GNU Linux-libre 5.10.215-gnu1
[releases.git] / drivers / net / ethernet / qlogic / qed / qed_init_fw_funcs.c
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qed NIC Driver
3  * Copyright (c) 2015-2017  QLogic Corporation
4  * Copyright (c) 2019-2020 Marvell International Ltd.
5  */
6
7 #include <linux/types.h>
8 #include <linux/crc8.h>
9 #include <linux/delay.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/string.h>
13 #include "qed_hsi.h"
14 #include "qed_hw.h"
15 #include "qed_init_ops.h"
16 #include "qed_reg_addr.h"
17
18 #define CDU_VALIDATION_DEFAULT_CFG      61
19
20 static u16 con_region_offsets[3][NUM_OF_CONNECTION_TYPES_E4] = {
21         {400, 336, 352, 368, 304, 384, 416, 352},       /* region 3 offsets */
22         {528, 496, 416, 512, 448, 512, 544, 480},       /* region 4 offsets */
23         {608, 544, 496, 576, 576, 592, 624, 560}        /* region 5 offsets */
24 };
25
26 static u16 task_region_offsets[1][NUM_OF_CONNECTION_TYPES_E4] = {
27         {240, 240, 112, 0, 0, 0, 0, 96} /* region 1 offsets */
28 };
29
30 /* General constants */
31 #define QM_PQ_MEM_4KB(pq_size)  (pq_size ? DIV_ROUND_UP((pq_size + 1) * \
32                                                         QM_PQ_ELEMENT_SIZE, \
33                                                         0x1000) : 0)
34 #define QM_PQ_SIZE_256B(pq_size)        (pq_size ? DIV_ROUND_UP(pq_size, \
35                                                                 0x100) - 1 : 0)
36 #define QM_INVALID_PQ_ID                0xffff
37
38 /* Max link speed (in Mbps) */
39 #define QM_MAX_LINK_SPEED               100000
40
41 /* Feature enable */
42 #define QM_BYPASS_EN    1
43 #define QM_BYTE_CRD_EN  1
44
45 /* Other PQ constants */
46 #define QM_OTHER_PQS_PER_PF     4
47
48 /* WFQ constants */
49
50 /* Upper bound in MB, 10 * burst size of 1ms in 50Gbps */
51 #define QM_WFQ_UPPER_BOUND      62500000
52
53 /* Bit  of VOQ in WFQ VP PQ map */
54 #define QM_WFQ_VP_PQ_VOQ_SHIFT  0
55
56 /* Bit  of PF in WFQ VP PQ map */
57 #define QM_WFQ_VP_PQ_PF_E4_SHIFT        5
58
59 /* 0x9000 = 4*9*1024 */
60 #define QM_WFQ_INC_VAL(weight)  ((weight) * 0x9000)
61
62 /* Max WFQ increment value is 0.7 * upper bound */
63 #define QM_WFQ_MAX_INC_VAL      ((QM_WFQ_UPPER_BOUND * 7) / 10)
64
65 /* RL constants */
66
67 /* Period in us */
68 #define QM_RL_PERIOD    5
69
70 /* Period in 25MHz cycles */
71 #define QM_RL_PERIOD_CLK_25M    (25 * QM_RL_PERIOD)
72
73 /* RL increment value - rate is specified in mbps */
74 #define QM_RL_INC_VAL(rate) ({ \
75         typeof(rate) __rate = (rate); \
76         max_t(u32, \
77               (u32)(((__rate ? __rate : 1000000) * QM_RL_PERIOD * 101) / \
78                     (8 * 100)), \
79               1); })
80
81 /* PF RL Upper bound is set to 10 * burst size of 1ms in 50Gbps */
82 #define QM_PF_RL_UPPER_BOUND    62500000
83
84 /* Max PF RL increment value is 0.7 * upper bound */
85 #define QM_PF_RL_MAX_INC_VAL    ((QM_PF_RL_UPPER_BOUND * 7) / 10)
86
87 /* Vport RL Upper bound, link speed is in Mpbs */
88 #define QM_VP_RL_UPPER_BOUND(speed)     ((u32)max_t(u32, \
89                                                     QM_RL_INC_VAL(speed), \
90                                                     9700 + 1000))
91
92 /* Max Vport RL increment value is the Vport RL upper bound */
93 #define QM_VP_RL_MAX_INC_VAL(speed)     QM_VP_RL_UPPER_BOUND(speed)
94
95 /* Vport RL credit threshold in case of QM bypass */
96 #define QM_VP_RL_BYPASS_THRESH_SPEED    (QM_VP_RL_UPPER_BOUND(10000) - 1)
97
98 /* AFullOprtnstcCrdMask constants */
99 #define QM_OPPOR_LINE_VOQ_DEF   1
100 #define QM_OPPOR_FW_STOP_DEF    0
101 #define QM_OPPOR_PQ_EMPTY_DEF   1
102
103 /* Command Queue constants */
104
105 /* Pure LB CmdQ lines (+spare) */
106 #define PBF_CMDQ_PURE_LB_LINES  150
107
108 #define PBF_CMDQ_LINES_RT_OFFSET(ext_voq) \
109         (PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + \
110          (ext_voq) * (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET - \
111                 PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
112
113 #define PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq) \
114         (PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + \
115          (ext_voq) * (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET - \
116                 PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
117
118 /* Returns the VOQ line credit for the specified number of PBF command lines.
119  * PBF lines are specified in 256b units.
120  */
121 #define QM_VOQ_LINE_CRD(pbf_cmd_lines) \
122         ((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT)
123
124 /* BTB: blocks constants (block size = 256B) */
125
126 /* 256B blocks in 9700B packet */
127 #define BTB_JUMBO_PKT_BLOCKS    38
128
129 /* Headroom per-port */
130 #define BTB_HEADROOM_BLOCKS     BTB_JUMBO_PKT_BLOCKS
131 #define BTB_PURE_LB_FACTOR      10
132
133 /* Factored (hence really 0.7) */
134 #define BTB_PURE_LB_RATIO       7
135
136 /* QM stop command constants */
137 #define QM_STOP_PQ_MASK_WIDTH           32
138 #define QM_STOP_CMD_ADDR                2
139 #define QM_STOP_CMD_STRUCT_SIZE         2
140 #define QM_STOP_CMD_PAUSE_MASK_OFFSET   0
141 #define QM_STOP_CMD_PAUSE_MASK_SHIFT    0
142 #define QM_STOP_CMD_PAUSE_MASK_MASK     -1
143 #define QM_STOP_CMD_GROUP_ID_OFFSET     1
144 #define QM_STOP_CMD_GROUP_ID_SHIFT      16
145 #define QM_STOP_CMD_GROUP_ID_MASK       15
146 #define QM_STOP_CMD_PQ_TYPE_OFFSET      1
147 #define QM_STOP_CMD_PQ_TYPE_SHIFT       24
148 #define QM_STOP_CMD_PQ_TYPE_MASK        1
149 #define QM_STOP_CMD_MAX_POLL_COUNT      100
150 #define QM_STOP_CMD_POLL_PERIOD_US      500
151
152 /* QM command macros */
153 #define QM_CMD_STRUCT_SIZE(cmd) cmd ## _STRUCT_SIZE
154 #define QM_CMD_SET_FIELD(var, cmd, field, value) \
155         SET_FIELD(var[cmd ## _ ## field ## _OFFSET], \
156                   cmd ## _ ## field, \
157                   value)
158
159 #define QM_INIT_TX_PQ_MAP(p_hwfn, map, chip, pq_id, vp_pq_id, rl_valid,       \
160                           rl_id, ext_voq, wrr)                                \
161         do {                                                                  \
162                 u32 __reg = 0;                                                \
163                                                                               \
164                 BUILD_BUG_ON(sizeof((map).reg) != sizeof(__reg));             \
165                                                                               \
166                 SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_PQ_VALID, 1);          \
167                 SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_RL_VALID,              \
168                           !!(rl_valid));                                      \
169                 SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_VP_PQ_ID, (vp_pq_id)); \
170                 SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_RL_ID, (rl_id));       \
171                 SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_VOQ, (ext_voq));       \
172                 SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_WRR_WEIGHT_GROUP,      \
173                           (wrr));                                             \
174                                                                               \
175                 STORE_RT_REG((p_hwfn), QM_REG_TXPQMAP_RT_OFFSET + (pq_id),    \
176                              __reg);                                          \
177                 (map).reg = cpu_to_le32(__reg);                               \
178         } while (0)
179
180 #define WRITE_PQ_INFO_TO_RAM    1
181 #define PQ_INFO_ELEMENT(vp, pf, tc, port, rl_valid, rl) \
182         (((vp) << 0) | ((pf) << 12) | ((tc) << 16) | ((port) << 20) | \
183         ((rl_valid ? 1 : 0) << 22) | (((rl) & 255) << 24) | \
184         (((rl) >> 8) << 9))
185
186 #define PQ_INFO_RAM_GRC_ADDRESS(pq_id) \
187         XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + \
188         XSTORM_PQ_INFO_OFFSET(pq_id)
189
