GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / net / ethernet / qlogic / qede / qede_filter.c
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qede NIC Driver
3  * Copyright (c) 2015-2017  QLogic Corporation
4  * Copyright (c) 2019-2020 Marvell International Ltd.
5  */
6
7 #include <linux/netdevice.h>
8 #include <linux/etherdevice.h>
9 #include <net/udp_tunnel.h>
10 #include <linux/bitops.h>
11 #include <linux/vmalloc.h>
12
13 #include <linux/qed/qed_if.h>
14 #include "qede.h"
15
16 #define QEDE_FILTER_PRINT_MAX_LEN       (64)
17 struct qede_arfs_tuple {
18         union {
19                 __be32 src_ipv4;
20                 struct in6_addr src_ipv6;
21         };
22         union {
23                 __be32 dst_ipv4;
24                 struct in6_addr dst_ipv6;
25         };
26         __be16  src_port;
27         __be16  dst_port;
28         __be16  eth_proto;
29         u8      ip_proto;
30
31         /* Describe filtering mode needed for this kind of filter */
32         enum qed_filter_config_mode mode;
33
34         /* Used to compare new/old filters. Return true if IPs match */
35         bool (*ip_comp)(struct qede_arfs_tuple *a, struct qede_arfs_tuple *b);
36
37         /* Given an address into ethhdr build a header from tuple info */
38         void (*build_hdr)(struct qede_arfs_tuple *t, void *header);
39
40         /* Stringify the tuple for a print into the provided buffer */
41         void (*stringify)(struct qede_arfs_tuple *t, void *buffer);
42 };
43
44 struct qede_arfs_fltr_node {
45 #define QEDE_FLTR_VALID  0
46         unsigned long state;
47
48         /* pointer to aRFS packet buffer */
49         void *data;
50
51         /* dma map address of aRFS packet buffer */
52         dma_addr_t mapping;
53
54         /* length of aRFS packet buffer */
55         int buf_len;
56
57         /* tuples to hold from aRFS packet buffer */
58         struct qede_arfs_tuple tuple;
59
60         u32 flow_id;
61         u64 sw_id;
62         u16 rxq_id;
63         u16 next_rxq_id;
64         u8 vfid;
65         bool filter_op;
66         bool used;
67         u8 fw_rc;
68         bool b_is_drop;
69         struct hlist_node node;
70 };
71
72 struct qede_arfs {
73 #define QEDE_ARFS_BUCKET_HEAD(edev, idx) (&(edev)->arfs->arfs_hl_head[idx])
74 #define QEDE_ARFS_POLL_COUNT    100
75 #define QEDE_RFS_FLW_BITSHIFT   (4)
76 #define QEDE_RFS_FLW_MASK       ((1 << QEDE_RFS_FLW_BITSHIFT) - 1)
77         struct hlist_head       arfs_hl_head[1 << QEDE_RFS_FLW_BITSHIFT];
78
79         /* lock for filter list access */
80         spinlock_t              arfs_list_lock;
81         unsigned long           *arfs_fltr_bmap;
82         int                     filter_count;
83
84         /* Currently configured filtering mode */
85         enum qed_filter_config_mode mode;
86 };
87
88 static void qede_configure_arfs_fltr(struct qede_dev *edev,
89                                      struct qede_arfs_fltr_node *n,
90                                      u16 rxq_id, bool add_fltr)
91 {
92         const struct qed_eth_ops *op = edev->ops;
93         struct qed_ntuple_filter_params params;
94
95         if (n->used)
96                 return;
97
98         memset(&params, 0, sizeof(params));
99
100         params.addr = n->mapping;
101         params.length = n->buf_len;
102         params.qid = rxq_id;
103         params.b_is_add = add_fltr;
104         params.b_is_drop = n->b_is_drop;
105
106         if (n->vfid) {
107                 params.b_is_vf = true;
108                 params.vf_id = n->vfid - 1;
109         }
110
111         if (n->tuple.stringify) {
112                 char tuple_buffer[QEDE_FILTER_PRINT_MAX_LEN];
113
114                 n->tuple.stringify(&n->tuple, tuple_buffer);
115                 DP_VERBOSE(edev, NETIF_MSG_RX_STATUS,
116                            "%s sw_id[0x%llx]: %s [vf %u queue %d]\n",
117                            add_fltr ? "Adding" : "Deleting",
118                            n->sw_id, tuple_buffer, n->vfid, rxq_id);
119         }
120
121         n->used = true;
122         n->filter_op = add_fltr;
123         op->ntuple_filter_config(edev->cdev, n, &params);
124 }
125
126 static void
127 qede_free_arfs_filter(struct qede_dev *edev,  struct qede_arfs_fltr_node *fltr)
128 {
129         kfree(fltr->data);
130
131         if (fltr->sw_id < QEDE_RFS_MAX_FLTR)
132                 clear_bit(fltr->sw_id, edev->arfs->arfs_fltr_bmap);
133
134         kfree(fltr);
135 }
136
137 static int
138 qede_enqueue_fltr_and_config_searcher(struct qede_dev *edev,
139                                       struct qede_arfs_fltr_node *fltr,
140                                       u16 bucket_idx)
141 {
142         fltr->mapping = dma_map_single(&edev->pdev->dev, fltr->data,
143                                        fltr->buf_len, DMA_TO_DEVICE);
144         if (dma_mapping_error(&edev->pdev->dev, fltr->mapping)) {
145                 DP_NOTICE(edev, "Failed to map DMA memory for rule\n");
146                 qede_free_arfs_filter(edev, fltr);
147                 return -ENOMEM;
148         }
149
150         INIT_HLIST_NODE(&fltr->node);
151         hlist_add_head(&fltr->node,
152                        QEDE_ARFS_BUCKET_HEAD(edev, bucket_idx));
153
154         edev->arfs->filter_count++;
155         if (edev->arfs->filter_count == 1 &&
156             edev->arfs->mode == QED_FILTER_CONFIG_MODE_DISABLE) {
157                 edev->ops->configure_arfs_searcher(edev->cdev,
158                                                    fltr->tuple.mode);
159                 edev->arfs->mode = fltr->tuple.mode;
160         }
161
162         return 0;
163 }
164
165 static void
166 qede_dequeue_fltr_and_config_searcher(struct qede_dev *edev,
167                                       struct qede_arfs_fltr_node *fltr)
168 {
169         hlist_del(&fltr->node);
170         dma_unmap_single(&edev->pdev->dev, fltr->mapping,
171                          fltr->buf_len, DMA_TO_DEVICE);
172
173         qede_free_arfs_filter(edev, fltr);
174
175         edev->arfs->filter_count--;
176         if (!edev->arfs->filter_count &&
177             edev->arfs->mode != QED_FILTER_CONFIG_MODE_DISABLE) {
178                 enum qed_filter_config_mode mode;
179
180                 mode = QED_FILTER_CONFIG_MODE_DISABLE;
181                 edev->ops->configure_arfs_searcher(edev->cdev, mode);
182                 edev->arfs->mode = QED_FILTER_CONFIG_MODE_DISABLE;
183         }
184 }
185
186 void qede_arfs_filter_op(void *dev, void *filter, u8 fw_rc)
187 {
188         struct qede_arfs_fltr_node *fltr = filter;
189         struct qede_dev *edev = dev;
190
191         fltr->fw_rc = fw_rc;
192
193         if (fw_rc) {
194                 DP_NOTICE(edev,
195                           "Failed arfs filter configuration fw_rc=%d, flow_id=%d, sw_id=0x%llx, src_port=%d, dst_port=%d, rxq=%d\n",
196                           fw_rc, fltr->flow_id, fltr->sw_id,
197                           ntohs(fltr->tuple.src_port),
198                           ntohs(fltr->tuple.dst_port), fltr->rxq_id);
199
200                 spin_lock_bh(&edev->arfs->arfs_list_lock);
201
202                 fltr->used = false;
203                 clear_bit(QEDE_FLTR_VALID, &fltr->state);
204
205                 spin_unlock_bh(&edev->arfs->arfs_list_lock);
206                 return;
207         }
208
209         spin_lock_bh(&edev->arfs->arfs_list_lock);
210
211         fltr->used = false;
212
213         if (fltr->filter_op) {
214                 set_bit(QEDE_FLTR_VALID, &fltr->state);
215                 if (fltr->rxq_id != fltr->next_rxq_id)
216                         qede_configure_arfs_fltr(edev, fltr, fltr->rxq_id,
217                                                  false);
218         } else {
219                 clear_bit(QEDE_FLTR_VALID, &fltr->state);
220                 if (fltr->rxq_id != fltr->next_rxq_id) {
221                         fltr->rxq_id = fltr->next_rxq_id;
222                         qede_configure_arfs_fltr(edev, fltr,
223                                                  fltr->rxq_id, true);
224                 }
225         }
226
227         spin_unlock_bh(&edev->arfs->arfs_list_lock);
228 }
229
230 /* Should be called while qede_lock is held */
231 void qede_process_arfs_filters(struct qede_dev *edev, bool free_fltr)
232 {
233         int i;
234
235         for (i = 0; i <= QEDE_RFS_FLW_MASK; i++) {
236                 struct hlist_node *temp;
237                 struct hlist_head *head;
238                 struct qede_arfs_fltr_node *fltr;
239
240                 head = &edev->arfs->arfs_hl_head[i];
241
242                 hlist_for_each_entry_safe(fltr, temp, head, node) {
243                         bool del = false;
244
245                         if (edev->state != QEDE_STATE_OPEN)
246                                 del = true;
247
248                         spin_lock_bh(&edev->arfs->arfs_list_lock);
249
250                         if ((!test_bit(QEDE_FLTR_VALID, &fltr->state) &&
251                              !fltr->used) || free_fltr) {
252                                 qede_dequeue_fltr_and_config_searcher(edev,
253                                                                       fltr);
254                         } else {
255                                 bool flow_exp = false;
256 #ifdef CONFIG_RFS_ACCEL
257                                 flow_exp = rps_may_expire_flow(edev->ndev,
258                                                                fltr->rxq_id,
259                                                                fltr->flow_id,
260                                                                fltr->sw_id);
261 #endif
262                                 if ((flow_exp || del) && !free_fltr)
263                                         qede_configure_arfs_fltr(edev, fltr,
264                                                                  fltr->rxq_id,
265                                                                  false);
266                         }
267
268                         spin_unlock_bh(&edev->arfs->arfs_list_lock);
269                 }
270         }
271
272 #ifdef CONFIG_RFS_ACCEL
273         spin_lock_bh(&edev->arfs->arfs_list_lock);
274
275         if (edev->arfs->filter_count) {
276                 set_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags);
277                 schedule_delayed_work(&edev->sp_task,
278                                       QEDE_SP_TASK_POLL_DELAY);
279         }
280
281         spin_unlock_bh(&edev->arfs->arfs_list_lock);
282 #endif
283 }
284
285 /* This function waits until all aRFS filters get deleted and freed.
