tbl,
192         .probe = qede_probe,
193         .remove = qede_remove,
194         .shutdown = qede_shutdown,
195 #ifdef CONFIG_QED_SRIOV
196         .sriov_configure = qede_sriov_configure,
197 #endif
198         .err_handler = &qede_err_handler,
199 };
200
201 static struct qed_eth_cb_ops qede_ll_ops = {
202         {
203 #ifdef CONFIG_RFS_ACCEL
204                 .arfs_filter_op = qede_arfs_filter_op,
205 #endif
206                 .link_update = qede_link_update,
207                 .schedule_recovery_handler = qede_schedule_recovery_handler,
208                 .schedule_hw_err_handler = qede_schedule_hw_err_handler,
209                 .get_generic_tlv_data = qede_get_generic_tlv_data,
210                 .get_protocol_tlv_data = qede_get_eth_tlv_data,
211         },
212         .force_mac = qede_force_mac,
213         .ports_update = qede_udp_ports_update,
214 };
215
216 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
217                              void *ptr)
218 {
219         struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
220         struct ethtool_drvinfo drvinfo;
221         struct qede_dev *edev;
222
223         if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
224                 goto done;
225
226         /* Check whether this is a qede device */
227         if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
228                 goto done;
229
230         memset(&drvinfo, 0, sizeof(drvinfo));
231         ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
232         if (strcmp(drvinfo.driver, "qede"))
233                 goto done;
234         edev = netdev_priv(ndev);
235
236         switch (event) {
237         case NETDEV_CHANGENAME:
238                 /* Notify qed of the name change */
239                 if (!edev->ops || !edev->ops->common)
240                         goto done;
241                 edev->ops->common->set_name(edev->cdev, edev->ndev->name);
242                 break;
243         case NETDEV_CHANGEADDR:
244                 edev = netdev_priv(ndev);
245                 qede_rdma_event_changeaddr(edev);
246                 break;
247         }
248
249 done:
250         return NOTIFY_DONE;
251 }
252
253 static struct notifier_block qede_netdev_notifier = {
254         .notifier_call = qede_netdev_event,
255 };
256
257 static
258 int __init qede_init(void)
259 {
260         int ret;
261
262         pr_info("qede_init: %s\n", version);
263
264         qede_forced_speed_maps_init();
265
266         qed_ops = qed_get_eth_ops();
267         if (!qed_ops) {
268                 pr_notice("Failed to get qed ethtool operations\n");
269                 return -EINVAL;
270         }
271
272         /* Must register notifier before pci ops, since we might miss
273          * interface rename after pci probe and netdev registration.
274          */
275         ret = register_netdevice_notifier(&qede_netdev_notifier);
276         if (ret) {
277                 pr_notice("Failed to register netdevice_notifier\n");
278                 qed_put_eth_ops();
279                 return -EINVAL;
280         }
281
282         ret = pci_register_driver(&qede_pci_driver);
283         if (ret) {
284                 pr_notice("Failed to register driver\n");
285                 unregister_netdevice_notifier(&qede_netdev_notifier);
286                 qed_put_eth_ops();
287                 return -EINVAL;
288         }
289
290         return 0;
291 }
292
293 static void __exit qede_cleanup(void)
294 {
295         if (debug & QED_LOG_INFO_MASK)
296                 pr_info("qede_cleanup called\n");
297
298         unregister_netdevice_notifier(&qede_netdev_notifier);
299         pci_unregister_driver(&qede_pci_driver);
300         qed_put_eth_ops();
301 }
302
303 module_init(qede_init);
304 module_exit(qede_cleanup);
305
306 static int qede_open(struct net_device *ndev);
307 static int qede_close(struct net_device *ndev);
308
309 void qede_fill_by_demand_stats(struct qede_dev *edev)
310 {
311         struct qede_stats_common *p_common = &edev->stats.common;
312         struct qed_eth_stats stats;
313
314         edev->ops->get_vport_stats(edev->cdev, &stats);
315
316         spin_lock(&edev->stats_lock);
317
318         p_common->no_buff_discards = stats.common.no_buff_discards;
319         p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
320         p_common->ttl0_discard = stats.common.ttl0_discard;
321         p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
322         p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
323         p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
324         p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
325         p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
326         p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
327         p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
328         p_common->mac_filter_discards = stats.common.mac_filter_discards;
329         p_common->gft_filter_drop = stats.common.gft_filter_drop;
330
331         p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
332         p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
333         p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
334         p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
335         p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
336         p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
337         p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
338         p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
339         p_common->coalesced_events = stats.common.tpa_coalesced_events;
340         p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
341         p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
342         p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
343
344         p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
345         p_common->rx_65_to_127_byte_packets =
346             stats.common.rx_65_to_127_byte_packets;
347         p_common->rx_128_to_255_byte_packets =
348             stats.common.rx_128_to_255_byte_packets;
349         p_common->rx_256_to_511_byte_packets =
350             stats.common.rx_256_to_511_byte_packets;
351         p_common->rx_512_to_1023_byte_packets =
352             stats.common.rx_512_to_1023_byte_packets;
353         p_common->rx_1024_to_1518_byte_packets =
354             stats.common.rx_1024_to_1518_byte_packets;
355         p_common->rx_crc_errors = stats.common.rx_crc_errors;
356         p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
357         p_common->rx_pause_frames = stats.common.rx_pause_frames;
358         p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
359         p_common->rx_align_errors = stats.common.rx_align_errors;
360         p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
361         p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
362         p_common->rx_jabbers = stats.common.rx_jabbers;
363         p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
364         p_common->rx_fragments = stats.common.rx_fragments;
365         p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
366         p_common->tx_65_to_127_byte_packets =
367             stats.common.tx_65_to_127_byte_packets;
368         p_common->tx_128_to_255_byte_packets =
369             stats.common.tx_128_to_255_byte_packets;
370         p_common->tx_256_to_511_byte_packets =
371             stats.common.tx_256_to_511_byte_packets;
372         p_common->tx_512_to_1023_byte_packets =
373             stats.common.tx_512_to_1023_byte_packets;
374         p_common->tx_1024_to_1518_byte_packets =
375             stats.common.tx_1024_to_1518_byte_packets;
376         p_common->tx_pause_frames = stats.common.tx_pause_frames;
377         p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
378         p_common->brb_truncates = stats.common.brb_truncates;
379         p_common->brb_discards = stats.common.brb_discards;
380         p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
381         p_common->link_change_count = stats.common.link_change_count;
382         p_common->ptp_skip_txts = edev->ptp_skip_txts;
383
384         if (QEDE_IS_BB(edev)) {
385                 struct qede_stats_bb *p_bb = &edev->stats.bb;
386
387                 p_bb->rx_1519_to_1522_byte_packets =
388                     stats.bb.rx_1519_to_1522_byte_packets;
389                 p_bb->rx_1519_to_2047_byte_packets =
390                     stats.bb.rx_1519_to_2047_byte_packets;
391                 p_bb->rx_2048_to_4095_byte_packets =
392                     stats.bb.rx_2048_to_4095_byte_packets;
393                 p_bb->rx_4096_to_9216_byte_packets =
394                     stats.bb.rx_4096_to_9216_byte_packets;
395                 p_bb->rx_9217_to_16383_byte_packets =
396                     stats.bb.rx_9217_to_16383_byte_packets;
397                 p_bb->tx_1519_to_2047_byte_packets =
398                     stats.bb.tx_1519_to_2047_byte_packets;
399                 p_bb->tx_2048_to_4095_byte_packets =
400                     stats.bb.tx_2048_to_4095_byte_packets;
401                 p_bb->tx_4096_to_9216_byte_packets =
402                     stats.bb.tx_4096_to_9216_byte_packets;
403                 p_bb->tx_9217_to_16383_byte_packets =
404                     stats.bb.tx_9217_to_16383_byte_packets;
405                 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
406                 p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
407         } else {
408                 struct qede_stats_ah *p_ah = &edev->stats.ah;
409
410                 p_ah->rx_1519_to_max_byte_packets =
411                     stats.ah.rx_1519_to_max_byte_packets;
412                 p_ah->tx_1519_to_max_byte_packets =
413                     stats.ah.tx_1519_to_max_byte_packets;
414         }
415
416         spin_unlock(&edev->stats_lock);
417 }
418
419 static void qede_get_stats64(struct net_device *dev,
420                              struct rtnl_link_stats64 *stats)
421 {
422         struct qede_dev *edev = netdev_priv(dev);
423         struct qede_stats_common *p_common;
424
425         p_common = &edev->stats.common;
426
427         spin_lock(&edev->stats_lock);
428
429         stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
430                             p_common->rx_bcast_pkts;
431         stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
432                             p_common->tx_bcast_pkts;
433
434         stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
435                           p_common->rx_bcast_bytes;
436         stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
437                           p_common->tx_bcast_bytes;
438
439         stats->tx_errors = p_common->tx_err_drop_pkts;
440         stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
441
442         stats->rx_fifo_errors = p_common->no_buff_discards;
443
444         if (QEDE_IS_BB(edev))
445                 stats->collisions = edev->stats.bb.tx_total_collisions;
446         stats->rx_crc_errors = p_common->rx_crc_errors;
447         stats->rx_frame_errors = p_common->rx_align_errors;
448
449         spin_unlock(&edev->stats_lock);
450 }
451
452 #ifdef CONFIG_QED_SRIOV
453 static int qede_get_vf_config(struct net_device *dev, int vfidx,
454                               struct ifla_vf_info *ivi)
455 {
456         struct qede_dev *edev = netdev_priv(dev);
457
458         if (!edev->ops)
459                 return -EINVAL;
460
461         return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
462 }
463
464 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
465                             int min_tx_rate, int max_tx_rate)