190 /******************** INTERNAL IMPLEMENTATION *********************/
191
192 /* Returns the external VOQ number */
193 static u8 qed_get_ext_voq(struct qed_hwfn *p_hwfn,
194                           u8 port_id, u8 tc, u8 max_phys_tcs_per_port)
195 {
196         if (tc == PURE_LB_TC)
197                 return NUM_OF_PHYS_TCS * MAX_NUM_PORTS_BB + port_id;
198         else
199                 return port_id * max_phys_tcs_per_port + tc;
200 }
201
202 /* Prepare PF RL enable/disable runtime init values */
203 static void qed_enable_pf_rl(struct qed_hwfn *p_hwfn, bool pf_rl_en)
204 {
205         STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
206         if (pf_rl_en) {
207                 u8 num_ext_voqs = MAX_NUM_VOQS_E4;
208                 u64 voq_bit_mask = ((u64)1 << num_ext_voqs) - 1;
209
210                 /* Enable RLs for all VOQs */
211                 STORE_RT_REG(p_hwfn,
212                              QM_REG_RLPFVOQENABLE_RT_OFFSET,
213                              (u32)voq_bit_mask);
214
215                 /* Write RL period */
216                 STORE_RT_REG(p_hwfn,
217                              QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
218                 STORE_RT_REG(p_hwfn,
219                              QM_REG_RLPFPERIODTIMER_RT_OFFSET,
220                              QM_RL_PERIOD_CLK_25M);
221
222                 /* Set credit threshold for QM bypass flow */
223                 if (QM_BYPASS_EN)
224                         STORE_RT_REG(p_hwfn,
225                                      QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET,
226                                      QM_PF_RL_UPPER_BOUND);
227         }
228 }
229
230 /* Prepare PF WFQ enable/disable runtime init values */
231 static void qed_enable_pf_wfq(struct qed_hwfn *p_hwfn, bool pf_wfq_en)
232 {
233         STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
234
235         /* Set credit threshold for QM bypass flow */
236         if (pf_wfq_en && QM_BYPASS_EN)
237                 STORE_RT_REG(p_hwfn,
238                              QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET,
239                              QM_WFQ_UPPER_BOUND);
240 }
241
242 /* Prepare global RL enable/disable runtime init values */
243 static void qed_enable_global_rl(struct qed_hwfn *p_hwfn, bool global_rl_en)
244 {
245         STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET,
246                      global_rl_en ? 1 : 0);
247         if (global_rl_en) {
248                 /* Write RL period (use timer 0 only) */
249                 STORE_RT_REG(p_hwfn,
250                              QM_REG_RLGLBLPERIOD_0_RT_OFFSET,
251                              QM_RL_PERIOD_CLK_25M);
252                 STORE_RT_REG(p_hwfn,
253                              QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET,
254                              QM_RL_PERIOD_CLK_25M);
255
256                 /* Set credit threshold for QM bypass flow */
257                 if (QM_BYPASS_EN)
258                         STORE_RT_REG(p_hwfn,
259                                      QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET,
260                                      QM_VP_RL_BYPASS_THRESH_SPEED);
261         }
262 }
263
264 /* Prepare VPORT WFQ enable/disable runtime init values */
265 static void qed_enable_vport_wfq(struct qed_hwfn *p_hwfn, bool vport_wfq_en)
266 {
267         STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET,
268                      vport_wfq_en ? 1 : 0);
269
270         /* Set credit threshold for QM bypass flow */
271         if (vport_wfq_en && QM_BYPASS_EN)
272                 STORE_RT_REG(p_hwfn,
273                              QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET,
274                              QM_WFQ_UPPER_BOUND);
275 }
276
277 /* Prepare runtime init values to allocate PBF command queue lines for
278  * the specified VOQ.
279  */
280 static void qed_cmdq_lines_voq_rt_init(struct qed_hwfn *p_hwfn,
281                                        u8 ext_voq, u16 cmdq_lines)
282 {
283         u32 qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
284
285         OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq),
286                          (u32)cmdq_lines);
287         STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + ext_voq,
288                      qm_line_crd);
289         STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + ext_voq,
290                      qm_line_crd);
291 }
292
293 /* Prepare runtime init values to allocate PBF command queue lines. */
294 static void qed_cmdq_lines_rt_init(
295         struct qed_hwfn *p_hwfn,
296         u8 max_ports_per_engine,
297         u8 max_phys_tcs_per_port,
298         struct init_qm_port_params port_params[MAX_NUM_PORTS])
299 {
300         u8 tc, ext_voq, port_id, num_tcs_in_port;
301         u8 num_ext_voqs = MAX_NUM_VOQS_E4;
302
303         /* Clear PBF lines of all VOQs */
304         for (ext_voq = 0; ext_voq < num_ext_voqs; ext_voq++)
305                 STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 0);
306
307         for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
308                 u16 phys_lines, phys_lines_per_tc;
309
310                 if (!port_params[port_id].active)
311                         continue;
312
313                 /* Find number of command queue lines to divide between the
314                  * active physical TCs.
315                  */
316                 phys_lines = port_params[port_id].num_pbf_cmd_lines;
317                 phys_lines -= PBF_CMDQ_PURE_LB_LINES;
318
319                 /* Find #lines per active physical TC */
320                 num_tcs_in_port = 0;
321                 for (tc = 0; tc < max_phys_tcs_per_port; tc++)
322                         if (((port_params[port_id].active_phys_tcs >>
323                               tc) & 0x1) == 1)
324                                 num_tcs_in_port++;
325                 phys_lines_per_tc = phys_lines / num_tcs_in_port;
326
327                 /* Init registers per active TC */
328                 for (tc = 0; tc < max_phys_tcs_per_port; tc++) {
329                         ext_voq = qed_get_ext_voq(p_hwfn,
330                                                   port_id,
331                                                   tc, max_phys_tcs_per_port);
332                         if (((port_params[port_id].active_phys_tcs >>
333                               tc) & 0x1) == 1)
334                                 qed_cmdq_lines_voq_rt_init(p_hwfn,
335                                                            ext_voq,
336                                                            phys_lines_per_tc);
337                 }
338
339                 /* Init registers for pure LB TC */
340                 ext_voq = qed_get_ext_voq(p_hwfn,
341                                           port_id,
342                                           PURE_LB_TC, max_phys_tcs_per_port);
343                 qed_cmdq_lines_voq_rt_init(p_hwfn, ext_voq,
344                                            PBF_CMDQ_PURE_LB_LINES);
345         }
346 }
347
348 /* Prepare runtime init values to allocate guaranteed BTB blocks for the
349  * specified port. The guaranteed BTB space is divided between the TCs as
350  * follows (shared space Is currently not used):
351  * 1. Parameters:
352  *    B - BTB blocks for this port
353  *    C - Number of physical TCs for this port
354  * 2. Calculation:
355  *    a. 38 blocks (9700B jumbo frame) are allocated for global per port
356  *       headroom.
357  *    b. B = B - 38 (remainder after global headroom allocation).
358  *    c. MAX(38,B/(C+0.7)) blocks are allocated for the pure LB VOQ.
359  *    d. B = B - MAX(38, B/(C+0.7)) (remainder after pure LB allocation).
360  *    e. B/C blocks are allocated for each physical TC.
361  * Assumptions:
362  * - MTU is up to 9700 bytes (38 blocks)
363  * - All TCs are considered symmetrical (same rate and packet size)
364  * - No optimization for lossy TC (all are considered lossless). Shared space
365  *   is not enabled and allocated for each TC.