286  * On timeout it frees all filters forcefully.
287  */
288 void qede_poll_for_freeing_arfs_filters(struct qede_dev *edev)
289 {
290         int count = QEDE_ARFS_POLL_COUNT;
291
292         while (count) {
293                 qede_process_arfs_filters(edev, false);
294
295                 if (!edev->arfs->filter_count)
296                         break;
297
298                 msleep(100);
299                 count--;
300         }
301
302         if (!count) {
303                 DP_NOTICE(edev, "Timeout in polling for arfs filter free\n");
304
305                 /* Something is terribly wrong, free forcefully */
306                 qede_process_arfs_filters(edev, true);
307         }
308 }
309
310 int qede_alloc_arfs(struct qede_dev *edev)
311 {
312         int i;
313
314         if (!edev->dev_info.common.b_arfs_capable)
315                 return -EINVAL;
316
317         edev->arfs = vzalloc(sizeof(*edev->arfs));
318         if (!edev->arfs)
319                 return -ENOMEM;
320
321         spin_lock_init(&edev->arfs->arfs_list_lock);
322
323         for (i = 0; i <= QEDE_RFS_FLW_MASK; i++)
324                 INIT_HLIST_HEAD(QEDE_ARFS_BUCKET_HEAD(edev, i));
325
326         edev->arfs->arfs_fltr_bmap =
327                 vzalloc(array_size(sizeof(long),
328                                    BITS_TO_LONGS(QEDE_RFS_MAX_FLTR)));
329         if (!edev->arfs->arfs_fltr_bmap) {
330                 vfree(edev->arfs);
331                 edev->arfs = NULL;
332                 return -ENOMEM;
333         }
334
335 #ifdef CONFIG_RFS_ACCEL
336         edev->ndev->rx_cpu_rmap = alloc_irq_cpu_rmap(QEDE_RSS_COUNT(edev));
337         if (!edev->ndev->rx_cpu_rmap) {
338                 vfree(edev->arfs->arfs_fltr_bmap);
339                 edev->arfs->arfs_fltr_bmap = NULL;
340                 vfree(edev->arfs);
341                 edev->arfs = NULL;
342                 return -ENOMEM;
343         }
344 #endif
345         return 0;
346 }
347
348 void qede_free_arfs(struct qede_dev *edev)
349 {
350         if (!edev->arfs)
351                 return;
352
353 #ifdef CONFIG_RFS_ACCEL
354         if (edev->ndev->rx_cpu_rmap)
355                 free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
356
357         edev->ndev->rx_cpu_rmap = NULL;
358 #endif
359         vfree(edev->arfs->arfs_fltr_bmap);
360         edev->arfs->arfs_fltr_bmap = NULL;
361         vfree(edev->arfs);
362         edev->arfs = NULL;
363 }
364
365 #ifdef CONFIG_RFS_ACCEL
366 static bool qede_compare_ip_addr(struct qede_arfs_fltr_node *tpos,
367                                  const struct sk_buff *skb)
368 {
369         if (skb->protocol == htons(ETH_P_IP)) {
370                 if (tpos->tuple.src_ipv4 == ip_hdr(skb)->saddr &&
371                     tpos->tuple.dst_ipv4 == ip_hdr(skb)->daddr)
372                         return true;
373                 else
374                         return false;
375         } else {
376                 struct in6_addr *src = &tpos->tuple.src_ipv6;
377                 u8 size = sizeof(struct in6_addr);
378
379                 if (!memcmp(src, &ipv6_hdr(skb)->saddr, size) &&
380                     !memcmp(&tpos->tuple.dst_ipv6, &ipv6_hdr(skb)->daddr, size))
381                         return true;
382                 else
383                         return false;
384         }
385 }
386
387 static struct qede_arfs_fltr_node *
388 qede_arfs_htbl_key_search(struct hlist_head *h, const struct sk_buff *skb,
389                           __be16 src_port, __be16 dst_port, u8 ip_proto)
390 {
391         struct qede_arfs_fltr_node *tpos;
392
393         hlist_for_each_entry(tpos, h, node)
394                 if (tpos->tuple.ip_proto == ip_proto &&
395                     tpos->tuple.eth_proto == skb->protocol &&
396                     qede_compare_ip_addr(tpos, skb) &&
397                     tpos->tuple.src_port == src_port &&
398                     tpos->tuple.dst_port == dst_port)
399                         return tpos;
400
401         return NULL;
402 }
403
404 static struct qede_arfs_fltr_node *
405 qede_alloc_filter(struct qede_dev *edev, int min_hlen)
406 {
407         struct qede_arfs_fltr_node *n;
408         int bit_id;
409
410         bit_id = find_first_zero_bit(edev->arfs->arfs_fltr_bmap,
411                                      QEDE_RFS_MAX_FLTR);
412
413         if (bit_id >= QEDE_RFS_MAX_FLTR)
414                 return NULL;
415
416         n = kzalloc(sizeof(*n), GFP_ATOMIC);
417         if (!n)
418                 return NULL;
419
420         n->data = kzalloc(min_hlen, GFP_ATOMIC);
421         if (!n->data) {
422                 kfree(n);
423                 return NULL;
424         }
425
426         n->sw_id = (u16)bit_id;
427         set_bit(bit_id, edev->arfs->arfs_fltr_bmap);
428         return n;
429 }
430
431 int qede_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
432                        u16 rxq_index, u32 flow_id)
433 {
434         struct qede_dev *edev = netdev_priv(dev);
435         struct qede_arfs_fltr_node *n;
436         int min_hlen, rc, tp_offset;
437         struct ethhdr *eth;
438         __be16 *ports;
439         u16 tbl_idx;
440         u8 ip_proto;
441
442         if (skb->encapsulation)
443                 return -EPROTONOSUPPORT;
444
445         if (skb->protocol != htons(ETH_P_IP) &&
446             skb->protocol != htons(ETH_P_IPV6))
447                 return -EPROTONOSUPPORT;
448
449         if (skb->protocol == htons(ETH_P_IP)) {
450                 ip_proto = ip_hdr(skb)->protocol;
451                 tp_offset = sizeof(struct iphdr);
452         } else {
453                 ip_proto = ipv6_hdr(skb)->nexthdr;
454                 tp_offset = sizeof(struct ipv6hdr);
455         }
456
457         if (ip_proto != IPPROTO_TCP && ip_proto != IPPROTO_UDP)
458                 return -EPROTONOSUPPORT;
459
460         ports = (__be16 *)(skb->data + tp_offset);
461         tbl_idx = skb_get_hash_raw(skb) & QEDE_RFS_FLW_MASK;
462
463         spin_lock_bh(&edev->arfs->arfs_list_lock);
464
465         n = qede_arfs_htbl_key_search(QEDE_ARFS_BUCKET_HEAD(edev, tbl_idx),
466                                       skb, ports[0], ports[1], ip_proto);
467         if (n) {
468                 /* Filter match */
469                 n->next_rxq_id = rxq_index;
470
471                 if (test_bit(QEDE_FLTR_VALID, &n->state)) {
472                         if (n->rxq_id != rxq_index)
473                                 qede_configure_arfs_fltr(edev, n, n->rxq_id,
474                                                          false);
475                 } else {
476                         if (!n->used) {
477                                 n->rxq_id = rxq_index;
478                                 qede_configure_arfs_fltr(edev, n, n->rxq_id,
479                                                          true);
480                         }
481                 }
482
483                 rc = n->sw_id;
484                 goto ret_unlock;
485         }
486
487         min_hlen = ETH_HLEN + skb_headlen(skb);
488
489         n = qede_alloc_filter(edev, min_hlen);
490         if (!n) {
491                 rc = -ENOMEM;
492                 goto ret_unlock;
493         }
494
495         n->buf_len = min_hlen;
496         n->rxq_id = rxq_index;
497         n->next_rxq_id = rxq_index;
498         n->tuple.src_port = ports[0];
499         n->tuple.dst_port = ports[1];
500         n->flow_id = flow_id;
501
502         if (skb->protocol == htons(ETH_P_IP)) {
503                 n->tuple.src_ipv4 = ip_hdr(skb)->saddr;
504                 n->tuple.dst_ipv4 = ip_hdr(skb)->daddr;
505         } else {
506                 memcpy(&n->tuple.src_ipv6, &ipv6_hdr(skb)->saddr,
507                        sizeof(struct in6_addr));
508                 memcpy(&n->tuple.dst_ipv6, &ipv6_hdr(skb)->daddr,
509                        sizeof(struct in6_addr));
510         }
511
512         eth = (struct ethhdr *)n->data;
513         eth->h_proto = skb->protocol;
514         n->tuple.eth_proto = skb->protocol;
515         n->tuple.ip_proto = ip_proto;
516         n->tuple.mode = QED_FILTER_CONFIG_MODE_5_TUPLE;
517         memcpy(n->data + ETH_HLEN, skb->data, skb_headlen(skb));
518
519         rc = qede_enqueue_fltr_and_config_searcher(edev, n, tbl_idx);
520         if (rc)
521                 goto ret_unlock;
522
523         qede_configure_arfs_fltr(edev, n, n->rxq_id, true);
524
525         spin_unlock_bh(&edev->arfs->arfs_list_lock);
526
527         set_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags);
528         schedule_delayed_work(&edev->sp_task, 0);
529
530         return n->sw_id;
531
532 ret_unlock:
533         spin_unlock_bh(&edev->arfs->arfs_list_lock);
534         return rc;
535 }
536 #endif
537
538 void qede_udp_ports_update(void *dev, u16 vxlan_port, u16 geneve_port)
539 {
540         struct qede_dev *edev = dev;
541
542         if (edev->vxlan_dst_port != vxlan_port)
543                 edev->vxlan_dst_port = 0;
544
545         if (edev->geneve_dst_port != geneve_port)
546                 edev->geneve_dst_port = 0;
547 }
548
549 void qede_force_mac(void *dev, u8 *mac, bool forced)
550 {
551         struct qede_dev *edev = dev;
552
553         __qede_lock(edev);
554
555         if (!is_valid_ether_addr(mac)) {
556                 __qede_unlock(edev);
557                 return;
558         }
559
560         ether_addr_copy(edev->ndev->dev_addr, mac);
561         __qede_unlock(edev);
562 }
563
564 void qede_fill_rss_params(struct qede_dev *edev,
565                           struct qed_update_vport_rss_params *rss, u8 *update)
566 {
567         bool need_reset = false;
568         int i;
569
570         if (QEDE_RSS_COUNT(edev) <= 1) {