466 {
467         struct qede_dev *edev = netdev_priv(dev);
468
469         return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
470                                         max_tx_rate);
471 }
472
473 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
474 {
475         struct qede_dev *edev = netdev_priv(dev);
476
477         if (!edev->ops)
478                 return -EINVAL;
479
480         return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
481 }
482
483 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
484                                   int link_state)
485 {
486         struct qede_dev *edev = netdev_priv(dev);
487
488         if (!edev->ops)
489                 return -EINVAL;
490
491         return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
492 }
493
494 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
495 {
496         struct qede_dev *edev = netdev_priv(dev);
497
498         if (!edev->ops)
499                 return -EINVAL;
500
501         return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
502 }
503 #endif
504
505 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
506 {
507         struct qede_dev *edev = netdev_priv(dev);
508
509         if (!netif_running(dev))
510                 return -EAGAIN;
511
512         switch (cmd) {
513         case SIOCSHWTSTAMP:
514                 return qede_ptp_hw_ts(edev, ifr);
515         default:
516                 DP_VERBOSE(edev, QED_MSG_DEBUG,
517                            "default IOCTL cmd 0x%x\n", cmd);
518                 return -EOPNOTSUPP;
519         }
520
521         return 0;
522 }
523
524 static void qede_tx_log_print(struct qede_dev *edev, struct qede_tx_queue *txq)
525 {
526         DP_NOTICE(edev,
527                   "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
528                   txq->index, le16_to_cpu(*txq->hw_cons_ptr),
529                   qed_chain_get_cons_idx(&txq->tx_pbl),
530                   qed_chain_get_prod_idx(&txq->tx_pbl),
531                   jiffies);
532 }
533
534 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
535 {
536         struct qede_dev *edev = netdev_priv(dev);
537         struct qede_tx_queue *txq;
538         int cos;
539
540         netif_carrier_off(dev);
541         DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
542
543         if (!(edev->fp_array[txqueue].type & QEDE_FASTPATH_TX))
544                 return;
545
546         for_each_cos_in_txq(edev, cos) {
547                 txq = &edev->fp_array[txqueue].txq[cos];
548
549                 if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
550                     qed_chain_get_prod_idx(&txq->tx_pbl))
551                         qede_tx_log_print(edev, txq);
552         }
553
554         if (IS_VF(edev))
555                 return;
556
557         if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
558             edev->state == QEDE_STATE_RECOVERY) {
559                 DP_INFO(edev,
560                         "Avoid handling a Tx timeout while another HW error is being handled\n");
561                 return;
562         }
563
564         set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
565         set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
566         schedule_delayed_work(&edev->sp_task, 0);
567 }
568
569 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
570 {
571         struct qede_dev *edev = netdev_priv(ndev);
572         int cos, count, offset;
573
574         if (num_tc > edev->dev_info.num_tc)
575                 return -EINVAL;
576
577         netdev_reset_tc(ndev);
578         netdev_set_num_tc(ndev, num_tc);
579
580         for_each_cos_in_txq(edev, cos) {
581                 count = QEDE_TSS_COUNT(edev);
582                 offset = cos * QEDE_TSS_COUNT(edev);
583                 netdev_set_tc_queue(ndev, cos, count, offset);
584         }
585
586         return 0;
587 }
588
589 static int
590 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
591                 __be16 proto)
592 {
593         switch (f->command) {
594         case FLOW_CLS_REPLACE:
595                 return qede_add_tc_flower_fltr(edev, proto, f);
596         case FLOW_CLS_DESTROY:
597                 return qede_delete_flow_filter(edev, f->cookie);
598         default:
599                 return -EOPNOTSUPP;
600         }
601 }
602
603 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
604                                   void *cb_priv)
605 {
606         struct flow_cls_offload *f;
607         struct qede_dev *edev = cb_priv;
608
609         if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
610                 return -EOPNOTSUPP;
611
612         switch (type) {
613         case TC_SETUP_CLSFLOWER:
614                 f = type_data;
615                 return qede_set_flower(edev, f, f->common.protocol);
616         default:
617                 return -EOPNOTSUPP;
618         }
619 }
620
621 static LIST_HEAD(qede_block_cb_list);
622
623 static int
624 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
625                       void *type_data)
626 {
627         struct qede_dev *edev = netdev_priv(dev);
628         struct tc_mqprio_qopt *mqprio;
629
630         switch (type) {
631         case TC_SETUP_BLOCK:
632                 return flow_block_cb_setup_simple(type_data,
633                                                   &qede_block_cb_list,
634                                                   qede_setup_tc_block_cb,
635                                                   edev, edev, true);
636         case TC_SETUP_QDISC_MQPRIO:
637                 mqprio = type_data;
638
639                 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
640                 return qede_setup_tc(dev, mqprio->num_tc);
641         default:
642                 return -EOPNOTSUPP;
643         }
644 }
645
646 static const struct net_device_ops qede_netdev_ops = {
647         .ndo_open               = qede_open,
648         .ndo_stop               = qede_close,
649         .ndo_start_xmit         = qede_start_xmit,
650         .ndo_select_queue       = qede_select_queue,
651         .ndo_set_rx_mode        = qede_set_rx_mode,
652         .ndo_set_mac_address    = qede_set_mac_addr,
653         .ndo_validate_addr      = eth_validate_addr,
654         .ndo_change_mtu         = qede_change_mtu,
655         .ndo_do_ioctl           = qede_ioctl,
656         .ndo_tx_timeout         = qede_tx_timeout,
657 #ifdef CONFIG_QED_SRIOV
658         .ndo_set_vf_mac         = qede_set_vf_mac,
659         .ndo_set_vf_vlan        = qede_set_vf_vlan,
660         .ndo_set_vf_trust       = qede_set_vf_trust,
661 #endif
662         .ndo_vlan_rx_add_vid    = qede_vlan_rx_add_vid,
663         .ndo_vlan_rx_kill_vid   = qede_vlan_rx_kill_vid,
664         .ndo_fix_features       = qede_fix_features,
665         .ndo_set_features       = qede_set_features,
666         .ndo_get_stats64        = qede_get_stats64,
667 #ifdef CONFIG_QED_SRIOV
668         .ndo_set_vf_link_state  = qede_set_vf_link_state,
669         .ndo_set_vf_spoofchk    = qede_set_vf_spoofchk,
670         .ndo_get_vf_config      = qede_get_vf_config,
671         .ndo_set_vf_rate        = qede_set_vf_rate,
672 #endif
673         .ndo_udp_tunnel_add     = udp_tunnel_nic_add_port,
674         .ndo_udp_tunnel_del     = udp_tunnel_nic_del_port,
675         .ndo_features_check     = qede_features_check,
676         .ndo_bpf                = qede_xdp,
677 #ifdef CONFIG_RFS_ACCEL
678         .ndo_rx_flow_steer      = qede_rx_flow_steer,
679 #endif
680         .ndo_xdp_xmit           = qede_xdp_transmit,
681         .ndo_setup_tc           = qede_setup_tc_offload,
682 };
683
684 static const struct net_device_ops qede_netdev_vf_ops = {
685         .ndo_open               = qede_open,
686         .ndo_stop               = qede_close,
687         .ndo_start_xmit         = qede_start_xmit,
688         .ndo_select_queue       = qede_select_queue,
689         .ndo_set_rx_mode        = qede_set_rx_mode,
690         .ndo_set_mac_address    = qede_set_mac_addr,
691         .ndo_validate_addr      = eth_validate_addr,
692         .ndo_change_mtu         = qede_change_mtu,
693         .ndo_vlan_rx_add_vid    = qede_vlan_rx_add_vid,
694         .ndo_vlan_rx_kill_vid   = qede_vlan_rx_kill_vid,
695         .ndo_fix_features       = qede_fix_features,
696         .ndo_set_features       = qede_set_features,
697         .ndo_get_stats64        = qede_get_stats64,
698         .ndo_udp_tunnel_add     = udp_tunnel_nic_add_port,
699         .ndo_udp_tunnel_del     = udp_tunnel_nic_del_port,
700         .ndo_features_check     = qede_features_check,
701 };
702
703 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
704         .ndo_open               = qede_open,
705         .ndo_stop               = qede_close,
706         .ndo_start_xmit         = qede_start_xmit,
707         .ndo_select_queue       = qede_select_queue,
708         .ndo_set_rx_mode        = qede_set_rx_mode,
709         .ndo_set_mac_address    = qede_set_mac_addr,
710         .ndo_validate_addr      = eth_validate_addr,
711         .ndo_change_mtu         = qede_change_mtu,
712         .ndo_vlan_rx_add_vid    = qede_vlan_rx_add_vid,
713         .ndo_vlan_rx_kill_vid   = qede_vlan_rx_kill_vid,
714         .ndo_fix_features       = qede_fix_features,
715         .ndo_set_features       = qede_set_features,
716         .ndo_get_stats64        = qede_get_stats64,
717         .ndo_udp_tunnel_add     = udp_tunnel_nic_add_port,
718         .ndo_udp_tunnel_del     = udp_tunnel_nic_del_port,
719         .ndo_features_check     = qede_features_check,
720         .ndo_bpf                = qede_xdp,
721         .ndo_xdp_xmit           = qede_xdp_transmit,
722 };
723
724 /* -------------------------------------------------------------------------
725  * START OF PROBE / REMOVE
726  * -------------------------------------------------------------------------
727  */
728
729 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
730                                             struct pci_dev *pdev,
731                                             struct qed_dev_eth_info *info,
732                                             u32 dp_module, u8 dp_level)
733 {
734         struct net_device *ndev;
735         struct qede_dev *edev;
736
737         ndev = alloc_etherdev_mqs(sizeof(*edev),
738                                   info->num_queues * info->num_tc,
739                                   info->num_queues);
740         if (!ndev) {
741                 pr_err("etherdev allocation failed\n");
742                 return NULL;
743         }
744
745         edev = netdev_priv(ndev);
746         edev->ndev = ndev;
747         edev->cdev = cdev;
748         edev->pdev = pdev;
749         edev->dp_module = dp_module;
750         edev->dp_level = dp_level;
751         edev->ops = qed_ops;
752
753         if (is_kdump_kernel()) {
754                 edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
755                 edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
756         } else {
757                 edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
758                 edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
759         }
760
761         DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
762                 info->num_queues, info->num_queues);
763
764         SET_NETDEV_DEV(ndev, &pdev->dev);
765
766         memset(&edev->stats, 0, sizeof(edev->stats));
767         memcpy(&edev->dev_info, info, sizeof(*info));
768
769         /* As ethtool doesn't have the ability to show WoL behavior as
770          * 'default', if device supports it declare it's enabled.
