GNU Linux-libre 4.14.262-gnu1
[releases.git] / drivers / net / ethernet / neterion / vxge / vxge-traffic.c
1 /******************************************************************************
2  * This software may be used and distributed according to the terms of
3  * the GNU General Public License (GPL), incorporated herein by reference.
4  * Drivers based on or derived from this code fall under the GPL and must
5  * retain the authorship, copyright and license notice.  This file is not
6  * a complete program and may only be used when the entire operating
7  * system is licensed under the GPL.
8  * See the file COPYING in this distribution for more information.
9  *
10  * vxge-traffic.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11  *                 Virtualized Server Adapter.
12  * Copyright(c) 2002-2010 Exar Corp.
13  ******************************************************************************/
14 #include <linux/etherdevice.h>
15 #include <linux/prefetch.h>
16
17 #include "vxge-traffic.h"
18 #include "vxge-config.h"
19 #include "vxge-main.h"
20
21 /*
22  * vxge_hw_vpath_intr_enable - Enable vpath interrupts.
23  * @vp: Virtual Path handle.
24  *
25  * Enable vpath interrupts. The function is to be executed the last in
26  * vpath initialization sequence.
27  *
28  * See also: vxge_hw_vpath_intr_disable()
29  */
30 enum vxge_hw_status vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle *vp)
31 {
32         struct __vxge_hw_virtualpath *vpath;
33         struct vxge_hw_vpath_reg __iomem *vp_reg;
34         enum vxge_hw_status status = VXGE_HW_OK;
35         if (vp == NULL) {
36                 status = VXGE_HW_ERR_INVALID_HANDLE;
37                 goto exit;
38         }
39
40         vpath = vp->vpath;
41
42         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
43                 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
44                 goto exit;
45         }
46
47         vp_reg = vpath->vp_reg;
48
49         writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_reg);
50
51         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
52                         &vp_reg->general_errors_reg);
53
54         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
55                         &vp_reg->pci_config_errors_reg);
56
57         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
58                         &vp_reg->mrpcim_to_vpath_alarm_reg);
59
60         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
61                         &vp_reg->srpcim_to_vpath_alarm_reg);
62
63         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
64                         &vp_reg->vpath_ppif_int_status);
65
66         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
67                         &vp_reg->srpcim_msg_to_vpath_reg);
68
69         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
70                         &vp_reg->vpath_pcipif_int_status);
71
72         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
73                         &vp_reg->prc_alarm_reg);
74
75         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
76                         &vp_reg->wrdma_alarm_status);
77
78         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
79                         &vp_reg->asic_ntwk_vp_err_reg);
80
81         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
82                         &vp_reg->xgmac_vp_int_status);
83
84         readq(&vp_reg->vpath_general_int_status);
85
86         /* Mask unwanted interrupts */
87
88         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
89                         &vp_reg->vpath_pcipif_int_mask);
90
91         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
92                         &vp_reg->srpcim_msg_to_vpath_mask);
93
94         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
95                         &vp_reg->srpcim_to_vpath_alarm_mask);
96
97         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
98                         &vp_reg->mrpcim_to_vpath_alarm_mask);
99
100         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
101                         &vp_reg->pci_config_errors_mask);
102
103         /* Unmask the individual interrupts */
104
105         writeq((u32)vxge_bVALn((VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO1_OVRFLOW|
106                 VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO2_OVRFLOW|
107                 VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ|
108                 VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR), 0, 32),
109                 &vp_reg->general_errors_mask);
110
111         __vxge_hw_pio_mem_write32_upper(
112                 (u32)vxge_bVALn((VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_OVRWR|
113                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_OVRWR|
114                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_POISON|
115                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_POISON|
116                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR|
117                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_DMA_ERR), 0, 32),
118                 &vp_reg->kdfcctl_errors_mask);
119
120         __vxge_hw_pio_mem_write32_upper(0, &vp_reg->vpath_ppif_int_mask);
121
122         __vxge_hw_pio_mem_write32_upper(
123                 (u32)vxge_bVALn(VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP, 0, 32),
124                 &vp_reg->prc_alarm_mask);
125
126         __vxge_hw_pio_mem_write32_upper(0, &vp_reg->wrdma_alarm_mask);
127         __vxge_hw_pio_mem_write32_upper(0, &vp_reg->xgmac_vp_int_mask);
128
129         if (vpath->hldev->first_vp_id != vpath->vp_id)
130                 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
131                         &vp_reg->asic_ntwk_vp_err_mask);
132         else
133                 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn((
134                 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_FAULT |
135                 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_OK), 0, 32),
136                 &vp_reg->asic_ntwk_vp_err_mask);
137
138         __vxge_hw_pio_mem_write32_upper(0,
139                 &vp_reg->vpath_general_int_mask);
140 exit:
141         return status;
142
143 }
144
145 /*
146  * vxge_hw_vpath_intr_disable - Disable vpath interrupts.
147  * @vp: Virtual Path handle.
148  *
149  * Disable vpath interrupts. The function is to be executed the last in
150  * vpath initialization sequence.
151  *
152  * See also: vxge_hw_vpath_intr_enable()
153  */
154 enum vxge_hw_status vxge_hw_vpath_intr_disable(
155                         struct __vxge_hw_vpath_handle *vp)
156 {
157         struct __vxge_hw_virtualpath *vpath;
158         enum vxge_hw_status status = VXGE_HW_OK;
159         struct vxge_hw_vpath_reg __iomem *vp_reg;
160         if (vp == NULL) {
161                 status = VXGE_HW_ERR_INVALID_HANDLE;
162                 goto exit;
163         }
164
165         vpath = vp->vpath;
166
167         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
168                 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
169                 goto exit;
170         }
171         vp_reg = vpath->vp_reg;
172
173         __vxge_hw_pio_mem_write32_upper(
174                 (u32)VXGE_HW_INTR_MASK_ALL,
175                 &vp_reg->vpath_general_int_mask);
176
177         writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_mask);
178
179         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
180                         &vp_reg->general_errors_mask);
181
182         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
183                         &vp_reg->pci_config_errors_mask);
184
185         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
186                         &vp_reg->mrpcim_to_vpath_alarm_mask);
187
188         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
189                         &vp_reg->srpcim_to_vpath_alarm_mask);
190
191         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
192                         &vp_reg->vpath_ppif_int_mask);
193
194         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
195                         &vp_reg->srpcim_msg_to_vpath_mask);
196
197         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
198                         &vp_reg->vpath_pcipif_int_mask);
199
200         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
201                         &vp_reg->wrdma_alarm_mask);
202
203         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
204                         &vp_reg->prc_alarm_mask);
205
206         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
207                         &vp_reg->xgmac_vp_int_mask);
208
209         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
210                         &vp_reg->asic_ntwk_vp_err_mask);
211
212 exit:
213         return status;
214 }
215
216 void vxge_hw_vpath_tti_ci_set(struct __vxge_hw_fifo *fifo)
217 {
218         struct vxge_hw_vpath_reg __iomem *vp_reg;
219         struct vxge_hw_vp_config *config;
220         u64 val64;
221
222         if (fifo->config->enable != VXGE_HW_FIFO_ENABLE)
223                 return;
224
225         vp_reg = fifo->vp_reg;
226         config = container_of(fifo->config, struct vxge_hw_vp_config, fifo);
227
228         if (config->tti.timer_ci_en != VXGE_HW_TIM_TIMER_CI_ENABLE) {
229                 config->tti.timer_ci_en = VXGE_HW_TIM_TIMER_CI_ENABLE;
230                 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
231                 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
232                 fifo->tim_tti_cfg1_saved = val64;
233                 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
234         }
235 }
236
237 void vxge_hw_vpath_dynamic_rti_ci_set(struct __vxge_hw_ring *ring)
238 {
239         u64 val64 = ring->tim_rti_cfg1_saved;
240
241         val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
242         ring->tim_rti_cfg1_saved = val64;
243         writeq(val64, &ring->vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
244 }
245
246 void vxge_hw_vpath_dynamic_tti_rtimer_set(struct __vxge_hw_fifo *fifo)
247 {
248         u64 val64 = fifo->tim_tti_cfg3_saved;
249         u64 timer = (fifo->rtimer * 1000) / 272;
250
251         val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
252         if (timer)
253                 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
254                         VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(5);
255
256         writeq(val64, &fifo->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
257         /* tti_cfg3_saved is not updated again because it is
258          * initialized at one place only - init time.
259          */
260 }
261
262 void vxge_hw_vpath_dynamic_rti_rtimer_set(struct __vxge_hw_ring *ring)
263 {
264         u64 val64 = ring->tim_rti_cfg3_saved;
265         u64 timer = (ring->rtimer * 1000) / 272;
266
267         val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
268         if (timer)
269                 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
270                         VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(4);
271
272         writeq(val64, &ring->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
273         /* rti_cfg3_saved is not updated again because it is
274          * initialized at one place only - init time.
275          */
276 }
277
278 /**
279  * vxge_hw_channel_msix_mask - Mask MSIX Vector.
280  * @channeh: Channel for rx or tx handle
281  * @msix_id:  MSIX ID
282  *
283  * The function masks the msix interrupt for the given msix_id
284  *
285  * Returns: 0
286  */
287 void vxge_hw_channel_msix_mask(struct __vxge_hw_channel *channel, int msix_id)
288 {
289
290         __vxge_hw_pio_mem_write32_upper(
291                 (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
292                 &channel->common_reg->set_msix_mask_vect[msix_id%4]);
293 }
294
295 /**
296  * vxge_hw_channel_msix_unmask - Unmask the MSIX Vector.
297  * @channeh: Channel for rx or tx handle
298  * @msix_id:  MSI ID
299  *
300  * The function unmasks the msix interrupt for the given msix_id
301  *
302  * Returns: 0
303  */
304 void
305 vxge_hw_channel_msix_unmask(struct __vxge_hw_channel *channel, int msix_id)
306 {
307
308         __vxge_hw_pio_mem_write32_upper(
309                 (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
310                 &channel->common_reg->clear_msix_mask_vect[msix_id%4]);
311 }
312
313 /**
314  * vxge_hw_channel_msix_clear - Unmask the MSIX Vector.
315  * @channel: Channel for rx or tx handle
316  * @msix_id:  MSI ID
317  *
318  * The function unmasks the msix interrupt for the given msix_id
319  * if configured in MSIX oneshot mode
320  *
321  * Returns: 0
322  */
323 void vxge_hw_channel_msix_clear(struct __vxge_hw_channel *channel, int msix_id)
324 {
325         __vxge_hw_pio_mem_write32_upper(
326                 (u32) vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
327                 &channel->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
328 }
329
330 /**
331  * vxge_hw_device_set_intr_type - Updates the configuration
332  *              with new interrupt type.
333  * @hldev: HW device handle.
