GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / net / ethernet / qlogic / qed / qed_int.c
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qed NIC Driver
3  * Copyright (c) 2015-2017  QLogic Corporation
4  * Copyright (c) 2019-2020 Marvell International Ltd.
5  */
6
7 #include <linux/types.h>
8 #include <asm/byteorder.h>
9 #include <linux/io.h>
10 #include <linux/bitops.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/errno.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/slab.h>
18 #include <linux/string.h>
19 #include "qed.h"
20 #include "qed_hsi.h"
21 #include "qed_hw.h"
22 #include "qed_init_ops.h"
23 #include "qed_int.h"
24 #include "qed_mcp.h"
25 #include "qed_reg_addr.h"
26 #include "qed_sp.h"
27 #include "qed_sriov.h"
28 #include "qed_vf.h"
29
30 struct qed_pi_info {
31         qed_int_comp_cb_t       comp_cb;
32         void                    *cookie;
33 };
34
35 struct qed_sb_sp_info {
36         struct qed_sb_info sb_info;
37
38         /* per protocol index data */
39         struct qed_pi_info pi_info_arr[PIS_PER_SB_E4];
40 };
41
42 enum qed_attention_type {
43         QED_ATTN_TYPE_ATTN,
44         QED_ATTN_TYPE_PARITY,
45 };
46
47 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
48         ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
49
50 struct aeu_invert_reg_bit {
51         char bit_name[30];
52
53 #define ATTENTION_PARITY                (1 << 0)
54
55 #define ATTENTION_LENGTH_MASK           (0x00000ff0)
56 #define ATTENTION_LENGTH_SHIFT          (4)
57 #define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \
58                                          ATTENTION_LENGTH_SHIFT)
59 #define ATTENTION_SINGLE                BIT(ATTENTION_LENGTH_SHIFT)
60 #define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY)
61 #define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \
62                                          ATTENTION_PARITY)
63
64 /* Multiple bits start with this offset */
65 #define ATTENTION_OFFSET_MASK           (0x000ff000)
66 #define ATTENTION_OFFSET_SHIFT          (12)
67
68 #define ATTENTION_BB_MASK               (0x00700000)
69 #define ATTENTION_BB_SHIFT              (20)
70 #define ATTENTION_BB(value)             (value << ATTENTION_BB_SHIFT)
71 #define ATTENTION_BB_DIFFERENT          BIT(23)
72
73 #define ATTENTION_CLEAR_ENABLE          BIT(28)
74         unsigned int flags;
75
76         /* Callback to call if attention will be triggered */
77         int (*cb)(struct qed_hwfn *p_hwfn);
78
79         enum block_id block_index;
80 };
81
82 struct aeu_invert_reg {
83         struct aeu_invert_reg_bit bits[32];
84 };
85
86 #define MAX_ATTN_GRPS           (8)
87 #define NUM_ATTN_REGS           (9)
88
89 /* Specific HW attention callbacks */
90 static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn)
91 {
92         u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
93
94         /* This might occur on certain instances; Log it once then mask it */
95         DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
96                 tmp);
97         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
98                0xffffffff);
99
100         return 0;
101 }
102
103 #define QED_PSWHST_ATTENTION_INCORRECT_ACCESS           (0x1)
104 #define ATTENTION_INCORRECT_ACCESS_WR_MASK              (0x1)
105 #define ATTENTION_INCORRECT_ACCESS_WR_SHIFT             (0)
106 #define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK          (0xf)
107 #define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT         (1)
108 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK        (0x1)
109 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT       (5)
110 #define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK           (0xff)
111 #define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT          (6)
112 #define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK           (0xf)
113 #define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT          (14)
114 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK         (0xff)
115 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT        (18)
116 static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn)
117 {
118         u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
119                          PSWHST_REG_INCORRECT_ACCESS_VALID);
120
121         if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) {
122                 u32 addr, data, length;
123
124                 addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
125                               PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
126                 data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
127                               PSWHST_REG_INCORRECT_ACCESS_DATA);
128                 length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
129                                 PSWHST_REG_INCORRECT_ACCESS_LENGTH);
130
131                 DP_INFO(p_hwfn->cdev,
132                         "Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
133                         addr, length,
134                         (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID),
135                         (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID),
136                         (u8) GET_FIELD(data,
137                                        ATTENTION_INCORRECT_ACCESS_VF_VALID),
138                         (u8) GET_FIELD(data,
139                                        ATTENTION_INCORRECT_ACCESS_CLIENT),
140                         (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR),
141                         (u8) GET_FIELD(data,
142                                        ATTENTION_INCORRECT_ACCESS_BYTE_EN),
143                         data);
144         }
145
146         return 0;
147 }
148
149 #define QED_GRC_ATTENTION_VALID_BIT     (1 << 0)
150 #define QED_GRC_ATTENTION_ADDRESS_MASK  (0x7fffff)
151 #define QED_GRC_ATTENTION_ADDRESS_SHIFT (0)
152 #define QED_GRC_ATTENTION_RDWR_BIT      (1 << 23)
153 #define QED_GRC_ATTENTION_MASTER_MASK   (0xf)
154 #define QED_GRC_ATTENTION_MASTER_SHIFT  (24)
155 #define QED_GRC_ATTENTION_PF_MASK       (0xf)
156 #define QED_GRC_ATTENTION_PF_SHIFT      (0)
157 #define QED_GRC_ATTENTION_VF_MASK       (0xff)
158 #define QED_GRC_ATTENTION_VF_SHIFT      (4)
159 #define QED_GRC_ATTENTION_PRIV_MASK     (0x3)
160 #define QED_GRC_ATTENTION_PRIV_SHIFT    (14)
161 #define QED_GRC_ATTENTION_PRIV_VF       (0)
162 static const char *attn_master_to_str(u8 master)
163 {
164         switch (master) {
165         case 1: return "PXP";
166         case 2: return "MCP";
167         case 3: return "MSDM";
168         case 4: return "PSDM";
169         case 5: return "YSDM";
170         case 6: return "USDM";
171         case 7: return "TSDM";
172         case 8: return "XSDM";
173         case 9: return "DBU";
174         case 10: return "DMAE";
175         default:
176                 return "Unknown";
177         }
178 }
179
180 static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn)
181 {
182         u32 tmp, tmp2;
183
184         /* We've already cleared the timeout interrupt register, so we learn
185          * of interrupts via the validity register
186          */
187         tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
188                      GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
189         if (!(tmp & QED_GRC_ATTENTION_VALID_BIT))
190                 goto out;
191
192         /* Read the GRC timeout information */
193         tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
194                      GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
195         tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
196                       GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
197
198         DP_INFO(p_hwfn->cdev,
199                 "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
200                 tmp2, tmp,
201                 (tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from",
202                 GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2,
203                 attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)),
204                 GET_FIELD(tmp2, QED_GRC_ATTENTION_PF),
205                 (GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) ==
206                  QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant)",
207                 GET_FIELD(tmp2, QED_GRC_ATTENTION_VF));
208
209 out:
210         /* Regardles of anything else, clean the validity bit */
211         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
212                GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
213         return 0;
214 }
215
216 #define PGLUE_ATTENTION_VALID                   (1 << 29)
217 #define PGLUE_ATTENTION_RD_VALID                (1 << 26)
218 #define PGLUE_ATTENTION_DETAILS_PFID_MASK       (0xf)
219 #define PGLUE_ATTENTION_DETAILS_PFID_SHIFT      (20)
220 #define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK   (0x1)
221 #define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT  (19)
222 #define PGLUE_ATTENTION_DETAILS_VFID_MASK       (0xff)
223 #define PGLUE_ATTENTION_DETAILS_VFID_SHIFT      (24)
224 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK   (0x1)
225 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT  (21)
226 #define PGLUE_ATTENTION_DETAILS2_BME_MASK       (0x1)
227 #define PGLUE_ATTENTION_DETAILS2_BME_SHIFT      (22)
228 #define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK    (0x1)
229 #define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT   (23)
230 #define PGLUE_ATTENTION_ICPL_VALID              (1 << 23)
231 #define PGLUE_ATTENTION_ZLR_VALID               (1 << 25)
232 #define PGLUE_ATTENTION_ILT_VALID               (1 << 23)
233
234 int qed_pglueb_rbc_attn_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
235                                 bool hw_init)
236 {
237         char msg[256];
238         u32 tmp;
239
240         tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
241         if (tmp & PGLUE_ATTENTION_VALID) {
242                 u32 addr_lo, addr_hi, details;
243
244                 addr_lo = qed_rd(p_hwfn, p_ptt,
245                                  PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
246                 addr_hi = qed_rd(p_hwfn, p_ptt,
247                                  PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
248                 details = qed_rd(p_hwfn, p_ptt,
249                                  PGLUE_B_REG_TX_ERR_WR_DETAILS);
250
251                 snprintf(msg, sizeof(msg),
252                          "Illegal write by chip to [%08x:%08x] blocked.\n"
253                          "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
254                          "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]",
255                          addr_hi, addr_lo, details,
256                          (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
257                          (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
258                          !!GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VF_VALID),
259                          tmp,
260                          !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_WAS_ERR),
261                          !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_BME),
262                          !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_FID_EN));
263
264                 if (hw_init)
265                         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg);
266                 else
267                         DP_NOTICE(p_hwfn, "%s\n", msg);
268         }
269
270         tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
271         if (tmp & PGLUE_ATTENTION_RD_VALID) {
272                 u32 addr_lo, addr_hi, details;
273
274                 addr_lo = qed_rd(p_hwfn, p_ptt,
275                                  PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
276                 addr_hi = qed_rd(p_hwfn, p_ptt,