771          */
772         if (edev->dev_info.common.wol_support)
773                 edev->wol_enabled = true;
774
775         INIT_LIST_HEAD(&edev->vlan_list);
776
777         return edev;
778 }
779
780 static void qede_init_ndev(struct qede_dev *edev)
781 {
782         struct net_device *ndev = edev->ndev;
783         struct pci_dev *pdev = edev->pdev;
784         bool udp_tunnel_enable = false;
785         netdev_features_t hw_features;
786
787         pci_set_drvdata(pdev, ndev);
788
789         ndev->mem_start = edev->dev_info.common.pci_mem_start;
790         ndev->base_addr = ndev->mem_start;
791         ndev->mem_end = edev->dev_info.common.pci_mem_end;
792         ndev->irq = edev->dev_info.common.pci_irq;
793
794         ndev->watchdog_timeo = TX_TIMEOUT;
795
796         if (IS_VF(edev)) {
797                 if (edev->dev_info.xdp_supported)
798                         ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
799                 else
800                         ndev->netdev_ops = &qede_netdev_vf_ops;
801         } else {
802                 ndev->netdev_ops = &qede_netdev_ops;
803         }
804
805         qede_set_ethtool_ops(ndev);
806
807         ndev->priv_flags |= IFF_UNICAST_FLT;
808
809         /* user-changeble features */
810         hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
811                       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
812                       NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
813
814         if (edev->dev_info.common.b_arfs_capable)
815                 hw_features |= NETIF_F_NTUPLE;
816
817         if (edev->dev_info.common.vxlan_enable ||
818             edev->dev_info.common.geneve_enable)
819                 udp_tunnel_enable = true;
820
821         if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
822                 hw_features |= NETIF_F_TSO_ECN;
823                 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
824                                         NETIF_F_SG | NETIF_F_TSO |
825                                         NETIF_F_TSO_ECN | NETIF_F_TSO6 |
826                                         NETIF_F_RXCSUM;
827         }
828
829         if (udp_tunnel_enable) {
830                 hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
831                                 NETIF_F_GSO_UDP_TUNNEL_CSUM);
832                 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
833                                           NETIF_F_GSO_UDP_TUNNEL_CSUM);
834
835                 qede_set_udp_tunnels(edev);
836         }
837
838         if (edev->dev_info.common.gre_enable) {
839                 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
840                 ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
841                                           NETIF_F_GSO_GRE_CSUM);
842         }
843
844         ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
845                               NETIF_F_HIGHDMA;
846         ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
847                          NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
848                          NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
849
850         ndev->hw_features = hw_features;
851
852         /* MTU range: 46 - 9600 */
853         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
854         ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
855
856         /* Set network device HW mac */
857         ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
858
859         ndev->mtu = edev->dev_info.common.mtu;
860 }
861
862 /* This function converts from 32b param to two params of level and module
863  * Input 32b decoding:
864  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
865  * 'happy' flow, e.g. memory allocation failed.
866  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
867  * and provide important parameters.
868  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
869  * module. VERBOSE prints are for tracking the specific flow in low level.
870  *
871  * Notice that the level should be that of the lowest required logs.
872  */
873 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
874 {
875         *p_dp_level = QED_LEVEL_NOTICE;
876         *p_dp_module = 0;
877
878         if (debug & QED_LOG_VERBOSE_MASK) {
879                 *p_dp_level = QED_LEVEL_VERBOSE;
880                 *p_dp_module = (debug & 0x3FFFFFFF);
881         } else if (debug & QED_LOG_INFO_MASK) {
882                 *p_dp_level = QED_LEVEL_INFO;
883         } else if (debug & QED_LOG_NOTICE_MASK) {
884                 *p_dp_level = QED_LEVEL_NOTICE;
885         }
886 }
887
888 static void qede_free_fp_array(struct qede_dev *edev)
889 {
890         if (edev->fp_array) {
891                 struct qede_fastpath *fp;
892                 int i;
893
894                 for_each_queue(i) {
895                         fp = &edev->fp_array[i];
896
897                         kfree(fp->sb_info);
898                         /* Handle mem alloc failure case where qede_init_fp
899                          * didn't register xdp_rxq_info yet.
900                          * Implicit only (fp->type & QEDE_FASTPATH_RX)
901                          */
902                         if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
903                                 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
904                         kfree(fp->rxq);
905                         kfree(fp->xdp_tx);
906                         kfree(fp->txq);
907                 }
908                 kfree(edev->fp_array);
909         }
910
911         edev->num_queues = 0;
912         edev->fp_num_tx = 0;
913         edev->fp_num_rx = 0;
914 }
915
916 static int qede_alloc_fp_array(struct qede_dev *edev)
917 {
918         u8 fp_combined, fp_rx = edev->fp_num_rx;
919         struct qede_fastpath *fp;
920         int i;
921
922         edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
923                                  sizeof(*edev->fp_array), GFP_KERNEL);
924         if (!edev->fp_array) {
925                 DP_NOTICE(edev, "fp array allocation failed\n");
926                 goto err;
927         }
928
929         fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
930
931         /* Allocate the FP elements for Rx queues followed by combined and then
932          * the Tx. This ordering should be maintained so that the respective
933          * queues (Rx or Tx) will be together in the fastpath array and the
934          * associated ids will be sequential.
935          */
936         for_each_queue(i) {
937                 fp = &edev->fp_array[i];
938
939                 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
940                 if (!fp->sb_info) {
941                         DP_NOTICE(edev, "sb info struct allocation failed\n");
942                         goto err;
943                 }
944
945                 if (fp_rx) {
946                         fp->type = QEDE_FASTPATH_RX;
947                         fp_rx--;
948                 } else if (fp_combined) {
949                         fp->type = QEDE_FASTPATH_COMBINED;
950                         fp_combined--;
951                 } else {
952                         fp->type = QEDE_FASTPATH_TX;
953                 }
954
955                 if (fp->type & QEDE_FASTPATH_TX) {
956                         fp->txq = kcalloc(edev->dev_info.num_tc,
957                                           sizeof(*fp->txq), GFP_KERNEL);
958                         if (!fp->txq)
959                                 goto err;
960                 }
961
962                 if (fp->type & QEDE_FASTPATH_RX) {
963                         fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
964                         if (!fp->rxq)
965                                 goto err;
966
967                         if (edev->xdp_prog) {
968                                 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
969                                                      GFP_KERNEL);
970                                 if (!fp->xdp_tx)
971                                         goto err;
972                                 fp->type |= QEDE_FASTPATH_XDP;
973                         }
974                 }
975         }
976
977         return 0;
978 err:
979         qede_free_fp_array(edev);
980         return -ENOMEM;
981 }
982
983 /* The qede lock is used to protect driver state change and driver flows that
984  * are not reentrant.
985  */
986 void __qede_lock(struct qede_dev *edev)
987 {
988         mutex_lock(&edev->qede_lock);
989 }
990
991 void __qede_unlock(struct qede_dev *edev)
992 {
993         mutex_unlock(&edev->qede_lock);
994 }
995
996 /* This version of the lock should be used when acquiring the RTNL lock is also
997  * needed in addition to the internal qede lock.
998  */
999 static void qede_lock(struct qede_dev *edev)
1000 {
1001         rtnl_lock();
1002         __qede_lock(edev);
1003 }
1004
1005 static void qede_unlock(struct qede_dev *edev)
1006 {
1007         __qede_unlock(edev);
1008         rtnl_unlock();
1009 }
1010
1011 static void qede_periodic_task(struct work_struct *work)
1012 {
1013         struct qede_dev *edev = container_of(work, struct qede_dev,
1014                                              periodic_task.work);
1015
1016         qede_fill_by_demand_stats(edev);
1017         schedule_delayed_work(&edev->periodic_task, edev->stats_coal_ticks);
1018 }
1019
1020 static void qede_init_periodic_task(struct qede_dev *edev)
1021 {
1022         INIT_DELAYED_WORK(&edev->periodic_task, qede_periodic_task);
1023         spin_lock_init(&edev->stats_lock);
1024         edev->stats_coal_usecs = USEC_PER_SEC;
1025         edev->stats_coal_ticks = usecs_to_jiffies(USEC_PER_SEC);
1026 }
1027
1028 static void qede_sp_task(struct work_struct *work)
1029 {
1030         struct qede_dev *edev = container_of(work, struct qede_dev,
1031                                              sp_task.work);
1032
1033         /* Disable execution of this deferred work once
1034          * qede removal is in progress, this stop any future
1035          * scheduling of sp_task.
1036          */
1037         if (test_bit(QEDE_SP_DISABLE, &edev->sp_flags))
1038                 return;
1039
1040         /* The locking scheme depends on the specific flag:
1041          * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
1042          * ensure that ongoing flows are ended and new ones are not started.
1043          * In other cases - only the internal qede lock should be acquired.
1044          */
1045
1046         if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
1047                 cancel_delayed_work_sync(&edev->periodic_task);
1048 #ifdef CONFIG_QED_SRIOV
1049                 /* SRIOV must be disabled outside the lock to avoid a deadlock.
1050                  * The recovery of the active VFs is currently not supported.
1051                  */
1052                 if (pci_num_vf(edev->pdev))
1053                         qede_sriov_configure(edev->pdev, 0);
1054 #endif
1055                 qede_lock(edev);
1056                 qede_recovery_handler(edev);
1057                 qede_unlock(edev);
1058         }
1059
1060         __qede_lock(edev);
1061
1062         if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1063                 if (edev->state == QEDE_STATE_OPEN)
1064                         qede_config_rx_mode(edev->ndev);
1065
1066 #ifdef CONFIG_RFS_ACCEL
1067         if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1068                 if (edev->state == QEDE_STATE_OPEN)
1069                         qede_process_arfs_filters(edev, false);
1070         }
1071 #endif
1072         if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
1073                 qede_generic_hw_err_handler(edev);
1074         __qede_unlock(edev);
1075
1076         if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1077 #ifdef CONFIG_QED_SRIOV
1078                 /* SRIOV must be disabled outside the lock to avoid a deadlock.
1079                  * The recovery of the active VFs is currently not supported.
1080                  */
1081                 if (pci_num_vf(edev->pdev))
1082                         qede_sriov_configure(edev->pdev, 0);
1083 #endif
1084                 edev->ops->common->recovery_process(edev->cdev);
1085         }
1086 }
1087
1088 static void qede_update_pf_params(struct qed_dev *cdev)
1089 {
1090         struct qed_pf_params pf_params;
1091         u16 num_cons;
1092
1093         /* 64 rx + 64 tx + 64 XDP */
1094         memset(&pf_params, 0, sizeof(struct qed_pf_params));
1095
1096         /* 1 rx + 1 xdp + max tx cos */
1097         num_cons = QED_MIN_L2_CONS;
1098
1099         pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1100
1101         /* Same for VFs - make sure they'll have sufficient connections
1102          * to support XDP Tx queues.