334  * @intr_mode: New interrupt type
335  */
336 u32 vxge_hw_device_set_intr_type(struct __vxge_hw_device *hldev, u32 intr_mode)
337 {
338
339         if ((intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
340            (intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
341            (intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
342            (intr_mode != VXGE_HW_INTR_MODE_DEF))
343                 intr_mode = VXGE_HW_INTR_MODE_IRQLINE;
344
345         hldev->config.intr_mode = intr_mode;
346         return intr_mode;
347 }
348
349 /**
350  * vxge_hw_device_intr_enable - Enable interrupts.
351  * @hldev: HW device handle.
352  * @op: One of the enum vxge_hw_device_intr enumerated values specifying
353  *      the type(s) of interrupts to enable.
354  *
355  * Enable Titan interrupts. The function is to be executed the last in
356  * Titan initialization sequence.
357  *
358  * See also: vxge_hw_device_intr_disable()
359  */
360 void vxge_hw_device_intr_enable(struct __vxge_hw_device *hldev)
361 {
362         u32 i;
363         u64 val64;
364         u32 val32;
365
366         vxge_hw_device_mask_all(hldev);
367
368         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
369
370                 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
371                         continue;
372
373                 vxge_hw_vpath_intr_enable(
374                         VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
375         }
376
377         if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE) {
378                 val64 = hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
379                         hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX];
380
381                 if (val64 != 0) {
382                         writeq(val64, &hldev->common_reg->tim_int_status0);
383
384                         writeq(~val64, &hldev->common_reg->tim_int_mask0);
385                 }
386
387                 val32 = hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
388                         hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX];
389
390                 if (val32 != 0) {
391                         __vxge_hw_pio_mem_write32_upper(val32,
392                                         &hldev->common_reg->tim_int_status1);
393
394                         __vxge_hw_pio_mem_write32_upper(~val32,
395                                         &hldev->common_reg->tim_int_mask1);
396                 }
397         }
398
399         val64 = readq(&hldev->common_reg->titan_general_int_status);
400
401         vxge_hw_device_unmask_all(hldev);
402 }
403
404 /**
405  * vxge_hw_device_intr_disable - Disable Titan interrupts.
406  * @hldev: HW device handle.
407  * @op: One of the enum vxge_hw_device_intr enumerated values specifying
408  *      the type(s) of interrupts to disable.
409  *
410  * Disable Titan interrupts.
411  *
412  * See also: vxge_hw_device_intr_enable()
413  */
414 void vxge_hw_device_intr_disable(struct __vxge_hw_device *hldev)
415 {
416         u32 i;
417
418         vxge_hw_device_mask_all(hldev);
419
420         /* mask all the tim interrupts */
421         writeq(VXGE_HW_INTR_MASK_ALL, &hldev->common_reg->tim_int_mask0);
422         __vxge_hw_pio_mem_write32_upper(VXGE_HW_DEFAULT_32,
423                 &hldev->common_reg->tim_int_mask1);
424
425         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
426
427                 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
428                         continue;
429
430                 vxge_hw_vpath_intr_disable(
431                         VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
432         }
433 }
434
435 /**
436  * vxge_hw_device_mask_all - Mask all device interrupts.
437  * @hldev: HW device handle.
438  *
439  * Mask all device interrupts.
440  *
441  * See also: vxge_hw_device_unmask_all()
442  */
443 void vxge_hw_device_mask_all(struct __vxge_hw_device *hldev)
444 {
445         u64 val64;
446
447         val64 = VXGE_HW_TITAN_MASK_ALL_INT_ALARM |
448                 VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
449
450         __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
451                                 &hldev->common_reg->titan_mask_all_int);
452 }
453
454 /**
455  * vxge_hw_device_unmask_all - Unmask all device interrupts.
456  * @hldev: HW device handle.
457  *
458  * Unmask all device interrupts.
459  *
460  * See also: vxge_hw_device_mask_all()
461  */
462 void vxge_hw_device_unmask_all(struct __vxge_hw_device *hldev)
463 {
464         u64 val64 = 0;
465
466         if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE)
467                 val64 =  VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
468
469         __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
470                         &hldev->common_reg->titan_mask_all_int);
471 }
472
473 /**
474  * vxge_hw_device_flush_io - Flush io writes.
475  * @hldev: HW device handle.
476  *
477  * The function performs a read operation to flush io writes.
478  *
479  * Returns: void
480  */
481 void vxge_hw_device_flush_io(struct __vxge_hw_device *hldev)
482 {
483         readl(&hldev->common_reg->titan_general_int_status);
484 }
485
486 /**
487  * __vxge_hw_device_handle_error - Handle error
488  * @hldev: HW device
489  * @vp_id: Vpath Id
490  * @type: Error type. Please see enum vxge_hw_event{}
491  *
492  * Handle error.
493  */
494 static enum vxge_hw_status
495 __vxge_hw_device_handle_error(struct __vxge_hw_device *hldev, u32 vp_id,
496                               enum vxge_hw_event type)
497 {
498         switch (type) {
499         case VXGE_HW_EVENT_UNKNOWN:
500                 break;
501         case VXGE_HW_EVENT_RESET_START:
502         case VXGE_HW_EVENT_RESET_COMPLETE:
503         case VXGE_HW_EVENT_LINK_DOWN:
504         case VXGE_HW_EVENT_LINK_UP:
505                 goto out;
506         case VXGE_HW_EVENT_ALARM_CLEARED:
507                 goto out;
508         case VXGE_HW_EVENT_ECCERR:
509         case VXGE_HW_EVENT_MRPCIM_ECCERR:
510                 goto out;
511         case VXGE_HW_EVENT_FIFO_ERR:
512         case VXGE_HW_EVENT_VPATH_ERR:
513         case VXGE_HW_EVENT_CRITICAL_ERR:
514         case VXGE_HW_EVENT_SERR:
515                 break;
516         case VXGE_HW_EVENT_SRPCIM_SERR:
517         case VXGE_HW_EVENT_MRPCIM_SERR:
518                 goto out;
519         case VXGE_HW_EVENT_SLOT_FREEZE:
520                 break;
521         default:
522                 vxge_assert(0);
523                 goto out;
524         }
525
526         /* notify driver */
527         if (hldev->uld_callbacks->crit_err)
528                 hldev->uld_callbacks->crit_err(hldev,
529                         type, vp_id);
530 out:
531
532         return VXGE_HW_OK;
533 }
534
535 /*
536  * __vxge_hw_device_handle_link_down_ind
537  * @hldev: HW device handle.
538  *
539  * Link down indication handler. The function is invoked by HW when
540  * Titan indicates that the link is down.
541  */
542 static enum vxge_hw_status
543 __vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device *hldev)
544 {
545         /*
546          * If the previous link state is not down, return.
547          */
548         if (hldev->link_state == VXGE_HW_LINK_DOWN)
549                 goto exit;
550
551         hldev->link_state = VXGE_HW_LINK_DOWN;
552
553         /* notify driver */
554         if (hldev->uld_callbacks->link_down)
555                 hldev->uld_callbacks->link_down(hldev);
556 exit:
557         return VXGE_HW_OK;
558 }
559
560 /*
561  * __vxge_hw_device_handle_link_up_ind
562  * @hldev: HW device handle.
563  *
564  * Link up indication handler. The function is invoked by HW when
565  * Titan indicates that the link is up for programmable amount of time.
566  */
567 static enum vxge_hw_status
568 __vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device *hldev)
569 {
570         /*
571          * If the previous link state is not down, return.
572          */
573         if (hldev->link_state == VXGE_HW_LINK_UP)
574                 goto exit;
575
576         hldev->link_state = VXGE_HW_LINK_UP;
577
578         /* notify driver */
579         if (hldev->uld_callbacks->link_up)
580                 hldev->uld_callbacks->link_up(hldev);
581 exit:
582         return VXGE_HW_OK;
583 }
584
585 /*
586  * __vxge_hw_vpath_alarm_process - Process Alarms.
587  * @vpath: Virtual Path.
588  * @skip_alarms: Do not clear the alarms
589  *
590  * Process vpath alarms.