277                                  PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
278                 details = qed_rd(p_hwfn, p_ptt,
279                                  PGLUE_B_REG_TX_ERR_RD_DETAILS);
280
281                 DP_NOTICE(p_hwfn,
282                           "Illegal read by chip from [%08x:%08x] blocked.\n"
283                           "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
284                           "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
285                           addr_hi, addr_lo, details,
286                           (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
287                           (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
288                           GET_FIELD(details,
289                                     PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
290                           tmp,
291                           GET_FIELD(tmp,
292                                     PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
293                           GET_FIELD(tmp,
294                                     PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
295                           GET_FIELD(tmp,
296                                     PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
297         }
298
299         tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
300         if (tmp & PGLUE_ATTENTION_ICPL_VALID) {
301                 snprintf(msg, sizeof(msg), "ICPL error - %08x", tmp);
302
303                 if (hw_init)
304                         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg);
305                 else
306                         DP_NOTICE(p_hwfn, "%s\n", msg);
307         }
308
309         tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
310         if (tmp & PGLUE_ATTENTION_ZLR_VALID) {
311                 u32 addr_hi, addr_lo;
312
313                 addr_lo = qed_rd(p_hwfn, p_ptt,
314                                  PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
315                 addr_hi = qed_rd(p_hwfn, p_ptt,
316                                  PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
317
318                 DP_NOTICE(p_hwfn, "ZLR error - %08x [Address %08x:%08x]\n",
319                           tmp, addr_hi, addr_lo);
320         }
321
322         tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
323         if (tmp & PGLUE_ATTENTION_ILT_VALID) {
324                 u32 addr_hi, addr_lo, details;
325
326                 addr_lo = qed_rd(p_hwfn, p_ptt,
327                                  PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
328                 addr_hi = qed_rd(p_hwfn, p_ptt,
329                                  PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
330                 details = qed_rd(p_hwfn, p_ptt,
331                                  PGLUE_B_REG_VF_ILT_ERR_DETAILS);
332
333                 DP_NOTICE(p_hwfn,
334                           "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
335                           details, tmp, addr_hi, addr_lo);
336         }
337
338         /* Clear the indications */
339         qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, BIT(2));
340
341         return 0;
342 }
343
344 static int qed_pglueb_rbc_attn_cb(struct qed_hwfn *p_hwfn)
345 {
346         return qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt, false);
347 }
348
349 static int qed_fw_assertion(struct qed_hwfn *p_hwfn)
350 {
351         qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_FW_ASSERT,
352                           "FW assertion!\n");
353
354         return -EINVAL;
355 }
356
357 static int qed_general_attention_35(struct qed_hwfn *p_hwfn)
358 {
359         DP_INFO(p_hwfn, "General attention 35!\n");
360
361         return 0;
362 }
363
364 #define QED_DORQ_ATTENTION_REASON_MASK  (0xfffff)
365 #define QED_DORQ_ATTENTION_OPAQUE_MASK  (0xffff)
366 #define QED_DORQ_ATTENTION_OPAQUE_SHIFT (0x0)
367 #define QED_DORQ_ATTENTION_SIZE_MASK            (0x7f)
368 #define QED_DORQ_ATTENTION_SIZE_SHIFT           (16)
369
370 #define QED_DB_REC_COUNT                        1000
371 #define QED_DB_REC_INTERVAL                     100
372
373 static int qed_db_rec_flush_queue(struct qed_hwfn *p_hwfn,
374                                   struct qed_ptt *p_ptt)
375 {
376         u32 count = QED_DB_REC_COUNT;
377         u32 usage = 1;
378
379         /* Flush any pending (e)dpms as they may never arrive */
380         qed_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
381
382         /* wait for usage to zero or count to run out. This is necessary since
383          * EDPM doorbell transactions can take multiple 64b cycles, and as such
384          * can "split" over the pci. Possibly, the doorbell drop can happen with
385          * half an EDPM in the queue and other half dropped. Another EDPM
386          * doorbell to the same address (from doorbell recovery mechanism or
387          * from the doorbelling entity) could have first half dropped and second
388          * half interpreted as continuation of the first. To prevent such
389          * malformed doorbells from reaching the device, flush the queue before
390          * releasing the overflow sticky indication.
391          */
392         while (count-- && usage) {
393                 usage = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
394                 udelay(QED_DB_REC_INTERVAL);
395         }
396
397         /* should have been depleted by now */
398         if (usage) {
399                 DP_NOTICE(p_hwfn->cdev,
400                           "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
401                           QED_DB_REC_INTERVAL * QED_DB_REC_COUNT, usage);
402                 return -EBUSY;
403         }
404
405         return 0;
406 }
407
408 int qed_db_rec_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
409 {
410         u32 attn_ovfl, cur_ovfl;
411         int rc;
412
413         attn_ovfl = test_and_clear_bit(QED_OVERFLOW_BIT,
414                                        &p_hwfn->db_recovery_info.overflow);
415         cur_ovfl = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
416         if (!cur_ovfl && !attn_ovfl)
417                 return 0;
418
419         DP_NOTICE(p_hwfn, "PF Overflow sticky: attn %u current %u\n",
420                   attn_ovfl, cur_ovfl);
421
422         if (cur_ovfl && !p_hwfn->db_bar_no_edpm) {
423                 rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
424                 if (rc)
425                         return rc;
426         }
427
428         /* Release overflow sticky indication (stop silently dropping everything) */
429         qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
430
431         /* Repeat all last doorbells (doorbell drop recovery) */
432         qed_db_recovery_execute(p_hwfn);
433
434         return 0;
435 }
436
437 static void qed_dorq_attn_overflow(struct qed_hwfn *p_hwfn)
438 {
439         struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
440         u32 overflow;
441         int rc;
442
443         overflow = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
444         if (!overflow)
445                 goto out;
446
447         /* Run PF doorbell recovery in next periodic handler */
448         set_bit(QED_OVERFLOW_BIT, &p_hwfn->db_recovery_info.overflow);
449
450         if (!p_hwfn->db_bar_no_edpm) {
451                 rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
452                 if (rc)
453                         goto out;
454         }
455
456         qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
457 out:
458         /* Schedule the handler even if overflow was not detected */
459         qed_periodic_db_rec_start(p_hwfn);
460 }
461
462 static int qed_dorq_attn_int_sts(struct qed_hwfn *p_hwfn)
463 {
464         u32 int_sts, first_drop_reason, details, address, all_drops_reason;
465         struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
466
467         /* int_sts may be zero since all PFs were interrupted for doorbell
468          * overflow but another one already handled it. Can abort here. If
469          * This PF also requires overflow recovery we will be interrupted again.
470          * The masked almost full indication may also be set. Ignoring.
471          */
472         int_sts = qed_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
473         if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL))
474                 return 0;
475
476         DP_NOTICE(p_hwfn->cdev, "DORQ attention. int_sts was %x\n", int_sts);
477
478         /* check if db_drop or overflow happened */
479         if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
480                        DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
481                 /* Obtain data about db drop/overflow */
482                 first_drop_reason = qed_rd(p_hwfn, p_ptt,
483                                            DORQ_REG_DB_DROP_REASON) &
484                     QED_DORQ_ATTENTION_REASON_MASK;
485                 details = qed_rd(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS);
486                 address = qed_rd(p_hwfn, p_ptt,
487                                  DORQ_REG_DB_DROP_DETAILS_ADDRESS);
488                 all_drops_reason = qed_rd(p_hwfn, p_ptt,
489                                           DORQ_REG_DB_DROP_DETAILS_REASON);
490
491                 /* Log info */
492                 DP_NOTICE(p_hwfn->cdev,
493                           "Doorbell drop occurred\n"
494                           "Address\t\t0x%08x\t(second BAR address)\n"
495                           "FID\t\t0x%04x\t\t(Opaque FID)\n"
496                           "Size\t\t0x%04x\t\t(in bytes)\n"
497                           "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
498                           "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n",
499                           address,
500                           GET_FIELD(details, QED_DORQ_ATTENTION_OPAQUE),
501                           GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4,
502                           first_drop_reason, all_drops_reason);
503
504                 /* Clear the doorbell drop details and prepare for next drop */
505                 qed_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
506
507                 /* Mark interrupt as handled (note: even if drop was due to a different
508                  * reason than overflow we mark as handled)
509                  */
510                 qed_wr(p_hwfn,
511                        p_ptt,
512                        DORQ_REG_INT_STS_WR,
513                        DORQ_REG_INT_STS_DB_DROP |
514                        DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
515
516                 /* If there are no indications other than drop indications, success */
517                 if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
518                                  DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
519                                  DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
520                         return 0;
521         }
522
523         /* Some other indication was present - non recoverable */
524         DP_INFO(p_hwfn, "DORQ fatal attention\n");
525
526         return -EINVAL;
527 }
528
529 static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn)
530 {
531         p_hwfn->db_recovery_info.dorq_attn = true;
532         qed_dorq_attn_overflow(p_hwfn);
533
534         return qed_dorq_attn_int_sts(p_hwfn);
535 }
536
537 static void qed_dorq_attn_handler(struct qed_hwfn *p_hwfn)
538 {
539         if (p_hwfn->db_recovery_info.dorq_attn)
540                 goto out;
541
542         /* Call DORQ callback if the attention was missed */
543         qed_dorq_attn_cb(p_hwfn);
544 out:
545         p_hwfn->db_recovery_info.dorq_attn = false;
546 }
547
548 /* Instead of major changes to the data-structure, we have a some 'special'
549  * identifiers for sources that changed meaning between adapters.