1103          */
1104         pf_params.eth_pf_params.num_vf_cons = 48;
1105
1106         pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1107         qed_ops->common->update_pf_params(cdev, &pf_params);
1108 }
1109
1110 #define QEDE_FW_VER_STR_SIZE    80
1111
1112 static void qede_log_probe(struct qede_dev *edev)
1113 {
1114         struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1115         u8 buf[QEDE_FW_VER_STR_SIZE];
1116         size_t left_size;
1117
1118         snprintf(buf, QEDE_FW_VER_STR_SIZE,
1119                  "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1120                  p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1121                  p_dev_info->fw_eng,
1122                  (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1123                  QED_MFW_VERSION_3_OFFSET,
1124                  (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1125                  QED_MFW_VERSION_2_OFFSET,
1126                  (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1127                  QED_MFW_VERSION_1_OFFSET,
1128                  (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1129                  QED_MFW_VERSION_0_OFFSET);
1130
1131         left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1132         if (p_dev_info->mbi_version && left_size)
1133                 snprintf(buf + strlen(buf), left_size,
1134                          " [MBI %d.%d.%d]",
1135                          (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1136                          QED_MBI_VERSION_2_OFFSET,
1137                          (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1138                          QED_MBI_VERSION_1_OFFSET,
1139                          (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1140                          QED_MBI_VERSION_0_OFFSET);
1141
1142         pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1143                 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1144                 buf, edev->ndev->name);
1145 }
1146
1147 enum qede_probe_mode {
1148         QEDE_PROBE_NORMAL,
1149         QEDE_PROBE_RECOVERY,
1150 };
1151
1152 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1153                         bool is_vf, enum qede_probe_mode mode)
1154 {
1155         struct qed_probe_params probe_params;
1156         struct qed_slowpath_params sp_params;
1157         struct qed_dev_eth_info dev_info;
1158         struct qede_dev *edev;
1159         struct qed_dev *cdev;
1160         int rc;
1161
1162         if (unlikely(dp_level & QED_LEVEL_INFO))
1163                 pr_notice("Starting qede probe\n");
1164
1165         memset(&probe_params, 0, sizeof(probe_params));
1166         probe_params.protocol = QED_PROTOCOL_ETH;
1167         probe_params.dp_module = dp_module;
1168         probe_params.dp_level = dp_level;
1169         probe_params.is_vf = is_vf;
1170         probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1171         cdev = qed_ops->common->probe(pdev, &probe_params);
1172         if (!cdev) {
1173                 rc = -ENODEV;
1174                 goto err0;
1175         }
1176
1177         qede_update_pf_params(cdev);
1178
1179         /* Start the Slowpath-process */
1180         memset(&sp_params, 0, sizeof(sp_params));
1181         sp_params.int_mode = QED_INT_MODE_MSIX;
1182         sp_params.drv_major = QEDE_MAJOR_VERSION;
1183         sp_params.drv_minor = QEDE_MINOR_VERSION;
1184         sp_params.drv_rev = QEDE_REVISION_VERSION;
1185         sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
1186         strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1187         rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1188         if (rc) {
1189                 pr_notice("Cannot start slowpath\n");
1190                 goto err1;
1191         }
1192
1193         /* Learn information crucial for qede to progress */
1194         rc = qed_ops->fill_dev_info(cdev, &dev_info);
1195         if (rc)
1196                 goto err2;
1197
1198         if (mode != QEDE_PROBE_RECOVERY) {
1199                 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1200                                            dp_level);
1201                 if (!edev) {
1202                         rc = -ENOMEM;
1203                         goto err2;
1204                 }
1205
1206                 edev->devlink = qed_ops->common->devlink_register(cdev);
1207                 if (IS_ERR(edev->devlink)) {
1208                         DP_NOTICE(edev, "Cannot register devlink\n");
1209                         edev->devlink = NULL;
1210                         /* Go on, we can live without devlink */
1211                 }
1212         } else {
1213                 struct net_device *ndev = pci_get_drvdata(pdev);
1214
1215                 edev = netdev_priv(ndev);
1216
1217                 if (edev->devlink) {
1218                         struct qed_devlink *qdl = devlink_priv(edev->devlink);
1219
1220                         qdl->cdev = cdev;
1221                 }
1222                 edev->cdev = cdev;
1223                 memset(&edev->stats, 0, sizeof(edev->stats));
1224                 memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1225         }
1226
1227         if (is_vf)
1228                 set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1229
1230         qede_init_ndev(edev);
1231
1232         rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1233         if (rc)
1234                 goto err3;
1235
1236         if (mode != QEDE_PROBE_RECOVERY) {
1237                 /* Prepare the lock prior to the registration of the netdev,
1238                  * as once it's registered we might reach flows requiring it
1239                  * [it's even possible to reach a flow needing it directly
1240                  * from there, although it's unlikely].
1241                  */
1242                 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1243                 mutex_init(&edev->qede_lock);
1244                 qede_init_periodic_task(edev);
1245
1246                 rc = register_netdev(edev->ndev);
1247                 if (rc) {
1248                         DP_NOTICE(edev, "Cannot register net-device\n");
1249                         goto err4;
1250                 }
1251         }
1252
1253         edev->ops->common->set_name(cdev, edev->ndev->name);
1254
1255         /* PTP not supported on VFs */
1256         if (!is_vf)
1257                 qede_ptp_enable(edev);
1258
1259         edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1260
1261 #ifdef CONFIG_DCB
1262         if (!IS_VF(edev))
1263                 qede_set_dcbnl_ops(edev->ndev);
1264 #endif
1265
1266         edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1267
1268         qede_log_probe(edev);
1269
1270         /* retain user config (for example - after recovery) */
1271         if (edev->stats_coal_usecs)
1272                 schedule_delayed_work(&edev->periodic_task, 0);
1273
1274         return 0;
1275
1276 err4:
1277         qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1278 err3:
1279         if (mode != QEDE_PROBE_RECOVERY)
1280                 free_netdev(edev->ndev);
1281         else
1282                 edev->cdev = NULL;
1283 err2:
1284         qed_ops->common->slowpath_stop(cdev);
1285 err1:
1286         qed_ops->common->remove(cdev);
1287 err0:
1288         return rc;
1289 }
1290
1291 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1292 {
1293         bool is_vf = false;
1294         u32 dp_module = 0;
1295         u8 dp_level = 0;
1296
1297         switch ((enum qede_pci_private)id->driver_data) {
1298         case QEDE_PRIVATE_VF:
1299                 if (debug & QED_LOG_VERBOSE_MASK)
1300                         dev_err(&pdev->dev, "Probing a VF\n");
1301                 is_vf = true;
1302                 break;
1303         default:
1304                 if (debug & QED_LOG_VERBOSE_MASK)
1305                         dev_err(&pdev->dev, "Probing a PF\n");
1306         }
1307
1308         qede_config_debug(debug, &dp_module, &dp_level);
1309
1310         return __qede_probe(pdev, dp_module, dp_level, is_vf,
1311                             QEDE_PROBE_NORMAL);
1312 }
1313
1314 enum qede_remove_mode {
1315         QEDE_REMOVE_NORMAL,
1316         QEDE_REMOVE_RECOVERY,
1317 };
1318
1319 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1320 {
1321         struct net_device *ndev = pci_get_drvdata(pdev);
1322         struct qede_dev *edev;
1323         struct qed_dev *cdev;
1324
1325         if (!ndev) {
1326                 dev_info(&pdev->dev, "Device has already been removed\n");
1327                 return;
1328         }
1329
1330         edev = netdev_priv(ndev);
1331         cdev = edev->cdev;
1332
1333         DP_INFO(edev, "Starting qede_remove\n");
1334
1335         qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1336
1337         if (mode != QEDE_REMOVE_RECOVERY) {
1338                 set_bit(QEDE_SP_DISABLE, &edev->sp_flags);
1339                 unregister_netdev(ndev);
1340
1341                 cancel_delayed_work_sync(&edev->sp_task);
1342                 cancel_delayed_work_sync(&edev->periodic_task);
1343
1344                 edev->ops->common->set_power_state(cdev, PCI_D0);
1345
1346                 pci_set_drvdata(pdev, NULL);
1347         }
1348
1349         qede_ptp_disable(edev);
1350
1351         /* Use global ops since we've freed edev */
1352         qed_ops->common->slowpath_stop(cdev);
1353         if (system_state == SYSTEM_POWER_OFF)
1354                 return;
1355
1356         if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) {
1357                 qed_ops->common->devlink_unregister(edev->devlink);
1358                 edev->devlink = NULL;
1359         }
1360         qed_ops->common->remove(cdev);
1361         edev->cdev = NULL;
1362
1363         /* Since this can happen out-of-sync with other flows,
1364          * don't release the netdevice until after slowpath stop
1365          * has been called to guarantee various other contexts
1366          * [e.g., QED register callbacks] won't break anything when
1367          * accessing the netdevice.
1368          */
1369         if (mode != QEDE_REMOVE_RECOVERY)
1370                 free_netdev(ndev);
1371
1372         dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1373 }
1374
1375 static void qede_remove(struct pci_dev *pdev)
1376 {
1377         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1378 }
1379
1380 static void qede_shutdown(struct pci_dev *pdev)
1381 {
1382         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1383 }
1384
1385 /* -------------------------------------------------------------------------
1386  * START OF LOAD / UNLOAD
1387  * -------------------------------------------------------------------------
1388  */
1389
1390 static int qede_set_num_queues(struct qede_dev *edev)
1391 {
1392         int rc;
1393         u16 rss_num;
1394
1395         /* Setup queues according to possible resources*/
1396         if (edev->req_queues)
1397                 rss_num = edev->req_queues;
1398         else
1399                 rss_num = netif_get_num_default_rss_queues() *
1400                           edev->dev_info.common.num_hwfns;
1401
1402         rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1403
1404         rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1405         if (rc > 0) {
1406                 /* Managed to request interrupts for our queues */
1407                 edev->num_queues = rc;
1408                 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1409                         QEDE_QUEUE_CNT(edev), rss_num);
1410                 rc = 0;
1411         }
1412
1413         edev->fp_num_tx = edev->req_num_tx;
1414         edev->fp_num_rx = edev->req_num_rx;
1415
1416         return rc;
1417 }
1418
1419 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1420                              u16 sb_id)
1421 {
1422         if (sb_info->sb_virt) {
1423                 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1424                                               QED_SB_TYPE_L2_QUEUE);
1425                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1426                                   (void *)sb_info->sb_virt, sb_info->sb_phys);
1427                 memset(sb_info, 0, sizeof(*sb_info));
1428         }
1429 }
1430
1431 /* This function allocates fast-path status block memory */
1432 static int qede_alloc_mem_sb(struct qede_dev *edev,
1433                              struct qed_sb_info *sb_info, u16 sb_id)
1434 {
1435         struct status_block_e4 *sb_virt;
1436         dma_addr_t sb_phys;
1437         int rc;
1438
1439         sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1440                                      sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1441         if (!sb_virt) {
1442                 DP_ERR(edev, "Status block allocation failed\n");
1443                 return -ENOMEM;
1444         }
1445
1446         rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1447                                         sb_virt, sb_phys, sb_id,
1448                                         QED_SB_TYPE_L2_QUEUE);
1449         if (rc) {
1450                 DP_ERR(edev, "Status block initialization failed\n");
1451                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1452                                   sb_virt, sb_phys);
1453                 return rc;
1454         }
1455
1456         return 0;
1457 }
1458
1459 static void qede_free_rx_buffers(struct qede_dev *edev,
1460                                  struct qede_rx_queue *rxq)
1461 {
1462         u16 i;
1463
1464         for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1465                 struct sw_rx_data *rx_buf;
1466                 struct page *data;
1467
1468                 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1469                 data = rx_buf->data;
1470
1471                 dma_unmap_page(&edev->pdev->dev,
1472                                rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1473
1474                 rx_buf->data = NULL;
1475                 __free_page(data);
1476         }
1477 }
1478
1479 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1480 {
1481         /* Free rx buffers */
1482         qede_free_rx_buffers(edev, rxq);
1483
1484         /* Free the parallel SW ring */
1485         kfree(rxq->sw_rx_ring);
1486
1487         /* Free the real RQ ring used by FW */
1488         edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1489         edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1490 }
1491
1492 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1493 {
1494         int i;
1495
1496         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1497                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1498
1499                 tpa_info->state = QEDE_AGG_STATE_NONE;
1500         }
1501 }
1502
1503 /* This function allocates all memory needed per Rx queue */
1504 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1505 {
1506         struct qed_chain_init_params params = {
1507                 .cnt_type       = QED_CHAIN_CNT_TYPE_U16,
1508                 .num_elems      = RX_RING_SIZE,
1509         };
1510         struct qed_dev *cdev = edev->cdev;
1511         int i, rc, size;
1512
1513         rxq->num_rx_buffers = edev->q_num_rx_buffers;
1514
1515         rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1516
1517         rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1518         size = rxq->rx_headroom +
1519                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1520
1521         /* Make sure that the headroom and  payload fit in a single page */
1522         if (rxq->rx_buf_size + size > PAGE_SIZE)
1523                 rxq->rx_buf_size = PAGE_SIZE - size;
1524
1525         /* Segment size to split a page in multiple equal parts,
1526          * unless XDP is used in which case we'd use the entire page.