571                 memset(rss, 0, sizeof(*rss));
572                 *update = 0;
573                 return;
574         }
575
576         /* Need to validate current RSS config uses valid entries */
577         for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
578                 if (edev->rss_ind_table[i] >= QEDE_RSS_COUNT(edev)) {
579                         need_reset = true;
580                         break;
581                 }
582         }
583
584         if (!(edev->rss_params_inited & QEDE_RSS_INDIR_INITED) || need_reset) {
585                 for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
586                         u16 indir_val, val;
587
588                         val = QEDE_RSS_COUNT(edev);
589                         indir_val = ethtool_rxfh_indir_default(i, val);
590                         edev->rss_ind_table[i] = indir_val;
591                 }
592                 edev->rss_params_inited |= QEDE_RSS_INDIR_INITED;
593         }
594
595         /* Now that we have the queue-indirection, prepare the handles */
596         for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) {
597                 u16 idx = QEDE_RX_QUEUE_IDX(edev, edev->rss_ind_table[i]);
598
599                 rss->rss_ind_table[i] = edev->fp_array[idx].rxq->handle;
600         }
601
602         if (!(edev->rss_params_inited & QEDE_RSS_KEY_INITED)) {
603                 netdev_rss_key_fill(edev->rss_key, sizeof(edev->rss_key));
604                 edev->rss_params_inited |= QEDE_RSS_KEY_INITED;
605         }
606         memcpy(rss->rss_key, edev->rss_key, sizeof(rss->rss_key));
607
608         if (!(edev->rss_params_inited & QEDE_RSS_CAPS_INITED)) {
609                 edev->rss_caps = QED_RSS_IPV4 | QED_RSS_IPV6 |
610                     QED_RSS_IPV4_TCP | QED_RSS_IPV6_TCP;
611                 edev->rss_params_inited |= QEDE_RSS_CAPS_INITED;
612         }
613         rss->rss_caps = edev->rss_caps;
614
615         *update = 1;
616 }
617
618 static int qede_set_ucast_rx_mac(struct qede_dev *edev,
619                                  enum qed_filter_xcast_params_type opcode,
620                                  unsigned char mac[ETH_ALEN])
621 {
622         struct qed_filter_params filter_cmd;
623
624         memset(&filter_cmd, 0, sizeof(filter_cmd));
625         filter_cmd.type = QED_FILTER_TYPE_UCAST;
626         filter_cmd.filter.ucast.type = opcode;
627         filter_cmd.filter.ucast.mac_valid = 1;
628         ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
629
630         return edev->ops->filter_config(edev->cdev, &filter_cmd);
631 }
632
633 static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
634                                   enum qed_filter_xcast_params_type opcode,
635                                   u16 vid)
636 {
637         struct qed_filter_params filter_cmd;
638
639         memset(&filter_cmd, 0, sizeof(filter_cmd));
640         filter_cmd.type = QED_FILTER_TYPE_UCAST;
641         filter_cmd.filter.ucast.type = opcode;
642         filter_cmd.filter.ucast.vlan_valid = 1;
643         filter_cmd.filter.ucast.vlan = vid;
644
645         return edev->ops->filter_config(edev->cdev, &filter_cmd);
646 }
647
648 static int qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
649 {
650         struct qed_update_vport_params *params;
651         int rc;
652
653         /* Proceed only if action actually needs to be performed */
654         if (edev->accept_any_vlan == action)
655                 return 0;
656
657         params = vzalloc(sizeof(*params));
658         if (!params)
659                 return -ENOMEM;
660
661         params->vport_id = 0;
662         params->accept_any_vlan = action;
663         params->update_accept_any_vlan_flg = 1;
664
665         rc = edev->ops->vport_update(edev->cdev, params);
666         if (rc) {
667                 DP_ERR(edev, "Failed to %s accept-any-vlan\n",
668                        action ? "enable" : "disable");
669         } else {
670                 DP_INFO(edev, "%s accept-any-vlan\n",
671                         action ? "enabled" : "disabled");
672                 edev->accept_any_vlan = action;
673         }
674
675         vfree(params);
676         return 0;
677 }
678
679 int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
680 {
681         struct qede_dev *edev = netdev_priv(dev);
682         struct qede_vlan *vlan, *tmp;
683         int rc = 0;
684
685         DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
686
687         vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
688         if (!vlan) {
689                 DP_INFO(edev, "Failed to allocate struct for vlan\n");
690                 return -ENOMEM;
691         }
692         INIT_LIST_HEAD(&vlan->list);
693         vlan->vid = vid;
694         vlan->configured = false;
695
696         /* Verify vlan isn't already configured */
697         list_for_each_entry(tmp, &edev->vlan_list, list) {
698                 if (tmp->vid == vlan->vid) {
699                         DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
700                                    "vlan already configured\n");
701                         kfree(vlan);
702                         return -EEXIST;
703                 }
704         }
705
706         /* If interface is down, cache this VLAN ID and return */
707         __qede_lock(edev);
708         if (edev->state != QEDE_STATE_OPEN) {
709                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
710                            "Interface is down, VLAN %d will be configured when interface is up\n",
711                            vid);
712                 if (vid != 0)
713                         edev->non_configured_vlans++;
714                 list_add(&vlan->list, &edev->vlan_list);
715                 goto out;
716         }
717
718         /* Check for the filter limit.
719          * Note - vlan0 has a reserved filter and can be added without
720          * worrying about quota
721          */
722         if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
723             (vlan->vid == 0)) {
724                 rc = qede_set_ucast_rx_vlan(edev,
725                                             QED_FILTER_XCAST_TYPE_ADD,
726                                             vlan->vid);
727                 if (rc) {
728                         DP_ERR(edev, "Failed to configure VLAN %d\n",
729                                vlan->vid);
730                         kfree(vlan);
731                         goto out;
732                 }
733                 vlan->configured = true;
734
735                 /* vlan0 filter isn't consuming out of our quota */
736                 if (vlan->vid != 0)
737                         edev->configured_vlans++;
738         } else {
739                 /* Out of quota; Activate accept-any-VLAN mode */
740                 if (!edev->non_configured_vlans) {
741                         rc = qede_config_accept_any_vlan(edev, true);
742                         if (rc) {
743                                 kfree(vlan);
744                                 goto out;
745                         }
746                 }
747
748                 edev->non_configured_vlans++;
749         }
750
751         list_add(&vlan->list, &edev->vlan_list);
752
753 out:
754         __qede_unlock(edev);
755         return rc;
756 }
757
758 static void qede_del_vlan_from_list(struct qede_dev *edev,
759                                     struct qede_vlan *vlan)
760 {
761         /* vlan0 filter isn't consuming out of our quota */
762         if (vlan->vid != 0) {
763                 if (vlan->configured)
764                         edev->configured_vlans--;
765                 else
766                         edev->non_configured_vlans--;
767         }
768
769         list_del(&vlan->list);
770         kfree(vlan);
771 }
772
773 int qede_configure_vlan_filters(struct qede_dev *edev)
774 {
775         int rc = 0, real_rc = 0, accept_any_vlan = 0;
776         struct qed_dev_eth_info *dev_info;
777         struct qede_vlan *vlan = NULL;
778
779         if (list_empty(&edev->vlan_list))
780                 return 0;
781
782         dev_info = &edev->dev_info;
783
784         /* Configure non-configured vlans */
785         list_for_each_entry(vlan, &edev->vlan_list, list) {
786                 if (vlan->configured)
787                         continue;
788
789                 /* We have used all our credits, now enable accept_any_vlan */
790                 if ((vlan->vid != 0) &&
791                     (edev->configured_vlans == dev_info->num_vlan_filters)) {
792                         accept_any_vlan = 1;
793                         continue;
794                 }
795
796                 DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
797
798                 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
799                                             vlan->vid);
800                 if (rc) {
801                         DP_ERR(edev, "Failed to configure VLAN %u\n",
802                                vlan->vid);
803                         real_rc = rc;
804                         continue;
805                 }
806
807                 vlan->configured = true;
808                 /* vlan0 filter doesn't consume our VLAN filter's quota */
809                 if (vlan->vid != 0) {
810                         edev->non_configured_vlans--;
811                         edev->configured_vlans++;
812                 }
813         }
814
815         /* enable accept_any_vlan mode if we have more VLANs than credits,
816          * or remove accept_any_vlan mode if we've actually removed
817          * a non-configured vlan, and all remaining vlans are truly configured.