591  *
592  */
593 static enum vxge_hw_status
594 __vxge_hw_vpath_alarm_process(struct __vxge_hw_virtualpath *vpath,
595                               u32 skip_alarms)
596 {
597         u64 val64;
598         u64 alarm_status;
599         u64 pic_status;
600         struct __vxge_hw_device *hldev = NULL;
601         enum vxge_hw_event alarm_event = VXGE_HW_EVENT_UNKNOWN;
602         u64 mask64;
603         struct vxge_hw_vpath_stats_sw_info *sw_stats;
604         struct vxge_hw_vpath_reg __iomem *vp_reg;
605
606         if (vpath == NULL) {
607                 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
608                         alarm_event);
609                 goto out2;
610         }
611
612         hldev = vpath->hldev;
613         vp_reg = vpath->vp_reg;
614         alarm_status = readq(&vp_reg->vpath_general_int_status);
615
616         if (alarm_status == VXGE_HW_ALL_FOXES) {
617                 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_SLOT_FREEZE,
618                         alarm_event);
619                 goto out;
620         }
621
622         sw_stats = vpath->sw_stats;
623
624         if (alarm_status & ~(
625                 VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT |
626                 VXGE_HW_VPATH_GENERAL_INT_STATUS_PCI_INT |
627                 VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT |
628                 VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT)) {
629                 sw_stats->error_stats.unknown_alarms++;
630
631                 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
632                         alarm_event);
633                 goto out;
634         }
635
636         if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT) {
637
638                 val64 = readq(&vp_reg->xgmac_vp_int_status);
639
640                 if (val64 &
641                 VXGE_HW_XGMAC_VP_INT_STATUS_ASIC_NTWK_VP_ERR_ASIC_NTWK_VP_INT) {
642
643                         val64 = readq(&vp_reg->asic_ntwk_vp_err_reg);
644
645                         if (((val64 &
646                               VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT) &&
647                              (!(val64 &
648                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK))) ||
649                             ((val64 &
650                              VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR) &&
651                              (!(val64 &
652                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR)
653                                      ))) {
654                                 sw_stats->error_stats.network_sustained_fault++;
655
656                                 writeq(
657                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT,
658                                         &vp_reg->asic_ntwk_vp_err_mask);
659
660                                 __vxge_hw_device_handle_link_down_ind(hldev);
661                                 alarm_event = VXGE_HW_SET_LEVEL(
662                                         VXGE_HW_EVENT_LINK_DOWN, alarm_event);
663                         }
664
665                         if (((val64 &
666                               VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK) &&
667                              (!(val64 &
668                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT))) ||
669                             ((val64 &
670                               VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR) &&
671                              (!(val64 &
672                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR)
673                                      ))) {
674
675                                 sw_stats->error_stats.network_sustained_ok++;
676
677                                 writeq(
678                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK,
679                                         &vp_reg->asic_ntwk_vp_err_mask);
680
681                                 __vxge_hw_device_handle_link_up_ind(hldev);
682                                 alarm_event = VXGE_HW_SET_LEVEL(
683                                         VXGE_HW_EVENT_LINK_UP, alarm_event);
684                         }
685
686                         writeq(VXGE_HW_INTR_MASK_ALL,
687                                 &vp_reg->asic_ntwk_vp_err_reg);
688
689                         alarm_event = VXGE_HW_SET_LEVEL(
690                                 VXGE_HW_EVENT_ALARM_CLEARED, alarm_event);
691
692                         if (skip_alarms)
693                                 return VXGE_HW_OK;
694                 }
695         }
696
697         if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT) {
698
699                 pic_status = readq(&vp_reg->vpath_ppif_int_status);
700
701                 if (pic_status &
702                     VXGE_HW_VPATH_PPIF_INT_STATUS_GENERAL_ERRORS_GENERAL_INT) {
703
704                         val64 = readq(&vp_reg->general_errors_reg);
705                         mask64 = readq(&vp_reg->general_errors_mask);
706
707                         if ((val64 &
708                                 VXGE_HW_GENERAL_ERRORS_REG_INI_SERR_DET) &
709                                 ~mask64) {
710                                 sw_stats->error_stats.ini_serr_det++;
711
712                                 alarm_event = VXGE_HW_SET_LEVEL(
713                                         VXGE_HW_EVENT_SERR, alarm_event);
714                         }
715
716                         if ((val64 &
717                             VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO0_OVRFLOW) &
718                                 ~mask64) {
719                                 sw_stats->error_stats.dblgen_fifo0_overflow++;
720
721                                 alarm_event = VXGE_HW_SET_LEVEL(
722                                         VXGE_HW_EVENT_FIFO_ERR, alarm_event);
723                         }
724
725                         if ((val64 &
726                             VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR) &
727                                 ~mask64)
728                                 sw_stats->error_stats.statsb_pif_chain_error++;
729
730                         if ((val64 &
731                            VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ) &
732                                 ~mask64)
733                                 sw_stats->error_stats.statsb_drop_timeout++;
734
735                         if ((val64 &
736                                 VXGE_HW_GENERAL_ERRORS_REG_TGT_ILLEGAL_ACCESS) &
737                                 ~mask64)
738                                 sw_stats->error_stats.target_illegal_access++;
739
740                         if (!skip_alarms) {
741                                 writeq(VXGE_HW_INTR_MASK_ALL,
742                                         &vp_reg->general_errors_reg);
743                                 alarm_event = VXGE_HW_SET_LEVEL(
744                                         VXGE_HW_EVENT_ALARM_CLEARED,
745                                         alarm_event);
746                         }
747                 }
748
749                 if (pic_status &
750                     VXGE_HW_VPATH_PPIF_INT_STATUS_KDFCCTL_ERRORS_KDFCCTL_INT) {
751
752                         val64 = readq(&vp_reg->kdfcctl_errors_reg);
753                         mask64 = readq(&vp_reg->kdfcctl_errors_mask);
754
755                         if ((val64 &
756                             VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_OVRWR) &
757                                 ~mask64) {
758                                 sw_stats->error_stats.kdfcctl_fifo0_overwrite++;
759
760                                 alarm_event = VXGE_HW_SET_LEVEL(
761                                         VXGE_HW_EVENT_FIFO_ERR,
762                                         alarm_event);
763                         }
764
765                         if ((val64 &
766                             VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_POISON) &
767                                 ~mask64) {
768                                 sw_stats->error_stats.kdfcctl_fifo0_poison++;
769
770                                 alarm_event = VXGE_HW_SET_LEVEL(
771                                         VXGE_HW_EVENT_FIFO_ERR,
772                                         alarm_event);
773                         }
774
775                         if ((val64 &
776                             VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_DMA_ERR) &
777                                 ~mask64) {
778                                 sw_stats->error_stats.kdfcctl_fifo0_dma_error++;
779
780                                 alarm_event = VXGE_HW_SET_LEVEL(
781                                         VXGE_HW_EVENT_FIFO_ERR,
782                                         alarm_event);
783                         }
784
785                         if (!skip_alarms) {
786                                 writeq(VXGE_HW_INTR_MASK_ALL,
787                                         &vp_reg->kdfcctl_errors_reg);
788                                 alarm_event = VXGE_HW_SET_LEVEL(
789                                         VXGE_HW_EVENT_ALARM_CLEARED,
790                                         alarm_event);
791                         }
792                 }
793
794         }
795
796         if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT) {
797
798                 val64 = readq(&vp_reg->wrdma_alarm_status);
799
800                 if (val64 & VXGE_HW_WRDMA_ALARM_STATUS_PRC_ALARM_PRC_INT) {
801
802                         val64 = readq(&vp_reg->prc_alarm_reg);
803                         mask64 = readq(&vp_reg->prc_alarm_mask);
804
805                         if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP)&
806                                 ~mask64)
807                                 sw_stats->error_stats.prc_ring_bumps++;
808
809                         if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ERR) &
810                                 ~mask64) {
811                                 sw_stats->error_stats.prc_rxdcm_sc_err++;
812
813                                 alarm_event = VXGE_HW_SET_LEVEL(
814                                         VXGE_HW_EVENT_VPATH_ERR,
815                                         alarm_event);
816                         }
817
818                         if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ABORT)
819                                 & ~mask64) {
820                                 sw_stats->error_stats.prc_rxdcm_sc_abort++;
821
822                                 alarm_event = VXGE_HW_SET_LEVEL(
823                                                 VXGE_HW_EVENT_VPATH_ERR,
824                                                 alarm_event);
825                         }
826
827                         if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_QUANTA_SIZE_ERR)
828                                  & ~mask64) {
829                                 sw_stats->error_stats.prc_quanta_size_err++;
830
831                                 alarm_event = VXGE_HW_SET_LEVEL(
832                                         VXGE_HW_EVENT_VPATH_ERR,
833                                         alarm_event);
834                         }
835
836                         if (!skip_alarms) {
837                                 writeq(VXGE_HW_INTR_MASK_ALL,
838                                         &vp_reg->prc_alarm_reg);
839                                 alarm_event = VXGE_HW_SET_LEVEL(
840                                                 VXGE_HW_EVENT_ALARM_CLEARED,
841                                                 alarm_event);
842                         }
843                 }
844         }
845 out:
846         hldev->stats.sw_dev_err_stats.vpath_alarms++;
847 out2:
848         if ((alarm_event == VXGE_HW_EVENT_ALARM_CLEARED) ||
849                 (alarm_event == VXGE_HW_EVENT_UNKNOWN))
850                 return VXGE_HW_OK;
851
852         __vxge_hw_device_handle_error(hldev, vpath->vp_id, alarm_event);
853
854         if (alarm_event == VXGE_HW_EVENT_SERR)
855                 return VXGE_HW_ERR_CRITICAL;
856
857         return (alarm_event == VXGE_HW_EVENT_SLOT_FREEZE) ?
858                 VXGE_HW_ERR_SLOT_FREEZE :
859                 (alarm_event == VXGE_HW_EVENT_FIFO_ERR) ? VXGE_HW_ERR_FIFO :
860                 VXGE_HW_ERR_VPATH;
861 }
862
863 /**
864  * vxge_hw_device_begin_irq - Begin IRQ processing.
865  * @hldev: HW device handle.
866  * @skip_alarms: Do not clear the alarms
867  * @reason: "Reason" for the interrupt, the value of Titan's
868  *      general_int_status register.
869  *
870  * The function performs two actions, It first checks whether (shared IRQ) the
871  * interrupt was raised by the device. Next, it masks the device interrupts.
872  *
873  * Note:
874  * vxge_hw_device_begin_irq() does not flush MMIO writes through the
875  * bridge. Therefore, two back-to-back interrupts are potentially possible.
876  *
877  * Returns: 0, if the interrupt is not "ours" (note that in this case the
878  * device remain enabled).
879  * Otherwise, vxge_hw_device_begin_irq() returns 64bit general adapter
880  * status.
881  */
882 enum vxge_hw_status vxge_hw_device_begin_irq(struct __vxge_hw_device *hldev,
883                                              u32 skip_alarms, u64 *reason)
884 {
885         u32 i;
886         u64 val64;
887         u64 adapter_status;
888         u64 vpath_mask;
889         enum vxge_hw_status ret = VXGE_HW_OK;
890
891         val64 = readq(&hldev->common_reg->titan_general_int_status);
892
893         if (unlikely(!val64)) {
894                 /* not Titan interrupt  */
895                 *reason = 0;
896                 ret = VXGE_HW_ERR_WRONG_IRQ;
897                 goto exit;
898         }
899
900         if (unlikely(val64 == VXGE_HW_ALL_FOXES)) {
901
902                 adapter_status = readq(&hldev->common_reg->adapter_status);
903
904                 if (adapter_status == VXGE_HW_ALL_FOXES) {
905
906                         __vxge_hw_device_handle_error(hldev,
907                                 NULL_VPID, VXGE_HW_EVENT_SLOT_FREEZE);
908                         *reason = 0;
909                         ret = VXGE_HW_ERR_SLOT_FREEZE;
910                         goto exit;
911                 }
912         }
913
914         hldev->stats.sw_dev_info_stats.total_intr_cnt++;
915
916         *reason = val64;
917
918         vpath_mask = hldev->vpaths_deployed >>
919                                 (64 - VXGE_HW_MAX_VIRTUAL_PATHS);
920
921         if (val64 &
922             VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(vpath_mask)) {
923                 hldev->stats.sw_dev_info_stats.traffic_intr_cnt++;
924
925                 return VXGE_HW_OK;
926         }
927
928         hldev->stats.sw_dev_info_stats.not_traffic_intr_cnt++;
929
930         if (unlikely(val64 &
931                         VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_ALARM_INT)) {
932
933                 enum vxge_hw_status error_level = VXGE_HW_OK;
934
935                 hldev->stats.sw_dev_err_stats.vpath_alarms++;
936
937                 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
938
939                         if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
940                                 continue;
941
942                         ret = __vxge_hw_vpath_alarm_process(
943                                 &hldev->virtual_paths[i], skip_alarms);
944
945                         error_level = VXGE_HW_SET_LEVEL(ret, error_level);
946
947                         if (unlikely((ret == VXGE_HW_ERR_CRITICAL) ||
948                                 (ret == VXGE_HW_ERR_SLOT_FREEZE)))
949                                 break;
950                 }
951
952                 ret = error_level;
953         }
954 exit:
955         return ret;
956 }
957
958 /**
959  * vxge_hw_device_clear_tx_rx - Acknowledge (that is, clear) the
960  * condition that has caused the Tx and RX interrupt.
961  * @hldev: HW device.
962  *
963  * Acknowledge (that is, clear) the condition that has caused
964  * the Tx and Rx interrupt.
