GNU Linux-libre 4.19.245-gnu1
[releases.git] / drivers / net / ethernet / qlogic / qed / qed_int.c
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #include <linux/types.h>
34 #include <asm/byteorder.h>
35 #include <linux/io.h>
36 #include <linux/bitops.h>
37 #include <linux/delay.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/errno.h>
40 #include <linux/interrupt.h>
41 #include <linux/kernel.h>
42 #include <linux/pci.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include "qed.h"
46 #include "qed_hsi.h"
47 #include "qed_hw.h"
48 #include "qed_init_ops.h"
49 #include "qed_int.h"
50 #include "qed_mcp.h"
51 #include "qed_reg_addr.h"
52 #include "qed_sp.h"
53 #include "qed_sriov.h"
54 #include "qed_vf.h"
55
56 struct qed_pi_info {
57         qed_int_comp_cb_t       comp_cb;
58         void                    *cookie;
59 };
60
61 struct qed_sb_sp_info {
62         struct qed_sb_info sb_info;
63
64         /* per protocol index data */
65         struct qed_pi_info pi_info_arr[PIS_PER_SB_E4];
66 };
67
68 enum qed_attention_type {
69         QED_ATTN_TYPE_ATTN,
70         QED_ATTN_TYPE_PARITY,
71 };
72
73 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
74         ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
75
76 struct aeu_invert_reg_bit {
77         char bit_name[30];
78
79 #define ATTENTION_PARITY                (1 << 0)
80
81 #define ATTENTION_LENGTH_MASK           (0x00000ff0)
82 #define ATTENTION_LENGTH_SHIFT          (4)
83 #define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \
84                                          ATTENTION_LENGTH_SHIFT)
85 #define ATTENTION_SINGLE                BIT(ATTENTION_LENGTH_SHIFT)
86 #define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY)
87 #define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \
88                                          ATTENTION_PARITY)
89
90 /* Multiple bits start with this offset */
91 #define ATTENTION_OFFSET_MASK           (0x000ff000)
92 #define ATTENTION_OFFSET_SHIFT          (12)
93
94 #define ATTENTION_BB_MASK               (0x00700000)
95 #define ATTENTION_BB_SHIFT              (20)
96 #define ATTENTION_BB(value)             (value << ATTENTION_BB_SHIFT)
97 #define ATTENTION_BB_DIFFERENT          BIT(23)
98
99         unsigned int flags;
100
101         /* Callback to call if attention will be triggered */
102         int (*cb)(struct qed_hwfn *p_hwfn);
103
104         enum block_id block_index;
105 };
106
107 struct aeu_invert_reg {
108         struct aeu_invert_reg_bit bits[32];
109 };
110
111 #define MAX_ATTN_GRPS           (8)
112 #define NUM_ATTN_REGS           (9)
113
114 /* Specific HW attention callbacks */
115 static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn)
116 {
117         u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
118
119         /* This might occur on certain instances; Log it once then mask it */
120         DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
121                 tmp);
122         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
123                0xffffffff);
124
125         return 0;
126 }
127
128 #define QED_PSWHST_ATTENTION_INCORRECT_ACCESS           (0x1)
129 #define ATTENTION_INCORRECT_ACCESS_WR_MASK              (0x1)
130 #define ATTENTION_INCORRECT_ACCESS_WR_SHIFT             (0)
131 #define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK          (0xf)
132 #define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT         (1)
133 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK        (0x1)
134 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT       (5)
135 #define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK           (0xff)
136 #define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT          (6)
137 #define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK           (0xf)
138 #define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT          (14)
139 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK         (0xff)
140 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT        (18)
141 static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn)
142 {
143         u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
144                          PSWHST_REG_INCORRECT_ACCESS_VALID);
145
146         if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) {
147                 u32 addr, data, length;
148
149                 addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
150                               PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
151                 data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
152                               PSWHST_REG_INCORRECT_ACCESS_DATA);
153                 length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
154                                 PSWHST_REG_INCORRECT_ACCESS_LENGTH);
155
156                 DP_INFO(p_hwfn->cdev,
157                         "Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
158                         addr, length,
159                         (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID),
160                         (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID),
161                         (u8) GET_FIELD(data,
162                                        ATTENTION_INCORRECT_ACCESS_VF_VALID),
163                         (u8) GET_FIELD(data,
164                                        ATTENTION_INCORRECT_ACCESS_CLIENT),
165                         (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR),
166                         (u8) GET_FIELD(data,
167                                        ATTENTION_INCORRECT_ACCESS_BYTE_EN),
168                         data);
169         }
170
171         return 0;
172 }
173
174 #define QED_GRC_ATTENTION_VALID_BIT     (1 << 0)
175 #define QED_GRC_ATTENTION_ADDRESS_MASK  (0x7fffff)
176 #define QED_GRC_ATTENTION_ADDRESS_SHIFT (0)
177 #define QED_GRC_ATTENTION_RDWR_BIT      (1 << 23)
178 #define QED_GRC_ATTENTION_MASTER_MASK   (0xf)
179 #define QED_GRC_ATTENTION_MASTER_SHIFT  (24)
180 #define QED_GRC_ATTENTION_PF_MASK       (0xf)
181 #define QED_GRC_ATTENTION_PF_SHIFT      (0)
182 #define QED_GRC_ATTENTION_VF_MASK       (0xff)
183 #define QED_GRC_ATTENTION_VF_SHIFT      (4)
184 #define QED_GRC_ATTENTION_PRIV_MASK     (0x3)
185 #define QED_GRC_ATTENTION_PRIV_SHIFT    (14)
186 #define QED_GRC_ATTENTION_PRIV_VF       (0)
187 static const char *attn_master_to_str(u8 master)
188 {
189         switch (master) {
190         case 1: return "PXP";
191         case 2: return "MCP";
192         case 3: return "MSDM";
193         case 4: return "PSDM";
194         case 5: return "YSDM";
195         case 6: return "USDM";
196         case 7: return "TSDM";
197         case 8: return "XSDM";
198         case 9: return "DBU";
199         case 10: return "DMAE";
200         default:
201                 return "Unknown";
202         }
203 }
204
205 static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn)
206 {
207         u32 tmp, tmp2;
208
209         /* We've already cleared the timeout interrupt register, so we learn
210          * of interrupts via the validity register
211          */
212         tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
213                      GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
214         if (!(tmp & QED_GRC_ATTENTION_VALID_BIT))
215                 goto out;
216
217         /* Read the GRC timeout information */
218         tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
219                      GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
220         tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
221                       GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
222
223         DP_INFO(p_hwfn->cdev,
224                 "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
225                 tmp2, tmp,
226                 (tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from",
227                 GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2,
228                 attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)),
229                 GET_FIELD(tmp2, QED_GRC_ATTENTION_PF),
230                 (GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) ==
231                  QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant)",
232                 GET_FIELD(tmp2, QED_GRC_ATTENTION_VF));
233
234 out:
235         /* Regardles of anything else, clean the validity bit */
236         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
237                GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
238         return 0;
239 }
240
241 #define PGLUE_ATTENTION_VALID                   (1 << 29)
242 #define PGLUE_ATTENTION_RD_VALID                (1 << 26)
243 #define PGLUE_ATTENTION_DETAILS_PFID_MASK       (0xf)
244 #define PGLUE_ATTENTION_DETAILS_PFID_SHIFT      (20)
245 #define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK   (0x1)
246 #define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT  (19)
247 #define PGLUE_ATTENTION_DETAILS_VFID_MASK       (0xff)
248 #define PGLUE_ATTENTION_DETAILS_VFID_SHIFT      (24)
249 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK   (0x1)
250 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT  (21)
251 #define PGLUE_ATTENTION_DETAILS2_BME_MASK       (0x1)
252 #define PGLUE_ATTENTION_DETAILS2_BME_SHIFT      (22)
253 #define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK    (0x1)
254 #define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT   (23)
255 #define PGLUE_ATTENTION_ICPL_VALID              (1 << 23)
256 #define PGLUE_ATTENTION_ZLR_VALID               (1 << 25)
257 #define PGLUE_ATTENTION_ILT_VALID               (1 << 23)
258 static int qed_pglub_rbc_attn_cb(struct qed_hwfn *p_hwfn)
259 {
260         u32 tmp;
261
262         tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
263                      PGLUE_B_REG_TX_ERR_WR_DETAILS2);
264         if (tmp & PGLUE_ATTENTION_VALID) {
265                 u32 addr_lo, addr_hi, details;
266
267                 addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
268                                  PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
269                 addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
270                                  PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
271                 details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
272                                  PGLUE_B_REG_TX_ERR_WR_DETAILS);
273
274                 DP_INFO(p_hwfn,
275                         "Illegal write by chip to [%08x:%08x] blocked.\n"
276                         "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
277                         "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
278                         addr_hi, addr_lo, details,
279                         (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
280                         (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
281                         GET_FIELD(details,
282                                   PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
283                         tmp,
284                         GET_FIELD(tmp,
285                                   PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
286                         GET_FIELD(tmp,
287                                   PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
288                         GET_FIELD(tmp,
289                                   PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
290         }
291
292         tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
293                      PGLUE_B_REG_TX_ERR_RD_DETAILS2);
294         if (tmp & PGLUE_ATTENTION_RD_VALID) {
295                 u32 addr_lo, addr_hi, details;
296
297                 addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
298                                  PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
299                 addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
300                                  PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
301                 details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
302                                  PGLUE_B_REG_TX_ERR_RD_DETAILS);
303
304                 DP_INFO(p_hwfn,
305                         "Illegal read by chip from [%08x:%08x] blocked.\n"
306                         " Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
307                         " Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
308                         addr_hi, addr_lo, details,
309                         (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