818          */
819
820         if (accept_any_vlan)
821                 rc = qede_config_accept_any_vlan(edev, true);
822         else if (!edev->non_configured_vlans)
823                 rc = qede_config_accept_any_vlan(edev, false);
824
825         if (rc && !real_rc)
826                 real_rc = rc;
827
828         return real_rc;
829 }
830
831 int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
832 {
833         struct qede_dev *edev = netdev_priv(dev);
834         struct qede_vlan *vlan;
835         int rc = 0;
836
837         DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
838
839         /* Find whether entry exists */
840         __qede_lock(edev);
841         list_for_each_entry(vlan, &edev->vlan_list, list)
842                 if (vlan->vid == vid)
843                         break;
844
845         if (list_entry_is_head(vlan, &edev->vlan_list, list)) {
846                 DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
847                            "Vlan isn't configured\n");
848                 goto out;
849         }
850
851         if (edev->state != QEDE_STATE_OPEN) {
852                 /* As interface is already down, we don't have a VPORT
853                  * instance to remove vlan filter. So just update vlan list
854                  */
855                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
856                            "Interface is down, removing VLAN from list only\n");
857                 qede_del_vlan_from_list(edev, vlan);
858                 goto out;
859         }
860
861         /* Remove vlan */
862         if (vlan->configured) {
863                 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL,
864                                             vid);
865                 if (rc) {
866                         DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
867                         goto out;
868                 }
869         }
870
871         qede_del_vlan_from_list(edev, vlan);
872
873         /* We have removed a VLAN - try to see if we can
874          * configure non-configured VLAN from the list.
875          */
876         rc = qede_configure_vlan_filters(edev);
877
878 out:
879         __qede_unlock(edev);
880         return rc;
881 }
882
883 void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
884 {
885         struct qede_vlan *vlan = NULL;
886
887         if (list_empty(&edev->vlan_list))
888                 return;
889
890         list_for_each_entry(vlan, &edev->vlan_list, list) {
891                 if (!vlan->configured)
892                         continue;
893
894                 vlan->configured = false;
895
896                 /* vlan0 filter isn't consuming out of our quota */
897                 if (vlan->vid != 0) {
898                         edev->non_configured_vlans++;
899                         edev->configured_vlans--;
900                 }
901
902                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
903                            "marked vlan %d as non-configured\n", vlan->vid);
904         }
905
906         edev->accept_any_vlan = false;
907 }
908
909 static void qede_set_features_reload(struct qede_dev *edev,
910                                      struct qede_reload_args *args)
911 {
912         edev->ndev->features = args->u.features;
913 }
914
915 netdev_features_t qede_fix_features(struct net_device *dev,
916                                     netdev_features_t features)
917 {
918         struct qede_dev *edev = netdev_priv(dev);
919
920         if (edev->xdp_prog || edev->ndev->mtu > PAGE_SIZE ||
921             !(features & NETIF_F_GRO))
922                 features &= ~NETIF_F_GRO_HW;
923
924         return features;
925 }
926
927 int qede_set_features(struct net_device *dev, netdev_features_t features)
928 {
929         struct qede_dev *edev = netdev_priv(dev);
930         netdev_features_t changes = features ^ dev->features;
931         bool need_reload = false;
932
933         if (changes & NETIF_F_GRO_HW)
934                 need_reload = true;
935
936         if (need_reload) {
937                 struct qede_reload_args args;
938
939                 args.u.features = features;
940                 args.func = &qede_set_features_reload;
941
942                 /* Make sure that we definitely need to reload.
943                  * In case of an eBPF attached program, there will be no FW
944                  * aggregations, so no need to actually reload.
945                  */
946                 __qede_lock(edev);
947                 if (edev->xdp_prog)
948                         args.func(edev, &args);
949                 else
950                         qede_reload(edev, &args, true);
951                 __qede_unlock(edev);
952
953                 return 1;
954         }
955
956         return 0;
957 }
958
959 static int qede_udp_tunnel_sync(struct net_device *dev, unsigned int table)
960 {
961         struct qede_dev *edev = netdev_priv(dev);
962         struct qed_tunn_params tunn_params;
963         struct udp_tunnel_info ti;
964         u16 *save_port;
965         int rc;
966
967         memset(&tunn_params, 0, sizeof(tunn_params));
968
969         udp_tunnel_nic_get_port(dev, table, 0, &ti);
970         if (ti.type == UDP_TUNNEL_TYPE_VXLAN) {
971                 tunn_params.update_vxlan_port = 1;
972                 tunn_params.vxlan_port = ntohs(ti.port);
973                 save_port = &edev->vxlan_dst_port;
974         } else {
975                 tunn_params.update_geneve_port = 1;
976                 tunn_params.geneve_port = ntohs(ti.port);
977                 save_port = &edev->geneve_dst_port;
978         }
979
980         __qede_lock(edev);
981         rc = edev->ops->tunn_config(edev->cdev, &tunn_params);
982         __qede_unlock(edev);
983         if (rc)
984                 return rc;
985
986         *save_port = ntohs(ti.port);
987         return 0;
988 }
989
990 static const struct udp_tunnel_nic_info qede_udp_tunnels_both = {
991         .sync_table     = qede_udp_tunnel_sync,
992         .flags          = UDP_TUNNEL_NIC_INFO_MAY_SLEEP,
993         .tables         = {
994                 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
995                 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
996         },
997 }, qede_udp_tunnels_vxlan = {
998         .sync_table     = qede_udp_tunnel_sync,
999         .flags          = UDP_TUNNEL_NIC_INFO_MAY_SLEEP,
1000         .tables         = {
1001                 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
1002         },
1003 }, qede_udp_tunnels_geneve = {
1004         .sync_table     = qede_udp_tunnel_sync,
1005         .flags          = UDP_TUNNEL_NIC_INFO_MAY_SLEEP,
1006         .tables         = {
1007                 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
1008         },
1009 };
1010
1011 void qede_set_udp_tunnels(struct qede_dev *edev)
1012 {
1013         if (edev->dev_info.common.vxlan_enable &&
1014             edev->dev_info.common.geneve_enable)
1015                 edev->ndev->udp_tunnel_nic_info = &qede_udp_tunnels_both;
1016         else if (edev->dev_info.common.vxlan_enable)
1017                 edev->ndev->udp_tunnel_nic_info = &qede_udp_tunnels_vxlan;
1018         else if (edev->dev_info.common.geneve_enable)
1019                 edev->ndev->udp_tunnel_nic_info = &qede_udp_tunnels_geneve;
1020 }
1021
1022 static void qede_xdp_reload_func(struct qede_dev *edev,
1023                                  struct qede_reload_args *args)
1024 {
1025         struct bpf_prog *old;
1026
1027         old = xchg(&edev->xdp_prog, args->u.new_prog);
1028         if (old)
1029                 bpf_prog_put(old);
1030 }
1031
1032 static int qede_xdp_set(struct qede_dev *edev, struct bpf_prog *prog)
1033 {
1034         struct qede_reload_args args;
1035
1036         /* If we're called, there was already a bpf reference increment */
1037         args.func = &qede_xdp_reload_func;
1038         args.u.new_prog = prog;
1039         qede_reload(edev, &args, false);
1040
1041         return 0;
1042 }
1043
1044 int qede_xdp(struct net_device *dev, struct netdev_bpf *xdp)
1045 {
1046         struct qede_dev *edev = netdev_priv(dev);
1047
1048         switch (xdp->command) {
1049         case XDP_SETUP_PROG:
1050                 return qede_xdp_set(edev, xdp->prog);
1051         default:
1052                 return -EINVAL;
1053         }
1054 }
1055
1056 static int qede_set_mcast_rx_mac(struct qede_dev *edev,
1057                                  enum qed_filter_xcast_params_type opcode,
1058                                  unsigned char *mac, int num_macs)
1059 {
1060         struct qed_filter_params filter_cmd;
1061         int i;
1062
1063         memset(&filter_cmd, 0, sizeof(filter_cmd));
1064         filter_cmd.type = QED_FILTER_TYPE_MCAST;
1065         filter_cmd.filter.mcast.type = opcode;
1066         filter_cmd.filter.mcast.num = num_macs;
1067
1068         for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
1069                 ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
1070
1071         return edev->ops->filter_config(edev->cdev, &filter_cmd);
1072 }
1073
1074 int qede_set_mac_addr(struct net_device *ndev, void *p)
1075 {
1076         struct qede_dev *edev = netdev_priv(ndev);
1077         struct sockaddr *addr = p;
1078         int rc = 0;
1079
1080         /* Make sure the state doesn't transition while changing the MAC.
1081          * Also, all flows accessing the dev_addr field are doing that under
1082          * this lock.