965  * See also: vxge_hw_device_begin_irq(),
966  * vxge_hw_device_mask_tx_rx(), vxge_hw_device_unmask_tx_rx().
967  */
968 void vxge_hw_device_clear_tx_rx(struct __vxge_hw_device *hldev)
969 {
970
971         if ((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
972            (hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
973                 writeq((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
974                                  hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX]),
975                                 &hldev->common_reg->tim_int_status0);
976         }
977
978         if ((hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
979            (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
980                 __vxge_hw_pio_mem_write32_upper(
981                                 (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
982                                  hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX]),
983                                 &hldev->common_reg->tim_int_status1);
984         }
985 }
986
987 /*
988  * vxge_hw_channel_dtr_alloc - Allocate a dtr from the channel
989  * @channel: Channel
990  * @dtrh: Buffer to return the DTR pointer
991  *
992  * Allocates a dtr from the reserve array. If the reserve array is empty,
993  * it swaps the reserve and free arrays.
994  *
995  */
996 static enum vxge_hw_status
997 vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel *channel, void **dtrh)
998 {
999         if (channel->reserve_ptr - channel->reserve_top > 0) {
1000 _alloc_after_swap:
1001                 *dtrh = channel->reserve_arr[--channel->reserve_ptr];
1002
1003                 return VXGE_HW_OK;
1004         }
1005
1006         /* switch between empty and full arrays */
1007
1008         /* the idea behind such a design is that by having free and reserved
1009          * arrays separated we basically separated irq and non-irq parts.
1010          * i.e. no additional lock need to be done when we free a resource */
1011
1012         if (channel->length - channel->free_ptr > 0) {
1013                 swap(channel->reserve_arr, channel->free_arr);
1014                 channel->reserve_ptr = channel->length;
1015                 channel->reserve_top = channel->free_ptr;
1016                 channel->free_ptr = channel->length;
1017
1018                 channel->stats->reserve_free_swaps_cnt++;
1019
1020                 goto _alloc_after_swap;
1021         }
1022
1023         channel->stats->full_cnt++;
1024
1025         *dtrh = NULL;
1026         return VXGE_HW_INF_OUT_OF_DESCRIPTORS;
1027 }
1028
1029 /*
1030  * vxge_hw_channel_dtr_post - Post a dtr to the channel
1031  * @channelh: Channel
1032  * @dtrh: DTR pointer
1033  *
1034  * Posts a dtr to work array.
1035  *
1036  */
1037 static void
1038 vxge_hw_channel_dtr_post(struct __vxge_hw_channel *channel, void *dtrh)
1039 {
1040         vxge_assert(channel->work_arr[channel->post_index] == NULL);
1041
1042         channel->work_arr[channel->post_index++] = dtrh;
1043
1044         /* wrap-around */
1045         if (channel->post_index == channel->length)
1046                 channel->post_index = 0;
1047 }
1048
1049 /*
1050  * vxge_hw_channel_dtr_try_complete - Returns next completed dtr
1051  * @channel: Channel
1052  * @dtr: Buffer to return the next completed DTR pointer
1053  *
1054  * Returns the next completed dtr with out removing it from work array
1055  *
1056  */
1057 void
1058 vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel *channel, void **dtrh)
1059 {
1060         vxge_assert(channel->compl_index < channel->length);
1061
1062         *dtrh = channel->work_arr[channel->compl_index];
1063         prefetch(*dtrh);
1064 }
1065
1066 /*
1067  * vxge_hw_channel_dtr_complete - Removes next completed dtr from the work array
1068  * @channel: Channel handle
1069  *
1070  * Removes the next completed dtr from work array
1071  *
1072  */
1073 void vxge_hw_channel_dtr_complete(struct __vxge_hw_channel *channel)
1074 {
1075         channel->work_arr[channel->compl_index] = NULL;
1076
1077         /* wrap-around */
1078         if (++channel->compl_index == channel->length)
1079                 channel->compl_index = 0;
1080
1081         channel->stats->total_compl_cnt++;
1082 }
1083
1084 /*
1085  * vxge_hw_channel_dtr_free - Frees a dtr
1086  * @channel: Channel handle
1087  * @dtr:  DTR pointer
1088  *
1089  * Returns the dtr to free array
1090  *
1091  */
1092 void vxge_hw_channel_dtr_free(struct __vxge_hw_channel *channel, void *dtrh)
1093 {
1094         channel->free_arr[--channel->free_ptr] = dtrh;
1095 }
1096
1097 /*
1098  * vxge_hw_channel_dtr_count
1099  * @channel: Channel handle. Obtained via vxge_hw_channel_open().
1100  *
1101  * Retrieve number of DTRs available. This function can not be called
1102  * from data path. ring_initial_replenishi() is the only user.
1103  */
1104 int vxge_hw_channel_dtr_count(struct __vxge_hw_channel *channel)
1105 {
1106         return (channel->reserve_ptr - channel->reserve_top) +
1107                 (channel->length - channel->free_ptr);
1108 }
1109
1110 /**
1111  * vxge_hw_ring_rxd_reserve     - Reserve ring descriptor.
1112  * @ring: Handle to the ring object used for receive
1113  * @rxdh: Reserved descriptor. On success HW fills this "out" parameter
1114  * with a valid handle.
1115  *
1116  * Reserve Rx descriptor for the subsequent filling-in driver
1117  * and posting on the corresponding channel (@channelh)
1118  * via vxge_hw_ring_rxd_post().
1119  *
1120  * Returns: VXGE_HW_OK - success.
1121  * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available.
1122  *
1123  */
1124 enum vxge_hw_status vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring *ring,
1125         void **rxdh)
1126 {
1127         enum vxge_hw_status status;
1128         struct __vxge_hw_channel *channel;
1129
1130         channel = &ring->channel;
1131
1132         status = vxge_hw_channel_dtr_alloc(channel, rxdh);
1133
1134         if (status == VXGE_HW_OK) {
1135                 struct vxge_hw_ring_rxd_1 *rxdp =
1136                         (struct vxge_hw_ring_rxd_1 *)*rxdh;
1137
1138                 rxdp->control_0 = rxdp->control_1 = 0;
1139         }
1140
1141         return status;
1142 }
1143
1144 /**
1145  * vxge_hw_ring_rxd_free - Free descriptor.
1146  * @ring: Handle to the ring object used for receive
1147  * @rxdh: Descriptor handle.
1148  *
1149  * Free the reserved descriptor. This operation is "symmetrical" to
1150  * vxge_hw_ring_rxd_reserve. The "free-ing" completes the descriptor's
1151  * lifecycle.
1152  *
1153  * After free-ing (see vxge_hw_ring_rxd_free()) the descriptor again can
1154  * be:
1155  *
1156  * - reserved (vxge_hw_ring_rxd_reserve);
1157  *
1158  * - posted     (vxge_hw_ring_rxd_post);
1159  *
1160  * - completed (vxge_hw_ring_rxd_next_completed);
1161  *
1162  * - and recycled again (vxge_hw_ring_rxd_free).
1163  *
1164  * For alternative state transitions and more details please refer to
1165  * the design doc.
1166  *
1167  */
1168 void vxge_hw_ring_rxd_free(struct __vxge_hw_ring *ring, void *rxdh)
1169 {
1170         struct __vxge_hw_channel *channel;
1171
1172         channel = &ring->channel;
1173
1174         vxge_hw_channel_dtr_free(channel, rxdh);
1175
1176 }
1177
1178 /**
1179  * vxge_hw_ring_rxd_pre_post - Prepare rxd and post
1180  * @ring: Handle to the ring object used for receive
1181  * @rxdh: Descriptor handle.
1182  *
1183  * This routine prepares a rxd and posts
1184  */
1185 void vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring *ring, void *rxdh)
1186 {
1187         struct __vxge_hw_channel *channel;
1188
1189         channel = &ring->channel;
1190
1191         vxge_hw_channel_dtr_post(channel, rxdh);
1192 }
1193
1194 /**
1195  * vxge_hw_ring_rxd_post_post - Process rxd after post.
1196  * @ring: Handle to the ring object used for receive
1197  * @rxdh: Descriptor handle.
1198  *
1199  * Processes rxd after post
1200  */
1201 void vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring *ring, void *rxdh)
1202 {
1203         struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1204         struct __vxge_hw_channel *channel;
1205
1206         channel = &ring->channel;
1207
1208         rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1209
1210         if (ring->stats->common_stats.usage_cnt > 0)
1211                 ring->stats->common_stats.usage_cnt--;
1212 }
1213
1214 /**
1215  * vxge_hw_ring_rxd_post - Post descriptor on the ring.
1216  * @ring: Handle to the ring object used for receive
1217  * @rxdh: Descriptor obtained via vxge_hw_ring_rxd_reserve().
1218  *
1219  * Post descriptor on the ring.
1220  * Prior to posting the descriptor should be filled in accordance with
1221  * Host/Titan interface specification for a given service (LL, etc.).
1222  *
1223  */
1224 void vxge_hw_ring_rxd_post(struct __vxge_hw_ring *ring, void *rxdh)
1225 {
1226         struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1227         struct __vxge_hw_channel *channel;
1228
1229         channel = &ring->channel;
1230
1231         wmb();
1232         rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1233
1234         vxge_hw_channel_dtr_post(channel, rxdh);
1235
1236         if (ring->stats->common_stats.usage_cnt > 0)
1237                 ring->stats->common_stats.usage_cnt--;
1238 }
1239
1240 /**
1241  * vxge_hw_ring_rxd_post_post_wmb - Process rxd after post with memory barrier.
1242  * @ring: Handle to the ring object used for receive
1243  * @rxdh: Descriptor handle.
1244  *
1245  * Processes rxd after post with memory barrier.
1246  */
1247 void vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring *ring, void *rxdh)
1248 {
1249         wmb();
1250         vxge_hw_ring_rxd_post_post(ring, rxdh);
1251 }
1252
1253 /**
1254  * vxge_hw_ring_rxd_next_completed - Get the _next_ completed descriptor.
1255  * @ring: Handle to the ring object used for receive
1256  * @rxdh: Descriptor handle. Returned by HW.
1257  * @t_code:     Transfer code, as per Titan User Guide,
1258  *       Receive Descriptor Format. Returned by HW.
1259  *
1260  * Retrieve the _next_ completed descriptor.
1261  * HW uses ring callback (*vxge_hw_ring_callback_f) to notifiy
1262  * driver of new completed descriptors. After that
1263  * the driver can use vxge_hw_ring_rxd_next_completed to retrieve the rest
1264  * completions (the very first completion is passed by HW via
1265  * vxge_hw_ring_callback_f).
1266  *
1267  * Implementation-wise, the driver is free to call
1268  * vxge_hw_ring_rxd_next_completed either immediately from inside the
1269  * ring callback, or in a deferred fashion and separate (from HW)
1270  * context.