310                         (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
311                         GET_FIELD(details,
312                                   PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
313                         tmp,
314                         GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1
315                                                                          : 0,
316                         GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
317                         GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1
318                                                                         : 0);
319         }
320
321         tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
322                      PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
323         if (tmp & PGLUE_ATTENTION_ICPL_VALID)
324                 DP_INFO(p_hwfn, "ICPL error - %08x\n", tmp);
325
326         tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
327                      PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
328         if (tmp & PGLUE_ATTENTION_ZLR_VALID) {
329                 u32 addr_hi, addr_lo;
330
331                 addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
332                                  PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
333                 addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
334                                  PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
335
336                 DP_INFO(p_hwfn, "ZLR eror - %08x [Address %08x:%08x]\n",
337                         tmp, addr_hi, addr_lo);
338         }
339
340         tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
341                      PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
342         if (tmp & PGLUE_ATTENTION_ILT_VALID) {
343                 u32 addr_hi, addr_lo, details;
344
345                 addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
346                                  PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
347                 addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
348                                  PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
349                 details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
350                                  PGLUE_B_REG_VF_ILT_ERR_DETAILS);
351
352                 DP_INFO(p_hwfn,
353                         "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
354                         details, tmp, addr_hi, addr_lo);
355         }
356
357         /* Clear the indications */
358         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
359                PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
360
361         return 0;
362 }
363
364 #define QED_DORQ_ATTENTION_REASON_MASK  (0xfffff)
365 #define QED_DORQ_ATTENTION_OPAQUE_MASK (0xffff)
366 #define QED_DORQ_ATTENTION_SIZE_MASK    (0x7f)
367 #define QED_DORQ_ATTENTION_SIZE_SHIFT   (16)
368 static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn)
369 {
370         u32 reason;
371
372         reason = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, DORQ_REG_DB_DROP_REASON) &
373                         QED_DORQ_ATTENTION_REASON_MASK;
374         if (reason) {
375                 u32 details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
376                                      DORQ_REG_DB_DROP_DETAILS);
377
378                 DP_INFO(p_hwfn->cdev,
379                         "DORQ db_drop: address 0x%08x Opaque FID 0x%04x Size [bytes] 0x%08x Reason: 0x%08x\n",
380                         qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
381                                DORQ_REG_DB_DROP_DETAILS_ADDRESS),
382                         (u16)(details & QED_DORQ_ATTENTION_OPAQUE_MASK),
383                         GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4,
384                         reason);
385         }
386
387         return -EINVAL;
388 }
389
390 /* Instead of major changes to the data-structure, we have a some 'special'
391  * identifiers for sources that changed meaning between adapters.
392  */
393 enum aeu_invert_reg_special_type {
394         AEU_INVERT_REG_SPECIAL_CNIG_0,
395         AEU_INVERT_REG_SPECIAL_CNIG_1,
396         AEU_INVERT_REG_SPECIAL_CNIG_2,
397         AEU_INVERT_REG_SPECIAL_CNIG_3,
398         AEU_INVERT_REG_SPECIAL_MAX,
399 };
400
401 static struct aeu_invert_reg_bit
402 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
403         {"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
404         {"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
405         {"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
406         {"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
407 };
408
409 /* Notice aeu_invert_reg must be defined in the same order of bits as HW;  */
410 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
411         {
412                 {       /* After Invert 1 */
413                         {"GPIO0 function%d",
414                          (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
415                 }
416         },
417
418         {
419                 {       /* After Invert 2 */
420                         {"PGLUE config_space", ATTENTION_SINGLE,
421                          NULL, MAX_BLOCK_ID},
422                         {"PGLUE misc_flr", ATTENTION_SINGLE,
423                          NULL, MAX_BLOCK_ID},
424                         {"PGLUE B RBC", ATTENTION_PAR_INT,
425                          qed_pglub_rbc_attn_cb, BLOCK_PGLUE_B},
426                         {"PGLUE misc_mctp", ATTENTION_SINGLE,
427                          NULL, MAX_BLOCK_ID},
428                         {"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
429                         {"SMB event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
430                         {"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
431                         {"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) |
432                                           (1 << ATTENTION_OFFSET_SHIFT),
433                          NULL, MAX_BLOCK_ID},
434                         {"PCIE glue/PXP VPD %d",
435                          (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS},
436                 }
437         },
438
439         {
440                 {       /* After Invert 3 */
441                         {"General Attention %d",
442                          (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
443                 }
444         },
445
446         {
447                 {       /* After Invert 4 */
448                         {"General Attention 32", ATTENTION_SINGLE,
449                          NULL, MAX_BLOCK_ID},
450                         {"General Attention %d",
451                          (2 << ATTENTION_LENGTH_SHIFT) |
452                          (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID},
453                         {"General Attention 35", ATTENTION_SINGLE,
454                          NULL, MAX_BLOCK_ID},
455                         {"NWS Parity",
456                          ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
457                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
458                          NULL, BLOCK_NWS},
459                         {"NWS Interrupt",
460                          ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
461                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
462                          NULL, BLOCK_NWS},
463                         {"NWM Parity",
464                          ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
465                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
466                          NULL, BLOCK_NWM},
467                         {"NWM Interrupt",
468                          ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
469                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
470                          NULL, BLOCK_NWM},
471                         {"MCP CPU", ATTENTION_SINGLE,
472                          qed_mcp_attn_cb, MAX_BLOCK_ID},
473                         {"MCP Watchdog timer", ATTENTION_SINGLE,
474                          NULL, MAX_BLOCK_ID},
475                         {"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
476                         {"AVS stop status ready", ATTENTION_SINGLE,
477                          NULL, MAX_BLOCK_ID},
478                         {"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
479                         {"MSTAT per-path", ATTENTION_PAR_INT,
480                          NULL, MAX_BLOCK_ID},
481                         {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT),
482                          NULL, MAX_BLOCK_ID},
483                         {"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG},
484                         {"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB},
485                         {"BTB", ATTENTION_PAR_INT, NULL, BLOCK_BTB},
486                         {"BRB", ATTENTION_PAR_INT, NULL, BLOCK_BRB},
487                         {"PRS", ATTENTION_PAR_INT, NULL, BLOCK_PRS},
488                 }
489         },
490
491         {
492                 {       /* After Invert 5 */
493                         {"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC},
494                         {"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1},
495                         {"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2},
496                         {"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB},
497                         {"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF},
498                         {"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM},
499                         {"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM},
500                         {"MCM",  ATTENTION_PAR_INT, NULL, BLOCK_MCM},
501                         {"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM},
502                         {"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM},
503                         {"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM},
504                         {"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM},
505                         {"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM},
506                         {"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM},
507                         {"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM},
508                         {"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM},
509                 }
510         },
511
512         {
513                 {       /* After Invert 6 */
514                         {"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM},
515                         {"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM},
516                         {"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM},
517                         {"XCM", ATTENTION_PAR_INT, NULL, BLOCK_XCM},
518                         {"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM},
519                         {"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM},
520                         {"YCM", ATTENTION_PAR_INT, NULL, BLOCK_YCM},
521                         {"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM},
522                         {"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM},
523                         {"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD},
524                         {"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD},
525                         {"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD},
526                         {"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD},
527                         {"DORQ", ATTENTION_PAR_INT,
528                          qed_dorq_attn_cb, BLOCK_DORQ},
529                         {"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG},
530                         {"IPC", ATTENTION_PAR_INT, NULL, BLOCK_IPC},
531                 }
532         },
533
534         {
535                 {       /* After Invert 7 */
536                         {"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC},
537                         {"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU},
538                         {"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE},
539                         {"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU},