1527          */
1528         if (!edev->xdp_prog) {
1529                 size = size + rxq->rx_buf_size;
1530                 rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1531         } else {
1532                 rxq->rx_buf_seg_size = PAGE_SIZE;
1533                 edev->ndev->features &= ~NETIF_F_GRO_HW;
1534         }
1535
1536         /* Allocate the parallel driver ring for Rx buffers */
1537         size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1538         rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1539         if (!rxq->sw_rx_ring) {
1540                 DP_ERR(edev, "Rx buffers ring allocation failed\n");
1541                 rc = -ENOMEM;
1542                 goto err;
1543         }
1544
1545         /* Allocate FW Rx ring  */
1546         params.mode = QED_CHAIN_MODE_NEXT_PTR;
1547         params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE;
1548         params.elem_size = sizeof(struct eth_rx_bd);
1549
1550         rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, &params);
1551         if (rc)
1552                 goto err;
1553
1554         /* Allocate FW completion ring */
1555         params.mode = QED_CHAIN_MODE_PBL;
1556         params.intended_use = QED_CHAIN_USE_TO_CONSUME;
1557         params.elem_size = sizeof(union eth_rx_cqe);
1558
1559         rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, &params);
1560         if (rc)
1561                 goto err;
1562
1563         /* Allocate buffers for the Rx ring */
1564         rxq->filled_buffers = 0;
1565         for (i = 0; i < rxq->num_rx_buffers; i++) {
1566                 rc = qede_alloc_rx_buffer(rxq, false);
1567                 if (rc) {
1568                         DP_ERR(edev,
1569                                "Rx buffers allocation failed at index %d\n", i);
1570                         goto err;
1571                 }
1572         }
1573
1574         edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1575         if (!edev->gro_disable)
1576                 qede_set_tpa_param(rxq);
1577 err:
1578         return rc;
1579 }
1580
1581 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1582 {
1583         /* Free the parallel SW ring */
1584         if (txq->is_xdp)
1585                 kfree(txq->sw_tx_ring.xdp);
1586         else
1587                 kfree(txq->sw_tx_ring.skbs);
1588
1589         /* Free the real RQ ring used by FW */
1590         edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1591 }
1592
1593 /* This function allocates all memory needed per Tx queue */
1594 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1595 {
1596         struct qed_chain_init_params params = {
1597                 .mode           = QED_CHAIN_MODE_PBL,
1598                 .intended_use   = QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1599                 .cnt_type       = QED_CHAIN_CNT_TYPE_U16,
1600                 .num_elems      = edev->q_num_tx_buffers,
1601                 .elem_size      = sizeof(union eth_tx_bd_types),
1602         };
1603         int size, rc;
1604
1605         txq->num_tx_buffers = edev->q_num_tx_buffers;
1606
1607         /* Allocate the parallel driver ring for Tx buffers */
1608         if (txq->is_xdp) {
1609                 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1610                 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1611                 if (!txq->sw_tx_ring.xdp)
1612                         goto err;
1613         } else {
1614                 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1615                 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1616                 if (!txq->sw_tx_ring.skbs)
1617                         goto err;
1618         }
1619
1620         rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, &params);
1621         if (rc)
1622                 goto err;
1623
1624         return 0;
1625
1626 err:
1627         qede_free_mem_txq(edev, txq);
1628         return -ENOMEM;
1629 }
1630
1631 /* This function frees all memory of a single fp */
1632 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1633 {
1634         qede_free_mem_sb(edev, fp->sb_info, fp->id);
1635
1636         if (fp->type & QEDE_FASTPATH_RX)
1637                 qede_free_mem_rxq(edev, fp->rxq);
1638
1639         if (fp->type & QEDE_FASTPATH_XDP)
1640                 qede_free_mem_txq(edev, fp->xdp_tx);
1641
1642         if (fp->type & QEDE_FASTPATH_TX) {
1643                 int cos;
1644
1645                 for_each_cos_in_txq(edev, cos)
1646                         qede_free_mem_txq(edev, &fp->txq[cos]);
1647         }
1648 }
1649
1650 /* This function allocates all memory needed for a single fp (i.e. an entity
1651  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1652  */
1653 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1654 {
1655         int rc = 0;
1656
1657         rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1658         if (rc)
1659                 goto out;
1660
1661         if (fp->type & QEDE_FASTPATH_RX) {
1662                 rc = qede_alloc_mem_rxq(edev, fp->rxq);
1663                 if (rc)
1664                         goto out;
1665         }
1666
1667         if (fp->type & QEDE_FASTPATH_XDP) {
1668                 rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1669                 if (rc)
1670                         goto out;
1671         }
1672
1673         if (fp->type & QEDE_FASTPATH_TX) {
1674                 int cos;
1675
1676                 for_each_cos_in_txq(edev, cos) {
1677                         rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1678                         if (rc)
1679                                 goto out;
1680                 }
1681         }
1682
1683 out:
1684         return rc;
1685 }
1686
1687 static void qede_free_mem_load(struct qede_dev *edev)
1688 {
1689         int i;
1690
1691         for_each_queue(i) {
1692                 struct qede_fastpath *fp = &edev->fp_array[i];
1693
1694                 qede_free_mem_fp(edev, fp);
1695         }
1696 }
1697
1698 /* This function allocates all qede memory at NIC load. */
1699 static int qede_alloc_mem_load(struct qede_dev *edev)
1700 {
1701         int rc = 0, queue_id;
1702
1703         for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1704                 struct qede_fastpath *fp = &edev->fp_array[queue_id];
1705
1706                 rc = qede_alloc_mem_fp(edev, fp);
1707                 if (rc) {
1708                         DP_ERR(edev,
1709                                "Failed to allocate memory for fastpath - rss id = %d\n",
1710                                queue_id);
1711                         qede_free_mem_load(edev);
1712                         return rc;
1713                 }
1714         }
1715
1716         return 0;
1717 }
1718
1719 static void qede_empty_tx_queue(struct qede_dev *edev,
1720                                 struct qede_tx_queue *txq)
1721 {
1722         unsigned int pkts_compl = 0, bytes_compl = 0;
1723         struct netdev_queue *netdev_txq;
1724         int rc, len = 0;
1725
1726         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1727
1728         while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1729                qed_chain_get_prod_idx(&txq->tx_pbl)) {
1730                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1731                            "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1732                            txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1733                            qed_chain_get_prod_idx(&txq->tx_pbl));
1734
1735                 rc = qede_free_tx_pkt(edev, txq, &len);
1736                 if (rc) {
1737                         DP_NOTICE(edev,
1738                                   "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1739                                   txq->index,
1740                                   qed_chain_get_cons_idx(&txq->tx_pbl),
1741                                   qed_chain_get_prod_idx(&txq->tx_pbl));
1742                         break;
1743                 }
1744
1745                 bytes_compl += len;
1746                 pkts_compl++;
1747                 txq->sw_tx_cons++;
1748         }
1749
1750         netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1751 }
1752
1753 static void qede_empty_tx_queues(struct qede_dev *edev)
1754 {
1755         int i;
1756
1757         for_each_queue(i)
1758                 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1759                         int cos;
1760
1761                         for_each_cos_in_txq(edev, cos) {
1762                                 struct qede_fastpath *fp;
1763
1764                                 fp = &edev->fp_array[i];
1765                                 qede_empty_tx_queue(edev,
1766                                                     &fp->txq[cos]);
1767                         }
1768                 }
1769 }
1770
1771 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1772 static void qede_init_fp(struct qede_dev *edev)
1773 {
1774         int queue_id, rxq_index = 0, txq_index = 0;
1775         struct qede_fastpath *fp;
1776         bool init_xdp = false;
1777
1778         for_each_queue(queue_id) {
1779                 fp = &edev->fp_array[queue_id];
1780
1781                 fp->edev = edev;
1782                 fp->id = queue_id;
1783
1784                 if (fp->type & QEDE_FASTPATH_XDP) {
1785                         fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1786                                                                 rxq_index);
1787                         fp->xdp_tx->is_xdp = 1;
1788
1789                         spin_lock_init(&fp->xdp_tx->xdp_tx_lock);
1790                         init_xdp = true;
1791                 }
1792
1793                 if (fp->type & QEDE_FASTPATH_RX) {
1794                         fp->rxq->rxq_id = rxq_index++;
1795
1796                         /* Determine how to map buffers for this queue */
1797                         if (fp->type & QEDE_FASTPATH_XDP)
1798                                 fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1799                         else
1800                                 fp->rxq->data_direction = DMA_FROM_DEVICE;
1801                         fp->rxq->dev = &edev->pdev->dev;
1802
1803                         /* Driver have no error path from here */
1804                         WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1805                                                  fp->rxq->rxq_id) < 0);
1806
1807                         if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq,
1808                                                        MEM_TYPE_PAGE_ORDER0,
1809                                                        NULL)) {
1810                                 DP_NOTICE(edev,
1811                                           "Failed to register XDP memory model\n");
1812                         }
1813                 }
1814
1815                 if (fp->type & QEDE_FASTPATH_TX) {
1816                         int cos;
1817
1818                         for_each_cos_in_txq(edev, cos) {
1819                                 struct qede_tx_queue *txq = &fp->txq[cos];
1820                                 u16 ndev_tx_id;
1821
1822                                 txq->cos = cos;
1823                                 txq->index = txq_index;
1824                                 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1825                                 txq->ndev_txq_id = ndev_tx_id;
1826
1827                                 if (edev->dev_info.is_legacy)
1828                                         txq->is_legacy = true;