1271  *
1272  * Non-zero @t_code means failure to fill-in receive buffer(s)
1273  * of the descriptor.
1274  * For instance, parity error detected during the data transfer.
1275  * In this case Titan will complete the descriptor and indicate
1276  * for the host that the received data is not to be used.
1277  * For details please refer to Titan User Guide.
1278  *
1279  * Returns: VXGE_HW_OK - success.
1280  * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1281  * are currently available for processing.
1282  *
1283  * See also: vxge_hw_ring_callback_f{},
1284  * vxge_hw_fifo_rxd_next_completed(), enum vxge_hw_status{}.
1285  */
1286 enum vxge_hw_status vxge_hw_ring_rxd_next_completed(
1287         struct __vxge_hw_ring *ring, void **rxdh, u8 *t_code)
1288 {
1289         struct __vxge_hw_channel *channel;
1290         struct vxge_hw_ring_rxd_1 *rxdp;
1291         enum vxge_hw_status status = VXGE_HW_OK;
1292         u64 control_0, own;
1293
1294         channel = &ring->channel;
1295
1296         vxge_hw_channel_dtr_try_complete(channel, rxdh);
1297
1298         rxdp = *rxdh;
1299         if (rxdp == NULL) {
1300                 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1301                 goto exit;
1302         }
1303
1304         control_0 = rxdp->control_0;
1305         own = control_0 & VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1306         *t_code = (u8)VXGE_HW_RING_RXD_T_CODE_GET(control_0);
1307
1308         /* check whether it is not the end */
1309         if (!own || *t_code == VXGE_HW_RING_T_CODE_FRM_DROP) {
1310
1311                 vxge_assert((rxdp)->host_control !=
1312                                 0);
1313
1314                 ++ring->cmpl_cnt;
1315                 vxge_hw_channel_dtr_complete(channel);
1316
1317                 vxge_assert(*t_code != VXGE_HW_RING_RXD_T_CODE_UNUSED);
1318
1319                 ring->stats->common_stats.usage_cnt++;
1320                 if (ring->stats->common_stats.usage_max <
1321                                 ring->stats->common_stats.usage_cnt)
1322                         ring->stats->common_stats.usage_max =
1323                                 ring->stats->common_stats.usage_cnt;
1324
1325                 status = VXGE_HW_OK;
1326                 goto exit;
1327         }
1328
1329         /* reset it. since we don't want to return
1330          * garbage to the driver */
1331         *rxdh = NULL;
1332         status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1333 exit:
1334         return status;
1335 }
1336
1337 /**
1338  * vxge_hw_ring_handle_tcode - Handle transfer code.
1339  * @ring: Handle to the ring object used for receive
1340  * @rxdh: Descriptor handle.
1341  * @t_code: One of the enumerated (and documented in the Titan user guide)
1342  * "transfer codes".
1343  *
1344  * Handle descriptor's transfer code. The latter comes with each completed
1345  * descriptor.
1346  *
1347  * Returns: one of the enum vxge_hw_status{} enumerated types.
1348  * VXGE_HW_OK                   - for success.
1349  * VXGE_HW_ERR_CRITICAL         - when encounters critical error.
1350  */
1351 enum vxge_hw_status vxge_hw_ring_handle_tcode(
1352         struct __vxge_hw_ring *ring, void *rxdh, u8 t_code)
1353 {
1354         struct __vxge_hw_channel *channel;
1355         enum vxge_hw_status status = VXGE_HW_OK;
1356
1357         channel = &ring->channel;
1358
1359         /* If the t_code is not supported and if the
1360          * t_code is other than 0x5 (unparseable packet
1361          * such as unknown UPV6 header), Drop it !!!
1362          */
1363
1364         if (t_code ==  VXGE_HW_RING_T_CODE_OK ||
1365                 t_code == VXGE_HW_RING_T_CODE_L3_PKT_ERR) {
1366                 status = VXGE_HW_OK;
1367                 goto exit;
1368         }
1369
1370         if (t_code > VXGE_HW_RING_T_CODE_MULTI_ERR) {
1371                 status = VXGE_HW_ERR_INVALID_TCODE;
1372                 goto exit;
1373         }
1374
1375         ring->stats->rxd_t_code_err_cnt[t_code]++;
1376 exit:
1377         return status;
1378 }
1379
1380 /**
1381  * __vxge_hw_non_offload_db_post - Post non offload doorbell
1382  *
1383  * @fifo: fifohandle
1384  * @txdl_ptr: The starting location of the TxDL in host memory
1385  * @num_txds: The highest TxD in this TxDL (0 to 255 means 1 to 256)
1386  * @no_snoop: No snoop flags
1387  *
1388  * This function posts a non-offload doorbell to doorbell FIFO
1389  *
1390  */
1391 static void __vxge_hw_non_offload_db_post(struct __vxge_hw_fifo *fifo,
1392         u64 txdl_ptr, u32 num_txds, u32 no_snoop)
1393 {
1394         struct __vxge_hw_channel *channel;
1395
1396         channel = &fifo->channel;
1397
1398         writeq(VXGE_HW_NODBW_TYPE(VXGE_HW_NODBW_TYPE_NODBW) |
1399                 VXGE_HW_NODBW_LAST_TXD_NUMBER(num_txds) |
1400                 VXGE_HW_NODBW_GET_NO_SNOOP(no_snoop),
1401                 &fifo->nofl_db->control_0);
1402
1403         mmiowb();
1404
1405         writeq(txdl_ptr, &fifo->nofl_db->txdl_ptr);
1406
1407         mmiowb();
1408 }
1409
1410 /**
1411  * vxge_hw_fifo_free_txdl_count_get - returns the number of txdls available in
1412  * the fifo
1413  * @fifoh: Handle to the fifo object used for non offload send
1414  */
1415 u32 vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo *fifoh)
1416 {
1417         return vxge_hw_channel_dtr_count(&fifoh->channel);
1418 }
1419
1420 /**
1421  * vxge_hw_fifo_txdl_reserve - Reserve fifo descriptor.
1422  * @fifoh: Handle to the fifo object used for non offload send
1423  * @txdlh: Reserved descriptor. On success HW fills this "out" parameter
1424  *        with a valid handle.
1425  * @txdl_priv: Buffer to return the pointer to per txdl space
1426  *
1427  * Reserve a single TxDL (that is, fifo descriptor)
1428  * for the subsequent filling-in by driver)
1429  * and posting on the corresponding channel (@channelh)
1430  * via vxge_hw_fifo_txdl_post().
1431  *
1432  * Note: it is the responsibility of driver to reserve multiple descriptors
1433  * for lengthy (e.g., LSO) transmit operation. A single fifo descriptor
1434  * carries up to configured number (fifo.max_frags) of contiguous buffers.
1435  *
1436  * Returns: VXGE_HW_OK - success;
1437  * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available
1438  *
1439  */
1440 enum vxge_hw_status vxge_hw_fifo_txdl_reserve(
1441         struct __vxge_hw_fifo *fifo,
1442         void **txdlh, void **txdl_priv)
1443 {
1444         struct __vxge_hw_channel *channel;
1445         enum vxge_hw_status status;
1446         int i;
1447
1448         channel = &fifo->channel;
1449
1450         status = vxge_hw_channel_dtr_alloc(channel, txdlh);
1451
1452         if (status == VXGE_HW_OK) {
1453                 struct vxge_hw_fifo_txd *txdp =
1454                         (struct vxge_hw_fifo_txd *)*txdlh;
1455                 struct __vxge_hw_fifo_txdl_priv *priv;
1456
1457                 priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
1458
1459                 /* reset the TxDL's private */
1460                 priv->align_dma_offset = 0;
1461                 priv->align_vaddr_start = priv->align_vaddr;
1462                 priv->align_used_frags = 0;
1463                 priv->frags = 0;
1464                 priv->alloc_frags = fifo->config->max_frags;
1465                 priv->next_txdl_priv = NULL;
1466
1467                 *txdl_priv = (void *)(size_t)txdp->host_control;
1468
1469                 for (i = 0; i < fifo->config->max_frags; i++) {
1470                         txdp = ((struct vxge_hw_fifo_txd *)*txdlh) + i;
1471                         txdp->control_0 = txdp->control_1 = 0;
1472                 }
1473         }
1474
1475         return status;
1476 }
1477
1478 /**
1479  * vxge_hw_fifo_txdl_buffer_set - Set transmit buffer pointer in the
1480  * descriptor.
1481  * @fifo: Handle to the fifo object used for non offload send
1482  * @txdlh: Descriptor handle.
1483  * @frag_idx: Index of the data buffer in the caller's scatter-gather list
1484  *            (of buffers).
1485  * @dma_pointer: DMA address of the data buffer referenced by @frag_idx.
1486  * @size: Size of the data buffer (in bytes).
1487  *
1488  * This API is part of the preparation of the transmit descriptor for posting
1489  * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
1490  * vxge_hw_fifo_txdl_mss_set() and vxge_hw_fifo_txdl_cksum_set_bits().
1491  * All three APIs fill in the fields of the fifo descriptor,
1492  * in accordance with the Titan specification.
1493  *
1494  */
1495 void vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo *fifo,
1496                                   void *txdlh, u32 frag_idx,
1497                                   dma_addr_t dma_pointer, u32 size)
1498 {
1499         struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1500         struct vxge_hw_fifo_txd *txdp, *txdp_last;
1501         struct __vxge_hw_channel *channel;
1502
1503         channel = &fifo->channel;
1504
1505         txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1506         txdp = (struct vxge_hw_fifo_txd *)txdlh  +  txdl_priv->frags;
1507
1508         if (frag_idx != 0)
1509                 txdp->control_0 = txdp->control_1 = 0;
1510         else {
1511                 txdp->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1512                         VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST);
1513                 txdp->control_1 |= fifo->interrupt_type;
1514                 txdp->control_1 |= VXGE_HW_FIFO_TXD_INT_NUMBER(
1515                         fifo->tx_intr_num);
1516                 if (txdl_priv->frags) {
1517                         txdp_last = (struct vxge_hw_fifo_txd *)txdlh  +
1518                         (txdl_priv->frags - 1);
1519                         txdp_last->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1520                                 VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1521                 }
1522         }
1523
1524         vxge_assert(frag_idx < txdl_priv->alloc_frags);
1525
1526         txdp->buffer_pointer = (u64)dma_pointer;
1527         txdp->control_0 |= VXGE_HW_FIFO_TXD_BUFFER_SIZE(size);
1528         fifo->stats->total_buffers++;
1529         txdl_priv->frags++;
1530 }
1531
1532 /**
1533  * vxge_hw_fifo_txdl_post - Post descriptor on the fifo channel.
1534  * @fifo: Handle to the fifo object used for non offload send
1535  * @txdlh: Descriptor obtained via vxge_hw_fifo_txdl_reserve()
1536  * @frags: Number of contiguous buffers that are part of a single
1537  *         transmit operation.