366  */
367 static void qed_btb_blocks_rt_init(
368         struct qed_hwfn *p_hwfn,
369         u8 max_ports_per_engine,
370         u8 max_phys_tcs_per_port,
371         struct init_qm_port_params port_params[MAX_NUM_PORTS])
372 {
373         u32 usable_blocks, pure_lb_blocks, phys_blocks;
374         u8 tc, ext_voq, port_id, num_tcs_in_port;
375
376         for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
377                 if (!port_params[port_id].active)
378                         continue;
379
380                 /* Subtract headroom blocks */
381                 usable_blocks = port_params[port_id].num_btb_blocks -
382                                 BTB_HEADROOM_BLOCKS;
383
384                 /* Find blocks per physical TC. Use factor to avoid floating
385                  * arithmethic.
386                  */
387                 num_tcs_in_port = 0;
388                 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++)
389                         if (((port_params[port_id].active_phys_tcs >>
390                               tc) & 0x1) == 1)
391                                 num_tcs_in_port++;
392
393                 pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) /
394                                  (num_tcs_in_port * BTB_PURE_LB_FACTOR +
395                                   BTB_PURE_LB_RATIO);
396                 pure_lb_blocks = max_t(u32, BTB_JUMBO_PKT_BLOCKS,
397                                        pure_lb_blocks / BTB_PURE_LB_FACTOR);
398                 phys_blocks = (usable_blocks - pure_lb_blocks) /
399                               num_tcs_in_port;
400
401                 /* Init physical TCs */
402                 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
403                         if (((port_params[port_id].active_phys_tcs >>
404                               tc) & 0x1) == 1) {
405                                 ext_voq =
406                                         qed_get_ext_voq(p_hwfn,
407                                                         port_id,
408                                                         tc,
409                                                         max_phys_tcs_per_port);
410                                 STORE_RT_REG(p_hwfn,
411                                              PBF_BTB_GUARANTEED_RT_OFFSET
412                                              (ext_voq), phys_blocks);
413                         }
414                 }
415
416                 /* Init pure LB TC */
417                 ext_voq = qed_get_ext_voq(p_hwfn,
418                                           port_id,
419                                           PURE_LB_TC, max_phys_tcs_per_port);
420                 STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq),
421                              pure_lb_blocks);
422         }
423 }
424
425 /* Prepare runtime init values for the specified RL.
426  * Set max link speed (100Gbps) per rate limiter.
427  * Return -1 on error.
428  */
429 static int qed_global_rl_rt_init(struct qed_hwfn *p_hwfn)
430 {
431         u32 upper_bound = QM_VP_RL_UPPER_BOUND(QM_MAX_LINK_SPEED) |
432                           (u32)QM_RL_CRD_REG_SIGN_BIT;
433         u32 inc_val;
434         u16 rl_id;
435
436         /* Go over all global RLs */
437         for (rl_id = 0; rl_id < MAX_QM_GLOBAL_RLS; rl_id++) {
438                 inc_val = QM_RL_INC_VAL(QM_MAX_LINK_SPEED);
439
440                 STORE_RT_REG(p_hwfn,
441                              QM_REG_RLGLBLCRD_RT_OFFSET + rl_id,
442                              (u32)QM_RL_CRD_REG_SIGN_BIT);
443                 STORE_RT_REG(p_hwfn,
444                              QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + rl_id,
445                              upper_bound);
446                 STORE_RT_REG(p_hwfn,
447                              QM_REG_RLGLBLINCVAL_RT_OFFSET + rl_id, inc_val);
448         }
449
450         return 0;
451 }
452
453 /* Prepare Tx PQ mapping runtime init values for the specified PF */
454 static void qed_tx_pq_map_rt_init(struct qed_hwfn *p_hwfn,
455                                   struct qed_ptt *p_ptt,
456                                   struct qed_qm_pf_rt_init_params *p_params,
457                                   u32 base_mem_addr_4kb)
458 {
459         u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
460         struct init_qm_vport_params *vport_params = p_params->vport_params;
461         u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE;
462         u16 num_pqs, first_pq_group, last_pq_group, i, j, pq_id, pq_group;
463         struct init_qm_pq_params *pq_params = p_params->pq_params;
464         u32 pq_mem_4kb, vport_pq_mem_4kb, mem_addr_4kb;
465
466         num_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
467
468         first_pq_group = p_params->start_pq / QM_PF_QUEUE_GROUP_SIZE;
469         last_pq_group = (p_params->start_pq + num_pqs - 1) /
470                         QM_PF_QUEUE_GROUP_SIZE;
471
472         pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids);
473         vport_pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_vf_cids);
474         mem_addr_4kb = base_mem_addr_4kb;
475
476         /* Set mapping from PQ group to PF */
477         for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
478                 STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group,
479                              (u32)(p_params->pf_id));
480
481         /* Set PQ sizes */
482         STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET,
483                      QM_PQ_SIZE_256B(p_params->num_pf_cids));
484         STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET,
485                      QM_PQ_SIZE_256B(p_params->num_vf_cids));
486
487         /* Go over all Tx PQs */
488         for (i = 0, pq_id = p_params->start_pq; i < num_pqs; i++, pq_id++) {
489                 u16 *p_first_tx_pq_id, vport_id_in_pf;
490                 struct qm_rf_pq_map_e4 tx_pq_map;
491                 u8 tc_id = pq_params[i].tc_id;
492                 bool is_vf_pq;
493                 u8 ext_voq;
494
495                 ext_voq = qed_get_ext_voq(p_hwfn,
496                                           pq_params[i].port_id,
497                                           tc_id,
498                                           p_params->max_phys_tcs_per_port);
499                 is_vf_pq = (i >= p_params->num_pf_pqs);
500
501                 /* Update first Tx PQ of VPORT/TC */
502                 vport_id_in_pf = pq_params[i].vport_id - p_params->start_vport;
503                 p_first_tx_pq_id =
504                     &vport_params[vport_id_in_pf].first_tx_pq_id[tc_id];
505                 if (*p_first_tx_pq_id == QM_INVALID_PQ_ID) {
506                         u32 map_val =
507                                 (ext_voq << QM_WFQ_VP_PQ_VOQ_SHIFT) |
508                                 (p_params->pf_id << QM_WFQ_VP_PQ_PF_E4_SHIFT);
509
510                         /* Create new VP PQ */
511                         *p_first_tx_pq_id = pq_id;
512
513                         /* Map VP PQ to VOQ and PF */
514                         STORE_RT_REG(p_hwfn,
515                                      QM_REG_WFQVPMAP_RT_OFFSET +
516                                      *p_first_tx_pq_id,
517                                      map_val);
518                 }
519
520                 /* Prepare PQ map entry */
521                 QM_INIT_TX_PQ_MAP(p_hwfn,
522                                   tx_pq_map,
523                                   E4,
524                                   pq_id,
525                                   *p_first_tx_pq_id,
526                                   pq_params[i].rl_valid,
527                                   pq_params[i].rl_id,
528                                   ext_voq, pq_params[i].wrr_group);
529
530                 /* Set PQ base address */
531                 STORE_RT_REG(p_hwfn,
532                              QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id,
533                              mem_addr_4kb);
534
535                 /* Clear PQ pointer table entry (64 bit) */
536                 if (p_params->is_pf_loading)
537                         for (j = 0; j < 2; j++)
538                                 STORE_RT_REG(p_hwfn,
539                                              QM_REG_PTRTBLTX_RT_OFFSET +
540                                              (pq_id * 2) + j, 0);
541
542                 /* Write PQ info to RAM */
543                 if (WRITE_PQ_INFO_TO_RAM != 0) {
544                         u32 pq_info = 0;
545
546                         pq_info = PQ_INFO_ELEMENT(*p_first_tx_pq_id,
547                                                   p_params->pf_id,
548                                                   tc_id,
549                                                   pq_params[i].port_id,
550                                                   pq_params[i].rl_valid,
551                                                   pq_params[i].rl_id);
552                         qed_wr(p_hwfn, p_ptt, PQ_INFO_RAM_GRC_ADDRESS(pq_id),
553                                pq_info);
554                 }
555
556                 /* If VF PQ, add indication to PQ VF mask */
557                 if (is_vf_pq) {
558                         tx_pq_vf_mask[pq_id /
559                                       QM_PF_QUEUE_GROUP_SIZE] |=
560                             BIT((pq_id % QM_PF_QUEUE_GROUP_SIZE));
561                         mem_addr_4kb += vport_pq_mem_4kb;
562                 } else {
563                         mem_addr_4kb += pq_mem_4kb;
564                 }
565         }
566
567         /* Store Tx PQ VF mask to size select register */
568         for (i = 0; i < num_tx_pq_vf_masks; i++)
569                 if (tx_pq_vf_mask[i])
570                         STORE_RT_REG(p_hwfn,
571                                      QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i,
572                                      tx_pq_vf_mask[i]);
573 }
574
575 /* Prepare Other PQ mapping runtime init values for the specified PF */
576 static void qed_other_pq_map_rt_init(struct qed_hwfn *p_hwfn,
577                                      u8 pf_id,
578                                      bool is_pf_loading,
579                                      u32 num_pf_cids,
580                                      u32 num_tids, u32 base_mem_addr_4kb)
581 {
582         u32 pq_size, pq_mem_4kb, mem_addr_4kb;
583         u16 i, j, pq_id, pq_group;
584
585         /* A single other PQ group is used in each PF, where PQ group i is used
586          * in PF i.