1829                                 txq->dev = &edev->pdev->dev;
1830                         }
1831
1832                         txq_index++;
1833                 }
1834
1835                 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1836                          edev->ndev->name, queue_id);
1837         }
1838
1839         if (init_xdp) {
1840                 edev->total_xdp_queues = QEDE_RSS_COUNT(edev);
1841                 DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues);
1842         }
1843 }
1844
1845 static int qede_set_real_num_queues(struct qede_dev *edev)
1846 {
1847         int rc = 0;
1848
1849         rc = netif_set_real_num_tx_queues(edev->ndev,
1850                                           QEDE_TSS_COUNT(edev) *
1851                                           edev->dev_info.num_tc);
1852         if (rc) {
1853                 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1854                 return rc;
1855         }
1856
1857         rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1858         if (rc) {
1859                 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1860                 return rc;
1861         }
1862
1863         return 0;
1864 }
1865
1866 static void qede_napi_disable_remove(struct qede_dev *edev)
1867 {
1868         int i;
1869
1870         for_each_queue(i) {
1871                 napi_disable(&edev->fp_array[i].napi);
1872
1873                 netif_napi_del(&edev->fp_array[i].napi);
1874         }
1875 }
1876
1877 static void qede_napi_add_enable(struct qede_dev *edev)
1878 {
1879         int i;
1880
1881         /* Add NAPI objects */
1882         for_each_queue(i) {
1883                 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1884                                qede_poll, NAPI_POLL_WEIGHT);
1885                 napi_enable(&edev->fp_array[i].napi);
1886         }
1887 }
1888
1889 static void qede_sync_free_irqs(struct qede_dev *edev)
1890 {
1891         int i;
1892
1893         for (i = 0; i < edev->int_info.used_cnt; i++) {
1894                 if (edev->int_info.msix_cnt) {
1895                         synchronize_irq(edev->int_info.msix[i].vector);
1896                         free_irq(edev->int_info.msix[i].vector,
1897                                  &edev->fp_array[i]);
1898                 } else {
1899                         edev->ops->common->simd_handler_clean(edev->cdev, i);
1900                 }
1901         }
1902
1903         edev->int_info.used_cnt = 0;
1904         edev->int_info.msix_cnt = 0;
1905 }
1906
1907 static int qede_req_msix_irqs(struct qede_dev *edev)
1908 {
1909         int i, rc;
1910
1911         /* Sanitize number of interrupts == number of prepared RSS queues */
1912         if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1913                 DP_ERR(edev,
1914                        "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1915                        QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1916                 return -EINVAL;
1917         }
1918
1919         for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1920 #ifdef CONFIG_RFS_ACCEL
1921                 struct qede_fastpath *fp = &edev->fp_array[i];
1922
1923                 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1924                         rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1925                                               edev->int_info.msix[i].vector);
1926                         if (rc) {
1927                                 DP_ERR(edev, "Failed to add CPU rmap\n");
1928                                 qede_free_arfs(edev);
1929                         }
1930                 }
1931 #endif
1932                 rc = request_irq(edev->int_info.msix[i].vector,
1933                                  qede_msix_fp_int, 0, edev->fp_array[i].name,
1934                                  &edev->fp_array[i]);
1935                 if (rc) {
1936                         DP_ERR(edev, "Request fp %d irq failed\n", i);
1937                         qede_sync_free_irqs(edev);
1938                         return rc;
1939                 }
1940                 DP_VERBOSE(edev, NETIF_MSG_INTR,
1941                            "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1942                            edev->fp_array[i].name, i,
1943                            &edev->fp_array[i]);
1944                 edev->int_info.used_cnt++;
1945         }
1946
1947         return 0;
1948 }
1949
1950 static void qede_simd_fp_handler(void *cookie)
1951 {
1952         struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1953
1954         napi_schedule_irqoff(&fp->napi);
1955 }
1956
1957 static int qede_setup_irqs(struct qede_dev *edev)
1958 {
1959         int i, rc = 0;
1960
1961         /* Learn Interrupt configuration */
1962         rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1963         if (rc)
1964                 return rc;
1965
1966         if (edev->int_info.msix_cnt) {
1967                 rc = qede_req_msix_irqs(edev);
1968                 if (rc)
1969                         return rc;
1970                 edev->ndev->irq = edev->int_info.msix[0].vector;
1971         } else {
1972                 const struct qed_common_ops *ops;
1973
1974                 /* qed should learn receive the RSS ids and callbacks */
1975                 ops = edev->ops->common;
1976                 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1977                         ops->simd_handler_config(edev->cdev,
1978                                                  &edev->fp_array[i], i,
1979                                                  qede_simd_fp_handler);
1980                 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1981         }
1982         return 0;
1983 }
1984
1985 static int qede_drain_txq(struct qede_dev *edev,
1986                           struct qede_tx_queue *txq, bool allow_drain)
1987 {
1988         int rc, cnt = 1000;
1989
1990         while (txq->sw_tx_cons != txq->sw_tx_prod) {
1991                 if (!cnt) {
1992                         if (allow_drain) {
1993                                 DP_NOTICE(edev,
1994                                           "Tx queue[%d] is stuck, requesting MCP to drain\n",
1995                                           txq->index);
1996                                 rc = edev->ops->common->drain(edev->cdev);
1997                                 if (rc)
1998                                         return rc;
1999                                 return qede_drain_txq(edev, txq, false);
2000                         }
2001                         DP_NOTICE(edev,
2002                                   "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
2003                                   txq->index, txq->sw_tx_prod,
2004                                   txq->sw_tx_cons);
2005                         return -ENODEV;
2006                 }
2007                 cnt--;
2008                 usleep_range(1000, 2000);
2009                 barrier();
2010         }
2011
2012         /* FW finished processing, wait for HW to transmit all tx packets */
2013         usleep_range(1000, 2000);
2014
2015         return 0;
2016 }
2017
2018 static int qede_stop_txq(struct qede_dev *edev,
2019                          struct qede_tx_queue *txq, int rss_id)
2020 {
2021         /* delete doorbell from doorbell recovery mechanism */
2022         edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
2023                                            &txq->tx_db);
2024
2025         return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
2026 }
2027
2028 static int qede_stop_queues(struct qede_dev *edev)
2029 {
2030         struct qed_update_vport_params *vport_update_params;
2031         struct qed_dev *cdev = edev->cdev;
2032         struct qede_fastpath *fp;
2033         int rc, i;
2034
2035         /* Disable the vport */
2036         vport_update_params = vzalloc(sizeof(*vport_update_params));
2037         if (!vport_update_params)
2038                 return -ENOMEM;
2039
2040         vport_update_params->vport_id = 0;
2041         vport_update_params->update_vport_active_flg = 1;
2042         vport_update_params->vport_active_flg = 0;
2043         vport_update_params->update_rss_flg = 0;
2044
2045         rc = edev->ops->vport_update(cdev, vport_update_params);
2046         vfree(vport_update_params);
2047
2048         if (rc) {
2049                 DP_ERR(edev, "Failed to update vport\n");
2050                 return rc;
2051         }
2052
2053         /* Flush Tx queues. If needed, request drain from MCP */
2054         for_each_queue(i) {
2055                 fp = &edev->fp_array[i];
2056
2057                 if (fp->type & QEDE_FASTPATH_TX) {
2058                         int cos;
2059
2060                         for_each_cos_in_txq(edev, cos) {
2061                                 rc = qede_drain_txq(edev, &fp->txq[cos], true);
2062                                 if (rc)
2063                                         return rc;
2064                         }
2065                 }
2066
2067                 if (fp->type & QEDE_FASTPATH_XDP) {
2068                         rc = qede_drain_txq(edev, fp->xdp_tx, true);
2069                         if (rc)
2070                                 return rc;
2071                 }
2072         }
2073
2074         /* Stop all Queues in reverse order */
2075         for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
2076                 fp = &edev->fp_array[i];
2077
2078                 /* Stop the Tx Queue(s) */
2079                 if (fp->type & QEDE_FASTPATH_TX) {
2080                         int cos;
2081
2082                         for_each_cos_in_txq(edev, cos) {
2083                                 rc = qede_stop_txq(edev, &fp->txq[cos], i);
2084                                 if (rc)
2085                                         return rc;
2086                         }
2087                 }
2088
2089                 /* Stop the Rx Queue */
2090                 if (fp->type & QEDE_FASTPATH_RX) {
2091                         rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
2092                         if (rc) {
2093                                 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2094                                 return rc;
2095                         }
2096                 }
2097
2098                 /* Stop the XDP forwarding queue */
2099                 if (fp->type & QEDE_FASTPATH_XDP) {
2100                         rc = qede_stop_txq(edev, fp->xdp_tx, i);
2101                         if (rc)
2102                                 return rc;
2103
2104                         bpf_prog_put(fp->rxq->xdp_prog);
2105                 }
2106         }
2107
2108         /* Stop the vport */
2109         rc = edev->ops->vport_stop(cdev, 0);
2110         if (rc)
2111                 DP_ERR(edev, "Failed to stop VPORT\n");
2112
2113         return rc;
2114 }
2115
2116 static int qede_start_txq(struct qede_dev *edev,
2117                           struct qede_fastpath *fp,
2118                           struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2119 {
2120         dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2121         u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2122         struct qed_queue_start_common_params params;
2123         struct qed_txq_start_ret_params ret_params;
2124         int rc;
2125
2126         memset(&params, 0, sizeof(params));
2127         memset(&ret_params, 0, sizeof(ret_params));
2128
2129         /* Let the XDP queue share the queue-zone with one of the regular txq.
2130          * We don't really care about its coalescing.