540                         {"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
541                         {"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU},
542                         {"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU},
543                         {"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM},
544                         {"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC},
545                         {"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF},
546                         {"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF},
547                         {"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS},
548                         {"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC},
549                         {"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS},
550                         {"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE},
551                         {"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS},
552                         {"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ},
553                 }
554         },
555
556         {
557                 {       /* After Invert 8 */
558                         {"PSWRQ (pci_clk)", ATTENTION_PAR_INT,
559                          NULL, BLOCK_PSWRQ2},
560                         {"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR},
561                         {"PSWWR (pci_clk)", ATTENTION_PAR_INT,
562                          NULL, BLOCK_PSWWR2},
563                         {"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD},
564                         {"PSWRD (pci_clk)", ATTENTION_PAR_INT,
565                          NULL, BLOCK_PSWRD2},
566                         {"PSWHST", ATTENTION_PAR_INT,
567                          qed_pswhst_attn_cb, BLOCK_PSWHST},
568                         {"PSWHST (pci_clk)", ATTENTION_PAR_INT,
569                          NULL, BLOCK_PSWHST2},
570                         {"GRC", ATTENTION_PAR_INT,
571                          qed_grc_attn_cb, BLOCK_GRC},
572                         {"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU},
573                         {"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI},
574                         {"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
575                         {"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
576                         {"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
577                         {"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
578                         {"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
579                         {"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
580                         {"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS},
581                         {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE,
582                          NULL, BLOCK_PGLCS},
583                         {"PERST_B assertion", ATTENTION_SINGLE,
584                          NULL, MAX_BLOCK_ID},
585                         {"PERST_B deassertion", ATTENTION_SINGLE,
586                          NULL, MAX_BLOCK_ID},
587                         {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT),
588                          NULL, MAX_BLOCK_ID},
589                 }
590         },
591
592         {
593                 {       /* After Invert 9 */
594                         {"MCP Latched memory", ATTENTION_PAR,
595                          NULL, MAX_BLOCK_ID},
596                         {"MCP Latched scratchpad cache", ATTENTION_SINGLE,
597                          NULL, MAX_BLOCK_ID},
598                         {"MCP Latched ump_tx", ATTENTION_PAR,
599                          NULL, MAX_BLOCK_ID},
600                         {"MCP Latched scratchpad", ATTENTION_PAR,
601                          NULL, MAX_BLOCK_ID},
602                         {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT),
603                          NULL, MAX_BLOCK_ID},
604                 }
605         },
606 };
607
608 static struct aeu_invert_reg_bit *
609 qed_int_aeu_translate(struct qed_hwfn *p_hwfn,
610                       struct aeu_invert_reg_bit *p_bit)
611 {
612         if (!QED_IS_BB(p_hwfn->cdev))
613                 return p_bit;
614
615         if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
616                 return p_bit;
617
618         return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
619                                   ATTENTION_BB_SHIFT];
620 }
621
622 static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn,
623                                    struct aeu_invert_reg_bit *p_bit)
624 {
625         return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags &
626                    ATTENTION_PARITY);
627 }
628
629 #define ATTN_STATE_BITS         (0xfff)
630 #define ATTN_BITS_MASKABLE      (0x3ff)
631 struct qed_sb_attn_info {
632         /* Virtual & Physical address of the SB */
633         struct atten_status_block       *sb_attn;
634         dma_addr_t                      sb_phys;
635
636         /* Last seen running index */
637         u16                             index;
638
639         /* A mask of the AEU bits resulting in a parity error */
640         u32                             parity_mask[NUM_ATTN_REGS];
641
642         /* A pointer to the attention description structure */
643         struct aeu_invert_reg           *p_aeu_desc;
644
645         /* Previously asserted attentions, which are still unasserted */
646         u16                             known_attn;
647
648         /* Cleanup address for the link's general hw attention */
649         u32                             mfw_attn_addr;
650 };
651
652 static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
653                                       struct qed_sb_attn_info *p_sb_desc)
654 {
655         u16 rc = 0, index;
656
657         /* Make certain HW write took affect */
658         mmiowb();
659
660         index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
661         if (p_sb_desc->index != index) {
662                 p_sb_desc->index        = index;
663                 rc                    = QED_SB_ATT_IDX;
664         }
665
666         /* Make certain we got a consistent view with HW */
667         mmiowb();
668
669         return rc;
670 }
671
672 /**
673  *  @brief qed_int_assertion - handles asserted attention bits
674  *
675  *  @param p_hwfn
676  *  @param asserted_bits newly asserted bits
677  *  @return int
678  */
679 static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits)
680 {
681         struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
682         u32 igu_mask;
683
684         /* Mask the source of the attention in the IGU */
685         igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
686         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
687                    igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
688         igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
689         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
690
691         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
692                    "inner known ATTN state: 0x%04x --> 0x%04x\n",
693                    sb_attn_sw->known_attn,
694                    sb_attn_sw->known_attn | asserted_bits);
695         sb_attn_sw->known_attn |= asserted_bits;
696
697         /* Handle MCP events */
698         if (asserted_bits & 0x100) {
699                 qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
700                 /* Clean the MCP attention */
701                 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
702                        sb_attn_sw->mfw_attn_addr, 0);
703         }
704
705         DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
706                       GTT_BAR0_MAP_REG_IGU_CMD +
707                       ((IGU_CMD_ATTN_BIT_SET_UPPER -
708                         IGU_CMD_INT_ACK_BASE) << 3),
709                       (u32)asserted_bits);
710
711         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
712                    asserted_bits);
713
714         return 0;
715 }
716
717 static void qed_int_attn_print(struct qed_hwfn *p_hwfn,
718                                enum block_id id,
719                                enum dbg_attn_type type, bool b_clear)
720 {
721         struct dbg_attn_block_result attn_results;
722         enum dbg_status status;
723
724         memset(&attn_results, 0, sizeof(attn_results));
725
726         status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
727                                    b_clear, &attn_results);
728         if (status != DBG_STATUS_OK)
729                 DP_NOTICE(p_hwfn,
730                           "Failed to parse attention information [status: %s]\n",
731                           qed_dbg_get_status_str(status));
732         else
733                 qed_dbg_parse_attn(p_hwfn, &attn_results);
734 }
735
736 /**
737  * @brief qed_int_deassertion_aeu_bit - handles the effects of a single
738  * cause of the attention
739  *
740  * @param p_hwfn
741  * @param p_aeu - descriptor of an AEU bit which caused the attention
742  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
743  *  this bit to this group.
744  * @param bit_index - index of this bit in the aeu_en_reg
745  *
746  * @return int
747  */
748 static int
749 qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn,
750                             struct aeu_invert_reg_bit *p_aeu,
751                             u32 aeu_en_reg,
752                             const char *p_bit_name, u32 bitmask)
753 {
754         bool b_fatal = false;
755         int rc = -EINVAL;
756         u32 val;
757
758         DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
759                 p_bit_name, bitmask);
760
761         /* Call callback before clearing the interrupt status */
762         if (p_aeu->cb) {
763                 DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
764                         p_bit_name);
765                 rc = p_aeu->cb(p_hwfn);
766         }
767
768         if (rc)
769                 b_fatal = true;
770
771         /* Print HW block interrupt registers */
772         if (p_aeu->block_index != MAX_BLOCK_ID)
773                 qed_int_attn_print(p_hwfn, p_aeu->block_index,
774                                    ATTN_TYPE_INTERRUPT, !b_fatal);
775
776
777         /* If the attention is benign, no need to prevent it */
778         if (!rc)
779                 goto out;
780
781         /* Prevent this Attention from being asserted in the future */
782         val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
783         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask));
784         DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
785                 p_bit_name);
786
787 out:
788         return rc;
789 }
790
791 /**
792  * @brief qed_int_deassertion_parity - handle a single parity AEU source
793  *
794  * @param p_hwfn
795  * @param p_aeu - descriptor of an AEU bit which caused the parity
796  * @param aeu_en_reg - address of the AEU enable register
797  * @param bit_index
798  */
799 static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn,
800                                        struct aeu_invert_reg_bit *p_aeu,
801                                        u32 aeu_en_reg, u8 bit_index)
802 {
803         u32 block_id = p_aeu->block_index, mask, val;
804
805         DP_NOTICE(p_hwfn->cdev,
806                   "%s parity attention is set [address 0x%08x, bit %d]\n",
807                   p_aeu->bit_name, aeu_en_reg, bit_index);
808
809         if (block_id != MAX_BLOCK_ID) {
810                 qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
811
812                 /* In BB, there's a single parity bit for several blocks */
813                 if (block_id == BLOCK_BTB) {
814                         qed_int_attn_print(p_hwfn, BLOCK_OPTE,
815                                            ATTN_TYPE_PARITY, false);
816                         qed_int_attn_print(p_hwfn, BLOCK_MCP,
817                                            ATTN_TYPE_PARITY, false);
818                 }
819         }
820
821         /* Prevent this parity error from being re-asserted */
822         mask = ~BIT(bit_index);
823         val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
824         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
825         DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
826                 p_aeu->bit_name);
827 }
828
829 /**
830  * @brief - handles deassertion of previously asserted attentions.