550  */
551 enum aeu_invert_reg_special_type {
552         AEU_INVERT_REG_SPECIAL_CNIG_0,
553         AEU_INVERT_REG_SPECIAL_CNIG_1,
554         AEU_INVERT_REG_SPECIAL_CNIG_2,
555         AEU_INVERT_REG_SPECIAL_CNIG_3,
556         AEU_INVERT_REG_SPECIAL_MAX,
557 };
558
559 static struct aeu_invert_reg_bit
560 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
561         {"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
562         {"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
563         {"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
564         {"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
565 };
566
567 /* Notice aeu_invert_reg must be defined in the same order of bits as HW;  */
568 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
569         {
570                 {       /* After Invert 1 */
571                         {"GPIO0 function%d",
572                          (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
573                 }
574         },
575
576         {
577                 {       /* After Invert 2 */
578                         {"PGLUE config_space", ATTENTION_SINGLE,
579                          NULL, MAX_BLOCK_ID},
580                         {"PGLUE misc_flr", ATTENTION_SINGLE,
581                          NULL, MAX_BLOCK_ID},
582                         {"PGLUE B RBC", ATTENTION_PAR_INT,
583                          qed_pglueb_rbc_attn_cb, BLOCK_PGLUE_B},
584                         {"PGLUE misc_mctp", ATTENTION_SINGLE,
585                          NULL, MAX_BLOCK_ID},
586                         {"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
587                         {"SMB event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
588                         {"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
589                         {"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) |
590                                           (1 << ATTENTION_OFFSET_SHIFT),
591                          NULL, MAX_BLOCK_ID},
592                         {"PCIE glue/PXP VPD %d",
593                          (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS},
594                 }
595         },
596
597         {
598                 {       /* After Invert 3 */
599                         {"General Attention %d",
600                          (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
601                 }
602         },
603
604         {
605                 {       /* After Invert 4 */
606                         {"General Attention 32", ATTENTION_SINGLE |
607                          ATTENTION_CLEAR_ENABLE, qed_fw_assertion,
608                          MAX_BLOCK_ID},
609                         {"General Attention %d",
610                          (2 << ATTENTION_LENGTH_SHIFT) |
611                          (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID},
612                         {"General Attention 35", ATTENTION_SINGLE |
613                          ATTENTION_CLEAR_ENABLE, qed_general_attention_35,
614                          MAX_BLOCK_ID},
615                         {"NWS Parity",
616                          ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
617                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
618                          NULL, BLOCK_NWS},
619                         {"NWS Interrupt",
620                          ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
621                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
622                          NULL, BLOCK_NWS},
623                         {"NWM Parity",
624                          ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
625                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
626                          NULL, BLOCK_NWM},
627                         {"NWM Interrupt",
628                          ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
629                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
630                          NULL, BLOCK_NWM},
631                         {"MCP CPU", ATTENTION_SINGLE,
632                          qed_mcp_attn_cb, MAX_BLOCK_ID},
633                         {"MCP Watchdog timer", ATTENTION_SINGLE,
634                          NULL, MAX_BLOCK_ID},
635                         {"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
636                         {"AVS stop status ready", ATTENTION_SINGLE,
637                          NULL, MAX_BLOCK_ID},
638                         {"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
639                         {"MSTAT per-path", ATTENTION_PAR_INT,
640                          NULL, MAX_BLOCK_ID},
641                         {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT),
642                          NULL, MAX_BLOCK_ID},
643                         {"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG},
644                         {"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB},
645                         {"BTB", ATTENTION_PAR_INT, NULL, BLOCK_BTB},
646                         {"BRB", ATTENTION_PAR_INT, NULL, BLOCK_BRB},
647                         {"PRS", ATTENTION_PAR_INT, NULL, BLOCK_PRS},
648                 }
649         },
650
651         {
652                 {       /* After Invert 5 */
653                         {"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC},
654                         {"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1},
655                         {"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2},
656                         {"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB},
657                         {"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF},
658                         {"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM},
659                         {"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM},
660                         {"MCM",  ATTENTION_PAR_INT, NULL, BLOCK_MCM},
661                         {"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM},
662                         {"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM},
663                         {"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM},
664                         {"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM},
665                         {"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM},
666                         {"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM},
667                         {"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM},
668                         {"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM},
669                 }
670         },
671
672         {
673                 {       /* After Invert 6 */
674                         {"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM},
675                         {"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM},
676                         {"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM},
677                         {"XCM", ATTENTION_PAR_INT, NULL, BLOCK_XCM},
678                         {"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM},
679                         {"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM},
680                         {"YCM", ATTENTION_PAR_INT, NULL, BLOCK_YCM},
681                         {"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM},
682                         {"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM},
683                         {"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD},
684                         {"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD},
685                         {"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD},
686                         {"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD},
687                         {"DORQ", ATTENTION_PAR_INT,
688                          qed_dorq_attn_cb, BLOCK_DORQ},
689                         {"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG},
690                         {"IPC", ATTENTION_PAR_INT, NULL, BLOCK_IPC},
691                 }
692         },
693
694         {
695                 {       /* After Invert 7 */
696                         {"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC},
697                         {"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU},
698                         {"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE},
699                         {"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU},
700                         {"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
701                         {"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU},
702                         {"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU},
703                         {"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM},
704                         {"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC},
705                         {"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF},
706                         {"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF},
707                         {"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS},
708                         {"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC},
709                         {"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS},
710                         {"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE},
711                         {"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS},
712                         {"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ},
713                 }
714         },
715
716         {
717                 {       /* After Invert 8 */
718                         {"PSWRQ (pci_clk)", ATTENTION_PAR_INT,
719                          NULL, BLOCK_PSWRQ2},
720                         {"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR},
721                         {"PSWWR (pci_clk)", ATTENTION_PAR_INT,
722                          NULL, BLOCK_PSWWR2},
723                         {"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD},
724                         {"PSWRD (pci_clk)", ATTENTION_PAR_INT,
725                          NULL, BLOCK_PSWRD2},
726                         {"PSWHST", ATTENTION_PAR_INT,
727                          qed_pswhst_attn_cb, BLOCK_PSWHST},
728                         {"PSWHST (pci_clk)", ATTENTION_PAR_INT,
729                          NULL, BLOCK_PSWHST2},
730                         {"GRC", ATTENTION_PAR_INT,
731                          qed_grc_attn_cb, BLOCK_GRC},
732                         {"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU},
733                         {"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI},
734                         {"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
735                         {"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
736                         {"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
737                         {"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
738                         {"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
739                         {"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
740                         {"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS},
741                         {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE,
742                          NULL, BLOCK_PGLCS},
743                         {"PERST_B assertion", ATTENTION_SINGLE,
744                          NULL, MAX_BLOCK_ID},
745                         {"PERST_B deassertion", ATTENTION_SINGLE,
746                          NULL, MAX_BLOCK_ID},
747                         {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT),
748                          NULL, MAX_BLOCK_ID},
749                 }
750         },
751
752         {
753                 {       /* After Invert 9 */
754                         {"MCP Latched memory", ATTENTION_PAR,
755                          NULL, MAX_BLOCK_ID},
756                         {"MCP Latched scratchpad cache", ATTENTION_SINGLE,
757                          NULL, MAX_BLOCK_ID},
758                         {"MCP Latched ump_tx", ATTENTION_PAR,
759                          NULL, MAX_BLOCK_ID},
760                         {"MCP Latched scratchpad", ATTENTION_PAR,
761                          NULL, MAX_BLOCK_ID},
762                         {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT),
763                          NULL, MAX_BLOCK_ID},
764                 }
765         },
766 };
767
768 static struct aeu_invert_reg_bit *
769 qed_int_aeu_translate(struct qed_hwfn *p_hwfn,
770                       struct aeu_invert_reg_bit *p_bit)
771 {
772         if (!QED_IS_BB(p_hwfn->cdev))
773                 return p_bit;
774
775         if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
776                 return p_bit;
777
778         return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
779                                   ATTENTION_BB_SHIFT];
780 }
781
782 static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn,
783                                    struct aeu_invert_reg_bit *p_bit)
784 {
785         return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags &
786                    ATTENTION_PARITY);
787 }
788
789 #define ATTN_STATE_BITS         (0xfff)
790 #define ATTN_BITS_MASKABLE      (0x3ff)
791 struct qed_sb_attn_info {
792         /* Virtual & Physical address of the SB */
793         struct atten_status_block       *sb_attn;
794         dma_addr_t                      sb_phys;
795
796         /* Last seen running index */
797         u16                             index;
798
799         /* A mask of the AEU bits resulting in a parity error */
800         u32                             parity_mask[NUM_ATTN_REGS];
801
802         /* A pointer to the attention description structure */
803         struct aeu_invert_reg           *p_aeu_desc;
804
805         /* Previously asserted attentions, which are still unasserted */
806         u16                             known_attn;
807
808         /* Cleanup address for the link's general hw attention */
809         u32                             mfw_attn_addr;
810 };
811
812 static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
813                                       struct qed_sb_attn_info *p_sb_desc)
814 {
815         u16 rc = 0, index;
816
817         index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
818         if (p_sb_desc->index != index) {
819                 p_sb_desc->index        = index;
820                 rc                    = QED_SB_ATT_IDX;
821         }
822
823         return rc;
824 }
825
826 /**
827  * qed_int_assertion() - Handle asserted attention bits.
828  *
829  * @p_hwfn: HW device data.
830  * @asserted_bits: Newly asserted bits.
831  *
832  * Return: Zero value.