1538  *
1539  * Post descriptor on the 'fifo' type channel for transmission.
1540  * Prior to posting the descriptor should be filled in accordance with
1541  * Host/Titan interface specification for a given service (LL, etc.).
1542  *
1543  */
1544 void vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo *fifo, void *txdlh)
1545 {
1546         struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1547         struct vxge_hw_fifo_txd *txdp_last;
1548         struct vxge_hw_fifo_txd *txdp_first;
1549         struct __vxge_hw_channel *channel;
1550
1551         channel = &fifo->channel;
1552
1553         txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1554         txdp_first = txdlh;
1555
1556         txdp_last = (struct vxge_hw_fifo_txd *)txdlh  +  (txdl_priv->frags - 1);
1557         txdp_last->control_0 |=
1558               VXGE_HW_FIFO_TXD_GATHER_CODE(VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1559         txdp_first->control_0 |= VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER;
1560
1561         vxge_hw_channel_dtr_post(&fifo->channel, txdlh);
1562
1563         __vxge_hw_non_offload_db_post(fifo,
1564                 (u64)txdl_priv->dma_addr,
1565                 txdl_priv->frags - 1,
1566                 fifo->no_snoop_bits);
1567
1568         fifo->stats->total_posts++;
1569         fifo->stats->common_stats.usage_cnt++;
1570         if (fifo->stats->common_stats.usage_max <
1571                 fifo->stats->common_stats.usage_cnt)
1572                 fifo->stats->common_stats.usage_max =
1573                         fifo->stats->common_stats.usage_cnt;
1574 }
1575
1576 /**
1577  * vxge_hw_fifo_txdl_next_completed - Retrieve next completed descriptor.
1578  * @fifo: Handle to the fifo object used for non offload send
1579  * @txdlh: Descriptor handle. Returned by HW.
1580  * @t_code: Transfer code, as per Titan User Guide,
1581  *          Transmit Descriptor Format.
1582  *          Returned by HW.
1583  *
1584  * Retrieve the _next_ completed descriptor.
1585  * HW uses channel callback (*vxge_hw_channel_callback_f) to notifiy
1586  * driver of new completed descriptors. After that
1587  * the driver can use vxge_hw_fifo_txdl_next_completed to retrieve the rest
1588  * completions (the very first completion is passed by HW via
1589  * vxge_hw_channel_callback_f).
1590  *
1591  * Implementation-wise, the driver is free to call
1592  * vxge_hw_fifo_txdl_next_completed either immediately from inside the
1593  * channel callback, or in a deferred fashion and separate (from HW)
1594  * context.
1595  *
1596  * Non-zero @t_code means failure to process the descriptor.
1597  * The failure could happen, for instance, when the link is
1598  * down, in which case Titan completes the descriptor because it
1599  * is not able to send the data out.
1600  *
1601  * For details please refer to Titan User Guide.
1602  *
1603  * Returns: VXGE_HW_OK - success.
1604  * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1605  * are currently available for processing.
1606  *
1607  */
1608 enum vxge_hw_status vxge_hw_fifo_txdl_next_completed(
1609         struct __vxge_hw_fifo *fifo, void **txdlh,
1610         enum vxge_hw_fifo_tcode *t_code)
1611 {
1612         struct __vxge_hw_channel *channel;
1613         struct vxge_hw_fifo_txd *txdp;
1614         enum vxge_hw_status status = VXGE_HW_OK;
1615
1616         channel = &fifo->channel;
1617
1618         vxge_hw_channel_dtr_try_complete(channel, txdlh);
1619
1620         txdp = *txdlh;
1621         if (txdp == NULL) {
1622                 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1623                 goto exit;
1624         }
1625
1626         /* check whether host owns it */
1627         if (!(txdp->control_0 & VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER)) {
1628
1629                 vxge_assert(txdp->host_control != 0);
1630
1631                 vxge_hw_channel_dtr_complete(channel);
1632
1633                 *t_code = (u8)VXGE_HW_FIFO_TXD_T_CODE_GET(txdp->control_0);
1634
1635                 if (fifo->stats->common_stats.usage_cnt > 0)
1636                         fifo->stats->common_stats.usage_cnt--;
1637
1638                 status = VXGE_HW_OK;
1639                 goto exit;
1640         }
1641
1642         /* no more completions */
1643         *txdlh = NULL;
1644         status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1645 exit:
1646         return status;
1647 }
1648
1649 /**
1650  * vxge_hw_fifo_handle_tcode - Handle transfer code.
1651  * @fifo: Handle to the fifo object used for non offload send
1652  * @txdlh: Descriptor handle.
1653  * @t_code: One of the enumerated (and documented in the Titan user guide)
1654  *          "transfer codes".
1655  *
1656  * Handle descriptor's transfer code. The latter comes with each completed
1657  * descriptor.
1658  *
1659  * Returns: one of the enum vxge_hw_status{} enumerated types.
1660  * VXGE_HW_OK - for success.
1661  * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1662  */
1663 enum vxge_hw_status vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo *fifo,
1664                                               void *txdlh,
1665                                               enum vxge_hw_fifo_tcode t_code)
1666 {
1667         struct __vxge_hw_channel *channel;
1668
1669         enum vxge_hw_status status = VXGE_HW_OK;
1670         channel = &fifo->channel;
1671
1672         if (((t_code & 0x7) < 0) || ((t_code & 0x7) > 0x4)) {
1673                 status = VXGE_HW_ERR_INVALID_TCODE;
1674                 goto exit;
1675         }
1676
1677         fifo->stats->txd_t_code_err_cnt[t_code]++;
1678 exit:
1679         return status;
1680 }
1681
1682 /**
1683  * vxge_hw_fifo_txdl_free - Free descriptor.
1684  * @fifo: Handle to the fifo object used for non offload send
1685  * @txdlh: Descriptor handle.
1686  *
1687  * Free the reserved descriptor. This operation is "symmetrical" to
1688  * vxge_hw_fifo_txdl_reserve. The "free-ing" completes the descriptor's
1689  * lifecycle.
1690  *
1691  * After free-ing (see vxge_hw_fifo_txdl_free()) the descriptor again can
1692  * be:
1693  *
1694  * - reserved (vxge_hw_fifo_txdl_reserve);
1695  *
1696  * - posted (vxge_hw_fifo_txdl_post);
1697  *
1698  * - completed (vxge_hw_fifo_txdl_next_completed);
1699  *
1700  * - and recycled again (vxge_hw_fifo_txdl_free).
1701  *
1702  * For alternative state transitions and more details please refer to
1703  * the design doc.
1704  *
1705  */
1706 void vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo *fifo, void *txdlh)
1707 {
1708         struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1709         u32 max_frags;
1710         struct __vxge_hw_channel *channel;
1711
1712         channel = &fifo->channel;
1713
1714         txdl_priv = __vxge_hw_fifo_txdl_priv(fifo,
1715                         (struct vxge_hw_fifo_txd *)txdlh);
1716
1717         max_frags = fifo->config->max_frags;
1718
1719         vxge_hw_channel_dtr_free(channel, txdlh);
1720 }
1721
1722 /**
1723  * vxge_hw_vpath_mac_addr_add - Add the mac address entry for this vpath
1724  *               to MAC address table.
1725  * @vp: Vpath handle.
1726  * @macaddr: MAC address to be added for this vpath into the list
1727  * @macaddr_mask: MAC address mask for macaddr
1728  * @duplicate_mode: Duplicate MAC address add mode. Please see
1729  *             enum vxge_hw_vpath_mac_addr_add_mode{}
1730  *
1731  * Adds the given mac address and mac address mask into the list for this
1732  * vpath.
1733  * see also: vxge_hw_vpath_mac_addr_delete, vxge_hw_vpath_mac_addr_get and
1734  * vxge_hw_vpath_mac_addr_get_next
1735  *
1736  */
1737 enum vxge_hw_status
1738 vxge_hw_vpath_mac_addr_add(
1739         struct __vxge_hw_vpath_handle *vp,
1740         u8 *macaddr,
1741         u8 *macaddr_mask,
1742         enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode)
1743 {
1744         u32 i;
1745         u64 data1 = 0ULL;
1746         u64 data2 = 0ULL;
1747         enum vxge_hw_status status = VXGE_HW_OK;
1748
1749         if (vp == NULL) {
1750                 status = VXGE_HW_ERR_INVALID_HANDLE;
1751                 goto exit;
1752         }
1753
1754         for (i = 0; i < ETH_ALEN; i++) {
1755                 data1 <<= 8;
1756                 data1 |= (u8)macaddr[i];
1757
1758                 data2 <<= 8;
1759                 data2 |= (u8)macaddr_mask[i];
1760         }
1761
1762         switch (duplicate_mode) {
1763         case VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE:
1764                 i = 0;
1765                 break;
1766         case VXGE_HW_VPATH_MAC_ADDR_DISCARD_DUPLICATE:
1767                 i = 1;
1768                 break;
1769         case VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE:
1770                 i = 2;
1771                 break;
1772         default:
1773                 i = 0;
1774                 break;
1775         }
1776
1777         status = __vxge_hw_vpath_rts_table_set(vp,
1778                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1779                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1780                         0,
1781                         VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1782                         VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2)|
1783                         VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MODE(i));
1784 exit:
1785         return status;
1786 }
1787
1788 /**
1789  * vxge_hw_vpath_mac_addr_get - Get the first mac address entry for this vpath
1790  *               from MAC address table.
1791  * @vp: Vpath handle.
1792  * @macaddr: First MAC address entry for this vpath in the list
1793  * @macaddr_mask: MAC address mask for macaddr
1794  *
1795  * Returns the first mac address and mac address mask in the list for this
1796  * vpath.
1797  * see also: vxge_hw_vpath_mac_addr_get_next
1798  *
1799  */
1800 enum vxge_hw_status
1801 vxge_hw_vpath_mac_addr_get(
1802         struct __vxge_hw_vpath_handle *vp,
1803         u8 *macaddr,
1804         u8 *macaddr_mask)
1805 {
1806         u32 i;
1807         u64 data1 = 0ULL;
1808         u64 data2 = 0ULL;
1809         enum vxge_hw_status status = VXGE_HW_OK;
1810
1811         if (vp == NULL) {
1812                 status = VXGE_HW_ERR_INVALID_HANDLE;
1813                 goto exit;
1814         }
1815
1816         status = __vxge_hw_vpath_rts_table_get(vp,
1817                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
1818                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1819                         0, &data1, &data2);
1820
1821         if (status != VXGE_HW_OK)
1822                 goto exit;
1823
1824         data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1825
1826         data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1827
1828         for (i = ETH_ALEN; i > 0; i--) {
1829                 macaddr[i-1] = (u8)(data1 & 0xFF);
1830                 data1 >>= 8;
1831
1832                 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1833                 data2 >>= 8;
1834         }
1835 exit:
1836         return status;
1837 }
1838
1839 /**
1840  * vxge_hw_vpath_mac_addr_get_next - Get the next mac address entry for this
1841  * vpath
1842  *               from MAC address table.