831  *
832  * @param p_hwfn
833  * @param deasserted_bits - newly deasserted bits
834  * @return int
835  *
836  */
837 static int qed_int_deassertion(struct qed_hwfn  *p_hwfn,
838                                u16 deasserted_bits)
839 {
840         struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
841         u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
842         u8 i, j, k, bit_idx;
843         int rc = 0;
844
845         /* Read the attention registers in the AEU */
846         for (i = 0; i < NUM_ATTN_REGS; i++) {
847                 aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
848                                         MISC_REG_AEU_AFTER_INVERT_1_IGU +
849                                         i * 0x4);
850                 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
851                            "Deasserted bits [%d]: %08x\n",
852                            i, aeu_inv_arr[i]);
853         }
854
855         /* Find parity attentions first */
856         for (i = 0; i < NUM_ATTN_REGS; i++) {
857                 struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
858                 u32 parities;
859
860                 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
861                 en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
862
863                 /* Skip register in which no parity bit is currently set */
864                 parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
865                 if (!parities)
866                         continue;
867
868                 for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
869                         struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
870
871                         if (qed_int_is_parity_flag(p_hwfn, p_bit) &&
872                             !!(parities & BIT(bit_idx)))
873                                 qed_int_deassertion_parity(p_hwfn, p_bit,
874                                                            aeu_en, bit_idx);
875
876                         bit_idx += ATTENTION_LENGTH(p_bit->flags);
877                 }
878         }
879
880         /* Find non-parity cause for attention and act */
881         for (k = 0; k < MAX_ATTN_GRPS; k++) {
882                 struct aeu_invert_reg_bit *p_aeu;
883
884                 /* Handle only groups whose attention is currently deasserted */
885                 if (!(deasserted_bits & (1 << k)))
886                         continue;
887
888                 for (i = 0; i < NUM_ATTN_REGS; i++) {
889                         u32 bits;
890
891                         aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
892                                  i * sizeof(u32) +
893                                  k * sizeof(u32) * NUM_ATTN_REGS;
894
895                         en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
896                         bits = aeu_inv_arr[i] & en;
897
898                         /* Skip if no bit from this group is currently set */
899                         if (!bits)
900                                 continue;
901
902                         /* Find all set bits from current register which belong
903                          * to current group, making them responsible for the
904                          * previous assertion.
905                          */
906                         for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
907                                 long unsigned int bitmask;
908                                 u8 bit, bit_len;
909
910                                 p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
911                                 p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu);
912
913                                 bit = bit_idx;
914                                 bit_len = ATTENTION_LENGTH(p_aeu->flags);
915                                 if (qed_int_is_parity_flag(p_hwfn, p_aeu)) {
916                                         /* Skip Parity */
917                                         bit++;
918                                         bit_len--;
919                                 }
920
921                                 bitmask = bits & (((1 << bit_len) - 1) << bit);
922                                 bitmask >>= bit;
923
924                                 if (bitmask) {
925                                         u32 flags = p_aeu->flags;
926                                         char bit_name[30];
927                                         u8 num;
928
929                                         num = (u8)find_first_bit(&bitmask,
930                                                                  bit_len);
931
932                                         /* Some bits represent more than a
933                                          * a single interrupt. Correctly print
934                                          * their name.
935                                          */
936                                         if (ATTENTION_LENGTH(flags) > 2 ||
937                                             ((flags & ATTENTION_PAR_INT) &&
938                                              ATTENTION_LENGTH(flags) > 1))
939                                                 snprintf(bit_name, 30,
940                                                          p_aeu->bit_name, num);
941                                         else
942                                                 strlcpy(bit_name,
943                                                         p_aeu->bit_name, 30);
944
945                                         /* We now need to pass bitmask in its
946                                          * correct position.
947                                          */
948                                         bitmask <<= bit;
949
950                                         /* Handle source of the attention */
951                                         qed_int_deassertion_aeu_bit(p_hwfn,
952                                                                     p_aeu,
953                                                                     aeu_en,
954                                                                     bit_name,
955                                                                     bitmask);
956                                 }
957
958                                 bit_idx += ATTENTION_LENGTH(p_aeu->flags);
959                         }
960                 }
961         }
962
963         /* Clear IGU indication for the deasserted bits */
964         DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
965                                     GTT_BAR0_MAP_REG_IGU_CMD +
966                                     ((IGU_CMD_ATTN_BIT_CLR_UPPER -
967                                       IGU_CMD_INT_ACK_BASE) << 3),
968                                     ~((u32)deasserted_bits));
969
970         /* Unmask deasserted attentions in IGU */
971         aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
972         aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
973         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
974
975         /* Clear deassertion from inner state */
976         sb_attn_sw->known_attn &= ~deasserted_bits;
977
978         return rc;
979 }
980
981 static int qed_int_attentions(struct qed_hwfn *p_hwfn)
982 {
983         struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
984         struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
985         u32 attn_bits = 0, attn_acks = 0;
986         u16 asserted_bits, deasserted_bits;
987         __le16 index;
988         int rc = 0;
989
990         /* Read current attention bits/acks - safeguard against attentions
991          * by guaranting work on a synchronized timeframe
992          */
993         do {
994                 index = p_sb_attn->sb_index;
995                 /* finish reading index before the loop condition */
996                 dma_rmb();
997                 attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
998                 attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
999         } while (index != p_sb_attn->sb_index);
1000         p_sb_attn->sb_index = index;
1001
1002         /* Attention / Deassertion are meaningful (and in correct state)
1003          * only when they differ and consistent with known state - deassertion
1004          * when previous attention & current ack, and assertion when current
1005          * attention with no previous attention
1006          */
1007         asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1008                 ~p_sb_attn_sw->known_attn;
1009         deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1010                 p_sb_attn_sw->known_attn;
1011
1012         if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
1013                 DP_INFO(p_hwfn,
1014                         "Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1015                         index, attn_bits, attn_acks, asserted_bits,
1016                         deasserted_bits, p_sb_attn_sw->known_attn);
1017         } else if (asserted_bits == 0x100) {
1018                 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1019                            "MFW indication via attention\n");
1020         } else {
1021                 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1022                            "MFW indication [deassertion]\n");
1023         }
1024
1025         if (asserted_bits) {
1026                 rc = qed_int_assertion(p_hwfn, asserted_bits);
1027                 if (rc)
1028                         return rc;
1029         }
1030
1031         if (deasserted_bits)
1032                 rc = qed_int_deassertion(p_hwfn, deasserted_bits);
1033
1034         return rc;
1035 }
1036
1037 static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
1038                             void __iomem *igu_addr, u32 ack_cons)
1039 {
1040         struct igu_prod_cons_update igu_ack = { 0 };
1041
1042         igu_ack.sb_id_and_flags =
1043                 ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1044                  (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1045                  (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1046                  (IGU_SEG_ACCESS_ATTN <<
1047                   IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1048
1049         DIRECT_REG_WR(igu_addr, igu_ack.sb_id_and_flags);
1050
1051         /* Both segments (interrupts & acks) are written to same place address;
1052          * Need to guarantee all commands will be received (in-order) by HW.
1053          */
1054         mmiowb();
1055         barrier();
1056 }
1057
1058 void qed_int_sp_dpc(unsigned long hwfn_cookie)
1059 {
1060         struct qed_hwfn *p_hwfn = (struct qed_hwfn *)hwfn_cookie;
1061         struct qed_pi_info *pi_info = NULL;
1062         struct qed_sb_attn_info *sb_attn;
1063         struct qed_sb_info *sb_info;
1064         int arr_size;
1065         u16 rc = 0;
1066
1067         if (!p_hwfn->p_sp_sb) {
1068                 DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
1069                 return;
1070         }
1071
1072         sb_info = &p_hwfn->p_sp_sb->sb_info;
1073         arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1074         if (!sb_info) {
1075                 DP_ERR(p_hwfn->cdev,
1076                        "Status block is NULL - cannot ack interrupts\n");
1077                 return;
1078         }
1079
1080         if (!p_hwfn->p_sb_attn) {
1081                 DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
1082                 return;
1083         }
1084         sb_attn = p_hwfn->p_sb_attn;
1085
1086         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1087                    p_hwfn, p_hwfn->my_id);
1088
1089         /* Disable ack for def status block. Required both for msix +
1090          * inta in non-mask mode, in inta does no harm.