833  */
834 static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits)
835 {
836         struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
837         u32 igu_mask;
838
839         /* Mask the source of the attention in the IGU */
840         igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
841         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
842                    igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
843         igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
844         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
845
846         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
847                    "inner known ATTN state: 0x%04x --> 0x%04x\n",
848                    sb_attn_sw->known_attn,
849                    sb_attn_sw->known_attn | asserted_bits);
850         sb_attn_sw->known_attn |= asserted_bits;
851
852         /* Handle MCP events */
853         if (asserted_bits & 0x100) {
854                 qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
855                 /* Clean the MCP attention */
856                 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
857                        sb_attn_sw->mfw_attn_addr, 0);
858         }
859
860         DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
861                       GTT_BAR0_MAP_REG_IGU_CMD +
862                       ((IGU_CMD_ATTN_BIT_SET_UPPER -
863                         IGU_CMD_INT_ACK_BASE) << 3),
864                       (u32)asserted_bits);
865
866         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
867                    asserted_bits);
868
869         return 0;
870 }
871
872 static void qed_int_attn_print(struct qed_hwfn *p_hwfn,
873                                enum block_id id,
874                                enum dbg_attn_type type, bool b_clear)
875 {
876         struct dbg_attn_block_result attn_results;
877         enum dbg_status status;
878
879         memset(&attn_results, 0, sizeof(attn_results));
880
881         status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
882                                    b_clear, &attn_results);
883         if (status != DBG_STATUS_OK)
884                 DP_NOTICE(p_hwfn,
885                           "Failed to parse attention information [status: %s]\n",
886                           qed_dbg_get_status_str(status));
887         else
888                 qed_dbg_parse_attn(p_hwfn, &attn_results);
889 }
890
891 /**
892  * qed_int_deassertion_aeu_bit() - Handles the effects of a single
893  * cause of the attention.
894  *
895  * @p_hwfn: HW device data.
896  * @p_aeu: Descriptor of an AEU bit which caused the attention.
897  * @aeu_en_reg: Register offset of the AEU enable reg. which configured
898  *              this bit to this group.
899  * @p_bit_name: AEU bit description for logging purposes.
900  * @bitmask: Index of this bit in the aeu_en_reg.
901  *
902  * Return: Zero on success, negative errno otherwise.
903  */
904 static int
905 qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn,
906                             struct aeu_invert_reg_bit *p_aeu,
907                             u32 aeu_en_reg,
908                             const char *p_bit_name, u32 bitmask)
909 {
910         bool b_fatal = false;
911         int rc = -EINVAL;
912         u32 val;
913
914         DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
915                 p_bit_name, bitmask);
916
917         /* Call callback before clearing the interrupt status */
918         if (p_aeu->cb) {
919                 DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
920                         p_bit_name);
921                 rc = p_aeu->cb(p_hwfn);
922         }
923
924         if (rc)
925                 b_fatal = true;
926
927         /* Print HW block interrupt registers */
928         if (p_aeu->block_index != MAX_BLOCK_ID)
929                 qed_int_attn_print(p_hwfn, p_aeu->block_index,
930                                    ATTN_TYPE_INTERRUPT, !b_fatal);
931
932         /* Reach assertion if attention is fatal */
933         if (b_fatal)
934                 qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_HW_ATTN,
935                                   "`%s': Fatal attention\n",
936                                   p_bit_name);
937         else /* If the attention is benign, no need to prevent it */
938                 goto out;
939
940         /* Prevent this Attention from being asserted in the future */
941         val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
942         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask));
943         DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
944                 p_bit_name);
945
946 out:
947         return rc;
948 }
949
950 /**
951  * qed_int_deassertion_parity() - Handle a single parity AEU source.
952  *
953  * @p_hwfn: HW device data.
954  * @p_aeu: Descriptor of an AEU bit which caused the parity.
955  * @aeu_en_reg: Address of the AEU enable register.
956  * @bit_index: Index (0-31) of an AEU bit.
957  */
958 static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn,
959                                        struct aeu_invert_reg_bit *p_aeu,
960                                        u32 aeu_en_reg, u8 bit_index)
961 {
962         u32 block_id = p_aeu->block_index, mask, val;
963
964         DP_NOTICE(p_hwfn->cdev,
965                   "%s parity attention is set [address 0x%08x, bit %d]\n",
966                   p_aeu->bit_name, aeu_en_reg, bit_index);
967
968         if (block_id != MAX_BLOCK_ID) {
969                 qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
970
971                 /* In BB, there's a single parity bit for several blocks */
972                 if (block_id == BLOCK_BTB) {
973                         qed_int_attn_print(p_hwfn, BLOCK_OPTE,
974                                            ATTN_TYPE_PARITY, false);
975                         qed_int_attn_print(p_hwfn, BLOCK_MCP,
976                                            ATTN_TYPE_PARITY, false);
977                 }
978         }
979
980         /* Prevent this parity error from being re-asserted */
981         mask = ~BIT(bit_index);
982         val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
983         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
984         DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
985                 p_aeu->bit_name);
986 }
987
988 /**
989  * qed_int_deassertion() - Handle deassertion of previously asserted
990  * attentions.
991  *
992  * @p_hwfn: HW device data.
993  * @deasserted_bits: newly deasserted bits.
994  *
995  * Return: Zero value.
996  */
997 static int qed_int_deassertion(struct qed_hwfn  *p_hwfn,
998                                u16 deasserted_bits)
999 {
1000         struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
1001         u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
1002         u8 i, j, k, bit_idx;
1003         int rc = 0;
1004
1005         /* Read the attention registers in the AEU */
1006         for (i = 0; i < NUM_ATTN_REGS; i++) {
1007                 aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1008                                         MISC_REG_AEU_AFTER_INVERT_1_IGU +
1009                                         i * 0x4);
1010                 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1011                            "Deasserted bits [%d]: %08x\n",
1012                            i, aeu_inv_arr[i]);
1013         }
1014
1015         /* Find parity attentions first */
1016         for (i = 0; i < NUM_ATTN_REGS; i++) {
1017                 struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
1018                 u32 parities;
1019
1020                 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
1021                 en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1022
1023                 /* Skip register in which no parity bit is currently set */
1024                 parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1025                 if (!parities)
1026                         continue;
1027
1028                 for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1029                         struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1030
1031                         if (qed_int_is_parity_flag(p_hwfn, p_bit) &&
1032                             !!(parities & BIT(bit_idx)))
1033                                 qed_int_deassertion_parity(p_hwfn, p_bit,
1034                                                            aeu_en, bit_idx);
1035
1036                         bit_idx += ATTENTION_LENGTH(p_bit->flags);
1037                 }
1038         }
1039
1040         /* Find non-parity cause for attention and act */
1041         for (k = 0; k < MAX_ATTN_GRPS; k++) {
1042                 struct aeu_invert_reg_bit *p_aeu;
1043
1044                 /* Handle only groups whose attention is currently deasserted */
1045                 if (!(deasserted_bits & (1 << k)))
1046                         continue;
1047
1048                 for (i = 0; i < NUM_ATTN_REGS; i++) {
1049                         u32 bits;
1050
1051                         aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1052                                  i * sizeof(u32) +
1053                                  k * sizeof(u32) * NUM_ATTN_REGS;
1054
1055                         en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1056                         bits = aeu_inv_arr[i] & en;
1057
1058                         /* Skip if no bit from this group is currently set */
1059                         if (!bits)
1060                                 continue;
1061
1062                         /* Find all set bits from current register which belong
1063                          * to current group, making them responsible for the
1064                          * previous assertion.
1065                          */
1066                         for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1067                                 long unsigned int bitmask;
1068                                 u8 bit, bit_len;
1069
1070                                 p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1071                                 p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu);
1072
1073                                 bit = bit_idx;
1074                                 bit_len = ATTENTION_LENGTH(p_aeu->flags);
1075                                 if (qed_int_is_parity_flag(p_hwfn, p_aeu)) {
1076                                         /* Skip Parity */
1077                                         bit++;
1078                                         bit_len--;
1079                                 }
1080
1081                                 bitmask = bits & (((1 << bit_len) - 1) << bit);
1082                                 bitmask >>= bit;
1083
1084                                 if (bitmask) {
1085                                         u32 flags = p_aeu->flags;
1086                                         char bit_name[30];
1087                                         u8 num;
1088
1089                                         num = (u8)find_first_bit(&bitmask,
1090                                                                  bit_len);
1091
1092                                         /* Some bits represent more than a
1093                                          * a single interrupt. Correctly print
1094                                          * their name.
1095                                          */
1096                                         if (ATTENTION_LENGTH(flags) > 2 ||
1097                                             ((flags & ATTENTION_PAR_INT) &&
1098                                              ATTENTION_LENGTH(flags) > 1))
1099                                                 snprintf(bit_name, 30,
1100                                                          p_aeu->bit_name, num);
1101                                         else
1102                                                 strlcpy(bit_name,
1103                                                         p_aeu->bit_name, 30);
1104
1105                                         /* We now need to pass bitmask in its
1106                                          * correct position.