1083          */
1084         __qede_lock(edev);
1085
1086         if (!is_valid_ether_addr(addr->sa_data)) {
1087                 DP_NOTICE(edev, "The MAC address is not valid\n");
1088                 rc = -EFAULT;
1089                 goto out;
1090         }
1091
1092         if (!edev->ops->check_mac(edev->cdev, addr->sa_data)) {
1093                 DP_NOTICE(edev, "qed prevents setting MAC %pM\n",
1094                           addr->sa_data);
1095                 rc = -EINVAL;
1096                 goto out;
1097         }
1098
1099         if (edev->state == QEDE_STATE_OPEN) {
1100                 /* Remove the previous primary mac */
1101                 rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
1102                                            ndev->dev_addr);
1103                 if (rc)
1104                         goto out;
1105         }
1106
1107         ether_addr_copy(ndev->dev_addr, addr->sa_data);
1108         DP_INFO(edev, "Setting device MAC to %pM\n", addr->sa_data);
1109
1110         if (edev->state != QEDE_STATE_OPEN) {
1111                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1112                            "The device is currently down\n");
1113                 /* Ask PF to explicitly update a copy in bulletin board */
1114                 if (IS_VF(edev) && edev->ops->req_bulletin_update_mac)
1115                         edev->ops->req_bulletin_update_mac(edev->cdev,
1116                                                            ndev->dev_addr);
1117                 goto out;
1118         }
1119
1120         edev->ops->common->update_mac(edev->cdev, ndev->dev_addr);
1121
1122         rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
1123                                    ndev->dev_addr);
1124 out:
1125         __qede_unlock(edev);
1126         return rc;
1127 }
1128
1129 static int
1130 qede_configure_mcast_filtering(struct net_device *ndev,
1131                                enum qed_filter_rx_mode_type *accept_flags)
1132 {
1133         struct qede_dev *edev = netdev_priv(ndev);
1134         unsigned char *mc_macs, *temp;
1135         struct netdev_hw_addr *ha;
1136         int rc = 0, mc_count;
1137         size_t size;
1138
1139         size = 64 * ETH_ALEN;
1140
1141         mc_macs = kzalloc(size, GFP_KERNEL);
1142         if (!mc_macs) {
1143                 DP_NOTICE(edev,
1144                           "Failed to allocate memory for multicast MACs\n");
1145                 rc = -ENOMEM;
1146                 goto exit;
1147         }
1148
1149         temp = mc_macs;
1150
1151         /* Remove all previously configured MAC filters */
1152         rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
1153                                    mc_macs, 1);
1154         if (rc)
1155                 goto exit;
1156
1157         netif_addr_lock_bh(ndev);
1158
1159         mc_count = netdev_mc_count(ndev);
1160         if (mc_count <= 64) {
1161                 netdev_for_each_mc_addr(ha, ndev) {
1162                         ether_addr_copy(temp, ha->addr);
1163                         temp += ETH_ALEN;
1164                 }
1165         }
1166
1167         netif_addr_unlock_bh(ndev);
1168
1169         /* Check for all multicast @@@TBD resource allocation */
1170         if ((ndev->flags & IFF_ALLMULTI) || (mc_count > 64)) {
1171                 if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
1172                         *accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
1173         } else {
1174                 /* Add all multicast MAC filters */
1175                 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
1176                                            mc_macs, mc_count);
1177         }
1178
1179 exit:
1180         kfree(mc_macs);
1181         return rc;
1182 }
1183
1184 void qede_set_rx_mode(struct net_device *ndev)
1185 {
1186         struct qede_dev *edev = netdev_priv(ndev);
1187
1188         set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
1189         schedule_delayed_work(&edev->sp_task, 0);
1190 }
1191
1192 /* Must be called with qede_lock held */
1193 void qede_config_rx_mode(struct net_device *ndev)
1194 {
1195         enum qed_filter_rx_mode_type accept_flags;
1196         struct qede_dev *edev = netdev_priv(ndev);
1197         struct qed_filter_params rx_mode;
1198         unsigned char *uc_macs, *temp;
1199         struct netdev_hw_addr *ha;
1200         int rc, uc_count;
1201         size_t size;
1202
1203         netif_addr_lock_bh(ndev);
1204
1205         uc_count = netdev_uc_count(ndev);
1206         size = uc_count * ETH_ALEN;
1207
1208         uc_macs = kzalloc(size, GFP_ATOMIC);
1209         if (!uc_macs) {
1210                 DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
1211                 netif_addr_unlock_bh(ndev);
1212                 return;
1213         }
1214
1215         temp = uc_macs;
1216         netdev_for_each_uc_addr(ha, ndev) {
1217                 ether_addr_copy(temp, ha->addr);
1218                 temp += ETH_ALEN;
1219         }
1220
1221         netif_addr_unlock_bh(ndev);
1222
1223         /* Configure the struct for the Rx mode */
1224         memset(&rx_mode, 0, sizeof(struct qed_filter_params));
1225         rx_mode.type = QED_FILTER_TYPE_RX_MODE;
1226
1227         /* Remove all previous unicast secondary macs and multicast macs
1228          * (configure / leave the primary mac)
1229          */
1230         rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
1231                                    edev->ndev->dev_addr);
1232         if (rc)
1233                 goto out;
1234
1235         /* Check for promiscuous */
1236         if (ndev->flags & IFF_PROMISC)
1237                 accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
1238         else
1239                 accept_flags = QED_FILTER_RX_MODE_TYPE_REGULAR;
1240
1241         /* Configure all filters regardless, in case promisc is rejected */
1242         if (uc_count < edev->dev_info.num_mac_filters) {
1243                 int i;
1244
1245                 temp = uc_macs;
1246                 for (i = 0; i < uc_count; i++) {
1247                         rc = qede_set_ucast_rx_mac(edev,
1248                                                    QED_FILTER_XCAST_TYPE_ADD,
1249                                                    temp);
1250                         if (rc)
1251                                 goto out;
1252
1253                         temp += ETH_ALEN;
1254                 }
1255         } else {
1256                 accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
1257         }
1258
1259         rc = qede_configure_mcast_filtering(ndev, &accept_flags);
1260         if (rc)
1261                 goto out;
1262
1263         /* take care of VLAN mode */
1264         if (ndev->flags & IFF_PROMISC) {
1265                 qede_config_accept_any_vlan(edev, true);
1266         } else if (!edev->non_configured_vlans) {
1267                 /* It's possible that accept_any_vlan mode is set due to a
1268                  * previous setting of IFF_PROMISC. If vlan credits are
1269                  * sufficient, disable accept_any_vlan.
1270                  */
1271                 qede_config_accept_any_vlan(edev, false);
1272         }
1273
1274         rx_mode.filter.accept_flags = accept_flags;
1275         edev->ops->filter_config(edev->cdev, &rx_mode);
1276 out:
1277         kfree(uc_macs);
1278 }
1279
1280 static struct qede_arfs_fltr_node *
1281 qede_get_arfs_fltr_by_loc(struct hlist_head *head, u64 location)
1282 {
1283         struct qede_arfs_fltr_node *fltr;
1284
1285         hlist_for_each_entry(fltr, head, node)
1286                 if (location == fltr->sw_id)
1287                         return fltr;
1288
1289         return NULL;
1290 }
1291
1292 int qede_get_cls_rule_all(struct qede_dev *edev, struct ethtool_rxnfc *info,
1293                           u32 *rule_locs)
1294 {
1295         struct qede_arfs_fltr_node *fltr;
1296         struct hlist_head *head;
1297         int cnt = 0, rc = 0;
1298
1299         info->data = QEDE_RFS_MAX_FLTR;
1300
1301         __qede_lock(edev);
1302
1303         if (!edev->arfs) {
1304                 rc = -EPERM;
1305                 goto unlock;
1306         }
1307
1308         head = QEDE_ARFS_BUCKET_HEAD(edev, 0);
1309
1310         hlist_for_each_entry(fltr, head, node) {
1311                 if (cnt == info->rule_cnt) {
1312                         rc = -EMSGSIZE;
1313                         goto unlock;
1314                 }
1315
1316                 rule_locs[cnt] = fltr->sw_id;
1317                 cnt++;
1318         }
1319
1320         info->rule_cnt = cnt;
1321
1322 unlock:
1323         __qede_unlock(edev);
1324         return rc;
1325 }
1326
1327 int qede_get_cls_rule_entry(struct qede_dev *edev, struct ethtool_rxnfc *cmd)
1328 {
1329         struct ethtool_rx_flow_spec *fsp = &cmd->fs;
1330         struct qede_arfs_fltr_node *fltr = NULL;
1331         int rc = 0;
1332
1333         cmd->data = QEDE_RFS_MAX_FLTR;
1334
1335         __qede_lock(edev);