587          */
588         pq_group = pf_id;
589         pq_size = num_pf_cids + num_tids;
590         pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
591         mem_addr_4kb = base_mem_addr_4kb;
592
593         /* Map PQ group to PF */
594         STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group,
595                      (u32)(pf_id));
596
597         /* Set PQ sizes */
598         STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET,
599                      QM_PQ_SIZE_256B(pq_size));
600
601         for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE;
602              i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
603                 /* Set PQ base address */
604                 STORE_RT_REG(p_hwfn,
605                              QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id,
606                              mem_addr_4kb);
607
608                 /* Clear PQ pointer table entry */
609                 if (is_pf_loading)
610                         for (j = 0; j < 2; j++)
611                                 STORE_RT_REG(p_hwfn,
612                                              QM_REG_PTRTBLOTHER_RT_OFFSET +
613                                              (pq_id * 2) + j, 0);
614
615                 mem_addr_4kb += pq_mem_4kb;
616         }
617 }
618
619 /* Prepare PF WFQ runtime init values for the specified PF.
620  * Return -1 on error.
621  */
622 static int qed_pf_wfq_rt_init(struct qed_hwfn *p_hwfn,
623
624                               struct qed_qm_pf_rt_init_params *p_params)
625 {
626         u16 num_tx_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
627         struct init_qm_pq_params *pq_params = p_params->pq_params;
628         u32 inc_val, crd_reg_offset;
629         u8 ext_voq;
630         u16 i;
631
632         inc_val = QM_WFQ_INC_VAL(p_params->pf_wfq);
633         if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
634                 DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
635                 return -1;
636         }
637
638         for (i = 0; i < num_tx_pqs; i++) {
639                 ext_voq = qed_get_ext_voq(p_hwfn,
640                                           pq_params[i].port_id,
641                                           pq_params[i].tc_id,
642                                           p_params->max_phys_tcs_per_port);
643                 crd_reg_offset =
644                         (p_params->pf_id < MAX_NUM_PFS_BB ?
645                          QM_REG_WFQPFCRD_RT_OFFSET :
646                          QM_REG_WFQPFCRD_MSB_RT_OFFSET) +
647                         ext_voq * MAX_NUM_PFS_BB +
648                         (p_params->pf_id % MAX_NUM_PFS_BB);
649                 OVERWRITE_RT_REG(p_hwfn,
650                                  crd_reg_offset, (u32)QM_WFQ_CRD_REG_SIGN_BIT);
651         }
652
653         STORE_RT_REG(p_hwfn,
654                      QM_REG_WFQPFUPPERBOUND_RT_OFFSET + p_params->pf_id,
655                      QM_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT);
656         STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + p_params->pf_id,
657                      inc_val);
658
659         return 0;
660 }
661
662 /* Prepare PF RL runtime init values for the specified PF.
663  * Return -1 on error.
664  */
665 static int qed_pf_rl_rt_init(struct qed_hwfn *p_hwfn, u8 pf_id, u32 pf_rl)
666 {
667         u32 inc_val = QM_RL_INC_VAL(pf_rl);
668
669         if (inc_val > QM_PF_RL_MAX_INC_VAL) {
670                 DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
671                 return -1;
672         }
673
674         STORE_RT_REG(p_hwfn,
675                      QM_REG_RLPFCRD_RT_OFFSET + pf_id,
676                      (u32)QM_RL_CRD_REG_SIGN_BIT);
677         STORE_RT_REG(p_hwfn,
678                      QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id,
679                      QM_PF_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT);
680         STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
681
682         return 0;
683 }
684
685 /* Prepare VPORT WFQ runtime init values for the specified VPORTs.
686  * Return -1 on error.
687  */
688 static int qed_vp_wfq_rt_init(struct qed_hwfn *p_hwfn,
689                               u16 num_vports,
690                               struct init_qm_vport_params *vport_params)
691 {
692         u16 vport_pq_id, i;
693         u32 inc_val;
694         u8 tc;
695
696         /* Go over all PF VPORTs */
697         for (i = 0; i < num_vports; i++) {
698                 if (!vport_params[i].wfq)
699                         continue;
700
701                 inc_val = QM_WFQ_INC_VAL(vport_params[i].wfq);
702                 if (inc_val > QM_WFQ_MAX_INC_VAL) {
703                         DP_NOTICE(p_hwfn,
704                                   "Invalid VPORT WFQ weight configuration\n");
705                         return -1;
706                 }
707
708                 /* Each VPORT can have several VPORT PQ IDs for various TCs */
709                 for (tc = 0; tc < NUM_OF_TCS; tc++) {
710                         vport_pq_id = vport_params[i].first_tx_pq_id[tc];
711                         if (vport_pq_id != QM_INVALID_PQ_ID) {
712                                 STORE_RT_REG(p_hwfn,
713                                              QM_REG_WFQVPCRD_RT_OFFSET +
714                                              vport_pq_id,
715                                              (u32)QM_WFQ_CRD_REG_SIGN_BIT);
716                                 STORE_RT_REG(p_hwfn,
717                                              QM_REG_WFQVPWEIGHT_RT_OFFSET +
718                                              vport_pq_id, inc_val);
719                         }
720                 }
721         }
722
723         return 0;
724 }
725
726 static bool qed_poll_on_qm_cmd_ready(struct qed_hwfn *p_hwfn,
727                                      struct qed_ptt *p_ptt)
728 {
729         u32 reg_val, i;
730
731         for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && !reg_val;
732              i++) {
733                 udelay(QM_STOP_CMD_POLL_PERIOD_US);
734                 reg_val = qed_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
735         }
736
737         /* Check if timeout while waiting for SDM command ready */
738         if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
739                 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
740                            "Timeout when waiting for QM SDM command ready signal\n");
741                 return false;
742         }
743
744         return true;
745 }
746
747 static bool qed_send_qm_cmd(struct qed_hwfn *p_hwfn,
748                             struct qed_ptt *p_ptt,
749                             u32 cmd_addr, u32 cmd_data_lsb, u32 cmd_data_msb)
750 {
751         if (!qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
752                 return false;
753
754         qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
755         qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
756         qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
757         qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
758         qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
759
760         return qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
761 }
762
763 /******************** INTERFACE IMPLEMENTATION *********************/
764
765 u32 qed_qm_pf_mem_size(u32 num_pf_cids,
766                        u32 num_vf_cids,
767                        u32 num_tids, u16 num_pf_pqs, u16 num_vf_pqs)
768 {
769         return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
770                QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
771                QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
772 }
773
774 int qed_qm_common_rt_init(struct qed_hwfn *p_hwfn,
775                           struct qed_qm_common_rt_init_params *p_params)
776 {
777         u32 mask = 0;
778
779         /* Init AFullOprtnstcCrdMask */
780         SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_LINEVOQ,
781                   QM_OPPOR_LINE_VOQ_DEF);
782         SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ, QM_BYTE_CRD_EN);
783         SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFWFQ, p_params->pf_wfq_en);
784         SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPWFQ, p_params->vport_wfq_en);
785         SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFRL, p_params->pf_rl_en);
786         SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPQCNRL,
787                   p_params->global_rl_en);
788         SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_FWPAUSE, QM_OPPOR_FW_STOP_DEF);