1107                                          */
1108                                         bitmask <<= bit;
1109
1110                                         /* Handle source of the attention */
1111                                         qed_int_deassertion_aeu_bit(p_hwfn,
1112                                                                     p_aeu,
1113                                                                     aeu_en,
1114                                                                     bit_name,
1115                                                                     bitmask);
1116                                 }
1117
1118                                 bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1119                         }
1120                 }
1121         }
1122
1123         /* Handle missed DORQ attention */
1124         qed_dorq_attn_handler(p_hwfn);
1125
1126         /* Clear IGU indication for the deasserted bits */
1127         DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
1128                                     GTT_BAR0_MAP_REG_IGU_CMD +
1129                                     ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1130                                       IGU_CMD_INT_ACK_BASE) << 3),
1131                                     ~((u32)deasserted_bits));
1132
1133         /* Unmask deasserted attentions in IGU */
1134         aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
1135         aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1136         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1137
1138         /* Clear deassertion from inner state */
1139         sb_attn_sw->known_attn &= ~deasserted_bits;
1140
1141         return rc;
1142 }
1143
1144 static int qed_int_attentions(struct qed_hwfn *p_hwfn)
1145 {
1146         struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1147         struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1148         u32 attn_bits = 0, attn_acks = 0;
1149         u16 asserted_bits, deasserted_bits;
1150         __le16 index;
1151         int rc = 0;
1152
1153         /* Read current attention bits/acks - safeguard against attentions
1154          * by guaranting work on a synchronized timeframe
1155          */
1156         do {
1157                 index = p_sb_attn->sb_index;
1158                 /* finish reading index before the loop condition */
1159                 dma_rmb();
1160                 attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
1161                 attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
1162         } while (index != p_sb_attn->sb_index);
1163         p_sb_attn->sb_index = index;
1164
1165         /* Attention / Deassertion are meaningful (and in correct state)
1166          * only when they differ and consistent with known state - deassertion
1167          * when previous attention & current ack, and assertion when current
1168          * attention with no previous attention
1169          */
1170         asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1171                 ~p_sb_attn_sw->known_attn;
1172         deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1173                 p_sb_attn_sw->known_attn;
1174
1175         if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
1176                 DP_INFO(p_hwfn,
1177                         "Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1178                         index, attn_bits, attn_acks, asserted_bits,
1179                         deasserted_bits, p_sb_attn_sw->known_attn);
1180         } else if (asserted_bits == 0x100) {
1181                 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1182                            "MFW indication via attention\n");
1183         } else {
1184                 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1185                            "MFW indication [deassertion]\n");
1186         }
1187
1188         if (asserted_bits) {
1189                 rc = qed_int_assertion(p_hwfn, asserted_bits);
1190                 if (rc)
1191                         return rc;
1192         }
1193
1194         if (deasserted_bits)
1195                 rc = qed_int_deassertion(p_hwfn, deasserted_bits);
1196
1197         return rc;
1198 }
1199
1200 static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
1201                             void __iomem *igu_addr, u32 ack_cons)
1202 {
1203         u32 igu_ack;
1204
1205         igu_ack = ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1206                    (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1207                    (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1208                    (IGU_SEG_ACCESS_ATTN <<
1209                     IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1210
1211         DIRECT_REG_WR(igu_addr, igu_ack);
1212
1213         /* Both segments (interrupts & acks) are written to same place address;
1214          * Need to guarantee all commands will be received (in-order) by HW.
1215          */
1216         barrier();
1217 }
1218
1219 void qed_int_sp_dpc(struct tasklet_struct *t)
1220 {
1221         struct qed_hwfn *p_hwfn = from_tasklet(p_hwfn, t, sp_dpc);
1222         struct qed_pi_info *pi_info = NULL;
1223         struct qed_sb_attn_info *sb_attn;
1224         struct qed_sb_info *sb_info;
1225         int arr_size;
1226         u16 rc = 0;
1227
1228         if (!p_hwfn->p_sp_sb) {
1229                 DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
1230                 return;
1231         }
1232
1233         sb_info = &p_hwfn->p_sp_sb->sb_info;
1234         arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1235         if (!sb_info) {
1236                 DP_ERR(p_hwfn->cdev,
1237                        "Status block is NULL - cannot ack interrupts\n");
1238                 return;
1239         }
1240
1241         if (!p_hwfn->p_sb_attn) {
1242                 DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
1243                 return;
1244         }
1245         sb_attn = p_hwfn->p_sb_attn;
1246
1247         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1248                    p_hwfn, p_hwfn->my_id);
1249
1250         /* Disable ack for def status block. Required both for msix +
1251          * inta in non-mask mode, in inta does no harm.
1252          */
1253         qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1254
1255         /* Gather Interrupts/Attentions information */
1256         if (!sb_info->sb_virt) {
1257                 DP_ERR(p_hwfn->cdev,
1258                        "Interrupt Status block is NULL - cannot check for new interrupts!\n");
1259         } else {
1260                 u32 tmp_index = sb_info->sb_ack;
1261
1262                 rc = qed_sb_update_sb_idx(sb_info);
1263                 DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1264                            "Interrupt indices: 0x%08x --> 0x%08x\n",
1265                            tmp_index, sb_info->sb_ack);
1266         }
1267
1268         if (!sb_attn || !sb_attn->sb_attn) {
1269                 DP_ERR(p_hwfn->cdev,
1270                        "Attentions Status block is NULL - cannot check for new attentions!\n");
1271         } else {
1272                 u16 tmp_index = sb_attn->index;
1273
1274                 rc |= qed_attn_update_idx(p_hwfn, sb_attn);
1275                 DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1276                            "Attention indices: 0x%08x --> 0x%08x\n",
1277                            tmp_index, sb_attn->index);
1278         }
1279
1280         /* Check if we expect interrupts at this time. if not just ack them */
1281         if (!(rc & QED_SB_EVENT_MASK)) {
1282                 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1283                 return;
1284         }
1285
1286         /* Check the validity of the DPC ptt. If not ack interrupts and fail */
1287         if (!p_hwfn->p_dpc_ptt) {
1288                 DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
1289                 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1290                 return;
1291         }
1292
1293         if (rc & QED_SB_ATT_IDX)
1294                 qed_int_attentions(p_hwfn);
1295
1296         if (rc & QED_SB_IDX) {
1297                 int pi;
1298
1299                 /* Look for a free index */
1300                 for (pi = 0; pi < arr_size; pi++) {
1301                         pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1302                         if (pi_info->comp_cb)
1303                                 pi_info->comp_cb(p_hwfn, pi_info->cookie);
1304                 }
1305         }
1306
1307         if (sb_attn && (rc & QED_SB_ATT_IDX))
1308                 /* This should be done before the interrupts are enabled,
1309                  * since otherwise a new attention will be generated.
1310                  */
1311                 qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1312
1313         qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1314 }
1315
1316 static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
1317 {
1318         struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1319
1320         if (!p_sb)
1321                 return;
1322
1323         if (p_sb->sb_attn)
1324                 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1325                                   SB_ATTN_ALIGNED_SIZE(p_hwfn),
1326                                   p_sb->sb_attn, p_sb->sb_phys);
1327         kfree(p_sb);
1328         p_hwfn->p_sb_attn = NULL;
1329 }
1330
1331 static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
1332                                   struct qed_ptt *p_ptt)
1333 {
1334         struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1335
1336         memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1337
1338         sb_info->index = 0;
1339         sb_info->known_attn = 0;
1340
1341         /* Configure Attention Status Block in IGU */
1342         qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1343                lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
1344         qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1345                upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
1346 }
1347
1348 static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
1349                                  struct qed_ptt *p_ptt,
1350                                  void *sb_virt_addr, dma_addr_t sb_phy_addr)
1351 {
1352         struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1353         int i, j, k;
1354
1355         sb_info->sb_attn = sb_virt_addr;
1356         sb_info->sb_phys = sb_phy_addr;
1357
1358         /* Set the pointer to the AEU descriptors */
1359         sb_info->p_aeu_desc = aeu_descs;
1360
1361         /* Calculate Parity Masks */
1362         memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1363         for (i = 0; i < NUM_ATTN_REGS; i++) {
1364                 /* j is array index, k is bit index */
1365                 for (j = 0, k = 0; k < 32; j++) {
1366                         struct aeu_invert_reg_bit *p_aeu;
1367
1368                         p_aeu = &aeu_descs[i].bits[j];
1369                         if (qed_int_is_parity_flag(p_hwfn, p_aeu))
1370                                 sb_info->parity_mask[i] |= 1 << k;
1371
1372                         k += ATTENTION_LENGTH(p_aeu->flags);
1373                 }
1374                 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1375                            "Attn Mask [Reg %d]: 0x%08x\n",
1376                            i, sb_info->parity_mask[i]);
1377         }
1378
1379         /* Set the address of cleanup for the mcp attention */
1380         sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1381                                  MISC_REG_AEU_GENERAL_ATTN_0;
1382
1383         qed_int_sb_attn_setup(p_hwfn, p_ptt);
1384 }
1385
1386 static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
1387                                  struct qed_ptt *p_ptt)
1388 {
1389         struct qed_dev *cdev = p_hwfn->cdev;
1390         struct qed_sb_attn_info *p_sb;
1391         dma_addr_t p_phys = 0;
1392         void *p_virt;
1393
1394         /* SB struct */
1395         p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1396         if (!p_sb)
1397                 return -ENOMEM;
1398
1399         /* SB ring  */
1400         p_virt = dma_alloc_coherent(&cdev->pdev->dev,
1401                                     SB_ATTN_ALIGNED_SIZE(p_hwfn),
1402                                     &p_phys, GFP_KERNEL);
1403
1404         if (!p_virt) {
1405                 kfree(p_sb);
1406                 return -ENOMEM;
1407         }
1408
1409         /* Attention setup */
1410         p_hwfn->p_sb_attn = p_sb;
1411         qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1412
1413         return 0;
1414 }
1415
1416 /* coalescing timeout = timeset << (timer_res + 1) */
1417 #define QED_CAU_DEF_RX_USECS 24
1418 #define QED_CAU_DEF_TX_USECS 48
1419
1420 void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
1421                            struct cau_sb_entry *p_sb_entry,
1422                            u8 pf_id, u16 vf_number, u8 vf_valid)
1423 {
1424         struct qed_dev *cdev = p_hwfn->cdev;
1425         u32 cau_state, params = 0, data = 0;
1426         u8 timer_res;