1336
1337         if (!edev->arfs) {
1338                 rc = -EPERM;
1339                 goto unlock;
1340         }
1341
1342         fltr = qede_get_arfs_fltr_by_loc(QEDE_ARFS_BUCKET_HEAD(edev, 0),
1343                                          fsp->location);
1344         if (!fltr) {
1345                 DP_NOTICE(edev, "Rule not found - location=0x%x\n",
1346                           fsp->location);
1347                 rc = -EINVAL;
1348                 goto unlock;
1349         }
1350
1351         if (fltr->tuple.eth_proto == htons(ETH_P_IP)) {
1352                 if (fltr->tuple.ip_proto == IPPROTO_TCP)
1353                         fsp->flow_type = TCP_V4_FLOW;
1354                 else
1355                         fsp->flow_type = UDP_V4_FLOW;
1356
1357                 fsp->h_u.tcp_ip4_spec.psrc = fltr->tuple.src_port;
1358                 fsp->h_u.tcp_ip4_spec.pdst = fltr->tuple.dst_port;
1359                 fsp->h_u.tcp_ip4_spec.ip4src = fltr->tuple.src_ipv4;
1360                 fsp->h_u.tcp_ip4_spec.ip4dst = fltr->tuple.dst_ipv4;
1361         } else {
1362                 if (fltr->tuple.ip_proto == IPPROTO_TCP)
1363                         fsp->flow_type = TCP_V6_FLOW;
1364                 else
1365                         fsp->flow_type = UDP_V6_FLOW;
1366                 fsp->h_u.tcp_ip6_spec.psrc = fltr->tuple.src_port;
1367                 fsp->h_u.tcp_ip6_spec.pdst = fltr->tuple.dst_port;
1368                 memcpy(&fsp->h_u.tcp_ip6_spec.ip6src,
1369                        &fltr->tuple.src_ipv6, sizeof(struct in6_addr));
1370                 memcpy(&fsp->h_u.tcp_ip6_spec.ip6dst,
1371                        &fltr->tuple.dst_ipv6, sizeof(struct in6_addr));
1372         }
1373
1374         fsp->ring_cookie = fltr->rxq_id;
1375
1376         if (fltr->vfid) {
1377                 fsp->ring_cookie |= ((u64)fltr->vfid) <<
1378                                         ETHTOOL_RX_FLOW_SPEC_RING_VF_OFF;
1379         }
1380
1381         if (fltr->b_is_drop)
1382                 fsp->ring_cookie = RX_CLS_FLOW_DISC;
1383 unlock:
1384         __qede_unlock(edev);
1385         return rc;
1386 }
1387
1388 static int
1389 qede_poll_arfs_filter_config(struct qede_dev *edev,
1390                              struct qede_arfs_fltr_node *fltr)
1391 {
1392         int count = QEDE_ARFS_POLL_COUNT;
1393
1394         while (fltr->used && count) {
1395                 msleep(20);
1396                 count--;
1397         }
1398
1399         if (count == 0 || fltr->fw_rc) {
1400                 DP_NOTICE(edev, "Timeout in polling filter config\n");
1401                 qede_dequeue_fltr_and_config_searcher(edev, fltr);
1402                 return -EIO;
1403         }
1404
1405         return fltr->fw_rc;
1406 }
1407
1408 static int qede_flow_get_min_header_size(struct qede_arfs_tuple *t)
1409 {
1410         int size = ETH_HLEN;
1411
1412         if (t->eth_proto == htons(ETH_P_IP))
1413                 size += sizeof(struct iphdr);
1414         else
1415                 size += sizeof(struct ipv6hdr);
1416
1417         if (t->ip_proto == IPPROTO_TCP)
1418                 size += sizeof(struct tcphdr);
1419         else
1420                 size += sizeof(struct udphdr);
1421
1422         return size;
1423 }
1424
1425 static bool qede_flow_spec_ipv4_cmp(struct qede_arfs_tuple *a,
1426                                     struct qede_arfs_tuple *b)
1427 {
1428         if (a->eth_proto != htons(ETH_P_IP) ||
1429             b->eth_proto != htons(ETH_P_IP))
1430                 return false;
1431
1432         return (a->src_ipv4 == b->src_ipv4) &&
1433                (a->dst_ipv4 == b->dst_ipv4);
1434 }
1435
1436 static void qede_flow_build_ipv4_hdr(struct qede_arfs_tuple *t,
1437                                      void *header)
1438 {
1439         __be16 *ports = (__be16 *)(header + ETH_HLEN + sizeof(struct iphdr));
1440         struct iphdr *ip = (struct iphdr *)(header + ETH_HLEN);
1441         struct ethhdr *eth = (struct ethhdr *)header;
1442
1443         eth->h_proto = t->eth_proto;
1444         ip->saddr = t->src_ipv4;
1445         ip->daddr = t->dst_ipv4;
1446         ip->version = 0x4;
1447         ip->ihl = 0x5;
1448         ip->protocol = t->ip_proto;
1449         ip->tot_len = cpu_to_be16(qede_flow_get_min_header_size(t) - ETH_HLEN);
1450
1451         /* ports is weakly typed to suit both TCP and UDP ports */
1452         ports[0] = t->src_port;
1453         ports[1] = t->dst_port;
1454 }
1455
1456 static void qede_flow_stringify_ipv4_hdr(struct qede_arfs_tuple *t,
1457                                          void *buffer)
1458 {
1459         const char *prefix = t->ip_proto == IPPROTO_TCP ? "TCP" : "UDP";
1460
1461         snprintf(buffer, QEDE_FILTER_PRINT_MAX_LEN,
1462                  "%s %pI4 (%04x) -> %pI4 (%04x)",
1463                  prefix, &t->src_ipv4, t->src_port,
1464                  &t->dst_ipv4, t->dst_port);
1465 }
1466
1467 static bool qede_flow_spec_ipv6_cmp(struct qede_arfs_tuple *a,
1468                                     struct qede_arfs_tuple *b)
1469 {
1470         if (a->eth_proto != htons(ETH_P_IPV6) ||
1471             b->eth_proto != htons(ETH_P_IPV6))
1472                 return false;
1473
1474         if (memcmp(&a->src_ipv6, &b->src_ipv6, sizeof(struct in6_addr)))
1475                 return false;
1476
1477         if (memcmp(&a->dst_ipv6, &b->dst_ipv6, sizeof(struct in6_addr)))
1478                 return false;
1479
1480         return true;
1481 }
1482
1483 static void qede_flow_build_ipv6_hdr(struct qede_arfs_tuple *t,
1484                                      void *header)
1485 {
1486         __be16 *ports = (__be16 *)(header + ETH_HLEN + sizeof(struct ipv6hdr));
1487         struct ipv6hdr *ip6 = (struct ipv6hdr *)(header + ETH_HLEN);
1488         struct ethhdr *eth = (struct ethhdr *)header;
1489
1490         eth->h_proto = t->eth_proto;
1491         memcpy(&ip6->saddr, &t->src_ipv6, sizeof(struct in6_addr));
1492         memcpy(&ip6->daddr, &t->dst_ipv6, sizeof(struct in6_addr));
1493         ip6->version = 0x6;
1494
1495         if (t->ip_proto == IPPROTO_TCP) {
1496                 ip6->nexthdr = NEXTHDR_TCP;
1497                 ip6->payload_len = cpu_to_be16(sizeof(struct tcphdr));
1498         } else {
1499                 ip6->nexthdr = NEXTHDR_UDP;
1500                 ip6->payload_len = cpu_to_be16(sizeof(struct udphdr));
1501         }
1502
1503         /* ports is weakly typed to suit both TCP and UDP ports */
1504         ports[0] = t->src_port;
1505         ports[1] = t->dst_port;
1506 }
1507
1508 /* Validate fields which are set and not accepted by the driver */
1509 static int qede_flow_spec_validate_unused(struct qede_dev *edev,
1510                                           struct ethtool_rx_flow_spec *fs)
1511 {
1512         if (fs->flow_type & FLOW_MAC_EXT) {
1513                 DP_INFO(edev, "Don't support MAC extensions\n");
1514                 return -EOPNOTSUPP;
1515         }
1516
1517         if ((fs->flow_type & FLOW_EXT) &&
1518             (fs->h_ext.vlan_etype || fs->h_ext.vlan_tci)) {
1519                 DP_INFO(edev, "Don't support vlan-based classification\n");
1520                 return -EOPNOTSUPP;
1521         }
1522
1523         if ((fs->flow_type & FLOW_EXT) &&
1524             (fs->h_ext.data[0] || fs->h_ext.data[1])) {
1525                 DP_INFO(edev, "Don't support user defined data\n");
1526                 return -EOPNOTSUPP;
1527         }
1528
1529         return 0;
1530 }
1531
1532 static int qede_set_v4_tuple_to_profile(struct qede_dev *edev,
1533                                         struct qede_arfs_tuple *t)
1534 {
1535         /* We must have Only 4-tuples/l4 port/src ip/dst ip
1536          * as an input.
1537          */
1538         if (t->src_port && t->dst_port && t->src_ipv4 && t->dst_ipv4) {
1539                 t->mode = QED_FILTER_CONFIG_MODE_5_TUPLE;
1540         } else if (!t->src_port && t->dst_port &&
1541                    !t->src_ipv4 && !t->dst_ipv4) {
1542                 t->mode = QED_FILTER_CONFIG_MODE_L4_PORT;
1543         } else if (!t->src_port && !t->dst_port &&
1544                    !t->dst_ipv4 && t->src_ipv4) {
1545                 t->mode = QED_FILTER_CONFIG_MODE_IP_SRC;
1546         } else if (!t->src_port && !t->dst_port &&
1547                    t->dst_ipv4 && !t->src_ipv4) {
1548                 t->mode = QED_FILTER_CONFIG_MODE_IP_DEST;
1549         } else {
1550                 DP_INFO(edev, "Invalid N-tuple\n");
1551                 return -EOPNOTSUPP;
1552         }
1553
1554         t->ip_comp = qede_flow_spec_ipv4_cmp;
1555         t->build_hdr = qede_flow_build_ipv4_hdr;
1556         t->stringify = qede_flow_stringify_ipv4_hdr;
1557
1558         return 0;
1559 }
1560
1561 static int qede_set_v6_tuple_to_profile(struct qede_dev *edev,
1562                                         struct qede_arfs_tuple *t,
1563                                         struct in6_addr *zaddr)
1564 {
1565         /* We must have Only 4-tuples/l4 port/src ip/dst ip
1566          * as an input.