1091          */
1092         qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1093
1094         /* Gather Interrupts/Attentions information */
1095         if (!sb_info->sb_virt) {
1096                 DP_ERR(p_hwfn->cdev,
1097                        "Interrupt Status block is NULL - cannot check for new interrupts!\n");
1098         } else {
1099                 u32 tmp_index = sb_info->sb_ack;
1100
1101                 rc = qed_sb_update_sb_idx(sb_info);
1102                 DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1103                            "Interrupt indices: 0x%08x --> 0x%08x\n",
1104                            tmp_index, sb_info->sb_ack);
1105         }
1106
1107         if (!sb_attn || !sb_attn->sb_attn) {
1108                 DP_ERR(p_hwfn->cdev,
1109                        "Attentions Status block is NULL - cannot check for new attentions!\n");
1110         } else {
1111                 u16 tmp_index = sb_attn->index;
1112
1113                 rc |= qed_attn_update_idx(p_hwfn, sb_attn);
1114                 DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1115                            "Attention indices: 0x%08x --> 0x%08x\n",
1116                            tmp_index, sb_attn->index);
1117         }
1118
1119         /* Check if we expect interrupts at this time. if not just ack them */
1120         if (!(rc & QED_SB_EVENT_MASK)) {
1121                 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1122                 return;
1123         }
1124
1125         /* Check the validity of the DPC ptt. If not ack interrupts and fail */
1126         if (!p_hwfn->p_dpc_ptt) {
1127                 DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
1128                 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1129                 return;
1130         }
1131
1132         if (rc & QED_SB_ATT_IDX)
1133                 qed_int_attentions(p_hwfn);
1134
1135         if (rc & QED_SB_IDX) {
1136                 int pi;
1137
1138                 /* Look for a free index */
1139                 for (pi = 0; pi < arr_size; pi++) {
1140                         pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1141                         if (pi_info->comp_cb)
1142                                 pi_info->comp_cb(p_hwfn, pi_info->cookie);
1143                 }
1144         }
1145
1146         if (sb_attn && (rc & QED_SB_ATT_IDX))
1147                 /* This should be done before the interrupts are enabled,
1148                  * since otherwise a new attention will be generated.
1149                  */
1150                 qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1151
1152         qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1153 }
1154
1155 static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
1156 {
1157         struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1158
1159         if (!p_sb)
1160                 return;
1161
1162         if (p_sb->sb_attn)
1163                 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1164                                   SB_ATTN_ALIGNED_SIZE(p_hwfn),
1165                                   p_sb->sb_attn, p_sb->sb_phys);
1166         kfree(p_sb);
1167         p_hwfn->p_sb_attn = NULL;
1168 }
1169
1170 static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
1171                                   struct qed_ptt *p_ptt)
1172 {
1173         struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1174
1175         memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1176
1177         sb_info->index = 0;
1178         sb_info->known_attn = 0;
1179
1180         /* Configure Attention Status Block in IGU */
1181         qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1182                lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
1183         qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1184                upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
1185 }
1186
1187 static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
1188                                  struct qed_ptt *p_ptt,
1189                                  void *sb_virt_addr, dma_addr_t sb_phy_addr)
1190 {
1191         struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1192         int i, j, k;
1193
1194         sb_info->sb_attn = sb_virt_addr;
1195         sb_info->sb_phys = sb_phy_addr;
1196
1197         /* Set the pointer to the AEU descriptors */
1198         sb_info->p_aeu_desc = aeu_descs;
1199
1200         /* Calculate Parity Masks */
1201         memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1202         for (i = 0; i < NUM_ATTN_REGS; i++) {
1203                 /* j is array index, k is bit index */
1204                 for (j = 0, k = 0; k < 32; j++) {
1205                         struct aeu_invert_reg_bit *p_aeu;
1206
1207                         p_aeu = &aeu_descs[i].bits[j];
1208                         if (qed_int_is_parity_flag(p_hwfn, p_aeu))
1209                                 sb_info->parity_mask[i] |= 1 << k;
1210
1211                         k += ATTENTION_LENGTH(p_aeu->flags);
1212                 }
1213                 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1214                            "Attn Mask [Reg %d]: 0x%08x\n",
1215                            i, sb_info->parity_mask[i]);
1216         }
1217
1218         /* Set the address of cleanup for the mcp attention */
1219         sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1220                                  MISC_REG_AEU_GENERAL_ATTN_0;
1221
1222         qed_int_sb_attn_setup(p_hwfn, p_ptt);
1223 }
1224
1225 static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
1226                                  struct qed_ptt *p_ptt)
1227 {
1228         struct qed_dev *cdev = p_hwfn->cdev;
1229         struct qed_sb_attn_info *p_sb;
1230         dma_addr_t p_phys = 0;
1231         void *p_virt;
1232
1233         /* SB struct */
1234         p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1235         if (!p_sb)
1236                 return -ENOMEM;
1237
1238         /* SB ring  */
1239         p_virt = dma_alloc_coherent(&cdev->pdev->dev,
1240                                     SB_ATTN_ALIGNED_SIZE(p_hwfn),
1241                                     &p_phys, GFP_KERNEL);
1242
1243         if (!p_virt) {
1244                 kfree(p_sb);
1245                 return -ENOMEM;
1246         }
1247
1248         /* Attention setup */
1249         p_hwfn->p_sb_attn = p_sb;
1250         qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1251
1252         return 0;
1253 }
1254
1255 /* coalescing timeout = timeset << (timer_res + 1) */
1256 #define QED_CAU_DEF_RX_USECS 24
1257 #define QED_CAU_DEF_TX_USECS 48
1258
1259 void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
1260                            struct cau_sb_entry *p_sb_entry,
1261                            u8 pf_id, u16 vf_number, u8 vf_valid)
1262 {
1263         struct qed_dev *cdev = p_hwfn->cdev;
1264         u32 cau_state;
1265         u8 timer_res;
1266
1267         memset(p_sb_entry, 0, sizeof(*p_sb_entry));
1268
1269         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1270         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1271         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1272         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1273         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1274
1275         cau_state = CAU_HC_DISABLE_STATE;
1276
1277         if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1278                 cau_state = CAU_HC_ENABLE_STATE;
1279                 if (!cdev->rx_coalesce_usecs)
1280                         cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS;
1281                 if (!cdev->tx_coalesce_usecs)
1282                         cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS;
1283         }
1284
1285         /* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1286         if (cdev->rx_coalesce_usecs <= 0x7F)
1287                 timer_res = 0;
1288         else if (cdev->rx_coalesce_usecs <= 0xFF)
1289                 timer_res = 1;
1290         else
1291                 timer_res = 2;
1292         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1293
1294         if (cdev->tx_coalesce_usecs <= 0x7F)
1295                 timer_res = 0;
1296         else if (cdev->tx_coalesce_usecs <= 0xFF)
1297                 timer_res = 1;
1298         else
1299                 timer_res = 2;
1300         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1301
1302         SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1303         SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1304 }
1305
1306 static void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
1307                                 struct qed_ptt *p_ptt,
1308                                 u16 igu_sb_id,
1309                                 u32 pi_index,
1310                                 enum qed_coalescing_fsm coalescing_fsm,
1311                                 u8 timeset)
1312 {
1313         struct cau_pi_entry pi_entry;
1314         u32 sb_offset, pi_offset;
1315
1316         if (IS_VF(p_hwfn->cdev))
1317                 return;
1318
1319         sb_offset = igu_sb_id * PIS_PER_SB_E4;
1320         memset(&pi_entry, 0, sizeof(struct cau_pi_entry));
1321
1322         SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1323         if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
1324                 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1325         else
1326                 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1327
1328         pi_offset = sb_offset + pi_index;
1329         if (p_hwfn->hw_init_done) {
1330                 qed_wr(p_hwfn, p_ptt,
1331                        CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1332                        *((u32 *)&(pi_entry)));
1333         } else {
1334                 STORE_RT_REG(p_hwfn,
1335                              CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1336                              *((u32 *)&(pi_entry)));
1337         }
1338 }
1339
1340 void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
1341                          struct qed_ptt *p_ptt,
1342                          dma_addr_t sb_phys,
1343                          u16 igu_sb_id, u16 vf_number, u8 vf_valid)
1344 {
1345         struct cau_sb_entry sb_entry;
1346
1347         qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1348                               vf_number, vf_valid);
1349
1350         if (p_hwfn->hw_init_done) {
1351                 /* Wide-bus, initialize via DMAE */
1352                 u64 phys_addr = (u64)sb_phys;
1353
1354                 qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr,
1355                                   CAU_REG_SB_ADDR_MEMORY +
1356                                   igu_sb_id * sizeof(u64), 2, 0);
1357                 qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry,
1358                                   CAU_REG_SB_VAR_MEMORY +
1359                                   igu_sb_id * sizeof(u64), 2, 0);
1360         } else {
1361                 /* Initialize Status Block Address */
1362                 STORE_RT_REG_AGG(p_hwfn,