1427
1428         memset(p_sb_entry, 0, sizeof(*p_sb_entry));
1429
1430         SET_FIELD(params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1431         SET_FIELD(params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1432         SET_FIELD(params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1433         SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1434         SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1435
1436         cau_state = CAU_HC_DISABLE_STATE;
1437
1438         if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1439                 cau_state = CAU_HC_ENABLE_STATE;
1440                 if (!cdev->rx_coalesce_usecs)
1441                         cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS;
1442                 if (!cdev->tx_coalesce_usecs)
1443                         cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS;
1444         }
1445
1446         /* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1447         if (cdev->rx_coalesce_usecs <= 0x7F)
1448                 timer_res = 0;
1449         else if (cdev->rx_coalesce_usecs <= 0xFF)
1450                 timer_res = 1;
1451         else
1452                 timer_res = 2;
1453
1454         SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1455
1456         if (cdev->tx_coalesce_usecs <= 0x7F)
1457                 timer_res = 0;
1458         else if (cdev->tx_coalesce_usecs <= 0xFF)
1459                 timer_res = 1;
1460         else
1461                 timer_res = 2;
1462
1463         SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1464         p_sb_entry->params = cpu_to_le32(params);
1465
1466         SET_FIELD(data, CAU_SB_ENTRY_STATE0, cau_state);
1467         SET_FIELD(data, CAU_SB_ENTRY_STATE1, cau_state);
1468         p_sb_entry->data = cpu_to_le32(data);
1469 }
1470
1471 static void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
1472                                 struct qed_ptt *p_ptt,
1473                                 u16 igu_sb_id,
1474                                 u32 pi_index,
1475                                 enum qed_coalescing_fsm coalescing_fsm,
1476                                 u8 timeset)
1477 {
1478         u32 sb_offset, pi_offset;
1479         u32 prod = 0;
1480
1481         if (IS_VF(p_hwfn->cdev))
1482                 return;
1483
1484         SET_FIELD(prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1485         if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
1486                 SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 0);
1487         else
1488                 SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 1);
1489
1490         sb_offset = igu_sb_id * PIS_PER_SB_E4;
1491         pi_offset = sb_offset + pi_index;
1492
1493         if (p_hwfn->hw_init_done)
1494                 qed_wr(p_hwfn, p_ptt,
1495                        CAU_REG_PI_MEMORY + pi_offset * sizeof(u32), prod);
1496         else
1497                 STORE_RT_REG(p_hwfn, CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1498                              prod);
1499 }
1500
1501 void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
1502                          struct qed_ptt *p_ptt,
1503                          dma_addr_t sb_phys,
1504                          u16 igu_sb_id, u16 vf_number, u8 vf_valid)
1505 {
1506         struct cau_sb_entry sb_entry;
1507
1508         qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1509                               vf_number, vf_valid);
1510
1511         if (p_hwfn->hw_init_done) {
1512                 /* Wide-bus, initialize via DMAE */
1513                 u64 phys_addr = (u64)sb_phys;
1514
1515                 qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr,
1516                                   CAU_REG_SB_ADDR_MEMORY +
1517                                   igu_sb_id * sizeof(u64), 2, NULL);
1518                 qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry,
1519                                   CAU_REG_SB_VAR_MEMORY +
1520                                   igu_sb_id * sizeof(u64), 2, NULL);
1521         } else {
1522                 /* Initialize Status Block Address */
1523                 STORE_RT_REG_AGG(p_hwfn,
1524                                  CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1525                                  igu_sb_id * 2,
1526                                  sb_phys);
1527
1528                 STORE_RT_REG_AGG(p_hwfn,
1529                                  CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1530                                  igu_sb_id * 2,
1531                                  sb_entry);
1532         }
1533
1534         /* Configure pi coalescing if set */
1535         if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1536                 u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1537                 u8 timeset, timer_res;
1538                 u8 i;
1539
1540                 /* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1541                 if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F)
1542                         timer_res = 0;
1543                 else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF)
1544                         timer_res = 1;
1545                 else
1546                         timer_res = 2;
1547                 timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res);
1548                 qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1549                                     QED_COAL_RX_STATE_MACHINE, timeset);
1550
1551                 if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F)
1552                         timer_res = 0;
1553                 else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF)
1554                         timer_res = 1;
1555                 else
1556                         timer_res = 2;
1557                 timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res);
1558                 for (i = 0; i < num_tc; i++) {
1559                         qed_int_cau_conf_pi(p_hwfn, p_ptt,
1560                                             igu_sb_id, TX_PI(i),
1561                                             QED_COAL_TX_STATE_MACHINE,
1562                                             timeset);
1563                 }
1564         }
1565 }
1566
1567 void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
1568                       struct qed_ptt *p_ptt, struct qed_sb_info *sb_info)
1569 {
1570         /* zero status block and ack counter */
1571         sb_info->sb_ack = 0;
1572         memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1573
1574         if (IS_PF(p_hwfn->cdev))
1575                 qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1576                                     sb_info->igu_sb_id, 0, 0);
1577 }
1578
1579 struct qed_igu_block *qed_get_igu_free_sb(struct qed_hwfn *p_hwfn, bool b_is_pf)
1580 {
1581         struct qed_igu_block *p_block;
1582         u16 igu_id;
1583
1584         for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1585              igu_id++) {
1586                 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1587
1588                 if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1589                     !(p_block->status & QED_IGU_STATUS_FREE))
1590                         continue;
1591
1592                 if (!!(p_block->status & QED_IGU_STATUS_PF) == b_is_pf)
1593                         return p_block;
1594         }
1595
1596         return NULL;
1597 }
1598
1599 static u16 qed_get_pf_igu_sb_id(struct qed_hwfn *p_hwfn, u16 vector_id)
1600 {
1601         struct qed_igu_block *p_block;
1602         u16 igu_id;
1603
1604         for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1605              igu_id++) {
1606                 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1607
1608                 if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1609                     !p_block->is_pf ||
1610                     p_block->vector_number != vector_id)
1611                         continue;
1612
1613                 return igu_id;
1614         }
1615
1616         return QED_SB_INVALID_IDX;
1617 }
1618
1619 u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id)
1620 {
1621         u16 igu_sb_id;
1622
1623         /* Assuming continuous set of IGU SBs dedicated for given PF */
1624         if (sb_id == QED_SP_SB_ID)
1625                 igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1626         else if (IS_PF(p_hwfn->cdev))
1627                 igu_sb_id = qed_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1628         else
1629                 igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id);
1630
1631         if (sb_id == QED_SP_SB_ID)
1632                 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1633                            "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1634         else
1635                 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1636                            "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1637
1638         return igu_sb_id;
1639 }
1640
1641 int qed_int_sb_init(struct qed_hwfn *p_hwfn,
1642                     struct qed_ptt *p_ptt,
1643                     struct qed_sb_info *sb_info,
1644                     void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id)
1645 {
1646         sb_info->sb_virt = sb_virt_addr;
1647         sb_info->sb_phys = sb_phy_addr;
1648
1649         sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);
1650
1651         if (sb_id != QED_SP_SB_ID) {
1652                 if (IS_PF(p_hwfn->cdev)) {
1653                         struct qed_igu_info *p_info;
1654                         struct qed_igu_block *p_block;
1655
1656                         p_info = p_hwfn->hw_info.p_igu_info;
1657                         p_block = &p_info->entry[sb_info->igu_sb_id];
1658
1659                         p_block->sb_info = sb_info;
1660                         p_block->status &= ~QED_IGU_STATUS_FREE;
1661                         p_info->usage.free_cnt--;
1662                 } else {
1663                         qed_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1664                 }
1665         }
1666
1667         sb_info->cdev = p_hwfn->cdev;
1668
1669         /* The igu address will hold the absolute address that needs to be
1670          * written to for a specific status block
1671          */
1672         if (IS_PF(p_hwfn->cdev)) {
1673                 sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1674                                                   GTT_BAR0_MAP_REG_IGU_CMD +
1675                                                   (sb_info->igu_sb_id << 3);
1676         } else {
1677                 sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1678                                                   PXP_VF_BAR0_START_IGU +
1679                                                   ((IGU_CMD_INT_ACK_BASE +
1680                                                     sb_info->igu_sb_id) << 3);
1681         }
1682
1683         sb_info->flags |= QED_SB_INFO_INIT;
1684
1685         qed_int_sb_setup(p_hwfn, p_ptt, sb_info);
1686
1687         return 0;
1688 }
1689
1690 int qed_int_sb_release(struct qed_hwfn *p_hwfn,
1691                        struct qed_sb_info *sb_info, u16 sb_id)
1692 {
1693         struct qed_igu_block *p_block;
1694         struct qed_igu_info *p_info;
1695
1696         if (!sb_info)
1697                 return 0;
1698
1699         /* zero status block and ack counter */
1700         sb_info->sb_ack = 0;
1701         memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1702
1703         if (IS_VF(p_hwfn->cdev)) {
1704                 qed_vf_set_sb_info(p_hwfn, sb_id, NULL);
1705                 return 0;
1706         }
1707
1708         p_info = p_hwfn->hw_info.p_igu_info;
1709         p_block = &p_info->entry[sb_info->igu_sb_id];
1710
1711         /* Vector 0 is reserved to Default SB */
1712         if (!p_block->vector_number) {
1713                 DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1714                 return -EINVAL;
1715         }
1716
1717         /* Lose reference to client's SB info, and fix counters */
1718         p_block->sb_info = NULL;
1719         p_block->status |= QED_IGU_STATUS_FREE;
1720         p_info->usage.free_cnt++;
1721
1722         return 0;
1723 }
1724
1725 static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
1726 {
1727         struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1728
1729         if (!p_sb)
1730                 return;
1731
1732         if (p_sb->sb_info.sb_virt)
1733                 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1734                                   SB_ALIGNED_SIZE(p_hwfn),
1735                                   p_sb->sb_info.sb_virt,
1736                                   p_sb->sb_info.sb_phys);
1737         kfree(p_sb);
1738         p_hwfn->p_sp_sb = NULL;
1739 }
1740
1741 static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1742 {
1743         struct qed_sb_sp_info *p_sb;
1744         dma_addr_t p_phys = 0;
1745         void *p_virt;
1746
1747         /* SB struct */
1748         p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1749         if (!p_sb)
1750                 return -ENOMEM;
1751
1752         /* SB ring  */