1567          */
1568         if (t->src_port && t->dst_port &&
1569             memcmp(&t->src_ipv6, zaddr, sizeof(struct in6_addr)) &&
1570             memcmp(&t->dst_ipv6, zaddr, sizeof(struct in6_addr))) {
1571                 t->mode = QED_FILTER_CONFIG_MODE_5_TUPLE;
1572         } else if (!t->src_port && t->dst_port &&
1573                    !memcmp(&t->src_ipv6, zaddr, sizeof(struct in6_addr)) &&
1574                    !memcmp(&t->dst_ipv6, zaddr, sizeof(struct in6_addr))) {
1575                 t->mode = QED_FILTER_CONFIG_MODE_L4_PORT;
1576         } else if (!t->src_port && !t->dst_port &&
1577                    !memcmp(&t->dst_ipv6, zaddr, sizeof(struct in6_addr)) &&
1578                    memcmp(&t->src_ipv6, zaddr, sizeof(struct in6_addr))) {
1579                 t->mode = QED_FILTER_CONFIG_MODE_IP_SRC;
1580         } else if (!t->src_port && !t->dst_port &&
1581                    memcmp(&t->dst_ipv6, zaddr, sizeof(struct in6_addr)) &&
1582                    !memcmp(&t->src_ipv6, zaddr, sizeof(struct in6_addr))) {
1583                 t->mode = QED_FILTER_CONFIG_MODE_IP_DEST;
1584         } else {
1585                 DP_INFO(edev, "Invalid N-tuple\n");
1586                 return -EOPNOTSUPP;
1587         }
1588
1589         t->ip_comp = qede_flow_spec_ipv6_cmp;
1590         t->build_hdr = qede_flow_build_ipv6_hdr;
1591
1592         return 0;
1593 }
1594
1595 /* Must be called while qede lock is held */
1596 static struct qede_arfs_fltr_node *
1597 qede_flow_find_fltr(struct qede_dev *edev, struct qede_arfs_tuple *t)
1598 {
1599         struct qede_arfs_fltr_node *fltr;
1600         struct hlist_node *temp;
1601         struct hlist_head *head;
1602
1603         head = QEDE_ARFS_BUCKET_HEAD(edev, 0);
1604
1605         hlist_for_each_entry_safe(fltr, temp, head, node) {
1606                 if (fltr->tuple.ip_proto == t->ip_proto &&
1607                     fltr->tuple.src_port == t->src_port &&
1608                     fltr->tuple.dst_port == t->dst_port &&
1609                     t->ip_comp(&fltr->tuple, t))
1610                         return fltr;
1611         }
1612
1613         return NULL;
1614 }
1615
1616 static void qede_flow_set_destination(struct qede_dev *edev,
1617                                       struct qede_arfs_fltr_node *n,
1618                                       struct ethtool_rx_flow_spec *fs)
1619 {
1620         if (fs->ring_cookie == RX_CLS_FLOW_DISC) {
1621                 n->b_is_drop = true;
1622                 return;
1623         }
1624
1625         n->vfid = ethtool_get_flow_spec_ring_vf(fs->ring_cookie);
1626         n->rxq_id = ethtool_get_flow_spec_ring(fs->ring_cookie);
1627         n->next_rxq_id = n->rxq_id;
1628
1629         if (n->vfid)
1630                 DP_VERBOSE(edev, QED_MSG_SP,
1631                            "Configuring N-tuple for VF 0x%02x\n", n->vfid - 1);
1632 }
1633
1634 int qede_delete_flow_filter(struct qede_dev *edev, u64 cookie)
1635 {
1636         struct qede_arfs_fltr_node *fltr = NULL;
1637         int rc = -EPERM;
1638
1639         __qede_lock(edev);
1640         if (!edev->arfs)
1641                 goto unlock;
1642
1643         fltr = qede_get_arfs_fltr_by_loc(QEDE_ARFS_BUCKET_HEAD(edev, 0),
1644                                          cookie);
1645         if (!fltr)
1646                 goto unlock;
1647
1648         qede_configure_arfs_fltr(edev, fltr, fltr->rxq_id, false);
1649
1650         rc = qede_poll_arfs_filter_config(edev, fltr);
1651         if (rc == 0)
1652                 qede_dequeue_fltr_and_config_searcher(edev, fltr);
1653
1654 unlock:
1655         __qede_unlock(edev);
1656         return rc;
1657 }
1658
1659 int qede_get_arfs_filter_count(struct qede_dev *edev)
1660 {
1661         int count = 0;
1662
1663         __qede_lock(edev);
1664
1665         if (!edev->arfs)
1666                 goto unlock;
1667
1668         count = edev->arfs->filter_count;
1669
1670 unlock:
1671         __qede_unlock(edev);
1672         return count;
1673 }
1674
1675 static int qede_parse_actions(struct qede_dev *edev,
1676                               struct flow_action *flow_action,
1677                               struct netlink_ext_ack *extack)
1678 {
1679         const struct flow_action_entry *act;
1680         int i;
1681
1682         if (!flow_action_has_entries(flow_action)) {
1683                 DP_NOTICE(edev, "No actions received\n");
1684                 return -EINVAL;
1685         }
1686
1687         if (!flow_action_basic_hw_stats_check(flow_action, extack))
1688                 return -EOPNOTSUPP;
1689
1690         flow_action_for_each(i, act, flow_action) {
1691                 switch (act->id) {
1692                 case FLOW_ACTION_DROP:
1693                         break;
1694                 case FLOW_ACTION_QUEUE:
1695                         if (act->queue.vf)
1696                                 break;
1697
1698                         if (act->queue.index >= QEDE_RSS_COUNT(edev)) {
1699                                 DP_INFO(edev, "Queue out-of-bounds\n");
1700                                 return -EINVAL;
1701                         }
1702                         break;
1703                 default:
1704                         return -EINVAL;
1705                 }
1706         }
1707
1708         return 0;
1709 }
1710
1711 static int
1712 qede_flow_parse_ports(struct qede_dev *edev, struct flow_rule *rule,
1713                       struct qede_arfs_tuple *t)
1714 {
1715         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
1716                 struct flow_match_ports match;
1717
1718                 flow_rule_match_ports(rule, &match);
1719                 if ((match.key->src && match.mask->src != htons(U16_MAX)) ||
1720                     (match.key->dst && match.mask->dst != htons(U16_MAX))) {
1721                         DP_NOTICE(edev, "Do not support ports masks\n");
1722                         return -EINVAL;
1723                 }
1724
1725                 t->src_port = match.key->src;
1726                 t->dst_port = match.key->dst;
1727         }
1728
1729         return 0;
1730 }
1731
1732 static int
1733 qede_flow_parse_v6_common(struct qede_dev *edev, struct flow_rule *rule,
1734                           struct qede_arfs_tuple *t)
1735 {
1736         struct in6_addr zero_addr, addr;
1737
1738         memset(&zero_addr, 0, sizeof(addr));
1739         memset(&addr, 0xff, sizeof(addr));
1740
1741         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
1742                 struct flow_match_ipv6_addrs match;
1743
1744                 flow_rule_match_ipv6_addrs(rule, &match);
1745                 if ((memcmp(&match.key->src, &zero_addr, sizeof(addr)) &&
1746                      memcmp(&match.mask->src, &addr, sizeof(addr))) ||
1747                     (memcmp(&match.key->dst, &zero_addr, sizeof(addr)) &&
1748                      memcmp(&match.mask->dst, &addr, sizeof(addr)))) {
1749                         DP_NOTICE(edev,
1750                                   "Do not support IPv6 address prefix/mask\n");
1751                         return -EINVAL;
1752                 }
1753
1754                 memcpy(&t->src_ipv6, &match.key->src, sizeof(addr));
1755                 memcpy(&t->dst_ipv6, &match.key->dst, sizeof(addr));
1756         }
1757
1758         if (qede_flow_parse_ports(edev, rule, t))
1759                 return -EINVAL;
1760
1761         return qede_set_v6_tuple_to_profile(edev, t, &zero_addr);
1762 }
1763
1764 static int
1765 qede_flow_parse_v4_common(struct qede_dev *edev, struct flow_rule *rule,
1766                         struct qede_arfs_tuple *t)
1767 {
1768         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
1769                 struct flow_match_ipv4_addrs match;
1770
1771                 flow_rule_match_ipv4_addrs(rule, &match);
1772                 if ((match.key->src && match.mask->src != htonl(U32_MAX)) ||
1773                     (match.key->dst && match.mask->dst != htonl(U32_MAX))) {
1774                         DP_NOTICE(edev, "Do not support ipv4 prefix/masks\n");
1775                         return -EINVAL;
1776                 }
1777
1778                 t->src_ipv4 = match.key->src;
1779                 t->dst_ipv4 = match.key->dst;
1780         }
1781
1782         if (qede_flow_parse_ports(edev, rule, t))
1783                 return -EINVAL;
1784
1785         return qede_set_v4_tuple_to_profile(edev, t);
1786 }
1787
1788 static int
1789 qede_flow_parse_tcp_v6(struct qede_dev *edev, struct flow_rule *rule,
1790                      struct qede_arfs_tuple *tuple)
1791 {
1792         tuple->ip_proto = IPPROTO_TCP;
1793         tuple->eth_proto = htons(ETH_P_IPV6);
1794
1795         return qede_flow_parse_v6_common(edev, rule, tuple);
1796 }
1797
1798 static int
1799 qede_flow_parse_tcp_v4(struct qede_dev *edev, struct flow_rule *rule,
1800                      struct qede_arfs_tuple *tuple)
1801 {
1802         tuple->ip_proto = IPPROTO_TCP;
1803         tuple->eth_proto = htons(ETH_P_IP);
1804
1805         return qede_flow_parse_v4_common(edev, rule, tuple);
1806 }
1807
1808 static int
1809 qede_flow_parse_udp_v6(struct qede_dev *edev, struct flow_rule *rule,
1810                      struct qede_arfs_tuple *tuple)
1811 {
1812         tuple->ip_proto = IPPROTO_UDP;
1813         tuple->eth_proto = htons(ETH_P_IPV6);
1814
1815         return qede_flow_parse_v6_common(edev, rule, tuple);
1816 }
1817
1818 static int
1819 qede_flow_parse_udp_v4(struct qede_dev *edev, struct flow_rule *rule,