1363                                  CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1364                                  igu_sb_id * 2,
1365                                  sb_phys);
1366
1367                 STORE_RT_REG_AGG(p_hwfn,
1368                                  CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1369                                  igu_sb_id * 2,
1370                                  sb_entry);
1371         }
1372
1373         /* Configure pi coalescing if set */
1374         if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1375                 u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1376                 u8 timeset, timer_res;
1377                 u8 i;
1378
1379                 /* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1380                 if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F)
1381                         timer_res = 0;
1382                 else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF)
1383                         timer_res = 1;
1384                 else
1385                         timer_res = 2;
1386                 timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res);
1387                 qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1388                                     QED_COAL_RX_STATE_MACHINE, timeset);
1389
1390                 if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F)
1391                         timer_res = 0;
1392                 else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF)
1393                         timer_res = 1;
1394                 else
1395                         timer_res = 2;
1396                 timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res);
1397                 for (i = 0; i < num_tc; i++) {
1398                         qed_int_cau_conf_pi(p_hwfn, p_ptt,
1399                                             igu_sb_id, TX_PI(i),
1400                                             QED_COAL_TX_STATE_MACHINE,
1401                                             timeset);
1402                 }
1403         }
1404 }
1405
1406 void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
1407                       struct qed_ptt *p_ptt, struct qed_sb_info *sb_info)
1408 {
1409         /* zero status block and ack counter */
1410         sb_info->sb_ack = 0;
1411         memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1412
1413         if (IS_PF(p_hwfn->cdev))
1414                 qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1415                                     sb_info->igu_sb_id, 0, 0);
1416 }
1417
1418 struct qed_igu_block *qed_get_igu_free_sb(struct qed_hwfn *p_hwfn, bool b_is_pf)
1419 {
1420         struct qed_igu_block *p_block;
1421         u16 igu_id;
1422
1423         for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1424              igu_id++) {
1425                 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1426
1427                 if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1428                     !(p_block->status & QED_IGU_STATUS_FREE))
1429                         continue;
1430
1431                 if (!!(p_block->status & QED_IGU_STATUS_PF) == b_is_pf)
1432                         return p_block;
1433         }
1434
1435         return NULL;
1436 }
1437
1438 static u16 qed_get_pf_igu_sb_id(struct qed_hwfn *p_hwfn, u16 vector_id)
1439 {
1440         struct qed_igu_block *p_block;
1441         u16 igu_id;
1442
1443         for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1444              igu_id++) {
1445                 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1446
1447                 if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1448                     !p_block->is_pf ||
1449                     p_block->vector_number != vector_id)
1450                         continue;
1451
1452                 return igu_id;
1453         }
1454
1455         return QED_SB_INVALID_IDX;
1456 }
1457
1458 u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id)
1459 {
1460         u16 igu_sb_id;
1461
1462         /* Assuming continuous set of IGU SBs dedicated for given PF */
1463         if (sb_id == QED_SP_SB_ID)
1464                 igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1465         else if (IS_PF(p_hwfn->cdev))
1466                 igu_sb_id = qed_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1467         else
1468                 igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id);
1469
1470         if (sb_id == QED_SP_SB_ID)
1471                 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1472                            "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1473         else
1474                 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1475                            "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1476
1477         return igu_sb_id;
1478 }
1479
1480 int qed_int_sb_init(struct qed_hwfn *p_hwfn,
1481                     struct qed_ptt *p_ptt,
1482                     struct qed_sb_info *sb_info,
1483                     void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id)
1484 {
1485         sb_info->sb_virt = sb_virt_addr;
1486         sb_info->sb_phys = sb_phy_addr;
1487
1488         sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);
1489
1490         if (sb_id != QED_SP_SB_ID) {
1491                 if (IS_PF(p_hwfn->cdev)) {
1492                         struct qed_igu_info *p_info;
1493                         struct qed_igu_block *p_block;
1494
1495                         p_info = p_hwfn->hw_info.p_igu_info;
1496                         p_block = &p_info->entry[sb_info->igu_sb_id];
1497
1498                         p_block->sb_info = sb_info;
1499                         p_block->status &= ~QED_IGU_STATUS_FREE;
1500                         p_info->usage.free_cnt--;
1501                 } else {
1502                         qed_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1503                 }
1504         }
1505
1506         sb_info->cdev = p_hwfn->cdev;
1507
1508         /* The igu address will hold the absolute address that needs to be
1509          * written to for a specific status block
1510          */
1511         if (IS_PF(p_hwfn->cdev)) {
1512                 sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1513                                                   GTT_BAR0_MAP_REG_IGU_CMD +
1514                                                   (sb_info->igu_sb_id << 3);
1515         } else {
1516                 sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1517                                                   PXP_VF_BAR0_START_IGU +
1518                                                   ((IGU_CMD_INT_ACK_BASE +
1519                                                     sb_info->igu_sb_id) << 3);
1520         }
1521
1522         sb_info->flags |= QED_SB_INFO_INIT;
1523
1524         qed_int_sb_setup(p_hwfn, p_ptt, sb_info);
1525
1526         return 0;
1527 }
1528
1529 int qed_int_sb_release(struct qed_hwfn *p_hwfn,
1530                        struct qed_sb_info *sb_info, u16 sb_id)
1531 {
1532         struct qed_igu_block *p_block;
1533         struct qed_igu_info *p_info;
1534
1535         if (!sb_info)
1536                 return 0;
1537
1538         /* zero status block and ack counter */
1539         sb_info->sb_ack = 0;
1540         memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1541
1542         if (IS_VF(p_hwfn->cdev)) {
1543                 qed_vf_set_sb_info(p_hwfn, sb_id, NULL);
1544                 return 0;
1545         }
1546
1547         p_info = p_hwfn->hw_info.p_igu_info;
1548         p_block = &p_info->entry[sb_info->igu_sb_id];
1549
1550         /* Vector 0 is reserved to Default SB */
1551         if (!p_block->vector_number) {
1552                 DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1553                 return -EINVAL;
1554         }
1555
1556         /* Lose reference to client's SB info, and fix counters */
1557         p_block->sb_info = NULL;
1558         p_block->status |= QED_IGU_STATUS_FREE;
1559         p_info->usage.free_cnt++;
1560
1561         return 0;
1562 }
1563
1564 static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
1565 {
1566         struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1567
1568         if (!p_sb)
1569                 return;
1570
1571         if (p_sb->sb_info.sb_virt)
1572                 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1573                                   SB_ALIGNED_SIZE(p_hwfn),
1574                                   p_sb->sb_info.sb_virt,
1575                                   p_sb->sb_info.sb_phys);
1576         kfree(p_sb);
1577         p_hwfn->p_sp_sb = NULL;
1578 }
1579
1580 static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1581 {
1582         struct qed_sb_sp_info *p_sb;
1583         dma_addr_t p_phys = 0;
1584         void *p_virt;
1585
1586         /* SB struct */
1587         p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1588         if (!p_sb)
1589                 return -ENOMEM;
1590
1591         /* SB ring  */
1592         p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1593                                     SB_ALIGNED_SIZE(p_hwfn),
1594                                     &p_phys, GFP_KERNEL);
1595         if (!p_virt) {
1596                 kfree(p_sb);
1597                 return -ENOMEM;
1598         }
1599
1600         /* Status Block setup */
1601         p_hwfn->p_sp_sb = p_sb;
1602         qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
1603                         p_phys, QED_SP_SB_ID);
1604
1605         memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1606
1607         return 0;
1608 }
1609
1610 int qed_int_register_cb(struct qed_hwfn *p_hwfn,
1611                         qed_int_comp_cb_t comp_cb,
1612                         void *cookie, u8 *sb_idx, __le16 **p_fw_cons)
1613 {
1614         struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1615         int rc = -ENOMEM;
1616         u8 pi;
1617
1618         /* Look for a free index */
1619         for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1620                 if (p_sp_sb->pi_info_arr[pi].comp_cb)
1621                         continue;
1622
1623                 p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1624                 p_sp_sb->pi_info_arr[pi].cookie = cookie;
1625                 *sb_idx = pi;
1626                 *p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1627                 rc = 0;
1628                 break;
1629         }
1630
1631         return rc;
1632 }
1633
1634 int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
1635 {
1636         struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1637
1638         if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL)
1639                 return -ENOMEM;
1640
1641         p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
1642         p_sp_sb->pi_info_arr[pi].cookie = NULL;
1643
1644         return 0;
1645 }
1646
1647 u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
1648 {
1649         return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1650 }
1651
1652 void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
1653                             struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1654 {