2131          */
2132         if (txq->is_xdp)
2133                 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2134         else
2135                 params.queue_id = txq->index;
2136
2137         params.p_sb = fp->sb_info;
2138         params.sb_idx = sb_idx;
2139         params.tc = txq->cos;
2140
2141         rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2142                                    page_cnt, &ret_params);
2143         if (rc) {
2144                 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2145                 return rc;
2146         }
2147
2148         txq->doorbell_addr = ret_params.p_doorbell;
2149         txq->handle = ret_params.p_handle;
2150
2151         /* Determine the FW consumer address associated */
2152         txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2153
2154         /* Prepare the doorbell parameters */
2155         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2156         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2157         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2158                   DQ_XCM_ETH_TX_BD_PROD_CMD);
2159         txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2160
2161         /* register doorbell with doorbell recovery mechanism */
2162         rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2163                                                 &txq->tx_db, DB_REC_WIDTH_32B,
2164                                                 DB_REC_KERNEL);
2165
2166         return rc;
2167 }
2168
2169 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2170 {
2171         int vlan_removal_en = 1;
2172         struct qed_dev *cdev = edev->cdev;
2173         struct qed_dev_info *qed_info = &edev->dev_info.common;
2174         struct qed_update_vport_params *vport_update_params;
2175         struct qed_queue_start_common_params q_params;
2176         struct qed_start_vport_params start = {0};
2177         int rc, i;
2178
2179         if (!edev->num_queues) {
2180                 DP_ERR(edev,
2181                        "Cannot update V-VPORT as active as there are no Rx queues\n");
2182                 return -EINVAL;
2183         }
2184
2185         vport_update_params = vzalloc(sizeof(*vport_update_params));
2186         if (!vport_update_params)
2187                 return -ENOMEM;
2188
2189         start.handle_ptp_pkts = !!(edev->ptp);
2190         start.gro_enable = !edev->gro_disable;
2191         start.mtu = edev->ndev->mtu;
2192         start.vport_id = 0;
2193         start.drop_ttl0 = true;
2194         start.remove_inner_vlan = vlan_removal_en;
2195         start.clear_stats = clear_stats;
2196
2197         rc = edev->ops->vport_start(cdev, &start);
2198
2199         if (rc) {
2200                 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2201                 goto out;
2202         }
2203
2204         DP_VERBOSE(edev, NETIF_MSG_IFUP,
2205                    "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2206                    start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2207
2208         for_each_queue(i) {
2209                 struct qede_fastpath *fp = &edev->fp_array[i];
2210                 dma_addr_t p_phys_table;
2211                 u32 page_cnt;
2212
2213                 if (fp->type & QEDE_FASTPATH_RX) {
2214                         struct qed_rxq_start_ret_params ret_params;
2215                         struct qede_rx_queue *rxq = fp->rxq;
2216                         __le16 *val;
2217
2218                         memset(&ret_params, 0, sizeof(ret_params));
2219                         memset(&q_params, 0, sizeof(q_params));
2220                         q_params.queue_id = rxq->rxq_id;
2221                         q_params.vport_id = 0;
2222                         q_params.p_sb = fp->sb_info;
2223                         q_params.sb_idx = RX_PI;
2224
2225                         p_phys_table =
2226                             qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2227                         page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2228
2229                         rc = edev->ops->q_rx_start(cdev, i, &q_params,
2230                                                    rxq->rx_buf_size,
2231                                                    rxq->rx_bd_ring.p_phys_addr,
2232                                                    p_phys_table,
2233                                                    page_cnt, &ret_params);
2234                         if (rc) {
2235                                 DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2236                                        rc);
2237                                 goto out;
2238                         }
2239
2240                         /* Use the return parameters */
2241                         rxq->hw_rxq_prod_addr = ret_params.p_prod;
2242                         rxq->handle = ret_params.p_handle;
2243
2244                         val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2245                         rxq->hw_cons_ptr = val;
2246
2247                         qede_update_rx_prod(edev, rxq);
2248                 }
2249
2250                 if (fp->type & QEDE_FASTPATH_XDP) {
2251                         rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2252                         if (rc)
2253                                 goto out;
2254
2255                         bpf_prog_add(edev->xdp_prog, 1);
2256                         fp->rxq->xdp_prog = edev->xdp_prog;
2257                 }
2258
2259                 if (fp->type & QEDE_FASTPATH_TX) {
2260                         int cos;
2261
2262                         for_each_cos_in_txq(edev, cos) {
2263                                 rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2264                                                     TX_PI(cos));
2265                                 if (rc)
2266                                         goto out;
2267                         }
2268                 }
2269         }
2270
2271         /* Prepare and send the vport enable */
2272         vport_update_params->vport_id = start.vport_id;
2273         vport_update_params->update_vport_active_flg = 1;
2274         vport_update_params->vport_active_flg = 1;
2275
2276         if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2277             qed_info->tx_switching) {
2278                 vport_update_params->update_tx_switching_flg = 1;
2279                 vport_update_params->tx_switching_flg = 1;
2280         }
2281
2282         qede_fill_rss_params(edev, &vport_update_params->rss_params,
2283                              &vport_update_params->update_rss_flg);
2284
2285         rc = edev->ops->vport_update(cdev, vport_update_params);
2286         if (rc)
2287                 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2288
2289 out:
2290         vfree(vport_update_params);
2291         return rc;
2292 }
2293
2294 enum qede_unload_mode {
2295         QEDE_UNLOAD_NORMAL,
2296         QEDE_UNLOAD_RECOVERY,
2297 };
2298
2299 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2300                         bool is_locked)
2301 {
2302         struct qed_link_params link_params;
2303         int rc;
2304
2305         DP_INFO(edev, "Starting qede unload\n");
2306
2307         if (!is_locked)
2308                 __qede_lock(edev);
2309
2310         clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2311
2312         if (mode != QEDE_UNLOAD_RECOVERY)
2313                 edev->state = QEDE_STATE_CLOSED;
2314
2315         qede_rdma_dev_event_close(edev);
2316
2317         /* Close OS Tx */
2318         netif_tx_disable(edev->ndev);
2319         netif_carrier_off(edev->ndev);
2320
2321         if (mode != QEDE_UNLOAD_RECOVERY) {
2322                 /* Reset the link */
2323                 memset(&link_params, 0, sizeof(link_params));
2324                 link_params.link_up = false;
2325                 edev->ops->common->set_link(edev->cdev, &link_params);
2326
2327                 rc = qede_stop_queues(edev);
2328                 if (rc) {
2329                         qede_sync_free_irqs(edev);
2330                         goto out;
2331                 }
2332
2333                 DP_INFO(edev, "Stopped Queues\n");
2334         }
2335
2336         qede_vlan_mark_nonconfigured(edev);
2337         edev->ops->fastpath_stop(edev->cdev);
2338
2339         if (edev->dev_info.common.b_arfs_capable) {
2340                 qede_poll_for_freeing_arfs_filters(edev);
2341                 qede_free_arfs(edev);
2342         }
2343
2344         /* Release the interrupts */
2345         qede_sync_free_irqs(edev);
2346         edev->ops->common->set_fp_int(edev->cdev, 0);
2347
2348         qede_napi_disable_remove(edev);
2349
2350         if (mode == QEDE_UNLOAD_RECOVERY)
2351                 qede_empty_tx_queues(edev);
2352
2353         qede_free_mem_load(edev);
2354         qede_free_fp_array(edev);
2355
2356 out:
2357         if (!is_locked)
2358                 __qede_unlock(edev);
2359
2360         if (mode != QEDE_UNLOAD_RECOVERY)
2361                 DP_NOTICE(edev, "Link is down\n");
2362
2363         edev->ptp_skip_txts = 0;
2364
2365         DP_INFO(edev, "Ending qede unload\n");
2366 }
2367
2368 enum qede_load_mode {
2369         QEDE_LOAD_NORMAL,
2370         QEDE_LOAD_RELOAD,
2371         QEDE_LOAD_RECOVERY,
2372 };
2373
2374 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2375                      bool is_locked)
2376 {
2377         struct qed_link_params link_params;
2378         u8 num_tc;
2379         int rc;
2380
2381         DP_INFO(edev, "Starting qede load\n");
2382
2383         if (!is_locked)
2384                 __qede_lock(edev);
2385
2386         rc = qede_set_num_queues(edev);
2387         if (rc)
2388                 goto out;
2389
2390         rc = qede_alloc_fp_array(edev);
2391         if (rc)
2392                 goto out;
2393
2394         qede_init_fp(edev);
2395
2396         rc = qede_alloc_mem_load(edev);
2397         if (rc)
2398                 goto err1;
2399         DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2400                 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2401
2402         rc = qede_set_real_num_queues(edev);
2403         if (rc)
2404                 goto err2;
2405
2406         if (qede_alloc_arfs(edev)) {
2407                 edev->ndev->features &= ~NETIF_F_NTUPLE;
2408                 edev->dev_info.common.b_arfs_capable = false;
2409         }
2410
2411         qede_napi_add_enable(edev);
2412         DP_INFO(edev, "Napi added and enabled\n");
2413
2414         rc = qede_setup_irqs(edev);
2415         if (rc)
2416                 goto err3;
2417         DP_INFO(edev, "Setup IRQs succeeded\n");
2418
2419         rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2420         if (rc)
2421                 goto err4;
2422         DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2423
2424         num_tc = netdev_get_num_tc(edev->ndev);
2425         num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2426         qede_setup_tc(edev->ndev, num_tc);
2427
2428         /* Program un-configured VLANs */
2429         qede_configure_vlan_filters(edev);
2430
2431         set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2432
2433         /* Ask for link-up using current configuration */
2434         memset(&link_params, 0, sizeof(link_params));
2435         link_params.link_up = true;
2436         edev->ops->common->set_link(edev->cdev, &link_params);
2437
2438         edev->state = QEDE_STATE_OPEN;
2439
2440         DP_INFO(edev, "Ending successfully qede load\n");
2441
2442         goto out;
2443 err4:
2444         qede_sync_free_irqs(edev);
2445 err3:
2446         qede_napi_disable_remove(edev);
2447 err2:
2448         qede_free_mem_load(edev);
2449 err1:
2450         edev->ops->common->set_fp_int(edev->cdev, 0);
2451         qede_free_fp_array(edev);
2452         edev->num_queues = 0;
2453         edev->fp_num_tx = 0;
2454         edev->fp_num_rx = 0;
2455 out:
2456         if (!is_locked)
2457                 __qede_unlock(edev);
2458
2459         return rc;
2460 }
2461
2462 /* 'func' should be able to run between unload and reload assuming interface
2463  * is actually running, or afterwards in case it's currently DOWN.
2464  */
2465 void qede_reload(struct qede_dev *edev,
2466                  struct qede_reload_args *args, bool is_locked)
2467 {
2468         if (!is_locked)
2469                 __qede_lock(edev);
2470
2471         /* Since qede_lock is held, internal state wouldn't change even
2472          * if netdev state would start transitioning. Check whether current
2473          * internal configuration indicates device is up, then reload.