1820                      struct qede_arfs_tuple *tuple)
1821 {
1822         tuple->ip_proto = IPPROTO_UDP;
1823         tuple->eth_proto = htons(ETH_P_IP);
1824
1825         return qede_flow_parse_v4_common(edev, rule, tuple);
1826 }
1827
1828 static int
1829 qede_parse_flow_attr(struct qede_dev *edev, __be16 proto,
1830                      struct flow_rule *rule, struct qede_arfs_tuple *tuple)
1831 {
1832         struct flow_dissector *dissector = rule->match.dissector;
1833         int rc = -EINVAL;
1834         u8 ip_proto = 0;
1835
1836         memset(tuple, 0, sizeof(*tuple));
1837
1838         if (dissector->used_keys &
1839             ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
1840               BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
1841               BIT(FLOW_DISSECTOR_KEY_BASIC) |
1842               BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
1843               BIT(FLOW_DISSECTOR_KEY_PORTS))) {
1844                 DP_NOTICE(edev, "Unsupported key set:0x%x\n",
1845                           dissector->used_keys);
1846                 return -EOPNOTSUPP;
1847         }
1848
1849         if (proto != htons(ETH_P_IP) &&
1850             proto != htons(ETH_P_IPV6)) {
1851                 DP_NOTICE(edev, "Unsupported proto=0x%x\n", proto);
1852                 return -EPROTONOSUPPORT;
1853         }
1854
1855         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
1856                 struct flow_match_basic match;
1857
1858                 flow_rule_match_basic(rule, &match);
1859                 ip_proto = match.key->ip_proto;
1860         }
1861
1862         if (ip_proto == IPPROTO_TCP && proto == htons(ETH_P_IP))
1863                 rc = qede_flow_parse_tcp_v4(edev, rule, tuple);
1864         else if (ip_proto == IPPROTO_TCP && proto == htons(ETH_P_IPV6))
1865                 rc = qede_flow_parse_tcp_v6(edev, rule, tuple);
1866         else if (ip_proto == IPPROTO_UDP && proto == htons(ETH_P_IP))
1867                 rc = qede_flow_parse_udp_v4(edev, rule, tuple);
1868         else if (ip_proto == IPPROTO_UDP && proto == htons(ETH_P_IPV6))
1869                 rc = qede_flow_parse_udp_v6(edev, rule, tuple);
1870         else
1871                 DP_NOTICE(edev, "Invalid protocol request\n");
1872
1873         return rc;
1874 }
1875
1876 int qede_add_tc_flower_fltr(struct qede_dev *edev, __be16 proto,
1877                             struct flow_cls_offload *f)
1878 {
1879         struct qede_arfs_fltr_node *n;
1880         int min_hlen, rc = -EINVAL;
1881         struct qede_arfs_tuple t;
1882
1883         __qede_lock(edev);
1884
1885         if (!edev->arfs) {
1886                 rc = -EPERM;
1887                 goto unlock;
1888         }
1889
1890         /* parse flower attribute and prepare filter */
1891         if (qede_parse_flow_attr(edev, proto, f->rule, &t))
1892                 goto unlock;
1893
1894         /* Validate profile mode and number of filters */
1895         if ((edev->arfs->filter_count && edev->arfs->mode != t.mode) ||
1896             edev->arfs->filter_count == QEDE_RFS_MAX_FLTR) {
1897                 DP_NOTICE(edev,
1898                           "Filter configuration invalidated, filter mode=0x%x, configured mode=0x%x, filter count=0x%x\n",
1899                           t.mode, edev->arfs->mode, edev->arfs->filter_count);
1900                 goto unlock;
1901         }
1902
1903         /* parse tc actions and get the vf_id */
1904         if (qede_parse_actions(edev, &f->rule->action, f->common.extack))
1905                 goto unlock;
1906
1907         if (qede_flow_find_fltr(edev, &t)) {
1908                 rc = -EEXIST;
1909                 goto unlock;
1910         }
1911
1912         n = kzalloc(sizeof(*n), GFP_KERNEL);
1913         if (!n) {
1914                 rc = -ENOMEM;
1915                 goto unlock;
1916         }
1917
1918         min_hlen = qede_flow_get_min_header_size(&t);
1919
1920         n->data = kzalloc(min_hlen, GFP_KERNEL);
1921         if (!n->data) {
1922                 kfree(n);
1923                 rc = -ENOMEM;
1924                 goto unlock;
1925         }
1926
1927         memcpy(&n->tuple, &t, sizeof(n->tuple));
1928
1929         n->buf_len = min_hlen;
1930         n->b_is_drop = true;
1931         n->sw_id = f->cookie;
1932
1933         n->tuple.build_hdr(&n->tuple, n->data);
1934
1935         rc = qede_enqueue_fltr_and_config_searcher(edev, n, 0);
1936         if (rc)
1937                 goto unlock;
1938
1939         qede_configure_arfs_fltr(edev, n, n->rxq_id, true);
1940         rc = qede_poll_arfs_filter_config(edev, n);
1941
1942 unlock:
1943         __qede_unlock(edev);
1944         return rc;
1945 }
1946
1947 static int qede_flow_spec_validate(struct qede_dev *edev,
1948                                    struct flow_action *flow_action,
1949                                    struct qede_arfs_tuple *t,
1950                                    __u32 location)
1951 {
1952         if (location >= QEDE_RFS_MAX_FLTR) {
1953                 DP_INFO(edev, "Location out-of-bounds\n");
1954                 return -EINVAL;
1955         }
1956
1957         /* Check location isn't already in use */
1958         if (test_bit(location, edev->arfs->arfs_fltr_bmap)) {
1959                 DP_INFO(edev, "Location already in use\n");
1960                 return -EINVAL;
1961         }
1962
1963         /* Check if the filtering-mode could support the filter */
1964         if (edev->arfs->filter_count &&
1965             edev->arfs->mode != t->mode) {
1966                 DP_INFO(edev,
1967                         "flow_spec would require filtering mode %08x, but %08x is configured\n",
1968                         t->mode, edev->arfs->filter_count);
1969                 return -EINVAL;
1970         }
1971
1972         if (qede_parse_actions(edev, flow_action, NULL))
1973                 return -EINVAL;
1974
1975         return 0;
1976 }
1977
1978 static int qede_flow_spec_to_rule(struct qede_dev *edev,
1979                                   struct qede_arfs_tuple *t,
1980                                   struct ethtool_rx_flow_spec *fs)
1981 {
1982         struct ethtool_rx_flow_spec_input input = {};
1983         struct ethtool_rx_flow_rule *flow;
1984         __be16 proto;
1985         int err = 0;
1986
1987         if (qede_flow_spec_validate_unused(edev, fs))
1988                 return -EOPNOTSUPP;
1989
1990         switch ((fs->flow_type & ~FLOW_EXT)) {
1991         case TCP_V4_FLOW:
1992         case UDP_V4_FLOW:
1993                 proto = htons(ETH_P_IP);
1994                 break;
1995         case TCP_V6_FLOW:
1996         case UDP_V6_FLOW:
1997                 proto = htons(ETH_P_IPV6);
1998                 break;
1999         default:
2000                 DP_VERBOSE(edev, NETIF_MSG_IFUP,
2001                            "Can't support flow of type %08x\n", fs->flow_type);
2002                 return -EOPNOTSUPP;
2003         }
2004
2005         input.fs = fs;
2006         flow = ethtool_rx_flow_rule_create(&input);
2007         if (IS_ERR(flow))
2008                 return PTR_ERR(flow);
2009
2010         if (qede_parse_flow_attr(edev, proto, flow->rule, t)) {
2011                 err = -EINVAL;
2012                 goto err_out;
2013         }
2014
2015         /* Make sure location is valid and filter isn't already set */
2016         err = qede_flow_spec_validate(edev, &flow->rule->action, t,
2017                                       fs->location);
2018 err_out:
2019         ethtool_rx_flow_rule_destroy(flow);
2020         return err;
2021
2022 }
2023
2024 int qede_add_cls_rule(struct qede_dev *edev, struct ethtool_rxnfc *info)
2025 {
2026         struct ethtool_rx_flow_spec *fsp = &info->fs;
2027         struct qede_arfs_fltr_node *n;
2028         struct qede_arfs_tuple t;
2029         int min_hlen, rc;
2030
2031         __qede_lock(edev);
2032
2033         if (!edev->arfs) {
2034                 rc = -EPERM;
2035                 goto unlock;
2036         }
2037
2038         /* Translate the flow specification into something fittign our DB */
2039         rc = qede_flow_spec_to_rule(edev, &t, fsp);
2040         if (rc)
2041                 goto unlock;
2042
2043         if (qede_flow_find_fltr(edev, &t)) {
2044                 rc = -EINVAL;
2045                 goto unlock;
2046         }
2047
2048         n = kzalloc(sizeof(*n), GFP_KERNEL);
2049         if (!n) {
2050                 rc = -ENOMEM;
2051                 goto unlock;
2052         }
2053
2054         min_hlen = qede_flow_get_min_header_size(&t);
2055         n->data = kzalloc(min_hlen, GFP_KERNEL);
2056         if (!n->data) {
2057                 kfree(n);
2058                 rc = -ENOMEM;
2059                 goto unlock;
2060         }
2061
2062         n->sw_id = fsp->location;
2063         set_bit(n->sw_id, edev->arfs->arfs_fltr_bmap);
2064         n->buf_len = min_hlen;
2065
2066         memcpy(&n->tuple, &t, sizeof(n->tuple));
2067
2068         qede_flow_set_destination(edev, n, fsp);
2069
2070         /* Build a minimal header according to the flow */
2071         n->tuple.build_hdr(&n->tuple, n->data);
2072
2073         rc = qede_enqueue_fltr_and_config_searcher(edev, n, 0);
2074         if (rc)
2075                 goto unlock;
2076
2077         qede_configure_arfs_fltr(edev, n, n->rxq_id, true);
2078         rc = qede_poll_arfs_filter_config(edev, n);
2079 unlock:
2080         __qede_unlock(edev);
2081
2082         return rc;
2083 }