1655         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1656
1657         p_hwfn->cdev->int_mode = int_mode;
1658         switch (p_hwfn->cdev->int_mode) {
1659         case QED_INT_MODE_INTA:
1660                 igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1661                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1662                 break;
1663
1664         case QED_INT_MODE_MSI:
1665                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1666                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1667                 break;
1668
1669         case QED_INT_MODE_MSIX:
1670                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1671                 break;
1672         case QED_INT_MODE_POLL:
1673                 break;
1674         }
1675
1676         qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1677 }
1678
1679 static void qed_int_igu_enable_attn(struct qed_hwfn *p_hwfn,
1680                                     struct qed_ptt *p_ptt)
1681 {
1682
1683         /* Configure AEU signal change to produce attentions */
1684         qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1685         qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1686         qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1687         qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1688
1689         /* Flush the writes to IGU */
1690         mmiowb();
1691
1692         /* Unmask AEU signals toward IGU */
1693         qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1694 }
1695
1696 int
1697 qed_int_igu_enable(struct qed_hwfn *p_hwfn,
1698                    struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1699 {
1700         int rc = 0;
1701
1702         qed_int_igu_enable_attn(p_hwfn, p_ptt);
1703
1704         if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1705                 rc = qed_slowpath_irq_req(p_hwfn);
1706                 if (rc) {
1707                         DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n");
1708                         return -EINVAL;
1709                 }
1710                 p_hwfn->b_int_requested = true;
1711         }
1712         /* Enable interrupt Generation */
1713         qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1714         p_hwfn->b_int_enabled = 1;
1715
1716         return rc;
1717 }
1718
1719 void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1720 {
1721         p_hwfn->b_int_enabled = 0;
1722
1723         if (IS_VF(p_hwfn->cdev))
1724                 return;
1725
1726         qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1727 }
1728
1729 #define IGU_CLEANUP_SLEEP_LENGTH                (1000)
1730 static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
1731                                    struct qed_ptt *p_ptt,
1732                                    u16 igu_sb_id,
1733                                    bool cleanup_set, u16 opaque_fid)
1734 {
1735         u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1736         u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1737         u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1738
1739         /* Set the data field */
1740         SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1741         SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
1742         SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1743
1744         /* Set the control register */
1745         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1746         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1747         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1748
1749         qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1750
1751         barrier();
1752
1753         qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1754
1755         /* Flush the write to IGU */
1756         mmiowb();
1757
1758         /* calculate where to read the status bit from */
1759         sb_bit = 1 << (igu_sb_id % 32);
1760         sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
1761
1762         sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;
1763
1764         /* Now wait for the command to complete */
1765         do {
1766                 val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);
1767
1768                 if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
1769                         break;
1770
1771                 usleep_range(5000, 10000);
1772         } while (--sleep_cnt);
1773
1774         if (!sleep_cnt)
1775                 DP_NOTICE(p_hwfn,
1776                           "Timeout waiting for clear status 0x%08x [for sb %d]\n",
1777                           val, igu_sb_id);
1778 }
1779
1780 void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
1781                                      struct qed_ptt *p_ptt,
1782                                      u16 igu_sb_id, u16 opaque, bool b_set)
1783 {
1784         struct qed_igu_block *p_block;
1785         int pi, i;
1786
1787         p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
1788         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1789                    "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
1790                    igu_sb_id,
1791                    p_block->function_id,
1792                    p_block->is_pf, p_block->vector_number);
1793
1794         /* Set */
1795         if (b_set)
1796                 qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
1797
1798         /* Clear */
1799         qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
1800
1801         /* Wait for the IGU SB to cleanup */
1802         for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
1803                 u32 val;
1804
1805                 val = qed_rd(p_hwfn, p_ptt,
1806                              IGU_REG_WRITE_DONE_PENDING +
1807                              ((igu_sb_id / 32) * 4));
1808                 if (val & BIT((igu_sb_id % 32)))
1809                         usleep_range(10, 20);
1810                 else
1811                         break;
1812         }
1813         if (i == IGU_CLEANUP_SLEEP_LENGTH)
1814                 DP_NOTICE(p_hwfn,
1815                           "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
1816                           igu_sb_id);
1817
1818         /* Clear the CAU for the SB */
1819         for (pi = 0; pi < 12; pi++)
1820                 qed_wr(p_hwfn, p_ptt,
1821                        CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
1822 }
1823
1824 void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
1825                               struct qed_ptt *p_ptt,
1826                               bool b_set, bool b_slowpath)
1827 {
1828         struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
1829         struct qed_igu_block *p_block;
1830         u16 igu_sb_id = 0;
1831         u32 val = 0;
1832
1833         val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
1834         val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
1835         val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
1836         qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
1837
1838         for (igu_sb_id = 0;
1839              igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
1840                 p_block = &p_info->entry[igu_sb_id];
1841
1842                 if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1843                     !p_block->is_pf ||
1844                     (p_block->status & QED_IGU_STATUS_DSB))
1845                         continue;
1846
1847                 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
1848                                                 p_hwfn->hw_info.opaque_fid,
1849                                                 b_set);
1850         }
1851
1852         if (b_slowpath)
1853                 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
1854                                                 p_info->igu_dsb_id,
1855                                                 p_hwfn->hw_info.opaque_fid,
1856                                                 b_set);
1857 }
1858
1859 int qed_int_igu_reset_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1860 {
1861         struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
1862         struct qed_igu_block *p_block;
1863         int pf_sbs, vf_sbs;
1864         u16 igu_sb_id;
1865         u32 val, rval;
1866
1867         if (!RESC_NUM(p_hwfn, QED_SB)) {
1868                 p_info->b_allow_pf_vf_change = false;
1869         } else {
1870                 /* Use the numbers the MFW have provided -
1871                  * don't forget MFW accounts for the default SB as well.
1872                  */
1873                 p_info->b_allow_pf_vf_change = true;
1874
1875                 if (p_info->usage.cnt != RESC_NUM(p_hwfn, QED_SB) - 1) {
1876                         DP_INFO(p_hwfn,
1877                                 "MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
1878                                 RESC_NUM(p_hwfn, QED_SB) - 1,
1879                                 p_info->usage.cnt);
1880                         p_info->usage.cnt = RESC_NUM(p_hwfn, QED_SB) - 1;
1881                 }
1882
1883                 if (IS_PF_SRIOV(p_hwfn)) {
1884                         u16 vfs = p_hwfn->cdev->p_iov_info->total_vfs;
1885
1886                         if (vfs != p_info->usage.iov_cnt)
1887                                 DP_VERBOSE(p_hwfn,
1888                                            NETIF_MSG_INTR,
1889                                            "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
1890                                            p_info->usage.iov_cnt, vfs);
1891
1892                         /* At this point we know how many SBs we have totally
1893                          * in IGU + number of PF SBs. So we can validate that
1894                          * we'd have sufficient for VF.
1895                          */
1896                         if (vfs > p_info->usage.free_cnt +
1897                             p_info->usage.free_cnt_iov - p_info->usage.cnt) {
1898                                 DP_NOTICE(p_hwfn,
1899                                           "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
1900                                           p_info->usage.free_cnt +
1901                                           p_info->usage.free_cnt_iov,
1902                                           p_info->usage.cnt, vfs);
1903                                 return -EINVAL;
1904                         }
1905
1906                         /* Currently cap the number of VFs SBs by the
1907                          * number of VFs.
1908                          */
1909                         p_info->usage.iov_cnt = vfs;
1910                 }
1911         }
1912
1913         /* Mark all SBs as free, now in the right PF/VFs division */
1914         p_info->usage.free_cnt = p_info->usage.cnt;
1915         p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
1916         p_info->usage.orig = p_info->usage.cnt;
1917         p_info->usage.iov_orig = p_info->usage.iov_cnt;
1918
1919         /* We now proceed to re-configure the IGU cam to reflect the initial
1920          * configuration. We can start with the Default SB.