1753         p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1754                                     SB_ALIGNED_SIZE(p_hwfn),
1755                                     &p_phys, GFP_KERNEL);
1756         if (!p_virt) {
1757                 kfree(p_sb);
1758                 return -ENOMEM;
1759         }
1760
1761         /* Status Block setup */
1762         p_hwfn->p_sp_sb = p_sb;
1763         qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
1764                         p_phys, QED_SP_SB_ID);
1765
1766         memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1767
1768         return 0;
1769 }
1770
1771 int qed_int_register_cb(struct qed_hwfn *p_hwfn,
1772                         qed_int_comp_cb_t comp_cb,
1773                         void *cookie, u8 *sb_idx, __le16 **p_fw_cons)
1774 {
1775         struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1776         int rc = -ENOMEM;
1777         u8 pi;
1778
1779         /* Look for a free index */
1780         for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1781                 if (p_sp_sb->pi_info_arr[pi].comp_cb)
1782                         continue;
1783
1784                 p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1785                 p_sp_sb->pi_info_arr[pi].cookie = cookie;
1786                 *sb_idx = pi;
1787                 *p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1788                 rc = 0;
1789                 break;
1790         }
1791
1792         return rc;
1793 }
1794
1795 int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
1796 {
1797         struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1798
1799         if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL)
1800                 return -ENOMEM;
1801
1802         p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
1803         p_sp_sb->pi_info_arr[pi].cookie = NULL;
1804
1805         return 0;
1806 }
1807
1808 u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
1809 {
1810         return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1811 }
1812
1813 void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
1814                             struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1815 {
1816         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1817
1818         p_hwfn->cdev->int_mode = int_mode;
1819         switch (p_hwfn->cdev->int_mode) {
1820         case QED_INT_MODE_INTA:
1821                 igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1822                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1823                 break;
1824
1825         case QED_INT_MODE_MSI:
1826                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1827                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1828                 break;
1829
1830         case QED_INT_MODE_MSIX:
1831                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1832                 break;
1833         case QED_INT_MODE_POLL:
1834                 break;
1835         }
1836
1837         qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1838 }
1839
1840 static void qed_int_igu_enable_attn(struct qed_hwfn *p_hwfn,
1841                                     struct qed_ptt *p_ptt)
1842 {
1843
1844         /* Configure AEU signal change to produce attentions */
1845         qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1846         qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1847         qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1848         qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1849
1850         /* Unmask AEU signals toward IGU */
1851         qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1852 }
1853
1854 int
1855 qed_int_igu_enable(struct qed_hwfn *p_hwfn,
1856                    struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1857 {
1858         int rc = 0;
1859
1860         qed_int_igu_enable_attn(p_hwfn, p_ptt);
1861
1862         if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1863                 rc = qed_slowpath_irq_req(p_hwfn);
1864                 if (rc) {
1865                         DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n");
1866                         return -EINVAL;
1867                 }
1868                 p_hwfn->b_int_requested = true;
1869         }
1870         /* Enable interrupt Generation */
1871         qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1872         p_hwfn->b_int_enabled = 1;
1873
1874         return rc;
1875 }
1876
1877 void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1878 {
1879         p_hwfn->b_int_enabled = 0;
1880
1881         if (IS_VF(p_hwfn->cdev))
1882                 return;
1883
1884         qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1885 }
1886
1887 #define IGU_CLEANUP_SLEEP_LENGTH                (1000)
1888 static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
1889                                    struct qed_ptt *p_ptt,
1890                                    u16 igu_sb_id,
1891                                    bool cleanup_set, u16 opaque_fid)
1892 {
1893         u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1894         u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1895         u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1896
1897         /* Set the data field */
1898         SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1899         SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
1900         SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1901
1902         /* Set the control register */
1903         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1904         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1905         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1906
1907         qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1908
1909         barrier();
1910
1911         qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1912
1913         /* calculate where to read the status bit from */
1914         sb_bit = 1 << (igu_sb_id % 32);
1915         sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
1916
1917         sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;
1918
1919         /* Now wait for the command to complete */
1920         do {
1921                 val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);
1922
1923                 if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
1924                         break;
1925
1926                 usleep_range(5000, 10000);
1927         } while (--sleep_cnt);
1928
1929         if (!sleep_cnt)
1930                 DP_NOTICE(p_hwfn,
1931                           "Timeout waiting for clear status 0x%08x [for sb %d]\n",
1932                           val, igu_sb_id);
1933 }
1934
1935 void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
1936                                      struct qed_ptt *p_ptt,
1937                                      u16 igu_sb_id, u16 opaque, bool b_set)
1938 {
1939         struct qed_igu_block *p_block;
1940         int pi, i;
1941
1942         p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
1943         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1944                    "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
1945                    igu_sb_id,
1946                    p_block->function_id,
1947                    p_block->is_pf, p_block->vector_number);
1948
1949         /* Set */
1950         if (b_set)
1951                 qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
1952
1953         /* Clear */
1954         qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
1955
1956         /* Wait for the IGU SB to cleanup */
1957         for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
1958                 u32 val;
1959
1960                 val = qed_rd(p_hwfn, p_ptt,
1961                              IGU_REG_WRITE_DONE_PENDING +
1962                              ((igu_sb_id / 32) * 4));
1963                 if (val & BIT((igu_sb_id % 32)))
1964                         usleep_range(10, 20);
1965                 else
1966                         break;
1967         }
1968         if (i == IGU_CLEANUP_SLEEP_LENGTH)
1969                 DP_NOTICE(p_hwfn,
1970                           "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
1971                           igu_sb_id);
1972
1973         /* Clear the CAU for the SB */
1974         for (pi = 0; pi < 12; pi++)
1975                 qed_wr(p_hwfn, p_ptt,
1976                        CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
1977 }
1978
1979 void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
1980                               struct qed_ptt *p_ptt,
1981                               bool b_set, bool b_slowpath)
1982 {
1983         struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
1984         struct qed_igu_block *p_block;
1985         u16 igu_sb_id = 0;
1986         u32 val = 0;
1987
1988         val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
1989         val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
1990         val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
1991         qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
1992
1993         for (igu_sb_id = 0;
1994              igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
1995                 p_block = &p_info->entry[igu_sb_id];
1996
1997                 if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1998                     !p_block->is_pf ||
1999                     (p_block->status & QED_IGU_STATUS_DSB))
2000                         continue;
2001
2002                 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
2003                                                 p_hwfn->hw_info.opaque_fid,
2004                                                 b_set);
2005         }
2006
2007         if (b_slowpath)
2008                 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2009                                                 p_info->igu_dsb_id,
2010                                                 p_hwfn->hw_info.opaque_fid,
2011                                                 b_set);
2012 }
2013
2014 int qed_int_igu_reset_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2015 {
2016         struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2017         struct qed_igu_block *p_block;
2018         int pf_sbs, vf_sbs;
2019         u16 igu_sb_id;
2020         u32 val, rval;
2021
2022         if (!RESC_NUM(p_hwfn, QED_SB)) {
2023                 p_info->b_allow_pf_vf_change = false;
2024         } else {
2025                 /* Use the numbers the MFW have provided -
2026                  * don't forget MFW accounts for the default SB as well.
2027                  */
2028                 p_info->b_allow_pf_vf_change = true;
2029
2030                 if (p_info->usage.cnt != RESC_NUM(p_hwfn, QED_SB) - 1) {
2031                         DP_INFO(p_hwfn,
2032                                 "MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2033                                 RESC_NUM(p_hwfn, QED_SB) - 1,
2034                                 p_info->usage.cnt);
2035                         p_info->usage.cnt = RESC_NUM(p_hwfn, QED_SB) - 1;
2036                 }
2037
2038                 if (IS_PF_SRIOV(p_hwfn)) {
2039                         u16 vfs = p_hwfn->cdev->p_iov_info->total_vfs;
2040
2041                         if (vfs != p_info->usage.iov_cnt)
2042                                 DP_VERBOSE(p_hwfn,
2043                                            NETIF_MSG_INTR,
2044                                            "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2045                                            p_info->usage.iov_cnt, vfs);
2046
2047                         /* At this point we know how many SBs we have totally
2048                          * in IGU + number of PF SBs. So we can validate that
2049                          * we'd have sufficient for VF.
2050                          */
2051                         if (vfs > p_info->usage.free_cnt +
2052                             p_info->usage.free_cnt_iov - p_info->usage.cnt) {
2053                                 DP_NOTICE(p_hwfn,
2054                                           "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2055                                           p_info->usage.free_cnt +
2056                                           p_info->usage.free_cnt_iov,
2057                                           p_info->usage.cnt, vfs);
2058                                 return -EINVAL;
2059                         }
2060
2061                         /* Currently cap the number of VFs SBs by the
2062                          * number of VFs.
2063                          */
2064                         p_info->usage.iov_cnt = vfs;
2065                 }
2066         }
2067
2068         /* Mark all SBs as free, now in the right PF/VFs division */
2069         p_info->usage.free_cnt = p_info->usage.cnt;
2070         p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2071         p_info->usage.orig = p_info->usage.cnt;
2072         p_info->usage.iov_orig = p_info->usage.iov_cnt;
2073
2074         /* We now proceed to re-configure the IGU cam to reflect the initial
2075          * configuration. We can start with the Default SB.