2474          */
2475         if (edev->state == QEDE_STATE_OPEN) {
2476                 qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2477                 if (args)
2478                         args->func(edev, args);
2479                 qede_load(edev, QEDE_LOAD_RELOAD, true);
2480
2481                 /* Since no one is going to do it for us, re-configure */
2482                 qede_config_rx_mode(edev->ndev);
2483         } else if (args) {
2484                 args->func(edev, args);
2485         }
2486
2487         if (!is_locked)
2488                 __qede_unlock(edev);
2489 }
2490
2491 /* called with rtnl_lock */
2492 static int qede_open(struct net_device *ndev)
2493 {
2494         struct qede_dev *edev = netdev_priv(ndev);
2495         int rc;
2496
2497         netif_carrier_off(ndev);
2498
2499         edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2500
2501         rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2502         if (rc)
2503                 return rc;
2504
2505         udp_tunnel_nic_reset_ntf(ndev);
2506
2507         edev->ops->common->update_drv_state(edev->cdev, true);
2508
2509         return 0;
2510 }
2511
2512 static int qede_close(struct net_device *ndev)
2513 {
2514         struct qede_dev *edev = netdev_priv(ndev);
2515
2516         qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2517
2518         if (edev->cdev)
2519                 edev->ops->common->update_drv_state(edev->cdev, false);
2520
2521         return 0;
2522 }
2523
2524 static void qede_link_update(void *dev, struct qed_link_output *link)
2525 {
2526         struct qede_dev *edev = dev;
2527
2528         if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2529                 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2530                 return;
2531         }
2532
2533         if (link->link_up) {
2534                 if (!netif_carrier_ok(edev->ndev)) {
2535                         DP_NOTICE(edev, "Link is up\n");
2536                         netif_tx_start_all_queues(edev->ndev);
2537                         netif_carrier_on(edev->ndev);
2538                         qede_rdma_dev_event_open(edev);
2539                 }
2540         } else {
2541                 if (netif_carrier_ok(edev->ndev)) {
2542                         DP_NOTICE(edev, "Link is down\n");
2543                         netif_tx_disable(edev->ndev);
2544                         netif_carrier_off(edev->ndev);
2545                         qede_rdma_dev_event_close(edev);
2546                 }
2547         }
2548 }
2549
2550 static void qede_schedule_recovery_handler(void *dev)
2551 {
2552         struct qede_dev *edev = dev;
2553
2554         if (edev->state == QEDE_STATE_RECOVERY) {
2555                 DP_NOTICE(edev,
2556                           "Avoid scheduling a recovery handling since already in recovery state\n");
2557                 return;
2558         }
2559
2560         set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2561         schedule_delayed_work(&edev->sp_task, 0);
2562
2563         DP_INFO(edev, "Scheduled a recovery handler\n");
2564 }
2565
2566 static void qede_recovery_failed(struct qede_dev *edev)
2567 {
2568         netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2569
2570         netif_device_detach(edev->ndev);
2571
2572         if (edev->cdev)
2573                 edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2574 }
2575
2576 static void qede_recovery_handler(struct qede_dev *edev)
2577 {
2578         u32 curr_state = edev->state;
2579         int rc;
2580
2581         DP_NOTICE(edev, "Starting a recovery process\n");
2582
2583         /* No need to acquire first the qede_lock since is done by qede_sp_task
2584          * before calling this function.
2585          */
2586         edev->state = QEDE_STATE_RECOVERY;
2587
2588         edev->ops->common->recovery_prolog(edev->cdev);
2589
2590         if (curr_state == QEDE_STATE_OPEN)
2591                 qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2592
2593         __qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2594
2595         rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2596                           IS_VF(edev), QEDE_PROBE_RECOVERY);
2597         if (rc) {
2598                 edev->cdev = NULL;
2599                 goto err;
2600         }
2601
2602         if (curr_state == QEDE_STATE_OPEN) {
2603                 rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2604                 if (rc)
2605                         goto err;
2606
2607                 qede_config_rx_mode(edev->ndev);
2608                 udp_tunnel_nic_reset_ntf(edev->ndev);
2609         }
2610
2611         edev->state = curr_state;
2612
2613         DP_NOTICE(edev, "Recovery handling is done\n");
2614
2615         return;
2616
2617 err:
2618         qede_recovery_failed(edev);
2619 }
2620
2621 static void qede_atomic_hw_err_handler(struct qede_dev *edev)
2622 {
2623         struct qed_dev *cdev = edev->cdev;
2624
2625         DP_NOTICE(edev,
2626                   "Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
2627                   edev->err_flags);
2628
2629         /* Get a call trace of the flow that led to the error */
2630         WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
2631
2632         /* Prevent HW attentions from being reasserted */
2633         if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
2634                 edev->ops->common->attn_clr_enable(cdev, true);
2635
2636         DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
2637 }
2638
2639 static void qede_generic_hw_err_handler(struct qede_dev *edev)
2640 {
2641         DP_NOTICE(edev,
2642                   "Generic sleepable HW error handling started - err_flags 0x%lx\n",
2643                   edev->err_flags);
2644
2645         if (edev->devlink)
2646                 edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type);
2647
2648         clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2649
2650         DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
2651 }
2652
2653 static void qede_set_hw_err_flags(struct qede_dev *edev,
2654                                   enum qed_hw_err_type err_type)
2655 {
2656         unsigned long err_flags = 0;
2657
2658         switch (err_type) {
2659         case QED_HW_ERR_DMAE_FAIL:
2660                 set_bit(QEDE_ERR_WARN, &err_flags);
2661                 fallthrough;
2662         case QED_HW_ERR_MFW_RESP_FAIL:
2663         case QED_HW_ERR_HW_ATTN:
2664         case QED_HW_ERR_RAMROD_FAIL:
2665         case QED_HW_ERR_FW_ASSERT:
2666                 set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
2667                 set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
2668                 break;
2669
2670         default:
2671                 DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
2672                 break;
2673         }
2674
2675         edev->err_flags |= err_flags;
2676 }
2677
2678 static void qede_schedule_hw_err_handler(void *dev,
2679                                          enum qed_hw_err_type err_type)
2680 {
2681         struct qede_dev *edev = dev;
2682
2683         /* Fan failure cannot be masked by handling of another HW error or by a
2684          * concurrent recovery process.
2685          */
2686         if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
2687              edev->state == QEDE_STATE_RECOVERY) &&
2688              err_type != QED_HW_ERR_FAN_FAIL) {
2689                 DP_INFO(edev,
2690                         "Avoid scheduling an error handling while another HW error is being handled\n");
2691                 return;
2692         }
2693
2694         if (err_type >= QED_HW_ERR_LAST) {
2695                 DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
2696                 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2697                 return;
2698         }
2699
2700         edev->last_err_type = err_type;
2701         qede_set_hw_err_flags(edev, err_type);
2702         qede_atomic_hw_err_handler(edev);
2703         set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
2704         schedule_delayed_work(&edev->sp_task, 0);
2705
2706         DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
2707 }
2708
2709 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2710 {
2711         struct netdev_queue *netdev_txq;
2712
2713         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2714         if (netif_xmit_stopped(netdev_txq))
2715                 return true;
2716
2717         return false;
2718 }
2719
2720 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2721 {
2722         struct qede_dev *edev = dev;
2723         struct netdev_hw_addr *ha;
2724         int i;
2725
2726         if (edev->ndev->features & NETIF_F_IP_CSUM)
2727                 data->feat_flags |= QED_TLV_IP_CSUM;
2728         if (edev->ndev->features & NETIF_F_TSO)
2729                 data->feat_flags |= QED_TLV_LSO;
2730
2731         ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2732         eth_zero_addr(data->mac[1]);
2733         eth_zero_addr(data->mac[2]);
2734         /* Copy the first two UC macs */
2735         netif_addr_lock_bh(edev->ndev);
2736         i = 1;
2737         netdev_for_each_uc_addr(ha, edev->ndev) {
2738                 ether_addr_copy(data->mac[i++], ha->addr);
2739                 if (i == QED_TLV_MAC_COUNT)
2740                         break;
2741         }
2742
2743         netif_addr_unlock_bh(edev->ndev);
2744 }
2745
2746 static void qede_get_eth_tlv_data(void *dev, void *data)
2747 {
2748         struct qed_mfw_tlv_eth *etlv = data;
2749         struct qede_dev *edev = dev;
2750         struct qede_fastpath *fp;
2751         int i;
2752
2753         etlv->lso_maxoff_size = 0XFFFF;
2754         etlv->lso_maxoff_size_set = true;
2755         etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2756         etlv->lso_minseg_size_set = true;
2757         etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2758         etlv->prom_mode_set = true;
2759         etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2760         etlv->tx_descr_size_set = true;
2761         etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2762         etlv->rx_descr_size_set = true;
2763         etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2764         etlv->iov_offload_set = true;
2765
2766         /* Fill information regarding queues; Should be done under the qede
2767          * lock to guarantee those don't change beneath our feet.
2768          */
2769         etlv->txqs_empty = true;
2770         etlv->rxqs_empty = true;
2771         etlv->num_txqs_full = 0;
2772         etlv->num_rxqs_full = 0;
2773
2774         __qede_lock(edev);
2775         for_each_queue(i) {
2776                 fp = &edev->fp_array[i];
2777                 if (fp->type & QEDE_FASTPATH_TX) {
2778                         struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2779
2780                         if (txq->sw_tx_cons != txq->sw_tx_prod)
2781                                 etlv->txqs_empty = false;
2782                         if (qede_is_txq_full(edev, txq))
2783                                 etlv->num_txqs_full++;
2784                 }
2785                 if (fp->type & QEDE_FASTPATH_RX) {
2786                         if (qede_has_rx_work(fp->rxq))
2787                                 etlv->rxqs_empty = false;
2788
2789                         /* This one is a bit tricky; Firmware might stop
2790                          * placing packets if ring is not yet full.
2791                          * Give an approximation.
2792                          */
2793                         if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2794                             qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2795                             RX_RING_SIZE - 100)
2796                                 etlv->num_rxqs_full++;
2797                 }
2798         }
2799         __qede_unlock(edev);
2800
2801         etlv->txqs_empty_set = true;
2802         etlv->rxqs_empty_set = true;
2803         etlv->num_txqs_full_set = true;
2804         etlv->num_rxqs_full_set = true;
2805 }
2806
2807 /**
2808  * qede_io_error_detected - called when PCI error is detected
2809  * @pdev: Pointer to PCI device
2810  * @state: The current pci connection state
2811  *
2812  * This function is called after a PCI bus error affecting
2813  * this device has been detected.
2814  */
2815 static pci_ers_result_t
2816 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2817 {
2818         struct net_device *dev = pci_get_drvdata(pdev);
2819         struct qede_dev *edev = netdev_priv(dev);
2820
2821         if (!edev)
2822                 return PCI_ERS_RESULT_NONE;
2823
2824         DP_NOTICE(edev, "IO error detected [%d]\n", state);
2825
2826         __qede_lock(edev);
2827         if (edev->state == QEDE_STATE_RECOVERY) {
2828                 DP_NOTICE(edev, "Device already in the recovery state\n");
2829                 __qede_unlock(edev);
2830                 return PCI_ERS_RESULT_NONE;
2831         }
2832
2833         /* PF handles the recovery of its VFs */
2834         if (IS_VF(edev)) {
2835                 DP_VERBOSE(edev, QED_MSG_IOV,
2836                            "VF recovery is handled by its PF\n");
2837                 __qede_unlock(edev);
2838                 return PCI_ERS_RESULT_RECOVERED;
2839         }
2840
2841         /* Close OS Tx */
2842         netif_tx_disable(edev->ndev);
2843         netif_carrier_off(edev->ndev);
2844
2845         set_bit(QEDE_SP_AER, &edev->sp_flags);
2846         schedule_delayed_work(&edev->sp_task, 0);
2847
2848         __qede_unlock(edev);
2849
2850         return PCI_ERS_RESULT_CAN_RECOVER;
2851 }