789         SET_FIELD(mask,
790                   QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY, QM_OPPOR_PQ_EMPTY_DEF);
791         STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
792
793         /* Enable/disable PF RL */
794         qed_enable_pf_rl(p_hwfn, p_params->pf_rl_en);
795
796         /* Enable/disable PF WFQ */
797         qed_enable_pf_wfq(p_hwfn, p_params->pf_wfq_en);
798
799         /* Enable/disable global RL */
800         qed_enable_global_rl(p_hwfn, p_params->global_rl_en);
801
802         /* Enable/disable VPORT WFQ */
803         qed_enable_vport_wfq(p_hwfn, p_params->vport_wfq_en);
804
805         /* Init PBF CMDQ line credit */
806         qed_cmdq_lines_rt_init(p_hwfn,
807                                p_params->max_ports_per_engine,
808                                p_params->max_phys_tcs_per_port,
809                                p_params->port_params);
810
811         /* Init BTB blocks in PBF */
812         qed_btb_blocks_rt_init(p_hwfn,
813                                p_params->max_ports_per_engine,
814                                p_params->max_phys_tcs_per_port,
815                                p_params->port_params);
816
817         qed_global_rl_rt_init(p_hwfn);
818
819         return 0;
820 }
821
822 int qed_qm_pf_rt_init(struct qed_hwfn *p_hwfn,
823                       struct qed_ptt *p_ptt,
824                       struct qed_qm_pf_rt_init_params *p_params)
825 {
826         struct init_qm_vport_params *vport_params = p_params->vport_params;
827         u32 other_mem_size_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids +
828                                                p_params->num_tids) *
829                                  QM_OTHER_PQS_PER_PF;
830         u16 i;
831         u8 tc;
832
833
834         /* Clear first Tx PQ ID array for each VPORT */
835         for (i = 0; i < p_params->num_vports; i++)
836                 for (tc = 0; tc < NUM_OF_TCS; tc++)
837                         vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
838
839         /* Map Other PQs (if any) */
840         qed_other_pq_map_rt_init(p_hwfn,
841                                  p_params->pf_id,
842                                  p_params->is_pf_loading, p_params->num_pf_cids,
843                                  p_params->num_tids, 0);
844
845         /* Map Tx PQs */
846         qed_tx_pq_map_rt_init(p_hwfn, p_ptt, p_params, other_mem_size_4kb);
847
848         /* Init PF WFQ */
849         if (p_params->pf_wfq)
850                 if (qed_pf_wfq_rt_init(p_hwfn, p_params))
851                         return -1;
852
853         /* Init PF RL */
854         if (qed_pf_rl_rt_init(p_hwfn, p_params->pf_id, p_params->pf_rl))
855                 return -1;
856
857         /* Init VPORT WFQ */
858         if (qed_vp_wfq_rt_init(p_hwfn, p_params->num_vports, vport_params))
859                 return -1;
860
861         return 0;
862 }
863
864 int qed_init_pf_wfq(struct qed_hwfn *p_hwfn,
865                     struct qed_ptt *p_ptt, u8 pf_id, u16 pf_wfq)
866 {
867         u32 inc_val = QM_WFQ_INC_VAL(pf_wfq);
868
869         if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
870                 DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
871                 return -1;
872         }
873
874         qed_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
875
876         return 0;
877 }
878
879 int qed_init_pf_rl(struct qed_hwfn *p_hwfn,
880                    struct qed_ptt *p_ptt, u8 pf_id, u32 pf_rl)
881 {
882         u32 inc_val = QM_RL_INC_VAL(pf_rl);
883
884         if (inc_val > QM_PF_RL_MAX_INC_VAL) {
885                 DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
886                 return -1;
887         }
888
889         qed_wr(p_hwfn,
890                p_ptt, QM_REG_RLPFCRD + pf_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
891         qed_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
892
893         return 0;
894 }
895
896 int qed_init_vport_wfq(struct qed_hwfn *p_hwfn,
897                        struct qed_ptt *p_ptt,
898                        u16 first_tx_pq_id[NUM_OF_TCS], u16 wfq)
899 {
900         u16 vport_pq_id;
901         u32 inc_val;
902         u8 tc;
903
904         inc_val = QM_WFQ_INC_VAL(wfq);
905         if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
906                 DP_NOTICE(p_hwfn, "Invalid VPORT WFQ configuration.\n");
907                 return -1;
908         }
909
910         /* A VPORT can have several VPORT PQ IDs for various TCs */
911         for (tc = 0; tc < NUM_OF_TCS; tc++) {
912                 vport_pq_id = first_tx_pq_id[tc];
913                 if (vport_pq_id != QM_INVALID_PQ_ID)
914                         qed_wr(p_hwfn,
915                                p_ptt,
916                                QM_REG_WFQVPWEIGHT + vport_pq_id * 4, inc_val);
917         }
918
919         return 0;
920 }
921
922 int qed_init_global_rl(struct qed_hwfn *p_hwfn,
923                        struct qed_ptt *p_ptt, u16 rl_id, u32 rate_limit)
924 {
925         u32 inc_val;
926
927         inc_val = QM_RL_INC_VAL(rate_limit);
928         if (inc_val > QM_VP_RL_MAX_INC_VAL(rate_limit)) {
929                 DP_NOTICE(p_hwfn, "Invalid rate limit configuration.\n");
930                 return -1;
931         }
932
933         qed_wr(p_hwfn, p_ptt,
934                QM_REG_RLGLBLCRD + rl_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
935         qed_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + rl_id * 4, inc_val);
936
937         return 0;
938 }
939
940 bool qed_send_qm_stop_cmd(struct qed_hwfn *p_hwfn,
941                           struct qed_ptt *p_ptt,
942                           bool is_release_cmd,
943                           bool is_tx_pq, u16 start_pq, u16 num_pqs)
944 {
945         u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 };
946         u32 pq_mask = 0, last_pq, pq_id;
947
948         last_pq = start_pq + num_pqs - 1;
949
950         /* Set command's PQ type */
951         QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
952
953         /* Go over requested PQs */
954         for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
955                 /* Set PQ bit in mask (stop command only) */
956                 if (!is_release_cmd)
957                         pq_mask |= BIT((pq_id % QM_STOP_PQ_MASK_WIDTH));
958
959                 /* If last PQ or end of PQ mask, write command */
960                 if ((pq_id == last_pq) ||
961                     (pq_id % QM_STOP_PQ_MASK_WIDTH ==
962                      (QM_STOP_PQ_MASK_WIDTH - 1))) {
963                         QM_CMD_SET_FIELD(cmd_arr,
964                                          QM_STOP_CMD, PAUSE_MASK, pq_mask);
965                         QM_CMD_SET_FIELD(cmd_arr,
966                                          QM_STOP_CMD,
967                                          GROUP_ID,
968                                          pq_id / QM_STOP_PQ_MASK_WIDTH);
969                         if (!qed_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR,
970                                              cmd_arr[0], cmd_arr[1]))
971                                 return false;
972                         pq_mask = 0;
973                 }
974         }
975
976         return true;
977 }
978
979 #define SET_TUNNEL_TYPE_ENABLE_BIT(var, offset, enable) \
980         do { \
981                 typeof(var) *__p_var = &(var); \
982                 typeof(offset) __offset = offset; \
983                 *__p_var = (*__p_var & ~BIT(__offset)) | \
984                            ((enable) ? BIT(__offset) : 0); \
985         } while (0)
986
987 #define PRS_ETH_TUNN_OUTPUT_FORMAT     0xF4DAB910
988 #define PRS_ETH_OUTPUT_FORMAT          0xFFFF4910
989
990 #define ARR_REG_WR(dev, ptt, addr, arr, arr_size) \
991         do { \
992                 u32 i; \
993                 \
994                 for (i = 0; i < (arr_size); i++) \
995                         qed_wr(dev, ptt, \
996                                ((addr) + (4 * i)), \
997                                ((u32 *)&(arr))[i]); \
998         } while (0)
999
1000 /**
1001  * qed_dmae_to_grc() - Internal function for writing from host to
1002  * wide-bus registers (split registers are not supported yet).
1003  *
1004  * @p_hwfn: HW device data.
1005  * @p_ptt: PTT window used for writing the registers.
1006  * @p_data: Pointer to source data.
1007  * @addr: Destination register address.
1008  * @len_in_dwords: Data length in dwords (u32).
1009  *
1010  * Return: Length of the written data in dwords (u32) or -1 on invalid
1011  *         input.