2076          */
2077         pf_sbs = p_info->usage.cnt;
2078         vf_sbs = p_info->usage.iov_cnt;
2079
2080         for (igu_sb_id = p_info->igu_dsb_id;
2081              igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2082                 p_block = &p_info->entry[igu_sb_id];
2083                 val = 0;
2084
2085                 if (!(p_block->status & QED_IGU_STATUS_VALID))
2086                         continue;
2087
2088                 if (p_block->status & QED_IGU_STATUS_DSB) {
2089                         p_block->function_id = p_hwfn->rel_pf_id;
2090                         p_block->is_pf = 1;
2091                         p_block->vector_number = 0;
2092                         p_block->status = QED_IGU_STATUS_VALID |
2093                                           QED_IGU_STATUS_PF |
2094                                           QED_IGU_STATUS_DSB;
2095                 } else if (pf_sbs) {
2096                         pf_sbs--;
2097                         p_block->function_id = p_hwfn->rel_pf_id;
2098                         p_block->is_pf = 1;
2099                         p_block->vector_number = p_info->usage.cnt - pf_sbs;
2100                         p_block->status = QED_IGU_STATUS_VALID |
2101                                           QED_IGU_STATUS_PF |
2102                                           QED_IGU_STATUS_FREE;
2103                 } else if (vf_sbs) {
2104                         p_block->function_id =
2105                             p_hwfn->cdev->p_iov_info->first_vf_in_pf +
2106                             p_info->usage.iov_cnt - vf_sbs;
2107                         p_block->is_pf = 0;
2108                         p_block->vector_number = 0;
2109                         p_block->status = QED_IGU_STATUS_VALID |
2110                                           QED_IGU_STATUS_FREE;
2111                         vf_sbs--;
2112                 } else {
2113                         p_block->function_id = 0;
2114                         p_block->is_pf = 0;
2115                         p_block->vector_number = 0;
2116                 }
2117
2118                 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2119                           p_block->function_id);
2120                 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2121                 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2122                           p_block->vector_number);
2123
2124                 /* VF entries would be enabled when VF is initializaed */
2125                 SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2126
2127                 rval = qed_rd(p_hwfn, p_ptt,
2128                               IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2129
2130                 if (rval != val) {
2131                         qed_wr(p_hwfn, p_ptt,
2132                                IGU_REG_MAPPING_MEMORY +
2133                                sizeof(u32) * igu_sb_id, val);
2134
2135                         DP_VERBOSE(p_hwfn,
2136                                    NETIF_MSG_INTR,
2137                                    "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2138                                    igu_sb_id,
2139                                    p_block->function_id,
2140                                    p_block->is_pf,
2141                                    p_block->vector_number, rval, val);
2142                 }
2143         }
2144
2145         return 0;
2146 }
2147
2148 static void qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn,
2149                                        struct qed_ptt *p_ptt, u16 igu_sb_id)
2150 {
2151         u32 val = qed_rd(p_hwfn, p_ptt,
2152                          IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2153         struct qed_igu_block *p_block;
2154
2155         p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2156
2157         /* Fill the block information */
2158         p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
2159         p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2160         p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
2161         p_block->igu_sb_id = igu_sb_id;
2162 }
2163
2164 int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2165 {
2166         struct qed_igu_info *p_igu_info;
2167         struct qed_igu_block *p_block;
2168         u32 min_vf = 0, max_vf = 0;
2169         u16 igu_sb_id;
2170
2171         p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL);
2172         if (!p_hwfn->hw_info.p_igu_info)
2173                 return -ENOMEM;
2174
2175         p_igu_info = p_hwfn->hw_info.p_igu_info;
2176
2177         /* Distinguish between existent and non-existent default SB */
2178         p_igu_info->igu_dsb_id = QED_SB_INVALID_IDX;
2179
2180         /* Find the range of VF ids whose SB belong to this PF */
2181         if (p_hwfn->cdev->p_iov_info) {
2182                 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
2183
2184                 min_vf  = p_iov->first_vf_in_pf;
2185                 max_vf  = p_iov->first_vf_in_pf + p_iov->total_vfs;
2186         }
2187
2188         for (igu_sb_id = 0;
2189              igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2190                 /* Read current entry; Notice it might not belong to this PF */
2191                 qed_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2192                 p_block = &p_igu_info->entry[igu_sb_id];
2193
2194                 if ((p_block->is_pf) &&
2195                     (p_block->function_id == p_hwfn->rel_pf_id)) {
2196                         p_block->status = QED_IGU_STATUS_PF |
2197                                           QED_IGU_STATUS_VALID |
2198                                           QED_IGU_STATUS_FREE;
2199
2200                         if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2201                                 p_igu_info->usage.cnt++;
2202                 } else if (!(p_block->is_pf) &&
2203                            (p_block->function_id >= min_vf) &&
2204                            (p_block->function_id < max_vf)) {
2205                         /* Available for VFs of this PF */
2206                         p_block->status = QED_IGU_STATUS_VALID |
2207                                           QED_IGU_STATUS_FREE;
2208
2209                         if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2210                                 p_igu_info->usage.iov_cnt++;
2211                 }
2212
2213                 /* Mark the First entry belonging to the PF or its VFs
2214                  * as the default SB [we'll reset IGU prior to first usage].
2215                  */
2216                 if ((p_block->status & QED_IGU_STATUS_VALID) &&
2217                     (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX)) {
2218                         p_igu_info->igu_dsb_id = igu_sb_id;
2219                         p_block->status |= QED_IGU_STATUS_DSB;
2220                 }
2221
2222                 /* limit number of prints by having each PF print only its
2223                  * entries with the exception of PF0 which would print
2224                  * everything.
2225                  */
2226                 if ((p_block->status & QED_IGU_STATUS_VALID) ||
2227                     (p_hwfn->abs_pf_id == 0)) {
2228                         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2229                                    "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2230                                    igu_sb_id, p_block->function_id,
2231                                    p_block->is_pf, p_block->vector_number);
2232                 }
2233         }
2234
2235         if (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX) {
2236                 DP_NOTICE(p_hwfn,
2237                           "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2238                           p_igu_info->igu_dsb_id);
2239                 return -EINVAL;
2240         }
2241
2242         /* All non default SB are considered free at this point */
2243         p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2244         p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2245
2246         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2247                    "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2248                    p_igu_info->igu_dsb_id,
2249                    p_igu_info->usage.cnt, p_igu_info->usage.iov_cnt);
2250
2251         return 0;
2252 }
2253
2254 /**
2255  * qed_int_igu_init_rt() - Initialize IGU runtime registers.
2256  *
2257  * @p_hwfn: HW device data.
2258  */
2259 void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
2260 {
2261         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2262
2263         STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2264 }
2265
2266 u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
2267 {
2268         u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
2269                                IGU_CMD_INT_ACK_BASE;
2270         u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
2271                                IGU_CMD_INT_ACK_BASE;
2272         u32 intr_status_hi = 0, intr_status_lo = 0;
2273         u64 intr_status = 0;
2274
2275         intr_status_lo = REG_RD(p_hwfn,
2276                                 GTT_BAR0_MAP_REG_IGU_CMD +
2277                                 lsb_igu_cmd_addr * 8);
2278         intr_status_hi = REG_RD(p_hwfn,
2279                                 GTT_BAR0_MAP_REG_IGU_CMD +
2280                                 msb_igu_cmd_addr * 8);
2281         intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2282
2283         return intr_status;
2284 }
2285
2286 static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
2287 {
2288         tasklet_setup(&p_hwfn->sp_dpc, qed_int_sp_dpc);
2289         p_hwfn->b_sp_dpc_enabled = true;
2290 }
2291
2292 int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2293 {
2294         int rc = 0;
2295
2296         rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
2297         if (rc)
2298                 return rc;
2299
2300         rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);
2301
2302         return rc;
2303 }
2304
2305 void qed_int_free(struct qed_hwfn *p_hwfn)
2306 {
2307         qed_int_sp_sb_free(p_hwfn);
2308         qed_int_sb_attn_free(p_hwfn);
2309 }
2310
2311 void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2312 {
2313         qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2314         qed_int_sb_attn_setup(p_hwfn, p_ptt);
2315         qed_int_sp_dpc_setup(p_hwfn);
2316 }
2317
2318 void qed_int_get_num_sbs(struct qed_hwfn        *p_hwfn,
2319                          struct qed_sb_cnt_info *p_sb_cnt_info)
2320 {
2321         struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;
2322
2323         if (!info || !p_sb_cnt_info)
2324                 return;
2325
2326         memcpy(p_sb_cnt_info, &info->usage, sizeof(*p_sb_cnt_info));
2327 }
2328
2329 void qed_int_disable_post_isr_release(struct qed_dev *cdev)
2330 {
2331         int i;
2332
2333         for_each_hwfn(cdev, i)
2334                 cdev->hwfns[i].b_int_requested = false;
2335 }
2336
2337 void qed_int_attn_clr_enable(struct qed_dev *cdev, bool clr_enable)
2338 {
2339         cdev->attn_clr_en = clr_enable;
2340 }
2341
2342 int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2343                           u8 timer_res, u16 sb_id, bool tx)
2344 {
2345         struct cau_sb_entry sb_entry;
2346         u32 params;
2347         int rc;
2348
2349         if (!p_hwfn->hw_init_done) {
2350                 DP_ERR(p_hwfn, "hardware not initialized yet\n");
2351                 return -EINVAL;
2352         }
2353
2354         rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2355                                sb_id * sizeof(u64),
2356                                (u64)(uintptr_t)&sb_entry, 2, NULL);
2357         if (rc) {
2358                 DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2359                 return rc;
2360         }
2361
2362         params = le32_to_cpu(sb_entry.params);
2363
2364         if (tx)
2365                 SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2366         else
2367                 SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2368
2369         sb_entry.params = cpu_to_le32(params);
2370
2371         rc = qed_dmae_host2grc(p_hwfn, p_ptt,
2372                                (u64)(uintptr_t)&sb_entry,
2373                                CAU_REG_SB_VAR_MEMORY +
2374                                sb_id * sizeof(u64), 2, NULL);
2375         if (rc) {
2376                 DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2377                 return rc;
2378         }
2379
2380         return rc;
2381 }