1843  * @vp: Vpath handle.
1844  * @macaddr: Next MAC address entry for this vpath in the list
1845  * @macaddr_mask: MAC address mask for macaddr
1846  *
1847  * Returns the next mac address and mac address mask in the list for this
1848  * vpath.
1849  * see also: vxge_hw_vpath_mac_addr_get
1850  *
1851  */
1852 enum vxge_hw_status
1853 vxge_hw_vpath_mac_addr_get_next(
1854         struct __vxge_hw_vpath_handle *vp,
1855         u8 *macaddr,
1856         u8 *macaddr_mask)
1857 {
1858         u32 i;
1859         u64 data1 = 0ULL;
1860         u64 data2 = 0ULL;
1861         enum vxge_hw_status status = VXGE_HW_OK;
1862
1863         if (vp == NULL) {
1864                 status = VXGE_HW_ERR_INVALID_HANDLE;
1865                 goto exit;
1866         }
1867
1868         status = __vxge_hw_vpath_rts_table_get(vp,
1869                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
1870                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1871                         0, &data1, &data2);
1872
1873         if (status != VXGE_HW_OK)
1874                 goto exit;
1875
1876         data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1877
1878         data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1879
1880         for (i = ETH_ALEN; i > 0; i--) {
1881                 macaddr[i-1] = (u8)(data1 & 0xFF);
1882                 data1 >>= 8;
1883
1884                 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1885                 data2 >>= 8;
1886         }
1887
1888 exit:
1889         return status;
1890 }
1891
1892 /**
1893  * vxge_hw_vpath_mac_addr_delete - Delete the mac address entry for this vpath
1894  *               to MAC address table.
1895  * @vp: Vpath handle.
1896  * @macaddr: MAC address to be added for this vpath into the list
1897  * @macaddr_mask: MAC address mask for macaddr
1898  *
1899  * Delete the given mac address and mac address mask into the list for this
1900  * vpath.
1901  * see also: vxge_hw_vpath_mac_addr_add, vxge_hw_vpath_mac_addr_get and
1902  * vxge_hw_vpath_mac_addr_get_next
1903  *
1904  */
1905 enum vxge_hw_status
1906 vxge_hw_vpath_mac_addr_delete(
1907         struct __vxge_hw_vpath_handle *vp,
1908         u8 *macaddr,
1909         u8 *macaddr_mask)
1910 {
1911         u32 i;
1912         u64 data1 = 0ULL;
1913         u64 data2 = 0ULL;
1914         enum vxge_hw_status status = VXGE_HW_OK;
1915
1916         if (vp == NULL) {
1917                 status = VXGE_HW_ERR_INVALID_HANDLE;
1918                 goto exit;
1919         }
1920
1921         for (i = 0; i < ETH_ALEN; i++) {
1922                 data1 <<= 8;
1923                 data1 |= (u8)macaddr[i];
1924
1925                 data2 <<= 8;
1926                 data2 |= (u8)macaddr_mask[i];
1927         }
1928
1929         status = __vxge_hw_vpath_rts_table_set(vp,
1930                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1931                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1932                         0,
1933                         VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1934                         VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2));
1935 exit:
1936         return status;
1937 }
1938
1939 /**
1940  * vxge_hw_vpath_vid_add - Add the vlan id entry for this vpath
1941  *               to vlan id table.
1942  * @vp: Vpath handle.
1943  * @vid: vlan id to be added for this vpath into the list
1944  *
1945  * Adds the given vlan id into the list for this  vpath.
1946  * see also: vxge_hw_vpath_vid_delete
1947  *
1948  */
1949 enum vxge_hw_status
1950 vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle *vp, u64 vid)
1951 {
1952         enum vxge_hw_status status = VXGE_HW_OK;
1953
1954         if (vp == NULL) {
1955                 status = VXGE_HW_ERR_INVALID_HANDLE;
1956                 goto exit;
1957         }
1958
1959         status = __vxge_hw_vpath_rts_table_set(vp,
1960                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1961                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1962                         0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1963 exit:
1964         return status;
1965 }
1966
1967 /**
1968  * vxge_hw_vpath_vid_delete - Delete the vlan id entry for this vpath
1969  *               to vlan id table.
1970  * @vp: Vpath handle.
1971  * @vid: vlan id to be added for this vpath into the list
1972  *
1973  * Adds the given vlan id into the list for this  vpath.
1974  * see also: vxge_hw_vpath_vid_add
1975  *
1976  */
1977 enum vxge_hw_status
1978 vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle *vp, u64 vid)
1979 {
1980         enum vxge_hw_status status = VXGE_HW_OK;
1981
1982         if (vp == NULL) {
1983                 status = VXGE_HW_ERR_INVALID_HANDLE;
1984                 goto exit;
1985         }
1986
1987         status = __vxge_hw_vpath_rts_table_set(vp,
1988                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1989                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1990                         0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1991 exit:
1992         return status;
1993 }
1994
1995 /**
1996  * vxge_hw_vpath_promisc_enable - Enable promiscuous mode.
1997  * @vp: Vpath handle.
1998  *
1999  * Enable promiscuous mode of Titan-e operation.
2000  *
2001  * See also: vxge_hw_vpath_promisc_disable().
2002  */
2003 enum vxge_hw_status vxge_hw_vpath_promisc_enable(
2004                         struct __vxge_hw_vpath_handle *vp)
2005 {
2006         u64 val64;
2007         struct __vxge_hw_virtualpath *vpath;
2008         enum vxge_hw_status status = VXGE_HW_OK;
2009
2010         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2011                 status = VXGE_HW_ERR_INVALID_HANDLE;
2012                 goto exit;
2013         }
2014
2015         vpath = vp->vpath;
2016
2017         /* Enable promiscuous mode for function 0 only */
2018         if (!(vpath->hldev->access_rights &
2019                 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM))
2020                 return VXGE_HW_OK;
2021
2022         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2023
2024         if (!(val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN)) {
2025
2026                 val64 |= VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
2027                          VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
2028                          VXGE_HW_RXMAC_VCFG0_BCAST_EN |
2029                          VXGE_HW_RXMAC_VCFG0_ALL_VID_EN;
2030
2031                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2032         }
2033 exit:
2034         return status;
2035 }
2036
2037 /**
2038  * vxge_hw_vpath_promisc_disable - Disable promiscuous mode.
2039  * @vp: Vpath handle.
2040  *
2041  * Disable promiscuous mode of Titan-e operation.
2042  *
2043  * See also: vxge_hw_vpath_promisc_enable().
2044  */
2045 enum vxge_hw_status vxge_hw_vpath_promisc_disable(
2046                         struct __vxge_hw_vpath_handle *vp)
2047 {
2048         u64 val64;
2049         struct __vxge_hw_virtualpath *vpath;
2050         enum vxge_hw_status status = VXGE_HW_OK;
2051
2052         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2053                 status = VXGE_HW_ERR_INVALID_HANDLE;
2054                 goto exit;
2055         }
2056
2057         vpath = vp->vpath;
2058
2059         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2060
2061         if (val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN) {
2062
2063                 val64 &= ~(VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
2064                            VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
2065                            VXGE_HW_RXMAC_VCFG0_ALL_VID_EN);
2066
2067                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2068         }
2069 exit:
2070         return status;
2071 }
2072
2073 /*
2074  * vxge_hw_vpath_bcast_enable - Enable broadcast
2075  * @vp: Vpath handle.
2076  *
2077  * Enable receiving broadcasts.
2078  */
2079 enum vxge_hw_status vxge_hw_vpath_bcast_enable(
2080                         struct __vxge_hw_vpath_handle *vp)
2081 {
2082         u64 val64;
2083         struct __vxge_hw_virtualpath *vpath;
2084         enum vxge_hw_status status = VXGE_HW_OK;
2085
2086         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2087                 status = VXGE_HW_ERR_INVALID_HANDLE;
2088                 goto exit;
2089         }
2090
2091         vpath = vp->vpath;
2092
2093         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2094
2095         if (!(val64 & VXGE_HW_RXMAC_VCFG0_BCAST_EN)) {
2096                 val64 |= VXGE_HW_RXMAC_VCFG0_BCAST_EN;
2097                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2098         }
2099 exit:
2100         return status;
2101 }
2102
2103 /**
2104  * vxge_hw_vpath_mcast_enable - Enable multicast addresses.
2105  * @vp: Vpath handle.
2106  *
2107  * Enable Titan-e multicast addresses.
2108  * Returns: VXGE_HW_OK on success.
2109  *
2110  */
2111 enum vxge_hw_status vxge_hw_vpath_mcast_enable(
2112                         struct __vxge_hw_vpath_handle *vp)
2113 {
2114         u64 val64;
2115         struct __vxge_hw_virtualpath *vpath;
2116         enum vxge_hw_status status = VXGE_HW_OK;
2117
2118         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2119                 status = VXGE_HW_ERR_INVALID_HANDLE;
2120                 goto exit;
2121         }
2122
2123         vpath = vp->vpath;
2124
2125         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2126
2127         if (!(val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN)) {
2128                 val64 |= VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
2129                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2130         }
2131 exit:
2132         return status;
2133 }
2134
2135 /**
2136  * vxge_hw_vpath_mcast_disable - Disable  multicast addresses.
2137  * @vp: Vpath handle.
2138  *
2139  * Disable Titan-e multicast addresses.
2140  * Returns: VXGE_HW_OK - success.
2141  * VXGE_HW_ERR_INVALID_HANDLE - Invalid handle
2142  *
2143  */
2144 enum vxge_hw_status
2145 vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle *vp)
2146 {
2147         u64 val64;
2148         struct __vxge_hw_virtualpath *vpath;
2149         enum vxge_hw_status status = VXGE_HW_OK;
2150
2151         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2152                 status = VXGE_HW_ERR_INVALID_HANDLE;
2153                 goto exit;
2154         }
2155
2156         vpath = vp->vpath;
2157
2158         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2159
2160         if (val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN) {
2161                 val64 &= ~VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
2162                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2163         }
2164 exit:
2165         return status;
2166 }
2167
2168 /*
2169  * vxge_hw_vpath_alarm_process - Process Alarms.
2170  * @vpath: Virtual Path.
2171  * @skip_alarms: Do not clear the alarms
2172  *
2173  * Process vpath alarms.