1012  */
1013 static int qed_dmae_to_grc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
1014                            __le32 *p_data, u32 addr, u32 len_in_dwords)
1015 {
1016         struct qed_dmae_params params = {};
1017         u32 *data_cpu;
1018         int rc;
1019
1020         if (!p_data)
1021                 return -1;
1022
1023         /* Set DMAE params */
1024         SET_FIELD(params.flags, QED_DMAE_PARAMS_COMPLETION_DST, 1);
1025
1026         /* Execute DMAE command */
1027         rc = qed_dmae_host2grc(p_hwfn, p_ptt,
1028                                (u64)(uintptr_t)(p_data),
1029                                addr, len_in_dwords, &params);
1030
1031         /* If not read using DMAE, read using GRC */
1032         if (rc) {
1033                 DP_VERBOSE(p_hwfn,
1034                            QED_MSG_DEBUG,
1035                            "Failed writing to chip using DMAE, using GRC instead\n");
1036
1037                 /* Swap to CPU byteorder and write to registers using GRC */
1038                 data_cpu = (__force u32 *)p_data;
1039                 le32_to_cpu_array(data_cpu, len_in_dwords);
1040
1041                 ARR_REG_WR(p_hwfn, p_ptt, addr, data_cpu, len_in_dwords);
1042                 cpu_to_le32_array(data_cpu, len_in_dwords);
1043         }
1044
1045         return len_in_dwords;
1046 }
1047
1048 void qed_set_vxlan_dest_port(struct qed_hwfn *p_hwfn,
1049                              struct qed_ptt *p_ptt, u16 dest_port)
1050 {
1051         /* Update PRS register */
1052         qed_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
1053
1054         /* Update NIG register */
1055         qed_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
1056
1057         /* Update PBF register */
1058         qed_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
1059 }
1060
1061 void qed_set_vxlan_enable(struct qed_hwfn *p_hwfn,
1062                           struct qed_ptt *p_ptt, bool vxlan_enable)
1063 {
1064         u32 reg_val;
1065         u8 shift;
1066
1067         /* Update PRS register */
1068         reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1069         shift = PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE_SHIFT;
1070         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable);
1071         qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1072         if (reg_val) {
1073                 reg_val =
1074                     qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1075
1076                 /* Update output  only if tunnel blocks not included. */
1077                 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1078                         qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1079                                (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1080         }
1081
1082         /* Update NIG register */
1083         reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1084         shift = NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT;
1085         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable);
1086         qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1087
1088         /* Update DORQ register */
1089         qed_wr(p_hwfn,
1090                p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN, vxlan_enable ? 1 : 0);
1091 }
1092
1093 void qed_set_gre_enable(struct qed_hwfn *p_hwfn,
1094                         struct qed_ptt *p_ptt,
1095                         bool eth_gre_enable, bool ip_gre_enable)
1096 {
1097         u32 reg_val;
1098         u8 shift;
1099
1100         /* Update PRS register */
1101         reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1102         shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE_SHIFT;
1103         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable);
1104         shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE_SHIFT;
1105         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable);
1106         qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1107         if (reg_val) {
1108                 reg_val =
1109                     qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1110
1111                 /* Update output  only if tunnel blocks not included. */
1112                 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1113                         qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1114                                (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1115         }
1116
1117         /* Update NIG register */
1118         reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1119         shift = NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT;
1120         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable);
1121         shift = NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT;
1122         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable);
1123         qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1124
1125         /* Update DORQ registers */
1126         qed_wr(p_hwfn,
1127                p_ptt,
1128                DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN, eth_gre_enable ? 1 : 0);
1129         qed_wr(p_hwfn,
1130                p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN, ip_gre_enable ? 1 : 0);
1131 }
1132
1133 void qed_set_geneve_dest_port(struct qed_hwfn *p_hwfn,
1134                               struct qed_ptt *p_ptt, u16 dest_port)
1135 {
1136         /* Update PRS register */
1137         qed_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
1138
1139         /* Update NIG register */
1140         qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
1141
1142         /* Update PBF register */
1143         qed_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
1144 }
1145
1146 void qed_set_geneve_enable(struct qed_hwfn *p_hwfn,
1147                            struct qed_ptt *p_ptt,
1148                            bool eth_geneve_enable, bool ip_geneve_enable)
1149 {
1150         u32 reg_val;
1151         u8 shift;
1152
1153         /* Update PRS register */
1154         reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1155         shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE_SHIFT;
1156         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_geneve_enable);
1157         shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE_SHIFT;
1158         SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_geneve_enable);
1159         qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1160         if (reg_val) {
1161                 reg_val =
1162                     qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1163
1164                 /* Update output  only if tunnel blocks not included. */
1165                 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1166                         qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1167                                (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1168         }
1169
1170         /* Update NIG register */
1171         qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE,
1172                eth_geneve_enable ? 1 : 0);
1173         qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0);
1174
1175         /* EDPM with geneve tunnel not supported in BB */
1176         if (QED_IS_BB_B0(p_hwfn->cdev))
1177                 return;
1178
1179         /* Update DORQ registers */
1180         qed_wr(p_hwfn,
1181                p_ptt,
1182                DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN_K2_E5,
1183                eth_geneve_enable ? 1 : 0);
1184         qed_wr(p_hwfn,
1185                p_ptt,
1186                DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN_K2_E5,
1187                ip_geneve_enable ? 1 : 0);
1188 }
1189
1190 #define PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET      3
1191 #define PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT   -925189872
1192
1193 void qed_set_vxlan_no_l2_enable(struct qed_hwfn *p_hwfn,
1194                                 struct qed_ptt *p_ptt, bool enable)
1195 {
1196         u32 reg_val, cfg_mask;
1197
1198         /* read PRS config register */
1199         reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_MSG_INFO);
1200
1201         /* set VXLAN_NO_L2_ENABLE mask */
1202         cfg_mask = BIT(PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET);
1203
1204         if (enable) {
1205                 /* set VXLAN_NO_L2_ENABLE flag */
1206                 reg_val |= cfg_mask;
1207
1208                 /* update PRS FIC  register */
1209                 qed_wr(p_hwfn,
1210                        p_ptt,
1211                        PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1212                        (u32)PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT);
1213         } else {
1214                 /* clear VXLAN_NO_L2_ENABLE flag */
1215                 reg_val &= ~cfg_mask;
1216         }
1217
1218         /* write PRS config register */
1219         qed_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, reg_val);
1220 }
1221
1222 #define T_ETH_PACKET_ACTION_GFT_EVENTID  23
1223 #define PARSER_ETH_CONN_GFT_ACTION_CM_HDR  272
1224 #define T_ETH_PACKET_MATCH_RFS_EVENTID 25
1225 #define PARSER_ETH_CONN_CM_HDR 0
1226 #define CAM_LINE_SIZE sizeof(u32)
1227 #define RAM_LINE_SIZE sizeof(u64)
1228 #define REG_SIZE sizeof(u32)
1229
1230 void qed_gft_disable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 pf_id)
1231 {
1232         struct regpair ram_line = { };
1233
1234         /* Disable gft search for PF */
1235         qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0);
1236
1237         /* Clean ram & cam for next gft session */
1238
1239         /* Zero camline */
1240         qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id, 0);
1241
1242         /* Zero ramline */
1243         qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1244                         PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
1245                         sizeof(ram_line) / REG_SIZE);