1921          */
1922         pf_sbs = p_info->usage.cnt;
1923         vf_sbs = p_info->usage.iov_cnt;
1924
1925         for (igu_sb_id = p_info->igu_dsb_id;
1926              igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
1927                 p_block = &p_info->entry[igu_sb_id];
1928                 val = 0;
1929
1930                 if (!(p_block->status & QED_IGU_STATUS_VALID))
1931                         continue;
1932
1933                 if (p_block->status & QED_IGU_STATUS_DSB) {
1934                         p_block->function_id = p_hwfn->rel_pf_id;
1935                         p_block->is_pf = 1;
1936                         p_block->vector_number = 0;
1937                         p_block->status = QED_IGU_STATUS_VALID |
1938                                           QED_IGU_STATUS_PF |
1939                                           QED_IGU_STATUS_DSB;
1940                 } else if (pf_sbs) {
1941                         pf_sbs--;
1942                         p_block->function_id = p_hwfn->rel_pf_id;
1943                         p_block->is_pf = 1;
1944                         p_block->vector_number = p_info->usage.cnt - pf_sbs;
1945                         p_block->status = QED_IGU_STATUS_VALID |
1946                                           QED_IGU_STATUS_PF |
1947                                           QED_IGU_STATUS_FREE;
1948                 } else if (vf_sbs) {
1949                         p_block->function_id =
1950                             p_hwfn->cdev->p_iov_info->first_vf_in_pf +
1951                             p_info->usage.iov_cnt - vf_sbs;
1952                         p_block->is_pf = 0;
1953                         p_block->vector_number = 0;
1954                         p_block->status = QED_IGU_STATUS_VALID |
1955                                           QED_IGU_STATUS_FREE;
1956                         vf_sbs--;
1957                 } else {
1958                         p_block->function_id = 0;
1959                         p_block->is_pf = 0;
1960                         p_block->vector_number = 0;
1961                 }
1962
1963                 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
1964                           p_block->function_id);
1965                 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
1966                 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
1967                           p_block->vector_number);
1968
1969                 /* VF entries would be enabled when VF is initializaed */
1970                 SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
1971
1972                 rval = qed_rd(p_hwfn, p_ptt,
1973                               IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
1974
1975                 if (rval != val) {
1976                         qed_wr(p_hwfn, p_ptt,
1977                                IGU_REG_MAPPING_MEMORY +
1978                                sizeof(u32) * igu_sb_id, val);
1979
1980                         DP_VERBOSE(p_hwfn,
1981                                    NETIF_MSG_INTR,
1982                                    "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
1983                                    igu_sb_id,
1984                                    p_block->function_id,
1985                                    p_block->is_pf,
1986                                    p_block->vector_number, rval, val);
1987                 }
1988         }
1989
1990         return 0;
1991 }
1992
1993 static void qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn,
1994                                        struct qed_ptt *p_ptt, u16 igu_sb_id)
1995 {
1996         u32 val = qed_rd(p_hwfn, p_ptt,
1997                          IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
1998         struct qed_igu_block *p_block;
1999
2000         p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2001
2002         /* Fill the block information */
2003         p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
2004         p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2005         p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
2006         p_block->igu_sb_id = igu_sb_id;
2007 }
2008
2009 int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2010 {
2011         struct qed_igu_info *p_igu_info;
2012         struct qed_igu_block *p_block;
2013         u32 min_vf = 0, max_vf = 0;
2014         u16 igu_sb_id;
2015
2016         p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL);
2017         if (!p_hwfn->hw_info.p_igu_info)
2018                 return -ENOMEM;
2019
2020         p_igu_info = p_hwfn->hw_info.p_igu_info;
2021
2022         /* Distinguish between existent and non-existent default SB */
2023         p_igu_info->igu_dsb_id = QED_SB_INVALID_IDX;
2024
2025         /* Find the range of VF ids whose SB belong to this PF */
2026         if (p_hwfn->cdev->p_iov_info) {
2027                 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
2028
2029                 min_vf  = p_iov->first_vf_in_pf;
2030                 max_vf  = p_iov->first_vf_in_pf + p_iov->total_vfs;
2031         }
2032
2033         for (igu_sb_id = 0;
2034              igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2035                 /* Read current entry; Notice it might not belong to this PF */
2036                 qed_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2037                 p_block = &p_igu_info->entry[igu_sb_id];
2038
2039                 if ((p_block->is_pf) &&
2040                     (p_block->function_id == p_hwfn->rel_pf_id)) {
2041                         p_block->status = QED_IGU_STATUS_PF |
2042                                           QED_IGU_STATUS_VALID |
2043                                           QED_IGU_STATUS_FREE;
2044
2045                         if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2046                                 p_igu_info->usage.cnt++;
2047                 } else if (!(p_block->is_pf) &&
2048                            (p_block->function_id >= min_vf) &&
2049                            (p_block->function_id < max_vf)) {
2050                         /* Available for VFs of this PF */
2051                         p_block->status = QED_IGU_STATUS_VALID |
2052                                           QED_IGU_STATUS_FREE;
2053
2054                         if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2055                                 p_igu_info->usage.iov_cnt++;
2056                 }
2057
2058                 /* Mark the First entry belonging to the PF or its VFs
2059                  * as the default SB [we'll reset IGU prior to first usage].
2060                  */
2061                 if ((p_block->status & QED_IGU_STATUS_VALID) &&
2062                     (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX)) {
2063                         p_igu_info->igu_dsb_id = igu_sb_id;
2064                         p_block->status |= QED_IGU_STATUS_DSB;
2065                 }
2066
2067                 /* limit number of prints by having each PF print only its
2068                  * entries with the exception of PF0 which would print
2069                  * everything.
2070                  */
2071                 if ((p_block->status & QED_IGU_STATUS_VALID) ||
2072                     (p_hwfn->abs_pf_id == 0)) {
2073                         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2074                                    "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2075                                    igu_sb_id, p_block->function_id,
2076                                    p_block->is_pf, p_block->vector_number);
2077                 }
2078         }
2079
2080         if (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX) {
2081                 DP_NOTICE(p_hwfn,
2082                           "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2083                           p_igu_info->igu_dsb_id);
2084                 return -EINVAL;
2085         }
2086
2087         /* All non default SB are considered free at this point */
2088         p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2089         p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2090
2091         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2092                    "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2093                    p_igu_info->igu_dsb_id,
2094                    p_igu_info->usage.cnt, p_igu_info->usage.iov_cnt);
2095
2096         return 0;
2097 }
2098
2099 /**
2100  * @brief Initialize igu runtime registers
2101  *
2102  * @param p_hwfn
2103  */
2104 void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
2105 {
2106         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2107
2108         STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2109 }
2110
2111 u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
2112 {
2113         u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
2114                                IGU_CMD_INT_ACK_BASE;
2115         u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
2116                                IGU_CMD_INT_ACK_BASE;
2117         u32 intr_status_hi = 0, intr_status_lo = 0;
2118         u64 intr_status = 0;
2119
2120         intr_status_lo = REG_RD(p_hwfn,
2121                                 GTT_BAR0_MAP_REG_IGU_CMD +
2122                                 lsb_igu_cmd_addr * 8);
2123         intr_status_hi = REG_RD(p_hwfn,
2124                                 GTT_BAR0_MAP_REG_IGU_CMD +
2125                                 msb_igu_cmd_addr * 8);
2126         intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2127
2128         return intr_status;
2129 }
2130
2131 static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
2132 {
2133         tasklet_init(p_hwfn->sp_dpc,
2134                      qed_int_sp_dpc, (unsigned long)p_hwfn);
2135         p_hwfn->b_sp_dpc_enabled = true;
2136 }
2137
2138 static int qed_int_sp_dpc_alloc(struct qed_hwfn *p_hwfn)
2139 {
2140         p_hwfn->sp_dpc = kmalloc(sizeof(*p_hwfn->sp_dpc), GFP_KERNEL);
2141         if (!p_hwfn->sp_dpc)
2142                 return -ENOMEM;
2143
2144         return 0;
2145 }
2146
2147 static void qed_int_sp_dpc_free(struct qed_hwfn *p_hwfn)
2148 {
2149         kfree(p_hwfn->sp_dpc);
2150         p_hwfn->sp_dpc = NULL;
2151 }
2152
2153 int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2154 {
2155         int rc = 0;
2156
2157         rc = qed_int_sp_dpc_alloc(p_hwfn);
2158         if (rc)
2159                 return rc;
2160
2161         rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
2162         if (rc)
2163                 return rc;
2164
2165         rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);
2166
2167         return rc;
2168 }
2169
2170 void qed_int_free(struct qed_hwfn *p_hwfn)
2171 {
2172         qed_int_sp_sb_free(p_hwfn);
2173         qed_int_sb_attn_free(p_hwfn);
2174         qed_int_sp_dpc_free(p_hwfn);
2175 }
2176
2177 void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2178 {
2179         qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2180         qed_int_sb_attn_setup(p_hwfn, p_ptt);
2181         qed_int_sp_dpc_setup(p_hwfn);
2182 }
2183
2184 void qed_int_get_num_sbs(struct qed_hwfn        *p_hwfn,
2185                          struct qed_sb_cnt_info *p_sb_cnt_info)
2186 {
2187         struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;
2188
2189         if (!info || !p_sb_cnt_info)
2190                 return;
2191
2192         memcpy(p_sb_cnt_info, &info->usage, sizeof(*p_sb_cnt_info));
2193 }
2194
2195 void qed_int_disable_post_isr_release(struct qed_dev *cdev)
2196 {
2197         int i;
2198
2199         for_each_hwfn(cdev, i)
2200                 cdev->hwfns[i].b_int_requested = false;
2201 }
2202
2203 int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2204                           u8 timer_res, u16 sb_id, bool tx)
2205 {
2206         struct cau_sb_entry sb_entry;
2207         int rc;
2208
2209         if (!p_hwfn->hw_init_done) {
2210                 DP_ERR(p_hwfn, "hardware not initialized yet\n");
2211                 return -EINVAL;
2212         }
2213
2214         rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2215                                sb_id * sizeof(u64),
2216                                (u64)(uintptr_t)&sb_entry, 2, 0);
2217         if (rc) {
2218                 DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2219                 return rc;
2220         }
2221
2222         if (tx)
2223                 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2224         else
2225                 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2226
2227         rc = qed_dmae_host2grc(p_hwfn, p_ptt,
2228                                (u64)(uintptr_t)&sb_entry,
2229                                CAU_REG_SB_VAR_MEMORY +
2230                                sb_id * sizeof(u64), 2, 0);
2231         if (rc) {
2232                 DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2233                 return rc;
2234         }
2235
2236         return rc;
2237 }