2174  *
2175  */
2176 enum vxge_hw_status vxge_hw_vpath_alarm_process(
2177                         struct __vxge_hw_vpath_handle *vp,
2178                         u32 skip_alarms)
2179 {
2180         enum vxge_hw_status status = VXGE_HW_OK;
2181
2182         if (vp == NULL) {
2183                 status = VXGE_HW_ERR_INVALID_HANDLE;
2184                 goto exit;
2185         }
2186
2187         status = __vxge_hw_vpath_alarm_process(vp->vpath, skip_alarms);
2188 exit:
2189         return status;
2190 }
2191
2192 /**
2193  * vxge_hw_vpath_msix_set - Associate MSIX vectors with TIM interrupts and
2194  *                            alrms
2195  * @vp: Virtual Path handle.
2196  * @tim_msix_id: MSIX vectors associated with VXGE_HW_MAX_INTR_PER_VP number of
2197  *             interrupts(Can be repeated). If fifo or ring are not enabled
2198  *             the MSIX vector for that should be set to 0
2199  * @alarm_msix_id: MSIX vector for alarm.
2200  *
2201  * This API will associate a given MSIX vector numbers with the four TIM
2202  * interrupts and alarm interrupt.
2203  */
2204 void
2205 vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle *vp, int *tim_msix_id,
2206                        int alarm_msix_id)
2207 {
2208         u64 val64;
2209         struct __vxge_hw_virtualpath *vpath = vp->vpath;
2210         struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
2211         u32 vp_id = vp->vpath->vp_id;
2212
2213         val64 =  VXGE_HW_INTERRUPT_CFG0_GROUP0_MSIX_FOR_TXTI(
2214                   (vp_id * 4) + tim_msix_id[0]) |
2215                  VXGE_HW_INTERRUPT_CFG0_GROUP1_MSIX_FOR_TXTI(
2216                   (vp_id * 4) + tim_msix_id[1]);
2217
2218         writeq(val64, &vp_reg->interrupt_cfg0);
2219
2220         writeq(VXGE_HW_INTERRUPT_CFG2_ALARM_MAP_TO_MSG(
2221                         (vpath->hldev->first_vp_id * 4) + alarm_msix_id),
2222                         &vp_reg->interrupt_cfg2);
2223
2224         if (vpath->hldev->config.intr_mode ==
2225                                         VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2226                 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2227                                 VXGE_HW_ONE_SHOT_VECT0_EN_ONE_SHOT_VECT0_EN,
2228                                 0, 32), &vp_reg->one_shot_vect0_en);
2229                 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2230                                 VXGE_HW_ONE_SHOT_VECT1_EN_ONE_SHOT_VECT1_EN,
2231                                 0, 32), &vp_reg->one_shot_vect1_en);
2232                 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2233                                 VXGE_HW_ONE_SHOT_VECT2_EN_ONE_SHOT_VECT2_EN,
2234                                 0, 32), &vp_reg->one_shot_vect2_en);
2235         }
2236 }
2237
2238 /**
2239  * vxge_hw_vpath_msix_mask - Mask MSIX Vector.
2240  * @vp: Virtual Path handle.
2241  * @msix_id:  MSIX ID
2242  *
2243  * The function masks the msix interrupt for the given msix_id
2244  *
2245  * Returns: 0,
2246  * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2247  * status.
2248  * See also:
2249  */
2250 void
2251 vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2252 {
2253         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2254         __vxge_hw_pio_mem_write32_upper(
2255                 (u32) vxge_bVALn(vxge_mBIT(msix_id  >> 2), 0, 32),
2256                 &hldev->common_reg->set_msix_mask_vect[msix_id % 4]);
2257 }
2258
2259 /**
2260  * vxge_hw_vpath_msix_clear - Clear MSIX Vector.
2261  * @vp: Virtual Path handle.
2262  * @msix_id:  MSI ID
2263  *
2264  * The function clears the msix interrupt for the given msix_id
2265  *
2266  * Returns: 0,
2267  * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2268  * status.
2269  * See also:
2270  */
2271 void vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle *vp, int msix_id)
2272 {
2273         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2274
2275         if ((hldev->config.intr_mode == VXGE_HW_INTR_MODE_MSIX_ONE_SHOT))
2276                 __vxge_hw_pio_mem_write32_upper(
2277                         (u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
2278                         &hldev->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
2279         else
2280                 __vxge_hw_pio_mem_write32_upper(
2281                         (u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
2282                         &hldev->common_reg->clear_msix_mask_vect[msix_id % 4]);
2283 }
2284
2285 /**
2286  * vxge_hw_vpath_msix_unmask - Unmask the MSIX Vector.
2287  * @vp: Virtual Path handle.
2288  * @msix_id:  MSI ID
2289  *
2290  * The function unmasks the msix interrupt for the given msix_id
2291  *
2292  * Returns: 0,
2293  * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2294  * status.
2295  * See also:
2296  */
2297 void
2298 vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2299 {
2300         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2301         __vxge_hw_pio_mem_write32_upper(
2302                         (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
2303                         &hldev->common_reg->clear_msix_mask_vect[msix_id%4]);
2304 }
2305
2306 /**
2307  * vxge_hw_vpath_inta_mask_tx_rx - Mask Tx and Rx interrupts.
2308  * @vp: Virtual Path handle.
2309  *
2310  * Mask Tx and Rx vpath interrupts.
2311  *
2312  * See also: vxge_hw_vpath_inta_mask_tx_rx()
2313  */
2314 void vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2315 {
2316         u64     tim_int_mask0[4] = {[0 ...3] = 0};
2317         u32     tim_int_mask1[4] = {[0 ...3] = 0};
2318         u64     val64;
2319         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2320
2321         VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2322                 tim_int_mask1, vp->vpath->vp_id);
2323
2324         val64 = readq(&hldev->common_reg->tim_int_mask0);
2325
2326         if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2327                 (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2328                 writeq((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2329                         tim_int_mask0[VXGE_HW_VPATH_INTR_RX] | val64),
2330                         &hldev->common_reg->tim_int_mask0);
2331         }
2332
2333         val64 = readl(&hldev->common_reg->tim_int_mask1);
2334
2335         if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2336                 (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2337                 __vxge_hw_pio_mem_write32_upper(
2338                         (tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2339                         tim_int_mask1[VXGE_HW_VPATH_INTR_RX] | val64),
2340                         &hldev->common_reg->tim_int_mask1);
2341         }
2342 }
2343
2344 /**
2345  * vxge_hw_vpath_inta_unmask_tx_rx - Unmask Tx and Rx interrupts.
2346  * @vp: Virtual Path handle.
2347  *
2348  * Unmask Tx and Rx vpath interrupts.
2349  *
2350  * See also: vxge_hw_vpath_inta_mask_tx_rx()
2351  */
2352 void vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2353 {
2354         u64     tim_int_mask0[4] = {[0 ...3] = 0};
2355         u32     tim_int_mask1[4] = {[0 ...3] = 0};
2356         u64     val64;
2357         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2358
2359         VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2360                 tim_int_mask1, vp->vpath->vp_id);
2361
2362         val64 = readq(&hldev->common_reg->tim_int_mask0);
2363
2364         if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2365            (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2366                 writeq((~(tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2367                         tim_int_mask0[VXGE_HW_VPATH_INTR_RX])) & val64,
2368                         &hldev->common_reg->tim_int_mask0);
2369         }
2370
2371         if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2372            (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2373                 __vxge_hw_pio_mem_write32_upper(
2374                         (~(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2375                           tim_int_mask1[VXGE_HW_VPATH_INTR_RX])) & val64,
2376                         &hldev->common_reg->tim_int_mask1);
2377         }
2378 }
2379
2380 /**
2381  * vxge_hw_vpath_poll_rx - Poll Rx Virtual Path for completed
2382  * descriptors and process the same.
2383  * @ring: Handle to the ring object used for receive
2384  *
2385  * The function polls the Rx for the completed  descriptors and calls
2386  * the driver via supplied completion   callback.
2387  *
2388  * Returns: VXGE_HW_OK, if the polling is completed successful.
2389  * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2390  * descriptors available which are yet to be processed.
2391  *
2392  * See also: vxge_hw_vpath_poll_rx()
2393  */
2394 enum vxge_hw_status vxge_hw_vpath_poll_rx(struct __vxge_hw_ring *ring)
2395 {
2396         u8 t_code;
2397         enum vxge_hw_status status = VXGE_HW_OK;
2398         void *first_rxdh;
2399         int new_count = 0;
2400
2401         ring->cmpl_cnt = 0;
2402
2403         status = vxge_hw_ring_rxd_next_completed(ring, &first_rxdh, &t_code);
2404         if (status == VXGE_HW_OK)
2405                 ring->callback(ring, first_rxdh,
2406                         t_code, ring->channel.userdata);
2407
2408         if (ring->cmpl_cnt != 0) {
2409                 ring->doorbell_cnt += ring->cmpl_cnt;
2410                 if (ring->doorbell_cnt >= ring->rxds_limit) {
2411                         /*
2412                          * Each RxD is of 4 qwords, update the number of
2413                          * qwords replenished
2414                          */
2415                         new_count = (ring->doorbell_cnt * 4);
2416
2417                         /* For each block add 4 more qwords */
2418                         ring->total_db_cnt += ring->doorbell_cnt;
2419                         if (ring->total_db_cnt >= ring->rxds_per_block) {
2420                                 new_count += 4;
2421                                 /* Reset total count */
2422                                 ring->total_db_cnt %= ring->rxds_per_block;
2423                         }
2424                         writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(new_count),
2425                                 &ring->vp_reg->prc_rxd_doorbell);
2426                         readl(&ring->common_reg->titan_general_int_status);
2427                         ring->doorbell_cnt = 0;
2428                 }
2429         }
2430
2431         return status;
2432 }
2433
2434 /**
2435  * vxge_hw_vpath_poll_tx - Poll Tx for completed descriptors and process
2436  * the same.
2437  * @fifo: Handle to the fifo object used for non offload send
2438  *
2439  * The function polls the Tx for the completed descriptors and calls
2440  * the driver via supplied completion callback.
2441  *
2442  * Returns: VXGE_HW_OK, if the polling is completed successful.
2443  * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2444  * descriptors available which are yet to be processed.
2445  */
2446 enum vxge_hw_status vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo *fifo,
2447                                         struct sk_buff ***skb_ptr, int nr_skb,
2448                                         int *more)
2449 {
2450         enum vxge_hw_fifo_tcode t_code;
2451         void *first_txdlh;
2452         enum vxge_hw_status status = VXGE_HW_OK;
2453         struct __vxge_hw_channel *channel;
2454
2455         channel = &fifo->channel;
2456
2457         status = vxge_hw_fifo_txdl_next_completed(fifo,
2458                                 &first_txdlh, &t_code);
2459         if (status == VXGE_HW_OK)
2460                 if (fifo->callback(fifo, first_txdlh, t_code,
2461                         channel->userdata, skb_ptr, nr_skb, more) != VXGE_HW_OK)
2462                         status = VXGE_HW_COMPLETIONS_REMAIN;
2463
2464         return status;
2465 }