1246 }
1247
1248 void qed_gft_config(struct qed_hwfn *p_hwfn,
1249                     struct qed_ptt *p_ptt,
1250                     u16 pf_id,
1251                     bool tcp,
1252                     bool udp,
1253                     bool ipv4, bool ipv6, enum gft_profile_type profile_type)
1254 {
1255         struct regpair ram_line;
1256         u32 search_non_ip_as_gft;
1257         u32 reg_val, cam_line;
1258         u32 lo = 0, hi = 0;
1259
1260         if (!ipv6 && !ipv4)
1261                 DP_NOTICE(p_hwfn,
1262                           "gft_config: must accept at least on of - ipv4 or ipv6'\n");
1263         if (!tcp && !udp)
1264                 DP_NOTICE(p_hwfn,
1265                           "gft_config: must accept at least on of - udp or tcp\n");
1266         if (profile_type >= MAX_GFT_PROFILE_TYPE)
1267                 DP_NOTICE(p_hwfn, "gft_config: unsupported gft_profile_type\n");
1268
1269         /* Set RFS event ID to be awakened i Tstorm By Prs */
1270         reg_val = T_ETH_PACKET_MATCH_RFS_EVENTID <<
1271                   PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
1272         reg_val |= PARSER_ETH_CONN_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
1273         qed_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, reg_val);
1274
1275         /* Do not load context only cid in PRS on match. */
1276         qed_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0);
1277
1278         /* Do not use tenant ID exist bit for gft search */
1279         qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TENANT_ID, 0);
1280
1281         /* Set Cam */
1282         cam_line = 0;
1283         SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_VALID, 1);
1284
1285         /* Filters are per PF!! */
1286         SET_FIELD(cam_line,
1287                   GFT_CAM_LINE_MAPPED_PF_ID_MASK,
1288                   GFT_CAM_LINE_MAPPED_PF_ID_MASK_MASK);
1289         SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID, pf_id);
1290
1291         if (!(tcp && udp)) {
1292                 SET_FIELD(cam_line,
1293                           GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK,
1294                           GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK_MASK);
1295                 if (tcp)
1296                         SET_FIELD(cam_line,
1297                                   GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1298                                   GFT_PROFILE_TCP_PROTOCOL);
1299                 else
1300                         SET_FIELD(cam_line,
1301                                   GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1302                                   GFT_PROFILE_UDP_PROTOCOL);
1303         }
1304
1305         if (!(ipv4 && ipv6)) {
1306                 SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1);
1307                 if (ipv4)
1308                         SET_FIELD(cam_line,
1309                                   GFT_CAM_LINE_MAPPED_IP_VERSION,
1310                                   GFT_PROFILE_IPV4);
1311                 else
1312                         SET_FIELD(cam_line,
1313                                   GFT_CAM_LINE_MAPPED_IP_VERSION,
1314                                   GFT_PROFILE_IPV6);
1315         }
1316
1317         /* Write characteristics to cam */
1318         qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id,
1319                cam_line);
1320         cam_line =
1321             qed_rd(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id);
1322
1323         /* Write line to RAM - compare to filter 4 tuple */
1324
1325         /* Search no IP as GFT */
1326         search_non_ip_as_gft = 0;
1327
1328         /* Tunnel type */
1329         SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_DST_PORT, 1);
1330         SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_OVER_IP_PROTOCOL, 1);
1331
1332         if (profile_type == GFT_PROFILE_TYPE_4_TUPLE) {
1333                 SET_FIELD(hi, GFT_RAM_LINE_DST_IP, 1);
1334                 SET_FIELD(hi, GFT_RAM_LINE_SRC_IP, 1);
1335                 SET_FIELD(hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1336                 SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1337                 SET_FIELD(lo, GFT_RAM_LINE_SRC_PORT, 1);
1338                 SET_FIELD(lo, GFT_RAM_LINE_DST_PORT, 1);
1339         } else if (profile_type == GFT_PROFILE_TYPE_L4_DST_PORT) {
1340                 SET_FIELD(hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1341                 SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1342                 SET_FIELD(lo, GFT_RAM_LINE_DST_PORT, 1);
1343         } else if (profile_type == GFT_PROFILE_TYPE_IP_DST_ADDR) {
1344                 SET_FIELD(hi, GFT_RAM_LINE_DST_IP, 1);
1345                 SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1346         } else if (profile_type == GFT_PROFILE_TYPE_IP_SRC_ADDR) {
1347                 SET_FIELD(hi, GFT_RAM_LINE_SRC_IP, 1);
1348                 SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1349         } else if (profile_type == GFT_PROFILE_TYPE_TUNNEL_TYPE) {
1350                 SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_ETHERTYPE, 1);
1351
1352                 /* Allow tunneled traffic without inner IP */
1353                 search_non_ip_as_gft = 1;
1354         }
1355
1356         ram_line.lo = cpu_to_le32(lo);
1357         ram_line.hi = cpu_to_le32(hi);
1358
1359         qed_wr(p_hwfn,
1360                p_ptt, PRS_REG_SEARCH_NON_IP_AS_GFT, search_non_ip_as_gft);
1361         qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1362                         PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
1363                         sizeof(ram_line) / REG_SIZE);
1364
1365         /* Set default profile so that no filter match will happen */
1366         ram_line.lo = cpu_to_le32(0xffffffff);
1367         ram_line.hi = cpu_to_le32(0x3ff);
1368         qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1369                         PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE *
1370                         PRS_GFT_CAM_LINES_NO_MATCH,
1371                         sizeof(ram_line) / REG_SIZE);
1372
1373         /* Enable gft search */
1374         qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1);
1375 }
1376
1377 DECLARE_CRC8_TABLE(cdu_crc8_table);
1378
1379 /* Calculate and return CDU validation byte per connection type/region/cid */
1380 static u8 qed_calc_cdu_validation_byte(u8 conn_type, u8 region, u32 cid)
1381 {
1382         const u8 validation_cfg = CDU_VALIDATION_DEFAULT_CFG;
1383         u8 crc, validation_byte = 0;
1384         static u8 crc8_table_valid; /* automatically initialized to 0 */
1385         u32 validation_string = 0;
1386         __be32 data_to_crc;
1387
1388         if (!crc8_table_valid) {
1389                 crc8_populate_msb(cdu_crc8_table, 0x07);
1390                 crc8_table_valid = 1;
1391         }
1392
1393         /* The CRC is calculated on the String-to-compress:
1394          * [31:8]  = {CID[31:20],CID[11:0]}
1395          * [7:4]   = Region
1396          * [3:0]   = Type
1397          */
1398         if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_CID) & 1)
1399                 validation_string |= (cid & 0xFFF00000) | ((cid & 0xFFF) << 8);
1400
1401         if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_REGION) & 1)
1402                 validation_string |= ((region & 0xF) << 4);
1403
1404         if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_TYPE) & 1)
1405                 validation_string |= (conn_type & 0xF);
1406
1407         /* Convert to big-endian and calculate CRC8 */
1408         data_to_crc = cpu_to_be32(validation_string);
1409         crc = crc8(cdu_crc8_table, (u8 *)&data_to_crc, sizeof(data_to_crc),
1410                    CRC8_INIT_VALUE);
1411
1412         /* The validation byte [7:0] is composed:
1413          * for type A validation
1414          * [7]          = active configuration bit
1415          * [6:0]        = crc[6:0]
1416          *
1417          * for type B validation
1418          * [7]          = active configuration bit
1419          * [6:3]        = connection_type[3:0]
1420          * [2:0]        = crc[2:0]
1421          */
1422         validation_byte |=
1423             ((validation_cfg >>
1424               CDU_CONTEXT_VALIDATION_CFG_USE_ACTIVE) & 1) << 7;
1425
1426         if ((validation_cfg >>
1427              CDU_CONTEXT_VALIDATION_CFG_VALIDATION_TYPE_SHIFT) & 1)
1428                 validation_byte |= ((conn_type & 0xF) << 3) | (crc & 0x7);
1429         else
1430                 validation_byte |= crc & 0x7F;
1431
1432         return validation_byte;
1433 }
1434
1435 /* Calcualte and set validation bytes for session context */
1436 void qed_calc_session_ctx_validation(void *p_ctx_mem,
1437                                      u16 ctx_size, u8 ctx_type, u32 cid)
1438 {
1439         u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1440
1441         p_ctx = (u8 * const)p_ctx_mem;
1442         x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1443         t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1444         u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1445
1446         memset(p_ctx, 0, ctx_size);
1447
1448         *x_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 3, cid);
1449         *t_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 4, cid);
1450         *u_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 5, cid);
1451 }
1452
1453 /* Calcualte and set validation bytes for task context */
1454 void qed_calc_task_ctx_validation(void *p_ctx_mem,
1455                                   u16 ctx_size, u8 ctx_type, u32 tid)
1456 {
1457         u8 *p_ctx, *region1_val_ptr;
1458
1459         p_ctx = (u8 * const)p_ctx_mem;
1460         region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1461
1462         memset(p_ctx, 0, ctx_size);
1463
1464         *region1_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 1, tid);
1465 }
1466
1467 /* Memset session context to 0 while preserving validation bytes */
1468 void qed_memset_session_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1469 {
1470         u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1471         u8 x_val, t_val, u_val;
1472
1473         p_ctx = (u8 * const)p_ctx_mem;
1474         x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1475         t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1476         u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1477
1478         x_val = *x_val_ptr;
1479         t_val = *t_val_ptr;
1480         u_val = *u_val_ptr;
1481
1482         memset(p_ctx, 0, ctx_size);
1483
1484         *x_val_ptr = x_val;
1485         *t_val_ptr = t_val;
1486         *u_val_ptr = u_val;
1487 }
1488
1489 /* Memset task context to 0 while preserving validation bytes */
1490 void qed_memset_task_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1491 {
1492         u8 *p_ctx, *region1_val_ptr;
1493         u8 region1_val;
1494
1495         p_ctx = (u8 * const)p_ctx_mem;
1496         region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1497
1498         region1_val = *region1_val_ptr;
1499
1500         memset(p_ctx, 0, ctx_size);
1501
1502         *region1_val_ptr = region1_val;
1503 }
1504
1505 /* Enable and configure context validation */
1506 void qed_enable_context_validation(struct qed_hwfn *p_hwfn,
1507                                    struct qed_ptt *p_ptt)
1508 {
1509         u32 ctx_validation;
1510
1511         /* Enable validation for connection region 3: CCFC_CTX_VALID0[31:24] */
1512         ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 24;
1513         qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID0, ctx_validation);
1514
1515         /* Enable validation for connection region 5: CCFC_CTX_VALID1[15:8] */
1516         ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1517         qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID1, ctx_validation);
1518
1519         /* Enable validation for connection region 1: TCFC_CTX_VALID0[15:8] */
1520         ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1521         qed_wr(p_hwfn, p_ptt, CDU_REG_TCFC_CTX_VALID0, ctx_validation);
1522 }
1523
1524 static u32 qed_get_rdma_assert_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id)
1525 {
1526         switch (storm_id) {
1527         case 0:
1528                 return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1529                     TSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1530         case 1:
1531                 return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1532                     MSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1533         case 2:
1534                 return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1535                     USTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1536         case 3:
1537                 return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1538                     XSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1539         case 4:
1540                 return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1541                     YSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1542         case 5:
1543                 return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1544                     PSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1545
1546         default:
1547                 return 0;
1548         }
1549 }
1550
1551 void qed_set_rdma_error_level(struct qed_hwfn *p_hwfn,
1552                               struct qed_ptt *p_ptt,
1553                               u8 assert_level[NUM_STORMS])
1554 {
1555         u8 storm_id;
1556
1557         for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1558                 u32 ram_addr = qed_get_rdma_assert_ram_addr(p_hwfn, storm_id);
1559
1560                 qed_wr(p_hwfn, p_ptt, ram_addr, assert_level[storm_id]);
1561         }
1562 }
1563
1564 #define PHYS_ADDR_DWORDS        DIV_ROUND_UP(sizeof(dma_addr_t), 4)
1565 #define OVERLAY_HDR_SIZE_DWORDS (sizeof(struct fw_overlay_buf_hdr) / 4)
1566
1567 static u32 qed_get_overlay_addr_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id)
1568 {
1569         switch (storm_id) {
1570         case 0:
1571                 return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1572                     TSTORM_OVERLAY_BUF_ADDR_OFFSET;
1573         case 1:
1574                 return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1575                     MSTORM_OVERLAY_BUF_ADDR_OFFSET;
1576         case 2:
1577                 return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1578                     USTORM_OVERLAY_BUF_ADDR_OFFSET;
1579         case 3:
1580                 return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1581                     XSTORM_OVERLAY_BUF_ADDR_OFFSET;
1582         case 4:
1583                 return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1584                     YSTORM_OVERLAY_BUF_ADDR_OFFSET;
1585         case 5:
1586                 return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1587                     PSTORM_OVERLAY_BUF_ADDR_OFFSET;
1588
1589         default:
1590                 return 0;
1591         }
1592 }
1593
1594 struct phys_mem_desc *qed_fw_overlay_mem_alloc(struct qed_hwfn *p_hwfn,
1595                                                const u32 * const
1596                                                fw_overlay_in_buf,
1597                                                u32 buf_size_in_bytes)
1598 {
1599         u32 buf_size = buf_size_in_bytes / sizeof(u32), buf_offset = 0;
1600         struct phys_mem_desc *allocated_mem;
1601
1602         if (!buf_size)
1603                 return NULL;
1604
1605         allocated_mem = kcalloc(NUM_STORMS, sizeof(struct phys_mem_desc),
1606                                 GFP_KERNEL);
1607         if (!allocated_mem)
1608                 return NULL;
1609
1610         memset(allocated_mem, 0, NUM_STORMS * sizeof(struct phys_mem_desc));
1611
1612         /* For each Storm, set physical address in RAM */
1613         while (buf_offset < buf_size) {
1614                 struct phys_mem_desc *storm_mem_desc;
1615                 struct fw_overlay_buf_hdr *hdr;
1616                 u32 storm_buf_size;
1617                 u8 storm_id;
1618
1619                 hdr =
1620                     (struct fw_overlay_buf_hdr *)&fw_overlay_in_buf[buf_offset];
1621                 storm_buf_size = GET_FIELD(hdr->data,
1622                                            FW_OVERLAY_BUF_HDR_BUF_SIZE);
1623                 storm_id = GET_FIELD(hdr->data, FW_OVERLAY_BUF_HDR_STORM_ID);
1624                 storm_mem_desc = allocated_mem + storm_id;
1625                 storm_mem_desc->size = storm_buf_size * sizeof(u32);
1626
1627                 /* Allocate physical memory for Storm's overlays buffer */
1628                 storm_mem_desc->virt_addr =
1629                     dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1630                                        storm_mem_desc->size,
1631                                        &storm_mem_desc->phys_addr, GFP_KERNEL);
1632                 if (!storm_mem_desc->virt_addr)
1633                         break;
1634
1635                 /* Skip overlays buffer header */
1636                 buf_offset += OVERLAY_HDR_SIZE_DWORDS;
1637
1638                 /* Copy Storm's overlays buffer to allocated memory */
1639                 memcpy(storm_mem_desc->virt_addr,
1640                        &fw_overlay_in_buf[buf_offset], storm_mem_desc->size);
1641
1642                 /* Advance to next Storm */
1643                 buf_offset += storm_buf_size;
1644         }
1645
1646         /* If memory allocation has failed, free all allocated memory */
1647         if (buf_offset < buf_size) {
1648                 qed_fw_overlay_mem_free(p_hwfn, allocated_mem);
1649                 return NULL;
1650         }
1651
1652         return allocated_mem;
1653 }
1654
1655 void qed_fw_overlay_init_ram(struct qed_hwfn *p_hwfn,
1656                              struct qed_ptt *p_ptt,
1657                              struct phys_mem_desc *fw_overlay_mem)
1658 {
1659         u8 storm_id;
1660
1661         for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1662                 struct phys_mem_desc *storm_mem_desc =
1663                     (struct phys_mem_desc *)fw_overlay_mem + storm_id;
1664                 u32 ram_addr, i;
1665
1666                 /* Skip Storms with no FW overlays */
1667                 if (!storm_mem_desc->virt_addr)
1668                         continue;
1669
1670                 /* Calculate overlay RAM GRC address of current PF */
1671                 ram_addr = qed_get_overlay_addr_ram_addr(p_hwfn, storm_id) +
1672                            sizeof(dma_addr_t) * p_hwfn->rel_pf_id;
1673
1674                 /* Write Storm's overlay physical address to RAM */
1675                 for (i = 0; i < PHYS_ADDR_DWORDS; i++, ram_addr += sizeof(u32))
1676                         qed_wr(p_hwfn, p_ptt, ram_addr,
1677                                ((u32 *)&storm_mem_desc->phys_addr)[i]);
1678         }
1679 }
1680
1681 void qed_fw_overlay_mem_free(struct qed_hwfn *p_hwfn,
1682                              struct phys_mem_desc *fw_overlay_mem)
1683 {
1684         u8 storm_id;
1685
1686         if (!fw_overlay_mem)
1687                 return;
1688
1689         for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1690                 struct phys_mem_desc *storm_mem_desc =
1691                     (struct phys_mem_desc *)fw_overlay_mem + storm_id;
1692
1693                 /* Free Storm's physical memory */
1694                 if (storm_mem_desc->virt_addr)
1695                         dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1696                                           storm_mem_desc->size,
1697                                           storm_mem_desc->virt_addr,
1698                                           storm_mem_desc->phys_addr);
1699         }
1700
1701         /* Free allocated virtual memory */
1702         kfree(fw_overlay_mem);
1703 }